
1

Tutorial Introduction

PURPOSE:
- To explain MCU processing of reset and and interrupt events

OBJECTIVES:
- Describe the differences between resets and interrupts.
- Identify different sources of resets and interrupts.
- Describe the MCU reset recovery process.
- Identify the steps to configure and service an interrupt event.
- Describe MCU exception processing.

CONTENT:
- 20 pages
- 3 questions

LEARNING TIME:
- 25 minutes

PREREQUESITE:
- The 68HC08 CPU training module and a basic understanding of reset and

interrupt events

Welcome to this tutorial on resets and interrupts. The tutorial describes the different sources of reset
and interrupt events and provides detailed training on 68HC08 MCU exception processing. Please
note that on subsequent pages, you will find reference buttons in the upper right of the content window
that access additional content.

Upon completion of this tutorial, you’ll be able to describe the differences between resets and
interrupts, identify different sources of reset and interrupt events, and describe MCU exception
processing.

The recommended prerequisite for this tutorial is the 68HC08 CPU training module. It is also
assumed that you have a basic knowledge of reset and interrupt events. Click the Forward arrow
when you’re ready to begin the tutorial.

2

Resets and Interrupts Overview

• Reset sources:

- External - power on, reset pin driven low

- Internal - COP, LVI, illegal opcode, illegal address

• Resets initialize the MCU to startup condition.

• Interrupt sources:

- Hardware

- Software

• Interrupts vector the program counter to a service routine.

Resets and interrupts are responses to exceptional events during program execution.

Resets can be caused by a signal on the external reset pin or by an internal reset signal. Internal
reset signals can be generated by the Computer Operating Properly Module or the Low Voltage Inhibit
Module. Other internal reset sources include an illegal opcode and an illegal address.

A reset stops MCU program execution. Once the reset is processed, the MCU immediately returns to
a known startup condition and starts program execution from a user-defined memory location.

There are two types of interrupts, hardware interrupts and software interrupts. An interrupt doesn’t
stop the MCU or the operation of the instruction being executed. It vectors the program counter to an
interrupt service routine. When an interrupt event occurs, the MCU first completes the current
instruction and then changes the sequence of program execution to respond to the event.

An interrupt is similar to a reset in that it causes the MCU to fetch a new address for the program
counter and sets the interrupt mask bit, or I-bit. Unlike a reset, interrupts suspend normal program
execution only temporarily so the the processor can service the interrupt. After the interrupt is
serviced, the processor is returned to where it left off executing normal program code.

Let’s take a detailed look at resets and interrupts, beginning with resets.

3

Internal Reset Sources

ILLEGAL ADDRESS RST
ILLEGAL OPCODE RST

COPRST
LVI
POR

INTERNAL RESET

ILLEGAL ADDRESS RST
ILLEGAL OPCODE RST

COPRST
LVI
POR

INTERNAL RESET (RST)

First, let’s review the different sources of internal resets.

An illegal address reset is generated when the CPU attempts to fetch an instruction from an address that isn’t
defined in the memory map. This type of reset provides additional system protection, returning the CPU to a known
state when an invalid address is used.

An illegal opcode reset is generated when the CPU decodes an instruction that is not defined in the opcode set.
Excessive noise or code that tries to execute incorrectly from data space may cause this event, returning the CPU
to a known state.

The Computer Operating Properly (COP) reset is generated by an overflow of the COP counter, indicating that the
COP timer was not serviced on-time and therefore expired. This is another system protection feature that will return
the CPU to a known state in a runaway code scenario. For more information on the COP, see the COP tutorial.

The Low Voltage Inhibit (LVI) reset can optionally be generated when VDD has dropped below a selected trip point.
This feature protects against incorrect MCU operation during brown-outs or low-voltage power conditions. For the
LVI reset, the reset line remains low for 4096 CGMXCLK clock cycles after VDD is restored, allowing the clock to
stabilize.

Power-On reset (POR) is an internal reset caused by a positive transition from 0 on the VDD pin. All internal clocks
to the CPU and MCU Modules are held inactive for 4096 CGMXCLK clock cycles to allow the oscillator to stabilize.
During this time, the RST pin is driven low. The POR reset can only be activated when VDD drops to 0 volts. The
POR is not a brown-out detector, low-voltage detector, or glitch detector.

4

SIM Reset Status Register (SRSR)

POR — Power-On Reset Flag
1 = Power-on reset since last read of SRSR
0 = Read of SRSR since last power-on reset

The SIM reset status register, SRSR, contains six flags that show the source of the last reset.

If the power-on reset bit, POR, is set, the last reset was caused by the POR circuit.

If the external reset pin bit, PIN, is set, the last reset was caused by an external device pulling the reset pin low.

If the Computer Operating Properly bit (COP) is set, the last reset was caused by the COP counter timing out before it was
serviced.

If the illegal opcode bit (ILOP) is set, the last reset was caused by an illegal opcode.

If the illegal address bit (ILAD bit) is set, the last reset was caused by an opcode fetch from an illegal address.

If the low voltage inhibit bit (LVI) is set, the last reset was caused by the LVI detecting a voltage below the selected trip point.

The flags in the SIM reset status register are cleared when the register is read. If the SIM reset status register has not been
read after multiple reset sources, it may have multiple sources indicated. The register can help you to debug code problems.
For example, if your application is unintentionally being reset, the reset source can be determined and corrective action taken.
In the event of an in-application reset, the register helps you determine which action to take. The application may require
additional set-up and initialization for a POR reset that is not required with a COP reset. Other reset sources may require
unique diagnostics or servicing.

5

Internal Reset Timing

RST PIN

CGMXCLK

INTERNAL
RESET

PULLED LOW BY MCU

32 CYCLES 32 CYCLES32 CYCLES 32 CYCLES

Now that we’ve identified the different sources of internal resets, let’s look at internal reset timing.

All internal reset sources, except POR, pull the RST pin low for 32 CGMXCLK clock cycles to allow resetting of
external devices.

The MCU is held in reset for an additional 32 CGMXCLK clock cycles after releasing the RST pin to allow external
devices to stabilize. The RST pin is then tested to check if if the RST pin is still being pulled low. If so, it indicates
that an external reset has occurred. If not, it indicates that an internal reset occurred and the appropriate internal
reset bit is set in the SIM reset status register.

6

Interrupt Processing Overview

Hardware Interrupt

• Initiated by hardware pin or Module

• Uses an interrupt vector and a service routine

• Can be masked

Software Interrupt (SWI)

• Executed as part of the instruction flow

• Processed like a hardware interrupt

• Can’t be masked

Next, we’ll discuss interrupt events.

Recall that interrupt events can be generated by either hardware or software sources.

A hardware interrupt is generated by internal or external hardware conditions and can be initiated by a
hardware pin or Module. When a hardware interrupt occurs, the program context is stacked, the I-bit
in the condition code register is set, and the interrupt vector is fetched.
Hardware interrupts can be masked. This means that hardware interrupts can be recognized only
when the I-bit is cleared.

A software interrupt occurs as a result of the SWI instruction. A software interrupt is always executed
as part of the instruction flow. The important difference between software and hardware interrupts is
that software interrupts can’t be masked. This means that the value of the I-bit has no effect on
software interrupts. Otherwise, a software interrupt is processed the same way as a hardware
interrupt.

Let’s take a closer look at hardware interrupts sources.

7

Hardware Interrupt Sources

• IRQ pin

• I/O port pins

• Timer Interface Module (TIM)

• SCI/SPI ports

The IRQ pin can be used to trigger external hardware interrupts. Depending on the MCU
configuration, an IRQ interrupt is generated by a logic low or a high-to-low transition on the IRQ pin.
This type of interrupt can be used to monitor external systems or events.

In most 68HC08 MCUs, you can also generate an interrupt using additional I/O port pins. This is
referred to as keyboard interrupts (KBI) and is commonly used to interface with key pad inputs. These
inputs have programmable pullups that generate an interrupt when pulled low.

For example, a 16 key input pad is commonly organized as 4 rows by 4 columns. The four rows can
be connected to the KBI inputs. When a key is pushed, the corresponding row input is pulled low, and
an interrupt will be generated without glue logic. The interrupt service routine would debounce the key
and determine which key was pressed by scanning the columns.

The 16-bit timer of the the Timer Interface Module (TIM) can generate several different interrupts
depending on the particular model. The output compare, input capture, and timer overflow functions
can generate interrupts. Some models also have a real-time interrupt feature. These types of
interrupts can be used to process events based on a time reference.

For MCUs equipped with a Serial Communications Interface Module (SCI) or a Serial Peripheral
Interface Module (SPI), the serial ports can generate a variety of interrupts depending on the model.
SCI and SPI interrupts include receive register full, transmit register empty, and transmission
complete. These types of interrupts can be used to process serial communications events. Other
peripherals, such as the Controller Area Network (CAN) and the Universal Serial Bus (USB), can also
generate interrupts.

8

Interrupt Sources

TIM2 Overflow
TIM2 Channel 1
TIM2 Channel 0
TIM1 Overflow
TIM1 Channel 1
TIM1 Channel 0

PLL
IRQ
SWI

Reset

SPI Receiver Full
SPI Overflow

SPI Mode Fault

SPI Transmitter Empty

SCI Noise Flag
SCI Framing Error
SCI Parity Error

SCI Receiver Overrun

SCI Input Idle
SCI Receiver Full

SCI Trans. Complete
SCI Transmitter Empty

ADC Conv. Complete
Keyboard Pin

TimeBase
Source

$FFE0 - $FFE1

$FFE4 - $FFE5

$FFE6 - $FFE7

$FFE8 - $FFE9

$FFEA - $FFEB

$FFEC - $FFED
$FFEE - $FFEF
$FFF0 - $FFF1
$FFF2 - $FFF3
$FFF4 - $FFF5
$FFF6 -$FFF7
$FFF8 - $FFF9
$FFA - $FFFB

$FFFC - $FFFD
$FFFD - $FFFF

$FFDE - $FFDF

$FFE2 - $FFE3

$FFDC - $FFDD

Vector
Address

TOF
CH1F
CH0F
TOF

CH1F
CH0F
PLLF
IRQF
None
None

SPRF
OVRF
MODF

SPTE

NF
FE
PE

OR

IDLE
SCRF

TC
SCTE

COCO
KEYF

TBIF
Flag

TOIE
CH1IE
CH0IE
PLLIE

IMASK1
None
None

TOIE
CH1IE
CH0IE

SPRIE
ERRIE
ERRIE

SPTIE

NEIE
FEIE
PEIE

ORIE
SCRIE

ILIE
SCTIE
TCIE

AIEN
IMASKK

TBIE
Mask Priority

5
4
3
2
1
0
0

8
7
6

9

10

11

12

13

15
14

16

IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1

None
None

IF9

IF10

IF11

IF12

IF13

IF15
IF14

IF16
INT Reg Flag

Interrupt sources are serviced using a vector address and a priority. The table summarizes the 16 different
interrupt sources associated with the 68HC908GP32 MCU. The 68HC08 architecture can handle up to 128
different reset and interrupt sources. For more information about interrupt implementations in specific
68HC08 derivatives, check the device technical data book.

Each interrupt source has its own unique vector address. This can eliminate the need of software polling
within a service routine to determine the correct source of the interrupt, resulting in faster interrupt servicing.

Each source also has its own unique interrupt status register flags that can be polled. You can disable an
interrupt source by resetting the source’s unique interrupt bit.

Each interrupt type has a pre-defined priority associated with it. The Timebase Module (TBM) interrupt has
the lowest priority and the external IRQ has the highest priority. When multiple interrupts occur, the CPU
looks at the priority of the events and services the event with the highest priority first, with the others pending.
Notice that a reset event has priority over all interrupt events.

Recall that the global interrupt mask I-bit enables or disables all interrupt processing with the exception of the
software interrupt, SWI. Interrupt events generated by on-chip peripheral Modules can be masked and are
recognized only if the I-bit is cleared. These peripherals typically have local masks to enable or disable
specific types of interrupts.

For example, the Timer Interface Module, TIM, has a separate interrupt mask and enable bit for overflow and
for each timer channel.

Resets can’t be masked, but some internal Modules can be disabled so that they can’t generate a reset. The
COP and LVI Modules are examples of potential reset sources that can be disabled out of reset.

9

Context Switching

Recognition

Vector Fetching

Interrupt Servicing

Stacking - Saving Context
(set I-bit = 1)

Arbitration

Next, we’ll cover how the SIM Module uses this information to service interrupts.

Determining which type of handling is required is called exception processing. Exception processing is
handled through discrete tasks sometimes called “context switching”. Exception processing is different for
resets and interrupts. However, the processing tasks are the same.

First, the SIM Module recognizes the events and performs arbitration. The highest priority event is processed
first. Before the vector is fetched, the I-bit is set to 1 to prevent further interrupt events and the current CPU
context is saved on the stack. Finally, the interrupt service routine or exception handler is executed.

Let’s take a closer look at the exception processing tasks, beginning with recognition.

10

Recognition

• Resets
- Recognized and acted on immediately

• Interrupts
- Recognized during last cycle of current instruction
- Acted on after last cycle of the current instruction

During the recognition phase, all resets are recognized and acted upon immediately once asserted.

Interrupts are recognized during the last cycle of instruction execution. The timing of interrupt recognition depends
on when the interrupt occurs. If an interrupt occurs before the last cycle of the current instruction, it will be
recognized during the last cycle and then acted on. If an interrupt occurs during the last cycle of the current
instruction, it won’t be recognized until the last cycle of the next instruction.

11

Arbitration

TIM2 Overflow
TIM2 Channel 1
TIM2 Channel 0
TIM1 Overflow

TIM1 Channel 1
TIM1 Channel 0

PLL
IRQ
SWI

Reset

SPI Mode Fault
SPI Overflow

SPI Mode Fault

SPI Transmitter Empty

SCI Noise Flag
SCI Framing Error
SCI Parity Error

SCI Receiver Overrun

SCI Input Idle
SCI Receiver Full

SCI Trans. Complete
SCI Transmitter Empty

ADC Conv. Complete
Keyboard Pin

TimeBase

5
4
3
2
1
0
0

8
7
6

9

10

11

12

13

15
14

16
Source Priority L

H

After recognition, the next phase is arbitration.

During the arbitration phase, the SIM Module determines the source of the exception and prioritizes the
interrupt events for processing. All resets are considered equal and have higher priority over all interrupt
sources. In the case of resets, no arbitration is required. Whichever reset occurs first will be acted on
immediately and reflected in the SIM reset status register.

Interrupts are arbitrated using pre-defined priority levels associated with the different interrupt sources. The
SIM provides the CPU with information about which sources generated the exception requests. The
68HC908GP32 has a total of 16 possible interrupt sources associated with the different on-chip Modules.

If the interrupt mask is cleared, the CPU will check all pending interrupts after every instruction. If more than
one interrupt is pending when an instruction is complete, the highest priority interrupt will be serviced first.
Once an interrupt is recognized as the highest priority interrupt, no new interrupt can take precedence
regardless of its priority.

12

Stacking

5

4

3

2

1

Stacking
Order SPPC_L

SP
PC_H

SP
X

SP
A

SP
CCR

Stack Pointer

Once the MCU has identified which interrupt to service, it sets the I-bit to prevent additional interrupt events while
saving context. In the stacking phase, critical CPU information is saved to the stack. All CPU registers, including
PC, X, A, and CCR are stacked. The H register is not stacked for 68HC05 compatibility reasons. Note that the
stack pointer always points to the next available byte on the stack.

Because a reset event causes the CPU and stack to reset, stacking isn’t performed for reset events.

13

Vector Fetching

TIM2 Overflow
TIM2 Channel 1
TIM2 Channel 0
TIM1 Overflow
TIM1 Channel 1
TIM1 Channel 0

PLL
IRQ
SWI

Reset

SPI Receiver Full
SPI Overflow

SPI Mode Fault

SPI Transmitter Empty

SCI Noise Flag
SCI Framing Error
SCI Parity Error

SCI Receiver Overrun

SCI Input Idle
SCI Receiver Full

SCI Trans. Complete
SCI Transmitter Empty

ADC Conv. Complete
Keyboard Pin

TimeBase
Source

$FFE0 - $FFE1

$FFE4 - $FFE5

$FFE6 - $FFE7

$FFE8 - $FFE9

$FFEA - $FFEB

$FFEC - $FFED
$FFEE - $FFEF
$FFF0 - $FFF1
$FFF2 - $FFF3
$FFF4 - $FFF5
$FFF6 -$FFF7
$FFF8 - $FFF9
$FFA - $FFFB

$FFFC - $FFFD
$FFFD - $FFFF

$FFDE - $FFDF

$FFE2 - $FFE3

$FFDC - $FFDD

Vector
Address

After all of the CPU registers are saved to the stack, the program counter is loaded with a user-defined vector address and
begins processing. This 16-bit address is the start address for the interrupt service routine or exception handler.

14

Executing Exception Handler

Exception Handler
PSHH

5

4

3

2

1

Stacking
Order SPPC_L

SP
PC_H

SP
X

SP
A

SP
CCR

SP
H6

7
Stack Pointer

L

H

Notice the stacking order of the registers. The registers are stacked from the highest to the lowest address. We mentioned
before that the H register is not automatically saved by the CPU. Therefore, it must be saved at the beginning of the exception
handler by executing a PSHH instruction. This means that we will have to restore it prior to exiting the exception handler.

15

Restoring Old Context

PC_L

SP

Exception Handler
PSHH

PULH

PC_H

SP
X

SP
A

SP
CCR

SP
H

2

3

4

5

6

1Unstacking
Order

RTI

L

H

Stack Pointer

Before we restore the old context, note the order for the unstacking operation.

We start by executing the PULH instruction to restore H.

Next, execute the RTI instruction to restore the remaining registers, starting with the CCR register. Note that when the CCR
register is restored to it’s original cleared condition, the global interrupt mask bit is also restored, enabling interrupts.

When the old context is restored, normal Operation of the application program is then resumed. If additional interrupts are
pending, the process will begin again.

16

Example: Unused Interrupts Trap

;* Using a “Trap” with a COP Watchdog

;* Unused Vectors

TRAP:

bra TRAP ; wait for a COP reset

org $1FF8 ; Timer Vector

fdb TRAP ; Points to TRAP

org $1FFC ; Software Interrupt

fdb TRAP ; Points to TRAP

A more fault-tolerant method for handling unused interrupt vectors is to use a trap with the COP watchdog timer. With the COP
Module enabled, this method uses a loop to trap unwanted interrupts. The COP will reset the part after it times out. This
provides a way to reset the MCU when an unexpected or spurious interrupt condition occurs.

Note that in some 68HC08 MCUs, the user-defined vector values are used for security. Assigning identical address values to
unused interrupts may not be acceptable. If this is a consideration, you can duplicate the trap code in different memory
locations to further enhance security.

17

Question
Which of the following exceptions can’t be masked? Click
on your BEST choice.

a) Software interrupts
b) TIM overflow
c) SCI parity error
d) Internal resets
e) b and c
f) a and d

Let’s complete this tutorial with a few questions to check your understanding of the material. Which of the
following exceptions can’t be masked? Click on your best choice.

Answer: Both software interrupts and internal resets can’t be masked. All hardware interrupts can be masked
using the I-bit, and most hardware interrupt sources also have a local interrupt mask.

18

Question

When does the interrupt service routine begin executing?
Click on your choice.

a) Immediately
b) In the next clock cycle
c) After the current instruction is finished executing
d) During last cycle of the current instruction

When does the interrupt service routine begin executing? Click on your choice.

Answer: Interrupt service processing always begins after the current instruction is finished executing. First the
CPU context is stacked, and then the first instruction of the interrupt service routine is executed.

19

Question

If these five hardware interrupts occurred at the same time,
which interrupt event would be serviced first? Click on
your choice.

a) SCI Receiver Full
b) PLL
c) IRQ
d) TIM 2 Channel 0
e) ADC Conversion Complete

If these five hardware interrupts occurred at the same time, which interrupt event would be serviced first? Click
on your choice.

Answer: Since the IRQ interrupt has the highest priority of the five interrupt sources, it would serviced first. The
five interrupts would be serviced in this order: IRQ, PLL, TIM 2 Channel 0, SCI Receiver Full, ADC Conversion
Complete.

20

Tutorial Completion

- Reset and Interrupt Sources

- Reset Recovery

- MCU Exception Processing

- Interrupt Servicing

In this tutorial, you’ve had an opportunity work with resets and interrupts. You’ve learned about sources of resets
and interrupts and the differences between these types of exceptions. You’ve also learned about MCU
exception processing, including reset recovery and interrupt servicing.

