
1

Tutorial Introduction

PURPOSE
- To explain how to configure and use the Timebase Module

OBJECTIVES:
- Describe the uses and features of the Timebase Module.
- Identify the steps to configure the Timebase Module.
- Write a program to configure the Timebase Module to generate periodic

interrupt events.
CONTENT:

- 13 pages
- 2 questions
- 1 off-line programming exercise

LEARNING TIME:
- 20 minutes

PREREQUISITES:
- 68HC08 CPU training module

Welcome to this tutorial on the 68HC08 Timebase Module (TBM). This tutorial describes the features
and configuration of the TBM. Please note that on subsequent pages, you will find reference buttons
in the upper right of the content frame that access additional content.

Upon completion of this tutorial, you’ll be able to describe the uses and features of the TBM. You’ll
also be able to configure the TBM to generate periodic events like auto-wake up from the low-power
STOP mode.

The recommended prerequisite for this tutorial is the 68HC08 CPU training module. Click the Forward
arrow when you’re ready to begin the tutorial.

2

• Generates periodic interrupts at user selectable rates
- Independent of the 68HC08 timer system
- Clocked directly from external crystal
- Software programmable at 1 Hz, 4 Hz, 16 Hz, 256 Hz,

512 Hz, 1024 Hz, 2048 Hz, or 4096 Hz
- Can operate as a low-power real-time clock

• Can be enabled in STOP mode
- Allows periodic auto wake-up from STOP mode
- Eliminates external circuitry
- Provides very low-power operation in micro-amps

TBM Capabilities

Let’s begin this tutorial with a review of the TBM capabilities.

You can use the 68HC08 TBM to generate periodic interrupts at user selectable rates. This is useful for
running periodic diagnostics, servicing peripherals, performing maintenance, or any other regularly scheduled
event. You could use the output compare function of the timer system to generate a periodic interrupt, but this
method includes some software overhead. Because the TBM operates independently of the timer system, it
doesn’t require any overhead. Using the TBM also keeps the timer channels available for the application.

In the 68HC908GP and GR product families, the TBM is clocked directly from the external crystal and not the
oscillator output. MCUs with the Internal Clock Generator (ICG), such as the 68HC908KX product family,
operate slightly differently than what is described in this tutorial. Check the product documentation for more
information about specific differences.

When the clock source is a 32 kHz crystal, the TBM can be configured to generate periodic interrupts at a wide
range of frequencies between1 Hz and 4096 Hz. Also, the TBM can generate timing events like those used in
digital watches. With simple software, you can use the TBM as a low-power, cost-efficient, real-time clock. As
an example, the TBM can be configured to generate an interrupt once per second. The TBM interrupt service
routine would update seconds, minutes, hour, day, and year variables stored in RAM or non-volatile memory.

The TBM can be very useful in low-power applications. To minimize current consumption and to extend
battery life, the 68HC08 can be placed in STOP mode to stop the on-chip oscillator. For example, a battery
operated application may enter STOP mode to wait for user input, such as from a keypad. The 68HC08
incorporates keyboard interrupt circuitry to eliminate the resistors and gating required to implement a keypad
interrupt. Other battery operated applications may require the MCU to periodically wake-up to check status,
take a sensor reading, or perform a diagnostic before returning to low-power STOP mode.

During STOP mode, none of the on-chip peripherals are operating since they don’t have a clock source.
Therefore, an external interrupt or reset is normally required to wake up from this mode and resume normal
operation. The TBM can be enabled to operate directly from the crystal during STOP mode. Using the auto
wake-up capability of the TBM, the CPU can wake-up from STOP mode without any external circuitry, reducing
system cost.

3

Timebase Control Register
(TBCR)

TBON — Timebase Enabled
1 = Timebase enabled
0 = Timebase disabled and the counter initialized to 0s

The Timebase enabled bit, TBON, is a read/write bit that enables the TBM. When the TBM is not needed, you can turn
the Module off to reduce power consumption. The TBM counter can be initialized by clearing and then setting this bit.
Reset clears the TBON bit.

The Timebase interrupt flag, TBIF, is a read-only bit that is set when the Timebase counter rolls over. When Timebase
interrupts are enabled, a value of 1 in this bit position indicates that an interrupt is pending.

Timebase acknowledge bit, TACK, is a write-only bit that always reads as 0. Writing 1 to this bit clears the TBIF bit.
Writing 0 to this bit has no effect.

The Timebase interrupt enabled bit, TBIE, is a read/write bit that enables Timebase interrupts. When this bit is set to 1,
the TBM will generate an interrupt when the TBIF bit is set. Reset clears the TBIE bit.

The Timebase rate selection bits, TBR2-TBR0, are read/write bits that select the rate of periodic interrupts. Note that you
should not change the values of these bits while the Timebase Module is enabled.

The TBTST pin is not implemented .

You can use the OSCSTOPEN bit in the CONFIG register to configure the TBM to operate during STOP mode. If the
OSCSTOPEN bit is set, the TBM continues to be clocked directly from the crystal after execution of the STOP instruction.
If this bit is cleared, the TBM will not operate in STOP mode.

4

Timebase Rate Selection

The table shows the different bit codes for the Timebase rate selection bits (TBR2-TBR0). This rate
selection table is based on a 32.768 kHz external clock. As you can see, we can generate
frequencies between 1 Hz and 4096 Hz. Changing the external clock will generate sub-multiples of
these frequencies.

5

TBM Block Diagram

÷ 2 ÷ 2 ÷ 2

TBON

÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

CGMXCLK

TB
R

2

TB
R

1

TB
R

0

÷
8

÷
16

÷
32

÷
64

÷
12

8

÷
20

48

÷
81

92

÷
32

76
8

TBIF

÷2 ÷ 2 ÷ 2 ÷ 2

÷ 2 ÷ 2

Now, let’s review TBM operations using the TBM block diagram.

The TBM generates a periodic interrupt by dividing the external crystal frequency, CGMXCLK. The
counter is made up of 15 divider stages that are initialized to 0 when the TBON bit is cleared.

Eight of the 15 stages are user-selectable with the Timebase rate selection bits (TBR2-TBR0). As we
discussed earlier, the rate selection bits enable you to select one of eight periodic interrupt rates.

The counter starts counting when the TBON bit is set.

When the TBM has counted up to the the tap selected by TBR2-TBR0, the TBIF bit is set. If the TBIE
bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK
bit. Note that the first interrupt that is generated after enabling the Timebase Module will occur at
approximately half of the overflow period. Subsequent events will occur at the exact period.

6

TBM Interrupt Vector

TIM2 Overflow
TIM2 Channel 1
TIM2 Channel 0
TIM1 Overflow
TIM1 Channel 1
TIM1 Channel 0

PLL
IRQ
SWI

Reset

SPI Receiver Full
SPI Overflow

SPI Mode Fault

SPI Transmitter Empty

SCI Noise Flag
SCI Framing Error
SCI Parity Error

SCI Receiver Overrun

SCI Input Idle
SCI Receiver Full

SCI Trans. Complete
SCI Transmitter Empty

ADC Conv. Complete
Keyboard Pin

TimeBase
Source

$FFE0 - $FFE1

$FFE4 - $FFE5

$FFE6 - $FFE7

$FFE8 - $FFE9

$FFEA - $FFEB

$FFEC - $FFED
$FFEE - $FFEF
$FFF0 - $FFF1
$FFF2 - $FFF3
$FFF4 - $FFF5
$FFF6 -$FFF7
$FFF8 - $FFF9
$FFA - $FFFB

$FFFC - $FFFD
$FFFD - $FFFF

$FFDE - $FFDF

$FFE2 - $FFE3

$FFDC - $FFDD

Vector
Address

TOF
CH1F
CH0F
TOF

CH1F
CH0F
PLLF
IRQF
None
None

SPRF
OVRF
MODF

SPTE

NF
FE
PE

OR

IDLE
SCRF

TC
SCTE

COCO
KEYF

TBIF
Flag

TOIE
CH1IE
CH0IE
PLLIE

IMASK1
None
None

TOIE
CH1IE
CH0IE

SPRIE
ERRIE
ERRIE

SPTIE

NEIE
FEIE
PEIE

ORIE
SCRIE

ILIE
SCTIE
TCIE

AIEN
IMASKK

TBIE
Mask Priority

5
4
3
2
1
0
0

8
7
6

9

10

11

12

13

15
14

16

The TBM has its own interrupt vector to eliminate polling for the interrupt source. The vector map
shown is for the 68HC908GP32 MCU. Check the device technical data book to determine the specific
vector address for different 68HC08 derivatives. Note that the TBM has the lowest priority as its
periodic rate is relatively slow.

7

Question

With the TBM enabled and the TBIE bit set to 0, what happens
when the TBM counter rolls over? Click on your BEST choice.

a) The TBON bit is set to 1
b) The TBIF bit is set to 1
c) The TBIF bit is cleared
d) A TBM interrupt is generated
e) a and d
f) b and d

Let’s review what we’ve discussed so far with a couple of questions to check your understanding of
the material. With the TBM enabled and the TBIE bit set to 0, what happens when the TBM counter
rolls over? Click on your best choice.

Answer: When the TBM counter rolls over, it sets the TBIF flag to 1. Note that in this example, TBM
interrupts are disabled because the TBIE bit is set to 0.

8

Question

Using a 32.768 KH crystal for the external clock source, what
value do you need to set the Timebase rate selection bits to in
order to generate an event every 62.5 ms? Select the values for
TBR2-TBR0. Click on your choice.

a) 010
b) 101
c) 011
d) 001

Using a 32.768 kHz crystal for the external clock source, what values do you need to set the
Timebase rate selection bits to in order to generate an event every 62.5 ms? Select the values for
TBR2-TBR0. Click on your choice.

Answer: An event rate of 62.5 ms gives an event frequency of 16 Hz. Dividing the clock frequency by
the event frequency yields a divider value of 2048. You can select this divider value by setting TBR2-
TBR0 to 010.

9

Programming Exercise

• Write a program to configure the TBM to generate a
periodic signal.

- Generate a 1 Hz square signal.
- Use port C of the 68HC908GP32 MCU for output.
- Set XTAL = 4.9152 MHz.
- Enable TBM interrupts.

• Write a subroutine to initialize the MCU out of reset.
• Write an interrupt service routine.

- Acknowledge Timebase interrupt.
- Toggle port C.
- Reset Timebase counter.

Now that we’ve discussed how to configure the TBM, let’s write a program to generate a periodic
signal.

For this example, let’s generate a 1 Hz square signal using port C of the 68HC908GP32 MCU for the
output. Use a Timebase rate, XTAL, of 4.9152 MHz and enable Timebase interrupts.

In addition to your main program, write two subroutines. Use one subroutine to initialize the MCU out
of reset. Use a second subroutine as an interrupt service routine. In the interrupt service routine,
acknowledge the Timebase interrupt, toggle port C, and reset the Timebase counter.

Take a moment to review the exercise instructions. When you’re finished writing your program, click
the Forward arrow to continue the tutorial and review the exercise solution.

10

Solution - MCU Initialization

* ---
* 68HC908GP32 Initialization
* ---

MOV #%00001011,CONFIG1 ; Configure the CONFIG1 Register
; ______________ COP Module disabled
; ______________ STOP Instruction Enabled
; ______________ Stop mode recovery after 4096 CGMXCLK cycles
; ______________ LVI operates in 5V mode
; ______________ LVI module enabled
; ______________ LVI module Resets enabled
; ______________ LVI disabled during STOP mode
; ______________ COP time period 262,128 cycles

MOV #%00000011,CONFIG2 ; Configure the CONFIG2 Register
; ______________ Internal Bus Clock used as a source for SCI
; ______________ Oscillator enabled to operate during Stop Mode
; ______________ Voltage regulator ON (Vdd > 3.6v)
; ______________ Unimplemented

CLRA ;Initialize the Accumulator

LDHX #ENDRAM ;Stack Pointer -> End of RAM
TXS ; (H:X -> SP)

; END MCU Initialization

Let’s review the exercise solution beginning with the MCU initialization subroutine. You can use this
subroutine as a template for all of the programs you write.

This subroutine initializes the MCU using the CONFIG1 and CONFIG2 registers. Recall that these
registers can be configured only once after reset to avoid inadvertently changing the MCU
configuration during an application. Therefore, configuring these registers should be the first step
when starting. For this example, we use CONFIG1 to disable the COP so that we don’t have to feed
the counter to avoid reset. We also enable the STOP instruction and enable the LVI to operate at 5V.

In CONFIG2, we select the internal bus clock as the source for the serial communication. We also
enable the oscillator to operate during stop mode so that we can use the TBM periodic wake-up
feature. Note that the configuration of the CONFIG2 register is not critical for this application.
Alternatively, we could use the default initialization for this example.

The next instruction, CLRA, initializes the accumulator to avoid uninitialized register warnings in the
simulator/debugger, although this may not be necessary in your application. The next two instructions
redirect the stack pointer to the end of the RAM. Remember that in order to keep compatibility with the
HC05 family, the HC08 family automatically initializes the stack pointer to $00FF after reset.

11

Solution - Main Program

* ---
* Application
* ---

MOV #$FF,DDRC ; Enable Port C as output
MOV #%00000110,TBCR ; Program the Time Base Register

; _______________ Time Base Module ON
; \\\ _______________ Enable Time Base Interrupt
; _________________ Select Timebase Rate (Div 2^15)
; @XTAL=4.9152MHz -> Freq=150Hz

MOV #COUNT,Counter ; Initializes counter
CLI ; Enable Interrupts

BRA * ; Waits for interrupt

; END Application

Next, compare your main program with the one provided in the solution. This section of code is where
we start to work with the Timebase Module.

To generate a 1Hz square signal, we have to toggle the output every 500ms. To measure 500ms with
a 4.9152MHz crystal, we need to use the higher rate divisor of 2^15, or a value of 32,768. Dividing
the frequency by 32,768 gives us 150 events per second, or 75 events to generate 500ms.

In order to facilitate the process, we measure the events using interrupts. We’ll configure port C to
output the square signal.

Next, configure the Timebase register. Enable the Timebase interrupt, select the default Timebase
rate, and turn the Module on. We need a counter to count the 75 events before we toggle the output.
Reserve one byte in RAM for this counter and initialize it using a value of 75.

Finally, we enable interrupts with CLI and wait for the TBM interrupt.

12

Solution - Interrupt Service Routine

TBM_Int_Serv:
BSET TACK,TBCR ; Acknowledge TB Interrupt
DEC Counter
BNE Exit ; Decrements COUNTER and exits

; if NOT Zero
COM PORTC ; If counter=0 -> Toggle Port C

: (time = 0.5 secs)
MOV #COUNT,Counter ; Resets COUNTER

Exit: RTI

; END TBM_Int_Serv

In the interrupt service routine, we check whether it‘s time to toggle the output. To do this, we first
acknowledge the Timebase interrupt to avoid reentering after RTI. Next, we decrement the counter
and check whether it has reached a value of zero. If not, we exit the subroutine and wait for the next
event. If the counter has reached a value of zero, this means that 500 msecs have elapsed. We then
toggle port C, reinitialize the counter to 75, and start over again.

13

Tutorial Completion

- Timebase Module Uses and Capabilities
- Timebase Configuration

In this tutorial, you’ve had an opportunity to learn typical uses and capabilities of the 68HC08
Timebase Module. You’ve learned how to configure and use the TBM Module and demonstrated this
by writing a program to generate a 1khz square wave.

