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The Intel 486TM DX microprocessor is one of today's most advanced micro-
processors. In addition to its popularity in personal computer applications it
is increasingly chosen as the host in a wide variety of workstations.

Today, many designs are migrating to the Intel 486DX2, which is compatible
with the 486DX, yet offers an internal clock rate at twice the external clock
rate. These processors continue to integrate more and more functionality onto
the chip to improve performance and decrease system form factors. However,
because of the additional pin count and the continually changing DRAM
market, DRAM controllers are typically not integrated with the processor,
leaving the design up to the system engineer.

This application note presents an example of a high-performance page-mode
DRAM controller implemented in a QuickLogic QL12x16 FPGA which
interfaces to a 66 MHz 486DX2 microprocessor. The function integrates the
address decoding and multiplexing, page hit/miss detection, a basic control-
ler state machine, and the RAS/CAS output logic into a TQFP (Thin Quad Flat
Pack) or an 84-pin PLCC package. Designs of this complexity and speed will
typically require up to fifteen high-speed 22V10 PLD packages.

DRAMCTRL

    DECODE HITMISS AMUX STATE RASOUT CASOUT

The design illustrates the critical paths generally associated with a high-
frequency DRAM controller and shows the advantages of the QuickLogic
pASIC® 1 architecture in serving this class of applications. It was created using
the QuickLogic pASIC Toolkit based on the Data I/O ECS schematic entry
package. Copies of the detailed design schematics are available on request
from QuickLogic (QS-QAN6). All timing delays quoted are worst case values
for the 1.0 micron, QL12x16-0 device over the commercial operating range.
QuickLogic's latest .65 micron QL12x16B exhibits significantly faster timing
(20% - 30% faster).

QAN6
Page Mode DRAM Controller for 486DX2
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2.0
BRIEF DRAM

OVERVIEW

The acronym 'DRAM' stands for Dynamic Random Access Memory. The
term 'dynamic' comes from the internal implementation of each bit storage
cell. This type of cell uses capacitance to store the bit value instead of
combinatorial feedback as is used in a static type latch. Using a capacitance
to store the charge allows for a minimum number of transistors to achieve the
highest possible density. By keeping the transistor count to a minimum,
DRAMs can provide the lowest cost per bit in a random access memory.
There is, however a price to pay for this low-cost solution.

Since total isolation from leakage current is not possible, charge stored on a
bit cell capacitance will leak off over time. For this reason the charge on the
capacitance must be restored to a full value periodically. This is known as
refreshing the DRAM and some method of refreshing must be supported in
the system design.

DRAMs have a second unique feature used to reduce overall cost and that is
the use of a multiplexed address bus. Typical DRAMs today require on the
order of 20 or more address lines. This, coupled with data lines, would require
a fairly large package — increasing package cost, board space, and ultimately
board cost, DRAMs use two strobe signals (i.e., RAS and CAS) to latch in the
address. Half of the address is first latched using the RAS signal — this is
known as latching the row. The second half of the address is latched using the
CAS signal — this is known as latching the column.

There are a variety of timing specs associated with the row and column
strobes that must be met for proper operation. The most common specs
referred to are tRP, tRAC and tCAC. These represent specs for the RAS
precharge time, RAS access time and CAS access time. The RAS access time
is the time it takes for data to become valid from the RAS edge. This spec is
normally used as the designator for the speed of the DRAM and is typically
the most difficult timing to meet.

The CAS access time is also a data valid time, but from the CAS edge rather
than the RAS edge. Both specs must be met before data will be valid. Current
DRAMs typically have a tCAC value that is about one-fourth the tRAC value.

Due to the ever increasing need to always have faster access times and higher
performance, DRAM manufacturers have come up with many different
modes that help to improve the access time for certain applications. One of
the most common modes used today is page mode. Page mode allows
successive addresses to the same page to keep RAS active while the data
access time is totally dependent on tCAC (and some address timing specs) for
subsequent cycles. Thus, each cycle following the leadoff cycle is able to
execute at a much higher rate. However, the logic to implement a page mode
controller is significantly more complicated, as it requires keeping a latched
copy of the previous page address and comparing it to subsequent cycles.
When the page does not match, the RAS output must be precharged as defined
by the tRP spec. Once tRP has been met, a new cycle with a new page may
be started. The end result is a slower cycle for page misses and a faster cycle
for page hits. Generally, the use of page mode gives an overall increase in
performance.
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In addition to the many modes available in DRAMs, today there exist many
different internal configurations that may use asymmetrical combinations of
row and column address bits. This makes support for multiple DRAMs even
more difficult. Additionally, DRAMs come in an assortment of data out bits
and the number of RAS, CAS, and WE signals it may need. All of these
variations can make for a very complex design when designing a DRAM
controller.

The majority of system designs using an Intel 486DX2 require large amounts
of local DRAM memory, and thus, some sort of DRAM cycle controller. The
performance of this controller is of primary concern since it will greatly affect
the overall system performance. Additionally, board space that the controller
takes up is also of concern. It is no longer acceptable to use discrete devices
of small integration in order to achieve high performance. A single-chip
solution is almost always required and generally includes additional board-
level functions.

The objective of this design is to provide the highest performance DRAM
interface for a 486DX2 at 33 MHz while using minimal board space and
readily available DRAMs. The desired specifications for this controller are:

• Support 486DX2 burst mode cycles of 5-2-2-2
• Staggered refresh cycles using CAS before RAS refresh mode
• Bank size configurability via mode select pins
• CAS wait state selection via mode select pin giving 5-3-3-3
• Fast page mode cycle support
• DRAM select decode with range programmability

Speed is always the primary concern when designing DRAM controllers.
With today's microprocessors running at 33 MHz and higher, circuit delays
of a few nanoseconds may mean additional wait states to the processor access.
Additionally, market requirements typically dictate support for multiple
DRAM sizes, organizations, and speed. Designing a DRAM controller to
accommodate these needs directly translates into additional levels of logic
and additional delays.

The design presented in this application note supports two different sizes of
banks that can be mixed across the four banks. The major problem areas and
critical speed paths in a design of this type are typically:

• Bank decode logic
• Row/Column address mux delay
• Page compare logic and cycle start delay
• Output logic delay and variation

The bank decode is by far the most complicated section of logic. This may
seem surprising, since in the past, it has typically been the simplest part of the
design. No longer is the bank decode simply a 2-to-4 decoder of two address
lines. If you choose to support different sizes of banks simultaneously, the
address decode gets significantly more complicated.

3.0
DESIGN
OBJECTIVE

4.0
DESCRIPTION OF
DESIGN PROBLEM

Bank Decode Delay
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The design presented here supports two sizes of banks simultaneously,
provided the larger memory is mapped to the smallest address possible.
Support for any combination of banks becomes even more difficult, but still
possible. The possible configurations reduce down into five distinct cases.
Within each case, it is possible to have additional cases that do not have all
banks populated. Table 1 shows the configurations supported in this applica-
tion note in more detail.

Note that the decode uses four address bits, and which bits are used is
dependent upon the configuration.

CASE
ADDRESS BANK NUMBER RANGE SIZE

(MEG)25 24 23 22 0 1 2 3

1

− − 0 0 4

4, 8, 12, 16
− − 0 1 4

− − 1 0 4

− − 1 1 4

2

− 0 X X 16

16, 20, 24, 28
− 1 0 0 4

− 1 0 1 4

− 1 1 0 4

3

0 0 X X 16

16, 32, 36, 40
0 1 X X 16

1 0 0 0 4

1 0 0 1 4

4

0 0 X X 16

16, 32, 48, 52
0 1 X X 16

1 0 X X 16

1 1 0 0 4

5

0 0 X X 16

16, 32, 48, 64
0 1 X X 16

1 0 X X 16

1 1 X X 16

The row/column address mux directly affects how early the address can be
driven to the DRAM. The fastest and simplest 2-to-1 mux is generally used
to switch between row and column. Any additional delay on the address mux
causes both the row and column address to be delayed. This, in turn, translates

TABLE 1
Bank Decode Table

4.2
Row/Column

Address Mux Delay
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to either delaying RAS and CAS (adding additional wait states) or a violation
of address setup times to RAS and CAS.

Support for multiple DRAM sizes and organizations presents yet another
problem that requires further levels of logic in the address mux. This is due
to the fact that different sized DRAMs will require different address bits in the
row address. This can be observed by first looking at the configuration for a
1M bit DRAM (256Kx4) organized in the system as 256Kx32. In this
configuration, a depth of 256K would need to be addressed by the row and
column address. The width of 32 would be addressed by 4-byte enables.

Addressing of 256K requires 18 address lines — generally nine row bits and
nine column bits. If we are designing the address mux (MA[0:10]) around this
specific requirement, we would have the assignments shown in the first row
of Table 2.

DRAM
DEPTH

ROW/
COLUMN

10 9 8 7 6 5 4 3 2 1 0

256K 9x9 22 20 19 18 17 16 15 14 13 12 11

1M 10x10 22 20 19 18 17 16 15 14 13 12 21

Since A1 and A0 are used up in the byte selection, addressing to the DRAM
starts at A2 and goes up to A19. Note that the highest order bit of the column
is A10, with the row starting at A11. To support a DRAM of depth 512K
(organized 10x9), A20 simply needs to be driven on an additional row address
— MA9. However, to support a depth of one meg (organized 10x10), A21
needs to be driven on either the row or column. The easiest solution would be
to add it to the column address on MA9. However, this would fragment the
page of the DRAM into two halves, lowering the page mode performance.

In order to keep the page contiguous, A21 must be driven in the row address.
This is accomplished by replacing A11 on the row address with A21, and
driving A11 on the unused column address. As such, the address mux for
MA0 now becomes a 3-to-1 mux selecting between A2, A11, and now A21.
As mentioned previously, if the delay incurred for each additional mux input
is too large, the cycle will require an additional wait state.

The start of page mode DRAM cycle is typically gated by:

• DRAM address range decode select
• Page hit/miss detection

The DRAM address range decode determines if the address of the cycle
goes to DRAM or some other device. This decode can range from simply
matching upper address lines to 0, or actually comparing an address

4.3
Page Compare and
Cycle Detect Delays

TABLE 2  Row
Address Map
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between two registers depending upon the granularity of the banks and the
combinations of bank population. Both mechanisms typically require several
levels of logic to implement.

The page hit/miss detection determines whether the page of the pending cycle
is equal to the page of the previous cycle. If the page value is different, then
the row of the DRAM will need to be precharged. This typically consists of
a comparator implemented as several levels of XNOR gates. Both the address
range decode and the page hit/miss detection depend upon a valid address
from the processor. The total delay before starting the cycle will then be the
maximum sum of the processor address delay with either the range decode
delay or the page detect delay.

The processor address delay is given in the 33 MHz data sheet to be 14 ns. In
order for the state machine to start the DRAM cycle on the first following
clock edge, both the range detect and the page detect must be performed and
allow for a setup time to a latch in less than 16 ns (see Figure 1). Performing
XOR combinations can be quite costly in terms of delay and depend upon the
number of address bits needing comparison.

33 MHz CLK

ADS_N

A[25:2]

14 16 FIRST STATE

There is typically very little margin for variation among the output pin timings
of a DRAM controller. Today's DRAM timing specifications are all done
with respect to each other, i.e., pin-to-pin timing and not pin-to-clock. Any
variation of one pin may greatly affect its timing in relation to another pin.
Figure 2 illustrates a typical requirement among RAS, DATA, and MA.

FIGURE 1
Cycle Detect Delays

4.4
Output Logic Delays

and Variation
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33 MHz CLK

RAS_N

MA

40

30

7040

As shown in Figure 2, RAS must be active 70 ns prior to the end of the DRAM
cycle. If the variation in output timing is 40 ns, then the point for activating
RAS would be designed to be 110 ns prior to the end of the cycle. This would
ensure that the slowest manufactured part would still provide the needed 70
ns prior to the end of the cycle. If the variation of MA is also 40 ns (and this
delay does not track with the RAS delay), then MA would need to be designed
to be valid 150 ns before the end of the cycle. If the variation in delay for RAS
and MA can be kept to 20 ns, then MA would need to be valid 110 ns prior
to the end of the cycle (see Figure 3). This difference of 40 ns would mean the
difference in one wait state to the processor at 33 MHz. The same scenario
also applies to MA and CAS, WE,  CAS, and other timings.

33 MHz CLK

RAS_N

MA

20

30

7020

The key to keeping the output delays and variation in delay to a minimum is
by using fast logic and placing the controlling signal as close to an  output pin
as possible (i.e., so there are a minimum number of gate delays from the clock
to the output pad). The most common way of doing this is to place the output
latch as the very last device in the path. This means a separate latch for each
output signal. The abundance of flip-flops coupled with the extremely fast
logic makes QuickLogic's 12x16-0 FPGA an ideal solution.

FIGURE 2
RAS/DATA/MA
(Version 1)

FIGURE 3
RAS/DATA/MA
(Version 2)
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                     FIGURE 4
         DRAM Controller

A Page-Mode DRAM Controller meeting the demands of the design problems
outlined in the prior pages was implemented in an 84-pin version of the
QuickLogic QL12x16 2000-usable gate FPGA. Complete design schematics
for this controller are available from QuickLogic. The remainder of this
application note describes the functions of each of the blocks in the design.

Figure 4 is a top view of the controller as created in the Data I/O ECS
schematic capture tool. It consists of the Processor and DRAM Interface
Signals and two blocks containing the input pads (INPADS) and the DRAM
controller logic (DRAMCTRL). Tables 3 and 4 list the signal name and
description of all the I/O pins.

Within the DRAMCTRL block of Figure 5, are six major logic blocks. The
schematic hierarchy diagram of Figure 6 shows that six more blocks are
embedded at lower levels. For example, the REFRESH block is contained
inside the STATE block (see Figure 7).

5.0
DESCRIPTION

OF DESIGN

5.1
Overview
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TOP

INPADS DRAMCTRL

DECODE HITMISS AMUX STATE RASOUT CASOUT

SELECT LATCH12 BURST_CA REFRESH ROUTCELL COUTCELL

A description of all twelve upper and lower level blocks follows:

DECODE – Address Decode: This block takes care of decoding the address range
to determine if it is the DRAM range, and also bank selection.

SELECT – Cycle Select Logic: This block consists of a 4-bit range comparator
and logic that takes in ADS_N (Address Strobe) and MXIO_N (Memory/Input/
Output Status Signal) to determine the start of a cycle.

HITMISS – Page Hit/Miss Detection: This block detects whether the page
address of the current cycle matches the page cycle of the last address. The output
status is used as an input to the state machine.

LATCH12 – 12-Bit Register Latch: This block takes the 12 address lines that
make up the page and latches them.

STATE – State Machine: Controls the entire DRAM controller. The state
machine takes input of the form 'cycle request,' 'refresh request,' 'page miss,' and
other configuration information to determine the cycle type and control the
outputs accordingly.

REFRESH – This block is within the state machine block and is essentially the
state machine for the refresh cycles.

AMUX – Address Multiplexer: This block takes care of driving the correct row
and column address to the DRAM.

BURST_CA – Burst Column Address Generator: Within the AMUX block this
block takes care of generating the correct CA[3:2] when burst cycles are performed.

INPADS – Input Buffers: This block contains all input pad declarations for the chip.

RASOUT – RAS Output Logic: This block clocks out the appropriate RAS_N
signal at the correct time. It instantiates 4 ROUTCELL blocks to accomplish this.

ROUTCELL – RAS Out Cell: Takes the set and reset signals from the state
machine and combines them with both CLK and CLK_N to clock out the RAS_N
signals. Additionally, this block uses the bank select signals as enables.

CASOUT – CAS Output Logic: Similar to RAS Output Logic only used for the
CAS lines. This block also contains logic to drive the WE_N[3:0] signals.

COUTCELL – CAS Out Cello: Almost identical to the ROUTCELL with a slight
difference on the reset logic.

FIGURE 6
Schematic Hierarchy
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5.2
Interface Signals

                      TABLE 3
     Processor Interface

SIGNAL I/O DESCRIPTION

A[25:2] I
Processor Address lines: Address line inputs from the 486DX2. They are driven
active on the rising edge of the clock and are guaranteed to be valid 14 ns later. The
address is driven throughout the entire cycle.

ADS_N I
Address Strobe: This signal is used to indicate the start of a cycle from the 486DX2. It
has identical timing with the address. However, it will remain active for only one clock.

BE_N[3:0] I
Byte Enables: Indicates which bytes of the current cycle are to be accessed. They
have identical timing with the address.

BLAST_N I
Last Burst Cycle: This signal indicates when the current cycle is the last of a burst
cycle. Cycles that are not burst cycles will always have BLAST_N active.

CLK I 33 MHz Clock: This is the clock input used to clock internal logic.

RESET I Reset Signal: Used to reset all logic internally.

BRDY_N O
Burst Ready: This signal indicates the completion of the cycle. Since this device
(DRAM Controller) supports burst cycles when requested, BRDY_N will always be
used.

MxIO_N I
Memory/Input/Output Status Signal: This signal indicates whether the current cycle is
a memory cycle or an I/O cycle. It has identical timing to the address.

WxR_N I
Write/Read Status Signal: This signal indicates whether the current cycle is a write
cycle or a read cycle. It has identical timing to the address.

REFREQ I
Refresh Request: This signal indicates a refresh cycle is desired by the external
system. The assumptions here are that arbitration for the bus has already occurred
outside this controller.

WS_EN I
Wait State Enable: This signal is a programming option to configure the controller with
a wait state during CAS active. When active, CAS will have approximately two clocks
of access time. When inactive CAS will have approximately one clock of access time.

RANGE[3:0] I
DRAM Range: These inputs indicate the overall size of the DRAM memory range.
These four bits represent the number of 4 Meg blocks of memory.

BNK_EN[3:0] I Bank Enables: These four signals represent which banks are enabled.

SIZE_SEL[3:0] I
Bank Size Selects: These four signals represent the size of each bank of memory.
When inactive, the size of the bank is 4 megabytes. When active, the size is 16
megabytes.

PAGE_MODE I

Enable Page Mode: This programming option is used to enable page mode. Because
of the timing restrictions, worst case design indicates a critical path in the page mode
detection logic. However, at lower frequencies or with fast parts, page mode may still
be used. When inactive, the critical path is removed from the logic.
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TABLE 4  DRAM Interface

SIGNAL I/O DESCRIPTION

RAS_N[3:0] O
Row Address Strobes: These signals are used to strobe in the row address for each of
the banks.

CAS_N[3:0] O
Column Address Strobes: These signals are used to strobe in the column address for
each of the banks.

WE_N[3:0] O
Byte Write Enables: These four signals represent write enables for each of the bytes in
a DWORD.

MA[10:0] O
DRAM Row/Col Memory Address: These 11 outputs are used to present both the row
and column to the DRAM.

Cycles in the design are started by the address being within the range
programmed on the RANGE[3:0] bits, ADS_N going active, and MXIO_N
indicating memory. When these three events occur   the signal CYC_REQ goes
active indicating to the state machine to start a cycle.

The first attempt at designing this used a macro for the TTL range comparator
74684. Since this was an 8-bit comparator, four of the comparisons were
redundant and were tied inactive. The output of the comparator was then
combinatorially ANDed with ADS_N and MXIO_N. The use of the extra logic
needed for 8-bit comparison and the following level of decode made this path
painfully slow. It was not possible to detect the cycle by the next clock edge
after ADS_N had gone active.

By reducing the comparator to a 4-bit range comparator — and combining the
ADS_N and MXIO_N logic into the comparator, it was possible to speed this
path up from 18 ns to 8 ns, thus making it functional. Paying close attention to
which gates fit directly in one level of a logic cell also helped. An inverter was
needed in the ADS_N path in order to combine it with the comparator logic.
However, since ADS_N will be active well before the range comparison is
complete, it is not in the critical path.

This page hit/miss logic is similar to the range compare, except that it must be
performed over 12 address lines and it only needs to match the value. However,
because of the need to compare 12 lines down to one output, this path is very
slow. Under worst case conditions for the QL12x16-0 this path is simulated to
27.6 ns.

The delay of 27.6 ns was well above the allotment of 15 ns for page hit/miss
logic. However, under best case conditions this path is within margin. For this
reason, an option was added to keep the page mode access. This option is
controlled by enabling the input PAGE_MODE. When active, the state
machine will assume the page compare logic is fast enough and will use the
output to determine state transitions. If PAGE_MODE is inactive, then the
PAGE_MISS signal will be masked off in the state machine.

5.3
Cycle Detection
Logic

5.4
Page Compare
Logic



QAN6

5-58

Design Tip

If page mode is strongly desired under all conditions at 33 MHz,
then the state machine could be modified to support this. By
designing in a one clock delay at the start of the cycle in which no
activity is performed, the page hit/miss logic has an additional 30
ns to complete. This of course, increases all cycles by one clock,
but if the cycle is a page hit, the RAS and RWS state are bypassed —
saving two clocks. There is still a net gain of one clock.

The bank decode logic consists of a static section and a dynamic section. The
static section decodes the choices programmed on the SIZE_SEL[3:0] pins and
the BNK_EN[3:0] pins. The programming on these pins comes down to five
possible cases. The delay on this logic is irrelevant since it is static.

The dynamic section takes the five case signals and combines them with the address
to determine the correct bank. The delay through this logic must be less than 30 ns
in order to be valid when RAN_N is activated. The worst case simulation came to
15 ns.

Design Tip

If more pins are needed for a different implementation, the size
and enable pins could be replaced with the case signals directly,
which would reduce eight pins to five pins.

The row/column address mux consists of several of 2-to-1 multiplexers that
select the appropriate address bits to drive for the row and column. The
selection between row and column is made using the COL_SEL signal that
comes from the state machine.

Tables 5 and 6 show the various DRAM configurations that the multiplexer
is capable of supporting. However, only two of the address mux modes are
supported directly in the bank decoder.

The 1M depth and the 4M depth give bank sizes of 4M and 16M respectively,
which are supported in the bank decoder. The other address mux modes could
be used provided only one bank was populated. The bank decoder could also
be redesigned to support different decoding combinations. Both MA0 and
MA1 require additional levels of muxing for row address bits. MA0 must
support A11 and A21, while MA1 must support A12 and A23.

5.6
Row/Column
Address Mux

5.5
Bank Decode Logic
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DRAM
DEPTH

ROW/
COLUMN

10 9 8 7 6 5 4 3 2 1 0

256K 9x9 22 20 19 18 17 16 15 14 13 12 11

512K 10x9 22 20 19 18 17 16 15 14 13 12 11

1M 10x10 22 20 19 18 17 16 15 14 13 12 21

2M 11x10 22 20 19 18 17 16 15 14 13 12 21

4M 11x11 22 20 19 18 17 16 15 14 13 23 21

DRAM
DEPTH

ROW/
COLUMN

10 9 8 7 6 5 4 3 2 1 0

256K 9x9 12 11 10 9 8 7 6 5 4 3 2

512K 10x9 12 11 10 9 8 7 6 5 4 3 2

1M 10x10 12 11 10 9 8 7 6 5 4 3 2

2M 11x10 12 11 10 9 8 7 6 5 4 3 2

4M 11x11 12 11 10 9 8 7 6 5 4 3 2

Burst cycles on the 486 require external logic to generate A[3:2]. Depending
on the first address, the subsequent values may either be an incremented
address or decremented address. The BURST_CA block takes care of
detecting the first address, latching the address, and generating subsequent
CA[3:2] bits of the burst cycle. Table 7 shows the burst address sequence.

BURST ADDRESS SEQUENCE A[3:2]

FIRST SECOND THIRD FOURTH COMMENTS

00 01 10 11 Increment

01 00 11 10 Decrement

10 11 00 01 Increment

11 10 01 00 Decrement

TABLE 5  Row
Address Map

TABLE 6  Column
Address Map

TABLE 7  486DX2
Burst Address
Sequence
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The state machine contains all the control logic for the DRAM controller. In
most cases a state output may be used directly for the desired control function.
However, some control functions require additional logic to combine several
states to create a control signal.

The state machine resets to the IOFF state. In this state RAS is inactive.
Requests to leave this state may consist of either a refresh request or a
processor cycle request. When a processor cycle request is made, a transition
to the RAS state will occur where RAS is activated. The cycle will then
proceed through RWS, CAS (where it asserts CAS) and END. The end state
is the last state of a single data transaction and is used to deactivate CAS. If
burst mode is indicated by the processor, then following cycles may transition
directly back to the CAS state to reactivate CAS.

Refresh cycles occur in the REF state. A separate state machine controls the
actual refresh cycles. The main state machine will remain in the REF state
until a REF_DONE sinal is received from the refresh state machine. At this
point all the RAS_N outputs are precharged, thus the machine waits for the
next cycle request in the IOFF state.

If page mode is not enabled (and not bursting), transitions from the END state
will reset the RAS_N output. If page mode is enabled, then RAS will not be
reset and a transition to the idle on state will be made (ION). Departure from
ION will occur for refresh request and processor cycle request. For the latter,
a transition to either PRE0 or CAS will be made depending upon the page miss
status. Page miss cycles from the ION state will require precharging in PRE0
and PRE1 states. Figure 8 shows the state transition table.

5.7
State Machine
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The states and Cycle State Machine Equations are defined as follows:

IOFF – Idle RAS Off State: This state is an idle state with RAS inactive. This
state is entered at reset and from the refresh state when no cycles are pending.
This state may also be entered from the PRE1 state if page_mode is not
enabled and no cycle is pending.

IOFF = IOFF•/CYC_REQ

+ REF•REF_DONE•/CYC_REQ

ION – Idle RAS Active State: This state is identical to the IOFF state except
that one of the RAS_N outputs is active. This state is only used if page_mode
is enabled. If a refresh request occurs while in this state, then a transition to
the REF state is made. The REF state makes sure the lines get precharged
before starting the refresh cycle. When a regular cycle request is made, a
transition to either the precharge states or the CAS state is made depending
upon whether the page address matches the previous cycle page address.

ION = ION•/CYC_REQ•/REF_REQ

+ END•/BURST•PAGE_MODE

PRE0 – RAS Precharge State 0: This state is the first of two when
precharging the RAS_N outputs.

PRE0 = ION •CYC_REQ•PAGE_MISS

+ END•/BURST•/PAGE_MODE

PRE1 – RAS Precharge State 1: This state is the second of two when
precharging the RAS_N outputs. Transitions out of this state will always be
to the RAS state when page_mode is enabled. However, if page_mode is not
enabled, then the precharged states may not have been entered as a result of
a cycle request (as in the case of page_mode), and therefore, the state of
cyc_req must be checked to determine between IOFF and RAS.

PRE1 = PRE0

RAS – Assert RAS Active State: This state is used to activate the correct
RAS_N output. It can be entered from three different states. RAS may be
entered from IOFF directly whenever a cycle request is made. In this scenario
the RAS_N outputs are already precharged. Likewise, if a request comes near
the completion of the refresh cycle, then a direct transition from REF to RAS
is possible. The REF state assures that all RAS_N outputs are precharged
when leaving. The third entry point to RAS occurs from the PRE1 state when
a request is pending.

RAS = PRE1•LCYC_REQ
+ REF•REF_DONE•LCYC_REQ

+ IOFF•CYC_REQ
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RWS – RAS Wait State: This state is needed to meet RAS active time specs.
It will always be entered directly from the RAS state and transition to the CAS
state.

RWS = RAS

CAS – Assert CAS Active State: This state is entered from one of three
different states. It may be entered directly from RWS for a page miss cycle,
or from ION for a page hit cycle. Additionally, the CAS state may be entered
from the END state when the 486 is bursting bus cycles. This situation is
similar to a page hit cycle with no idle clocks and no need to detect the hit/
miss. Although this cycle is essentially a page hit cycle, it will be operational
in both page mode and non page mode since it does not require detecting the
page hit/miss status.

CAS = RWS
+ ION•CYC_REQ•PAGE_HIT
+ END•BURST

CWS – CAS Active Wait State (also called Wait State 0): This state is similar
to the RWS state in that it is used to extend the CAS access time. This state
is entered from the CAS state whenever the wait state enable pin (WS_EN)
is active. When in use, the CAS active time will be on the order of two clocks,
and burst and page hit cycles will be approximately three clocks.

CWS = CAS•WS_EN

REF – Refresh Active State: This state is entered when a refresh cycle is
needed. It can be entered from the ION state or the IOFF state. It is assumed
in the design that arbitration for the bus takes place outside the chip, and that
the ref_req signal is mutually exclusive with the bus cycle ADS_N going
active. Once in the REF state, the machine will remain until refresh is
complete. Once the refresh cycle is complete, all RAS_N outputs are
precharged and ready to access a new bank. The machine can then directly
move to the RAS state if a cycle has begun. If no cycle is pending, then a
transition to the IOFF state is made so that the RAS_N outputs will remain
precharged.

REF = REF•/REF_DONE
+ ION•REF_REQ (MUTUALLY EXCLUSIVE WITH CYC_REQ)
+ IOFF•REF_REQ (MUTUALLY EXCLUSIVE WITH CYC_REQ)

END – Last CAS Active State: This state is the last state of the bus cycle. It
is primarily used to reset the CAS_N outputs, and sometimes the RAS_N
outputs if needed. It is used to activate the correct CAS_N output.

END = CAS•/WS_EN
+ CWS
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Additionally, there are several output signals based on different transitions that
are defined as follows:

BRDY_N – Burst Ready Signal: This signal is simply a delayed version of the
END state. Since the ready signal to the 486DX2 must straddle the rising edge
of the clock, it is best to clock the ready with the falling edge of the clock.

COL_SEL – Column Select Signal: This signal is used in the address
multiplexer to select between row and column. When active, it selects the
column as the name implies. The default for this signal is inactive. It is driven
active during the CAS, CWS, and END states.

BURST_CLK – Burst Clock Signal: This signal is used to change the column
address bits used for successive cycles in a burst transaction. This signal will
go active during the RAS state to latch in the first value. It will then go active
on each END state to clock the next value.

RAS_OFF – RAS Off Signal: This signal is used to reset the RAS outputs at
the end of a cycle when not in page mode, and also during idle when in page
mode. It goes active when the next state of the state machine will be PRE0 or
REF.

The refresh cycles are controlled by the refresh state machine contained in the
REFRESH block. This block consists primarily of a shift register triggered by
entering the REF state of the cycle state machine.

The type of refresh cycle employed by the controller is known as CAS-before-
RAS. This type of refresh cycle is lowest in power and requires the least
amount of external logic. By activating CAS first and then RAS, the DRAM
detects that a refresh cycle is intended and therefore uses an internal refresh
row to address the row. Additionally, the DRAM will know to not drive the
output buffers of the DRAM.

Activating refresh to all banks simultaneously can cause huge power surges
and results in a difficult system design. The controller presented here staggers
the accesses to each bank by one clock — thus keeping power surges to a
minimum.

The control signals to enable refresh for each RAS and CAS of each bank are
created by detecting different points in the shift register. For example, the bank
0 CAS will go active when the second latch in the shift register goes active, and
will go inactive when the fifth latch goes active. The logic is then shifted for
each of the following banks. At the end of the shift register a signal goes active
for one clock to indicate the completion of the refresh cycle. At this point the
last bank has been precharged for one clock and will have been precharged for
two clocks by the time the cycle state machine begins a cycle.

CAS-Before-RAS
Refresh
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The output logic consists of logic required to clock RAS, CAS, and WE. The
implementation used here uses a generous amount of latches (which are
plentiful in the QL 12x16) to clock out RAS and CAS on phase 2 clock edges
while deactivating on phase 1. Two different cells, COUTCELL and
ROUTCELL, are repeated multiple times and wired to the appropriate bank
enables to achieve this.

The basic outcell (ROUTCELL and COUTCELL) uses a simple D flip-flop to
start activation on phase 2 (by clocking with CLK_N). A second JK flip-flop
is used to continue driving the output for the rest of the cycle. While the D FF
remains active for only one clock, the JK FF will remain active until the reset
signal comes along. The outputs of these two latches and the refresh signal are
ORed together to create the final output signal.

Design Tip

Potential areas for improvement would be reconfiguring the
logic such that the NOR gate could be removed. This could be
accomplished by using one JK FF clocked on phase 2 which
would have separate set and reset signals for refresh cycles
combined with the set and reset of processor cycles. The only
downside would be the deactivation of the signal in phase 2
instead of phase 1. While this would be fine for RAS, CAS would
have a problem on page mode and burst cycles meeting.

Figure 9 shows a typical view of how the controller design is implemented in
the QL12x16 FPGA logic cell architecture. It occupies 122 out of the 192
available logic cells and 73 of the 76 I/O pins.

5.8
Output Logic

6.0
PHYSICAL VIEW OF
COMPLETE DESIGN
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The QuickLogic FPGA development tools are completely integrated under
Microsoft Windows making use of hierarchical links between all aspects of the
design with a familiar user interface.

The QuickLogic development tools were extremely advantageous in the
development of this application note. The schedule available for completing
this design was extremely tight. The tight schedule, coupled with the fact of not
ever having used the tools initially created a feeling of extreme apprehension.
However, the intuitive nature and ease of use of the interface made it possible
to be up to speed within hours.

The design entry phase consisted of using the Engineering Capture System.
This schematic entry package was well suited for hierarchical design, making
it possible to easily design generic cells which could be repeated multiple
times at a higher level. The hierarchical nature of this tool also made it very
easy to observe all connections within the design.

The built-in symbol generator and error checker made creation of symbols
very straightforward and painless. At any time when the design of a cell
changed, which happened continuously, all that was needed was a quick click
on the CREATE-SYMBOL option to replace the old symbol. If at any time
there were errors between the symbol and the schematic, the error checker
would point them out.

I generally used the design simulator after placing and routing to perform both
logic verification and timing verification simultaneously. The simple process
of back annotation made it easy to verify the design with post layout delay
information. The waveform tool made it easy to enter stimulus to the design,
and observe the output during simulation.

The FPGA architecture made it possible to achieve a fast decode circuit with
minimal clock to output skews — both of which were extremely important in
this design. The direct outputs from each of the first-level gates allowed for
minimal propagation delay in sections of logic that did not require the entire
logic block. Additionally, input selection into the last mux of the logic block
made it possible to implement the address mux much faster than standard
AND-OR architecture. The end result was a complete high-speed DRAM
controller design that was accomplished in several weeks — versus several
months with custom designs.

7.0
QUICKLOGIC
TOOLS AND FPGA
ARCHITECTURE

Design Entry

FPGA Architecture

Design Verification
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