Features

- High-performance, Low-power AVR ${ }^{\circledR}$ 8-bit Microcontroller
- Advanced RISC Architecture
- 130 Powerful Instructions - Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Fully Static Operation
- Up to 8 MIPS Throughput at 8 MHz
- On-chip 2-cycle Multiplier
- Program and Data Memories
- 16K Bytes of Nonvolatile In-System Programmable Flash Endurance: 1,000 Write/Erase Cycles
- Optional Boot Code Memory with Independent Lock Bits Self-programming of Program and Data Memories
- 512 Bytes Nonvolatile In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

- 1K Bytes Internal SRAM
- Programming Lock for Software Security
- Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler and PWM
- Expanded 16-bit Timer/Counter System with Separate Prescaler, Compare, Capture Modes and Dual 8-, 9- or 10-bit PWM
- Dual Programmable Serial UARTs
- Master/Slave SPI Serial Interface
- Real Time Counter with Separate Oscillator
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- External and Internal Interrupt Sources
- Three Sleep Modes: Idle, Power Save and Power-down
- I/O and Packages
- 35 Programmable I/O Lines
- 40-pin PDIP, 44-pin PLCC and TQFP
- Operating Voltages
- 2.7V-5.5V (ATmega161L), 4.0V-5.5V (ATmega161)
- Speed Grades
- 0-4 MHz (ATmega161L), 0-8 MHz (ATmega161)
- Commercial and Industrial Temperature Ranges

ATmega161
 ATmega161L

> 8-bit $\mathbf{A V} \boldsymbol{R}^{\text {® }}$ Microcontroller with 16K Bytes In-System Programmable Flash

Advance Information

Note: This is a summary document. For the complete 134-page document, please visit our web site at www.atmel.com or e-mail at literature@atmel.com and request literature \#1228A.

Pin Configurations

Description

The ATmega161 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega161 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega161 provides the following features: 16K bytes of In-System- or Self-programmable Flash, 512 bytes EEPROM, 1 K bytes SRAM, 35 general purpose I/O lines, 32 general purpose working registers, Real Time Counter, three flexible timer/counters with compare modes, internal and external interrupts, two programmable serial UARTs, programmable Watchdog Timer with internal oscillator, an SPI serial port and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The Power Down mode saves the register and SRAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset. In Power Save mode, the timer oscillator continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.

The device is manufactured using Atmel's high density nonvolatile memory technology. The on-chip Flash program memory can be reprogrammed using the self-programming capability through the bootblock, using an ISP through the SPI-port, or by using a conventional nonvolatile memory programmer. By combining an enhanced RISC 8 -bit CPU with InSystem Programmable Flash on a monolithic chip, the Atmel ATmega161 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega161 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Block Diagram

Figure 1. The ATmega161 Block Diagram

Pin Descriptions

VCC

Supply voltage

GND

Ground

Port A (PA7..PA0)

Port A is an 8-bit bidirectional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers can sink 20 mA and can drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port A serves as Multiplexed Address/Data port when using external memory interface.

Port B (PB7..PB0)

Port B is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA . As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C (PC7..PC0)

Port C is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port C output buffers can sink 20 mA . As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port C also serves as Address high output when using external memory interface.

Port D (PD7..PD0)

Port D is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port D output buffers can sink 20 mA . As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tristated when a reset condition becomes active, even if the clock is not running.

Port E (PE2..PE0)

Port E is a 3-bit bidirectional I/O port. The Port E output buffers can sink 20 mA . As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

RESET

Reset input. A low level on this pin for more than 500 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier

Architectural Overview

The fast-access register file concept contains 32×8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one Arithmetic Logic Unit (ALU) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.
Six of the 32 registers can be used as three 16 -bits indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table look up function. These added function registers are the 16 -bits X -register, Y -register and Z -register.

Figure 2. The ATmega161 AVR RISC Architecture
AVR ATmega161 Architecture

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 2 shows the ATmega161 AVR RISC microcontroller architecture.
In addition to the register operation, the conventional memory addressing modes can be used on the register file as well. This is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses ($\$ 00-\$ 1 \mathrm{~F}$), allowing them to be accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the register file, \$20-\$5F.
The AVR uses a Harvard architecture concept - with separate memories and buses for program and data. The program memory is executed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is Self Programmable Flash memory.
With the jump and call instructions, the whole 8 K word address space is directly accessed. Most AVR instructions have a single 16 -bit word format. Every program memory address contains a 16 - or 32 -bit instruction.
During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP (Stack Pointer) in the reset routine (before subroutines or interrupts are executed). The 16 -bit stack pointer is read/write accessible in the I/O space.
The 1 K bytes data SRAM can be easily accessed through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.

Figure 3. Memory Maps

Program Memory

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$3F (\$5F)	SREG	1	T	H	S	V	N	Z	C
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
\$3C (\$5C)	Reserved es-								
\$3B (\$5B)	GIMSK	INT1	INT0	INT2	-	-	-	-	-
\$3A (\$5A)	GIFR	INTF1	INTF0	INTF2					
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B	OCIE2	TICIE1	TOIE2	TOIE0	OCIE0
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B	OCFI2	ICF1	TOV2	TOV0	OCIF0
\$37 (\$57)	SPMCR	-	-	-	-	LBSET	PGWRT	PGERS	SPMEN
\$36 (\$56)	EMCUCR	SM0	SRL2	SRL1	SRL0	SRW01	SRW00	SRW11	ISC2
\$35 (\$55)	MCUCR	SRE	SRW10	SE	SM1	ISC11	ISC10	ISC01	ISC00
\$34 (\$54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF
\$33 (\$53)	TCCR0	FOC0	PWM0	COM01	COM00	CTC0	CS02	CS01	CS00
\$32 (\$52)	TCNT0	Timer/Counter0 Counter Register							
\$31 (\$51)	OCR0	Timer/Counter0 Output Compare Register							
\$30 (\$50)	SFIOR	-	-	-	-	-	-	PSR2	PSR10
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	PWM11	PWM10
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10
\$2D (\$4D)	TCNT1H	Timer/Counter1-Counter Register High Byte							
\$2C (\$4C)	TCNT1L	Timer/Counter1 - Counter Register Low Byte							
\$2B (\$4B)	OCR1AH	Timer/Counter1-Output Compare Register A High Byte							
\$2A (\$4A)	OCR1AL	Timer/Counter1- Output Compare Register A Low Byte							
\$29 (\$49)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte							
\$28 (\$48)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte							
\$27 (\$47)	TCCR2	FOC2	PWM2	COM21	COM20	CTC2	CS22	CS21	CS20
\$26 (\$46)	ASSR	-	-	-	-	AS20	TCON2UB	OCR2UB	TCR2UB
\$25 (\$45)	ICR1H	Timer/Counter1- Input Capture Register High Byte							
\$24 (\$44)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte							
\$23 (\$43)	TCNT2	Timer/Counter2 Counter Register							
\$22 (\$42)	OCR2	Timer/Counter2 Output Compare Register							
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0
\$20 (\$40)	UBRRHI	UBRR1[11:8]				UBRR0[11:8]			
\$1F (\$3F)	EEARH	-	-	-	-	-	-	-	EEAR8
\$1E (\$3E)	EEARL	EEPROM Address Register Low Byte							
\$1D (\$3D)	EEDR	EEPROM Data Register							
\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0
\$0F (\$2F)	SPDR	SPI Data Register							
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0
\$0C (\$2C)	UDR0	UARTO I/O Data Register							
\$0B (\$2B)	UCSR0A	RXC0	TXC0	UDRE0	FE0	OR0	-	U2X0	MPCM0
\$0A (\$2A)	UCSROB	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	CHR90	RXB80	TXB80
\$09 (\$29)	UBRR0	UART0 Baud Rate Register							
\$08 (\$28)	ACSR	ACD	AINBG	ACO	ACl	ACIE	ACIC	ACIS1	ACIS0
\$07 (\$27)	PORTE	-	-	-	-	-	PORTE2	PORTE1	PORTE0

Register Summary (Continued)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$06 (\$26)	DDRE	-	-	-	-	-	DDE2	DDE1	DDE0
\$05 (\$25)	PINE	-	-	-	-	-	PINE2	PINE1	PINE0
\$04 (\$24)	Reserved								
\$03 (\$23)	UDR1	UART1 I/O Data Register							
\$02 (\$22)	UCSR1A	RXC1	TXC1	UDRE1	FE1	OR1	-	U2X1	MPCM1
\$01 (\$21)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	CHR91	RXB81	TXB81
\$00 (\$20)	UBRR1	UART1 Baud Rate Register							

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $\$ 00$ to $\$ 1 F$ only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:Rdl \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \vee \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow$ \$ FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow$ \$00-Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{~K}$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(\$ \mathrm{FF}-\mathrm{K})$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow$ \$ FF	None	1
MUL	Rd, Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$\mathrm{R1}: \mathrm{R0} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{R0} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
JMP	k	Direct Jump	$\mathrm{PC} \leftarrow \mathrm{k}$	None	3
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
CALL	k	Direct Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{k}$	None	4
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC $\leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(\mathrm{P}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(\mathrm{P}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRCS	k	Branch if Carry Set	if $(C=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if $(C=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRSH	k	Branch if Same or Higher	if $(C=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRLO	k	Branch if Lower	if $(C=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	$1 / 2$
BRPL	k	Branch if Plus	if $(\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	$1 / 2$
BRGE	k	Branch if Greater or Equal, Signed	if $(\mathrm{N} \oplus \mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	$1 / 2$
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if $(\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if ($\mathrm{T}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if ($\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Y}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow R r$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z $+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Z+q) \leftarrow R r$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{RO} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z^{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{Z}) \leftarrow \mathrm{R} 1: \mathrm{R} 0$	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P,b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \mathrm{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
SET		Set T in SREG	$T \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package		
4	$2.7-5.5 \mathrm{~V}$	ATmega161-4AC	44 A		
		ATmega161-4JC	44 J		
		ATmega161-4PC	40 P 6	$]$	Commercial
:---:					

Package Type	
44A	44-lead, Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (TQFP)
44J	44-lead, Plastic J-Leaded Chip Carrier (PLCC)
40P6	40-lead, 0.600" Wide, Plastic Dual-in-line Package (PDIP)

Packaging Information

44A, 44-lead, Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (TQFP)
Dimensions in Millimeters and (Inches)*

*Controlling dimension: millimeters

44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)

40P6, 40-lead, 0.600" Wide,
Plastic Dual-in-line Package (PDIP)
Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-011 AC

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
\section*{BBS}
1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ${ }^{\circledR}$ and/or ${ }^{\text {TM }}$ are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.

