
SDCC Compiler User Guide

SDCC 2.6.0

$Date: 2006-07-10 14:34:39 -0700 (Mon, 10 Jul 2006) $

$Revision: 4289 $

Contents

1 Introduction 5
1.1 About SDCC . 5
1.2 Open Source. 6
1.3 Typographic conventions. 6
1.4 Compatibility with previous versions. 6
1.5 System Requirements. 7
1.6 Other Resources. 7
1.7 Wishes for the future. 7

2 Installing SDCC 8
2.1 Configure Options. 8
2.2 Install paths. 10
2.3 Search Paths. 10
2.4 Building SDCC . 11

2.4.1 Building SDCC on Linux . 11
2.4.2 Building SDCC on OSX 2.x. 12
2.4.3 Cross compiling SDCC on Linux for Windows. 12
2.4.4 Building SDCC on Windows . 12
2.4.5 Building SDCC using Cygwin and Mingw32. 12
2.4.6 Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC). 13
2.4.7 Building SDCC Using Borland. 14
2.4.8 Windows Install Using a ZIP Package. 14
2.4.9 Windows Install Using the Setup Program. 14
2.4.10 VPATH feature. 15

2.5 Building the Documentation. 15
2.6 Reading the Documentation. 15
2.7 Testing the SDCC Compiler. 15
2.8 Install Trouble-shooting. 16

2.8.1 If SDCC does not build correctly. 16
2.8.2 What the ”./configure” does. 17
2.8.3 What the ”make” does. 17
2.8.4 What the ”make install” command does.. 17

2.9 Components of SDCC. 17
2.9.1 sdcc - The Compiler. 18
2.9.2 sdcpp - The C-Preprocessor. 18
2.9.3 asxxxx, aslink, link-xxx- The Assemblers and Linkage Editors. 18
2.9.4 s51 - The Simulator. 18
2.9.5 sdcdb - Source Level Debugger. 18

3 Using SDCC 19
3.1 Compiling. 19

3.1.1 Single Source File Projects. 19
3.1.2 Projects with Multiple Source Files. 19
3.1.3 Projects with Additional Libraries. 20
3.1.4 Using sdcclib to Create and Manage Libraries. 20

1

CONTENTS CONTENTS

3.2 Command Line Options. 21
3.2.1 Processor Selection Options. 21
3.2.2 Preprocessor Options. 22
3.2.3 Linker Options. 22
3.2.4 MCS51 Options . 23
3.2.5 DS390 / DS400 Options. 24
3.2.6 Z80 Options . 24
3.2.7 Optimization Options. 24
3.2.8 Other Options. 25
3.2.9 Intermediate Dump Options. 27
3.2.10 Redirecting output on Windows Shells. 27

3.3 Environment variables. 27
3.4 Storage Class Language Extensions. 28

3.4.1 MCS51/DS390 Storage Class Language Extensions. 28
3.4.1.1 data / near. 28
3.4.1.2 xdata / far . 28
3.4.1.3 idata . 28
3.4.1.4 pdata. 29
3.4.1.5 code . 29
3.4.1.6 bit . 29
3.4.1.7 sfr / sfr16 / sfr32 / sbit. 30
3.4.1.8 Pointers to MCS51/DS390 specific memory spaces. 30
3.4.1.9 Notes on MCS51 memory layout. 30

3.4.2 Z80/Z180 Storage Class Language Extensions. 31
3.4.2.1 sfr (in/out to 8-bit addresses). 31
3.4.2.2 banked sfr (in/out to 16-bit addresses). 31
3.4.2.3 sfr (in0/out0 to 8 bit addresses on Z180/HD64180). 31

3.4.3 HC08 Storage Class Language Extensions. 32
3.4.3.1 data . 32
3.4.3.2 xdata . 32

3.5 Absolute Addressing. 32
3.6 Parameters & Local Variables. 33
3.7 Overlaying . 34
3.8 Interrupt Service Routines. 34

3.8.1 General Information. 34
3.8.2 MCS51/DS390 Interrupt Service Routines. 35
3.8.3 HC08 Interrupt Service Routines. 35
3.8.4 Z80 Interrupt Service Routines. 36

3.9 Enabling and Disabling Interrupts. 36
3.9.1 Critical Functions and Critical Statements. 36
3.9.2 Enabling and Disabling Interrupts directly. 36
3.9.3 Semaphore locking (mcs51/ds390). 37

3.10 Functions using private register banks (mcs51/ds390). 37
3.11 Startup Code . 38

3.11.1 MCS51/DS390 Startup Code. 38
3.11.2 HC08 Startup Code. 38
3.11.3 Z80 Startup Code. 38

3.12 Inline Assembler Code. 38
3.12.1 A Step by Step Introduction. 38
3.12.2 Naked Functions. 40
3.12.3 Use of Labels within Inline Assembler. 41

3.13 Interfacing with Assembler Code. 41
3.13.1 Global Registers used for Parameter Passing. 41
3.13.2 Assembler Routine (non-reentrant). 41
3.13.3 Assembler Routine (reentrant). 42

3.14 int (16 bit) and long (32 bit) Support. 43

2

CONTENTS CONTENTS

3.15 Floating Point Support. 43
3.16 Library Routines . 44

3.16.1 Compiler support routines (_gptrget, _mulint etc.). 44
3.16.2 Stdclib functions (puts, printf, strcat etc.). 44

3.16.2.1 <stdio.h>. 44
3.16.3 Math functions (sinf, powf, sqrtf etc.). 44

3.16.3.1 <math.h>. 44
3.16.4 Other libraries . 45

3.17 Memory Models. 45
3.17.1 MCS51 Memory Models. 45

3.17.1.1 Small, Medium and Large. 45
3.17.1.2 External Stack. 45

3.17.2 DS390 Memory Model. 45
3.18 Pragmas. 46
3.19 Defines Created by the Compiler. 47

4 Notes on supported Processors 48
4.1 MCS51 variants. 48

4.1.1 pdata access by SFR. 48
4.1.2 Other Features available by SFR. 48

4.2 DS400 port . 48
4.3 The Z80 and gbz80 port. 48
4.4 The HC08 port . 49
4.5 The PIC14 port. 49

4.5.1 C code and 14bit PIC code page and RAM banks. 49
4.5.2 Creating a device include file. 49
4.5.3 Interrupt code. 49
4.5.4 Linking and assembling. 49
4.5.5 Command-line options. 50
4.5.6 The library . 50

4.5.6.1 error: missing definition for symbol ”__gptrget1”. 50
4.5.6.2 Processor mismatch in file ”XXX”.. 50

4.5.7 Known bugs . 50
4.5.7.1 initialized data. 50

4.6 The PIC16 port. 50
4.6.1 Global Options. 51
4.6.2 Port Specific Options. 51

4.6.2.1 General Options. 51
4.6.2.2 Optimization Options. 51
4.6.2.3 Linking Options. 52
4.6.2.4 Debugging Options. 52

4.6.3 Enviromental Variables. 52
4.6.4 Preprocessor Macros. 52
4.6.5 Directories . 53
4.6.6 Pragmas. 53
4.6.7 Header Files . 54
4.6.8 Libraries . 54
4.6.9 Memory Models . 55
4.6.10 Stack . 55
4.6.11 Functions. 56
4.6.12 Function return values. 56
4.6.13 Interrupts. 57
4.6.14 Generic Pointers. 57
4.6.15 PIC16 C Libraries . 58

4.6.15.1 Standard I/O Streams. 58
4.6.15.2 Printing functions. 59
4.6.15.3 Signals. 59

3

CONTENTS CONTENTS

4.6.16 PIC16 Port – Tips. 60
4.6.16.1 Stack size. 60

5 Debugging 61
5.1 Debugging with SDCDB. 62

5.1.1 Compiling for Debugging. 62
5.1.2 How the Debugger Works. 62
5.1.3 Starting the Debugger SDCDB. 62
5.1.4 SDCDB Command Line Options. 63
5.1.5 SDCDB Debugger Commands. 63
5.1.6 Interfacing SDCDB with DDD. 65
5.1.7 Interfacing SDCDB with XEmacs. 65

6 TIPS 67
6.1 Porting code from or to other compilers. 68
6.2 Tools included in the distribution. 69
6.3 Documentation included in the distribution. 69
6.4 Related open source tools. 70
6.5 Related documentation / recommended reading. 70
6.6 Some Questions. 70

7 Support 72
7.1 Reporting Bugs. 72
7.2 Requesting Features. 72
7.3 Submitting patches. 73
7.4 Getting Help. 73
7.5 ChangeLog . 73
7.6 Subversion Source Code Repository. 73
7.7 Release policy. 73
7.8 Examples . 73
7.9 Quality control . 73
7.10 Use of SDCC in Education. 74

8 SDCC Technical Data 75
8.1 Optimizations. 75

8.1.1 Sub-expression Elimination. 75
8.1.2 Dead-Code Elimination. 75
8.1.3 Copy-Propagation. 76
8.1.4 Loop Optimizations . 76
8.1.5 Loop Reversing. 77
8.1.6 Algebraic Simplifications . 77
8.1.7 ’switch’ Statements. 77
8.1.8 Bit-shifting Operations. 79
8.1.9 Bit-rotation . 79
8.1.10 Nibble and Byte Swapping. 80
8.1.11 Highest Order Bit / Any Order Bit. 80
8.1.12 Higher Order Byte / Higher Order Word. 81
8.1.13 Peephole Optimizer. 82

8.2 ANSI-Compliance . 83
8.3 Cyclomatic Complexity. 84
8.4 Retargetting for other Processors. 85

9 Compiler internals 86
9.1 The anatomy of the compiler. 86
9.2 A few words about basic block successors, predecessors and dominators. 90

10 Acknowledgments 91

4

Chapter 1

Introduction

1.1 About SDCC

SDCC (Small Device C Compiler) is an open source, retargettable, optimizing ANSI-C compiler bySandeep
Dutta designed for 8 bit Microprocessors. The current version targets Intel MCS51 based Microprocessors
(8031, 8032, 8051, 8052, etc.), Dallas DS80C390 variants, Freescale (formerly Motorola) HC08 and Zilog Z80
based MCUs. It can be retargetted for other microprocessors, support for Microchip PIC, Atmel AVR is under
development. The entire source code for the compiler is distributed under GPL. SDCC uses ASXXXX & ASLINK,
an open source retargettable assembler & linker. SDCC has extensive language extensions suitable for utilizing
various microcontrollers and underlying hardware effectively.

In addition to the MCU specific optimizations SDCC also does a host of standard optimizations like:

• global sub expression elimination,

• loop optimizations (loop invariant, strength reduction of induction variables and loop reversing),

• constant folding & propagation,

• copy propagation,

• dead code elimination

• jump tables forswitchstatements.

For the back-end SDCC uses a global register allocation scheme which should be well suited for other 8 bit MCUs.

The peep hole optimizer uses a rule based substitution mechanism which is MCU independent.

Supported data-types are:
type width default signed range unsigned range

bool 1 bit unsigned - 0, 1
char 8 bits, 1 byte signed -128, +127 0, +255
short 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535
int 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535

long 32 bits, 4 bytes signed -2.147.483.648, +2.147.483.6470, +4.294.967.296

float 4 bytes IEEE 754 signed

pointer 1, 2, 3 or 4 bytes generic
The compiler also allowsinline assembler codeto be embedded anywhere in a function. In addition, routines
developed in assembly can also be called.

SDCC also provides an option (--cyclomatic) to report the relative complexity of a function. These func-
tions can then be further optimized, or hand coded in assembly if needed.

5

1.2. OPEN SOURCE CHAPTER 1. INTRODUCTION

SDCC also comes with a companion source level debugger SDCDB, the debugger currently uses ucSim a freeware
simulator for 8051 and other micro-controllers. SDCDB and ucSim are currently not available on Win32 platforms.

The latest version can be downloaded fromhttp://sdcc.sourceforge.net/snap.php. Please note: the
compiler will probably always be some steps ahead of this documentation1.

1.2 Open Source

All packages used in this compiler system areopen sourceand freeware; source code for all the sub-packages
(pre-processor, assemblers, linkers etc) is distributed with the package. This documentation is maintained using a
freeware word processor (LYX).
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. In other words, you are welcome to use, share and improve this program. You are forbidden to
forbid anyone else to use, share and improve what you give them. Help stamp out software-hoarding!

1.3 Typographic conventions

Throughout this manual, we will use the following convention. Commands you have to type in are printed in"sans
serif" . Code samples are printed intypewriter font. Interesting items and new terms are printed initalic.

1.4 Compatibility with previous versions

This version has numerous bug fixes compared with the previous version. But we also introduced some incompat-
ibilities with older versions. Not just for the fun of it, but to make the compiler more stable, efficient and ANSI
compliant (see section8.2for ANSI-Compliance).

• short is now equivalent to int (16 bits), it used to be equivalent to char (8 bits) which is not ANSI compliant.

• the default directory for gcc-builds where include, library and documentation files are stored is now in
/usr/local/share.

• char type parameters to vararg functions are casted to int unless explicitly casted, e.g.:
char a=3;
printf ("%d %c\n", a, (char)a);
will push a as an int and as a char resp.

• option --regextend has been removed.

• option --noregparms has been removed.

• option --stack-after-data has been removed.

• bit and sbit types now consistently behave like the C99 _Bool type with respect to type conversion. The most
common incompatibility resulting from this change is related to bit toggling idioms, e.g.:
bit b;
b = ~b; /* equivalent to b=1 instead of toggling b */ !
b = !b; /* toggles b */
In previous versions, both forms would have toggled the bit.

<pending: more incompatibilities?>

1Obviously this has pros and cons

6

http://sdcc.sourceforge.net/snap.php

1.5. SYSTEM REQUIREMENTS CHAPTER 1. INTRODUCTION

1.5 System Requirements

What do you need before you start installation of SDCC? A computer, and a desire to compute. The preferred
method of installation is to compile SDCC from source using GNU gcc and make. For Windows some pre-compiled
binary distributions are available for your convenience. You should have some experience with command line tools
and compiler use.

1.6 Other Resources

The SDCC home page athttp://sdcc.sourceforge.net/ is a great place to find distribution sets. You can
also find links to the user mailing lists that offer help or discuss SDCC with other SDCC users. Web links to
other SDCC related sites can also be found here. This document can be found in the DOC directory of the source
package as a text or HTML file. A pdf version of this document is available athttp://sdcc.sourceforge.net/
doc/sdccman.pdf. Some of the other tools (simulator and assembler) included with SDCC contain their own
documentation and can be found in the source distribution. If you want the latest unreleased software, the complete
source package is available directly from Subversion on https://svn.sourceforge.net/svnroot/sdcc/trunk/sdcc.

1.7 Wishes for the future

There are (and always will be) some things that could be done. Here are some I can think of:

char KernelFunction3(char p) at 0x340;

better code banking support for mcs51

If you can think of some more, please see the section7.2about filing feature requests.

7

http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://sdcc.sourceforge.net/doc/sdccman.pdf

Chapter 2

Installing SDCC

For most users it is sufficient to skip to either section2.4.1or section2.4.9. More detailled instructions follow
below.

2.1 Configure Options

The install paths, search paths and other options are defined when running ’configure’. The defaults can be over-
ridden by:

--prefix see table below

--exec_prefixsee table below

--bindir see table below

--datadir see table below

docdir environment variable, see table below

include_dir_suffixenvironment variable, see table below

lib_dir_suffix environment variable, see table below

sdccconf_h_dir_separatorenvironment variable, either / or \\ makes sense here. This character will only be used in
sdccconf.h; don’t forget it’s a C-header, therefore a double-backslash is needed there.

--disable-mcs51-portExcludes the Intel mcs51 port

--disable-gbz80-portExcludes the Gameboy gbz80 port

--disable-z80-portExcludes the z80 port

--disable-avr-portExcludes the AVR port

--disable-ds390-portExcludes the DS390 port

--disable-hc08-portExcludes the HC08 port

--disable-pic-portExcludes the PIC port

--disable-xa51-portExcludes the XA51 port

--disable-ucsimDisables configuring and building of ucsim

--disable-device-libDisables automatically building device libraries

--disable-packihxDisables building packihx

--enable-docBuild pdf, html and txt files from the lyx sources

8

2.1. CONFIGURE OPTIONS CHAPTER 2. INSTALLING SDCC

--enable-libgcUse the Bohem memory allocator. Lower runtime footprint.

Furthermore the environment variables CC, CFLAGS, ... the tools and their arguments can be influenced. Please
see ‘configure --help‘ and the man/info pages of ‘configure‘ for details.

The names of the standard libraries STD_LIB, STD_INT_LIB, STD_LONG_LIB, STD_FP_LIB,
STD_DS390_LIB, STD_XA51_LIB and the environment variables SDCC_DIR_NAME, SDCC_INCLUDE_NAME,
SDCC_LIB_NAME are defined by ‘configure‘ too. At the moment it’s not possible to change the default settings
(it was simply never required).

These configure options are compiled into the binaries, and can only be changed by rerunning ’configure’
and recompiling SDCC. The configure options are written initalics to distinguish them from run time environment
variables (see section search paths).

The settings for ”Win32 builds” are used by the SDCC team to build the official Win32 binaries. The
SDCC team uses Mingw32 to build the official Windows binaries, because it’s

1. open source,

2. a gcc compiler and last but not least

3. the binaries can be built by cross compiling on Sourceforge’s compile farm.

See the examples, how to pass the Win32 settings to ’configure’. The other Win32 builds using Borland, VC or
whatever don’t use ’configure’, but a header file sdcc_vc_in.h is the same as sdccconf.h built by ’configure’ for
Win32.

These defaults are:

Variable default Win32 builds

PREFIX /usr/local \sdcc
EXEC_PREFIX $PREFIX $PREFIX

BINDIR $EXECPREFIX/bin $EXECPREFIX\bin
DATADIR $PREFIX/share $PREFIX
DOCDIR $DATADIR/sdcc/doc $DATADIR\doc

INCLUDE_DIR_SUFFIX sdcc/include include
LIB_DIR_SUFFIX sdcc/lib lib

’configure’ also computes relative paths. This is needed for full relocatability of a binary package and to complete
search paths (see section search paths below):

Variable (computed) default Win32 builds

BIN2DATA_DIR ../share ..
PREFIX2BIN_DIR bin bin

PREFIX2DATA_DIR share/sdcc

Examples:

./configure

./configure --prefix=”/usr/bin” --datadir=”/usr/share”

./configure --disable-avr-port --disable-xa51-port

To cross compile on linux for Mingw32 (see also ’sdcc/support/scripts/sdcc_mingw32’):

./configure \
CC=”i586-mingw32msvc-gcc” CXX=”i586-mingw32msvc-g++” \
RANLIB=”i586-mingw32msvc-ranlib” \

9

2.2. INSTALL PATHS CHAPTER 2. INSTALLING SDCC

STRIP=”i586-mingw32msvc-strip” \
--prefix=”/sdcc” \
--datadir=”/sdcc” \
docdir=”/sdcc/doc” \
include_dir_suffix=”include” \
lib_dir_suffix=”lib” \
sdccconf_h_dir_separator=”\\\\” \
--disable-device-lib\
--disable-ucsim\
--host=i586-mingw32msvc --build=unknown-unknown-linux-gnu

To ”cross”compile on Cygwin for Mingw32 (see also sdcc/support/scripts/sdcc_cygwin_mingw32):

./configure -C \
CFLAGS=”-mno-cygwin -O2” \
LDFLAGS=”-mno-cygwin” \
--prefix=”/sdcc” \
--datadir=”/sdcc” \
docdir=”/sdcc/doc” \
include_dir_suffix=”include” \
lib_dir_suffix=”lib” \
sdccconf_h_dir_separator=”\\\\” \
--disable-ucsim

’configure’ is quite slow on Cygwin (at least on windows before Win2000/XP). The option ’--C’ turns on caching,
which gives a little bit extra speed. However if options are changed, it can be necessary to delete the config.cache
file.

2.2 Install paths

Description Path Default Win32 builds

Binary files* $EXEC_PREFIX /usr/local/bin \sdcc\bin
Include files $DATADIR/ $INCLUDE_DIR_SUFFIX /usr/local/share/sdcc/include\sdcc\include
Library file** $DATADIR/$LIB_DIR_SUFFIX /usr/local/share/sdcc/lib \sdcc\lib
Documentation $DOCDIR /usr/local/share/sdcc/doc \sdcc\doc

*compiler, preprocessor, assembler, and linker
**the modelis auto-appended by the compiler, e.g. small, large, z80, ds390 etc

The install paths can still be changed during ‘make install‘ with e.g.:

make install prefix=$(HOME)/local/sdcc

Of course this doesn’t change the search paths compiled into the binaries.

Moreover the install path can be changed by defining DESTDIR:

make install DESTDIR=$(HOME)/sdcc.rpm/

Please note that DESTDIR must have a trailing slash!

2.3 Search Paths

Some search paths or parts of them are determined by configure variables (initalics, see section above). Further
search paths are determined by environment variables during runtime.
The paths searched when running the compiler are as follows (the first catch wins):

1. Binary files (preprocessor, assembler and linker)

10

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

Search path default Win32 builds

$SDCC_HOME/$PPREFIX2BIN_DIR $SDCC_HOME/bin $SDCC_HOME\bin
Path of argv[0] (if available) Path of argv[0] Path of argv[0]

$PATH $PATH $PATH

2. Include files

Search path default Win32 builds

--I dir --I dir --I dir
$SDCC_INCLUDE $SDCC_INCLUDE $SDCC_INCLUDE
$SDCC_HOME/
$PREFIX2DATA_DIR/
$INCLUDE_DIR_SUFFIX

$SDCC_ HOME/
share/sdcc/
include

$SDCC_HOME\include

path(argv[0])/
$BIN2DATADIR/
$INCLUDE_DIR_SUFFIX

path(argv[0])/
../sdcc/include

path(argv[0])\..\include

$DATADIR/
$INCLUDE_DIR_SUFFIX

/usr/local/share/sdcc/
include

(not on Win32)

The option --nostdinc disables the last two search paths.

3. Library files

With the exception of ”--L dir” themodelis auto-appended by the compiler (e.g. small, large, z80, ds390 etc.).

Search path default Win32 builds

--L dir --L dir --L dir
$SDCC_LIB/
<model>

$SDCC_LIB/
<model>

$SDCC_LIB\
<model>

$SDCC_HOME/
$PREFIX2DATA_DIR/
$LIB_DIR_SUFFIX/<model>

$SDCC_HOME/
share/sdcc/
lib/<model>

$SDCC_HOME\lib\
<model>

path(argv[0])/
$BIN2DATADIR/
$LIB_DIR_SUFFIX/<model>

path(argv[0])/
../sdcc/lib/<model>

path(argv[0])\
..\lib\<model>

$DATADIR/
$LIB_DIR_SUFFIX/<model>

/usr/local/share/sdcc/
lib/<model>

(not on Win32)

The option --nostdlib disables the last two search paths.

2.4 Building SDCC

2.4.1 Building SDCC on Linux

1. Download the source package either from the SDCC Subversion repository or from the nightly snapshots, it
will be named something like sdcc.src.tar.gzhttp://sdcc.sourceforge.net/snap.php.

2. Bring up a command line terminal, such as xterm.

3. Unpack the file using a command like:"tar -xvzf sdcc.src.tar.gz ", this will create a sub-directory called sdcc
with all of the sources.

4. Change directory into the main SDCC directory, for example type:"cd sdcc ".

5. Type"./configure ". This configures the package for compilation on your system.

6. Type"make ". All of the source packages will compile, this can take a while.

7. Type "make install" as root. This copies the binary executables, the include files, the libraries and the
documentation to the install directories. Proceed with section2.7.

11

http://sdcc.sourceforge.net/snap.php

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

2.4.2 Building SDCC on OSX 2.x

Follow the instruction for Linux.

On OSX 2.x it was reported, that the default gcc (version 3.1 20020420 (prerelease)) fails to compile SDCC.
Fortunately there’s also gcc 2.9.x installed, which works fine. This compiler can be selected by running ’configure’
with:

./configure CC=gcc2 CXX=g++2

2.4.3 Cross compiling SDCC on Linux for Windows

With the Mingw32 gcc cross compiler it’s easy to compile SDCC for Win32. See section ’Configure Options’.

2.4.4 Building SDCC on Windows

With the exception of Cygwin the SDCC binaries uCsim and sdcdb can’t be built on Windows. They use Unix-
sockets, which are not available on Win32.

2.4.5 Building SDCC using Cygwin and Mingw32

For building and installing a Cygwin executable follow the instructions for Linux.

On Cygwin a ”native” Win32-binary can be built, which will not need the Cygwin-DLL. For the necessary
’configure’ options see section ’configure options’ or the script ’sdcc/support/scripts/sdcc_cygwin_mingw32’.

In order to install Cygwin on Windows download setup.exe from www.cygwin.comhttp://www.cygwin.com/.
Run it, set the ”default text file type” to ”unix” and download/install at least the following packages. Some
packages are selected by default, others will be automatically selected because of dependencies with the manually
selected packages. Never deselect these packages!

• flex

• bison

• gcc ; version 3.x is fine, no need to use the old 2.9x

• binutils ; selected with gcc

• make

• rxvt ; a nice console, which makes life much easier under windoze (see below)

• man ; not really needed for building SDCC, but you’ll miss it sooner or later

• less ; not really needed for building SDCC, but you’ll miss it sooner or later

• svn ; only if you use Subversion access

If you want to develop something you’ll need:

• python ; for the regression tests

• gdb ; the gnu debugger, together with the nice GUI ”insight”

• openssh ; to access the CF or commit changes

• autoconf and autoconf-devel ; if you want to fight with ’configure’, don’t use autoconf-stable!

rxvt is a nice console with history. Replace in your cygwin.bat the line

bash --login -i

12

http://www.cygwin.com/

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

with (one line):

rxvt -sl 1000 -fn "Lucida Console-12" -sr -cr red
-bg black -fg white -geometry 100x65 -e bash --login

Text selected with the mouse is automatically copied to the clipboard, pasting works with shift-insert.

The other good tip is to make sure you have no //c/-style paths anywhere, use /cygdrive/c/ instead. Using //
invokes a network lookup which is very slow. If you think ”cygdrive” is too long, you can change it with e.g.

mount -s -u -c /mnt

SDCC sources use the unix line ending LF. Life is much easier, if you store the source tree on a drive which is
mounted in binary mode. And use an editor which can handle LF-only line endings. Make sure not to commit files
with windows line endings. The tabulator spacing used in the project is 8. Although a tabulator spacing of 8 is a
sensible choice for programmers (it’s a power of 2 and allows to display 8/16 bit signed variables without loosing
columns) the plan is to move towards using only spaces in the source.

2.4.6 Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC)

Download the source package either from the SDCC Subversion repository or from the nightly snapshots
http://sdcc.sourceforge.net/snap.php, it will be named something like sdcc.src.tgz. SDCC is distributed
with all the projects, workspaces, and files you need to build it using Visual C++ 6.0/NET (except for sdcdb.exe
which currently doesn’t build under MSVC). The workspace name is ’sdcc.dsw’. Please note that as it is now,
all the executables are created in a folder called sdcc\bin_vc. Once built you need to copy the executables from
sdcc\bin_vc to sdcc\bin before running SDCC.

WARNING: Visual studio is very picky with line terminations; it expects the 0x0d, 0x0a DOS style line
endings, not the 0x0a Unix style line endings. When using the Subversion repository it’s easiest to configure the
svn client to convert automatically for you. If however you are getting a message such as "This makefile was not
generated by Developer Studio etc. etc.” when opening the sdcc.dsw workspace or any of the *.dsp projects, then
you need to convert the Unix style line endings to DOS style line endings. To do so you can use the ”unix2dos”
utility freely available on the internet. Doug Hawkins reported in the sdcc-user list that this works:

C:\Programming\SDCC> unix2dos sdcc.dsw
C:\Programming\SDCC> for /R %I in (*.dsp) do @unix2dos "%I"

In order to build SDCC with MSVC you need win32 executables of bison.exe, flex.exe, and gawk.exe. One
good place to get them is herehttp://unxutils.sourceforge.net

Download the file UnxUtils.zip. Now you have to install the utilities and setup MSVC so it can locate the
required programs. Here there are two alternatives (choose one!):

1. The easy way:

a) Extract UnxUtils.zip to your C:\ hard disk PRESERVING the original paths, otherwise bison won’t work.
(If you are using WinZip make certain that ’Use folder names’ is selected)

b) In the Visual C++ IDE click Tools, Options, select the Directory tab, in ’Show directories for:’ se-
lect ’Executable files’, and in the directories window add a new path: ’C:\user\local\wbin’, click ok.

(As a side effect, you get a bunch of Unix utilities that could be useful, such as diff and patch.)

2. A more compact way:

This one avoids extracting a bunch of files you may not use, but requires some extra work:

a) Create a directory were to put the tools needed, or use a directory already present. Say for exam-
ple ’C:\util’.

13

http://sdcc.sourceforge.net/snap.php
http://unxutils.sourceforge.net

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

b) Extract ’bison.exe’, ’bison.hairy’, ’bison.simple’, ’flex.exe’, and gawk.exe to such directory WITHOUT
preserving the original paths. (If you are using WinZip make certain that ’Use folder names’ is not selected)

c) Rename bison.exe to ’_bison.exe’.

d) Create a batch file ’bison.bat’ in ’C:\util\’ and add these lines:
set BISON_SIMPLE=C:\util\bison.simple
set BISON_HAIRY=C:\util\bison.hairy
_bison %1 %2 %3 %4 %5 %6 %7 %8 %9

Steps ’c’ and ’d’ are needed because bison requires by default that the files ’bison.simple’ and ’bi-
son.hairy’ reside in some weird Unix directory, ’/usr/local/share/’ I think. So it is necessary to tell bison
where those files are located if they are not in such directory. That is the function of the environment
variables BISON_SIMPLE and BISON_HAIRY.

e) In the Visual C++ IDE click Tools, Options, select the Directory tab, in ’Show directories for:’ se-
lect ’Executable files’, and in the directories window add a new path: ’c:\util’, click ok. Note that you can
use any other path instead of ’c:\util’, even the path where the Visual C++ tools are, probably: ’C:\Program
Files\Microsoft Visual Studio\Common\Tools’. So you don’t have to execute step ’e’ :)

That is it. Open ’sdcc.dsw’ in Visual Studio, click ’build all’, when it finishes copy the executables from sdcc\bin_vc
to sdcc\bin, and you can compile using SDCC.

2.4.7 Building SDCC Using Borland

1. From the sdcc directory, run the command "make -f Makefile.bcc". This should regenerate all the .exe files
in the bin directory except for sdcdb.exe (which currently doesn’t build under Borland C++).

2. If you modify any source files and need to rebuild, be aware that the dependencies may not be correctly
calculated. The safest option is to delete all .obj files and run the build again. From a Cygwin BASH prompt,
this can easily be done with the command (be sure you are in the sdcc directory):

find . \(-name ’*.obj’ -o -name ’*.lib’ -o -name ’*.rul’ \) -print -exec rm {} \;

or on Windows NT/2000/XP from the command prompt with the command:

del /s *.obj *.lib *.rul from the sdcc directory.

2.4.8 Windows Install Using a ZIP Package

1. Download the binary zip package fromhttp://sdcc.sf.net/snap.php and unpack it using your favorite
unpacking tool (gunzip, WinZip, etc). This should unpack to a group of sub-directories. An example direc-
tory structure after unpacking the mingw32 package is: c:\sdcc\bin for the executables, c:\sdcc\include and
c:\sdcc\lib for the include and libraries.

2. Adjust your environment variable PATH to include the location of the bin directory or start sdcc using the
full path.

2.4.9 Windows Install Using the Setup Program

Download the setup programsdcc-x.y.z-setup.exefor an official release from
http://sf.net/project/showfiles.php?group_id=599 or a setup program for one of the snapshotssdcc-
yyyymmdd-xxxx-setup.exefrom http://sdcc.sf.net/snap.php and execute it. A windows typical installer will
guide you through the installation process.

14

http://sdcc.sf.net/snap.php
http://sf.net/project/showfiles.php?group_id=599
http://sdcc.sf.net/snap.php

2.5. BUILDING THE DOCUMENTATION CHAPTER 2. INSTALLING SDCC

2.4.10 VPATH feature

SDCC supports the VPATH feature provided by configure and make. It allows to separate the source and build
trees. Here’s an example:

cd ~ # cd $HOME
tar -xzf sdcc.src.tar.gz # extract source to directory sdcc
mkdir sdcc.build # put output in sdcc.build
cd sdcc.build
../sdcc/configure # configure is doing all the magic!
make

That’s it! configure will create the directory tree will all the necessary Makefiles in ~/sdcc.build. It automagically
computes the variables srcdir, top_srcdir and top_buildir for each directory. After runningmake the generated files
will be in ~/sdcc.build, while the source files stay in ~/sdcc.
This is not only usefull for building different binaries, e.g. when cross compiling. It also gives you a much better
overview in the source tree when all the generated files are not scattered between the source files. And the best
thing is: if you want to change a file you can leave the original file untouched in the source directory. Simply copy
it to the build directory, edit it, enter ‘make clean‘, ‘rm Makefile.dep‘ and ‘make‘.makewill do the rest for you!

2.5 Building the Documentation

Add --enable-doc to the configure arguments to build the documentation together with all the other stuff. You
will need several tools (LYX, LATEX, LATEX2HTML, pdflatex, dvipdf, dvips and makeindex) to get the job done.
Another possibility is to change to the doc directory and to type”make” there. You’re invited to make changes and
additions to this manual (sdcc/doc/sdccman.lyx). Using LYX http://www.lyx.org as editor is straightforward.
Prebuilt documentation in html and pdf format is available fromhttp://sdcc.sf.net/snap.php.

2.6 Reading the Documentation

Currently reading the document in pdf format is recommended, as for unknown reason the hyperlinks are working
there whereas in the html version they are not1.
You’ll find the pdf version athttp://sdcc.sf.net/doc/sdccman.pdf.
A html version should be online athttp://sdcc.sf.net/doc/sdccman.html/index.html.
This documentation is in some aspects different from a commercial documentation:

• It tries to document SDCC for several processor architectures in one document (commercially these probably
would be separate documents/products). This document currently matches SDCC for mcs51 and DS390 best
and does give too few information about f.e. Z80, PIC14, PIC16 and HC08.

• There are many references pointing away from this documentation. Don’t let this distract you. If there f.e.
was a reference likehttp://www.opencores.org together with a statement ”some processors which are
targetted by SDCC can be implemented in af ield programmablegatearray” or http://sf.net/projects/
fpgac ”have you ever heard of an open source compiler that compiles a subset of C for an FPGA?” we expect
you to have a quick look there and come back. If you read this you are on the right track.

• Some sections attribute more space to problems, restrictions and warnings than to the solution.

• The installation section and the section about the debugger is intimidating.

• There are still lots of typos and there are more different writing styles than pictures.

2.7 Testing the SDCC Compiler

The first thing you should do after installing your SDCC compiler is to see if it runs. Type"sdcc --version" at the
prompt, and the program should run and output its version like:
SDCC : mcs51/z80/avr/ds390/pic16/pic14/ds400/hc08 2.5.6 #4169 (May 8 2006) (UNIX)

1If you should know why please drop us a note

15

http://www.lyx.org
http://sdcc.sf.net/snap.php
http://sdcc.sf.net/doc/sdccman.pdf
http://sdcc.sf.net/doc/sdccman.html/index.html
http://www.opencores.org
http://sf.net/projects/fpgac
http://sf.net/projects/fpgac

2.8. INSTALL TROUBLE-SHOOTING CHAPTER 2. INSTALLING SDCC

If it doesn’t run, or gives a message about not finding sdcc program, then you need to check over your instal-
lation. Make sure that the sdcc bin directory is in your executable search path defined by the PATH environment
setting (see section2.8 Install trouble-shooting for suggestions). Make sure that the sdcc program is in the bin
folder, if not perhaps something did not install correctly.

SDCC is commonly installed as described in section ”Install and search paths”.

Make sure the compiler works on a very simple example. Type in the following test.c program using your
favorite ASCII editor:

char test;

void main(void) {
test=0;

}

Compile this using the following command:"sdcc -c test.c". If all goes well, the compiler will generate a test.asm
and test.rel file. Congratulations, you’ve just compiled your first program with SDCC. We used the -c option to tell
SDCC not to link the generated code, just to keep things simple for this step.

The next step is to try it with the linker. Type in"sdcc test.c ". If all goes well the compiler will link with
the libraries and produce a test.ihx output file. If this step fails (no test.ihx, and the linker generates warnings),
then the problem is most likely that SDCC cannot find the /usr/local/share/sdcc/lib directory (see section2.8Install
trouble-shooting for suggestions).

The final test is to ensure SDCC can use the standard header files and libraries. Edit test.c and change it to
the following:

#include <string.h>

char str1[10];

void main(void) {
strcpy(str1, "testing");

}

Compile this by typing"sdcc test.c" . This should generate a test.ihx output file, and it should give no warnings
such as not finding the string.h file. If it cannot find the string.h file, then the problem is that SDCC cannot find
the /usr/local/share/sdcc/include directory (see the section2.8Install trouble-shooting section for suggestions). Use
option--print-search-dirs to find exactly where SDCC is looking for the include and lib files.

2.8 Install Trouble-shooting

2.8.1 If SDCC does not build correctly

A thing to try is starting from scratch by unpacking the .tgz source package again in an empty directory. Configure
it like:

./configure 2>&1 | tee configure.log

and build it like:

make 2>&1 | tee make.log

If anything goes wrong, you can review the log files to locate the problem. Or a relevant part of this can
be attached to an email that could be helpful when requesting help from the mailing list.

16

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

2.8.2 What the ”./configure” does

The ”./configure” command is a script that analyzes your system and performs some configuration to ensure the
source package compiles on your system. It will take a few minutes to run, and will compile a few tests to determine
what compiler features are installed.

2.8.3 What the ”make” does

This runs the GNU make tool, which automatically compiles all the source packages into the final installed binary
executables.

2.8.4 What the ”make install” command does.

This will install the compiler, other executables libraries and include files into the appropriate directories. See
sections2.2, 2.3about install and search paths.
On most systems you will need super-user privileges to do this.

2.9 Components of SDCC

SDCC is not just a compiler, but a collection of tools by various developers. These include linkers, assemblers,
simulators and other components. Here is a summary of some of the components. Note that the included simulator
and assembler have separate documentation which you can find in the source package in their respective directories.
As SDCC grows to include support for other processors, other packages from various developers are included and
may have their own sets of documentation.

You might want to look at the files which are installed in <installdir>. At the time of this writing, we find
the following programs for gcc-builds:

In <installdir>/bin:

• sdcc - The compiler.

• sdcpp - The C preprocessor.

• asx8051 - The assembler for 8051 type processors.

• as-z80, as-gbz80 - The Z80 and GameBoy Z80 assemblers.

• aslink -The linker for 8051 type processors.

• link-z80, link-gbz80 - The Z80 and GameBoy Z80 linkers.

• s51 - The ucSim 8051 simulator. Not available on Win32 platforms.

• sdcdb - The source debugger. Not available on Win32 platforms.

• packihx - A tool to pack (compress) Intel hex files.

In <installdir>/share/sdcc/include

• the include files

In <installdir>/share/sdcc/lib

• the subdirs src and small, large, z80, gbz80 and ds390 with the precompiled relocatables.

In <installdir>/share/sdcc/doc

• the documentation

As development for other processors proceeds, this list will expand to include executables to support processors
like AVR, PIC, etc.

17

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

2.9.1 sdcc - The Compiler

This is the actual compiler, it in turn uses the c-preprocessor and invokes the assembler and linkage editor.

2.9.2 sdcpp - The C-Preprocessor

The preprocessor is a modified version of the GNU preprocessor. The C preprocessor is used to pull in #include
sources, process #ifdef statements, #defines and so on.

2.9.3 asxxxx, aslink, link-xxx - The Assemblers and Linkage Editors

This is retargettable assembler & linkage editor, it was developed by Alan Baldwin. John Hartman created the
version for 8051, and I (Sandeep) have made some enhancements and bug fixes for it to work properly with SDCC.

2.9.4 s51 - The Simulator

S51 is a freeware, opensource simulator developed by Daniel Drotos. The simulator is built as part of the build
process. For more information visit Daniel’s web site at:http://mazsola.iit.uni-miskolc.hu/~drdani/
embedded/s51. It currently supports the core mcs51, the Dallas DS80C390 and the Phillips XA51 family. S51 is
currently not available on Win32 platfors.

2.9.5 sdcdb - Source Level Debugger

Sdcdb is the companion source level debugger. More about sdcdb in section5.1. The current version of the
debugger uses Daniel’s Simulator S51, but can be easily changed to use other simulators. Sdcdb is currently not
available on Win32 platfors.

18

http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51

Chapter 3

Using SDCC

3.1 Compiling

3.1.1 Single Source File Projects

For single source file 8051 projects the process is very simple. Compile your programs with the following command
"sdcc sourcefile.c". This will compile, assemble and link your source file. Output files are as follows:

• sourcefile.asm - Assembler source file created by the compiler

• sourcefile.lst - Assembler listing file created by the Assembler

• sourcefile.rst - Assembler listing file updated with linkedit information, created by linkage editor

• sourcefile.sym - symbol listing for the sourcefile, created by the assembler

• sourcefile.rel or sourcefile.o - Object file created by the assembler, input to Linkage editor

• sourcefile.map - The memory map for the load module, created by the Linker

• sourcefile.mem - A file with a summary of the memory usage

• sourcefile.ihx - The load module in Intel hex format (you can select the Motorola S19 format with --out-fmt-
s19. If you need another format you might want to useobjdump or srecord). Both formats are documented
in the documentation of srecord

• sourcefile.adb - An intermediate file containing debug information needed to create the .cdb file (with --
debug)

• sourcefile.cdb - An optional file (with --debug) containing debug information. The format is documented in
cdbfileformat.pdf

• sourcefile. - (no extension) An optional AOMF or AOMF51 file containing debug information (generated
with option --debug). The (Intel)absoluteobject module f ormat is commonly used by third party tools
(debuggers, simulators, emulators)

• sourcefile.dump* - Dump file to debug the compiler it self (generated with option --dumpall) (see section
3.2.9 and section9.1”Anatomy of the compiler”).

3.1.2 Projects with Multiple Source Files

SDCC can compile only ONE file at a time. Let us for example assume that you have a project containing the
following files:

foo1.c (contains some functions)
foo2.c (contains some more functions)
foomain.c (contains more functions and the function main)

19

3.1. COMPILING CHAPTER 3. USING SDCC

The first two files will need to be compiled separately with the commands:

sdcc -c foo1.c
sdcc -c foo2.c

Then compile the source file containing themain()function and link the files together with the following command:

sdcc foomain.c foo1.rel foo2.rel

Alternatively,foomain.ccan be separately compiled as well:

sdcc -c foomain.c
sdcc foomain.rel foo1.rel foo2.rel

The file containing themain() function MUST be the FIRST file specified in the command line, since the
linkage editor processes file in the order they are presented to it. The linker is invoked from SDCC using a script
file with extension .lnk. You can view this file to troubleshoot linking problems such as those arising from missing
libraries.

3.1.3 Projects with Additional Libraries

Some reusable routines may be compiled into a library, see the documentation for the assembler and linkage
editor (which are in <installdir>/share/sdcc/doc) for how to create a.lib library file. Libraries created in this
manner can be included in the command line. Make sure you include the -L <library-path> option to tell the
linker where to look for these files if they are not in the current directory. Here is an example, assuming you have
the source filefoomain.cand a libraryfoolib.lib in the directorymylib(if that is not the same as your current project):

sdcc foomain.c foolib.lib -L mylib

Note here thatmylibmust be an absolute path name.

The most efficient way to use libraries is to keep separate modules in separate source files. The lib file
now should name all the modules.rel files. For an example see the standard library filelibsdcc.lib in the directory
<installdir>/share/lib/small.

3.1.4 Using sdcclib to Create and Manage Libraries

Alternatively, instead of having a .rel file for each entry on the library file as described in the preceding section,
sdcclib can be used to embed all the modules belonging to such library in the library file itself. This results in a
larger library file, but it greatly reduces the number of disk files accessed by the linker. Additionally, the packed
library file contains an index of all include modules and symbols that significantly speeds up the linking process.
To display a list of options supported by sdcclib type:

sdcclib -?

To create a new library file, start by compiling all the required modules. For example:

sdcc -c _divsint.c
sdcc -c _divuint.c
sdcc -c _modsint.c
sdcc -c _moduint.c
sdcc -c _mulint.c

This will create files _divsint.rel, _divuint.rel, _modsint.rel, _moduint.rel, and _mulint.rel. The next step is to
add the .rel files to the library file:

20

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

sdcclib libint.lib _divsint.rel
sdcclib libint.lib _divuint.rel
sdcclib libint.lib _modsint.rel
sdcclib libint.lib _moduint.rel
sdcclib libint.lib _mulint.rel

If the file already exists in the library, it will be replaced. To see what modules and symbols are included in the
library, options -s and -m are available. For example:

sdcclib -s libint.lib
_divsint.rel:

__divsint_a_1_1
__divsint_PARM_2
__divsint

_divuint.rel:
__divuint_a_1_1
__divuint_PARM_2
__divuint_reste_1_1
__divuint_count_1_1
__divuint

_modsint.rel:
__modsint_a_1_1
__modsint_PARM_2
__modsint

_moduint.rel:
__moduint_a_1_1
__moduint_PARM_2
__moduint_count_1_1
__moduint

_mulint.rel:
__mulint_PARM_2
__mulint

If the source files are compiled using --debug, the corresponding debug information file .adb will be include in
the library file as well. The library files created with sdcclib are plain text files, so they can be viewed with a text
editor. It is not recomended to modify a library file created with sdcclib using a text editor, as there are file indexes
numbers located accross the file used by the linker to quickly locate the required module to link. Once a .rel file
(as well as a .adb file) is added to a library using sdcclib, it can be safely deleted, since all the information required
for linking is embedded in the library file itself. Library files created using sdcclib are used as described in the
preceding sections.

3.2 Command Line Options

3.2.1 Processor Selection Options

-mmcs51 Generate code for the Intel MCS51 family of processors. This is the default processor target.

-mds390 Generate code for the Dallas DS80C390 processor.

-mds400 Generate code for the Dallas DS80C400 processor.

-mhc08 Generate code for the Freescale/Motorola HC08 family of processors.

-mz80 Generate code for the Zilog Z80 family of processors.

-mgbz80 Generate code for the GameBoy Z80 processor (Not actively maintained).

21

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

-mavr Generate code for the Atmel AVR processor (In development, not complete). AVR users should
probably have a look at winavrhttp://sourceforge.net/projects/winavr or http://www.
avrfreaks.net/index.php?name=PNphpBB2&file=index.

-mpic14 Generate code for the Microchip PIC 14-bit processors (p16f84 and variants. In development, not
complete).

-mpic16 Generate code for the Microchip PIC 16-bit processors (p18f452 and variants. In development, not
complete).

-mtlcs900h Generate code for the Toshiba TLCS-900H processor (Not maintained, not complete).

-mxa51 Generate code for the Phillips XA51 processor (Not maintained, not complete).

3.2.2 Preprocessor Options

-I<path> The additional location where the pre processor will look for <..h> or “..h” files.

-D<macro[=value]> Command line definition of macros. Passed to the preprocessor.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file.
For each source file, the preprocessor outputs one make-rule whose target is the object file name for
that source file and whose dependencies are all the files ‘#include’d in it. This rule may be a single line
or may be continued with ‘\’-newline if it is long. The list of rules is printed on standard output instead
of the preprocessed C program. ‘-M’ implies ‘-E’.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include “file"’. System
header files included with ‘#include <file>’ are omitted.

-Aquestion(answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional
such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that normally describe the target
machine.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any ‘-include’ and
‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of
preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessor to pass all macro definitions into the output, in their proper sequence in the rest
of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define name’ is included
in the output.

-Wp preprocessorOption[,preprocessorOption]... Pass the preprocessorOption to the preprocessor
sdcpp. SDCC uses an adapted version of the preprocessor cpp of the GNU Compiler
Collection (gcc), if you need more dedicated options please refer to the documentation at
http://www.gnu.org/software/gcc/onlinedocs/.

3.2.3 Linker Options

-L --lib-path <absolutepath to additional libraries> This option is passed to the linkage editor’s additional libraries
search path. The path name must be absolute. Additional library files may be specified in the command
line. See section Compiling programs for more details.

--xram-loc <Value> The start location of the external ram, default value is 0. The value entered can be in Hex-
adecimal or Decimal format, e.g.: --xram-loc 0x8000 or --xram-loc 32768.

22

http://sourceforge.net/projects/winavr
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=index
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=index
http://www.gnu.org/software/gcc/onlinedocs/

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--code-loc<Value> The start location of the code segment, default value 0. Note when this option is used the
interrupt vector table is also relocated to the given address. The value entered can be in Hexadecimal
or Decimal format, e.g.: --code-loc 0x8000 or --code-loc 32768.

--stack-loc<Value> By default the stack is placed after the data segment. Using this option the stack can be
placed anywhere in the internal memory space of the 8051. The value entered can be in Hexadecimal
or Decimal format, e.g. --stack-loc 0x20 or --stack-loc 32. Since the sp register is incremented before
a push or call, the initial sp will be set to one byte prior the provided value. The provided value should
not overlap any other memory areas such as used register banks or the data segment and with enough
space for the current application. The--pack-iram option (which is now a default setting) will override
this setting, so you should also specify the--no-pack-iram option if you need to manually place the
stack.

--xstack-loc<Value> By default the external stack is placed after the pdata segment. Using this option the xstack
can be placed anywhere in the external memory space of the 8051. The value entered can be in
Hexadecimal or Decimal format, e.g. --xstack-loc 0x8000 or --stack-loc 32768. The provided value
should not overlap any other memory areas such as the pdata or xdata segment and with enough space
for the current application.

--data-loc<Value> The start location of the internal ram data segment. The value entered can be in Hexadecimal
or Decimal format, eg. --data-loc 0x20 or --data-loc 32. (By default, the start location of the internal
ram data segment is set as low as possible in memory, taking into account the used register banks and
the bit segment at address 0x20. For example if register banks 0 and 1 are used without bit variables,
the data segment will be set, if --data-loc is not used, to location 0x10.)

--idata-loc <Value> The start location of the indirectly addressable internal ram of the 8051, default value is 0x80.
The value entered can be in Hexadecimal or Decimal format, eg. --idata-loc 0x88 or --idata-loc 136.

--bit-loc <Value> The start location of the bit addressable internal ram of the 8051. This isnot implemented yet.
Instead an option can be passed directly to the linker: -Wl -bBSEG=<Value>.

--out-fmt-ihx The linker output (final object code) is in Intel Hex format. This is the default option. The format
itself is documented in the documentation of srecord.

--out-fmt-s19 The linker output (final object code) is in Motorola S19 format. The format itself is documented in
the documentation of srecord.

--out-fmt-elf The linker output (final object code) is in ELF format. (Currently only supported for the HC08
processors)

-Wl linkOption[,linkOption] ... Pass the linkOption to the linker. See file sdcc/as/doc/asxhtm.html for more on
linker options.

3.2.4 MCS51 Options

--model-small Generate code for Small Model programs, see section Memory Models for more details. This is the
default model.

--model-medium Generate code for Medium model programs, see section Memory Models for more details. If
this option is used all source files in the project have to be compiled with this option. It must also be
used when invoking the linker.

--model-large Generate code for Large model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

--xstack Uses a pseudo stack in the first 256 bytes in the external ram for allocating variables and passing
parameters. See section3.17.1.2External Stack for more details.

--iram-size<Value> Causes the linker to check if the internal ram usage is within limits of the given value.

--xram-size<Value> Causes the linker to check if the external ram usage is within limits of the given value.

23

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--code-size<Value> Causes the linker to check if the code memory usage is within limits of the given value.

--stack-size<Value> Causes the linker to check if there is at minimum <Value> bytes for stack.

--pack-iram Causes the linker to use unused register banks for data variables and pack data, idata and stack
together. This is the default now.

--no-pack-iram Causes the linker to use old style for allocating memory areas.

3.2.5 DS390 / DS400 Options

--model-flat24 Generate 24-bit flat mode code. This is the one and only that the ds390 code generator supports
right now and is default when using-mds390. See section Memory Models for more details.

--protect-sp-update disable interrupts during ESP:SP updates.

--stack-10bit Generate code for the 10 bit stack mode of the Dallas DS80C390 part. This is the one and only that
the ds390 code generator supports right now and is default when using-mds390. In this mode, the
stack is located in the lower 1K of the internal RAM, which is mapped to 0x400000. Note that the
support is incomplete, since it still uses a single byte as the stack pointer. This means that only the
lower 256 bytes of the potential 1K stack space will actually be used. However, this does allow you to
reclaim the precious 256 bytes of low RAM for use for the DATA and IDATA segments. The compiler
will not generate any code to put the processor into 10 bit stack mode. It is important to ensure that
the processor is in this mode before calling any re-entrant functions compiled with this option. In
principle, this should work with the--stack-autooption, but that has not been tested. It is incompatible
with the --xstackoption. It also only makes sense if the processor is in 24 bit contiguous addressing
mode (see the--model-flat24 option).

--stack-probe insert call to function __stack_probe at each function prologue.

--tini-libid <nnnn> LibraryID used in -mTININative.

--use-acceleratorgenerate code for DS390 Arithmetic Accelerator.

3.2.6 Z80 Options

--callee-saves-bcForce a called function to always save BC.

--no-std-crt0 When linking, skip the standard crt0.o object file. You must provide your own crt0.o for your system
when linking.

3.2.7 Optimization Options

--nogcse Will not do global subexpression elimination, this option may be used when the compiler creates
undesirably large stack/data spaces to store compiler temporaries (spill locations, sloc). A warning
message will be generated when this happens and the compiler will indicate the number of extra bytes
it allocated. It is recommended that this option NOT be used, #pragma nogcse can be used to turn off
global subexpression elimination for a given function only.

--noinvariant Will not do loop invariant optimizations, this may be turned off for reasons explained for the previ-
ous option. For more details of loop optimizations performed see Loop Invariants in section8.1.4. It
is recommended that this option NOT be used, #pragma noinvariant can be used to turn off invariant
optimizations for a given function only.

--noinduction Will not do loop induction optimizations, see section strength reduction for more details. It is
recommended that this option is NOT used, #pragma noinduction can be used to turn off induction
optimizations for a given function only.

--nojtbound Will not generate boundary condition check when switch statements are implemented using jump-
tables. See section8.1.7Switch Statements for more details. It is recommended that this option is
NOT used, #pragma nojtbound can be used to turn off boundary checking for jump tables for a given
function only.

24

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--noloopreverse Will not do loop reversal optimization.

--nolabelopt Will not optimize labels (makes the dumpfiles more readable).

--no-xinit-opt Will not memcpy initialized data from code space into xdata space. This saves a few bytes in code
space if you don’t have initialized data.

--nooverlay The compiler will not overlay parameters and local variables of any function, see section Parameters
and local variables for more details.

--no-peep Disable peep-hole optimization with built-in rules.

--peep-file<filename>This option can be used to use additional rules to be used by the peep hole optimizer. See
section8.1.13Peep Hole optimizations for details on how to write these rules.

--peep-asmPass the inline assembler code through the peep hole optimizer. This can cause unexpected changes
to inline assembler code, please go through the peephole optimizer rules defined in the source file tree
’<target>/peeph.def’ before using this option.

--opt-code-speedThe compiler will optimize code generation towards fast code, possibly at the expense of code
size.

--opt-code-sizeThe compiler will optimize code generation towards compact code, possibly at the expense of code
speed.

3.2.8 Other Options

-c --compile-only will compile and assemble the source, but will not call the linkage editor.

--c1mode reads the preprocessed source from standard input and compiles it. The file name for the assembler
output must be specified using the -o option.

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output.

-o <path/file> The output path resp. file where everything will be placed. If the parameter is a path, it must have a
trailing slash (or backslash for the Windows binaries) to be recognized as a path.

--stack-auto All functions in the source file will be compiled asreentrant, i.e. the parameters and local variables
will be allocated on the stack. See section3.6 Parameters and Local Variables for more details. If
this option is used all source files in the project should be compiled with this option. It automatically
implies –int-long-reent and –float-reent.

--callee-savesfunction1[,function2][,function3].... The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing & popping
when calling small functions from larger functions. This option can be used to switch the register
saving convention for the function names specified. The compiler will not save registers when calling
these functions, no extra code will be generated at the entry & exit (function prologue & epilogue) for
these functions to save & restore the registers used by these functions, this can SUBSTANTIALLY
reduce code & improve run time performance of the generated code. In the future the compiler (with
inter procedural analysis) will be able to determine the appropriate scheme to use for each function
call. DO NOT use this option for built-in functions such as _mulint..., if this option is used for a library
function the appropriate library function needs to be recompiled with the same option. If the project
consists of multiple source files then all the source file should be compiled with the same --callee-saves
option string. Also see #pragma callee_saves.

--debug When this option is used the compiler will generate debug information. The debug information col-
lected in a file with .cdb extension can be used with the SDCDB. For more information see documen-
tation for SDCDB. Another file with no extension contains debug information in AOMF or AOMF51
format which is commonly used by third party tools.

25

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

-S Stop after the stage of compilation proper; do not assemble. The output is an assembler code file for
the input file specified.

--int-long-reent Integer (16 bit) and long (32 bit) libraries have been compiled as reentrant. Note by default these
libraries are compiled as non-reentrant. See section Installation for more details.

--cyclomatic This option will cause the compiler to generate an information message for each function in the
source file. The message contains someimportant information about the function. The number of
edges and nodes the compiler detected in the control flow graph of the function, and most importantly
thecyclomatic complexitysee section on Cyclomatic Complexity for more details.

--float-reent Floating point library is compiled as reentrant. See section Installation for more details.

--main-return This option can be used if the code generated is called by a monitor program or if the main routine
includes an endless loop. This option might result in slightly smaller code and save two bytes of stack
space. The return from the ’main’ function will return to the function calling main. The default setting
is to lock up i.e. generate a ’sjmp .’.

--nostdinc This will prevent the compiler from passing on the default include path to the preprocessor.

--nostdlib This will prevent the compiler from passing on the default library path to the linker.

--verbose Shows the various actions the compiler is performing.

-V Shows the actual commands the compiler is executing.

--no-c-code-in-asmHides your ugly and inefficient c-code from the asm file, so you can always blame the compiler
:)

--no-peep-commentsWill not include peep-hole comments in the generated files.

--i-code-in-asm Include i-codes in the asm file. Sounds like noise but is most helpful for debugging the compiler
itself.

--less-pedanticDisable some of the more pedantic warnings (jwk burps: please be more specific here, please!).

--disable-warning <nnnn> Disable specific warning with number <nnnn>.

--print-search-dirs Display the directories in the compiler’s search path

--vc Display errors and warnings using MSVC style, so you can use SDCC with visual studio.

--use-stdout Send errors and warnings to stdout instead of stderr.

-Wa asmOption[,asmOption]... Pass the asmOption to the assembler. See file sdcc/as/doc/asxhtm.html for as-
sembler options.cd

--std-sdcc89Generally follow the C89 standard, but allow SDCC features that conflict with the standard (default).

--std-c89 Follow the C89 standard and disable SDCC features that conflict with the standard.

--std-sdcc99Generally follow the C99 standard, but allow SDCC features that conflict with the standard (incom-
plete support).

--std-c99 Follow the C99 standard and disable SDCC features that conflict with the standard (incomplete sup-
port).

--codeseg<Name> The name to be used for the code segment, default CSEG. This is useful if you need to tell the
compiler to put the code in a special segment so you can later on tell the linker to put this segment in
a special place in memory. Can be used for instance when using bank switching to put the code in a
bank.

--constseg<Name> The name to be used for the const segment, default CONST. This is useful if you need to tell
the compiler to put the const data in a special segment so you can later on tell the linker to put this
segment in a special place in memory. Can be used for instance when using bank switching to put the
const data in a bank.

26

3.3. ENVIRONMENT VARIABLES CHAPTER 3. USING SDCC

more-pedantic Actually this isnot a SDCC compiler option but if you wantmorewarnings you can use a separate
tool dedicated to syntax checking like splinthttp://www.splint.org. To make your source files
parseable by splint you will have to includelint.h in your source file and add brackets around extended
keywords (like”__at (0xab)” and”__interrupt (2)”).
Splint has an excellent on line manual athttp://www.splint.org/manual/ and it’s capabilities go
beyond pure syntax checking. You’ll need to tell splint the location of SDCC’s include files so a typical
command line could look like this:
splint -I /usr/local/share/sdcc/include/mcs51/ myprogram.c

3.2.9 Intermediate Dump Options

The following options are provided for the purpose of retargetting and debugging the compiler. They provide a
means to dump the intermediate code (iCode) generated by the compiler in human readable form at various stages
of the compilation process. More on iCodes see chapter9.1”The anatomy of the compiler”.

--dumpraw This option will cause the compiler to dump the intermediate code into a file of named<source
filename>.dumprawjust after the intermediate code has been generated for a function, i.e. before any
optimizations are done. The basic blocks at this stage ordered in the depth first number, so they may
not be in sequence of execution.

--dumpgcse Will create a dump of iCode’s, after global subexpression elimination, into a file named<source
filename>.dumpgcse.

--dumpdeadcodeWill create a dump of iCode’s, after deadcode elimination, into a file named<source file-
name>.dumpdeadcode.

--dumploop Will create a dump of iCode’s, after loop optimizations, into a file named<source file-
name>.dumploop.

--dumprange Will create a dump of iCode’s, after live range analysis, into a file named<source file-
name>.dumprange.

--dumlrange Will dump the life ranges for all symbols.

--dumpregassign Will create a dump of iCode’s, after register assignment, into a file named<source file-
name>.dumprassgn.

--dumplrange Will create a dump of the live ranges of iTemp’s

--dumpall Will cause all the above mentioned dumps to be created.

3.2.10 Redirecting output on Windows Shells

By default SDCC writes it’s error messages to ”standard error”. To force all messages to ”standard out-
put” use--use-stdout. Additionally, if you happen to have visual studio installed in your windows machine, you
can use it to compile your sources using a custom build and the SDCC --vc option. Something like this should work:

c:\sdcc\bin\sdcc.exe --vc --model-large -c $(InputPath)

3.3 Environment variables

SDCC recognizes the following environment variables:

SDCC_LEAVE_SIGNALS SDCC installs a signal handler to be able to delete temporary files after an user break
(^C) or an exception. If this environment variable is set, SDCC won’t install the signal handler in order
to be able to debug SDCC.

TMP, TEMP, TMPDIR Path, where temporary files will be created. The order of the variables is the search order.
In a standard *nix environment these variables are not set, and there’s no need to set them. On Windows
it’s recommended to set one of them.

27

http://www.splint.org
http://www.splint.org/manual/

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

SDCC_HOME Path, see section2.2” Install Paths”.

SDCC_INCLUDE Path, see section2.3”Search Paths”.

SDCC_LIB Path, see section2.3”Search Paths”..

There are some more environment variables recognized by SDCC, but these are solely used for debugging purposes.
They can change or disappear very quickly, and will never be documented.

3.4 Storage Class Language Extensions

3.4.1 MCS51/DS390 Storage Class Language Extensions

In addition to the ANSI storage classes SDCC allows the following MCS51 specific storage classes:

3.4.1.1 data / near

This is thedefault storage class for the Small Memory model (dataandnearor the more ANSI-C compliant forms
__dataand__nearcan be used synonymously). Variables declared with this storage class will be allocated in the
directly addressable portion of the internal RAM of a 8051, e.g.:

__data unsigned char test_data;

Writing 0x01 to this variable generates the assembly code:

75*00 01 mov _test_data,#0x01

3.4.1.2 xdata / far

Variables declared with this storage class will be placed in the external RAM. This is thedefault storage class for
the Large Memory model, e.g.:

__xdata unsigned char test_xdata;

Writing 0x01 to this variable generates the assembly code:

90s00r00 mov dptr,#_test_xdata
74 01 mov a,#0x01
F0 movx @dptr,a

3.4.1.3 idata

Variables declared with this storage class will be allocated into the indirectly addressable portion of the internal
ram of a 8051, e.g.:

__idata unsigned char test_idata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_idata
76 01 mov @r0,#0x01

Please note, the first 128 byte of idata physically access the same RAM as the data memory. The original 8051 had
128 byte idata memory, nowadays most devices have 256 byte idata memory. The stack is located in idata memory.

28

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.4.1.4 pdata

Paged xdata access is just as straightforward as using the other addressing modes of a 8051. It is typically located
at the start of xdata and has a maximum size of 256 bytes. The following example writes 0x01 to the pdata variable.
Please note, pdata access physically accesses xdata memory. The high byte of the address is determined by port
P2 (or in case of some 8051 variants by a separate Special Function Register, see section4.1). This is thedefault
storage class for the Medium Memory model, e.g.:

__pdata unsigned char test_pdata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_pdata
74 01 mov a,#0x01
F2 movx @r0,a

If the --xstack option is used the pdata memory area is followed by the xstack memory area and the sum of their
sizes is limited to 256 bytes.

3.4.1.5 code

’Variables’ declared with this storage class will be placed in the code memory:

__code unsigned char test_code;

Read access to this variable generates the assembly code:

90s00r6F mov dptr,#_test_code
E4 clr a
93 movc a,@a+dptr

char indexed arrays of characters in code memory can be accessed efficiently:

__code char test_array[] = {’c’,’h’,’e’,’a’,’p’};

Read access to this array using an 8-bit unsigned index generates the assembly code:

E5*00 mov a,_index

90s00r41 mov dptr,#_test_array

93 movc a,@a+dptr

3.4.1.6 bit

This is a data-type and a storage class specifier. When a variable is declared as a bit, it is allocated into the bit
addressable memory of 8051, e.g.:

__bit test_bit;

Writing 1 to this variable generates the assembly code:

D2*00 setb _test_bit

The bit addressable memory consists of 128 bits which are located from 0x20 to 0x2f in data memory.
Apart from this 8051 specific storage class most architectures support ANSI-C bitfields1. In accordance with
ISO/IEC 9899 bits and bitfields without an explicit signed modifier are implemented as unsigned.

1Not really meant as examples, but nevertheless showing what bitfields are about: device/include/mc68hc908qy.h and sup-
port/regression/tests/bitfields.c

29

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.4.1.7 sfr / sfr16 / sfr32 / sbit

Like the bit keyword,sfr / sfr16 / sfr32 / sbitsignify both a data-type and storage class, they are used to describe
thespecialf unctionregisters andspecialbit variables of a 8051, eg:

__sfr __at (0x80) P0; /* special function register P0 at location 0x80 */
/* 16 bit special function register combination for timer 0 */
/* with the high byte at location 0x8C and the low byte at location 0x8A */
__sfr16 __at (0x8C8A) TMR0;
__sbit __at (0xd7) CY; /* CY (Carry Flag) */

Special function registers which are located on an address dividable by 8 are bit-addressable, ansbit addresses a
specific bit within these sfr.
16 Bit and 32 bit special function register combinations which require a certain access order are better not de-
clared usingsfr16or sfr32. Allthough SDCC usually accesses them Least Significant Byte (LSB) first, this is not
guaranteed.

3.4.1.8 Pointers to MCS51/DS390 specific memory spaces

SDCC allows (via language extensions) pointers to explicitly point to any of the memory spaces of the 8051. In
addition to the explicit pointers, the compiler uses (by default) generic pointers which can be used to point to any
of the memory spaces.

Pointer declaration examples:

/* pointer physically in internal ram pointing to object in external ram */
__xdata unsigned char * __data p;

/* pointer physically in external ram pointing to object in internal ram */
__data unsigned char * __xdata p;

/* pointer physically in code rom pointing to data in xdata space */
__xdata unsigned char * __code p;

/* pointer physically in code space pointing to data in code space */
__code unsigned char * __code p;

/* the following is a generic pointer physically located in xdata space */
char * __xdata p;

/* the following is a function pointer physically located in data space */
char (* __data fp)(void);

Well you get the idea.

All unqualified pointers are treated as 3-byte (4-byte for the ds390)genericpointers.

The highest order byte of thegeneric pointers contains the data space information. Assembler support rou-
tines are called whenever data is stored or retrieved usinggenericpointers. These are useful for developing
reusable library routines. Explicitly specifying the pointer type will generate the most efficient code.

3.4.1.9 Notes on MCS51 memory layout

The 8051 family of microcontrollers have a minimum of 128 bytes of internal RAM memory which is structured
as follows:

- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers R0 to R7,
- Bytes 20-2F - 16 bytes to hold 128 bit variables and,

30

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

- Bytes 30-7F - 80 bytes for general purpose use.

Additionally some members of the MCS51 family may have up to 128 bytes of additional, indirectly address-
able, internal RAM memory (idata). Furthermore, some chips may have some built in external memory (xdata)
which should not be confused with the internal, directly addressable RAM memory (data). Sometimes this built in
xdatamemory has to be activated before using it (you can probably find this information on the datasheet of the
microcontroller your are using, see also section3.11Startup-Code).

Normally SDCC will only use the first bank of registers (register bank 0), but it is possible to specify that
other banks of registers (keywordusing) should be used in interrupt routines. By default, the compiler will place
the stack after the last byte of allocated memory for variables. For example, if the first 2 banks of registers are
used, and only four bytes are used fordata variables, it will position the base of the internal stack at address 20
(0x14). This implies that as the stack grows, it will use up the remaining register banks, and the 16 bytes used by
the 128 bit variables, and 80 bytes for general purpose use. If any bit variables are used, the data variables will be
placed in unused register banks and after the byte holding the last bit variable. For example, if register banks 0
and 1 are used, and there are 9 bit variables (two bytes used),datavariables will be placed starting from address
0x10 to 0x20 and continue at address 0x22. You can also use --data-loc to specify the start address of thedataand
--iram-size to specify the size of the total internal RAM (data+idata).

By default the 8051 linker will place the stack after the last byte of (i)data variables. Option --stack-loc allows
you to specify the start of the stack, i.e. you could start it after any data in the general purpose area. If your
microcontroller has additional indirectly addressable internal RAM (idata) you can place the stack on it. You may
also need to use --xdata-loc to set the start address of the external RAM (xdata) and --xram-size to specify its size.
Same goes for the code memory, using --code-loc and --code-size. If in doubt, don’t specify any options and see if
the resulting memory layout is appropriate, then you can adjust it.

The linker generates two files with memory allocation information. The first, with extension .map shows all the
variables and segments. The second with extension .mem shows the final memory layout. The linker will complain
either if memory segments overlap, there is not enough memory, or there is not enough space for stack. If you get
any linking warnings and/or errors related to stack or segments allocation, take a look at either the .map or .mem
files to find out what the problem is. The .mem file may even suggest a solution to the problem.

3.4.2 Z80/Z180 Storage Class Language Extensions

3.4.2.1 sfr (in/out to 8-bit addresses)

The Z80 family has separate address spaces for memory andinput/output memory. I/O memory is accessed with
special instructions, e.g.:

sfr at 0x78 IoPort; /* define a var in I/O space at 78h called IoPort */

Writing 0x01 to this variable generates the assembly code:

3E 01 ld a,#0x01
D3 78 out (_IoPort),a

3.4.2.2 banked sfr (in/out to 16-bit addresses)

The keywordbankedis used to support 16 bit addresses in I/O memory e.g.:

sfr banked at 0x123 IoPort;

Writing 0x01 to this variable generates the assembly code:

01 23 01 ld bc,#_IoPort
3E 01 ld a,#0x01
ED 79 out (c),a

3.4.2.3 sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

The compiler option --portmode=180 (80) and a compiler #pragma portmode=z180 (z80) is used to turn on (off)
the Z180/HD64180 port addressing instructionsin0/out0 instead ofin/out. If you include the file z180.h this
will be set automatically.

31

3.5. ABSOLUTE ADDRESSING CHAPTER 3. USING SDCC

3.4.3 HC08 Storage Class Language Extensions

3.4.3.1 data

The data storage class declares a variable that resides in the first 256 bytes of memory (the direct page). The HC08
is most efficient at accessing variables (especially pointers) stored here.

3.4.3.2 xdata

The xdata storage class declares a variable that can reside anywhere in memory. This is the default if no storage
class is specified.

3.5 Absolute Addressing

Data items can be assigned an absolute address with theat <address>keyword, in addition to a storage class, e.g.:

xdata at (0x7ffe) unsigned int chksum;

or

__xdata __at (0x7ffe) unsigned int chksum;

In the above example the variable chksum will be located at 0x7ffe and 0x7fff of the external ram. The compiler
doesnot reserve any space for variables declared in this way (they are implemented with an equate in the assembler).!
Thus it is left to the programmer to make sure there are no overlaps with other variables that are declared without
the absolute address. The assembler listing file (.lst) and the linker output files (.rst) and (.map) are good places to
look for such overlaps. Variables with an absolute address arenot initialized. !

In case of memory mapped I/O devices the keywordvolatile has to be used to tell the compiler that accesses
might not be removed:

volatile __xdata __at (0x8000) unsigned char PORTA_8255;

For some architectures (mcs51) array accesses are more efficient if an (xdata/far) array starts at a block (256 byte)
boundary (section3.12.1has an example).
Absolute addresses can be specified for variables in all storage classes, e.g.:

__bit __at (0x02) bvar;

The above example will allocate the variable at offset 0x02 in the bit-addressable space. There is no real advantage
to assigning absolute addresses to variables in this manner, unless you want strict control over all the variables
allocated. One possible use would be to write hardware portable code. For example, if you have a routine that uses
one or more of the microcontroller I/O pins, and such pins are different for two different hardwares, you can declare
the I/O pins in your routine using:

extern volatile __bit MOSI; /* master out, slave in */
extern volatile __bit MISO; /* master in, slave out */
extern volatile __bit MCLK; /* master clock */

/* Input and Output of a byte on a 3-wire serial bus.
If needed adapt polarity of clock, polarity of data and bit order

*/
unsigned char spi_io(unsigned char out_byte)
{

unsigned char i=8;
do {

MOSI = out_byte & 0x80;
out_byte < <= 1;
MCLK = 1;
/* _asm nop _endasm; */ /* for slow peripherals */

32

3.6. PARAMETERS & LOCAL VARIABLES CHAPTER 3. USING SDCC

if(MISO)
out_byte += 1;

MCLK = 0;
} while(--i);
return out_byte;

}

Then, someplace in the code for the first hardware you would use

__bit __at (0x80) MOSI; /* I/O port 0, bit 0 */
__bit __at (0x81) MISO; /* I/O port 0, bit 1 */
__bit __at (0x82) MCLK; /* I/O port 0, bit 2 */

Similarly, for the second hardware you would use

__bit __at (0x83) MOSI; /* I/O port 0, bit 3 */
__bit __at (0x91) MISO; /* I/O port 1, bit 1 */
__bit __at (0x92) MCLK; /* I/O port 1, bit 2 */

and you can use the same hardware dependent routine without changes, as for example in a library. This is somehow
similar to sbit, but only one absolute address has to be specified in the whole project.

3.6 Parameters & Local Variables

Automatic (local) variables and parameters to functions can either be placed on the stack or in data-space. The
default action of the compiler is to place these variables in the internal RAM (for small model) or external RAM
(for large model). This in fact makes them similar tostaticso by default functions are non-reentrant.

They can be placed on the stack by using the--stack-autooption, by using#pragma stackautoor by using
thereentrantkeyword in the function declaration, e.g.:

unsigned char foo(char i) __reentrant
{

...
}

Since stack space on 8051 is limited, thereentrantkeyword or the--stack-autooption should be used sparingly.
Note that the reentrant keyword just means that the parameters & local variables will be allocated to the stack, it
does notmean that the function is register bank independent.

Local variables can be assigned storage classes and absolute addresses, e.g.:

unsigned char foo()
{

__xdata unsigned char i;
__bit bvar;
__data __at (0x31) unsigned char j;
...

}

In the above example the variablei will be allocated in the external ram,bvar in bit addressable space andj in
internal ram. When compiled with--stack-autoor when a function is declared asreentrantthis should only be done
for static variables.

Parameters however are not allowed any storage class, (storage classes for parameters will be ignored), their
allocation is governed by the memory model in use, and the reentrancy options.

It is however allowed to use bit parameters in reentrant functions and also non-static local bit variables are
supported. Efficient use is limited to 8 semi-bitregisters in bit space. They are pushed and popped to stack as a
single byte just like the normal registers.

33

3.7. OVERLAYING CHAPTER 3. USING SDCC

3.7 Overlaying

For non-reentrant functions SDCC will try to reduce internal ram space usage by overlaying parameters and local
variables of a function (if possible). Parameters and local variables of a function will be allocated to an overlayable
segment if the function hasno other function calls and the function is non-reentrant and the memory model is small.
If an explicit storage class is specified for a local variable, it will NOT be overlayed.

Note that the compiler (not the linkage editor) makes the decision for overlaying the data items. Functions that
are called from an interrupt service routine should be preceded by a #pragma nooverlay if they are not reentrant.!

Also note that the compiler does not do any processing of inline assembler code, so the compiler might incor-
rectly assign local variables and parameters of a function into the overlay segment if the inline assembler code calls
other c-functions that might use the overlay. In that case the #pragma nooverlay should be used.

Parameters and local variables of functions that contain 16 or 32 bit multiplication or division will NOT be
overlayed since these are implemented using external functions, e.g.:

#pragma save
#pragma nooverlay
void set_error(unsigned char errcd)
{

P3 = errcd;
}
#pragma restore

void some_isr () __interrupt (2)
{

...
set_error(10);
...

}

In the above example the parametererrcd for the functionset_errorwould be assigned to the overlayable segment
if the #pragma nooverlay was not present, this could cause unpredictable runtime behavior when called from an
interrupt service routine. The #pragma nooverlay ensures that the parameters and local variables for the function
are NOT overlayed.

3.8 Interrupt Service Routines

3.8.1 General Information

SDCC allowsinterruptserviceroutines to be coded in C, with some extended keywords.

void timer_isr (void) __interrupt (1) __using (1)
{

...
}

The optional number following theinterrupt keyword is the interrupt number this routine will service. When
present, the compiler will insert a call to this routine in the interrupt vector table for the interrupt number specified.
If you have multiple source files in your project, interrupt service routines can be present in any of them, but a
prototype of the isr MUST be present or included in the file that contains the functionmain. The optionalusing
keyword can be used to tell the compiler to use the specified register bank (8051 specific) when generating code
for this function.

Interrupt service routines open the door for some very interesting bugs:
If an interrupt service routine changes variables which are accessed by other functions these variables have to be
declaredvolatile.

If the access to these variables is notatomic(i.e. the processor needs more than one instruction for the access
and could be interrupted while accessing the variable) the interrupt must be disabled during the access to avoid

34

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

inconsistent data. Access to 16 or 32 bit variables is obviously not atomic on 8 bit CPUs and should be protected
by disabling interrupts. You’re not automatically on the safe side if you use 8 bit variables though. We need an
example here: f.e. on the 8051 the harmless looking ”flags |= 0x80;” is not atomic ifflags resides in xdata.
Setting ”flags |= 0x40;” from within an interrupt routine might get lost if the interrupt occurs at the wrong time.
”counter += 8;” is not atomic on the 8051 even ifcounter is located in data memory. Bugs like these are hard
to reproduce and can cause a lot of trouble.

The return address and the registers used in the interrupt service routine are saved on the stack so there must
be sufficient stack space. If there isn’t variables or registers (or even the return address itself) will be corrupted.
This stack overflowis most likely to happen if the interrupt occurs during the ”deepest” subroutine when the stack
is already in use for f.e. many return addresses.

A special note here, int (16 bit) and long (32 bit) integer division, multiplication & modulus and floating-point
operations are implemented using external support routines developed in ANSI-C. If an interrupt service routine
needs to do any of these operations then the support routines (as mentioned in a following section) will have to
be recompiled using the--stack-autooption and the source file will need to be compiled using the--int-long-reent
compiler option. Note, the type promotion required by ANSI C can cause 16 bit routines to be used without the
programmer being aware of it.

Calling other functions from an interrupt service routine is not recommended, avoid it if possible. Note that
when some function is called from an interrupt service routine it should be preceded by a #pragma nooverlay if it is
not reentrant. Furthermore nonreentrant functions should not be called from the main program while the interrupt
service routine might be active. They also must not be called from low priority interrupt service routines while a
high priority interrupt service routine might be active. You could use semaphores or make the functioncritical if
all parameters are passed in registers.

Also see section3.7about Overlaying and section3.10about Functions using private register banks.

3.8.2 MCS51/DS390 Interrupt Service Routines

Interrupt numbers and the corresponding address & descriptions for the Standard 8051/8052 are listed below.
SDCC will automatically adjust the interrupt vector table to the maximum interrupt number specified.

Interrupt # Description Vector Address

0 External 0 0x0003
1 Timer 0 0x000b
2 External 1 0x0013
3 Timer 1 0x001b
4 Serial 0x0023
5 Timer 2 (8052) 0x002b
... ...
n 0x0003 + 8*n

If the interrupt service routine is defined withoutusinga register bank or with register bank 0 (using0), the
compiler will save the registers used by itself on the stack upon entry and restore them at exit, however if such an
interrupt service routine calls another function then the entire register bank will be saved on the stack. This scheme
may be advantageous for small interrupt service routines which have low register usage.

If the interrupt service routine is defined to be using a specific register bank then onlya, b, dptr& psw are saved
and restored, if such an interrupt service routine calls another function (using another register bank) then the entire
register bank of the called function will be saved on the stack. This scheme is recommended for larger interrupt
service routines.

3.8.3 HC08 Interrupt Service Routines

Since the number of interrupts available is chip specific and the interrupt vector table always ends at the last byte
of memory, the interrupt numbers corresponds to the interrupt vectors in reverse order of address. For example,
interrupt 1 will use the interrupt vector at 0xfffc, interrupt 2 will use the interrupt vector at 0xfffa, and so on.
However, interrupt 0 (the reset vector at 0xfffe) is not redefinable in this way; instead see section3.11for details on
customizing startup.

35

3.9. ENABLING AND DISABLING INTERRUPTS CHAPTER 3. USING SDCC

3.8.4 Z80 Interrupt Service Routines

The Z80 uses several different methods for determining the correct interrupt vector depending on the hardware
implementation. Therefore, SDCC ignores the optional interrupt number and does not attempt to generate an
interrupt vector table.

By default, SDCC generates code for a maskable interrupt, which uses a RETI instruction to return from the
interrupt. To write an interrupt handler for the non-maskable interrupt, which needs a RETN instruction instead,
add thecritical keyword:

void nmi_isr (void) critical interrupt
{

...
}

However if you need to create a non-interruptable interrupt service routine you would also require thecritical
keyword. To distinguish between this and an nmi_isr you must provide an interrupt number.

3.9 Enabling and Disabling Interrupts

3.9.1 Critical Functions and Critical Statements

A special keyword may be associated with a block or a function declaring it ascritical. SDCC will generate code
to disable all interrupts upon entry to a critical function and restore the interrupt enable to the previous state before
returning. Nesting critical functions will need one additional byte on the stack for each call.

int foo () __critical
{

...

...
}

The critical attribute maybe used with other attributes likereentrant.
The keywordcritical may also be used to disable interrupts more locally:

__critical{ i++; }

More than one statement could have been included in the block.

3.9.2 Enabling and Disabling Interrupts directly

Interrupts can also be disabled and enabled directly (8051):

EA = 0; or: EA_SAVE = EA;

... EA = 0;

EA = 1; ...

EA = EA_SAVE;

On other architectures which have seperate opcodes for enabling and disabling interrupts you might want to make
use of defines with inline assembly (HC08):

#define CLI _asm cli _endasm;

#define SEI _asm sei _endasm;

...

36

3.10. FUNCTIONS USING PRIVATE REGISTER BANKS (MCS51/DS390) CHAPTER 3. USING SDCC

Note: it is sometimes sufficient to disable only a specific interrupt source like f.e. a timer or serial interrupt by
manipulating aninterrupt maskregister.

Usually the time during which interrupts are disabled should be kept as short as possible. This minimizes both
interrupt latency(the time between the occurrence of the interrupt and the execution of the first code in the interrupt
routine) andinterrupt jitter (the difference between the shortest and the longest interrupt latency). These really are
something different, f.e. a serial interrupt has to be served before its buffer overruns so it cares for the maximum
interrupt latency, whereas it does not care about jitter. On a loudspeaker driven via a digital to analog converter
which is fed by an interrupt a latency of a few milliseconds might be tolerable, whereas a much smaller jitter will
be very audible.

You can reenable interrupts within an interrupt routine and on some architectures you can make use of two
(or more) levels ofinterrupt priorities. On some architectures which don’t support interrupt priorities these can
be implemented by manipulating the interrupt mask and reenabling interrupts within the interrupt routine. Check
there is sufficient space on the stack and don’t add complexity unless you have to.

3.9.3 Semaphore locking (mcs51/ds390)

Some architectures (mcs51/ds390) have an atomic bit test and clear instruction. These type of instructions are
typically used in preemptive multitasking systems, where a routine f.e. claims the use of a data structure (’acquires
a lock on it’), makes some modifications and then releases the lock when the data structure is consistent again. The
instruction may also be used if interrupt and non-interrupt code have to compete for a resource. With the atomic bit
test and clear instruction interrupts don’t have to be disabled for the locking operation.

SDCC generates this instruction if the source follows this pattern:

volatile bit resource_is_free;

if (resource_is_free)
{

resource_is_free=0;
...
resource_is_free=1;

}

Note, mcs51 and ds390 support only an atomic bit test andclear instruction (as opposed to atomic bit test andset).

3.10 Functions using private register banks (mcs51/ds390)

Some architectures have support for quickly changing register sets. SDCC supports this feature with theusing
attribute (which tells the compiler to use a register bank other than the default bank zero). It should only be applied
to interrupt functions (see footnote below). This will in most circumstances make the generated ISR code more
efficient since it will not have to save registers on the stack.

Theusingattribute will have no effect on the generated code for anon-interruptfunction (but may occasionally
be useful anyway2).
(pending: I don’t think this has been done yet)

An interrupt function using a non-zero bank will assume that it can trash that register bank, and will not save
it. Since high-priority interrupts can interrupt low-priority ones on the 8051 and friends, this means that if a high-
priority ISR usinga particular bank occurs while processing a low-priority ISRusingthe same bank, terrible and
bad things can happen. To prevent this, no single register bank should beusedby both a high priority and a low
priority ISR. This is probably most easily done by having all high priority ISRs use one bank and all low priority
ISRs use another. If you have an ISR which can change priority at runtime, you’re on your own: I suggest using
the default bank zero and taking the small performance hit.

It is most efficient if your ISR calls no other functions. If your ISR must call other functions, it is most efficient
if those functions use the same bank as the ISR (see note 1 below); the next best is if the called functions use bank
zero. It is very inefficient to call a function using a different, non-zero bank from an ISR.

2possible exception: if a function is called ONLY from ’interrupt’ functions using a particular bank, it can be declared with the same ’using’
attribute as the calling ’interrupt’ functions. For instance, if you have several ISRs using bank one, and all of them call memcpy(), it might make
sense to create a specialized version of memcpy() ’using 1’, since this would prevent the ISR from having to save bank zero to the stack on entry
and switch to bank zero before calling the function

37

3.11. STARTUP CODE CHAPTER 3. USING SDCC

3.11 Startup Code

3.11.1 MCS51/DS390 Startup Code

The compiler inserts a call to the C routine_sdcc_external_startup()at the start of the CODE area. This routine is
in the runtime library. By default this routine returns 0, if this routine returns a non-zero value, the static & global
variable initialization will be skipped and the function main will be invoked. Otherwise static & global variables
will be initialized before the function main is invoked. You could add a_sdcc_external_startup()routine to your
program to override the default if you need to setup hardware or perform some other critical operation prior to static
& global variable initialization. On some mcs51 variants xdata memory has to be explicitly enabled before it can
be accessed or if the watchdog needs to be disabled, this is the place to do it. The startup code clears all internal
data memory, 256 bytes by default, but from 0 to n-1 if--iram-sizenis used. (recommended for Chipcon CC1010).

See also the compiler option--no-xinit-opt and section4.1about MCS51-variants.

3.11.2 HC08 Startup Code

The HC08 startup code follows the same scheme as the MCS51 startup code.

3.11.3 Z80 Startup Code

On the Z80 the startup code is inserted by linking with crt0.o which is generated from sdcc/device/lib/z80/crt0.s. If
you need a different startup code you can use the compiler option--no-std-crt0and provide your own crt0.o.

3.12 Inline Assembler Code

3.12.1 A Step by Step Introduction

Starting from a small snippet of c-code this example shows for the MCS51 how to use inline assembly, access
variables, a function parameter and an array in xdata memory. The example uses an MCS51 here but is easily
adapted for other architectures. This is a buffer routine which should be optimized:

unsigned char __far __at(0x7f00) buf[0x100];

unsigned char head, tail;

void to_buffer(unsigned char c)

{

if(head != (unsigned char)(tail-1)) /* cast needed to avoid promotion to integer */ !
buf[head++] = c; /* access to a 256 byte aligned array */

}

If the code snippet (assume it is saved in buffer.c) is compiled with SDCC then a corresponding buffer.asm file is
generated. We define a new functionto_buffer_asm() in file buffer.c in which we cut and paste the generated
code, removing unwanted comments and some ’:’. Then add ”_asm” and ”_endasm;” to the beginning and the end
of the function body:

/* With a cut and paste from the .asm file, we have something to start with.

The function is not yet OK! (registers aren’t saved) */

void to_buffer_asm(unsigned char c)

{

_asm

mov r2,dpl

;buffer.c if(head != (unsigned char)(tail-1))

mov a,_tail

dec a

mov r3,a

mov a,_head

cjne a,ar3,00106$

ret

38

3.12. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

00106$:

;buffer.c buf[head++] = c; /* access to a 256 byte aligned array */

mov r3,_head

inc _head

mov dpl,r3

mov dph,#(_buf > > 8)

mov a,r2

movx @dptr,a

00103$:

ret

_endasm;
}

The new file buffer.c should compile with only one warning about the unreferenced function argument ’c’. Now
we hand-optimize the assembly code and insert an #define USE_ASSEMBLY (1) and finally have:

unsigned char __far __at(0x7f00) buf[0x100];

unsigned char head, tail;

#define USE_ASSEMBLY (1)

#if !USE_ASSEMBLY

void to_buffer(unsigned char c)

{

if(head != (unsigned char)(tail-1))

buf[head++] = c;

}

#else

void to_buffer(unsigned char c)

{

c; // to avoid warning: unreferenced function argument

_asm

; save used registers here.

; If we were still using r2,r3 we would have to push them here.

; if(head != (unsigned char)(tail-1))

mov a,_tail

dec a

xrl a,_head

; we could do an ANL a,#0x0f here to use a smaller buffer (see below)

jz t_b_end$

;

; buf[head++] = c;

mov a,dpl ; dpl holds lower byte of function argument

mov dpl,_head ; buf is 0x100 byte aligned so head can be used directly

mov dph,#(_buf> >8)

movx @dptr,a

inc _head

; we could do an ANL _head,#0x0f here to use a smaller buffer (see above)

t_b_end$:

; restore used registers here

_endasm;

}
#endif

39

3.12. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

The inline assembler code can contain any valid code understood by the assembler, this includes any assembler di-
rectives and comment lines3. The compiler does not do any validation of the code within the_asm ... _endasm;
keyword pair. Specifically it will not know which registers are used and thus register pushing/popping has to be
done manually.

It is recommended that each assembly instruction (including labels) be placed in a separate line (as the example
shows). When the --peep-asmcommand line option is used, the inline assembler code will be passed through
the peephole optimizer. There are only a few (if any) cases where this option makes sense, it might cause some
unexpected changes in the inline assembler code. Please go through the peephole optimizer rules defined in file
SDCCpeeph.defbefore using this option.

3.12.2 Naked Functions

A special keyword may be associated with a function declaring it as_naked.The_nakedfunction modifier attribute
prevents the compiler from generating prologue and epilogue code for that function. This means that the user is
entirely responsible for such things as saving any registers that may need to be preserved, selecting the proper
register bank, generating thereturn instruction at the end, etc. Practically, this means that the contents of the
function must be written in inline assembler. This is particularly useful for interrupt functions, which can have a
large (and often unnecessary) prologue/epilogue. For example, compare the code generated by these two functions:

volatile data unsigned char counter;

void simpleInterrupt(void) __interrupt (1)
{

counter++;
}

void nakedInterrupt(void) __interrupt (2) __naked
{

_asm
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked function.

_endasm;
}

For an 8051 target, the generated simpleInterrupt looks like:

Note, this is an outdated example, recent versions of SDCC generate
the same code for simpleInterrupt() and nakedInterrupt()!

_simpleInterrupt:
push acc
push b
push dpl
push dph
push psw
mov psw,#0x00
inc _counter
pop psw
pop dph
pop dpl
pop b
pop acc
reti

whereas nakedInterrupt looks like:

3The assembler does not like some characters like ’:’ or ”’ in comments. You’ll find an 100+ pages assembler manual in
sdcc/as/doc/asxhtm.html

40

3.13. INTERFACING WITH ASSEMBLER CODE CHAPTER 3. USING SDCC

_nakedInterrupt:
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked function

The related directive #pragma exclude allows a more fine grained control over pushing & popping the registers.
While there is nothing preventing you from writing C code inside a_naked function, there are many ways to

shoot yourself in the foot doing this, and it is recommended that you stick to inline assembler.

3.12.3 Use of Labels within Inline Assembler

SDCC allows the use of in-line assembler with a few restrictions regarding labels. In older versions of the compiler
all labels defined within inline assembler codehad to beof the formnnnnn$where nnnn is a number less than 100
(which implies a limit of utmost 100 inline assembler labelsper function).

_asm
mov b,#10

00001$:
djnz b,00001$

_endasm ;

Inline assembler code cannot reference any C-Labels, however it can reference labels defined by the inline assem-
bler, e.g.:

foo() {
/* some c code */
_asm

; some assembler code
ljmp $0003

_endasm;
/* some more c code */

clabel: /* inline assembler cannot reference this label */
_asm
$0003: ;label (can be referenced by inline assembler only)
_endasm ;
/* some more c code */

}

In other words inline assembly code can access labels defined in inline assembly within the scope of the function.
The same goes the other way, i.e. labels defines in inline assembly can not be accessed by C statements.

3.13 Interfacing with Assembler Code

3.13.1 Global Registers used for Parameter Passing

The compiler always uses the global registersDPL, DPH, BandACC to pass the first parameter to a routine. The
second parameter onwards is either allocated on the stack (for reentrant routines or if --stack-auto is used) or in data
/ xdata memory (depending on the memory model).

3.13.2 Assembler Routine (non-reentrant)

In the following example the function c_func calls an assembler routine asm_func, which takes two parameters.

extern int asm_func(unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j)
{

return asm_func(i,j);
}

41

3.13. INTERFACING WITH ASSEMBLER CODE CHAPTER 3. USING SDCC

int main()
{

return c_func(10,9);
}

The corresponding assembler function is:

.globl _asm_func_PARM_2
.globl _asm_func
.area OSEG

_asm_func_PARM_2:
.ds 1
.area CSEG

_asm_func:
mov a,dpl
add a,_asm_func_PARM_2
mov dpl,a
mov dph,#0x00
ret

Note here that the return values are placed in ’dpl’ - One byte return value, ’dpl’ LSB & ’dph’ MSB for two byte
values. ’dpl’, ’dph’ and ’b’ for three byte values (generic pointers) and ’dpl’,’dph’,’b’ & ’acc’ for four byte values.

The parameter naming convention is _<function_name>_PARM_<n>, where n is the parameter number
starting from 1, and counting from the left. The first parameter is passed in “dpl” for a one byte parameter, “dptr”
for two bytes, “b,dptr” for three bytes and “acc,b,dptr” for a four bytes parameter. The variable name for the
second parameter will be _<function_name>_PARM_2.

Assemble the assembler routine with the following command:

asx8051 -losg asmfunc.asm

Then compile and link the assembler routine to the C source file with the following command:

sdcc cfunc.c asmfunc.rel

3.13.3 Assembler Routine (reentrant)

In this case the second parameter onwards will be passed on the stack, the parameters are pushed from right to left
i.e. after the call the leftmost parameter will be on the top of the stack. Here is an example:

extern int asm_func(unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j) reentrant
{

return asm_func(i,j);
}

int main()
{

return c_func(10,9);
}

The corresponding assembler routine is:

.globl _asm_func
_asm_func:

push _bp

42

3.14. INT (16 BIT) AND LONG (32 BIT) SUPPORT CHAPTER 3. USING SDCC

mov _bp,sp
mov r2,dpl
mov a,_bp
add a,#0xfd
mov r0,a
add a,#0xfc ;?
mov r1,a
mov a,@r0
add a,r2 ;?
mov dpl,a
mov dph,#0x00
mov sp,_bp
pop _bp
ret

The compiling and linking procedure remains the same, however note the extra entry & exit linkage required for
the assembler code, _bp is the stack frame pointer and is used to compute the offset into the stack for parameters
and local variables.

3.14 int (16 bit) and long (32 bit) Support

For signed & unsigned int (16 bit) and long (32 bit) variables, division, multiplication and modulus operations are
implemented by support routines. These support routines are all developed in ANSI-C to facilitate porting to other
MCUs, although some model specific assembler optimizations are used. The following files contain the described
routines, all of them can be found in <installdir>/share/sdcc/lib.

Function Description

_mulint.c 16 bit multiplication
_divsint.c signed 16 bit division (calls _divuint)
_divuint.c unsigned 16 bit division
_modsint.c signed 16 bit modulus (calls _moduint)
_moduint.c unsigned 16 bit modulus
_mullong.c 32 bit multiplication
_divslong.c signed 32 division (calls _divulong)
_divulong.c unsigned 32 division
_modslong.c signed 32 bit modulus (calls _modulong)
_modulong.c unsigned 32 bit modulus

Since they are compiled asnon-reentrant, interrupt service routines should not do any of the above operations.
If this is unavoidable then the above routines will need to be compiled with the--stack-autooption, after which
the source program will have to be compiled with--int-long-reentoption. Notice that you don’t have to call these
routines directly. The compiler will use them automatically every time an integer operation is required.

3.15 Floating Point Support

SDCC supports IEEE (single precision 4 bytes) floating point numbers.The floating point support routines are
derived from gcc’s floatlib.c and consist of the following routines:

43

3.16. LIBRARY ROUTINES CHAPTER 3. USING SDCC

Function Description

_fsadd.c add floating point numbers
_fssub.c subtract floating point numbers
_fsdiv.c divide floating point numbers
_fsmul.c multiply floating point numbers
_fs2uchar.c convert floating point to unsigned char
_fs2char.c convert floating point to signed char
_fs2uint.c convert floating point to unsigned int
_fs2int.c convert floating point to signed int
_fs2ulong.c convert floating point to unsigned long
_fs2long.c convert floating point to signed long
_uchar2fs.c convert unsigned char to floating point
_char2fs.c convert char to floating point number
_uint2fs.c convert unsigned int to floating point
_int2fs.c convert int to floating point numbers
_ulong2fs.c convert unsigned long to floating point number
_long2fs.c convert long to floating point number

These support routines are developed in ANSI-C so there is room for space and speed improvement4. Note if
all these routines are used simultaneously the data space might overflow. For serious floating point usage the large
model might be needed. Also notice that you don’t have to call this routines directly. The compiler will use them
automatically every time a floating point operation is required.

3.16 Library Routines

<pending: this is messy and incomplete - a little more information is in sdcc/doc/libdoc.txt>

3.16.1 Compiler support routines (_gptrget, _mulint etc.)

3.16.2 Stdclib functions (puts, printf, strcat etc.)

3.16.2.1 <stdio.h>

As usual on embedded systems you have to provide your owngetchar() andputchar() routines. SDCC does
not know whether the system connects to a serial line with or without handshake, LCD, keyboard or other device.
And whether alf to crlf conversion withinputchar() is intended. You’ll find examples for serial routines f.e.
in sdcc/device/lib.

The defaultprintf()implementation inprintf_large.c does not support float (except on ds390). To enable
this recompile it with the option-DUSE_FLOATS=1on the command line. Use--model-largefor the mcs51 port,
since this uses a lot of memory.

If you’re short on memory you might want to useprintf_small() insteadof printf(). For the mcs51 there
additionally are assembly versionsprintf_tiny() (subset of printf using less than 270 bytes) andprintf_fast()
andprintf_fast_f() (floating-point aware version of printf_fast) which should fit the requirements of many
embedded systems (printf_fast() can be customized by unsetting #defines tonot support long variables and field
widths).

3.16.3 Math functions (sinf, powf, sqrtf etc.)

3.16.3.1 <math.h>

See definitions in file <math.h>.
4These floating point routines (not sinf(), cosf(), ...) for the mcs51 are implemented in assembler.

44

3.17. MEMORY MODELS CHAPTER 3. USING SDCC

3.16.4 Other libraries

Libraries included in SDCC should have a license at least as liberal as the GNU Lesser General Public License
LGPL.

If you have ported some library or want to share experience about some code which f.e. falls into any of
these categories Busses (I2C, CAN, Ethernet, Profibus, Modbus, USB, SPI, JTAG ...), Media (IDE, Memory cards,
eeprom, flash...), En-/Decryption, Remote debugging, Realtime kernel, Keyboard, LCD, RTC, FPGA, PID then
the sdcc-user mailing listhttp://sourceforge.net/mail/?group_id=599 would certainly like to hear about it.
Programmers coding for embedded systems are not especially famous for being enthusiastic, so don’t expect a big
hurray but as the mailing list is searchable these references are very valuable. Let’s help to create a climate where
information is shared.

3.17 Memory Models

3.17.1 MCS51 Memory Models

3.17.1.1 Small, Medium and Large

SDCC allows three memory models for MCS51 code,small, medium andlarge. Modules compiled with different
memory models shouldneverbe combined together or the results would be unpredictable. The library routines
supplied with the compiler are compiled as small, medium and large. The compiled library modules are contained
in separate directories as small, medium and large so that you can link to the appropriate set.

When the medium or large model is used all variables declared without a storage class will be allocated into the
external ram, this includes all parameters and local variables (for non-reentrant functions). When the small model
is used variables without storage class are allocated in the internal ram.

Judicious usage of the processor specific storage classes and the ’reentrant’ function type will yield much more
efficient code, than using the large model. Several optimizations are disabled when the program is compiled using
the large model, it is therefore recommended that the small model be used unless absolutely required.

3.17.1.2 External Stack

The external stack (--xstack option) is located in pdata memory (usually at the start of the external ram segment)
and uses all unused space in pdata (max. 256 bytes). When --xstack option is used to compile the program, the
parameters and local variables of all reentrant functions are allocated in this area. This option is provided for
programs with large stack space requirements. When used with the --stack-auto option, all parameters and local
variables are allocated on the external stack (note: support libraries will need to be recompiled with the same
options. There is a predefined target in the library makefile).

The compiler outputs the higher order address byte of the external ram segment into port P2 (see also section
4.1), therefore when using the External Stack option, this portmay notbe used by the application program.

3.17.2 DS390 Memory Model

The only model supported is Flat 24. This generates code for the 24 bit contiguous addressing mode of the Dallas
DS80C390 part. In this mode, up to four meg of external RAM or code space can be directly addressed. See the
data sheets at www.dalsemi.com for further information on this part.

Note that the compiler does not generate any code to place the processor into 24 bitmode (althoughtinibios
in the ds390 libraries will do that for you). If you don’t usetinibios, the boot loader or similar code must ensure
that the processor is in 24 bit contiguous addressing mode before calling the SDCC startup code.

Like the--model-largeoption, variables will by default be placed into the XDATA segment.

Segments may be placed anywhere in the 4 meg address space using the usual --*-loc options. Note that if
any segments are located above 64K, the -r flag must be passed to the linker to generate the proper segment
relocations, and the Intel HEX output format must be used. The -r flag can be passed to the linker by using the
option-Wl-r on the SDCC command line. However, currently the linker can not handle code segments > 64k.

45

http://sourceforge.net/mail/?group_id=599

3.18. PRAGMAS CHAPTER 3. USING SDCC

3.18 Pragmas

SDCC supports the following #pragma directives:

• save - this will save all current options to the save/restore stack. See #pragma restore.

• restore - will restore saved options from the last save. saves & restores can be nested. SDCC uses a
save/restore stack: save pushes current options to the stack, restore pulls current options from the stack. See
#pragma save.

• callee_saves function1[,function2[,function3...]] - The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing & popping when
calling small functions from larger functions. This option can be used to switch off the register saving con-
vention for the function names specified. The compiler will not save registers when calling these functions,
extra code need to be manually inserted at the entry & exit for these functions to save & restore the registers
used by these functions, this can SUBSTANTIALLY reduce code & improve run time performance of the
generated code. In the future the compiler (with inter procedural analysis) may be able to determine the
appropriate scheme to use for each function call. If --callee-saves command line option is used, the function
names specified in #pragma callee_saves is appended to the list of functions specified in the command line.

• exclude none | {acc[,b[,dpl[,dph]]] - The exclude pragma disables the generation of pairs of push/pop in-
structions inInterruptServiceRoutines. The directive should be placed immediately before the ISR function
definition and it affects ALL ISR functions following it. To enable the normal register saving for ISR func-
tions use #pragma exclude none. See also the related keyword _naked.

• less_pedantic - the compiler will not warn you anymore for obvious mistakes, you’r on your own now ;-(

• disable_warning <nnnn> - the compiler will not warn you anymore about warning number <nnnn>.

• nogcse - will stop global common subexpression elimination.

• noinduction - will stop loop induction optimizations.

• noinvariant - will not do loop invariant optimizations. For more details see Loop Invariants in section8.1.4.

• noiv - Do not generate interrupt vector table entries for all ISR functions defined after the pragma. This
is useful in cases where the interrupt vector table must be defined manually, or when there is a secondary,
manually defined interrupt vector table (e.g. for the autovector feature of the Cypress EZ-USB FX2). More
elegantly this can be achieved by obmitting the optional interrupt number after the interrupt keyword, see
section3.8about interrupts.

• nojtbound - will not generate code for boundary value checking, when switch statements are turned into
jump-tables (dangerous). For more details see section8.1.7.

• noloopreverse - Will not do loop reversal optimization

• nooverlay - the compiler will not overlay the parameters and local variables of a function.

• stackauto- See option --stack-auto and section3.6Parameters and Local Variables.

• opt_code_speed - The compiler will optimize code generation towards fast code, possibly at the expense of
code size.

• opt_code_size - The compiler will optimize code generation towards compact code, possibly at the expense
of code speed.

• opt_code_balanced - The compiler will attempt to generate code that is both compact and fast, as long as
meeting one goal is not a detriment to the other (this is the default).

• std_sdcc89 - Generally follow the C89 standard, but allow SDCC features that conflict with the standard
(default).

46

3.19. DEFINES CREATED BY THE COMPILER CHAPTER 3. USING SDCC

• std_c89 - Follow the C89 standard and disable SDCC features that conflict with the standard.

• std_sdcc99 - Generally follow the C99 standard, but allow SDCC features that conflict with the standard
(incomplete support).

• std_c99 - Follow the C99 standard and disable SDCC features that conflict with the standard (incomplete
support).

• codeseg <name>- Use this name (max. 8 characters) for the code segment. See option --codeseg.

• constseg <name>- Use this name (max. 8 characters) for the const segment. See option --constseg.

SDCPP supports the following #pragma directives:

• preproc_asm (+ | -) - switch _asm _endasm block preprocessing on / off. Default is on.

The pragma’s are intended to be used to turn-on or off certain optimizations which might cause the compiler to
generate extra stack / data space to store compiler generated temporary variables. This usually happens in large
functions. Pragma directives should be used as shown in the following example, they are used to control options
& optimizations for a given function; pragmas should be placed before and/or after a function, placing pragma’s
inside a function body could have unpredictable results.

#pragma save /* save the current settings */
#pragma nogcse /* turnoff global subexpression elimination */
#pragma noinduction /* turn off induction optimizations */
int foo ()
{

...
/* large code */
...

}
#pragma restore /* turn the optimizations back on */

The compiler will generate a warning message when extra space is allocated. It is strongly recommended that the
save and restore pragma’s be used when changing options for a function.

3.19 Defines Created by the Compiler

The compiler creates the following #defines:

#define Description

SDCC Always defined. Since version 2.5.6 the version number as an int (ex. 256)
SDCC_mcs51 or SDCC_ds390 or SDCC_z80, etcdepending on the model used (e.g.: -mds390
__mcs51, __ds390, __hc08, __z80, etc depending on the model used (e.g. -mz80)
SDCC_STACK_AUTO when--stack-autooption is used
SDCC_MODEL_SMALL when--model-smallis used
SDCC_MODEL_MEDIUM when--model-mediumis used
SDCC_MODEL_LARGE when--model-largeis used
SDCC_USE_XSTACK when--xstackoption is used
SDCC_STACK_TENBIT when-mds390is used
SDCC_MODEL_FLAT24 when-mds390is used

47

Chapter 4

Notes on supported Processors

4.1 MCS51 variants

MCS51 processors are available from many vendors and come in many different flavours. While they might differ
considerably in respect to Special Function Registers the core MCS51 is usually not modified or is kept compatible.

4.1.1 pdata access by SFR

With the upcome of devices with internal xdata and flash memory devices using port P2 as dedicated I/O port is
becoming more popular. Switching the high byte for pdata access which was formerly done by port P2 is then
achieved by a Special Function Register. In well-established MCS51 tradition the address of thissfr is where the
chip designers decided to put it. Needless to say that they didn’t agree on a common name either. So that the startup
code can correctly initialize xdata variables, you should define an sfr with the name _XPAGE at the appropriate
location if the default, port P2, is not used for this. Some examples are:

sfr at 0x92 _XPAGE; /* Cypress EZ-USB family */

sfr at 0xaf _XPAGE; /* some Silicon Labs (Cygnal) chips */

sfr at 0xaa _XPAGE; /* some Silicon Labs (Cygnal) chips */

For more exotic implementations further customizations may be needed. See section3.11for other possibilities.

4.1.2 Other Features available by SFR

Some MCS51 variants offer features like Double DPTR, multiple DPTR, decrementing DPTR, 16x16 Multiply.
These are currently not used for the MCS51 port. If you absolutely need them you can fall back to inline assembly
or submit a patch to SDCC.

4.2 DS400 port

The DS80C400 microcontroller has a rich set of peripherals. In its built-in ROM library it includes functions to
access some of the features, among them is a TCP stack with IP4 and IP6 support. Library headers (currently in
beta status) and other files are provided atftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html.

4.3 The Z80 and gbz80 port

SDCC can target both the Zilog and the Nintendo Gameboy’s Z80-like gbz80. The Z80 port is passed through the
sameregressions testsas the MCS51 and DS390 ports, so floating point support, support for long variables and
bitfield support is fine. See mailing lists and forums about interrupt routines.

As always, the code is the authoritative reference - see z80/ralloc.c and z80/gen.c. The stack frame is similar
to that generated by the IAR Z80 compiler. IX is used as the base pointer, HL and IY are used as a temporary
registers, and BC and DE are available for holding variables. Return values for the Z80 port are stored in L (one
byte), HL (two bytes), or DEHL (four bytes). The gbz80 port use the same set of registers for the return values, but
in a different order of significance: E (one byte), DE (two bytes), or HLDE (four bytes).

48

ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html

4.4. THE HC08 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.4 The HC08 port

The port to the Motorola HC08 family has been added in October 2003, and is still undergoing some basic
development. The code generator is complete, but the register allocation is still quite unoptimized. Some of the
SDCC’s standard C library functions have embedded non-HC08 inline assembly and so are not yet usable.

4.5 The PIC14 port

The 14bit PIC port still requires a major effort from the development community. However it can work for very
simple code.

4.5.1 C code and 14bit PIC code page and RAM banks

The linker organizes allocation for the code page and RAM banks. It does not have intimate knowledge of the code
flow. It will put all the code section of a single asm file into a single code page. In order to make use of multiple
code pages, separate asm files must be used. The compiler treats all functions of a single C file as being in the
same code page unless it is non static. The compiler treats all local variables of a single C file as being in the same
RAM bank unless it is an extern.

To get the best follow these guide lines:

1. make local functions static, as non static functions require code page selection overhead.

2. Make local variables static as extern variables require RAM bank selection overhead.

3. For devices that have multiple code pages it is more efficient to use the same number of files as pages, i.e. for
the 16F877 use 4 separate files and i.e. for the 16F874 use 2 separate files. This way the linker can put the
code for each file into different code pages and the compiler can allocate reusable variables more efficiently
and there’s less page selection overhead. And as for any 8 bit micro (especially for PIC 14 as they have a
very simple instruction set) use ’unsigned char’ whereever possible instead of ’int’.

4.5.2 Creating a device include file

For generating a device include file use the support perl script inc2h.pl kept in directory support/script.

4.5.3 Interrupt code

For the interrupt function, use the keyword ’interrupt’ with level number of 0 (PIC14 only has 1 interrupt so this
number is only there to avoid a syntax error - it ought to be fixed). E.g.:

void Intr(void) interrupt 0
{

T0IF = 0; /* Clear timer interrupt */
}

4.5.4 Linking and assembling

For assembling you can use either GPUTILS’ gpasm.exe or MPLAB’s mpasmwin.exe. GPUTILS is available from
http://sourceforge.net/projects/gputils. For linking you can use either GPUTIL’s gplink or MPLAB’s
mplink.exe. If you use MPLAB and an interrupt function then the linker script file vectors section will need to be
enlarged to link with mplink.

Here is aMakefile using GPUTILS:

49

http://sourceforge.net/projects/gputils

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

.c.o:
sdcc -S -V -mpic14 -p16F877 $<
gpasm -c $*.asm

$(PRJ).hex: $(OBJS)
gplink -m -s $(PRJ).lkr -o $(PRJ).hex $(OBJS) libsdcc.lib

Here is aMakefile using MPLAB:

.c.o:
sdcc -S -V -mpic14 -p16F877 $<
mpasmwin /q /o $*.asm

$(PRJ).hex: $(OBJS)
mplink /v $(PRJ).lkr /m $(PRJ).map /o $(PRJ).hex $(OBJS) libsdcc.lib

Please note that indentations within aMakefile have to be done with a tabulator character.

4.5.5 Command-line options

Besides the switches common to all SDCC backends, the PIC14 port accepts the following options (for an updated
list see sdcc --help):

--debug-extraemit debug info in assembly output

--no-pcode-optdisable (slightly faulty) optimization on pCode

4.5.6 The library

4.5.6.1 error: missing definition for symbol ”__gptrget1”

The PIC14 port uses library routines to provide more complex operations like multiplication, division/modulus
and (generic) pointer dereferencing. In order to add these routines to your project, you must link with PIC14’s
libsdcc.lib. For single source file projects this is done automatically, more complex projects must add
libsdcc.lib to the linker’s arguments. Make sure you also add an include path for the library (using the -I
switch to the linker)!

4.5.6.2 Processor mismatch in file ”XXX”.

This warning can usually be ignored due to the very good compatibility amongst 14 bit PIC devices.
You might also consider recompiling the library for your specific device by changing the ARCH=p16f877

(default target) entry indevice/lib/pic/Makefile.in anddevice/lib/pic/Makefile to reflect your device.
This might even improve performance for smaller devices as unneccesary BANKSELs migth be removed.

4.5.7 Known bugs

4.5.7.1 initialized data

Currently, data can only be initialized if it resides in the source file together withmain(). Data in other source files
will silently not be initialized.

4.6 The PIC16 port

The PIC16 port is the portion of SDCC that is responsible to produce code for the Microchip(TM) microcontrollers
with 16 bit core. Currently this family of microcontrollers contains the PIC18Fxxx and PIC18Fxxxx. Currently
supported devices are:

50

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

18F242 18F248 18F252 18F258 18F442 18F448
18F452 18F458 18F1220 18F2220 18F2550 18F4331
18F4455 18F6520 18F6620 18F6680 18F6720 18F8520
18F8620 18F8680 18F8720

4.6.1 Global Options

PIC16 port supports the standard command line arguments as supposed, with the exception of certain cases that
will be mentioned in the following list:

--callee-savesSee --all-callee-saves

--all-callee-savesAll function arguments are passed on stack by default.There is no need to specify this in the
command line.

--fommit-frame-pointerFrame pointer will be omitted when the function uses no local variables.

4.6.2 Port Specific Options

The port specific options appear after the global options in the sdcc –help output.

4.6.2.1 General Options

General options enable certain port features and optimizations.

--stack-model=[model]Used in conjuction with the command above. Defines the stack model to be used, valid
stack models are :

small Selects small stack model. 8 bit stack and frame pointers. Supports 256 bytes stack size.

large Selects large stack model. 16 bit stack and frame pointers. Supports 65536 bytes stack
size.

--preplace-udata-with=[kword]Replaces the default udata keyword for allocating unitialized data variables with
[kword]. Valid keywords are: "udata_acs", "udata_shr", "udata_ovr".

--ivt-loc <nnnn> positions the Interrupt Vector Table at location <nnnn>. Useful for bootloaders.

--asm= sets the full path and name of an external assembler to call.

--link= sets the full path and name of an external linker to call.

--mplab-compMPLAB compatibility option. Currently only suppresses special gpasm directives.

4.6.2.2 Optimization Options

--optimize-gotoTry to use (conditional) BRA instead of GOTO

--optimize-cmpTry to optimize some compares.

--optimize-df Analyze the dataflow of the generated code and improve it.

--obanksel=nnSet optimization level for inserting BANKSELs.

0 no optimization

1 checks previous used register and if it is the same then does not emit BANKSEL, accounts
only for labels.

2 tries to check the location of (even different) symbols and removes BANKSELs if they are
in the same bank.
Important: There might be problems if the linker script has data sections across bank
borders!

51

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.2.3 Linking Options

--nodefaultlibsdo not link default libraries when linking

--no-crt Don’t link the default run-time modules

--use-crt= Use a custom run-time module instead of the defaults.

4.6.2.4 Debugging Options

Debugging options enable extra debugging information in the output files.

--debug-xtraSimilar to --debug, but dumps more information.

--debug-rallocForce register allocator to dump <source>.d file with debugging information. <source> is the name
of the file compiled.

--pcode-verboseEnable pcode debugging information in translation.

--denable-peepsForce the usage of peepholes. Use with care.

--gstack Trace push/pops for stack pointer overflow

--call-tree dump call tree in .calltree file

4.6.3 Enviromental Variables

There is a number of enviromental variables that can be used when running SDCC to enable certain optimiza-
tions or force a specific program behaviour. these variables are primarily for debugging purposes so they can be
enabled/disabled at will.

Currently there is only two such variables available:

OPTIMIZE_BITFIELD_POINTER_GETwhen this variable exists reading of structure bitfields is optimized by
directly loading FSR0 with the address of the bitfield structure. Normally SDCC will cast the bitfield
structure to a bitfield pointer and then load FSR0. This step saves data ram and code space for functions
that perform heavy use of bitfields. (ie. 80 bytes of code space are saved when compiling malloc.c
with this option).

NO_REG_OPTdo not perform pCode registers optimization. This should be used for debugging purposes. In
some where bugs in the pcode optimizer are found, users can benefit from temporarily disabling the
optimizer until the bug is fixed.

4.6.4 Preprocessor Macros

PIC16 port defines the following preprocessor macros while translating a source.

Macro Description

SDCC_pic16 Port identification
__pic16 Port identification (same as above)

pic18fxxxx MCU Identification.xxxxis the microcontrol identification number, i.e. 452, 6620, etc
__18Fxxxx MCU Identification (same as above)

STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

In addition the following macros are defined when calling assembler:

Macro Description

__18Fxxxx MCU Identification.xxxxis the microcontrol identification number, i.e. 452, 6620, etc
SDCC_MODEL_nnn nnn = SMALL or LARGE respectively according to the memory model used for SDCC
STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

52

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.5 Directories

PIC16 port uses the following directories for searching header files and libraries.

Directory Description Target Command prefix

PREFIX/sdcc/include/pic16 PIC16 specific headers Compiler -I
PREFIX/sdcc/lib/pic16 PIC16 specific libraries Linker -L

4.6.6 Pragmas

PIC16 port currently supports the following pragmas:

stack pragma stack forces the code generator to initialize the stack & frame pointers at a specific address.
This is an adhoc solution for cases where no STACK directive is available in the linker script or gplink
is not instructed to create a stack section.
The stack pragma should be used only once in a project. Multiple pragmas may result in indeterminate
behaviour of the program.1

The format is as follows:

#pragma stack bottom_address [stack_size]

bottom_addressis the lower bound of the stack section. The stack pointer initially will point at address
(bottom_address+stack_size-1).

Example:
/* initializes stack of 100 bytes at RAM address 0x200 */
#pragma stack 0x200 100

If the stack_size field is omitted then a stack is created with the default size of 64. This size might be enough for
most programs, but its not enough for operations with deep function nesting or excessive stack usage.

wparam This pragma is deprecated. Its use will cause a warning message to be issued.

code place a function symbol at static FLASH address

Example:
/* place function test_func at 0x4000 */
#pragma code test_func 0x4000

library instructs the linker to use a library module.
Usage:

#pragma library module_name

module_namecan be any library or object file (including its path). Note that there are four reserved keywords
which have special meaning. These are:

Keyword Description Module to link

ignore ignore all library pragmas (none)
c link the C library libc18f.lib

math link the Math libarary libm18f.lib
io link the I/O library libio18f*.lib

debug link the debug library libdebug.lib
* is the device number, i.e. 452 for PIC18F452 MCU.

This feature allows for linking with specific libraries withoug having to explicit name them in the command
line. Note that theIGNORE keyword will reject all modules specified by the library pragma.

1The old format (ie. #pragma stack 0x5ff) is deprecated and will cause the stack pointer to cross page boundaries (or even exceed the
available data RAM) and crash the program. Make sure that stack does not cross page boundaries when using the SMALL stack model.

53

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

udata pragma udata instructs the compiler to emit code so that linker will place a variable at a specific memory
bank

Example:
/* places variable foo at bank2 */
#pragma udata bank2 foo
char foo;

In order for this pragma to work extra SECTION directives should be added in the .lkr script. In the following
example a sample .lkr file is shown:

// Sample linker script for the PIC18F452 processor
LIBPATH .
CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7FFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED
ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED
SECTION NAME=CONFIG ROM=config
SECTION NAME=bank0 RAM=gpr0 # these SECTION directives
SECTION NAME=bank1 RAM=gpr1 # should be added to link
SECTION NAME=bank2 RAM=gpr2 # section name ’bank?’ with
SECTION NAME=bank3 RAM=gpr3 # a specific DATABANK name
SECTION NAME=bank4 RAM=gpr4
SECTION NAME=bank5 RAM=gpr5

The linker will recognise the section name set in the pragma statement and will position the variable at the memory
bank set with the RAM field at the SECTION line in the linker script file.

4.6.7 Header Files

There is one main header file that can be included to the source files using the pic16 port. That file is the
pic18fregs.h. This header file contains the definitions for the processor special registers, so it is necessary if
the source accesses them. It can be included by adding the following line in the beginning of the file:

#include <pic18fregs.h>

The specific microcontroller is selected within the pic18fregs.h automatically, so the same source can be used with
a variety of devices.

4.6.8 Libraries

The libraries that PIC16 port depends on are the microcontroller device libraries which contain the symbol defini-
tions for the microcontroller special function registers. These libraries have the format pic18fxxxx.lib, wherexxxx
is the microcontroller identification number. The specific library is selected automatically by the compiler at link
stage according to the selected device.

Libraries are created with gplib which is part of the gputils packagehttp://sourceforge.net/projects/
gputils.

54

http://sourceforge.net/projects/gputils
http://sourceforge.net/projects/gputils

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

Building the libraries

Before using SDCC/pic16 there are some libraries that need to be compiled. This process is not done automatically
by SDCC since not all users use SDCC for pic16 projects. So each user should compile the libraries separately.

The steps to compile the pic16 libraries under Linux are:

cd device/lib/pic16
./configure
make
cd ..
make model-pic16
su -c ’make install’ # install the libraries, you need the root password

If you need to install the headers too, do:

cd device/include
su -c ’make install’ # install the headers, you need the root password

There exist a special target to build the I/O libraries. This target is not automatically build because it will build the
I/O library for everysupported device. This way building will take quite a lot of time. Users are advised to edit the
device/lib/pic16/pics.buildfile and then execute:

make lib-io

4.6.9 Memory Models

The following memory models are supported by the PIC16 port:

• small model

• large model

Memory model affects the default size of pointers within the source. The sizes are shown in the next table:

Pointer sizes according to memory modelsmall model large model

code pointers 16-bits 24-bits
data pointers 16-bits 16-bits

It is advisable that all sources within a project are compiled with the same memory model. If one wants to
override the default memory model, this can be done by declaring a pointer asfar or near. Far selects large
memory model’s pointers, while near selects small memory model’s pointers.

The standard device libraries (see4.6.7) contain no reference to pointers, so they can be used with both memory
models.

4.6.10 Stack

The stack implementation for the PIC16 port uses two indirect registers, FSR1 and FSR2.

FSR1 is assigned as stack pointer

FSR2 is assigned as frame pointer

The following stack models are supported by the PIC16 port

• SMALL model

• LARGE model

SMALL model means that only the FSRxL byte is used to access stack and frame, whileLARGE uses both FSRxL
and FSRxH registers. The following table shows the stack/frame pointers sizes according to stack model and the
maximum space they can address:

55

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

Stack & Frame pointer sizes according to stack modelsmall large

Stack pointer FSR1 8-bits 16-bits
Frame pointer FSR2 8-bits 16-bits

LARGE stack model is currently not working properly throughout the code generator. So its use is not advised.
Also there are some other points that need special care:

1. Do not create stack sections with size more than one physical bank (that is 256 bytes)

2. Stack sections should no cross physical bank limits (i.e. #pragma stack 0x50 0x100)

These limitations are caused by the fact that only FSRxL is modified when using SMALL stack model, so no more
than 256 bytes of stack can be used. This problem will disappear after LARGE model is fully implemented.

4.6.11 Functions

In addition to the standard SDCC function keywords, PIC16 port makes available two more:

wparam Use the WREG to pass one byte of the first function argument. This improves speed but you may not
use this for functions with arguments that are called via function pointers, otherwise the first byte of
the first parameter will get lost. Usage:

void func_wparam(int a) wparam
{

/* WREG hold the lower part of a */
/* the high part of a is stored in FSR2+2 (or +3 for large stack model) */

...
}

This keyword replaces the deprecated wparam pragma.

shadowregsWhen entering/exiting an ISR, it is possible to take advantage of the PIC18F hardware shadow registers
which hold the values of WREG, STATUS and BSR registers. This can be done by adding the keyword
shadowregsbefore theinterrupt keyword in the function’s header.

void isr_shadow(void) shadowregs interrupt 1
{
...
}

shadowregsinstructs the code generator not to store/restore WREG, STATUS, BSR when entering/exiting the ISR.

4.6.12 Function return values

Return values from functions are placed to the appropriate registers following a modified Microchip policy opti-
mized for SDCC. The following table shows these registers:

size destination register

8 bits WREG
16 bits PRODL:WREG
24 bits PRODH:PRODL:WREG
32 bits FSR0L:PRODH:PRODL:WREG

>32 bits on stack, FSR0 points to the beginning

56

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.13 Interrupts

An interrupt servive routine (ISR) is declared using theinterrupt keyword.

void isr(void) interrupt n
{
...
}

n is the interrupt number, which for PIC18F devices can be:

n Interrupt Vector Interrupt Vector Address

0 RESET vector 0x000000
1 HIGH priority interrupts 0x000008
2 LOW priority interrupts 0x000018

When generating assembly code for ISR the code generator places aGOTO instruction at theInterrupt Vector
Addresswhich points at the genetated ISR. This single GOTO instruction is part of an automatically generated
interrupt entry pointfunction. The actuall ISR code is placed as normally would in the code space. Upon interrupt
request, the GOTO instruction is executed which jumps to the ISR code. When declaring interrupt functions as
_naked this GOTO instruction isnot generated. The whole interrupt functions is therefore placed at the Interrupt
Vector Address of the specific interrupt. This is not a problem for the LOW priority interrupts, but it is a problem
for the RESET and the HIGH priority interrupts because code may be written at the next interruptt’s vector address
and cause undeterminate program behaviour if that interrupt is raised.2

n is possible to be omitted. This way a function is generated similar to an ISR, but it is not assigned to any
interrupt.

When entering an interrupt, currently the PIC16 port automatically saves the following registers:

• WREG

• STATUS

• BSR

• PROD (PRODL and PRODH)

• FSR0 (FSR0L and FSR0H)

These registers are restored upon return from the interrupt routine.3

4.6.14 Generic Pointers

Generic pointers are implemented in PIC16 port as 3-byte (24-bit) types. There are 3 types of generic pointers
currently implemented data, code and eeprom pointers. They are differentiated by the value of the 7th and 6th bits
of the upper byte:

pointer type 7th bit 6th bit rest of the pointer descrption

data 1 0 uuuuuu uuuuxxxx xxxxxxxx a 12-bit data pointer in data RAM memory
code 0 0 uxxxxx xxxxxxxx xxxxxxxx a 21-bit code pointer in FLASH memory

eeprom 0 1 uuuuuu uuuuuuxx xxxxxxxx a 10-bit eeprom pointer in EEPROM memory
(unimplemented) 1 1 xxxxxx xxxxxxxx xxxxxxxx unimplemented pointer type

Generic pointer are read and written with a set of library functions which read/write 1, 2, 3, 4 bytes.

2This is not a problem when

1. this is a HIGH interrupt ISR and LOW interrupts aredisabledor not used.

2. when the ISR is small enough not to reach the next interruptt’s vector address.

3NOTE that when the _naked attribute is specified for an interrupt routine, then NO registers are stored or restored.

57

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.15 PIC16 C Libraries

4.6.15.1 Standard I/O Streams

In thestdio.hthe type FILE is defined as:

typedef char * FILE;

This type is the stream type implemented I/O in the PIC18F devices. Also the standard input and output streams
are declared in stdio.h:

extern FILE * stdin;
extern FILE * stdout;

The FILE type is actually a generic pointer which defines one more type of generic pointers, thestreampointer.
This new type has the format:

pointer type <7:6> <5> <4> <3:0> rest of the pointer descrption

stream 00 1 0 nnnn uuuuuuuu uuuuuuuu upper byte high nubble is 0x2n, the rest are zeroes

Currently implemented there are 3 types of streams defined:

stream type value module description

STREAM_USART 0x200000UL USART Writes/Reads characters via the USART peripheral
STREAM_MSSP 0x210000UL MSSP Writes/Reads characters via the MSSP peripheral
STREAM_USER 0x2f0000UL (none) Writes/Reads characters via used defined functions

The stream identifiers are declared as macros in the stdio.h header.
In the libc library there exist the functions that are used to write to each of the above streams. These are

__stream_usart_putcharwrites a character at the USART stream

__stream_mssp_putcharwrites a character at the MSSP stream

putchar dummy function. This writes a character to a user specified manner.

In order to increase performanceputcharis declared in stdio.h as having its parameter in WREG (it has the wparam
keyword). In stdio.h exists the macro PUTCHAR(arg) that defines the putchar function in a user-friendly way.arg
is the name of the variable that holds the character to print. An example follows:

#include <pic18fregs.h>
#include <stdio.h>

PUTCHAR(c)
{

PORTA = c; /* dump character c to PORTA */
}

void main(void)
{

stdout = STREAM_USER; /* this is not necessery, since stdout points
* by default to STREAM_USER */

printf (ĺThis is a printf test\nĺ);
}

58

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.15.2 Printing functions

PIC16 contains an implementation of the printf-family of functions. There exist the following functions:

extern unsigned int sprintf(char *buf, char *fmt, ...);
extern unsigned int vsprintf(char *buf, char *fmt, va_list ap);
extern unsigned int printf(char *fmt, ...);
extern unsigned int vprintf(char *fmt, va_lista ap);
extern unsigned int fprintf(FILE *fp, char *fmt, ...);
extern unsigned int vfprintf(FILE *fp, char *fmt, va_list ap);

For sprintf and vsprintfbuf should normally be a data pointer where the resulting string will be placed. No range
checking is done so the user should allocate the necessery buffer. For fprintf and vfprintffp should be a stream
pointer (i.e. stdout, STREAM_MSSP, etc...).

4.6.15.3 Signals

The PIC18F family of microcontrollers supports a number of interrupt sources. A list of these interrupts is shown
in the following table:

signal name description signal name descritpion

SIG_RB PORTB change interrupt SIG_EE EEPROM/FLASH write complete interrupt
SIG_INT0 INT0 external interrupt SIG_BCOL Bus collision interrupt
SIG_INT1 INT1 external interrupt SIG_LVD Low voltage detect interrupt
SIG_INT2 INT2 external interrupt SIG_PSP Parallel slave port interrupt
SIG_CCP1 CCP1 module interrupt SIG_AD AD convertion complete interrupt
SIG_CCP2 CCP2 module interrupt SIG_RC USART receive interrupt
SIG_TMR0 TMR0 overflow interrupt SIG_TX USART transmit interrupt
SIG_TMR1 TMR1 overflow interrupt SIG_MSSP SSP receive/transmit interrupt
SIG_TMR2 TMR2 matches PR2 interrupt
SIG_TMR3 TMR3 overflow interrupt

The prototypes for these names are defined in the header filesignal.h.
In order to simplify signal handling, a number of macros is provided:

DEF_INTHIGH(name)begin the definition of the interrupt dispatch table for high priority interrupts.nameis the
function name to use.

DEF_INTLOW(name)begin the definition of the interrupt dispatch table fo low priority interrupt.nameis the
function name to use.

DEF_HANDLER(sig,handler)define a handler for signalsig.

END_DEF end the declaration of the dispatch table.

Additionally there are two more macros to simplify the declaration of the signal handler:

SIGHANDLER(handler)this declares the function prototype for thehandlerfunction.

SIGHANDLERNAKED(handler)same as SIGHANDLER() but declares a naked function.

An example of using the macros above is shown below:

#include <pic18fregs.h>
#include <signal.h>

DEF_INTHIGH(high_int)
DEF_HANDLER(SIG_TMR0, _tmr0_handler)
DEF_HANDLER(SIG_BCOL, _bcol_handler)
END_DEF

59

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

SIGHANDLER(_tmr0_handler)
{

/* action to be taken when timer 0 overflows */
}

SIGHANDLERNAKED(_bcol_handler)
{

_asm
/* action to be taken when bus collision occurs */
retfie

_endasm;
}

NOTES: Special care should be taken when using the above scheme:

• do not place a colon (;) at the end of the DEF_* and END_DEF macros.

• when declaring SIGHANDLERNAKED handler never forget to useretfiefor proper returning.

4.6.16 PIC16 Port – Tips

Here you can find some general tips for compiling programs with SDCC/pic16.

4.6.16.1 Stack size

The default stack size (that is 64 bytes) probably is enough for many programs. One must take care that when there
are many levels of function nesting, or there is excessive usage of stack, its size should be extended. An example of
such a case is the printf/sprintf family of functions. If you encounter problems like not being able to print integers,
then you need to set the stack size around the maximum (256 for small stack model). The following diagram shows
what happens when calling printf to print an integer:

printf () --> ltoa () --> ultoa () --> divschar ()

It is should be understood that stack is easily consumed when calling complicated functions. Using command line
arguments like --fommit-frame-pointer might reduce stack usage by not creating unnecessery stack frames. Other
ways to reduce stack usage may exist.

60

Chapter 5

Debugging

There are several approaches to debugging your code. This chapter is meant to show your options and to give
detail on some of them:

When writing your code:

• write your code with debugging in mind (avoid duplicating code, put conceptually similar variables into
structs, use structured code, have strategic points within your code where all variables are consistent, ...)

• run a syntax-checking tool like splint (see --more-pedantic3.2.8) over the code.

• for the high level code use a C-compiler (like f.e. GCC) to compile run and debug the code on your host. See
(see --more-pedantic3.2.8) on howto handle syntax extensions like __xdata, __at(), ...

• use another C-compiler to compile code for your target. Always an option but not recommended:) And not
very likely to help you. If you seriously consider walking this path you should at least occasionally check
portability of your code. Most commercial compiler vendors will offer an evaluation version so you can test
compile your code or snippets of your code.

Debugging on a simulator:

• there is a separate section about SDCDB (section5.1) below.

• or (8051 specific) use a freeware/commercial simulator which interfaces to the AOMF file (see3.1.1) option-
ally generated by SDCC.

Debugging On-target:

• use a MCU port pin to serially output debug data to the RS232 port of your host. You’ll probably want some
level shifting device typically involving a MAX232 or similar IC. If the hardware serial port of the MCU is
not available search for ’Software UART’ in your favourite search machine.

• use an on-target monitor. In this context a monitor is a small program which usually accepts commands
via a serial line and allows to set program counter, to single step through a program and read/write memory
locations. For the 8051 good examples of monitors are paulmon and cmon51 (see section6.4).

• toggle MCU port pins at strategic points within your code and use an oscilloscope. Adigital oscilloscope
with deep trace memory is really helpful especially if you have to debug a realtime application. If you need to
monitor more pins than your oscilloscope provides you can sometimes get away with a small R-2R network.
On a single channel oscilloscope you could f.e. monitor 2 push-pull driven pins by connecting one via a
10 kΩ resistor and the other one by a 5 kΩ resistor to the oscilloscope probe (check output drive capability
of the pins you want to monitor). If you need to monitor many more pins alogic analyzerwill be handy.

• use an ICE (in circuit emulator). Usually very expensive. And very nice to have too. And usually locks you
(for years...) to the devices the ICE can emulate.

61

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

• use a remote debugger. In most 8-bit systems the symbol information is not available on the target, and a
complete debugger is too bulky for the target system. Therefore usually a debugger on the host system con-
nects to an on-target debugging stub which accepts only primitive commands.
Terms to enter into your favourite search engine could be ’remote debugging’, ’gdb stub’ or ’inferior debug-
ger’. (is there one?)

• use an on target hardware debugger. Some of the more modern MCUs include hardware support for setting
break points and monitoring/changing variables by using dedicated hardware pins. This facility doesn’t
require additional code to run on the target andusuallydoesn’t affect runtime behaviour until a breakpoint is
hit. For the mcs51 most hardware debuggers use the AOMF file (see3.1.1) as input file.

Last not least:

• if you are not familiar with any of the following terms you’re likely to run into problems rather sooner than
later: volatile, atomic, memory map, overlay. As an embedded programmer youhaveto know them so why
not look them upbeforeyou have problems?)

• tell someone else about your problem (actually this is a surprisingly effective means to hunt down the bug
even if the listener is not familiar with your environment). As ’failure to communicate’ is probably one of
the job-induced deformations of an embedded programmer this is highly encouraged.

5.1 Debugging with SDCDB

SDCC is distributed with a source level debugger. The debugger uses a command line interface, the command
repertoire of the debugger has been kept as close to gdb (the GNU debugger) as possible. The configuration and
build process is part of the standard compiler installation, which also builds and installs the debugger in the target
directory specified during configuration. The debugger allows you debug BOTH at the C source and at the ASM
source level. Sdcdb is currently not available on Win32 platforms.

5.1.1 Compiling for Debugging

The --debug option must be specified for all files for which debug information is to be generated. The compiler
generates a .adb file for each of these files. The linker creates the .cdb file from the .adb files and the address
information. This .cdb is used by the debugger.

5.1.2 How the Debugger Works

When the --debug option is specified the compiler generates extra symbol information some of which are put into
the assembler source and some are put into the .adb file. Then the linker creates the .cdb file from the individual
.adb files with the address information for the symbols. The debugger reads the symbolic information generated by
the compiler & the address information generated by the linker. It uses the SIMULATOR (Daniel’s S51) to execute
the program, the program execution is controlled by the debugger. When a command is issued for the debugger,
it translates it into appropriate commands for the simulator. (Currently sdcdb only connects to the simulator but
newcdbathttp://ec2drv.sf.net/ is an effort to connect directly to the hardware.)

5.1.3 Starting the Debugger SDCDB

The debugger can be started using the following command line. (Assume the file you are debugging has the file
name foo).

sdcdb foo

The debugger will look for the following files.

• foo.c - the source file.

• foo.cdb - the debugger symbol information file.

• foo.ihx - the Intel hex format object file.

62

http://ec2drv.sf.net/

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

5.1.4 SDCDB Command Line Options

• --directory=<source file directory> this option can used to specify the directory search list. The debugger
will look into the directory list specified for source, cdb & ihx files. The items in the directory list must be
separated by ’:’, e.g. if the source files can be in the directories /home/src1 and /home/src2, the --directory
option should be --directory=/home/src1:/home/src2. Note there can be no spaces in the option.

• -cd <directory> - change to the <directory>.

• -fullname - used by GUI front ends.

• -cpu <cpu-type> - this argument is passed to the simulator please see the simulator docs for details.

• -X <Clock frequency > this options is passed to the simulator please see the simulator docs for details.

• -s <serial port file> passed to simulator see the simulator docs for details.

• -S <serial in,out> passed to simulator see the simulator docs for details.

• -k <port number> passed to simulator see the simulator docs for details.

5.1.5 SDCDB Debugger Commands

As mentioned earlier the command interface for the debugger has been deliberately kept as close the GNU debugger
gdb, as possible. This will help the integration with existing graphical user interfaces (like ddd, xxgdb or xemacs)
existing for the GNU debugger. If you use a graphical user interface for the debugger you can skip this section.

break [line | file:line | function | file:function]

Set breakpoint at specified line or function:

sdcdb>break 100
sdcdb>break foo.c:100
sdcdb>break funcfoo
sdcdb>break foo.c:funcfoo

clear [line | file:line | function | file:function]

Clear breakpoint at specified line or function:

sdcdb>clear 100
sdcdb>clear foo.c:100
sdcdb>clear funcfoo
sdcdb>clear foo.c:funcfoo

continue

Continue program being debugged, after breakpoint.

finish

Execute till the end of the current function.

delete [n]

Delete breakpoint number ’n’. If used without any option clear ALL user defined break points.

63

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

info [break | stack | frame | registers]

• info break - list all breakpoints

• info stack - show the function call stack.

• info frame - show information about the current execution frame.

• info registers - show content of all registers.

step

Step program until it reaches a different source line. Note: pressing <return> repeats the last command.

next

Step program, proceeding through subroutine calls.

run

Start debugged program.

ptype variable

Print type information of the variable.

print variable

print value of variable.

file filename

load the given file name. Note this is an alternate method of loading file for debugging.

frame

print information about current frame.

set srcmode

Toggle between C source & assembly source.

! simulator command

Send the string following ’!’ to the simulator, the simulator response is displayed. Note the debugger does not
interpret the command being sent to the simulator, so if a command like ’go’ is sent the debugger can loose its
execution context and may display incorrect values.

quit

"Watch me now. Iam going Down. My name is Bobby Brown"

64

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

5.1.6 Interfacing SDCDB with DDD

The .eps File http://svn.sourceforge.net/viewcvs.cgi/*checkout*/sdcc/trunk/sdcc/doc/figures/ddd_example.eps

shows a screenshot of a debugging session with DDD (Unix only) on a simulated 8032. The debugging session
might not run as smoothly as the screenshot suggests. The debugger allows setting of breakpoints, displaying and
changing variables, single stepping through C and assembler code.
The source was compiled with

sdcc --debug ddd_example.c

and DDD was invoked with

ddd -debugger ’sdcdb -cpu 8032 ddd_example’

5.1.7 Interfacing SDCDB with XEmacs

Two files (in emacs lisp) are provided for the interfacing with XEmacs, sdcdb.el and sdcdbsrc.el. These two files
can be found in the $(prefix)/bin directory after the installation is complete. These files need to be loaded into
XEmacs for the interface to work. This can be done at XEmacs startup time by inserting the following into your
’.xemacs’ file (which can be found in your HOME directory):

(load-file sdcdbsrc.el)

.xemacs is a lisp file so the () around the command is REQUIRED. The files can also be loaded dynami-
cally while XEmacs is running, set the environment variable ’EMACSLOADPATH’ to the installation bin directory
(<installdir>/bin), then enter the following command ESC-x load-file sdcdbsrc. To start the interface enter the
following command:

ESC-x sdcdbsrc

You will prompted to enter the file name to be debugged.

The command line options that are passed to the simulator directly are bound to default values in the file
sdcdbsrc.el. The variables are listed below, these values maybe changed as required.

• sdcdbsrc-cpu-type ’51

• sdcdbsrc-frequency ’11059200

• sdcdbsrc-serial nil

The following is a list of key mapping for the debugger interface.

;; Current Listing ::
;;key binding Comment
;;--- ------- -------
;;
;; n sdcdb-next-from-src SDCDB next command
;; b sdcdb-back-from-src SDCDB back command
;; c sdcdb-cont-from-src SDCDB continue command
;; s sdcdb-step-from-src SDCDB step command
;; ? sdcdb-whatis-c-sexp SDCDB ptypecommand for data at
;; buffer point
;; x sdcdbsrc-delete SDCDB Delete all breakpoints if no arg
;; given or delete arg (C-u arg x)
;; m sdcdbsrc-frame SDCDB Display current frame if no arg,
;; given or display frame arg
;; buffer point

65

http://svn.sourceforge.net/viewcvs.cgi/*checkout*/sdcc/trunk/sdcc/doc/figures/ddd_example.eps

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

;; ! sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; p sdcdb-print-c-sexp SDCDB print command for data at
;; buffer point
;; g sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; t sdcdbsrc-mode Toggles Sdcdbsrc mode (turns it off)
;;
;; C-c C-f sdcdb-finish-from-src SDCDB finish command
;;
;; C-x SPC sdcdb-break Set break for line with point
;; ESC t sdcdbsrc-mode Toggle Sdcdbsrc mode
;; ESC m sdcdbsrc-srcmode Toggle list mode
;;

66

Chapter 6

TIPS

Here are a few guidelines that will help the compiler generate more efficient code, some of the tips are specific to
this compiler others are generally good programming practice.

• Use the smallest data type to represent your data-value. If it is known in advance that the value is going to be
less than 256 then use an ’unsigned char’ instead of a ’short’ or ’int’. Please note, that ANSI C requires both
signed and unsigned chars to be promoted to ’signed int’ before doing any operation. This promotion can be
omitted, if the result is the same. The effect of the promotion rules together with the sign-extension is often
surprising:

unsigned char uc = 0xfe;
if (uc * uc < 0) /* this is true! */
{

....
}

uc * uc is evaluated as(int) uc * (int) uc = (int) 0xfe * (int) 0xfe = (int) 0xfc04 =
-1024.
Another one:

(unsigned char) -12 / (signed char) -3 = ...

No, the result is not 4:

(int) (unsigned char) -12 / (int) (signed char) -3 =
(int) (unsigned char) 0xf4 / (int) (signed char) 0xfd =
(int) 0x00f4 / (int) 0xfffd =
(int) 0x00f4 / (int) 0xfffd =
(int) 244 / (int) -3 =
(int) -81 = (int) 0xffaf;

Don’t complain, that gcc gives you a different result. gcc uses 32 bit ints, while SDCC uses 16 bit ints.
Therefore the results are different.
From ”comp.lang.c FAQ”:

If well-defined overflow characteristics are important and negative values are not, or if you want to
steer clear of sign-extension problems when manipulating bits or bytes, use one of the correspond-
ing unsigned types. (Beware when mixing signed and unsigned values in expressions, though.)
Although character types (especially unsigned char) can be used as "tiny" integers, doing so is
sometimes more trouble than it’s worth, due to unpredictable sign extension and increased code
size.

• Use unsigned when it is known in advance that the value is not going to be negative. This helps especially if
you are doing division or multiplication, bit-shifting or are using an array index.

67

6.1. PORTING CODE FROM OR TO OTHER COMPILERS CHAPTER 6. TIPS

• NEVER jump into a LOOP.

• Declare the variables to be local whenever possible, especially loop control variables (induction).

• Since the compiler does not always do implicit integral promotion, the programmer should do an explicit cast
when integral promotion is required.

• Reducing the size of division, multiplication & modulus operations can reduce code size substantially. Take
the following code for example.

foobar(unsigned int p1, unsigned char ch)
{

unsigned char ch1 = p1 % ch ;
....

}

For the modulus operation the variable ch will be promoted to unsigned int first then the modulus operation
will be performed (this will lead to a call to support routine _moduint()), and the result will be casted to a
char. If the code is changed to

foobar(unsigned int p1, unsigned char ch)
{

unsigned char ch1 = (unsigned char)p1 % ch ;
....

}

It would substantially reduce the code generated (future versions of the compiler will be smart enough to
detect such optimization opportunities).

• Have a look at the assembly listing to get a ”feeling” for the code generation.

6.1 Porting code from or to other compilers

• check whether endianness of the compilers differs and adapt where needed.

• check the device specific header files for compiler specific syntax. Eventually include the file <compiler.h>
to allow using common header files.

• check whether the startup code contains the correct initialization (watchdog, peripherals).

• check whether the sizes of short, int, long match.

• check if some 16 or 32 bit hardware registers require a specific addressing order (least significant or most
significant byte first) and adapt if needed (first andlast relate to time and not to lower/upper memory location
here, so this isnot the same as endianness).

• check whether the keywordvolatile is used where needed. The compilers might differ in their optimization
characteristics (as different versions of the same compiler might also use more clever optimizations this is
good idea anyway).

• check that the compilers are not told to supress warnings.

• check and convert compiler specific extensions (interrupts, memory areas, pragmas etc.).

• check for differences in type promotion (especially check for math operations on char variables and for the
use of the ~ operator on bit variables. See6 and1.4).

• check the assembly code generated for interrupt routines (f.e. for calls to possibly non-reentrant library
functions).

• check whether timing loops result in proper timing (or preferably consider a rewrite of the code with timer
based delays instead).

68

6.2. TOOLS INCLUDED IN THE DISTRIBUTION CHAPTER 6. TIPS

• check for differences in printf parameters (some compilers push (va_arg) char variables as integers others as
char).

• check the resulting memory layout.

6.2 Tools included in the distribution
Name Purpose Directory

uCsim Simulator for various architecturessdcc/sim/ucsim
keil2sdcc.pl header file conversion sdcc/support/scripts
mh2h.c header file conversion sdcc/support/scripts
as-gbz80 Assembler sdcc/bin
as-z80 Assembler sdcc/bin
asx8051 Assembler sdcc/bin
sdcdb Simulator sdcc/bin
aslink Linker sdcc/bin
link-z80 Linker sdcc/bin
link-gbz80 Linker sdcc/bin
packihx ihx packer sdcc/bin

6.3 Documentation included in the distribution
Subject / Title Where to get / filename

SDCC Compiler User Guide You’re reading it right now
Changelog of SDCC sdcc/Changelog
ASXXXX Assemblers and ASLINK Relocating Linker sdcc/as/doc/asxhtm.html
SDCC regression test sdcc/doc/test_suite_spec.pdf
Various notes sdcc/doc/*
Notes on debugging with sdcdb sdcc/debugger/README
Software simulator for microcontrollers sdcc/sim/ucsim/doc/index.html
Temporary notes on the pic16 port sdcc/src/pic16/NOTES
SDCC internal documentation (debugging file format)sdcc/doc/cdbfileformat.pdf

69

6.4. RELATED OPEN SOURCE TOOLS CHAPTER 6. TIPS

6.4 Related open source tools

Name Purpose Where to get

gpsim PIC simulator http://www.dattalo.com/gnupic/gpsim.html
gputils GNU PIC utilities http://sourceforge.net/projects/gputils
flP5 PIC programmer http://freshmeat.net/projects/flp5/
ec2drv/newcdb Tools for Silicon Laboratories

JTAG debug adapter, partly based
on sdcdb (Unix only)

http://sourceforge.net/projects/ec2drv

indent Formats C source - Master of the
white spaces

http://directory.fsf.org/GNU/indent.html

srecord Object file conversion, checksum-
ming, ...

http://sourceforge.net/projects/srecord

objdump Object file conversion, ... Part of binutils (should be there anyway)
cmon51 8051 monitor (hex up-/download,

single step, disassemble)
http://sourceforge.net/projects/cmon51

doxygen Source code documentation sys-
tem

http://www.doxygen.org

kdevelop IDE (has anyone tried integrating
SDCC & sdcdb? Unix only)

http://www.kdevelop.org

paulmon 8051 monitor (hex up-/download,
single step, disassemble)

http://www.pjrc.com/tech/8051/paulmon2.html

splint Statically checks c sources (see
3.2.8)

http://www.splint.org

ddd Debugger, serves nicely as GUI to
sdcdb (Unix only)

http://www.gnu.org/software/ddd/

6.5 Related documentation / recommended reading

Name Subject / Title Where to get

c-refcard.pdf C Reference Card, 2 pages http://refcards.com/refcards/c/index.html
c-faq C-FAQ-list http://www.eskimo.com/~scs/C-faq/top.html
ISO/IEC 9899:TC2 ”C-Standard” http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

ISO/IEC DTR 18037 ”Extensions for Embedded C” http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1021.pdf

Latest datasheet of the target CPUvendor
Revision history of datasheet vendor

S. S. Muchnick Advanced Compiler Design and
Implementation

bookstore (very dedicated, probably read other books first)

6.6 Some Questions

Some questions answered, some pointers given - it might be time to in turn askyousome questions:

• can you solve your project with the selected microcontroller? Would you find out early or rather late that
your target is too small/slow/whatever? Can you switch to a slightly better device if it doesn’t fit?

• should you solve the problem with an 8 bit CPU? Or would a 16/32 bit CPU and/or another programming
language be more adequate? Would an operating system on the target device help?

• if you solved the problem, will the marketing department be happy?

• if the marketing department is happy, will customers be happy?

• if you’re the project manager, marketing department and maybe even the customer in one person, have you
tried to see the project from the outside?

70

http://www.dattalo.com/gnupic/gpsim.html
http://sourceforge.net/projects/gputils
http://freshmeat.net/projects/flp5/
http://sourceforge.net/projects/ec2drv
http://directory.fsf.org/GNU/indent.html
http://sourceforge.net/projects/srecord
http://sourceforge.net/projects/cmon51
http://www.doxygen.org
http://www.kdevelop.org
http://www.pjrc.com/tech/8051/paulmon2.html
http://www.splint.org
http://www.gnu.org/software/ddd/
http://refcards.com/refcards/c/index.html
http://www.eskimo.com/~scs/C-faq/top.html
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1021.pdf

6.6. SOME QUESTIONS CHAPTER 6. TIPS

• is the project done if you think it is done? Or is just that other interface/protocol/feature/configuration/option
missing? How about website, manual(s), internationali(z|s)ation, packaging, labels, 2nd source for compo-
nents, electromagnetic compatability/interference, documentation for production, production test software,
update mechanism, patent issues?

• is your project adequately positioned in that magic triangle: fame, fortune, fun?

Maybe not all answers to these questions are known and some answers may even beno, nevertheless knowing these
questions may help you to avoid burnout1. Chances are you didn’t want to hear some of them...

1burnout is bad for electronic devices, programmers and motorcycle tyres

71

Chapter 7

Support

SDCC has grown to be a large project. The compiler alone (without the preprocessor, assembler and linker) is well
over 100,000 lines of code (blank stripped). The open source nature of this project is a key to its continued growth
and support. You gain the benefit and support of many active software developers and end users. Is SDCC perfect?
No, that’s why we need your help. The developers take pride in fixing reported bugs. You can help by reporting
the bugs and helping other SDCC users. There are lots of ways to contribute, and we encourage you to take part in
making SDCC a great software package.

The SDCC project is hosted on the SDCC sourceforge site athttp://sourceforge.net/projects/sdcc.
You’ll find the complete set of mailing lists, forums, bug reporting system, patch submission system, download
area and Subversion code repository there.

7.1 Reporting Bugs

The recommended way of reporting bugs is using the infrastructure of the sourceforge site. You can follow the
status of bug reports there and have an overview about the known bugs.

Bug reports are automatically forwarded to the developer mailing list and will be fixed ASAP. When reporting
a bug, it is very useful to include a small test program (the smaller the better) which reproduces the problem. If
you can isolate the problem by looking at the generated assembly code, this can be very helpful. Compiling your
program with the --dumpall option can sometimes be useful in locating optimization problems. When reporting a
bug please maker sure you:

1. Attach the code you are compiling with SDCC.

2. Specify the exact command you use to run SDCC, or attach your Makefile.

3. Specify the SDCC version (type "sdcc -v "), your platform, and operating system.

4. Provide an exact copy of any error message or incorrect output.

5. Put something meaningful in the subject of your message.

Please attempt to include these 5 important parts, as applicable, in all requests for support or when reporting any
problems or bugs with SDCC. Though this will make your message lengthy, it will greatly improve your chance
that SDCC users and developers will be able to help you. Some SDCC developers are frustrated by bug reports
without code provided that they can use to reproduce and ultimately fix the problem, so please be sure to provide
sample code if you are reporting a bug!

Please have a short check that you are using a recent version of SDCC and the bug is not yet known. This is the
link for reporting bugs:http://sourceforge.net/tracker/?group_id=599&atid=100599.

7.2 Requesting Features

Like bug reports feature requests are forwarded to the developer mailing list. This is the link for requesting features:
http://sourceforge.net/tracker/?group_id=599&atid=350599.

72

http://sourceforge.net/projects/sdcc
http://sourceforge.net/tracker/?group_id=599&atid=100599
http://sourceforge.net/tracker/?group_id=599&atid=350599

7.3. SUBMITTING PATCHES CHAPTER 7. SUPPORT

7.3 Submitting patches

Like bug reports contributed patches are forwarded to the developer mailing list. This is the link for submitting
patches:http://sourceforge.net/tracker/?group_id=599&atid=300599.

You need to specify some parameters to thediff command for the patches to be useful. If you mod-
ified more than one file a patch created f.e. with”diff -Naur unmodified_directory modified_directory
>my_changes.patch” will be fine, otherwise”diff -u sourcefile.c.orig sourcefile.c >my_changes.patch” will
do.

7.4 Getting Help

These links should take you directly to the Mailing listshttp://sourceforge.net/mail/?group_id=5991 and
the Forumshttp://sourceforge.net/forum/?group_id=599, lists and forums are archived and searchable so
if you are lucky someone already had a similar problem. While mails to the lists themselves are delivered promptly
their web front end on sourceforge sometimes shows a severe time lag (up to several weeks), if you’re seriously
using SDCC please consider subscribing to the lists.

7.5 ChangeLog

You can follow the status of the Subversion version of SDCC by watching the Changelog in the Subversion reposi-
tory http://svn.sourceforge.net/viewcvs.cgi/*checkout*/sdcc/trunk/sdcc/ChangeLog.

7.6 Subversion Source Code Repository

The output ofsdcc –version or the filenames of the snapshot versions of SDCC include date and its Subversion
number. Subversion allows to download the source of recent or previous versionshttp://sourceforge.net/
svn/?group_id=599 (by number or by date). An on-line source code browser and detailled instructions are also
available there. SDCC versions starting from 1999 up to now are available (currently the versions prior to the
conversion from cvs to Subversion (April 2006) are either by accessible by Subversion or by cvs).

7.7 Release policy

Historically there often were long delays between official releases and the sourceforge download area tends to get
not updated at all. Excuses in the past might have referred to problems with live range analysis, but as this was fixed
a while ago, the current problem is that another excuse has to be found. Kidding aside, we have to get better there!
On the other hand there are daily snapshots available at snaphttp://sdcc.sourceforge.net/snap.php, and
you can always build the very last version (hopefully with many bugs fixed, and features added) from the source
code available at Sourcehttp://sdcc.sourceforge.net/snap.php#Source.

7.8 Examples

You’ll find some small examples in the directorysdcc/device/examples/.More examples and libraries are available
at The SDCC Open Knowledge Resourcehttp://sdccokr.dl9sec.de/ web site or athttp://www.pjrc.
com/tech/8051/.

7.9 Quality control

The compiler is passed through nightly compile and build checks. The so calledregression testscheck that SDCC
itself compiles flawlessly on several platforms and checks the quality of the code generated by SDCC by running
the code through simulators. There is a separate documenttest_suite.pdfabout this.

You’ll find the test code in the directorysdcc/support/regression. You can run these tests manually by running
make in this directory (or f.e. ”make test-mcs51” if you don’t want to run the complete tests). The test code

1Traffic on sdcc-devel and sdcc-user is about 100 mails/month each not counting automated messages (mid 2003)

73

http://sourceforge.net/tracker/?group_id=599&atid=300599
http://sourceforge.net/mail/?group_id=599
http://sourceforge.net/forum/?group_id=599
http://svn.sourceforge.net/viewcvs.cgi/*checkout*/sdcc/trunk/sdcc/ChangeLog
http://sourceforge.net/svn/?group_id=599
http://sourceforge.net/svn/?group_id=599
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php#Source
http://sdccokr.dl9sec.de/
http://www.pjrc.com/tech/8051/
http://www.pjrc.com/tech/8051/

7.10. USE OF SDCC IN EDUCATION CHAPTER 7. SUPPORT

might also be interesting if you want to look for examples checking corner cases of SDCC or if you plan to submit
patches.

The pic port uses a different set of regression tests, you’ll find them in the directorysdcc/src/regression.

7.10 Use of SDCC in Education

In short:highlyencouraged2. If your rationales are to:

1. give students a chance to understand thecompletesteps of code generation

2. have a curriculum that can be extended for years. Then you could use an fpga board as target and your
curriculum will seamlessly extend from logic synthesis (http://www.opencores.orgopencores.org, Oregano
http://www.oregano.at/ip/ip01.htm), over assembly programming, to C to FPGA compilers (FPGAC
http://sf.net/projects/fpgac) and to C.

3. be able to insert excursions about skills like using a revision control system, submitting/applying patches,
using a type-setting (as opposed to word-processing) engine LYX/LATEX, using SourceForgehttp://
www.sf.net, following some netiquettehttp://en.wikipedia.org/wiki/Netiquette, understanding
BSD/LGPL/GPL/Proprietary licensing, growth models of Open Source Software, CPU simulation, com-
piler regression tests.
And if there should be a shortage of ideas then you can always point students to the ever-growing feature
request listhttp://sourceforge.net/tracker/?group_id=599&atid=350599.

4. not tie students to a specific host platform and instead allow them to use a host platform oftheir choice
(among them Alpha, i386, i386_64, MacOs, Mips, Sparc, Windows and eventually OLPChttp://wiki.
laptop.org/wiki/One_Laptop_per_Child)

5. not encourage students to use illegal copies of educational software

6. be immune to licensing/availability/price changes of the chosen tool chain

7. be able to change to a new target platform without having to adopt a new tool chain

8. have complete control over and insight into the tool chain

9. make your students aware about the pros and cons of open source software development

10. give back to the public as you are probably at least partially publically funded

11. give students a chance to publically prove their skills and to possibly see a world wide impact

then SDCC is probably among the first choices. Well, probably SDCC might be the only choice.

2the phrase "use in education" might evoke the association "only fit for use in education". This connotation is not intended but nevertheless
risked as the licensing of SDCC makes it difficult to offer educational discounts

74

opencores.org
http://www.oregano.at/ip/ip01.htm
http://sf.net/projects/fpgac
http://www.sf.net
http://www.sf.net
http://en.wikipedia.org/wiki/Netiquette
http://sourceforge.net/tracker/?group_id=599&atid=350599
http://wiki.laptop.org/wiki/One_Laptop_per_Child
http://wiki.laptop.org/wiki/One_Laptop_per_Child

Chapter 8

SDCC Technical Data

8.1 Optimizations

SDCC performs a host of standard optimizations in addition to some MCU specific optimizations.

8.1.1 Sub-expression Elimination

The compiler does local andglobalcommonsubexpressionelimination, e.g.:

i = x + y + 1;
j = x + y;

will be translated to

iTemp = x + y;
i = iTemp + 1;
j = iTemp;

Some subexpressions are not as obvious as the above example, e.g.:

a->b[i].c = 10;
a->b[i].d = 11;

In this case the address arithmetic a->b[i] will be computed only once; the equivalent code in C would be.

iTemp = a->b[i];
iTemp.c = 10;
iTemp.d = 11;

The compiler will try to keep these temporary variables in registers.

8.1.2 Dead-Code Elimination

int global;

void f () {
int i;
i = 1; /* dead store */
global = 1; /* dead store */
global = 2;
return;
global = 3; /* unreachable */

}

will be changed to

75

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

int global;

void f () {
global = 2;

}

8.1.3 Copy-Propagation

int f() {
int i, j;
i = 10;
j = i;
return j;

}

will be changed to

int f() {
int i, j;
i = 10;
j = 10;
return 10;

}

Note: the dead stores created by this copy propagation will be eliminated by dead-code elimination.

8.1.4 Loop Optimizations

Two types of loop optimizations are done by SDCCloop invariantlifting and strength reductionof loop induction
variables. In addition to the strength reduction the optimizer marks the induction variables and the register allocator
tries to keep the induction variables in registers for the duration of the loop. Because of this preference of the
register allocator, loop induction optimization causes an increase in register pressure, which may cause unwanted
spilling of other temporary variables into the stack / data space. The compiler will generate a warning message
when it is forced to allocate extra space either on the stack or data space. If this extra space allocation is undesirable
then induction optimization can be eliminated either for the entire source file (with --noinduction option) or for a
given function only using #pragma noinduction.

Loop Invariant:

for (i = 0 ; i < 100 ; i ++)
f += k + l;

changed to

itemp = k + l;
for (i = 0; i < 100; i++)

f += itemp;

As mentioned previously some loop invariants are not as apparent, all static address computations are also moved
out of the loop.

Strength Reduction, this optimization substitutes an expression by a cheaper expression:

for (i=0;i < 100; i++)
ar[i*5] = i*3;

changed to

76

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

itemp1 = 0;
itemp2 = 0;
for (i=0;i< 100;i++) {

ar[itemp1] = itemp2;
itemp1 += 5;
itemp2 += 3;

}

The more expensive multiplication is changed to a less expensive addition.

8.1.5 Loop Reversing

This optimization is done to reduce the overhead of checking loop boundaries for every iteration. Some simple
loops can be reversed and implemented using a “decrement and jump if not zero” instruction. SDCC checks for
the following criterion to determine if a loop is reversible (note: more sophisticated compilers use data-dependency
analysis to make this determination, SDCC uses a more simple minded analysis).

• The ’for’ loop is of the form

for(<symbol> = <expression>; <sym> [< | <=] <expression>; [<sym>++ | <sym> += 1])
<for body>

• The <for body> does not contain “continue” or ’break”.

• All goto’s are contained within the loop.

• No function calls within the loop.

• The loop control variable <sym> is not assigned any value within the loop

• The loop control variable does NOT participate in any arithmetic operation within the loop.

• There are NO switch statements in the loop.

8.1.6 Algebraic Simplifications

SDCC does numerous algebraic simplifications, the following is a small sub-set of these optimizations.

i = j + 0; /* changed to: */ i = j;
i /= 2; /* changed to: */ i > >= 1;
i = j - j; /* changed to: */ i = 0;
i = j / 1; /* changed to: */ i = j;

Note the subexpressions given above are generally introduced by macro expansions or as a result of copy/constant
propagation.

8.1.7 ’switch’ Statements

SDCC can optimize switch statements to jump tables. It makes the decision based on an estimate of the generated
code size. SDCC is quite liberal in the requirements for jump table generation:

• The labels need not be in order, and the starting number need not be one or zero, the case labels are in
numerical sequence or not too many case labels are missing.

switch(i) { switch (i) {
case 4: ... case 0: ...
case 5: ... case 1: ...
case 3: ...
case 6: ... case 3: ...
case 7: ... case 4: ...

77

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

case 8: ... case 5: ...
case 9: ... case 6: ...
case 10: ... case 7: ...
case 11: ... case 8: ...

} }

Both the above switch statements will be implemented using a jump-table. The example to the right side is
slightly more efficient as the check for the lower boundary of the jump-table is not needed.

• The number of case labels is not larger than supported by the target architecture.

• If the case labels are not in numerical sequence (’gaps’ between cases) SDCC checks whether a jump table
with additionally inserted dummy cases is still attractive.

• If the starting number is not zero and a check for the lower boundary of the jump-table can thus be eliminated
SDCC might insert dummy cases 0,

Switch statements which have large gaps in the numeric sequence or those that have too many case labels can be
split into more than one switch statement for efficient code generation, e.g.:

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...
case 5: ...
case 6: ...
case 7: ...
case 101: ...
case 102: ...
case 103: ...
case 104: ...
case 105: ...
case 106: ...
case 107: ...

}

If the above switch statement is broken down into two switch statements

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...
case 5: ...
case 6: ...
case 7: ...

}

and

switch (i) {
case 101: ...
case 102: ...
case 103: ...
case 104: ...
case 105: ...
case 106: ...
case 107: ...

}

78

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

then both the switch statements will be implemented using jump-tables whereas the unmodified switch statement
will not be.

The pragma nojtbound can be used to turn off checking thejump tableboundaries. It has no effect if a default
label is supplied. Use of this pragma is dangerous: if the switch argument is not matched by a case statement the
processor will happily jump into Nirvana.

8.1.8 Bit-shifting Operations.

Bit shifting is one of the most frequently used operation in embedded programming. SDCC tries to implement
bit-shift operations in the most efficient way possible, e.g.:

unsigned char i;
...
i > >= 4;
...

generates the following code:

mov a,_i
swap a
anl a,#0x0f
mov _i,a

In general SDCC will never setup a loop if the shift count is known. Another example:

unsigned int i;
...
i > >= 9;
...

will generate:

mov a,(_i + 1)
mov (_i + 1),#0x00
clr c
rrc a
mov _i,a

8.1.9 Bit-rotation

A special case of the bit-shift operation is bit rotation, SDCC recognizes the following expression to be a left
bit-rotation:

unsigned char i; /* unsigned is needed for rotation */
...
i = ((i < < 1) | (i > > 7));
...

will generate the following code:

mov a,_i
rl a
mov _i,a

SDCC uses pattern matching on the parse tree to determine this operation.Variations of this case will also be
recognized as bit-rotation, i.e.:

i = ((i > > 7) | (i < < 1)); /* left-bit rotation */

79

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

8.1.10 Nibble and Byte Swapping

Other special cases of the bit-shift operations are nibble or byte swapping, SDCC recognizes the following expres-
sions:

unsigned char i;
unsigned int j;
...
i = ((i < < 4) | (i > > 4));
j = ((j < < 8) | (j > > 8));

and generates a swap instruction for the nibble swapping or move instructions for the byte swapping. The ”j”
example can be used to convert from little to big-endian or vice versa. If you want to change the endianness of a
signedinteger you have to cast to(unsigned int) first.

Note that SDCC stores numbers in little-endian1 format (i.e. lowest order first).

8.1.11 Highest Order Bit / Any Order Bit

It is frequently required to obtain the highest order bit of an integral type (long, int, short or char types). Also
obtaining any other order bit is not uncommon. SDCC recognizes the following expressions to yield the highest
order bit and generates optimized code for it, e.g.:

unsigned int gint;

foo () {
unsigned char hob1, aob1;
bit hob2, hob3, aob2, aob3;
...
hob1 = (gint > > 15) & 1;
hob2 = (gint > > 15) & 1;
hob3 = gint & 0x8000;
aob1 = (gint > > 9) & 1;
aob2 = (gint > > 8) & 1;
aob3 = gint & 0x0800;
..

}

will generate the following code:

61 ; hob.c 7
000A E5*01 62 mov a,(_gint + 1)
000C 23 63 rl a
000D 54 01 64 anl a,#0x01
000F F5*02 65 mov _foo_hob1_1_1,a

66 ; hob.c 8
0011 E5*01 67 mov a,(_gint + 1)
0013 33 68 rlc a
0014 92*00 69 mov _foo_hob2_1_1,c

66 ; hob.c 9
0016 E5*01 67 mov a,(_gint + 1)
0018 33 68 rlc a
0019 92*01 69 mov _foo_hob3_1_1,c

70 ; hob.c 10
001B E5*01 71 mov a,(_gint + 1)
001D 03 72 rr a
001E 54 01 73 anl a,#0x01

1Usually 8-bit processors don’t care much about endianness. This is not the case for the standard 8051 which only has an instruction to
increment itsdptr-datapointer so little-endian is the more efficient byte order.

80

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

0020 F5*03 74 mov _foo_aob1_1_1,a
75 ; hob.c 11

0022 E5*01 76 mov a,(_gint + 1)
0024 13 77 rrc a
0025 92*02 78 mov _foo_aob2_1_1,c

79 ; hob.c 12
0027 E5*01 80 mov a,(_gint + 1)
0029 A2 E3 81 mov c,acc[3]
002B 92*03 82 mov _foo_aob3_1_1,c

Other variations of these cases however willnot be recognized. They are standard C expressions, so I heartily
recommend these be the only way to get the highest order bit, (it is portable). Of course it will be recognized even
if it is embedded in other expressions, e.g.:

xyz = gint + ((gint > > 15) & 1);

will still be recognized.

8.1.12 Higher Order Byte / Higher Order Word

It is also frequently required to obtain a higher order byte or word of a larger integral type (long, int or short types).
SDCC recognizes the following expressions to yield the higher order byte or word and generates optimized code
for it, e.g.:

unsigned int gint;
unsigned long int glong;

foo () {
unsigned char hob1, hob2;
unsigned int how1, how2;
...
hob1 = (gint > > 8) & 0xFF;
hob2 = glong > > 24;
how1 = (glong > > 16) & 0xFFFF;
how2 = glong > > 8;
..

}

will generate the following code:

91 ; hob.c 15
0037 85*01*06 92 mov _foo_hob1_1_1,(_gint + 1)

93 ; hob.c 16
003A 85*05*07 94 mov _foo_hob2_1_1,(_glong + 3)

95 ; hob.c 17
003D 85*04*08 96 mov _foo_how1_1_1,(_glong + 2)
0040 85*05*09 97 mov (_foo_how1_1_1 + 1),(_glong + 3)
0043 85*03*0A 98 mov _foo_how2_1_1,(_glong + 1)
0046 85*04*0B 99 mov (_foo_how2_1_1 + 1),(_glong + 2)

Again, variations of these cases maynot be recognized. They are standard C expressions, so I heartily recommend
these be the only way to get the higher order byte/word, (it is portable). Of course it will be recognized even if it is
embedded in other expressions, e.g.:

xyz = gint + ((gint > > 8) & 0xFF);

will still be recognized.

81

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

8.1.13 Peephole Optimizer

The compiler uses a rule based, pattern matching and re-writing mechanism for peep-hole optimization. It is
inspired bycopt a peep-hole optimizer by Christopher W. Fraser (cwfraser @ microsoft.com). A default set of
rules are compiled into the compiler, additional rules may be added with the--peep-file <filename>option. The
rule language is best illustrated with examples.

replace {
mov %1,a
mov a,%1

} by {
mov %1,a

}

The above rule will change the following assembly sequence:

mov r1,a
mov a,r1

to

mov r1,a

Note: All occurrences of a%n (pattern variable) must denote the same string. With the above rule, the assembly
sequence:

mov r1,a
mov a,r2

will remain unmodified.

Other special case optimizations may be added by the user (via--peep-file option). E.g. some variants of
the 8051 MCU allow onlyajmp andacall. The following two rules will change allljmp andlcall to ajmp and
acall

replace { lcall %1 } by { acall %1 }
replace { ljmp %1 } by { ajmp %1 }

The inline-assembler codeis also passed through the peep hole optimizer, thus the peephole optimizer can also be
used as an assembly level macro expander. The rules themselves are MCU dependent whereas the rule language
infra-structure is MCU independent. Peephole optimization rules for other MCU can be easily programmed using
the rule language.

The syntax for a rule is as follows:

rule := replace [restart] ’{’ <assembly sequence> ’\n’
’}’ by ’{’ ’\n’

<assembly sequence> ’\n’
’}’ [if <functionName>] ’\n’

<assembly sequence> := assembly instruction (each instruction including labels must be on a separate line).

The optimizer will apply to the rules one by one from the top in the sequence of their appearance, it will
terminate when all rules are exhausted. If the ’restart’ option is specified, then the optimizer will start matching the
rules again from the top, this option for a rule is expensive (performance), it is intended to be used in situations
where a transformation will trigger the same rule again. An example of this (not a good one, it has side effects) is
the following rule:

82

8.2. ANSI-COMPLIANCE CHAPTER 8. SDCC TECHNICAL DATA

replace restart {
pop %1
push %1 } by {
; nop

}

Note that the replace pattern cannot be a blank, but can be a comment line. Without the ’restart’ option only the
innermost ’pop’ ’push’ pair would be eliminated, i.e.:

pop ar1
pop ar2
push ar2
push ar1

would result in:

pop ar1
; nop
push ar1

with the restart option the rule will be applied again to the resulting code and then all the pop-push pairs will be
eliminated to yield:

; nop
; nop

A conditional function can be attached to a rule. Attaching rules are somewhat more involved, let me illustrate this
with an example.

replace {
ljmp %5

%2:
} by {

sjmp %5
%2:
} if labelInRange

The optimizer does a look-up of a function name table defined in functioncallFuncByNamein the source file
SDCCpeeph.c, with the namelabelInRange. If it finds a corresponding entry the function is called. Note there
can be no parameters specified for these functions, in this case the use of%5 is crucial, since the functionla-
belInRangeexpects to find the label in that particular variable (the hash table containing the variable bindings is
passed as a parameter). If you want to code more such functions, take a close look at the function labelInRange
and the calling mechanism in source file SDCCpeeph.c. Currently implemented arelabelInRange, labelRefCount,
labelIsReturnOnly, operandsNotSame, xramMovcOption, 24bitMode, portIsDS390, 24bitModeAndPortDS390and
notVolatile.

I know this whole thing is a little kludgey, but maybe some day we will have some better means. If you are
looking at this file, you will see the default rules that are compiled into the compiler, you can add your own rules in
the default set there if you get tired of specifying the --peep-file option.

8.2 ANSI-Compliance

The latest publically available version of the standardISO/IEC 9899 - Programming languages - Cshould be
available at:http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899.

Deviations from the compliance:

• functions are not reentrant unless explicitly declared as such or the--stack-auto command line option is
specified.

83

http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

8.3. CYCLOMATIC COMPLEXITY CHAPTER 8. SDCC TECHNICAL DATA

• structures and unions cannot be assigned values directly, cannot be passed as function parameters or assigned
to each other and cannot be a return value from a function, e.g.:

struct s { ... };
struct s s1, s2;
foo()
{

...
s1 = s2 ; /* is invalid in SDCC although allowed in ANSI */
...

}
struct s foo1 (struct s parms) /* invalid in SDCC although allowed in ANSI

*/
{

struct s rets;
...
return rets;/* is invalid in SDCC although allowed in ANSI */

}

• initialization of structure arrays must be fully braced.

struct s { char x } a[] = {1, 2}; /* invalid in SDCC */
struct s { char x } a[] = {{1}, {2}}; /* OK */

• ’long long’ (64 bit integers) not supported.

• ’double’ precision floating point not supported.

• Old K&R style function declarations are NOT allowed.

foo(i,j) /* this old style of function declarations */
int i,j; /* are valid in ANSI but not valid in SDCC */
{

...
}

• Most enhancements in C99 are not supported, f.e.:

inline int increment (int a) { return a+1; } /* is invalid in SDCC although
allowed in C99 */

for (int i=0; i<10; i++) /* is invalid in SDCC although allowed in C99 */

• Certain words that are valid identifiers in the standard may be reserved words in SDCC unless the--std-c89
or --std-c99 command line options are used. These may include (depending on the selected processor):
’at’, ’banked’, ’bit’, ’code’, ’critical’, ’data’, ’eeprom’, ’far’, ’flash’, ’idata’, ’interrupt’, ’near’, ’nonbanked’,
’pdata’, ’reentrant’, ’sbit’, ’sfr’, ’shadowregs’, ’sram’, ’using’, ’wparam’, ’xdata’, ’_overlay’, ’_asm’, ’_en-
dasm’, and ’_naked’. Compliant equivalents of these keywords are always available in a form that begin with
two underscores, f.e. ’__data’ instead of ’data’.

8.3 Cyclomatic Complexity

Cyclomatic complexity of a function is defined as the number of independent paths the program can take during
execution of the function. This is an important number since it defines the number test cases you have to generate
to validate the function. The accepted industry standard for complexity number is 10, if the cyclomatic complexity
reported by SDCC exceeds 10 you should think about simplification of the function logic. Note that the complexity
level is not related to the number of lines of code in a function. Large functions can have low complexity, and
small functions can have large complexity levels.

84

8.4. RETARGETTING FOR OTHER PROCESSORS CHAPTER 8. SDCC TECHNICAL DATA

SDCC uses the following formula to compute the complexity:

complexity = (number of edges in control flow graph) - (number of nodes in control flow graph) + 2;

Having said that the industry standard is 10, you should be aware that in some cases it be may unavoidable
to have a complexity level of less than 10. For example if you have switch statement with more than 10 case labels,
each case label adds one to the complexity level. The complexity level is by no means an absolute measure of
the algorithmic complexity of the function, it does however provide a good starting point for which functions you
might look at for further optimization.

8.4 Retargetting for other Processors

The issues for retargetting the compiler are far too numerous to be covered by this document. What follows is a
brief description of each of the seven phases of the compiler and its MCU dependency.

• Parsing the source and building the annotated parse tree. This phase is largely MCU independent (except
for the language extensions). Syntax & semantic checks are also done in this phase, along with some initial
optimizations like back patching labels and the pattern matching optimizations like bit-rotation etc.

• The second phase involves generating an intermediate code which can be easy manipulated during the later
phases. This phase is entirely MCU independent. The intermediate code generation assumes the target
machine has unlimited number of registers, and designates them with the name iTemp. The compiler can be
made to dump a human readable form of the code generated by using the --dumpraw option.

• This phase does the bulk of the standard optimizations and is also MCU independent. This phase can be
broken down into several sub-phases:

Break down intermediate code (iCode) into basic blocks.
Do control flow & data flow analysis on the basic blocks.
Do local common subexpression elimination, then global subexpression elimination
Dead code elimination
Loop optimizations
If loop optimizations caused any changes then do ’global subexpression elimination’ and ’dead code
elimination’ again.

• This phase determines the live-ranges; by live range I mean those iTemp variables defined by the compiler
that still survive after all the optimizations. Live range analysis is essential for register allocation, since these
computation determines which of these iTemps will be assigned to registers, and for how long.

• Phase five is register allocation. There are two parts to this process.

The first part I call ’register packing’ (for lack of a better term). In this case several MCU specific
expression folding is done to reduce register pressure.

The second part is more MCU independent and deals with allocating registers to the remaining live
ranges. A lot of MCU specific code does creep into this phase because of the limited number of index
registers available in the 8051.

• The Code generation phase is (unhappily), entirely MCU dependent and very little (if any at all) of this code
can be reused for other MCU. However the scheme for allocating a homogenized assembler operand for each
iCode operand may be reused.

• As mentioned in the optimization section the peep-hole optimizer is rule based system, which can repro-
grammed for other MCUs.

85

Chapter 9

Compiler internals

9.1 The anatomy of the compiler

This is an excerpt from an article published in Circuit Cellar Magazine inAugust 2000. It’s a little outdated (the
compiler is much more efficient now and user/developer friendly), but pretty well exposes the guts of it all.

The current version of SDCC can generate code for Intel 8051 and Z80 MCU. It is fairly easy to retarget
for other 8-bit MCU. Here we take a look at some of the internals of the compiler.

Parsing Parsing the input source file and creating an AST (Annotated Syntax Tree). This phase also involves
propagating types (annotating each node of the parse tree with type information) and semantic analysis. There are
some MCU specific parsing rules. For example the storage classes, the extended storage classes are MCU specific
while there may be a xdata storage class for 8051 there is no such storage class for z80 or Atmel AVR. SDCC
allows MCU specific storage class extensions, i.e. xdata will be treated as a storage class specifier when parsing
8051 C code but will be treated as a C identifier when parsing z80 or ATMEL AVR C code.

Generating iCode Intermediate code generation. In this phase the AST is broken down into three-operand form
(iCode). These three operand forms are represented as doubly linked lists. ICode is the term given to the interme-
diate form generated by the compiler. ICode example section shows some examples of iCode generated for some
simple C source functions.

Optimizations. Bulk of the target independent optimizations is performed in this phase. The optimizations in-
clude constant propagation, common sub-expression elimination, loop invariant code movement, strength reduction
of loop induction variables and dead-code elimination.

Live range analysis During intermediate code generation phase, the compiler assumes the target machine has
infinite number of registers and generates a lot of temporary variables. The live range computation determines
the lifetime of each of these compiler-generated temporaries. A picture speaks a thousand words. ICode example
sections show the live range annotations for each of the operand. It is important to note here, each iCode is assigned
a number in the order of its execution in the function. The live ranges are computed in terms of these numbers.
The from number is the number of the iCode which first defines the operand and the to number signifies the iCode
which uses this operand last.

Register Allocation The register allocation determines the type and number of registers needed by each operand.
In most MCUs only a few registers can be used for indirect addressing. In case of 8051 for example the registers
R0 & R1 can be used to indirectly address the internal ram and DPTR to indirectly address the external ram. The
compiler will try to allocate the appropriate register to pointer variables if it can. ICode example section shows the
operands annotated with the registers assigned to them. The compiler will try to keep operands in registers as much
as possible; there are several schemes the compiler uses to do achieve this. When the compiler runs out of registers
the compiler will check to see if there are any live operands which is not used or defined in the current basic block

86

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

being processed, if there are any found then it will push that operand and use the registers in this block, the operand
will then be popped at the end of the basic block.

There are other MCU specific considerations in this phase. Some MCUs have an accumulator; very short-lived
operands could be assigned to the accumulator instead of a general-purpose register.

Code generation Figure II gives a table of iCode operations supported by the compiler. The code generation
involves translating these operations into corresponding assembly code for the processor. This sounds overly simple
but that is the essence of code generation. Some of the iCode operations are generated on a MCU specific manner
for example, the z80 port does not use registers to pass parameters so the SEND and RECV iCode operations will
not be generated, and it also does not support JUMPTABLES.
<Where is Figure II?>

ICode Example This section shows some details of iCode. The example C code does not do anything useful; it
is used as an example to illustrate the intermediate code generated by the compiler.

1. xdata int * p;
2. int gint;
3. /* This function does nothing useful. It is used
4. for the purpose of explaining iCode */
5. short function (data int *x)
6. {
7. short i=10; /* dead initialization eliminated */
8. short sum=10; /* dead initialization eliminated */
9. short mul;
10. int j ;
11. while (*x) *x++ = *p++;
12. sum = 0 ;
13. mul = 0;
14. /* compiler detects i,j to be induction variables */
15. for (i = 0, j = 10 ; i < 10 ; i++, j--) {
16. sum += i;
17. mul += i * 3; /* this multiplication remains */
18. gint += j * 3; /* this multiplication changed to addition */
19. }
20. return sum+mul;
21. }

In addition to the operands each iCode contains information about the filename and line it corresponds to in the
source file. The first field in the listing should be interpreted as follows:
Filename(linenumber: iCode Execution sequence number : ICode hash table key : loop depth of the iCode).

Then follows the human readable form of the ICode operation. Each operand of this triplet form can be of three
basic types a) compiler generated temporary b) user defined variable c) a constant value. Note that local variables
and parameters are replaced by compiler generated temporaries. Live ranges are computed only for temporaries
(i.e. live ranges are not computed for global variables). Registers are allocated for temporaries only. Operands are
formatted in the following manner:
Operand Name [lr live-from : live-to] { type information } [registers allocated].

As mentioned earlier the live ranges are computed in terms of the execution sequence number of the iCodes, for
example
the iTemp0 is live from (i.e. first defined in iCode with execution sequence number 3, and is last used in the iCode
with sequence number 5). For induction variables such as iTemp21 the live range computation extends the lifetime
from the start to the end of the loop.
The register allocator used the live range information to allocate registers, the same registers may be used for
different temporaries if their live ranges do not overlap, for example r0 is allocated to both iTemp6 and to iTemp17
since their live ranges do not overlap. In addition the allocator also takes into consideration the type and usage
of a temporary, for example itemp6 is a pointer to near space and is used as to fetch data from (i.e. used in
GET_VALUE_AT_ADDRESS) so it is allocated a pointer register (r0). Some short lived temporaries are allocated
to special registers which have meaning to the code generator e.g. iTemp13 is allocated to a pseudo register CC

87

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

which tells the back end that the temporary is used only for a conditional jump the code generation makes use of
this information to optimize a compare and jump ICode.
There are several loop optimizations performed by the compiler. It can detect induction variables iTemp21(i)
and iTemp23(j). Also note the compiler does selective strength reduction, i.e. the multiplication of an induction
variable in line 18 (gint = j * 3) is changed to addition, a new temporary iTemp17 is allocated and assigned a initial
value, a constant 3 is then added for each iteration of the loop. The compiler does not change the multiplication in
line 17 however since the processor does support an 8 * 8 bit multiplication.
Note the dead code elimination optimization eliminated the dead assignments in line 7 & 8 to I and sum respectively.

Sample.c (5:1:0:0) _entry($9) :
Sample.c(5:2:1:0) proc _function [lr0:0]{function short}
Sample.c(11:3:2:0) iTemp0 [lr3:5]{_near * int}[r2] = recv
Sample.c(11:4:53:0) preHeaderLbl0($11) :
Sample.c(11:5:55:0) iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]
Sample.c(11:6:5:1) _whilecontinue_0($1) :
Sample.c(11:7:7:1) iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
Sample.c(11:8:8:1) if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)
Sample.c(11:9:14:1) iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}
Sample.c(11:10:15:1) _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
Sample.c(11:13:18:1) iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
Sample.c(11:14:19:1) *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
Sample.c(11:15:12:1) iTemp6 [lr5:16]{_near * int}[r0] = iTemp6 [lr5:16]{_near * int}[r0] + 0x2 {short}
Sample.c(11:16:20:1) goto _whilecontinue_0($1)
Sample.c(11:17:21:0)_whilebreak_0($3) :
Sample.c(12:18:22:0) iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
Sample.c(13:19:23:0) iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
Sample.c(15:20:54:0)preHeaderLbl1($13) :
Sample.c(15:21:56:0) iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
Sample.c(15:22:57:0) iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
Sample.c(15:23:58:0) iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
Sample.c(15:24:26:1)_forcond_0($4) :
Sample.c(15:25:27:1) iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
Sample.c(15:26:28:1) if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)
Sample.c(16:27:31:1) iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] + ITemp21 [lr21:38]{short}[r4]
Sample.c(17:29:33:1) iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
Sample.c(17:30:34:1) iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] + iTemp15 [lr29:30]{short}[r1]
Sample.c(18:32:36:1:1) iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
Sample.c(18:33:37:1) _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
Sample.c(15:36:42:1) iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
Sample.c(15:37:45:1) iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
Sample.c(19:38:47:1) goto _forcond_0($4)
Sample.c(19:39:48:0)_forbreak_0($7) :
Sample.c(20:40:49:0) iTemp24 [lr40:41]{short}[DPTR] = iTemp2 [lr18:40]{short}[r2] + ITemp11 [lr19:40]{short}[r3]
Sample.c(20:41:50:0) ret iTemp24 [lr40:41]{short}
Sample.c(20:42:51:0)_return($8) :

Sample.c(20:43:52:0) eproc _function [lr0:0]{ ia0 re0 rm0}{function short}

Finally the code generated for this function:

.area DSEG (DATA)
_p::
.ds 2

_gint::
.ds 2

; sample.c 5
; ———————————————-
; function function
; ———————————————-
_function:
; iTemp0 [lr3:5]{_near * int}[r2] = recv
mov r2,dpl

; iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]
mov ar0,r2

;_whilecontinue_0($1) :
00101$:
; iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
; if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)
mov ar2,@r0

88

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

inc r0
mov ar3,@r0
dec r0
mov a,r2
orl a,r3
jz 00103$

00114$:
; iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}
mov dpl,_p
mov dph,(_p + 1)

; _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
mov a,#0x02
add a,_p
mov _p,a
clr a
addc a,(_p + 1)
mov (_p + 1),a

; iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
movx a,@dptr
mov r2,a
inc dptr
movx a,@dptr
mov r3,a

; *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
mov @r0,ar2
inc r0
mov @r0,ar3

; iTemp6 [lr5:16]{_near * int}[r0] =
; iTemp6 [lr5:16]{_near * int}[r0] +
; 0x2 {short}
inc r0

; goto _whilecontinue_0($1)
sjmp 00101$

; _whilebreak_0($3) :
00103$:
; iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
mov r2,#0x00

; iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
mov r3,#0x00

; iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
mov r4,#0x00

; iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
mov r5,#0x0A
mov r6,#0x00

; iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
mov r7,#0x1E
mov r0,#0x00

; _forcond_0($4) :
00104$:
; iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
; if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)
clr c
mov a,r4
xrl a,#0x80
subb a,#0x8a
jnc 00107$

00115$:
; iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] +
; iTemp21 [lr21:38]{short}[r4]
mov a,r4
add a,r2
mov r2,a

; iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
mov b,#0x03
mov a,r4
mul ab
mov r1,a

; iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] +
; iTemp15 [lr29:30]{short}[r1]
add a,r3
mov r3,a

89

9.2. A FEW WORDS ABOUT BASIC BLOCK SUCCESSORS, PREDECESSORS AND DOMINATORSCHAPTER 9. COMPILER INTERNALS

; iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
mov a,r7
add a,#0xfd
mov r7,a
mov a,r0
addc a,#0xff
mov r0,a

; _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
mov a,r7
add a,_gint
mov _gint,a
mov a,r0
addc a,(_gint + 1)
mov (_gint + 1),a

; iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
inc r4

; iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
dec r5
cjne r5,#0xff,00104$
dec r6

; goto _forcond_0($4)
sjmp 00104$

; _forbreak_0($7) :
00107$:
; ret iTemp24 [lr40:41]{short}
mov a,r3
add a,r2
mov dpl,a

; _return($8) :
00108$:
ret

9.2 A few words about basic block successors, predecessors and domina-
tors

Successors are basic blocks that might execute after this basic block.
Predecessors are basic blocks that might execute before reaching this basic block.
Dominators are basic blocks that WILL execute before reaching this basic block.

[basic block 1]
if (something)

[basic block 2]
else

[basic block 3]
[basic block 4]

a) succList of [BB2] = [BB4], of [BB3] = [BB4], of [BB1] = [BB2,BB3]
b) predList of [BB2] = [BB1], of [BB3] = [BB1], of [BB4] = [BB2,BB3]
c) domVect of [BB4] = BB1 ... here we are not sure if BB2 or BB3 was executed but we are SURE that BB1

was executed.

90

Chapter 10

Acknowledgments

http://sdcc.sourceforge.net#Who

Thanks to all the other volunteer developers who have helped with coding, testing, web-page creation, dis-
tribution sets, etc. You know who you are :-)

This document was initially written by Sandeep Dutta
All product names mentioned herein may be trademarks of their respective companies.

Alphabetical index

To avoid confusion, the installation and building options for SDCC itself (chapter 2) are not part of the index.

91

http://sdcc.sourceforge.net#Who

Index

-Aquestion(answer),22
-C, 22
-D<macro[=value]>,22
-E, 22, 25
-I<path>,22
-L --lib-path,22
-M, 22
-MM, 22
-S,26
-Umacro,22
-V, 26
-Wa asmOption[,asmOption],26
-Wl linkOption[,linkOption], 23
-Wp preprocessorOption[,preprocessorOption],22
--c1mode,25
--callee-saves,25
--callee-saves-bc,24
--code-loc <Value>,23, 31
--code-size <Value>,24, 31
--codeseg <Value>,26
--compile-only,25
--constseg <Value>,26
--cyclomatic,26
--data-loc <Value>,23, 31
--debug,19, 21, 25, 52, 62
--disable-warning,26
--dumlrange,27
--dumpall,27, 72
--dumpdeadcode,27
--dumpgcse,27
--dumploop,27
--dumplrange,27
--dumprange,27
--dumpraw,27
--dumpregassign,27
--float-reent,26
--i-code-in-asm,26
--idata-loc <Value>,23
--int-long-reent,26, 35, 43
--iram-size <Value>,23, 31, 38
--less-pedantic,26
--lib-path <path>,22
--main-return,26
--model-flat24,24
--model-large,23, 44
--model-medium,23
--model-small,23

--no-c-code-in-asm,26
--no-pack-iram,23, 24
--no-peep,25
--no-peep-comments,26
--no-std-crt0,24, 38
--no-xinit-opt,25, 38
--nogcse,24
--noinduction,24
--noinvariant,24
--nojtbound,24
--nolabelopt ,25
--noloopreverse,25
--nooverlay,25
--nostdinc,26
--nostdlib,26
--opt-code-size,25
--opt-code-speed,25
--out-fmt-ihx,23
--out-fmt-s19,19, 23
--pack-iram,23, 24
--peep-asm,25, 40
--peep-file,25, 82
--print-search-dirs,16, 26
--protect-sp-update,24
--stack-10bit,24
--stack-auto,24, 25, 33, 35, 43, 45, 46, 83
--stack-loc <Value>,23, 31
--stack-probe,24
--stack-size <Value>,24
--std-c89,26, 84
--std-c99,84
--std-sdcc89,26
--std-sdcc99,26
--tini-libid, 24
--use-accelerator,24
--use-stdout,26, 27
--vc, 26, 27
--verbose,26
--xdata-loc<Value>,31
--xram-loc <Value>,22
--xram-size <Value>,23, 31
--xstack,23, 24, 29, 45
--xstack-loc <Value>,23
-c --compile-only,25
-dD, 22
-dM, 22
-dN, 22

92

INDEX INDEX

-mavr,22
-mds390,21
-mds400,21
-mgbz80,21
-mhc08,21
-mmcs51,21
-mpic14,22
-mpic16,22
-mxa51,22
-mz80,21
-o <path/file>,25
<file> (no extension),19
<file>.adb,19, 62
<file>.asm,19
<file>.cdb,19, 62
<file>.dump*,19
<file>.ihx, 19
<file>.lib, 20
<file>.lnk, 20
<file>.lst,19, 32
<file>.map,19, 31, 32
<file>.mem,19, 31
<file>.o,19
<file>.rel,19, 20
<file>.rst,19, 32
<file>.sym,19
<stdio.h>,44
#defines,47
#pragma callee_saves,25, 46
#pragma codeseg,47
#pragma constseg,47
#pragma disable_warning,46
#pragma exclude,41, 46
#pragma less_pedantic,46
#pragma nogcse,24, 46, 47
#pragma noinduction,24, 46, 47, 76
#pragma noinvariant,24, 46
#pragma noiv,46
#pragma nojtbound,24, 46, 79
#pragma noloopreverse,46
#pragma nooverlay,34, 35, 46
#pragma opt_code_balanced,46
#pragma opt_code_size,46
#pragma opt_code_speed,46
#pragma portmode,31
#pragma preproc_asm,47
#pragma restore,46, 47
#pragma save,46, 47
#pragma stackauto,33, 46
#pragma std_c89,47
#pragma std_c99,47
#pragma std_sdcc89,46
#pragma std_sdcc99,47
_XPAGE (mcs51),48
__ (prefix for extended keywords),84
__asm,38–41

__at,30–33, 38
__bit,29
__code,29
__critical,36
__data (hc08 storage class),32
__data (mcs51, ds390 storage class),28, 31
__ds390,47
__endasm,39–41
__far (storage class),28, 38
__hc08,47
__idata (mcs51, ds390 storage class),28, 31
__interrupt,31, 34, 40
__mcs51,47
__naked,40, 46
__near (storage class),28
__pdata (mcs51, ds390 storage class),29
__sbit,6, 30
__sfr,30, 31
__sfr16,30
__sfr32,30
__using (mcs51, ds390 register bank),31, 34, 35, 37
__xdata (hc08 storage class),32
__xdata (mcs51, ds390 storage class),28, 31, 32
__z80,47
_asm,36, 38–41
_endasm,36, 39–41
_naked,40, 46
_sdcc_external_startup(),38
8031, 8032, 8051, 8052, mcs51 CPU,5

Absolute addressing,32, 33
ACC (mcs51, ds390 register),41
Aligned array,32, 38, 39
Annotated syntax tree,86
ANSI-compliance,6, 83
Any Order Bit,80
AOMF, AOMF51,19, 25, 61, 62
aslink,5, 69
Assembler documentation,40, 69
Assembler listing,19
Assembler options,26
Assembler routines,36, 38, 41, 82
Assembler routines (non-reentrant),41
Assembler routines (reentrant),42
Assembler source,19
asXXXX (as-gbz80, as-hc08, asx8051, as-z80),5,

40, 69
at,30–33, 38
atomic,34, 37
AVR, 22

B (mcs51, ds390 register),41
Basic blocks,27, 90
bit, 6, 23, 29, 30, 32, 33
Bit rotation,79
Bit shifting, 79
Bit toggling,6

93

INDEX INDEX

bitfields,29
block boundary,32
Bug reporting,72
Building SDCC,11
Byte swapping,80

C Reference card,70
Carry flag,30
Changelog,73
code,23, 26, 29
code banking (limited support),7
code page (pic14),49
Command Line Options,21
Compatibility with previous versions,6
Compiler internals,86
compiler.h (include file),68
Copy propagation,76
critical, 36
Cyclomatic complexity,26, 84

data (hc08 storage class),32
data (mcs51, ds390 storage class),23, 28, 31
DDD (debugger),65
ddd (debugger),70
Dead-code elimination,27, 75, 88
Debugger,19, 62
Defines created by the compiler,47
DESTDIR,10
Division, 34, 35
Documentation,69
double (not supported),84
download,72
doxygen (source documentation tool),70
DPTR,41, 48, 80
DPTR, DPH, DPL,41, 42
DS390 memory model,45
DS390 options,24
DS80C390,21
DS80C400,21

ELF format,23
Emacs,65
Endianness,80
Environment variables,27
Examples,73, 74
External stack (mcs51),45

far (storage class),28, 38
Feature request,7, 72
Flags,30
Flat 24 (DS390 memory model),45
Floating point support,35, 43, 84
FPGA (field programmable gate array),15
FpgaC ((subset of) C to FPGA compiler),15
function epilogue,25, 40
function parameter,33, 41, 42
function prologue,25, 40, 46

gbz80 (GameBoy Z80),21, 48
gdb,62
getchar(),44
Global subexpression elimination,27
GNU General Public License, GPL,6
GNU Lesser General Public License, LGPL,45
gpsim (pic simulator),70
gputils (pic tools),49, 70

HC08,21, 49
HD64180,31
Higher Order Byte,81
Higher Order Word,81
Highest Order Bit,80
HTML version of this document,15

I/O memory (Z80, Z180),31
ICE (in circuit emulator),61
iCode,27, 86, 87
idata (mcs51, ds390 storage class),23, 28, 31
indent (source formatting tool),70
Install paths,10
Install trouble-shooting,16
Installation,8
int (16 bit),43
int (64 bit) (not supported),84
Intel hex format,19, 23, 62
Intermediate dump options,27
interrupt,31, 34, 36, 37, 40, 43, 46, 49
interrupt jitter,37
interrupt latency,37
interrupt mask,37
interrupt priority,37
interrupts,37

jump tables,77

K&R style, 84

Labels,41
Libraries,20, 22, 26, 30, 44, 45
Linker, 20
Linker documentation,69
Linker options,22
lint (syntax checking tool),27, 61
little-endian,80
Live range analysis,27, 85–87
local variables,33, 34, 45, 68
lock, 37
long (32 bit),43
long long (not supported),84
Loop optimization,27, 76, 88
Loop reversing,25, 77

Mailing list(s),72, 73
main return,26
MCS51,21
MCS51 memory,30

94

INDEX INDEX

MCS51 memory model,45
MCS51 options,23
MCS51 variants,48, 82
Memory map,19
Memory model,30, 34, 45
Microchip,50
Modulus,35
Motorola S19 format,19, 23
Multiplication, 34, 35, 77, 88

Naked functions,40
near (storage class),28
Nibble swapping,80

objdump (tool),19, 70
Object file,19
Optimization options,24
Optimizations,75, 86
Options assembler,26
Options DS390,24
Options intermediate dump,27
Options linker,22
Options MCS51,23
Options optimization,24
Options other,25
Options PIC16,51
Options preprocessor,22
Options processor selection,21
Options SDCC configuration,8
Options Z80,24
oscilloscope,61
Overlaying,34

P2 (mcs51 sfr),29, 45, 48
Parameter passing,41
Parameters,33
Parsing,86
Patch submission,72–74
pdata (mcs51, ds390 storage class),29, 45, 48
PDF version of this document,15
Peephole optimizer,25, 40, 82
PIC14,22, 49
PIC16,22, 50, 53, 54, 57, 69
Pointer,30
Pragmas,46
Preprocessor options,22
printf(), 44
printf_fast() (mcs51),44
printf_fast_f() (mcs51),44
printf_small(),44
printf_tiny() (mcs51),44
Processor selection options,21
promotion to signed int,38, 67
push/pop,40, 41, 46
putchar(),44

Quality control,73

RAM bank (pic14),49
reentrant,25, 26, 33, 34, 41–43, 45, 83
Register allocation,76, 86, 87
Register assignment,27
register bank (mcs51, ds390),31, 33, 37
Regression test,48, 69, 73, 74
Related tools,70
Release policy,73
Reporting bugs,72
Requesting features,7, 72
return value,42, 48
rotating bits,79
Runtime library,38

s51,18
sbit,6
SDCC,47
SDCC_ds390,47
SDCC_HOME,28
SDCC_INCLUDE,28
SDCC_LEAVE_SIGNALS,27
SDCC_LIB,28
SDCC_mcs51,47
SDCC_MODEL_FLAT24,47
SDCC_MODEL_LARGE,47
SDCC_MODEL_MEDIUM,47
SDCC_MODEL_SMALL,47
SDCC_STACK_AUTO,47
SDCC_STACK_TENBIT,47
SDCC_USE_XSTACK,47
SDCC_z80,47
sdcclib,20, 21
sdcdb (debugger),18, 62, 69, 70
sdcpp (preprocessor),18, 22
Search path,10
semaphore,37
sfr, 30, 31, 48
sfr16,30
sfr32,30
signal handler,27
sloc (spill location),24
splint (syntax checking tool),27, 61, 70
srecord (bin, hex, ... tool),19, 23, 70
stack,23, 25, 28, 31, 33, 35–37, 45, 48, 76
stack overflow,35
Startup code,38
static,33
Status of documentation,6, 15
Storage class,28, 31–34, 45
Strength reduction,76, 88
Subexpression,77
Subexpression elimination,24, 75
Subversion,73
Subversion code repository,72
Support,72
swapping nibbles/bytes,80
switch statement,24, 77, 79

95

INDEX INDEX

Symbol listing,19

tabulator spacing (8 columns),13
Test suite,73
Tinibios (DS390),45
TLCS-900H,22
TMP, TEMP, TMPDIR,27
Tools,69
Trademarks,91
type conversion,6
type promotion,6, 35, 38, 67
Typographic conventions,6

UnxUtils, 13
USE_FLOATS,44
using (mcs51, ds390 register bank),31, 34, 35, 37

va_arg,69
Variable initialization,25, 32, 38
version,15, 73
volatile,32, 34, 37, 40
VPATH, 15

Warnings,26
warranty,6

XA51, 22
xdata (hc08 storage class),32
xdata (mcs51, ds390 storage class),22, 28, 31, 32, 38
XEmacs,65
xstack,23

Z180,31
Z80,21, 31, 48
Z80 options,24

96

	Introduction
	About SDCC
	Open Source
	Typographic conventions
	Compatibility with previous versions
	System Requirements
	Other Resources
	Wishes for the future

	Installing SDCC
	Configure Options
	Install paths
	Search Paths
	Building SDCC
	Building SDCC on Linux
	Building SDCC on OSX 2.x
	Cross compiling SDCC on Linux for Windows
	Building SDCC on Windows
	Building SDCC using Cygwin and Mingw32
	Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC)
	Building SDCC Using Borland
	Windows Install Using a ZIP Package
	Windows Install Using the Setup Program
	VPATH feature

	Building the Documentation
	Reading the Documentation
	Testing the SDCC Compiler
	Install Trouble-shooting
	If SDCC does not build correctly
	What the ''./configure'' does
	What the ''make'' does
	What the ''make install'' command does.

	Components of SDCC
	sdcc - The Compiler
	sdcpp - The C-Preprocessor
	asxxxx, aslink, link-xxx - The Assemblers and Linkage Editors
	s51 - The Simulator
	sdcdb - Source Level Debugger

	Using SDCC
	Compiling
	Single Source File Projects
	Projects with Multiple Source Files
	Projects with Additional Libraries
	Using sdcclib to Create and Manage Libraries

	Command Line Options
	Processor Selection Options
	Preprocessor Options
	Linker Options
	MCS51 Options
	DS390 / DS400 Options
	Z80 Options
	Optimization Options
	Other Options
	Intermediate Dump Options
	Redirecting output on Windows Shells

	Environment variables
	Storage Class Language Extensions
	MCS51/DS390 Storage Class Language Extensions
	data / near
	xdata / far
	idata
	pdata
	code
	bit
	sfr / sfr16 / sfr32 / sbit
	Pointers to MCS51/DS390 specific memory spaces
	Notes on MCS51 memory layout

	Z80/Z180 Storage Class Language Extensions
	sfr (in/out to 8-bit addresses)
	banked sfr (in/out to 16-bit addresses)
	sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

	HC08 Storage Class Language Extensions
	data
	xdata

	Absolute Addressing
	Parameters & Local Variables
	Overlaying
	Interrupt Service Routines
	General Information
	MCS51/DS390 Interrupt Service Routines
	HC08 Interrupt Service Routines
	Z80 Interrupt Service Routines

	Enabling and Disabling Interrupts
	Critical Functions and Critical Statements
	Enabling and Disabling Interrupts directly
	Semaphore locking (mcs51/ds390)

	Functions using private register banks (mcs51/ds390)
	Startup Code
	MCS51/DS390 Startup Code
	HC08 Startup Code
	Z80 Startup Code

	Inline Assembler Code
	A Step by Step Introduction
	Naked Functions
	Use of Labels within Inline Assembler

	Interfacing with Assembler Code
	Global Registers used for Parameter Passing
	Assembler Routine (non-reentrant)
	Assembler Routine (reentrant)

	int (16 bit) and long (32 bit) Support
	Floating Point Support
	Library Routines
	Compiler support routines (_gptrget, _mulint etc.)
	Stdclib functions (puts, printf, strcat etc.)
	<stdio.h>

	Math functions (sinf, powf, sqrtf etc.)
	<math.h>

	Other libraries

	Memory Models
	MCS51 Memory Models
	Small, Medium and Large
	External Stack

	DS390 Memory Model

	Pragmas
	Defines Created by the Compiler

	Notes on supported Processors
	MCS51 variants
	pdata access by SFR
	Other Features available by SFR

	DS400 port
	The Z80 and gbz80 port
	The HC08 port
	The PIC14 port
	C code and 14bit PIC code page and RAM banks
	Creating a device include file
	Interrupt code
	Linking and assembling
	Command-line options
	The library
	error: missing definition for symbol ''__gptrget1''
	Processor mismatch in file ''XXX''.

	Known bugs
	initialized data

	The PIC16 port
	Global Options
	Port Specific Options
	General Options
	Optimization Options
	Linking Options
	Debugging Options

	Enviromental Variables
	Preprocessor Macros
	Directories
	Pragmas
	Header Files
	Libraries
	Memory Models
	Stack
	Functions
	Function return values
	Interrupts
	Generic Pointers
	PIC16 C Libraries
	Standard I/O Streams
	Printing functions
	Signals

	PIC16 Port -- Tips
	Stack size

	Debugging
	Debugging with SDCDB
	Compiling for Debugging
	How the Debugger Works
	Starting the Debugger SDCDB
	SDCDB Command Line Options
	SDCDB Debugger Commands
	Interfacing SDCDB with DDD
	Interfacing SDCDB with XEmacs

	TIPS
	Porting code from or to other compilers
	Tools included in the distribution
	Documentation included in the distribution
	Related open source tools
	Related documentation / recommended reading
	Some Questions

	Support
	Reporting Bugs
	Requesting Features
	Submitting patches
	Getting Help
	ChangeLog
	Subversion Source Code Repository
	Release policy
	Examples
	Quality control
	Use of SDCC in Education

	SDCC Technical Data
	Optimizations
	Sub-expression Elimination
	Dead-Code Elimination
	Copy-Propagation
	Loop Optimizations
	Loop Reversing
	Algebraic Simplifications
	'switch' Statements
	Bit-shifting Operations.
	Bit-rotation
	Nibble and Byte Swapping
	Highest Order Bit / Any Order Bit
	Higher Order Byte / Higher Order Word
	Peephole Optimizer

	ANSI-Compliance
	Cyclomatic Complexity
	Retargetting for other Processors

	Compiler internals
	The anatomy of the compiler
	A few words about basic block successors, predecessors and dominators

	Acknowledgments

