
A Compiler Directed Approach to Hiding

Con�guration Latency in Chameleon Processors

Xinan Tang, Manning Aalsma, and Raymond Jou

Chameleon Systems, Inc.
161 Nortech Parkway
San Jose, CA 95134

tang@chameleonsystems.com

Abstract. The Chameleon CS2112 chip is the industry's �rst recon-
�gurable communication processor. To attain high performance, the re-
con�guration latency must be e�ectively tolerated in such a processor.
In this paper, we present a compiler directed approach to hiding the
con�guration loading latency. We integrate multithreading, instruction
scheduling, register allocation, and prefetching techniques to tolerate the
con�guration loading latency. Furthermore, loading con�guration is over-
lapped with communication to further enhance performance. By running
some kernel programs on a cycle-accurate simulator, we showed that the
chip performance is signi�cantly improved by leveraging such compiler
and multithreading techniques.

1 Introduction

With the rapid progress of recon�gurable computing technology, the new gen-
eration of recon�gurable architectures support runtime con�guration to exe-
cute general-purpose programs eÆciently [10, 7, 13, 6]. Runtime con�guration
becomes an essential feature to allow recon�gurable machines to compete with
the main-stream RISC, VLIW, and EPIC machines.

However, the runtime recon�guration latency can be signi�cant. To maximize
program execution performance, such loading overhead must be minimized. Var-
ious techniques have been proposed to reduce/tolerate the con�guration latency.
Con�guration caching [10], prefetching [8], and compression [9] are named as a
few. In this paper, we propose a compiler directed approach that exploits chip
hardware to tolerate the con�guration latency. We believe that e�ectively hiding
the con�guration latency is the key to achieving high performance on Chameleon
like processors.

In our approach, four major techniques [11], multithreading, instruction
scheduling, register allocation, and prefetching are leveraged to hiding the con�g-
uration loading latency. Our experimental results show that such an integrated

2

approach can double performance and it is very e�ective in hiding the recon�g-
uration latency.

In Section 2, we brie
y introduce the Chameleon chip and the compiler envi-
ronment. In Section 3, we formulate and explain the latency-tolerance problem.
In Section 4, we present the compiler based integrated solution. In Section 5.
we report experimental results and analyze the performance impacts. Finally,
related work is reviewed in Section 6, and future work is discussed in Section 7.

2 Chameleon Hardware Model and Software Environment

The Chameleon recon�gurable chip is a processor based recon�gurable archi-
tecture. We brie
y describe the Chameleon hardware model and the software
environment in this section.

2.1 Chameleon Architecture Model

The Chameleon chip provides a platform for high-performance telecommunica-
tion and datacommunication applications[4]. It is a processor-based recon�g-
urable architecture, in which a RISC core, the recon�gurable fabric, a fast bus,
the memory system, and IO are built in a single chip. Fig. 1(a) gives an abstract
architecture model of Chameleon CS2112 chips.

RISC Core

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

LM DPU CTL

Tile 0

LM DPU CTL

Tile 0

Slice 3Slice 0

Main Memory

BUS

 DMA Engine

IO Parallelizing
Compiler

Partitioning

C

HW SynthesisFabric Function

Scheduled
Config bit stream

GNU-C
Compiler

executable

HDL

Optimizer

eBIOS calls

eBIOS lib

(a). Hardware Model (b) Compiler Flow Chain

Fig. 1. Abstract hardware and software models for Chameleon chips

A 32-bit RISC core is used as a host processor. It schedules computation-
intensive tasks onto the programmable logic. The programmable logic (fabric)
is an array of 108 data path units (DPU). Each DPU can be dynamically re-
con�gured to execute one of eight instructions. The 108 DPUs are divided into
four slices and each slice is further partitioned into 3 tiles. In each tile there are
nine DPUs, of which seven are 32-bit ALUs and two are 16-bit multipliers. The
inputs to a DPU can be changed on the cycle base. All instructions are executed
in one cycle. Each DPU can have maximum 8 instructions stored in the control
unit (CTL), and the next instruction is determined by the CTL within the same
cycle. By loading a new con�guration bit stream, the recon�gurated DPUs can

3

perform new computation. In addition, there are 8Kbyes of local memory (LM)
for each slice and a DPU can read/write 32 bits in two cycles. Inside the chip, a
high-speed bus links the core, the fabric, the main memory, and other IO devices
together.

A con�g bit stream is stored in the main memory. It is loaded onto the fabric
at runtime by DMA. Each slice has two planes for bit streams. An active plane
executes the working bit stream and a back plane contains the next con�g bit
stream. Switching from the back plane to the active one takes one cycle. There-
fore, the back plane can be e�ectively used as cache for loading con�guration.

Since the CS2112 chip is a loosely coupled recon�gurable architecture, it
requires to move a large chunk of data from the main memory to the fabric
local memory to cover the con�guration and communication latency. Therefore,
the granularity of program to be executed on the fabric is best at the function
level. Unlike �ne-grained recon�gurable architectures such as PRISC [12] and
Chimaera [7], the Chameleon fabric is very eÆcient at executing medium-grained
functions that contain tens or even hundreds of instructions. At such a medium-
grain level, loading a con�g bit stream may take up to hundreds of cycles if
there is a cache miss. Thus, e�ectively to tolerate the loading latency is the key
to attaining high performance on the Chameleon chip.

2.2 Chameleon Software Environment

Fig.1(b) outlines the Chameleon software environment. Like other compilers for
recon�gurable architectures [3, 5, 16, 2], it mainly consists of two compilers. An
optimizing compiler takes a C program and partitions the program into two
parts: (1) code suitable to run on the RISC core; (2) code pro�table to execute
on the recon�gurable fabric. The RISC part is then compiled by a GNU C
compiler and the fabric one is passed to a hardware (HW) synthesis compiler
in an intermediate form. For the eÆciency reason, the HW compiler also takes
in programs written in Verilog and generates con�g bit streams. The con�g bit
stream can then be linked with other compiled code to form an executable.

To launch a function onto the fabric, an eBIOS (runtime system) is designed
to support: (1) multithreaded execution between the core and the fabric; (2)
communication and synchronization between the core and the fabric. To hide the
con�guration latency, the sequence of eBIOS calls must be carefully scheduled
to exploit parallelism. The fabric-function optimizer is an optimization module
that performs (1) eBIOS call scheduling; (2) static resource allocation to make
full use of available hardware resources. In the following, we will focus on the
latency tolerant techniques employed in the fabric-function optimizer.

3 Problem Statement

To run a function on the fabric, the call is replaced by a series of equivalent eBIOS
calls to perform: (1) loading a con�g bit stream; (2) moving data in DMA; (3)

4

�ring the fabric. The scheduling problem studied in this paper is to place a series
of calls into a proper order so that (1) control and data dependences are obeyed.
(2) total program execution time is minimized. To minimize total execution
time, the con�guration overhead must be minimized. Thus, if the con�guration
overhead is reduced, the total execution time is also e�ectively reduced.

Formally, we can formulate the problem as follows: given a series of fabric
function calls F = f1; :::; fn, each fi has its parameter list li, and its correspond-
ing con�g bit stream ci. Find a schedule S that consists of a series of eBIOS
calls so that the total execution time on the processor is minimized.

In this paper, F can be a fork/join series, and function fi has only one con�g
bit stream ci. Therefore, partially recon�guration is not considered. Fig. 2(a)
lists a series of four function calls, f1, f2, f3 and f4. In the series, functions f2
and f3 can run in parallel.

f1;

fork

f2;

f3;

join;

f4

1| #pragma cmln mac(\
2| in x[N],in y[N],\
3| out *z)
4|
5| mac(x, y, &z);
6|

1| LOAD_CONFIG(mac_bits);
2| WAIT_FOR_CONFIG();
3| DMA_MOVE(X, 4*N, LM_1);
4| WAIT_FOR_DMA();
5| DMA_MOVE(Y, 4*N, LM_2);
6| WAIT_FOR_DMA();
7| FIRE_FABRIC();
8| WAIT_FOR_FABRIC();
9| SCALAR_MOVE(&z, DPU_1);

1| LOAD_CONFIG(mac_bits);
2| DMA_MOVE(X, 4*N, LM_1);
3| DMA_MOVE(Y, 4*N, LM_2);
4| WAIT_FOR_CONFIG();
5| WAIT_FOR_DMA();
6| FIRE_FABRIC();
7| WAIT_FOR_FABRIC();
8| SCALAR_MOVE(&z, DPU_1);

(a) sequence. (b) C call (c) schedule 1 (d) schedule 2

Fig. 2. Fork/join program representation and eBIOS schedules.

Let's see an example that shows the scheduling impacts. Fig. 2 (b), a C call
is indicated to the scheduler in the pragma line (lines 1-3), which says function
mac has two input arrays and one output scalar. Two eBIOS schedules are listed
in Fig. 2 (c) and (d) respectively.

Schedule 1 listed in Fig. 2 (c) �rst loads the con�g bit stream of mac (lines
1-2). Then two input arrays are sent to the fabric using DMA (lines 3, 4, 5, and
6). Next, the fabric is �red (line 7). After the completion of running (line 8),
the scalar result is retrieved (line 9). However this schedule is not an e�ective
one. First, it does not issue any DMA operation after con�guration loading;
Second it does not pipeline the DMA issuing operations. Schedule 2 listed in
Fig. 2 (d) is better by pipelining two type of operations: loading a con�guration
and moving data in DMA (lines 1-3). Moreover, it reduces one synchronization
(WAIT FOR DMA). Thus a better schedule will have signi�cant performance
impacts. In the following, we will discuss how a `good' schedule can be found
out.

4 Scheduling Algorithm and Compiler Optimizations

Since the problem formulated is NP-Complete, feasible algorithms require the use
of heuristics. We will �rst introduce the multithreaded eBIOS, and then present
our heuristic scheduling algorithm. Finally a series of compiler optimizations are
also described.

5

4.1 Multithreaded Runtime System

The eBIOS is a runtime system that supports the fork/join style of parallelism.
A master thread runs on the RISC core and other slave threads can run con-
currently on the fabric. To support such an execution model, the eBIOS must
support split-phased (asynchronized) transactions between the core and the fab-
ric [15]. Particularly, the following operations are non-blocking in terms of the
RISC core execution: (1) LOAD CONFIG: loading a con�g bit stream onto
the fabric; (2) DMA MOVE: moving data between the main memory and the
fabric; (3) FIRE FABRIC: activate computation on the fabric.

However, such multithreaded execution inadvently adds to the programming
complexity. It is essential for the scheduling algorithm to �nd a good schedule
to guarantee: (1) the `right' combination of eBIOS calls that is dead-lock free;
(2) the `best' schedule that has minimized execution time.

4.2 Heuristic Scheduling Algorithms

A two-level heuristic is used to solve the scheduling problem. First, we aggres-
sively schedule eBIOS calls that belong to the same function call. Second we hoist
up certain operations between two neighbor function calls to exploit parallelism.

Fig. 3(a) gives a list scheduling based algorithm that arranges the eBIOS calls
within the same function-call boundary. Given an input function fi, parameter
list li, and con�g bit stream ci, The algorithm works as follows. After issuing
load con�g bit stream (line 2), the algorithm sorts the input parameter list li
into four sublists (line 3): (1) l1i is an input array list; (2) l2i is an output array
list; (3) l3i is an input scalar list; (3) l4i is an output scalar list. The purpose of
such sorting is to facilitate handling data dependences between parameters and
the function call. For list l1i , we further sort it into a decreasing order according
to the length of input array (line 5). Then, we take each input array from the
sorted list and issue DMA MOVE operation one by one (lines 7 and 8). The
reason of issuing longer DMA operations earlier is to use their execution time
to cover the DMA setup costs of shorter DMA operations.

Next, operation WAIT FOR CONFIG is issued to guarantee that the con�g
bit stream arrives on the fabric. After that scalar parameters can be sent onto the
fabric (lines 11-13). The reason of DMA �rst and scalar second is that a con�g
bit stream may modify some DPU registers while DMA operations can run
in parallel with loading con�gurations. Then, we check whether the previously
issued DMAs have �nished (line 15). Afterwards, we can start fabric computation
(line 16), and wait for its completion at line 17. Then we continue to process
output parameters accordingly (lines 18-29 shown in the right).

In summary, the heuristics used in the scheduling algorithm are as follows:
(1) overlap loading a con�g bit stream and DMA operations (lines 2-9); (2)

6

1 | RTS_schedule(f_i, l_i, c_i) {
2 | select(LOAD_CONFIG) for c_i;
3 | (l1,l2,l3,l4) = sort_parameter_list(l_i)
4 | if (|l1| > 0) { /* Input arrays */
5 | sort l1 into a non-ascending order;
6 | foreach array input in sorted l1 {
7 | select (DMA_MOVE, READ);
8 | }
9 | }
10| select(WAIT_FOR_CONFIG);
11| foreach scalar input in l3 {
12| select(SCALAR_MOVE, READ);
13| }
14| if (|l1|)
15| select(WAIT_FOR_DMA);
16| select(FIRE_FABRIC);
17| select(WAIT_FOR_FABRIC);

18| if (|l2| > 0) { /* output arrays */
19| sort l2 into a non-ascending order;
20| foreach array output in sorted l2 {
21| select (DMA_MOVE, WRITE);
22| }
23| }
24| foreach out scalar in l4 {
25| select(SCALAR_MOVE, WRITE);
26| }
27| if (|l2| > 0)
29| select(WAIT_FOR_DMA);
30| }

Fig. 3. Scheduling algorithms for eBIOS calls

pipeline DMA operations to cover up their setting up costs (line 4-9, and 18-23);
(3) use DMA operations to hide scalar operations (lines 11-15, and 24-29). The
time complexity of the algorithm is O(nlogn) assuming jlij = n. Most of time is
spent on sorting li1 and li2 into a proper order.

For scheduling eBIOS calls from multiple function call sites, the resource
con
ict analysis should be done �rst. Two concurrent functions fi and fj are
resource free if (1) the combined number of slices used is less than 4; (2) the
intersection of the slice set is empty; (3) the intersection of the DMA set is
empty. Otherwise two functions have to be executed sequentially due the resource
constraints.

The minimum scheduling cluster (MSC) of function fi is de�ned as:

MSCi =

�
ffi+1; : : : ; fi+kg if free(fi; fi+1) & . . . &free(fi; fi+k) & conflict(fi; fi+k+1)
ffi+1g otherwise

Ideally, function fi should be scheduled together with other functions within
the same MSCi. To make the scheduling tractable, only two neighbor function
calls are considered,MSCi = ffi+1g. This is based on the fact that there are only
two con�g planes on the Chameleon CS2112 chip. Furthermore, we only hoist
up the con�g loading operation in between the �ring fabric and the waiting for
its completion. Thus, we try to use fabric computation time of one function to
overlap con�guration loading for another function.

4.3 Compiler Optimizations

In addition to scheduling, other compiler optimizations are also applied to reduce
execution time.

Function inlining is a technique to replace a call with the function body to
reduce the stack manipulation overhead. By inlinging the original C call with
a series of eBIOS calls, the actual parameters are directly bound to the eBIOS
calls and the program execution time is reduced signi�cantly.

7

Static resource allocation is a technique similar to register allocation. The
resources that a fabric function needs are slices and DMA channels. If resources
for a fabric function can be statically allocated for a fabric function, the overhead
of dynamic resource allocation such as address computation can be eliminated
completely.

Synchronization between the core and the fabric must be done to enforce
certain order. For example, WAIT FOR CONFIG waits for the con�g loading to
�nish and WAIT FOR DMA waits for DMAs to �nish. There is an autonomous
working mode in the CS2112 chip in which synchronization is done by hardware
automatically. Our scheduling algorithm can identify such a case and eliminate
unnecessary synchronization when the autonomous mode can be applied.

5 Experimental Results

To test the eÆcacy of heuristic algorithms, we use kernel benchmarks to measure
the e�ectiveness of our scheduling algorithm and compiler optimizations. The
major results are as follows: (1) the eBOS scheduling algorithm can dramatically
increase program execution performance up to 60% (see Section 5.1); (2) the
prefetching algorithm can boost performance up to 30% (see Section 5.2); (3)
by using the autonomous mode, performance can be further increased by up to
15% for certain benchmarks (see Section 5.3);

Table 1 lists main characteristics of benchmarks used. Benchmarks fht,
fir24, and pngen are kernels for CDMA systems. The DMA is used in all bench-
marks. The length of a con�g bit stream is given in Kilo bytes. We expect that
the longer of a con�g bit stream, the more e�ective of our scheduling algorithms.

The simulator used is a commercial cycle-accurate simulator, ModelSim. S-
ince we simulate the entire chip at the RTL level, timing information is guar-
anteed to be cycle accurate. During the experiment, function-inlining is always
applied since it de�nitely enhances performance.

Table 1. Benchmark Description

Name Description Bit Stream Length DMA Channels
input output

mac vector product 0.9K 2 0

addvec vector addition 1.1K 2 1

fht hadamard function 2.1K 1 1

�r FIR �lter 2.1K 8 0

�r24 24 tap ' 5:0K > 1 � 1

pngen PN generator ' 5:0K > 1 � 1

5.1 E�ects of eBIOS Scheduling

Table 2 lists program execution performance for programs generated by di�erent
scheduling algorithms. O0 means a naive scheduling algorithm in which each

8

Table 2. Performance of the eBIOS scheduling algorithm.

schedule mac addvec fht �r �r24 pngen ave.
O0 3303 3577 3518 6007 4705 8021

time O1 3074 3326 3529 4375 4323 6955
O2 1612 2048 2446 2472 3069 5535
0,1 7 7 -0 27 8 13 10

imp(%) 1,2 48 38 31 43 29 20 35
0,2 51 43 30 59 35 31 42

con�g loading and DMA operation is issued sequentially. O1 means applying
the scheduling algorithm. O2 means using the static slice allocation on top of
O1. The �rst three rows give corresponding execution times measured in cycles
and the next three rows list the improvement rate, computed by

Impi;j = (TOi � TOj)=TOi (1)

From Table 2, we can see that on average imp is 10% when the scheduling
algorithm is applied (imp0;1 row). Benchmark fir has the highest improvement
rate (27%) since the number of DMAs used is the biggest (8). However bench-
mark fht has a negligible negative impact. The reasons are two fold. First, the
number of DMAs are smaller (1 input and 1 output). Second, pipelining con�g
loading and DMA operations may cause the bus contention. This result indicates
that the scheduling algorithm will have a big performance impact if more DMAs
are used and the bus contention is not an issue.

When applying the static resource allocation (imp1;2 row), the performance of
all benchmarks is increased. The reason is that after the static resource allocation
is applied the critical path of entire program execution is reduced. Therefore,
the optimization impact becomes more visible.

In general, the combined improvement rate is 42%. This shows that the
combined scheduling algorithm has a signi�cant impact on performance.

5.2 E�ects of Prefetching

Table 3(a) lists the performance impacts of the the prefetching based scheduling
algorithm on the two combined benchmarks, mac-addvec (mac+addvec) and
fir24-pngen (�r24+pngen). The experiment was done by turning on/o� option
�O3. When option �O3 is o�, all functions in two test cases run sequentially.
When option �O3 is on, mac-addvec runs in parallel since there is no resource
con
ict but fir24-pngen is forced to run sequentially since there is resource
con
ict. However loading con�g bit stream for pngen is prefetched to the back
planes. Therefore, loading con�g bit stream for function pngen runs in parallel
with the execution of function fir24 on the fabric.

In Table 3(a), row off corresponds to program execution time when the
prefetching algorithm is not applied. Row on corresponds to execution time
when the algorithm is applied. Row conflict indicates whether there is resource
con
ict. Row imp gives the performance improvement rate.

9

Table 3. Performance of Compiler Optimizations.

O3 mac-addvec �r24-pngen ave.
o� 3301 8231
on 3048 5812

con
ict no yes
imp(%) 7.66 29.39 18.53

Auto mac addvec fht �r24 Ave.
no 1612 2048 2446 3069
yes 1510 1739 1966 2735
imp(%) 6.0 15.0 20.0 11.0 13.0

(a) prefetching (b) autonomous mode

From Table 3(a), we can see that on average performance is increased by
almost 19% when the prefetching based scheduling algorithm is applied. Com-
paratively, fir24-pngen has bigger performance improvement over mac-addvec,
29.39% vs. 7.66%. The reasons are two fold. First, the fabric running time of
fir24-pngen is longer than that of mac-addvec. Second, the length of the con�g
bit stream of fir24-pngen is also longer that that of mac-addvec(See Table 1).
Therefore, prefetching the con�g bit stream of fir24-pngen is more rewarding.

5.3 E�ects of Using the Hardware Feature

Table 3 (b) lists program execution performance before and after the fabric au-
tonomous execution feature is applied. This experiment is done based on O2
optimization. The yes/no rows in Table 3 (b) give execution time of a program
using/not using the hardware feature correspondingly. Only four benchmark-
s are quali�ed for such an optimization. On average, execution performance is
improved by 13%. The improvement rate of the benchmarks that have output
DMAs (addvec,fht, and fir24) is bigger than the one that does not have (mac).
The reason is that an extra synchronization for output DMAs was also elimi-
nated. This suggests that the hardware feature should be exploited whenever
possible.

6 Related Work

In compiling for recon�gurable architectures, most of work focuses on the code
partitioning and parallelizing loops [3, 5, 16, 2]. On these machines [10, 7, 13, 6],
the processor usually stalls when a con�guration is loaded. The performance
impact of prefetching has been studied by Hauck et. al. [8]. However the com-
munication overhead is not considered in the study. Viswanath et. al. [14] did a
quantitative case study on the e�ects of the communication overhead, and they
identi�ed the importance of reducing such overhead. Bondalapati et. al. [1] pro-
posed a general model mapping loops onto the recon�gurable architecture. Our
problem formulation is di�erent from theirs by considering the fork/join tree and
communication cost. In this paper, we propose a compiler-directed approach to
hiding the `interface' latency, including the recon�guration and communication
latencies. To the best of our knowledge, this is the �rst integrated e�ort to lever-
age compiler and multithreading techniques to solve this problem. We believe
that our approach can also be applied to other similar architectures.

10

7 Conclusions and Future Work
We have developed a compiler-directed approach, combining compiler optimiza-
tion and multithreading techniques, to hide the con�guration loading latency. We
have implemented the list scheduling based algorithm that �nd a `best' schedule
for a series of eBIOS calls. The experimental results are very encouraging, and
performance has been signi�cantly improved by applying the integrated method.
The future work will be: 1) continue to improve the scheduling algorithms; 2)
design advanced resource allocation schemes; 3) investigate better prefetching
algorithms. We will also experiment on our chips with real applications.

References

1. K. Bondalapati and V. K. Prasanna. "mapping loops onto recon�gurable architec-
tures". In Proc. of Inter. Workshop on Field Programmable Logic and Applications,
Sep. 1998.

2. M. Budiu and S. C. Goldstein. "fast compilation for pipelined recon�gurable fab-
ric". In Proc. of ACM/SIGDA Inter. Symposium on FPGA, 1999.

3. T. J. Callahan and F. John Wawrzynek. "instruction level parallelism for recon-
�gurable computing". In Hartenstein and Keevallik, editors, Inter. Workshop on
Field-Programmable Logic and Applications. Lecture Notes in Computer Science,
LNCS 1482,Springer-Verlag, Aug. 1998.

4. Chameleon Systems, Inc. http://www.chameleonsystems.com/, 2000.
5. M. Gokhale and J. Stone. "NAPA C: Compiling for a hybrid risc/fpga architcture".

In Proc. of the IEEE Symposium on FCCM, Apr. 1998.
6. S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and

R. Laufer. PipeRench: A coprocessor streaming multimedia acceleration. In Proc.
of ISCA-26, pages 28{39, Atlanta, Geor., May 1999.

7. S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. "the chimaera recon�gurable
functional unit". In Proc. of the IEEE Symposium on FCCM, Apr. 1997.

8. S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. ""con�guration prefetch
for single context recon�gurable coprocessors"". In Proc. of ACM/SIGDA Inter.
Symposium on FPGA, Feb. 1998.

9. S. Hauck, Z. Li, and E. J. Schwabe. "con�guration compression for the xilinx
xc6200 fpga". In Proc. of the IEEE Symposium on FCCM, Apr. 1998.

10. J. R. Hauser and J. Wawrzynek. "garp: A mips processor with a recon�gurable
coprocessor". In Proc. of the IEEE Symposium on FCCM, Apr. 1997.

11. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997.

12. R. Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD the-
sis, Harvard University, Division of Applied Sciences, Boston, 1994.

13. C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold, and
M. Gokhale. "the napa adaptive processing architecture". In Proc. of the IEEE
Symposium on FCCM, Apr. 1998.

14. S.K.Rajamani and P.Viswanath. "a quantitative analysis of the processor-
programmable logic interface". In Proc. of the IEEE Symposium on FCCM, Apr.
1997.

15. X. Tang and G. R. Gao. Automatically partitioning threads for multithreaded
architectures. Journal of Parallel and Distributed Computing, 58(2):159{189, Aug.
1999.

16. M. Weinhardt and W. Luk. "pipeline vectorization for recon�gurable systems". In
Proc. of the IEEE Symposium on FCCM, Apr. 1999.

