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The Digital I/O Handbook
A Practical Guide to Industrial Input and Output Applications

Digital I/O Explained

Renowned technical author Jon Titus and the
President and CEO of Sealevel Systems, Tom
O’Hanlan, clearly explain real-world digital
input/output implementation from both a hardware
and software perspective. Whether you are a
practicing engineer or a student, The Digital I/O
Handbook will provide helpful insight you will use
again and again.

Covers a wide range of devices including
optically isolated inputs, relays, and sensors
Shows many helpful circuit diagrams and drawings
Includes software code examples
Presents common problems and solutions
Detailed glossary of common industry terms

“What I like most is its mix of hardware and software. Most pages have a bit of code plus a
schematic. All code snippets are in C. This is a great introduction to the tough subject of
tying a computer to the real world. It’s the sort of quick-start of real value to people with no
experience in the field.” – Jack Ganssle, The Embedded Muse, January, 2005.

You can purchase the Digital I/O Handbook for $19.95 by clicking here. The Digital I/O
Handbook is FREE with any qualifying Sealevel Digital I/O product purchase.

Chapter 2 – Digital Outputs
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Introduction to output ports
Electronic devices receive information from computers through a circuit called an output
port. That information can control a process, control individual devices, update a display,
and so on. Each output port, as shown in Figure 2-1, receives information from a
computer’s internal data bus and it also receives a unique strobe signal supplied by the
internal circuitry of the computer. Because most people use output ports rather than design
them, we won’t discuss port construction further.

Figure 2-1

Two output ports connect in parallel to a computer data bus. Each output port receives a
unique strobe signal that synchronizes the bus with the port’s operation to capture the data.

In most cases, computers transfer eight bits, or one byte, at a time under software control.
The computer generates a unique strobe signal, designated something like OUTxyz, for
each output port. A software command such as:

outportb (output_port_number, output_data_byte)

controls the flow of data to an output port.  The command, outportb, transfers a byte of data
(output_data_byte) to a specified output port (output_port_number). The computer’s central
processing unit (CPU) properly synchronizes the presence of the byte on its data bus with
the strobe signal.

The outportb command shown above does not exist within some programming languages
such as Visual Basic. Each manufacturer of add-in cards or devices supplies its own driver
software. Drivers come in a library of routines that link a programming language to special
operations, such as those that control I/O ports. Thus, drivers define many new commands
that a programmer can include in code to transfer a byte to an output port.

You must follow instructions included with an I/O board to properly set up accompanying
driver software. The setup process lets your application program know how to find and use
the drivers on the computer’s hard drive. (The instructions that accompany a board and its
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drivers provide installation information and information about how to use drivers in your
application program.)

An output port’s signals may provide data, such as an 8-bit code for an ASCII character,
say, 01000101 , which represents the letter E. On the other hand, the outputs from the port
may control eight individual on/off devices. Software cannot tell—and doesn’t care—
whether the byte it sends to a port represents the letter E or on/off controls for pumps and
valves. A port with eight outputs can produce 256 unique binary patterns, 00000000
through 11111111 .

Sometimes, an output port will mix control signals and information, as shown in Figure 2-2.
A port that controls a numeric display might use four output lines to represent the digits 0
(0000 ) through 9 (1001 ) for the display. The remaining four lines from the port could
control a decimal-point LED and other devices independent of the display. You can use the
lines from an output port in almost any way you wish.

Figure 2-2

An output port’s eight lines can operate independently. In this example, four lines control a
binary-coded-decimal (BCD) display while the others control individual devices.

Simple on/off control

A simple output port constructed from TTL devices can directly drive TTL inputs.  Driving a
display module, for example, may only require connection of the port’s TTL outputs to the
TTL inputs on the module. Although TTL outputs can directly sink small currents, circuit
designers recommend using driver or buffer circuits to control real-world devices. These
drivers, which sink or source current, come with TTL-compatible inputs. Current sinks and
current sources often go by the names low-side switch and high-side switch, respectively.

Don’t confuse the hardware drivers that actually operate as part of a circuit with the
software drivers that let application software control an I/O port.

Using drivers and buffers

The family of SN7545X devices shown in Figure 2-3 provides four types of gates that drive
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internal open-collector transistors. Each open-collector output can sink up to 300 mA and
can operate with a voltage as high as 30V. This type of driver can control low-current,
low-voltage devices such as LEDs, solenoids, relays, stepper motors, and so on. The
SN7545X devices act as general-purpose drivers. Manufacturers also supply drivers built
specifically to control displays, stepper motors, DC motors, and other devices.

Figure 2-3

Devices in the SN7545X family of TTL-compatible drivers provide all four logic functions.
The open-collector transistors come as part of the driver ICs.

Drivers that sink current predominate, but at times, an application may call for a current
source, or a high-side switch. The UDN2987A integrated circuit from Allegro MicroSystems
(Worcester, MA; www.allegromicro.com) represents a typical current source (Figure 2-4).
This device supplies eight drivers, each of which can supply up to 100 mA from a supply
voltage as high as 35V. The UDN2987A also includes an overload protection circuit for
each driver.
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Figure 2-4

The UDN2987A driver supplies eight individual current-source circuits. Similar current-sink
drivers also come eight per package. (Courtesy of Allegro MicroSystems)

Relay Basics

The types of drivers described above work well when the output port, the driver circuit, and
the device under control all share a common ground, as shown in Figure 2-5. Often,
though, devices cannot or must not share a common ground. When a computer controls a
device that operates at a high voltage, for example, no electrical connection should exist
between the device and the computer. The interface between the computer and the motor
should isolate their circuits. An electromechanical device called a relay offers such isolation.

Figure 2-5

Many circuits function with a common ground connection, but some circuits may require
separate circuits that have no electrical connection.
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A relay contains a small electromagnet that controls an armature—a moving switch contact
—held in a “normal” position by a spring. When energized, the electromagnet causes the
armature to move to its other position. Remove the energy to the electromagnet and the
spring quickly moves the armature back to its normal position (Figure 2-6).

Figure 2-6

An electromagnetic relay provides a movable contact (armature) that can switch between
two contacts. An electromagnetic coil actuates the
armature.

Even though the switch and the electromagnet exist close to each other, they share no
electrical connection. This means the relay can turn a completely independent circuit on or
off. In this way, a small relay controlled by a TTL driver can operate a motor powered by
house current, yet no current flows between them. Manufacturers sell relays in a variety of
sizes and with a wide range of voltage and current ratings. (For information on relay and
switch contact configurations, see Appendix.)

Reed relays, at the small end of the relay spectrum, handle up to 200V and currents as
high as 0.5A. As its name implies, a reed relay contains a small magnetic “reed” that forms
the moving part of a switch (Figure 2-7a).

6/19



Figure 2-7a

A Reed relay provides two contacts that close a circuit.

Depending on the type of reed relay, one or two other contacts complete the circuit through
the switch. Instead of relying on a spring to move the reed, the relay relies on the properties
of the metal reed to hold it in its normal position.

Figure 2-7b

A magnetic field applied by a coil controls relay closure.

The reed and the other contacts come sealed in a small glass tube that fits inside an
electromagnetic coil (Figure 2-7b). Sealing the reed and the contacts in a glass tube
protects them from contamination and helps ensure reliable operation over millions of on-off
cycles.
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A variety of reed relay types let users choose from a wide range of voltage and current
specifications. Reed relay coils operate at 5V, 12V, or 24V, so drivers such as those in the
SN7545X family can easily control them. One output port and eight drivers can
independently control eight relays (Figure 2-8).

Figure 2-8

An output port and drivers can control eight individual relays. For clarity, the diagram shows
only four relays and it does not show connections to the relay contacts.

Not all relays control motors, pumps, and heaters.  A series of computer-controlled reed
relays can switch one of many sensor signals to the input of a data-acquisition or data-
logging system. What you use a relay to control or switch makes no difference as long as
you operate it within specified limits. (Note that suppression diodes are not shown in the
example schematics. See Glossary.)

Relays handle more power

At the high-power end of the relay spectrum you’ll find relays that switch high voltages and
currents (Figure 2-9). Even a small power relay can handle voltages as high as 250V AC
and currents as high as 10A; sufficient to control large motors, lamps, heaters, pumps, and
so on.  In a power relay, the space between the contacts, the size of the contacts, and the
materials used to fabricate them determine current-carrying capacity and operating-voltage
limits. Relay manufacturers may reduce, or derate, some specifications depending on the
type of load a relay will control. In general, relays can carry more current for a resistive load
than for an inductive load, such as a solenoid or motor.
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Figure 2-9

Relay manufacturers offer varieties of contact configurations, mounting arrangements,
contact characteristics, and cases. (Courtesy of IDEC
USA.)

Optical isolation

When a design requires isolation and a relay isn’t practical, engineers turn to devices that
optically isolate a driver from the circuit under control. In a relay, a magnetic field isolates an
electrical coil from a mechanical switch, while in an optical device, light provides the
isolation. In an optical isolator a circuit turns on or off an LED that shines on a detector. The
detector, usually a phototransistor, then turns on or off a separate—and isolated—circuit.
Figure 2-10 shows a cut-away diagram of an optical isolator, also called an optical coupler,
opto-coupler, or opto-isolator.

Figure 2-10

Figure 2-10

A cut-away view of an optical isolator shows the separation of an LED and a
phototransistor. The separate circuits can provide an isolation of several thousand volts.

Optical isolators come in a variety of forms, from 6-pin dual in-line package (DIP) devices
that supply one LED-phototransistor pair, to larger devices that include several such pairs.
Electrical isolation between the LED and the phototransistor ranges from about 1500V up
as high as 8 kV, more than enough for most real-world applications.

Although some designs use optical-isolator ICs as stand-alone drivers, their utility increases
when they control semiconductors that handle high-power loads. An optical isolator can
control a triac—a semiconductor device that can switch power-line current—as shown in
Figure 2-11. To reduce switching transients, which can cause EMI and RFI, some optical
isolators provide a zero crossing detector. This detector determines when the line voltage
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signal crosses through 0V, and switches the triac at that time. Switching at the zero-
crossing point minimizes the inrush of large currents that would occur if switching took
place at other points on the voltage waveform of an AC line-voltage signal.

Figure 2-11

A typical solid-state relay circuit uses an Optical isolator to control a triac that switches line
voltage to a lamp.

Solid state relays

You don’t have to build your own optically isolated control circuits. Manufacturers supply a
wide variety of solid state relays (SSRs) that optically isolate an input from an output that
controls high-power AC and DC loads. Modules can provide from one to as many as four
control circuits, depending on a user’s needs.

Although solid state relay manufacturers offer a wide array of device types, many conform
to standards that allow for the interchange of devices from several manufacturers. You can
buy compatible SSR modules from companies such as:

Crouzet-USA (Coppell, TX; www.crouzet-usa.com)
Grayhill (LaGrange, IL; www.grayhill.com)
Opto 22 (Temecula, CA; www.opto22.com)
Western Reserve Controls (Akron, OH; www.wrcakron.com

CAUTION: Modules usually include an LED to show the state of each relay. Unfortunately,
not all modules clearly label each LED and the circuit associated with it. The diagram in
Figure 2-12 identifies the circuits in the quad-circuit modules in the OAC and ODC families
of AC- and DC-output modules from Opto 22, and the 1781-OA5Q
and 1781-OB5Q families from Western Reserve Controls.
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Figure 2-12

The top view of an Opto 22 quad OAC or
ODC module (or equivalent) shows the
relationship between the internal circuits
and the LED indicators.

CAUTION: Manufacturers may designate outputs as “channels” numbered 8—1, although
the bits at an output port carry the labels 7—0, for data bits D7 through D0. Bit 0 represents
the right-most or least-significant bit (LSB), and bit 7 represents the left-most or most-
significant bit (MSB). The chart in Table 1 shows the relationships between the outputs, the
bits, and the binary weights for each bit.

Module
Channel

Bit Position Binary Value Decimal Value

1 D0 00000001 1

2 D1 00000010 2

3 D2 00000100 4

4 D3 00001000 8

5 D4 00010000 16

6 D5 00100000 32

7 D6 01000000 64

8 D7 10000000 128

Table 1
Modules, Bits, and Binary Weights.

To turn on the outputs at positions 8, 5, and 3 in a positive logic system, for example,
requires a logic 1 at bits 7, 4, and 2, or a binary bit pattern of 10010100 , which translates
to hexadecimal 94 (&amp;H94) or decimal 148. A negative-logic system would require a
binary bit pattern of 01101011 , hexadecimal 6B (&amp;H6B), or decimal 107.

2

2
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CAUTION: A quad-output module in the OAC and ODC and compatible families of AC- and
DC-output modules isolates pairs of outputs from one another, but the two circuits within
each pair share a common connection. In applications that control devices powered by the
same source, a shared common connection works well.  But an application may require
controlling 120V AC and 24V AC circuits (Figure 2-13). Although both circuits require AC
power, most likely that power doesn’t come from the same source. When in doubt, DO
NOT mix voltages within a pair of outputs. Always rely on a manufacturer’s data sheets for
complete application information on specific modules.

Figure 2-13

Each pair of outputs in an Opto 22 quad OAC or ODC module (or equivalent) provides a
single common connection. DO NOT mix circuits in a given pair unless the circuits share a
common connection.

CAUTION: You cannot control AC and DC circuits with a single quad module; each type of
current requires its own module.
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The Sealevel Systems M280 Quad Module Adapter, for example, accepts two of the OAC-
and ODC-type modules. The M280 board lets a user employ two AC-output modules, two
DC-output modules, or one of each. Modules can plug into either position, and the position
determines whether a module controls devices
1—4 or devices 5—8.

Control bits and bytes with software
Now that you understand a bit more about how circuits can turn devices on and off, you’ll
learn how software can control bits at output ports to give a computer control over real-
world devices. These operations involve manipulating individual bits.

To illustrate how software controls devices, assume you want to turn on or off a pump
motor using a solid-state relay connected to bit D4 at output port 207, as shown in Figure
2-14. (The relay would operate at position 5 on a Sealevel Systems’ M280 card.) Table 2-1
below shows the bits needed to control the motor using either positive logic or negative
logic:

Figure 2-14

A bit at D4 at output port 207 will turn a line-voltage motor on or off. A solid state relay
isolates the port from the line current and turns the motor on or off.

Positive Logic Negative Logic

1 = ON
0 = OFF

0 = ON
1 = OFF

Table 2-1
Bits needed to control the motor using either positive logic or negative logic.

For now, assume the card uses negative logic. (A following example will explain how to
work with positive logic.) If you send a logic 0 to bit D4 at output port 207, the motor runs. If
you send a logic 1 to bit D4, the motor stops.

Controlling the output port involves using the general instruction:

outportb (output_port_number, output_data_byte)

Given the decimal weight of bit D4 (16), and knowing the output-port number, you can use
commands such as those below to control the pump motor shown in Figure 2-14:

outportb (207, 0) ‘turn pump motor on

outportb (207, 16) ‘turn pump motor off
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The command that turns the motor on assumes it’s OK to set the other bits at output port
207 to logic 0. But in practice, output-port bits D7—D5 and D3—D0 probably control other
devices. Software that turns the pump on must not disrupt any other devices controlled by
this port! Thus, controlling the motor must NOT change any bits except for D4. How can
software do that?

To start, the software that controls the pump motor must know the state of the other bits;
that is, what devices at port 207 are already on or off. So, before it first uses an output port,
application software should set up a byte to store the bits that will go to that port. Then,
software can read at any time the state of the bits at a given port. (Each output port
requires its own status byte.)

Once software “knows” an output port’s current state, computer operations can control
individual bits. The four rules below, based on the truth tables shown in Chapter 1, show
how to control individual bits. An X indicates the state of the bit doesn’t matter. It can be a 1
or a 0.

1. If you AND bit X with logic 0, the result is always logic 0.
2. If you AND bit X with logic 1, you simply get the X bit’s original state.
3. If you OR bit X with logic 0, you simply get the X bit’s original state.
4. If you OR bit X with logic 1, the result is always logic 1.

Here are the rules in column form:

AND AND OR OR

X X X X

0 1 0 1

0 X X 1 Result

The AND and OR operations can operate on individual bits in the same positions in two
bytes of data. These bit-wise AND and OR operations can set individual bits to logic 1 or to
logic 0, or leave bits unchanged. Here are examples of a bit-wise AND and a bit-wise OR
operation:

Bit-wise AND

D7 D0

0 0 1 0 1 0 1 1 Byte A

0 0 1 1 0 1 0 1 Byte B

0 0 1 0 0 0 0 1 Result byte

Bit-wise OR

D7 D0
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0 1 0 0 0 1 0 1 Byte F

0 0 1 1 0 1 0 1 Byte G

0 1 1 1 0 1 0 1 Result byte

CAUTION: Programming languages provide two types of logical operations; the bit-wise
operations shown above and “logical” operations. These designations often confuse even
knowledgeable programmers! In C, for example, the symbol &amp; produces a bit-wise
AND, while the symbols &amp;&amp; produce a logical AND of two statements. Check a
programming reference manual for the language you plan to use for details. Our
programming examples will use AND and OR to stand for bit-wise operations.

Assume the port-status byte for output port 207 already contains 00110101 , so some
devices are now on (logic 0), and others, including the pump motor (bit D4), are now off
(logic 1).

To turn on the pump motor, software must force bit D4 to a logic 0 but leave the other
seven bits unchanged. Rules 1 and 2 (above) show that an AND operation can force a bit to
a logic 0 or leave bits unchanged. So, set up a byte and insert a logic 1 at each bit position
that should remain unchanged. Next, insert a logic 0 for any bit you want to force to a logic
0:

D4

1 1 1 0 1 1 1 1

Programmers call this byte a mask byte. A bit-wise AND of the current port-status byte and
the mask byte will set D4 to a logic 0, but leaves all other bits unchanged:

D7 D0

1 1 1 0 1 1 1 1 Mask byte

0 0 1 1 0 1 0 1 Port-status byte for output port 207

0 0 1 0 0 1 0 1 Result of bit-wise AND; the new port-status
byte

Remember, a bit-wise operation involves only the two bits in each column. Thus, bit D7 in
the mask byte gets ANDed with bit D7 in the port-status byte to produce bit D7 in the result,
and so on for each column.

In the example above, only bit D4 changed its state as a result of the bit-wise AND
operation. Note the result of the bit-wise AND yields a new port-status byte that the
software must store and then send to output port 207. Now, bit D4 will turn the pump motor
on, but without affecting any of the other bits at the output port.

2
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To turn the pump motor off, software must now force bit D4 to a logic 1 but leave the other
seven bits unchanged. Rules 3 and 4 (above) show that a bit-wise OR operation can force a
bit to a logic 1 or leave bits unchanged. So, set up a byte and insert a logic 0 at each bit
position that should remain unchanged. Next, insert a logic 1 for any bit you want to force to
a logic 1:

D4

0 0 0 1 0 0 0 0

Next, perform a bit-wise OR between this mask byte and the new port-status byte:

D7 D0

0 0 0 1 0 0 0 0 Mask byte

0 0 1 0 0 1 0 1 Port-status byte for output port 207

0 0 1 1 0 1 0 1 Result of bit-wise OR; the new port-status
byte

Note that the port-status byte used in this bit-wise OR is the port-status byte produced by
the bit-wise AND operation.  When you need to control an output port, always use the
current status information! Software must now store the result of the bit-wise OR operation
as the new port-status byte.

In the bit-wise OR operation, only bit D4 changed state. When software sends the new
status byte information to output port 207, the pump motor will turn off.

If you look closely at the mask bytes used in the AND and the OR operations, you may
realize that complementary mask bytes turn the pump motor on or off. In binary numbers, a
complementary number simply changes logic 1’s to logic 0’s, and vice versa, for example
00101  is the complement of 11010 .

The previous port-control example assumed the motor-control output port employs
negative logic (1 = off, 0 = on).  But, suppose the circuit designers provided the wrong
specification and the port actually uses positive logic (1 = on, 0 = off).  To control the pump
motor, use the SAME logical operations and mask bytes, but use a bit-wise OR to turn the
pump motor ON, and use a bit-wise AND to turn it off. Again, software MUST save the port-
status byte after each logical operation and the software must send that new status byte to
the output port.

The following steps show how to translate the bit-control operations into actual software:

1. Establish a status byte for each output port.
2. Establish an ON and an OFF mask byte for each bit the software will control.
3. Use bit-wise operations and the mask bytes to force individual bits to logic 1 or logic

0.

2 2
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Here’s how to set up a skeleton pseudo-code program to control an output port.  Pseudo-
code shows the program structure and flow, but you’ll have to adapt it to the language you
choose for an application.

To get started, “define,” or set aside bytes for individual bit masks. A notation such as D7_1
indicates the corresponding mask will set bit D7 to a logic 1. On the other hand, D7_0 will
set bit D7 to a logic 0. This sort of variable-naming technique can help you and other
programmers decipher a program listing.

The statements directly below set aside storage for 16 byte values:

Dim D7_1 As
Byte

Dim D7_1 As
Byte

Dim D6_1 As
Byte

...

Dim D0_1 As
Byte

.

.

.

Dim D7_0 As
Byte

Dim D6_0 As
Byte

...

Dim D0_0 As
Byte

Then establish the bit pattern for each of the masks defined above using their hexadecimal
values. The binary values shown as comments in the listing make clear the actual pattern
of bits in use:

D7_1 = &amp;H80 ‘10000000

D6_1 = &amp;H40 ‘01000000

D5_1 = &amp;H20 ‘00100000

...

D0_1 = &amp;H01 ‘00000001

.

.

.

D7_0 = &amp;H7F ‘01111111
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D6_0 = &amp;HBF ‘10111111

D5_0 = &amp;HDF ‘11011111

...

D0_0 = &amp;HFE ‘11111110

Next, set aside bytes for a port number and port-status byte for each output port, and a
“device on” and a “device off” mask byte for each device the software will control. The code
below shows only one port-status byte (motor_port_status), and the on and off masks for a
single pump motor controlled at a negative-logic output port by bit D4:

Dim motor_control_port_number As Byte

Dim motor_port_status As Byte

Dim pump_motor_D4_on_n As Byte

Dim pump_motor_D4_off_n As Byte

For clarity, the last two variable names above indicate:

What device the mask will control (pump_motor),
The bit used to control it (D4),
The action (on or off), and
The logic used at the output port (n, for negative logic, p for positive logic).

You can choose your own notation for variables, but we like to use variable names that
have as much meaning as possible.

Now the program adds commands that establish the actual mask values:

pump_motor_D4_on_n = D4_0 ‘11101111

pump_motor_D4_off_n = D4_1 ‘00010000

Remember, previous software already set up the values for D4_0 and for D4_1.

The program also sets up the motor-control port number, as defined by the system’s
hardware:

motor_control_port_number = 207

Should the motor-control port assignment change during development or debugging, it’s
easy to change this one assignment of the specific port address. Otherwise you must track
down and change every occurrence of “207” in a lengthy code listing!

TIP: After software establishes the bit-mask patterns, such as D4_0, you can use them
anywhere in a program when you need to set a bit to logic 0 or 1. So, if you need to control
a display that uses output D5 as a control line, simply use D5_0 and D5_1 to set up the two
masks to control this bit at the display-control output port. You need not redefine the basic
mask patterns again and again.
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Finally, the following commands turn on the pump motor:

motor_port_status = motor_port_status AND pump_motor_D4_on_n

outportb (motor_control_port_number, motor_port_status)

The first command forced bit D4 to a logic 0 in the port-status byte and saves that result
back in the port-status byte. The next command sends the motor_port_status byte to the
output port to control the pump motor.

To turn the pump motor off:

motor_port_status = motor_port_status OR pump_motor_D4_off_n

outportb (motor_control_port_number, motor_port_status)

For a port that uses positive logic, again define the masks, but remember that a logic 1
corresponds to on, and a logic 0 corresponds to off. In this case, the “p” at the end of the
mask designated positive logic at the output port:

pump_motor_D4_on_p = D4_1

pump_motor_D4_off_p = D4_0

To turn the pump motor on:

motor_port_status = motor_port_status OR pump_motor_D4_on_p outportb

(motor_control_port_number, motor_port_status)

Then, to turn the pump motor off:

motor_port_status = motor_port_status AND pump_motor_D4_off_p

outportb (motor_control_port_number, motor_port_status)

For more information
We hope you found the Chapter 2 informative. To go back to the Main Page, click here.

You can purchase the complete Digital I/O Handbook for only $19.95 by clicking here. The
Digital I/O Handbook is FREE with any qualifying Sealevel Digital I/O product purchase.
You can find a listing of all Sealevel Digital I/O products by clicking here.
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