

# C3-104<sup>™</sup> PART # 3515 USER MANUAL

# **SECTIONS:**

| SECTION 1.  | INTRODUCTION              |
|-------------|---------------------------|
| SECTION 2.  | TECHNICAL DESCRIPTION     |
| SECTION 3.  | INSTALLATION              |
| SECTION 4.  | ADDRESS SELECTION         |
| SECTION 5.  | <b>OPTION SELECTION</b>   |
| SECTION 5.7 | SECTION 6. SPECIFICATIONS |
| SECTION 7.  | WARRANTY                  |

# **FIGURES:**

Figure 1 - RS-232 Connector Pin-Outs Figure 2 - Address Selection Table Figure 3 - Status Register Programmable Option Bits

Sealevel Systems, Incorporated 155 Technology Place P.O. Box 830 Liberty, SC 29657 (864) 843-4343 FAX (864) 843-3067

© Copyright 1997c Sealevel Systems, Incorporated

# SECTION 1. Introduction

The Sealevel Systems *C3-104* provides the PC/104 with 2 independent Sync/Async communications ports with data rates up to 500K bps. The *C3-104* board provides jumper selectable RS-232, RS-423 or RS-530/422 communications, and has selectable base I/O addressing. The *C3-104* allows for software controlled setup of the IRQ, DMA and baud rate.

# SECTION 2. Technical Description

The C3-104 provides 2 independent Sync/Async communications ports utilizing the 8530 serial communications controller.

## Features include:

- Two channels of Sync / Async communications using 8530
- Data rates up to 500 Kbps
- RS-232C / RS-232D / RS-530/422 / RS-423
- Tx, Rx, RTS, CTS, DSR, DTR, DCD, RI, TXC, RXC, GND, Send Common, Receive Common (RI is always single ended, the rest are both single and differential)
- EIA-530 DTE pin-out using DB-25 connectors
- Switch selectable I/O address
- Jumper selectable electrical interface
- Software controlled set-up of IRQ, baud rate and DMA
- Both ports are DTE
- Uses DMA and Interrupts
- IRQs 3, 4, 7, 9, 10, 11, 12 and 15 supported
- Uses PC/104 compatible stack through connector for universal mounting

# SECTION 2.1 Communication Standards Technical Reference

The DB-25 male connectors meet the RS-232 and the RS-530/422 specification for DTE devices. The following sections contain a brief summary of RS-232, RS-423 and RS-530/422.

# SECTION 2.1.1 RS-232

Quite possibly the most widely used communication standard is RS-232. This implementation has been defined and revised several times and is often referred to as RS-232 or EIA/TIA-232. It is defined by the EIA as the *Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange*. The mechanical implementation of RS-232 is on a 25 pin D sub connector. RS-232 is capable of operating at data rates up to 20 Kbps at distances less than 50 ft. The absolute maximum data rate may vary due to line conditions and cable lengths. RS-232 often operates at 38.4 Kbps over very short distances. The voltage levels defined by RS-232 range from -12 to +12 volts. RS-232 is a single ended or unbalanced interface, meaning that a single electrical signal is compared to a common signal (ground) to determine binary logic states. A voltage of +12 volts (usually +3 to +10 volts) represents a binary 0 (space) and -12 volts (-3 to -10 volts) denotes a binary 1 (mark). The RS-232 and the EIA/TIA-574 specification defines two type of interface circuits, **D**ata Terminal Equipment (DTE) and **D**ata Circuit-terminating Equipment (DCE). The Sealevel Systems adapter is a DTE interface.

| Signal | Name                | Pin # | Mode                  |
|--------|---------------------|-------|-----------------------|
| GND    | Ground              | 7     |                       |
| RD     | Receive Data        | 3     | Input RS-232          |
| CTS    | Clear To Send       | 5     | Input RS-232          |
| DSR    | Data Set Ready      | 6     | Input RS-232          |
| DCD    | Data Carrier Detect | 8     | Input RS-232          |
| RI     | Ring Indicator      | 22    | Input RS-232          |
| RXC    | Receive Clock       | 17    | Input RS-232          |
| TXC    | Transmit Clock      | 15    | Input / Output RS-232 |
| DTR    | Data Terminal Ready | 20    | Output RS-232         |
| TD     | Transmit Data       | 2     | Output RS-232         |
| RTS    | Request To Send     | 4     | Output RS-232         |

Figure 1 - RS-232 Connector Pin-Outs

*Technical Note*: Please terminate any control signals that are not going to be used. The most common way to do this is connect RTS to CTS and RI. Also, connect DCD to DTR and DSR. Terminating these pins, if not used, will help insure you get the best performance from your adapter.

# SECTION 2.1.2 RS-423

The RS-423 specification defines the electrical characteristics of unbalanced voltage digital interface circuits. The voltage levels defined by RS-423 range from -5 to +5 volts. RS-423 is a single ended interface, meaning that a single electrical signal is compared to a common signal (ground) to determine binary logic states. A voltage of +5 volts represents a binary 0 and -5 volts denotes a binary 1. RS-423 is rated up to 100K bits per second. RS-423 also defines driver and receiver electrical characteristics. RS-423 does not define a physical connector.

| Signal | Name                  | Pin # | Mode                  |
|--------|-----------------------|-------|-----------------------|
| GND    | Ground                | 7     |                       |
| RD     | Receive               | 16    | Input RS-423          |
| CTS    | Clear To Send         | 13    | Input RS-423          |
| DSR    | Data Set Ready        | 18    | Input RS-423          |
| DCD    | Data Carrier Detect   | 10    | Input RS-423          |
| RXC    | Receive Clock         | 12    | Input RS-423          |
| TXC    | Transmit Clock        | 9     | Input / Output RS-423 |
| TD     | Transmit              | 14    | Output RS-423         |
| RTS    | Request To Send       | 19    | Output RS-423         |
| DTR    | Data Terminal. Ready  | 21    | Output RS-423         |
| Return | Digital RS-423 Return | 23    |                       |

Figure 2- RS-423 Connector Pin Outs

# SECTION 2.1.3 RS-422

The RS-422 specification defines the electrical characteristics of balanced voltage digital interface circuits. RS-422 is a differential interface that defines voltage levels and driver/receiver electrical specifications. On a differential interface, logic levels are defined by the difference in voltage between a pair of outputs or inputs. In contrast, a single ended interface, for example RS-232, defines the logic levels as the difference in voltage between a single signal and a common ground connection. Differential interfaces are typically more immune to noise or voltage spikes that may occur on the communication lines. Differential interfaces also have greater drive capabilities that allow for longer cable lengths. RS-422 is rated up to 10 Megabits per second and can have cabling 4000 feet long. RS-422 also defines driver and receiver electrical characteristics that will allow 1 driver and up to 32 receivers on the line at once. RS-422 signal levels range from 0 to +5 volts. RS-422 does not define a physical connector.

# SECTION 2.1.4 RS-530

RS-530 (a.k.a. EIA-530) compatibility means that RS-422 signal levels are met, and the pin-out for the DB-25 connector is specified. The EIA (Electronic Industry Association) created the RS-530 specification to detail the pin-out. The RS-530 is broken into two interfaces: DTE and DCE. In addition to the asynchronous modem control signals on a standard PC serial port.

| Signal |      | Name                          | Pin # | Mode                  |
|--------|------|-------------------------------|-------|-----------------------|
| GND    |      | Ground                        | 7     |                       |
| RDB    | RX+  | Receive Positive              | 16    | Input RS-422          |
| RDA    | RX-  | Receive Negative              | 3     | Input RS-422          |
| CTSB   | CTS+ | Clear To Send Positive        | 13    | Input RS-422          |
| CTSA   | CTS- | Clear To Send Negative        | 5     | Input RS-422          |
| DSRB   | DSR+ | Data Set Ready Positive       | 18    | Input RS-422          |
| DSRA   | DSR- | Data Set Ready Negative       | 6     | Input RS-422          |
| DCDB   | DCD+ | Data Carrier Detect Positive  | 10    | Input RS-422          |
| DCDA   | DCD  | Data Carrier Detect Negative  | 8     | Input RS-422          |
| TDB    | TX+  | Transmit Positive             | 14    | Output RS-422         |
| TDA    | TX-  | Transmit Negative             | 2     | Output RS-422         |
| RTSB   | RTS+ | Request To Send Positive      | 19    | Output RS-422         |
| RTSA   | RTS- | Request To Send Negative      | 4     | Output RS-422         |
| DTRB   | DTR+ | Data Terminal. Ready Positive | 21    | Output RS-422         |
| DTRA   | DTR- | Data Terminal Ready Negative  | 20    | Output RS-422         |
| RXCB   | RXC+ | Receive Clock Positive        | 12    | Input RS-42           |
| RXCA   | RXC- | Receive Clock Negative        | 15    | Input RS-422          |
| TXCB   | TXC+ | Transmit Clock Positive       | 9     | Input / Output RS-422 |
| ТХСВ   | TXC- | Transmit Clock Negative       | 17    | Input / Output RS-422 |

# Figure 3 - RS-530 / 422 Connector Pin Outs

#### SECTION 2.2 RS-530 / 422 Line Termination

Typically, each end of the RS-530/422 bus must have line terminating resistors. A 100 ohm resistor is across each RS-530/422 input in addition to a 1K ohm pull-up/pull-down combination that bias the receiver inputs.

The RS-530 specification calls for a 100 ohm 1/2 watt resistor between the signal ground and the chassis ground. On the IBM PC, these two grounds are already connected together, therefore this resistor is omitted.

# SECTION 3. Installation

The *C3-104* board is installed by carefully inserting Bus connector J1 so that it lines up pin 1 to pin 1(pin 1 is labeled on the Silk-Screen as **B1**) of the expansion connector on a PC/104 compatible card. Mounting hardware (nylon stand-off and screws) is provided to insure a good mechanical connection. Extreme care should be taken when installing this board so as not to cause damage to the connectors. After the board is installed, connect the I/O cables to J3 and J4. Refer to Section 4 and 5 for information on setting the address and jumper options before connecting J1.

# SECTION 4. Address Selection

The C3-104 occupies 8 consecutive I/O locations. A dip-switch (SW-1) is used to set the base address for these locations. Be careful when selecting the base address as some selections conflict with existing ports. The following table shows valid I/O address settings for the C3-104 board. SW-1 sets the I/O address for the C3-104 board.

| Address | Switch Position Setting |     |     |
|---------|-------------------------|-----|-----|
| Hex     | 1                       | 2   | 3   |
| 300-307 | 0                       | On  | On  |
|         | f                       |     |     |
|         | f                       |     |     |
| 310-317 | C                       | Off | On  |
|         | n                       |     |     |
| 280-287 | O                       | Off | On  |
|         | f                       |     |     |
|         | f                       |     |     |
| 290-297 | C                       | On  | Off |
|         | n                       |     |     |
| 238-23F | O                       | On  | Off |
|         | f                       |     |     |
|         | f                       |     |     |
| 308-30F | O                       | Off | Off |
|         | n                       |     |     |
| 288-28F | C                       | Off | Off |
|         | f                       |     |     |
|         | f                       |     |     |

Figure 2 - Address Selection Table

Note: Switch position 4 on SW-1 is ignored.

The following illustration shows the dip-switch setting used to determine the base address. In the example below, the base address 310 Hex is selected.

|  |   |   |   |   |   | ON  |
|--|---|---|---|---|---|-----|
|  |   |   | ſ |   |   | OFF |
|  | 1 | 2 |   | 3 | 4 |     |

Figure 4 - Dip switch SW-1

The relative I/O address of the 8530 SCC registers is as follows:

- Base+0 Channel A Data Port
- Base+1 Channel A Control Port
- Base+2 Channel B Data Port
- Base+3 Channel B Control Port
- Base+4 Board Control / Status Port

Where "Base" is the selected board base address.

#### SECTION 5. Option Selection

The C3-104 contains several jumper straps for the port which must be set for proper operation.

#### SECTION 5.1 RS-232 Operation

Set Header **E2** to -5V for the selected port. Add the supplied sip resistor (10K ohm pin one common, 8 pin) with pin 1 installed in pin 8 of RP1 (for port 1) or RP2 (for port 2). RS-232 signals include: TD, RD, RTS, CTS, RI, DTR, DCD, TXC, and RXC.



Figure 5 - RS-232 Operation

#### SECTION 5.2 RS-423 Operation

Set Header E2 to -5V for the selected port. Add the supplied sip resistor (10K ohm pin one common, 8 pin) with pin 1 installed in pin 9 of RP2 (for port 2) or RP3 (for port 1). RS-423 signals include: TD, RD, RTS, CTS, RI, DTR, DCD, TXC, and RXC.



Figure 6- RS-423 Operation

#### SECTION 5.3 RS-530/422 Operation

Set Header **E2** to GND for the selected port. Install 100 Ohm 16 pin DIP-resistor into RP1 (for port 1) or RP2 (for port 2), remove it. RS-530/422 signals include: TD±, RD±, RTS±, CTS±, DTR±, DCD±, DSR±, TXC±, TSET± and RXC±.



Figure 7 - RS-530/422 Operation

# Header E3 Clocking Options

Header E3 selects whether the TXC is to be an input, with the default being output. The following table list the possible options. Signal RXC is always an input.

| Pins 1 and 2 covered: | TXC for channel B is selected as an input |
|-----------------------|-------------------------------------------|
| Pins 3 and 4 covered: | TXC for channel A is selected as an input |

# Programming the C3-104

# SECTION 5.4 Programmable Options

The *C3-104* occupies eight input / output (I/O) addresses. The first four are used by the SCC chip, while the fifth address (Base+4) is the address of the on-board *Control/Status Port*. This port is used to set the **D**ata Terminal **R**eady (DTR) signal, to enable or disable DMA under program control, and to monitor the **D**ata Set **R**eady (DSR) input signals from the modem. The following table lists bit positions of the Control/Status port.

| Bit: | Output Port Bits         | Input Port Bits                     |
|------|--------------------------|-------------------------------------|
| 0    | DTR A 0=On, 1=Off        | DSR A 1=On, 0=Off                   |
| 1    | DTR B 0=On, 1=Off        | DSR B 1=On, 0=Off                   |
| 2    | IRQ Selection, see table | RIA 1=On, 0=Off                     |
| 3    | IRQ Selection, see table | RIA 1=On, 0=Off                     |
| 4    | IRQ Selection, see table | SCC Interrupt Status, 0=Int Pending |
| 5    | DMA Selection, see table | DMA Selection                       |
| 6    | DMA Selection, see table | DMA Selection                       |
| 7    | DMA Selection, see table | DMA Selection                       |

Figure 8 - Control / Status Register Bit Definitions

#### Software Examples

| Bits     | Selection                                 |  |
|----------|-------------------------------------------|--|
| xxx000xx | No Interrupt Selected                     |  |
| xxx001xx | IRQ3 Selected                             |  |
| xxx010xx | IRQ7 Selected                             |  |
| xxx011xx | IRQ9 Selected                             |  |
| xxx100xx | IRQ10 Selected                            |  |
| xxx101xx | IRQ11 Selected                            |  |
| xxx110xx | IRQ12 Selected                            |  |
| xxx111xx | IRQ15 Selected                            |  |
| 000xxxxx | No DMA Selected                           |  |
| 001xxxxx | SCC Wait/REQ ChA DMA1 - DTR/REQ ChA DMA3  |  |
| 010xxxxx | SCC Wait/REQ ChA DMA1 - Wait/REQ ChB DMA3 |  |
| 011xxxxx | SCC Wait/REQ ChB DMA1 - DTR/REQ ChB DMA3  |  |

Figure 3 - Status Register Programmable Option Bits

### SECTION 5.5 IRQ Selection

The IRQ of the SCC is programmed under software control. Interrupt request level is selected by writing to bits 2, 3 and 4 of the SCC Control/Status Port (Base+4). The Sealevel Systems **C3-104** board supports interrupt levels 3, 7, 9, 10, 11, 12 and 15. Both ports of the **C3-104** share the IRQ.

#### SECTION 5.6 Direct Memory Access

**D**irect **M**emory **A**ccess (DMA) can be used to transfer data at very high rates. DMA allows the transfer of data directly to or from system memory bypassing the CPU. The software examples provided on the ACB Developer Toolkit diskette demonstrate the setup and use of DMA.

# SECTION 5.7 SECTION 6. Specifications

#### SECTION 6.1 Environmental Specifications

| Specification  | Operating       | Storage        |
|----------------|-----------------|----------------|
| Temperature    | 0 - 50 ° C      | -20 -70 ° C    |
| Range          | (32 - 122 ° F)  | (-4 - 158 ° F) |
| Humidity Range | 10 - 90% R.H.   | 10 - 90% R.H.  |
|                | Non Condensing. | Non Condensing |

#### **Environmental Specifications**

#### SECTION 6.2 Performance Specifications

| MTBF                       | > 150,000 Hours |  |
|----------------------------|-----------------|--|
| MTTR                       | < .25 Hours     |  |
| Turnaround For Repair      | 5 Working Days  |  |
| Performance Specifications |                 |  |

#### SECTION 6.3 Manufacturing Specifications

IPC 610-A Class-III standards adhered to with a 0.1 visual A.Q.L. and 100% Functional Testing.

#### SECTION 7. WARRANTY

Sealevel Systems, Inc. provides a lifetime warranty for this product. Should this product fail to be in good working order at any time during this period, Sealevel Systems will, at it's option, replace or repair it at no additional charge except as set forth in the following terms. This warranty does not apply to products damaged by misuse, modifications, accident or disaster.

Sealevel Systems assumes no liability for any damages, lost profits, lost savings or any other incidental or consequential damage resulting from the use, misuse of, or inability to use this product. Sealevel Systems will not be liable for any claim made by any other related party.

#### RETURN AUTHORIZATION MUST BE OBTAINED FROM SEALEVEL SYSTEMS BEFORE RETURNED MERCHANDISE WILL BE ACCEPTED. AUTHORIZATION CAN BE OBTAINED BY CALLING SEALEVEL SYSTEMS AND REQUESTING A RETURN MERCHANDISE AUTHORIZATION (RMA) NUMBER.

Sealevel Systems Incorporated 155 Technology Place P.O. Box 830 Liberty, SC 29657 USA (864) 843-4343 FAX (864) 843-3067 E-mail: support@sealevel.com Internet: www.sealevel.com

Please refer to your included diskette for any post production manual updates and application specific information.

Technical Support is available from 8 a.m. to 5 p.m. Eastern time. Monday - Friday

C3-104 is a trademark of Sealevel Systems, Inc. "AT" is a trademark of International Business Machines Corporation. PC/104 is a trademark of the PC/104 consortium.