
1

Tutorial Introduction

PURPOSE
- To explain how to configure and use the Clock Generator Module in typical applications

OBJECTIVES:
- Describe the main components of the Clock Generator Module.
- Describe the uses and features of the crystal oscillator circuit.
- Describe the uses and features of the PLL.
- Identify the base clock source for a specific application.
- Identify the steps to calculate the PLL programmable values.
- Write a program to configure the PLL to generate a desired bus frequency.

CONTENT:
- 38 pages
- 4 questions
- 1 off-line programming exercise

LEARNING TIME:
- 60 minutes

PREREQUESITE:

- 68HC08 CPU training module

Welcome to this tutorial on the 68HC08 Clock Generator Module (CGMC).  This tutorial describes the 
features and configuration of the CGMC. Please note that on subsequent pages, you will find 
reference buttons in the upper right of the content frame that access additional content. 

Upon completion of this tutorial, you’ll be able to describe the main components of the CGMC.  You’ll 
also be able to select an appropriate base clock source, calculate the different values required to 
program the phase-locked loop (PLL), and configure the PLL to generate a specific bus frequency.  

The recommended prerequisite for this tutorial is the 68HC08 CPU training module.  Click the Forward 
arrow when you’re ready to begin the tutorial.



2

• PLL with programmable output frequency

• Low-frequency crystal operation 

• Programmable prescaler

• VCO for low-jitter operation

• Automatic bandwidth control mode

• Automatic frequency lock detector

• CPU interrupt on entry or exit from locked condition

• CGMC operation can be enabled during stop mode

CGMC Features

Let’s begin this tutorial with a discussion of the CGMC features.  The CGMC includes an integrated 
PLL that is capable of generating frequencies at integer multiples of the crystal reference.  For 
example, using the PLL can provide up to an 8.2Mhz bus frequency while using a much lower cost 32 
Khz crystal.  An additional benefit of the PLL is reduced noise generation since high speed crystals 
and oscillators are not necessary.

The module has two programmable prescalers that provide power-of-two increases in frequency.  Also 
included is a programmable hardware voltage-controlled oscillator, VCO, for low-jitter operation.  The 
CGMC Module can automatically switch from acquisition mode to tracking mode, depending on how 
far the output is from the reference.  

The PLL automatically detects when the output frequency is close enough to the desired frequency 
and locks.  The CPU can be configured to generate an interrupt when the desired frequency is locked 
or exits from the locked condition. In the CONFIG register, you can set the OSCSTOPENB bit to 
enable the oscillator to operate during stop mode.



3

CGMC Block Diagram

AUTO

Reference
Divider

Phase
Detector

Lock
Detector

Frequency
Divider

Loop
Filter VCO

PLL Analog

VDDA CGMXFC VSSA

Frequency
Divider

ACQ PLLIE PLLF

Automatic
Mode Control

Interrupt
Control

LOCK

MUL11-MUL0

RDS3-RDS0

VRS7-VRS0

VPR1-VPR0

PRE1-PRE0

Clock
Select ÷2

BCS

OSC2

OSC1 CGMXCLK

CGMRDV

CGMVDV

CGMVCLK

÷2
Internal
Bus
Frequency

CGMOUT

SIMDIV2

The CGMC consists of three major sub-modules: the crystal oscillator circuit, the PLL, and the base clock selector 
circuit.

The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the amplifier 
input and the OSC2 pin is the output.  The crystal oscillator circuit generates the constant crystal frequency clock, 
CGMXCLK, which runs at a rate equal to the crystal frequency.  CGMXCLK is also buffered to produce the PLL 
reference clock.

The PLL is a fully functional frequency generator that is designed for use with crystals or ceramic resonators.  The 
PLL generates the programmable VCO frequency clock, CGMVCLK.  The VCO frequency will be an integer multiple 
of the reference frequency.

The base clock selector circuit is a software-controlled circuit that selects the base clock, CGMOUT.  You can set the 
base clock to either CGMXCLK divided by two or CGMVCLK divided by two.  

The System Integration Module (SIM) derives the system clocks from CGMOUT or CGMXCLK with an additional 
divide by two circuits to produce the internal bus frequency.  This will be discussed further in the training. 

Let’s take a closer look at each CGMC sub-module, beginning with the crystal oscillator circuit.



4

Crystal Oscillator Circuit
Features

• Used by other MCU modules for precise timing.
• Duty cycle is not guaranteed to be 50%.
• Can take crystal or external oscillator as source.
• Crystal sources must be between 30 kHz to 100 kHz.
• External oscillator with PLL enabled must be between 30 kHz

and 1.5 MHz.
• External oscillator with PLL disabled must be between DC and

32.8 MHz.

The CGMXCLK can be used by modules that require precise timing for operation.  Note that the duty 
cycle of CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal 
and related external components.  You can also use an externally generated clock to feed the OSC1 
pin of the crystal oscillator circuit.  To use this configuration, connect the external clock to the OSC1 
pin and let the OSC2 pin float.

The crystal oscillator circuit can take two different frequency sources, a crystal or an external 
oscillator.  If you choose to use a crystal, the crystal frequency must be between 30 kHz and 100 kHz, 
typically 32.768 kHz.  The oscillator has not been designed take crystal frequencies outside this range.

If you choose to use an external oscillator as the clock source, you can choose to have the PLL 
enabled or disabled.  With the PLL enabled, the external oscillator frequency must be between  30 
kHz and 1.5 MHz.  With the PLL disabled, the external oscillator frequency can go from direct current, 
or DC, up to 32 MHz.

Let’s look at the circuit for each of these configurations.



5

The crystal frequency 
must be between 
30 kHz and 100 kHz
to guarantee proper operation

OSC2

OSC1 CGMXCLK

RB

RS

C1

C2

X1

CGMXCLK

PLLPLL

Crystal Oscillator Circuit

(enabled or disabled)

When using a crystal  as the clock source, the frequency can be selected as the base clock or as a 
reference clock for the PLL.  In this configuration, the PLL may be enabled or disabled.



6

OSC2

OSC1 CGMXCLKCGMXCLK

PLL

External Oscillator

Oscillator

The oscillator frequency 
must be between 
30 kHz and 1.5 MHz
to guarantee proper operation

(enabled)

With the external oscillator configuration, you can operate with the PLL enabled or disabled depending 
on the oscillator frequency.

With the PLL enabled, you can use an external oscillator with a frequency between 30Khz and 1.5 
Mhz.

With the PLL disabled, you can use an external oscillator with a frequency between DC and 32.8 MHz. 



7

PLL Features

• Generates programmable VCO, CGMVCLK.
• Operates in acquisition or tracking mode.
• Acquisition mode makes large corrections to VCO.
• Tracking mode makes fine adjustments to VCO.  
• Switches between modes automatically or manually.
• Advantages of using a PLL:

– Achieve a high bus-frequency using a low-cost crystal
– Low-frequency crystals consume less power 
– Low-frequency crystals provide higher noise immunity

Next, let’s take a look at the PLL sub-module.  As discussed earlier, the PLL generates the 
programmable VCO frequency.  The PLL can filter the VCO frequency using two modes: acquisition 
mode and tracking mode.  The mode selection depends on the accuracy of the output frequency.  

In acquisition mode, the filter can make large frequency corrections to the VCO frequency. This mode 
is used at PLL startup or when the PLL has suffered a severe noise hit and the VCO frequency is far 
off the desired frequency.  To select this mode, select the ACQ bit in the PLL bandwidth control 
register.  

In tracking mode, the filter makes small corrections to the VCO frequency.  PLL jitter is much lower in 
tracking mode, but the response to noise is also slower.  The PLL enters tracking mode when the 
VCO frequency is nearly correct, such as when the PLL is selected as the base clock source.

The PLL can change between acquisition and tracking modes either automatically or manually.  
Automatic mode is recommended for most applications.

There are many advantages to including a PLL in the MCU.  You can achieve a high bus frequency 
using a low-cost crystal, since low-frequency crystals are cheaper.  Low-frequency crystals also 
consume less power and provide higher noise immunity.



8

PLL Circuits

AUTO

Reference
Divider

Phase
Detector

Lock
Detector

Frequency
Divider

Loop
Filter VCO

PLL Analog

VDDA CGMXFC VSSA

Frequency
Divider

ACQ PLLIE PLLF

Automatic
Mode Control

Interrupt
Control

LOCK

MUL11-MUL0

RDS3-RDS0

VRS7-VRS0

VPR1-VPR0

PRE1-PRE0

CGMXCLK
CGMRDV

CGMVDV CGMVCLK

VCO

Reference
Divider

Frequency
Prescaler

Modulo VCO
Frequency Divider

Phase
Detector

Loop
Filter

Lock
Detector

Base Clock
Select Circuitry

The PLL is basically an oscillator whose frequency is locked onto a frequency component of an input signal.  In this 
example, the PLL acts as a frequency multiplier to achieve high-output frequency resolution using a low frequency crystal 
that minimizes cost, power consumption, and noise generation.  Let’s take a detailed look at how the PLL works.

CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency f RCLK and is fed 
to the PLL through a programmable modulo reference divider, which divides the frequency by a factor R.  The divider’s 
output is the final reference clock, CGMRDV.

The VCO output clock, running at a frequency, f VCLK , is fed back through a programmable prescaler divider and a 
programmable modulo divider.  The prescaler divides the VCO clock by a power-of-two factor, P, and the modulo divider 
reduces this frequency by a factor N.  The output is the VCO feedback clock, CGMVDV, which runs at a frequency fVDV.

The phase detector then compares CGMVDV with CGMRDV and generates a correction pulse based on the phase 
difference of the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to 
CGM/XFC based on the width and direction of the correction pulse.

The lock detector also compares CGMVDV and CGMRDV. The frequency is locked when the phase difference between 
the two signals is very close to zero.



9

Base Clock Selector Circuit
SIM Clock Divider

CGMXCLK

CGMVCLK

CGMOUT

Clock
Select ÷ 2

BCS

Internal
Bus
Frequency

SIMDIV2

SIMDIV2

÷ 2

Next, let’s look at the last CGMC sub-module, the base clock selector circuit.  This circuit is used to 
select either CGMXCLK or CGMVCLK as the source of the base clock, CGMOUT.  

The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and 
three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is 
held in stasis. The BCS bit in the PLL control register selects which clock drives CGMOUT.  

The output of the transition control circuit is then divided by two to correct the duty cycle and to the 
SIM for an additional divide by two to generate the internal bus frequency, which is one-fourth the 
frequency of the BCS selected clock (CGMXCLK or CGMVCLK).  

A special monitor mode of operation, described in the FLASH training Module, selects CGMXCLK 
directly through the SIMDIV2 signal to provide an internal bus frequency of CGMXCLK divided by two.  
Note that this option does not allow the PLL to be used.   In normal user mode, the CGMXCLK can 
only be selected using BCS which results in CGMXCLK divided by 4.



10

Clock Generator Module

AUTO

Reference
Divider

Phase
Detector

Lock
Detector

Frequency
Divider

Loop
Filter VCO

PLL Analog

VDDA CGMXFC VSSA

Frequency
Divider

ACQ PLLIE PLLF

Automatic
Mode Control

Interrupt
Control

LOCK

MUL11-MUL0

RDS3-RDS0

VRS7-VRS0

VPR1-VPR0

PRE1-PRE0

Clock
Select ÷2

BCS

OSC2

OSC1 CGMXCLK

CGMRDV

CGMVDV

CGMVCLK

PN

R
E

L

÷2
Internal
Bus
Frequency

CGMOUT

SIMDIV2

The CGMC uses several factors to program the PLL.

R is the value for the reference divider.  

E is the value of the VCO power-of-two range multiplier.  L is the VCO linear range multiplier.

P is the prescaler for the frequency divider and N is the value for the modulo VCO frequency divider.  

Let’s take a detailed look at how to program the PLL for a specific bus frequency.



11

Programming the PLL

1. Select the bus frequency, fBUSDES. 

2. Calculate the VCO frequency, fVCLKDES=  4 X fBUSDES.

Steps 1-3 of 11

3. Select a practical PLL (crystal or oscillator) reference frequency, fRCLK, 
and the reference clock divider, R, where 1 < R < 15. 

Frequency errors to the PLL are corrected at a rate of     .  Also,
the VCO must be an integer multiple of this rate,

R
f RCLK

RCLK

P

VCLK f
R

N2f =

where N and P are both integers.

The first step in programming the PLL is to choose the desired bus frequency, fBUSDES.  This 
is the internal frequency at which the MCU operates.  Then calculate the desired VCO 
frequency, fVCLKDES, which is four times the bus frequency.

Next, choose a practical PLL (crystal or oscillator) reference frequency, fRCLK, and the 
reference clock divider, R.  

Note, with an external crystal of 30 kHz - 100 kHz, always set R to 1.   With an external high-
frequency clock source, between 100 kHz - 1.5 MHz, use R to divide the external frequency 
to a value between 30 kHz and 100 kHz.  Try to choose R as low as possible, since the 
frequency errors to the PLL are corrected at a rate of fRCLK divided by R.  For stability and 
lock time reduction, this rate must be as fast as possible.  

The VCO frequency must be an integer multiple of the rate fRCLK divided by R, as shown.



12

Programming the PLL

4. Select a modulo VCO frequency divider, N, where 1 < N < 4095.








 ×
=

RCLK

VCLKDES

f
fRround  N

Steps 4 and 5 of 11

5. Select the frequency prescaler, P, where 0 < P < 3.  
If  N ≤ Nmax, use P = 0.  If  N > Nmax, use the table to select P:

Current N Value P

0 < N ≤ Nmax 0

Nmax < N ≤ 2Nmax

2Nmax < N ≤ 4Nmax

4Nmax < N ≤ 8Nmax

1

2

3

and then recalculate N:









×

×
=

RCLKf
P

2

VCLKDES
fR

round  N

Select the modulo frequency divider, N, as follows: multiply R by the VCO frequency, divide 
the product by the reference frequency, and round the result to the nearest integer.  Then 
select the frequency prescaler, P, based on the value of N.  If N is less than or equal to 
4095, use a P value of 0.  If N is greater than 4095, use the table to select P and recalculate 
N with the new formula as shown.



13

Programming the PLL

6. Calculate fVCLK and fBUS.

4
f

f VCLK
BUS =,f

R
N2f RCLK

P

VCLK =

7. Select the VCO power-of-two range multiplier E, where 0 < E < 2:

Frequency Range E
0 < fVCLK < 9,830,400 0

9,830,400 ≤ fVCLK < 19,660,800 1

219,660,800 ≤ fVCLK < 39,321,600

Note: Do not program E to a value of 3

Steps 6 and 7 of 11

Next, calculate and verify the VCO frequency and the bus frequency are in range.  Then 
select the VCO power-of-two range multiplier, E, using the table shown.



14

Programming the PLL

8. Select a VCO linear range multiplier, L,









×

=
NOM

E
VCLK

f2
fround  L

where fNOM= 38.4 kHz and 1 < L < 255.

Steps 8 and 9 of 11

9. Calculate the VCO programmed center-of-range frequency, fVRS.

NOM
E

VRS )f2(L  f ×=

2
f2  ff NOM

E

VCLKVRS
×

≤−

This is the midpoint between the minimum and maximum PLL 
frequencies, 38.4 kHz ≤ fVRS ≤ 40 MHz.  For proper operation,

Select the VCO linear range multiplier, L, where the nominal center-of-range frequency, 
fNOM, was selected by design.  Then calculate the VCO programmed center-of-range 
frequency, fVRS.  This is the midpoint between the minimum and maximum frequencies 
attainable by the PLL.



15

Programming the PLL

10. Verify the choice of P, R, N, E, and L by comparing f VCLK to f VRS and 
f VCLKDES .  For proper operation, f VCLK must be within the application’s 
tolerance of f VCLKDES , and f VRS must be as close as possible to f VCLK .

11. Program the PLL registers accordingly:
• Select P using PRE bits in the PLL control register (PCTL). 
• Select E using the VPR bits in the PLL control register (PCTL). 
• Select N using the PLL multiplier select register low (PMSL) and

the PLL multiplier select register high (PMSH).
• Select L using the PLL VCO range select register (PMRS).
• Select R using the PLL reference divider select register (PMDS).

Steps 10 and 11 of 11

Verify the choice of P, R, N, E, and L by comparing f VCLK to f VRS and f VCLKDES .  For proper 
operation, f VCLK must be within the application’s tolerance of f VCLKDES , and fVRS must be as 
close as possible to f VCLK .  Then select the values using the PLL registers as shown.



16

Example Calculations

The desired bus frequency is fBUSDES = 8 MHz
Step 1:

Step 2:
The desired VCO frequency is 

fVCLKDES = 4 x fBUSDES = 32 MHz
Step 3:

Let’s choose the reference frequency, fRCLK = 32.768 kHz.  
Since 30 kHz < fRCLK < 100 kHz, set R = 1.

Steps 1-3 of 11

Now, let’s look at a specific example to demonstrate how simple this process is.  Let’s work 
through the calculations to program the PLL to generate a bus frequency of 8 MHz with a 
crystal of 32.768 kHz.  Since the reference frequency is between 30 kHz and 100 kHz, then 
the reference divider should be set to 1.



17

Step 4:
Calculate the VCO frequency multiplier, N:

56.976
kHz 32.768

MHz321
f
fR  N
RCLK

VCLKDES =
×

=
×

=

Step 5:
Since N < Nmax = 4095, then the frequency prescaler P.

rounding up, N = 977.

Current N Value P
0 < N ≤ Nmax 0

Nmax < N ≤ 2Nmax

2Nmax < N ≤ 4Nmax

4Nmax < N ≤ 8Nmax

1

2

3

P = 0

Steps 4 and 5 of 11

Example Calculations

Using these values, we calculate a VCO frequency multiplier value of 976.56.  Rounding this 
value yields N = 977.  Since the value of N is less than the maximum value of 4095, we set 
the prescaler value P = 0.



18

Step 6:
Compare the VCO and bus frequency with the chosen values:

MHz003.84
MHz014.32

4
f

f VCLK
BUS ===

32.014MHzkHz768.32
1
9772f

R
N2f

0

RCLK

P

VCLK =×
×

==

Step 7:
Select the VCO power-of-two range multiplier E.

19,660,800 ≤ FVCLK < 39,321,600 
9,830,400 ≤ FVCLK < 19,660,800 

0 ≤ FVCLK < 9,830,400   
Frequency Range E

0
1
2 E = 2

Steps 6 and 7 of 11

Example Calculations

Next, verify the values of fVCLK and fBUS by comparing them to the desired values of 32 MHz 
and 8 MHz respectively.  Our calculations produced a VCO frequency of 32.014 MHz and 
bus frequency of 8.003 MHz.  These values are very close to what we wanted. The small 
differences were introduced when we rounded the value of N to get an integer value.



19

Step 8:
Calculate the VCO linear range multiplier L,

43.208
kHz4.382

MHz014.32
f2

f  L 2
NOM

E
VCLK =

×
=

×
=

Step 9:
fVRS, is within the appropriate range, 38.4 kHz ≤ fVRS ≤ 40 MHz. 

31.9488MhzkHz4.382208)f2(L  f 2
NOM

E
VRS =××=×=

⇒
×

≤−
2
f2  ff NOM

E

VCLKVRS 65200 ≤ 76800

and round to L = 208.

and the second equation is also satisfied,

Example Calculations
Steps 8 and 9 of 11

Calculate the VCO linear range multiplier and round the result to L = 208.  fVRS is within the 
appropriate range and satisfies the second equation.



20

Step 10:
fVRS must be as close as possible to fVCLK,

fVRS = 31.9488 MHz ≈ fVCLK = 32.014 MHz
Step 11:

Configure the registers using these values:

R = 1 PMDS Register

N = 0x03D1 PMSL & PMSH Registers

P = 0 PCTL Register

E = 2 PCTL Register

L = 0xD0 PMRS Register

Example Calculations
Steps 10 and 11 of 11

Verify the choice of P, R, N, E, and L by comparing f VCLK to f VRS and f VCLKDES .  Then 
configure the PLL registers with the values R = 1, N = 0x03D1, P = 0, E = 2, and L = 0xD0.



21

Generating Bus Frequency

AUTO

Reference
Divider

Phase
Detector

Lock
Detector

Frequency
Divider

Loop
Filter VCO

PLL Analog

VDDA CGMXFC VSSA

Frequency
Divider

ACQ PLLIE PLLF

Automatic
Mode Control

Interrupt
Control

LOCK

MUL11-MUL0

RDS3-RDS0

VRS7-VRS0

VPR1-VPR0

PRE1-PRE0

Clock
Select ÷2

BCS

OSC2

OSC1 CGMXCLK

CGMRDV

CGMVDV

CGMVCLK

CGMOUT

fVCLK = 32.014 MHz

PN

R
E

L

P = 0N = 977

R = 1
E = 2

L = 208

32.014 MHz

fVDV =
32.768 kHz

fRDV =
32.768 kHz

fNOM = 38.4 kHz

fRCLK = 32.768 kHz

BCS = 0

Power-on
Reset

÷2
Internal
Bus
Frequency

CGMOUT

SIMDIV2
8 MHz

Let’s look at how the CGM generates the 8MHz bus frequency.  We’ve programmed the registers with the 
values for R, N, P, E, and L that we calculated in the previous example.  Recall that our clock frequency, fRCLK, 
is 32.768 kHz.

This is fed through the reference divider, which divides fRCLK by the factor R=1, so the reference clock frequency 
fRDV, is 32.768 kHz.

The VCO nominal center-of-range frequency, fNOM, is 38.4 kHz.

The VCO output clock frequency, fVCLK is affected by the linear factor L=208 and the power-of-two factor E=2.  
After several passes, fVCLK becomes 32.014 MHz.

Then fVCLK goes through a power-of-two prescaler P=0, so fVCLK divided by 2P is 32.014MHz.

Now the VCO clock is reduced by a factor N, getting fVDV = 32.768 kHz.  This frequency is compared with our 
reference clock, fRCLK.  Once it matches the PLL will be locked.  With BCS set to one, the Internal bus frequency 
will be our target 8 Mhz.

Now, let’s look at what happens when a power-on reset occurs.  After a power on reset, the VCO clock is not 
locked and the BCS bit is cleared.

This selects the CMGXCLK as the base clock, which is 32.768 kHz.

Then, until the VCO clock signal is locked, the bus frequency is 8.192 kHz instead of the 8MHz target 
frequency.



22

Precalculated Frequencies

A table (provided by Freescale) with some examples for different bus frequencies using a typical 
32.768 kHz crystal.  This makes it easy to program the PLL for typical bus frequencies.  Note that the 
values are already in hexadecimal notation.



23

CGMC Registers

• PLL control register (PCTL)

• PLL bandwidth control register (PBWC)

• PLL multiplier select register high (PMSH)

• PLL multiplier select register low (PMSL)

• PLL VCO range select register (PMRS)

• PLL reference divider select register (PMDS)

Next, let’s discuss the CGMC register set which includes six registers for configuring and monitoring 
CGMC operations.  We’ll take a detailed look at each register, beginning with the PLL control register, 
PCTL.



24

PLL Control Register
(PCTL)

PLLIE — PLL Interrupt Enable Bit

1 = PLL interrupts enabled
0 = PLL interrupts disabled

Let’s examine the PCTL register.  As we’ll see, the PCTL is used to program the values of P and E.

The PLL interrupt enable bit, PLL, is a read/write bit that enables the PLL to generate an interrupt request when the LOCK bit 
toggles, setting the PLL flag, PLLF.  When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be 
written and reads as logic 0.  Reset clears the PLLIE bit.

The PLL interrupt flag bit, PLLF, is a read-only bit that is set whenever the LOCK bit toggles.  PLLF generates an interrupt 
request if the PLLIE bit also is set.  PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register 
(PBWC) is clear.  The PLLF bit is cleared on reset or when you  read the PCTL register.

The PLL on bit, PLLON, is a read/write bit that activates the PLL and enables the VCO clock, CGMVCLK.  PLLON cannot be 
cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1).  Reset sets this bit so that the loop can stabilize as the
MCU is powering up.

The base clock select bit, BCS, is a read/write bit that selects either the crystal oscillator output, CGMXCLK, or the VCO clock, 
CGMVCLK, as the source of CGMOUT.  The CGMOUT frequency is one-half the frequency of the selected clock.  BCS cannot 
be set while the PLLON bit is clear.  After toggling the BCS bit, it may take up to three CGMXCLK and three CGMVCLK cycles to 
complete the transition from one source clock to the other.  During the transition, CGMOUT is held in stasis. Reset clears the 
BCS bit.

The prescaler program bits, PRE1-PRE0, are read/write bits that select the prescaler power-of-two multiplier, P.  PRE1 and PRE0 
cannot be written to when the PLLON bit is set.  Reset clears these bits.  Note that the value of P is typically 0 when using a 
32.768-kHz crystal as the reference clock.

The power-of-two range select bits, VPR1-VPR0, are read/write bits that control the VCO’s hardware power-of-two range 
multiplier E that, in conjunction with L, controls the hardware center-of-range frequency, f VRS.  Note that these bits cannot be 
written when the PLLON bit is set.  Reset clears these bits.



25

PLL Bandwidth Control Register
(PBWC)

AUTO — Automatic Bandwidth Control Bit

1 = Automatic bandwidth control
0 = Manual bandwidth control

The PLL bandwidth control register, PBWC, is used to configure the PLL mode selection.  It is also 
used to indicate when the PLL is locked. 

The automatic bandwidth control bit, AUTO, is a read/write bit that selects automatic or manual 
bandwidth control.  When initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit 
before turning on the PLL.  Reset clears the AUTO bit.

When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock is  locked 
(running at the programmed frequency).  When the AUTO bit is clear, LOCK reads as logic 0 and has 
no meaning.  The writing to this bit is reserved for testing, so this bit must always be written as 0.  
Reset clears the LOCK bit.

When the AUTO bit is set, the acquisition mode bit, ACQ, is a read-only bit that indicates whether the 
PLL is in acquisition mode or tracking mode.  When the AUTO bit is clear, ACQ is a read/write bit that 
controls whether the PLL is in acquisition or tracking mode.  In automatic bandwidth control mode 
(AUTO = 1), the last-written value from manual operation is stored in a temporary location and is 
recovered when manual operation resumes. Reset clears this bit and enables acquisition mode.



26

MUL11–MUL0 — Multiplier Select Bits

These read/write bits control the high and low bytes of the modulo feedback 
divider that selects the VCO frequency multiplier N. 

Reset initializes the registers to $0040 for a default multiply value of 64.

PLL Multiplier Select 
Register (PMSH and PMSL)

PMSH

PMSL

The PLL multiplier select register is a two-byte register used to program the value of the VCO 
frequency multiplier, N.  The multiplier select bits, MUL11-MUL0, are read/write bits that control the 
high and low bytes of the modulo feedback divider that selects the VCO frequency divider. Bits 7 - 4 of 
the high byte are unimplemented and always read as logic 0.  Writing a value of $0000 to these 
registers configures the modulo feedback divider the same as writing a value of $0001.  Reset 
initializes the registers to $0040 for a default multiply value of 64. 

Note that the multiplier select bits have built-in protection such that they cannot be written to when the 
PLL is on (PLLON = 1).



27

PLL VCO Range Select 
Register

VRS7–VRS0 — VCO Range Select Bits

These read/write bits control the hardware center-of-range linear multiplier L.  A 
value of $00 disables the PLL and clears the BCS bit in the PCTL. 

Reset initializes the register to $40 for a default range multiply value of 64.

(PMRS)

The PLL VCO range select register, PMRS, contains the information required to program the VCO 
linear range multiplier L that, in conjunction with E, controls the hardware center-of-range frequency, f 
VRS .  The VCO range select bits, VRS7–VRS0, cannot be written to when the PLLON bit in the PCTL 
register is set.  Reset initializes the register to $40 for a default range multiply value of 64.



28

PLL VCO Range Select 
Register

RDS3–RDS0 — Reference Divider Select Bits

Selects the modulo reference divider that programs the 
reference division factor, R.  Reset selects default divide 
value of 1.

(PMRS)

The PLL reference divider select Register, PMDS, contains the programming information required to 
configure the reference clock divider, R.  The reference divider select bits, RDS7-RDS0, cannot be 
written to when the PLL is on.  Writing a value of $00 to the PMDS register configures the reference 
divider the same as a value of $01.  Reset initializes the register to $01 for a default divider value of 1.



29

PLL Configuration Flowchart
Start

PLLON = 0

PLLIE = 0

P → PCTL

E → PCTL

N → PMSH:PMSL

L → PMRS

R → PMDS

End

PLL Locked?

BCS = 1

No

Yes

; Turn PLL OFF for initialization in PCTL

; Disable PLL interrupts in PCTL

; Program P value

; Program E value

; Program N value

; Program L value

; Program R value

; Select PLL as Source of the Base Clock

AUTO = 1

PLLON = 1

; Allow automatic acquisition & tracking

; Turn PLL ON in PCTL

Next, let’s discuss how to configure the PLL using polling.  

First, turn the PLL OFF and disable the PLL interrupts since we’ll use polling to check the lock.  

Then program the P,E,N,L and R values in the CGMC registers.  

Set the AUTO bit to allow the loop filter to automatically switch between acquisition and tracking 
modes. 

Turn the PLL ON to reach the desired frequency.  

Wait until the VCO frequency has reached the desired value, that is, until the PLL locks the signal.  
Then select the PLL as the source of the base clock.



30

Question

When using an external oscillator with the PLL enabled, what is the range for the
external oscillator frequency?  Click on your choice.

a) 30 kHz - 100 kHz
b) 30 kHz - 1.5 MHz
c) 100 kHz - 1.5 MHz
d) DC - 32.8 MHz

Let’s consider some questions to check your understanding of the material.  

When using an external oscillator with the PLL enabled, what is the range for the external oscillator 
frequency?  Click on your choice.

Answer:  The PLL can only work with frequency oscillations between 30 kHz and 1.5 MHz.  Therefore, 
when the PLL is enabled, the frequency range for the external oscillator is choice b.



31

Question

Which of the features represents an advantage of using a PLL in your MCU?  
Click on the best choice.

a) Provides a low-cost method for achieving a high bus-frequency.
b) Consumes less power.
c) Provides higher noise immunity.
d) Generates a programmable output frequency.
e) All of the above.

Which of the features represents an advantage of using a PLL in your MCU?  Click on your choice.

Answer:  All of the features are advantages of using a PLL.  The PLL generates a programmable 
output frequency.  Using a low-frequency crystal, the PLL is a low-cost method for achieving a high 
bus-frequency.  Also, low-frequency crystals consume less power and provide higher noise immunity.  



32

Question

To achieve a bus frequency of 4 MHz, what value should you program the 
VCO power-of-two range multiplier, E, to?  Click on your choice.

a) 0
b) 1
c) 2

To achieve a bus frequency of 4 MHz, what value should you program the VCO power-of-two range 
multiplier, E, to?  Click on your choice.

Answer:  We determine the value of E based on the the VCO frequency, fVCLK, which is four times the 
bus frequency.  In this case, the bus frequency is 4 MHz and fVCLK is 16 MHz.  Since this value is 
between the range of 9,830,400 and 19,660,800, the correct value for E is 1.



33

Question  

What is the bus frequency when the BCS bit set to 1, the PLL is 
enabled, and the hardware center-of-range linear multiplier, L, set to a non-
zero value?  Click on your choice.

a)     CGMXCLK

b)     CGMVCLK

c)     CGMXCLK

d)     CGMVCLK

e) none of the above

2
1

2
1

4
1

4
1

What is the bus frequency when the BCS bit set to 1, the PLL is enabled, and the hardware center-of-
range linear multiplier, L, set to a non-zero value?  Click on your choice.

Answer:  Setting the BCS bit to 1, enabling the PLL, and setting L to a non-zero value, selects the 
VCO frequency, CGMVCLK, as the source for the base clock, CGMOUT.  In this case, CGMOUT is 
one-half CGMVCLK and the bus frequency is one-half CGMOUT.  Therefore, the bus frequency is 
one-fourth CGMVCLK.



34

PLL Programming Exercise

• Write a program to configure the 68HC908GP32 PLL
• Generate a bus frequency of 8 MHz (32 MHz oscillator

frequency).
• Assume XTAL=32.768 kHz.
• Write a subroutine to configure the PLL and use polling to

check the lock.
• Output a 500 kHz square signal through port C.

Let’s complete this tutorial with a programming exercise.  Write a program to configure the 
68HC908GP32 PLL to generate an internal bus frequency of 8 MHz, or an oscillator frequency of 32 
MHz, using an XTAL of 32.768 kHz.  Write a subroutine to configure the PLL and poll the lock. To 
show that the internal bus frequency is actually running at 8MHz, output a 500 kHz square signal 
through the port C. 

Take a moment to review the exercise instructions.  When you are finished writing your program, click 
the Forward arrow to continue the tutorial and review the exercise solution. 



35

Solution: MCU Initialization

* -------------------------------------------------------------------
* 68HC908GP32 Initialization
* -------------------------------------------------------------------

MOV #%00001011,CONFIG1 ; Configure the CONFIG1 Register
; \\\\\\\\______________ COP Module disabled
; \\\\\\\______________ STOP Instruction Enabled
; \\\\\\______________ Stop mode recovery after 4096 CGMXCLK cycles
; \\\\\______________ LVI operates in 5V mode
; \\\\______________ LVI module enabled
; \\\______________ LVI module Resets enabled
; \\______________ LVI disabled during STOP mode
; \______________ COP time period 262,128 cycles

MOV #%00000011,CONFIG2 ; Configure the CONFIG2 Register
; \\\\\\\\______________ Internal Bus Clock used as a source for SCI
; \\\\\\\______________ Oscillator enabled to operate during Stop Mode
; \\\\\\______________ Voltage regulator ON (Vdd > 3.6v)
; \\\\\______________ Unimplemented

CLRA ;Initialize the Accumulator

LDHX #ENDRAM ;Stack Pointer -> End of RAM
TXS ;       (H:X -> SP)

; END MCU Initialization

This section of code initializes the MCU.  You can use this as a template for all of your programs.  The 
first step is to initialize the MCU using the CONFIG1 and CONFIG2 registers.  Remember, these 
registers can only be configured once after reset, so it is recommended that you do this first when 
starting.

In this example, we disable the COP in the CONFIG1 register so we don’t have to feed the counter to 
avoid a reset.  We also enable the STOP instruction and enable the LVI to operate at 5v.  Using 
CONFIG2, we select the internal bus clock as a source for the serial communication.  We also enable 
the oscillator to operate during stop mode so we can use the periodic wake-up feature. Note that the 
configuration of the CONFIG2 register is not critical for this application and we could have used the 
default initialization.

The next instruction, CLRA, initializes the accumulator to avoid warnings in the debugger.  The next 
two instructions redirect the stack pointer to the end of the RAM.  Remember that in order to keep 
compatibility with the HC05 family, the HC08 family automatically initializes the stack pointer to $00FF 
after reset. 



36

Solution: Main Program

* -------------------------------------------------------------------
* Application
* -------------------------------------------------------------------

JSR     ConfigPLL       ; Configure PLL
MOV     #$FF,DDRC       ; Enable Port C as output

Toggle:
COM     PORTC           ; 8-cycles loop
NOP                     ; Toggles the PortC every 1µs (1MHz)
BRA     Toggle          ; which generates a 500kHz square signal

* END Application

This section of code is where we really start working with the PLL.  The first thing we do is configure 
the PLL by jumping to a subroutine called ConfigPLL. We’ll look at this subroutine in a moment.

In the main routine, we setup port C as the output.  To generate a 500 kHz square wave, we need to 
toggle port C at a rate of 1 MHz, or once every microsecond.  Running at an internal frequency of 
8MHz (0.125us), we need an 8-cycle loop to generate a delay of 1us.  COM PORTC is a 4-cycle 
instruction, NOP is a 1-cycle instruction, and BRA takes 3 cycles, for a total of 8 cycles.  The routine 
toggles PORTC with the complement instruction (COM) every 8 cycles.



37

Solution: ConfigPLL Subroutine

* ----------------------------------------------------------------------------------
* Subroutine to Configure the PLL via Polling @32Mhz with a 32.768kHz crystal
* ----------------------------------------------------------------------------------
ConfigPLL:

MOV     #%00000010,PCTL         ; Configure the PLL Control Register
;                          \ \ \\\\______________ Program VCO Power-of-two multiplier(E=2)
;                           \ \ \\_______________ Program Frequency Power-of-two Divider(P=0)
;                            \ \_________________ Turn PLL off, so it can be initialized
;                             \__________________ Disable PLL interrupts

MOV     #$03,PMSH       ; Program the Modulo VCO Frequency Divider Value, N
MOV     #$D1,PMSL       ; at the PLL Multiplier Select Registers (N=0x03D1)

MOV     #$D0,PMRS       ; Program the VCO Linear Range Multiplier Value, L
; at the PLL VCO Range Select Register(L=0xD0)

MOV     #$01,PMDS       ; Program the Reference Clock Divider Value, R
; at the PLL Reference Divider Select Register (R=1)

BSET    AUTO,PBWC       ; Allow automatic acquisition & tracking
BSET    PLLON,PCTL      ; Turn PLL ON

BRCLR   LOCK,PBWC,*     ; Wait while PLL locks VCO's desired frequency
BSET    BCS,PCTL        ; When locked, selects PLL as Source of the base clock

RTS

* END ConfigPLL

Next, let’s look at the ConfigPLL subroutine.  We use this subroutine to configure the PLL to generate a 
frequency of oscillation of 32MHz, or a divided-by-four bus frequency of 8MHz.  We’ll use the values that 
we calculated in an earlier example, with R = 1, N = 0x03D1, P = 0, E = 2, and L = 0xD0.

First, we setup the PCTL register where we program E=2 and P=0. Also, we turn off the PLL so it can 
be initialized, and we disable PLL interrupts since we’ll use polling to check the lock.  Next, program the 
value of N in the PLL multiplier select Registers and L in the PMRS register.  Program the reference 
clock divider, R, in the PMDS register. 

Next, we set the AUTO bit in the PLL bandwidth control register (PCWC) to allow automatic switching 
between acquisition and tracking modes. This is the recommended mode for most applications.  Finally, 
we turn the PLL on and wait while the PLL locks the desired VCO frequency, which in this case is 
32MHz.  As soon as the PLL has locked the frequency, we must select the PLL as the source of the 
base clock.



38

Tutorial Completion

- CGMC Uses and Features 
- CGMC components
- Base clock selection
- PLL Configuration
- Programming the PLL

In this tutorial, you’ve had an opportunity to work with the 68HC08 CGMC.  You’ve learned about the 
features of the main CGMC components: the crystal oscillator circuit, the PLL, and the base clock 
selector circuit.  You’ve also learned how to program the PLL for a specific bus frequency using the 
CGMC registers, and demonstrated this by writing a program to generate a 500 kHz square signal.


