
 Application Note 06

Interfacing an External SRAM to the C8051F000

© 2000 Cygnal Integrated Products Inc. AN06-1.0 NOV00

Introduction
The purpose of this application note is to describe
how to interface a generic SRAM or a memory
mapped peripheral to a C8051 device using
standard GPIO port pins. Hardware connections,
schematics, timing diagrams, example code, and a
performance review are provided.

The applications of this interface include acquiring
ADC samples, data logging, or any other large data
storage application.

Key Points

• This reference design assumes a 10 ns
SRAM. If the SRAM access time is greater
than 45 ns, it may be necessary to add NOP
commands to increase the length of the
address setup times and read/write strobes.

• The number of port pins required depends
on the address space supported. This
design’s 128 Kbyte address space requires
21 port pins.

• If designing with an SRAM, double check
product availability from your supplier.
Manufacturers are phasing out many low-
density SRAM devices.

Description
This example of an external SRAM interface uses an
IDT71V124SA10PH (128K x 8-bit) 3V SRAM from
Integrated Device Technologies (www.idt.com),
although any generic SRAM will work in a similar
fashion. The interface uses a multiplexed address
and data bus to reduce the number of port pins
required. The lower address bits are held in a latch
while data is transferred. Figure 4 (page 5) shows
the tested configuration of this implementation.

Figure 1. External SRAM Block Diagram.

A[16:8]

AD[7:0]

ADDRESS BUS

ADDRESS / DATA BUS

/WR

/RD

ALE

IDT71V124
128Kx8 SRAM

OE

WE

I/O[7:0]

74VHC573
Octal Latch

LE

D Q

A[16:8]

A[7:0]

CSCS

Cygnal
C8051

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
2

Bi-Directional Port Operation
‘Data1’ is used as a data input bus, output bus, and
partial address bus. Multiplexing the bus requires
dynamic port configuration changes to make the port
an input or an output as needed.

To configure a port pin as an input, its associated
Port Configuration Register bit (PRTnCF.x) must be
set to a '0', which makes it's output mode 'open-
drain', and it's register latch bit (Pn.x) must be set to
a '1', which makes it's output state 'hi-z'. For
example, the following code configures all the pins
of Port 0 as inputs:

 mov PRT0CF, #00h ;Open-drain output mode
 mov P0, #0ffh ;high-impedance

This code configures all of Port 0's pins as push-pull
outputs:

 mov PRT0CF, #0ffh ;Push-Pull output mode

The SRAM_Read routine (see the Example Code
section, page 6) gives an example of changing the
port direction. During the first phase of the routine,
the ‘DATA1’ port is configured as an output to drive
the least-significant address byte onto the port latch.
In the second phase of the routine, the ‘DATA1’ port
is configured as an input to read the value from the
external SRAM.

Signals and Connections
Figure 1 shows a block diagram of the hardware
connections between the C8051F000, SRAM, and
address latch. The entire schematic is shown in
Figure 4. The connections, designations, and signal
names are as follows:

The multiplexed address/data bus ‘AD[7..0]’,
designated ‘DATA1’ in the example code support the
lower 8 bits of the address and the 8 bits of data.
This configuration allows the lower address lines to
be held by the ‘573 latch while the SRAM and
C8051 transfer data, such that 8 additional ports for
data transfer are not necessary.

‘A[15..8]’, designated ‘ADDR’ in the example code,
supply the upper 8 bits of the address.

‘A16’, also designated ‘A16’ in the example code,
acts as a bank select between the two 64 Kbyte
banks. A ‘0’ is bank one and ‘1’ is bank two.

‘RD’, ‘WR’, ‘ALE’, and ‘CS’ are control signals and
have the same corresponding names in the example

code. ‘RD’ is the read strobe (operates active low).
‘WR’ is the write strobe (operates active low). ‘ALE’
is the address latch signal that holds the lower 8
address bits during data transfer. ‘CS’ is the SRAM
chip select (operates active low).

Software Operation
‘SRAM_Init’, ‘SRAM_Read’, and ‘SRAM_Write’ are
the three software routines used to access the
external SRAM.

The ‘SRAM_Init’ routine initializes the SRAM
interface logic and port configurations. This routine
is only called in the initialization sequence of the
device. This routine assumes that the crossbar has
already been enabled (XBR2.6 = '1'). For example:

 mov XBR@, #40h ;enable the crossbar
 acall SRAM_Init ;initialize the SRAM

The ‘SRAM_Read’ routine reads a byte from the
external SRAM. To use this routine, load DPTR with
the sixteen-bit address to be read, call
‘SRAM_Read’, and the routine returns in ACC the
data at the address pointed to by DPTR. For
example:

 mov DPH, #00h ;load high byte of address
 mov DPL, #00h ;load low byte of address
 acall SRAM_Read ;perform read operation
 ;data is returned in ACC

The ‘SRAM_Write’ routine writes the byte in ACC to
the external SRAM at the address pointed to by
DPTR. To use this routine, load ACC with the data
to be written, load DPTR with the 16-bit address,
and call ‘SRAM_Write’. For example:

 mov DPH, #00h ;load high byte of address
 mov DPL, #00h ;load low byte of address
 mov a, #55h ;load value to write
 acall SRAM_Read ;perform read operation

The main program in the example code section
outlines how to write to and read from every byte in
the external 128 Kbyte SRAM. The program writes
a byte to external RAM, reads that address location,
and verifies the value read is the same as the written
value. The program then proceeds to the next
address space and continues until the entire 64K
bank has been written to. Once the lower bank has
been written the program switches to the upper bank
by setting the ‘A16’ bit (see the “Constants and
Declarations” section in Example Code). The routine

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
3

then performs the same read, write, and verify
operation for every byte in the upper bank.

Timing Description
Figures 2 and 3 show timing waveforms for reads
and writes respectively, as implemented by the
example code. Table 1 shows the timing values for
these figures.

Read Timing Notes
‘tRDSU’ (Table 1) refers to the time period from when
the read strobe is activated to when the data is valid.
The corresponding code lines for this sequence are:

 clr RD ; activate read strobe
 ;NOP ; add NOPs here to extend tRDSU
 mov a, DATA ; read the data

It may be necessary to add NOP instructions after
the ‘clr RD’ instruction as shown above to extend
‘tRDSU’ in order to meet the setup time of the SRAM.

Write Timing Notes
As shown in Table 1, ‘tWR’ refers to ‘/WR’ pulse
width. The following code sequence executes the
pulse.

 clr WR ; activate WRITE strobe
 ;NOP ; add NOPs here to extend tWRSU

 setb WR ; de-assert WRITE strobe

It may be necessary to add NOP instructions after
the ‘clr WR’ instruction as shown above to extend
‘tWR’ in order to meet the setup time of the SRAM.

Performance
This multiplexed parallel interface implementation
achieves high throughput performance with
moderate Port I/O consumption. A byte-read
operation or byte-write operation, each takes 34
SYSCLK cycles from procedure entry point to return-
from-call inclusive, which takes 1.7 µs with a 20 MHz
SYSCLK. This achieves a maximum transfer rate of
588K bytes per second. A 64K bank can be filled in
137 µs.

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
4

tALE

AD[7..0]

CS

/RD

A7...0

tRDS

ALE

A[15..8] A15...8

D7...0

/WR

tALE

AD[7..0]

CS

A7...0

ALE

A[15..8] A15...8

D7...0

tWDSU

tWR

tWASU

Symbol Parameter Cycles SYSCLK=20MHz

READ CYCLE

tALE Latch Pulse Width 2 100ns

tRDSU Data Setup Time 2 100ns
WRITE CYCLE

tALE Latch Pulse Width 2 100ns

tWASU Address Setup Time 3 300ns

tWDSU Data Setup Time 4 200ns

tWR Write Pulse Width 2 100ns

Table1. Read and write cycle timing

Figure 3. Write Cycle Timing Waveform.

Figure 2. Read Cycle Timing Waveform.

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
5

Figure4. Tested configuration of C8051F000, 128k x 8 SRAM, and address latch.

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
6

Example Code
;---
; Copyright (C) 2000 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.
;
;
; FILE NAME : XSRAM.ASM
; TARGET MCU : C8051F000
; DESCRIPTION : External SRAM read/write verification routine for
; IDT 71V124SA.
;
;---
; EQUATES
;---

$NOLIST
$MOD8F000
$LIST

;---------------------------------------
; Constants and Declarations
;---------------------------------------

DATA1 EQU P3 ; port for DATA pins(AD7..0)
DATACF EQU PRT3CF ; port configuration register for DATA
ADDR EQU P2 ; port for ADDR pins(A15..8)
ADDRCF EQU PRT2CF ; port configuration register for ADDR
A16 EQU P1.7 ; upper address bit(address bank select)
RD EQU P1.6 ; READ strobe (active low)
WR EQU P1.5 ; WRITE strobe (active low)
ALE EQU P1.4 ; address latch signal(active low)
CS EQU P1.3 ; SRAM chip select(active low)

;---
; VARIABLES
;---

;---
; RESET and INTERRUPT VECTORS
;---
; Reset Vector

 org 00h
 ljmp Main

;---
; MAIN PROGRAM CODE
;---

 org 0B3h
Main:
 ; Disable the WDT. (IRQs not enabled at this point.)
 ; if interrupts were enabled, we would need to explicitly disable
 ; them so that the following two instructions were guaranteed to
 ; to execute within 4 clock cycles of each other.

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
7

 mov WDTCN, #0DEh
 mov WDTCN, #0ADh

; Set up the XBar.
 mov XBR2, #40h ; Weak pull-ups, XBAR enabled.
 acall SRAM_Init ; Initialize SRAM

 mov R0, #0ffh ; R0 holds value to write
 mov DPH, #00h ; initialize 16bit address to start of bank (0000h)
 mov DPL, #00h ;
 mov a, R0 ; load write value

; bank1 will write a value to ram, read it, and then verify the value
; bank1 will perform this operation for every byte in the 64Kbyte bank

bank1:
 acall SRAM_Write ; write to sram
 clr a ; clear load value
 acall SRAM_Read ; read same address

cjne a, 00h, error ; verify read value is the same as the loaded
; value 00h=R0

 inc dptr ; next address
 mov a, DPH ; check dptr for finished (dptr=0000h)
 orl a, DPL ;
 jz b1done ; we are finished with the first 64k bank if

; dptr rolls over
 mov a, R0 ; reload write value
 jmp bank1 ; write; read; and verify again

; once bank1 is done we will perform the same operation on bank2
b1done:
 setb A16 ; change to bank 2
 mov R0, #0ffh
 mov DPL, #00h ; initialize 16bit address
 mov DPH, #00h ;
 mov a, R0 ; load write value

; bank2 will write a value to ram, read it, then verify the value
bank2:
 acall SRAM_Write ;write to sram
 clr a ; clear load value
 acall SRAM_Read ; read same address

cjne a, 00h, error ; verify read value is the same as the loaded
; value 00h=R0

 inc dptr ; next address
 mov a, DPH ; check dptr for finished (dptr=0000h)
 orl a, DPL ;
 jz b2done ; we are finished with the first 64k bank if

; dptr rolls over
 mov a, R0 ; reload write value
 jmp loop1 ; write; read; and verify again

b2done:

jmp $;
error:

jmp $; a verification error has occurred

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
8

;---------------------------------------
; SRAM_Init
;---------------------------------------
; This routine initializes the SRAM interface logic. Must be called once
; before any SRAM_Read or SRAM_Write operations, typically as part of the
; reset sequence. This routine assumes that the crossbar has already been
; enabled (XBR2.6 = ’1’).
;

SRAM_Init:
 mov DATACF, #00h ; Enable Port3 (DATA) as an input bus
 mov DATA1, #0ffh
 mov ADDRCF, #0ffh ; Enable Port2 (ADDR) as an output
 mov ADDR, #0ffh ; driven high ($ff)
 orl PRT1CF, #11111000b ; enable P1.7..3 as outputs
 clr A16 ; select bank 0
 setb RD ; READ initialized
 setb WR ; WRITE initialized
 clr ALE ; address latch disabled
 setb CS ; SRAM de-selected
ret

;---------------------------------------
; SRAM_Read
;---------------------------------------
; This routine reads from the external SRAM. Specifically, it returns
; in ACC the data at the address pointed to by DPTR. Bank select
; (manipulation of A16) is not handled here.
;
SRAM_Read:
 clr CS ; select external SRAM
 mov ADDR, DPH ; force external address A15..A8
 mov DATACF, #0ffh ; enable AD7..0 as outputs
 mov DATA1, DPL ; force external address A7..A0
 setb ALE ; latch the address
 ;NOP ; add NOPs here to extend tALE

clr ALE
 mov DATACF, #00h ; enable AD7..0 as inputs
 mov DATA1, #0ffh
 clr RD ; activate READ strobe
 ;NOP ; add NOPs here to extend tRDSTU

mov a, DATA1 ; read the data (note: setup time for OE-based
 ; reads is 10ns for this SRAM. At SYSCLK
 ; = 20MHz, this instruction takes 2 clock
 ; cycles, or 50ns * 2 = 100ns.
 setb RD ; de-assert READ strobe
 setb CS ; de-select SRAM
 ret

;Totals for a read are:
;30 bytes, 34 cycles.

;---------------------------------------
; SRAM_Write
;---------------------------------------

 Application Note 06

Cygnal Integrated Products Inc. AN06-1.0 NOV00
9

; This routine writes a byte to the external SRAM. Specifically, it writes
; the byte in ACC to the address pointed to by DPTR. Bank select
; (manipulation of A16) is not handled here.
;
SRAM_Write:
 clr CS ; select external SRAM
 mov ADDR, DPH ; force external address A15..A8
 mov DATACF, #0ffh ; enable AD7..0 as outputs
 mov DATA1, DPL ; force external address A7..A0
 setb ALE ; latch the address
 ;NOP ; add NOPs here to extend tALE

clr ALE
 mov DATA1, a ; present the data to the DATA bus
 clr WR ; activate WRITE strobe
 ;NOP ; add NOPs here to extend tWR

setb WR ; de-assert WRITE strobe
 ; note: this results in a write pulse width
 ; of 100ns with a 20MHz SYSCLK. The minimum
 ; width for this SRAM is 7ns.
 mov DATACF, #00h ; enable AD7..0 as inputs
 mov DATA1, #0ffh
 setb CS ; de-select SRAM
 ret
;---
; End of file.

END

