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Introduction to input ports
Few computers can operate without connections to external devices such as sensors,
switches, or other equipment that informs software about external conditions. Computers
also receive data from keyboards, disk drives, touchscreens, and similar devices, all of
which transfer their information to a computer through a device called an input port.

You can think of many practical uses for input ports. Imagine a controller that counts parts
on a conveyor belt. An electronic counter in the controller would provide data that a
computer could obtain from an input port. Similarly, an input port connected to a digital
thermometer would let a computer read temperature values at any time. The computer
simply retrieves the specified data as requested by a software command.

At its simplest, an input port acts like a “gate” that lets information pass from an external
device to a computer’s data bus at a specific time. The central processing unit (CPU), or its
control circuits, provide a unique strobe pulse for each input port. That pulse “tells” a port
when to transfer data onto the data bus so the CPU can
capture it. To control the transfer of data from an input port to the computer, the computer
requires a port-control command that identifies a specific port. Only one device can use the
bus at a time.

Figure 3-1 shows a typical input port. Any information present at the port’s eight inputs gets
transferred to the CPU when the strobe pulse, IN303*, arrives. The single 74LS244 IC used
in the example contains two independent 4-bit circuits. We’ve used them to form a
complete 8-bit input port. Other TTL devices work equally well. (Our port-number
assignments carry no significance and simply serve as examples. You can use port
numbers within the ranges specified for the computer and software you plan to use. Some
computers reserve I/O port numbers for internal and future use.)

The input port shown in Figure 3-1 might accept signals from on-off switches or other
devices that produce TTL-compatible signals. As always, the external signals, the
input-port circuits, and the computer must share a common ground.

Figure 3-1

2/25



A simple 8-bit input port places information on the bus only when the computer places a
short logic-0 pulse on the IN303* line. At other
times, the port “disconnects” from the bus using three-state logic.

To avoid conflicts on the CPU bus, input ports must “connect” themselves to the CPU data
bus only when they receive the proper strobe pulse. At all other times, they must
“disconnect” from the bus. The disconnect operation requires special gates with three-state
outputs. These gates provide the normal logic-1 and logic-0 outputs, and they also provide
a disconnected or third state. In this state, they appear electrically disconnected from the
data bus. You may hear designers refer to similar devices called three-state bus drivers or
three-state buffers. These devices provide the capability to disconnect outputs from a bus
or other conductor that carries signals from several sources.

Transfer of data from an external device through an input port to a computer requires a
software command. This command causes the computer to generate the needed strobe
pulse at the input port so that the port data flows onto the bus:

portdata = inportb(input_port_number)

The general command above addresses a specific port (input_port_number) and assigns
the data from the port to a variable, in this case, portdata.

The following command would obtain data from the port shown earlier in Figure 3-1:

abcxyz = inportb(303)

Software examples in this chapter illustrate byte transfers, and they assume, unless shown
otherwise, that a programmer has defined variables, such as input_port_number, portdata,
and abcxyz to hold values. After acquiring the data from an input port, additional software
commands can use the information to make decisions.

In essence, an input port takes a “snapshot” of the information present at the port when the
port’s strobe pulse arrives from the CPU. The computer does not wait for data to arrive at
the port from an external device; it simply says to the input port, “Give me what you have
now.”

The inportb command shown above does not exist within some programming languages
such as Visual Basic. Each manufacturer of add-in cards or devices supplies its own driver
software. Drivers come in a library of routines that link a programming language to special
operations, such as those that control I/O ports. Thus, drivers define new commands that a
programmer can include in code to transfer data from an input port to a CPU.

You must follow instructions included with an I/O board to properly set up accompanying
driver software. The setup process lets your application program know how to find and use
the drivers on the computer hard drive. (The instructions that accompany a board and its
drivers provide installation information and information about how to use drivers in your
application program.)
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Basic TTL inputs
An 8-bit input port can obtain information from on-off switches, encoded switches, sensors,
keyboards, and other devices that produce TTL-compatible signals. As with output ports,
you can use the input bits in any way you wish, perhaps using four input bits to get data
from a hexadecimal keypad, and the remaining four bits for on-off switches, as shown in
Figure 3-2.

Figure 3-2

An input port can accept data from many sources, such as individual switches and a
hexadecimal keyboard. These external devices provide
TTL-compatible logic signals and a common ground to the computer.

CAUTION: Digital signals drawn in books often look perfect, but real-world signals usually
include some noise and may not meet the electrical specifications for logic-1 and logic-0
signals in a given logic family. So, external digital signals may require some conditioning
prior to connecting them to the TTL-compatible inputs at an input port.

You can use a Schmitt trigger circuit, available in most TTL families, to provide some signal
conditioning. But first check the specifications for all input ports you plan to use. Some ports
may come with built-in Schmitt triggers.

CAUTION: If you plan to connect simple on-off switches or pushbuttons to an input port,
you may need to “debounce” the switch contacts. When a pair of mechanical contacts
closes, they have a tendency to bounce for a short time. While doing so, the contacts may
open several times as shown in Figure 3-3 for a closing SPST switch. Although these
bounces end within a few milliseconds, circuits may detect them as several switch closures
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in rapid succession. In a double-throw switch, the movable contact DOES NOT bounce
back and forth between the two stationary contacts; it simply opens and closes the
connection at the contact it was switched to.

Figure 3-3

If a mechanical switch bounces momentarily, an attached logic circuit may see each
bounce as a logic transition.

If necessary, you can build a switch-debounce circuit using a single-pole double-throw
(SPDT) switch or pushbutton, a pair of NAND gates, and two resistors, as shown in Figure
3-4. As soon as the movable contact in the switch touches a NAND gate input, the circuit
changes its state and remains in that state until the movable contact touches the other
fixed switch contact.

Figure 3-4

Two NAND gates form a switch-debounce circuit that offers complementary outputs, Q and
Q*.
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Because the debounce circuit produces two complementary outputs, one from each NAND
gate, you can choose whether you want a logic 1 or a logic 0 to represent the normal output
of the switch. Remember, the NAND gate circuit and any circuit it connects to, such as an
input port, must share a common ground.

Circuit isolation

Although some sensors, instruments, and other devices produce TTL-compatible signals
that can directly connect to an input port, many devices do not. You can convert these
non-TTL-compatible signals into TTL levels, or you can buy input-port cards that provide
the proper “translation” circuits. The easiest and most flexible translation involves using
optical isolators, and many input-port boards and modules include these devices. At an
input port, the phototransistor connects to the input port’s TTL inputs as shown in Figure 3-
5. An external circuit powers the light-emitting diode (LED).

Figure 3-5

An optical isolator IC electrically isolates an external circuit from the signals at an input port.
This example shows only one bit, and for clarity, the input port shows only bits for D7–D4.

Because the LED offers no direct electrical connection to the input port, it isolates the port
(and the computer it connects to) from external devices. Thus, an external circuit can power
the LED without regard to specific TTL levels and without a ground in common with the port
and the computer. But the external circuit must supply a voltage and current within a
specified range to properly operate the LED. Specifications that accompany an optically
isolated input-port board or module will help you determine the maximum voltage and
current an LED can accept. Because LEDs operate based on current flow, they are less
susceptible to noise than standard TTL-compatible inputs.

Some optical isolators provide two “head-to-tail” LEDs in parallel. This arrangement lets you
use low-voltage AC or DC to power the LEDs, regardless of the direction of current flow.
Remember, LEDs act as diodes, so they allow current flow in only one direction. When an
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optical isolator requires a signal with a specific polarity (current-flow direction), the power
source must match the required polarity.

CAUTION: DO NOT use small AC optical isolators to detect high-voltage signals, such as
those in power-line (120V AC or 220V AC) circuits. Special devices can monitor signals at
these voltages. Prior to use, always check suppliers’ specifications for LED voltage and
current limits.

If you have difficulty getting an optically isolated input port to operate properly:

Ensure the circuit properly matches the polarity of the external circuitry and the
polarity of the optical isolator.
Ensure you have a complete circuit to drive the LED.
Ensure the LED-drive circuit will deliver more than the minimum voltage and current
needed to turn the LED on.

Current sinks and sources

Not all devices that connect to a computer provide TTL signals or mechanical switch
contacts. A sensor may offer an output labeled as a current sink or current source, terms
that may confuse users and lead to nonworking interface circuits. To further confuse the
issue, some manufacturers use the term NPN sensor for a current sink, and PNP sensor
for a current source. The designations NPN and PNP simply refer to the type of transistor
the sensor uses as its on-off switch. The circuits in Figure 3-6 show how NPN and PNP
sensor outputs can control optically isolated input ports and TTL-compatible inputs.
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Figure 3-6

Sensors that furnish NPN or PNP transistors on their outputs can power optical isolators.
The bottom diagram shows a circuit in which designers supplied an external power supply.

This nomenclature can get confusing, so here’s a way to keep the PNP and NPN
designations straight. Think of the first letter in each abbreviation. A PNP device supplies
power from the most Positive side of a circuit. On the other hand, an NPN device sinks
current to the most Negative side of a circuit. NPN and PNP sensors operate only with DC
power.

If you have a sensor that supplies a current-sink, or NPN output, the sensor provides an on-
off switch to ground. An external circuit –
sometimes included by the sensor manufacturer — provides the current and voltage to
drive an LED in an optical isolator. So, you can choose just about any available power
source, say, 5V, 12V, 24V, and so on, depending on what power sources your system
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already includes. Or you can add an external power supply. The manufacturer of the
optically isolated input port should include information about the minimum voltage and
current specifications for optical isolators.

A sensor that provides a current source, or PNP, output usually provides a connection to a
power supply. Unfortunately, you may not have a choice in the selection of the voltage this
current source operates from. So, you must ensure that the sensor’s current capability and
output voltage are within the limits specified by the input-port supplier.

LED considerations

All LED circuits require a resistor that controls the current through the LED. Many
manufacturers of optically isolated input-port boards and modules include a resistor for
each input-port bit. Some boards and modules will require an external user-supplied
resistor. Check the manufacturer’s specifications for details. Also, always ensure the
voltage you plan to use at an input port meet the board manufacturer’s specifications.

Whether a board provides a resistor or requires an external one, simple calculations will
determine the needed resistance value for a given voltage. Here’s an example for the
Sealevel Systems M240 Optically Isolated Input Adapter. Each of the eight inputs on the
board has the same specifications:

Turn-on current (minimum): 3 mA (0.003
A)

Diode voltage drop: 1.1 V

Maximum resistor power: 1 W

turn-on voltage = (diode voltage drop) +  [(turn-on current) * ( resistance)]

So, if a sensor provides a 12V DC source, calculate the needed resistance for a 3 mA
current flow:

(turn-on voltage) - (diode
voltage drop)

= Resistance

(Turn-on current)

12 - 1.1 = 3633 ohms

0.003

The M240 board provides a built-in 3300W (1W) resistor that will work fine. (To ensure
operation of the isolator, you can increase the current slightly. The optical coupler on the
M240 board, for example, can handle a maximum LED drive current of up to 50 mA.)

Monitor high voltages
The small optical isolators furnished at input ports on commercial modules or boards will
work with many types of sensors and data sources. But some applications require input
ports that can monitor high voltages such as those that control pumps, solenoids, valves,
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and other devices. In this type of situation, designers rely on commercial plug-in modules
specifically designed to offer optical isolation and to operate with high-voltage AC and DC
signals.

Manufacturers of the output modules described in Chapter 2 also supply input modules
that produce a TTL-compatible signal that indicates the presence or absence of a voltage
on a corresponding input. LEDs on the modules indicate the state of each input.

The 1781-IA5Q module from Western Reserve Controls (www.wrcakron.com) or the IAC5Q
module from Opto 22 (www.opto22.com) provides four circuits that monitor AC or DC
signals between 90V and 140V. A module includes two pairs of input circuits and the two
circuits in a pair share a common connection. If you need to monitor two devices that
operate from the same 110V AC power source, and the devices share a common ground,
the diagram in Figure 3-7 illustrates typical connections.

Figure 3-7
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An optically isolated input module provides two pairs of separate circuits (right and left). Do
not mix AC and DC signals in one section of a module, and do not mix signals that do not
share a common connection.

But within a pair of inputs, you cannot mix circuits that do not share a common ground. Also
DO NOT mix AC and DC signals in a pair. Separate pairs of circuits can handle AC and DC
signals within a module, though. The sensing circuits in these two models produce a logic 0
when they detect a voltage within the manufacturer’s specified limits.

CAUTION: Always use an input module in parallel with a device; NEVER place a module’s
inputs in series with the device. A module detects voltage across a device, not current
passing through it. See Figure 3-8 for the types of connections you must avoid!

Figure 3-8

DO NOT connect an optically isolated input module in series with devices you want to
monitor. The input modules operate in parallel with
devices, NOT in series.

If you wish to monitor lower DC voltages, devices such as the WRC 1781-IB5Q and 1781-
IT5Q modules will handle inputs between 3.3V and 32V DC. You can use these types of
modules to monitor DC voltages such as those found in power supplies or computer
circuits. A DC-input module could alert a host computer to the lack of power in a
subassembly, or it could let a computer know if a DC motor has power applied to it.

Like its sibling AC-DC input module, each DC input module includes two pairs of sensing
circuits, and each pair shares a common signal. The WRC 1781-IB5Q module uses a
common +DC input, and the WRC 1781-IT5Q module uses a common -DC input.
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CAUTION: Although isolation modules often come with built-in LEDS that indicate the state
of an input, not all modules clearly label each LED and the circuit associated with it.  The
diagram shown previously in Figure 2-12 notes the proper relationship for the quad-circuit
modules in the Opto 22 “Quad Pak” family or in the WRC 1781 Quad I/O line of AC-input
and DC-input monitoring modules.

CAUTION: Manufacturers of modules and I/O boards may designate the inputs as
“channels” 1—8, although the actual bit designations for the input-port bits usually carry the
labels 0—7 (for data bits D0 through D7). Bit 0 represents the right-most of least-significant
bit (LSB), and bit 7 represents the left-most or most-significant bit (MSB). Table 1 in
Chapter 2 shows the relationships between the inputs, the bits, and the binary weights for
each bit. To check the inputs at positions 8, 5, and 3 in a positive-logic system, for
example, requires checking for a logic 1 at bits D7, D4, and D2.

Sense bits with software
External devices connected to a computer’s input ports have little value until programs can
obtain data from them. As noted earlier, a simple software command such as:

portdata = inportb(input_port_number)

will obtain a byte of data from a selected input port. But because that data may include bits
from a variety of devices, such as limit switches, fluid-level sensors, motor monitors, and so
on, the software must select only the bits needed to make a decision. You can operate on
individual bits by using the same sort of bit-wise logic you learned about in Chapter 2.

To illustrate how to obtain information from an input port, examine the diagram in Figure 3-
9. In this circuit, a tank-full float switch connects to bit D5 and a pump monitor connects to
bit D3. (Bit D3 does not turn the pump on or off, it only indicates the state of the pump.)
Assume other sensors and switches use the remaining bits (D7, D6, D4, and D2–D0) at the
input port.
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Figure 3-9

A control system monitors the state (full or not-full) of a tank’s float switch and the state (on
or off) of a pump that feeds liquid to a tank.

The two bits of interest at the input port will independently show these conditions:

Float Switch (D5) Pump Monitor
(D3)

1 = Tank full 1 = Pump off

0 = Tank not full 0 = Pump on

To check the state of these devices, software first issues the following commands that set
up variables and obtain port data:

Dim sensor_monitor_port As Integer

Dim sensor_data As byte

sensor_monitor_port = 303 'Set up port
address

sensor_data = inportb(sensor_monitor_port)

The last command obtains eight bits from input port 303. By applying masks to the
sensor_data byte the software can isolate individual bits or sets of bits for testing. You may
recall the following rules from Chapter 2. (An X indicates a bit can exist as either a logic 1
or 0.)

1. If you AND bit X with logic 0, the result is always logic 0.
2. If you AND bit X with logic 1, you get the X bit’s original state.

Here are the rules in column form:
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AND AND

X X

0 1

0 X Result

A bit-wise AND with a 0 will force an “unwanted” bit to a logic 0. But a bit-wise AND with a
logic 1 will let the state of a bit simply “fall through” to the result. Thus, to check a bit in
position D5, use a mask of 00100000  and perform a bit-wise AND with the sensor_data
byte to mask all bits except D5.

D7 D0

0 0 1 0 0 0 0 0 Mask byte for D5 (32, &amp;H20)

0 0 1 1 0 1 0 1 Input-port data

0 0 1 0 0 0 0 0 Result of bit-wise AND (32, or
&amp;H20)

Note that the mask forced all bits except bit D5 to a logic 0. So, the result of the AND can
yield only 32 (00100000 ) or 0 (00000000 ). The result above indicates a full tank. If the
float switch of the tank stays closed, to indicate the tank is not full, the result of the AND
operation would show:

D7 D0

0 0 1 0 0 0 0 0 Mask byte for D5 (32, &amp;H20)

0 0 0 1 0 1 0 1 Input-port data

0 0 0 0 0 0 0 0 Result of bit-wise AND (0, or
&amp;H00)

Software steps could evaluate the result of the bit-wise AND operation to test for a zero
value (tank not full) or a non-zero value (tank full). The software also could look for a
specific value: 0 for tank-not-full or 32 for tank-full.

Using the bit masks defined in Chapter 2, software to test the float switch might look like
this:

Dim sensor_monitor_port As Integer

Dim sensor_data As byte

Dim mask_result As byte

Dim levelsensor_D5_p As byte 'Set up a mask byte

2

2 2
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sensor_monitor_port = 303 'Set up port address

levelsensor_D5_p = D5_1 'Set up mask of
00100000

sensor_data = inportb(sensor_monitor_port)

mask_result = sensor_data AND levelsensor_D5_p

Then, software statements can take actions depending on the tank’s level. You do not have
to check for any condition other than 0 (00000000 ) or 32 (00100000 ) as a result of the bit-
wise AND operation. The bit-wise AND operation allows only those two results.

If mask_result = 0

Then... 'Tank not full, so do
this...

ElseIf mask_result = 32

Then... 'Tank full, so do this...

End If

The software could also assume if the result is not 0, it must be 32.

If you don’t need the input-port data in another operation, combine the sensor-port input
operation and the bit-wise AND operation in one statement:

mask_result = inportb(sensor_monitor_port) AND levelsensor_D5_p

If the program doesn’t need to take action until the sensor indicates a tank-full condition, the
software would look like this:

mask_result = inportb(device_monitor_port) AND
levelsensor_D5_p

If mask_result = 32

Then... 'Tank full, so do this...

End If

Likewise, if the program should take no action until the sensor indicates a tank-not-full
condition, the software would look like this:

mask_result = inportb(device_monitor_port) AND
levelsensor_D5_p

If mask_result = 0

Then... 'Tank not full, so do this...

End If

2 2
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Similar software steps could monitor the pump using a mask for bit D3 (00001000 ), a bit-
wise AND operation, and If-Then-Else statements. In this case, the result of the bit-wise
AND would yield either 0 (00000000 ) or 8 (00001000 ). A 0 indicates the pump motor is
on, and an 8 indicates the pump motor is off. Remember, the decimal value simply
represents the binary result of the bit-wise AND operation. The decimal number has no
inherent value that makes a resulting “32” more important or of greater value that a
resulting “8.”

Suppose software must check for a simultaneous pump-on (bit D3 = 0) and a tank-full
condition (bit D5 = 1) so it can signal an emergency condition. In that situation, the software
could check the float switch, and if it indicates a full-tank condition, it could then check the
pump to see if it is on. But that sort of sequential checking can make a program “messy”
and difficult to follow. Instead, software can check both flag bits simultaneously.

A bit-wise AND operation can mask more than one bit at a time. To check bit D5 and bit D3,
use a mask of 00101000 , as shown below:

D7 D0

0 0 1 0 1 0 0 0 Mask byte for D5 and D3 (40, &amp;H28)

1 1 1 0 0 0 0 1 Input-port data

0 0 1 0 0 0 0 0 Result of bit-wise AND (32, or
&amp;H20)

The
result of the bit-wise AND can produce four combinations because the
pump monitor and the float switch can each exist in two states
— 2  = 4:

Possible results:

00000000 = Tank not full, pump on

00001000 = Tank not full, pump off

00100000 = Tank full, pump on

00101000 = Tank full, pump off

When the tank is full and the pump is on, the result of the bit-wise AND operation yields 32
(00100000 ) and when it detects that result, the software should start emergency actions.
This portion of the software does not care about the other three conditions shown above. A
single If-Then command will monitor for a tank-full and pump-on emergency condition:

full&amp;pump-on_mask = &amp;H28 '00101000

mask_result = inportb(device_monitor_port) AND full&amp;pump-on_
mask

2

2 2

2

2

2
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If mask_result = 32

Then... 'start emergency processes...

End If

(This example assumed the definition of variables and constants as shown earlier.)

Note that in the example above, the software tested for a logic 1 from the float switch and a
logic 0 from the pump monitor. This “mixture” of logic-1 and logic-0 states occurs often in
computer systems. Don’t expect that sensors will always produce a logic-1 in the “on” state
and a logic-0 in the “off” state. However, as the software above shows, software can test for
any combination of 1’s and 0’s.

Just know what bits you want to test and set up the appropriate masks. Then determine the
pattern of 1’s and 0’s that indicate the possible conditions and you can set up software to
match specific conditions.

The following example shows how to monitor for a logic-0 output from a sensor. You still
use masks and bit-wise AND operations to isolate specific bits, but you change the If-Then-
Else statements to match different conditions. Suppose a temperature-limit sensor
connected to an input port provides the following signal:

Temperature-limit sensor at bit
D1

1 = OK

0 = Over limit

The sample code below monitors for the temperature over-limit condition, represented by a
logic-0 from the sensor. (The D1_1 value, 00000010 , comes from the mask bytes set up in
Chapter 2.)

Dim sensor_monitor_port As Integer

Dim temp_sensor_D1_p As Byte 'Set up a variable for a
mask

Dim mask_result As Byte 'Set up byte for mask

temp_sensor_D1_p = D1_1 '00000010

sensor_monitor_port = 123 'Set up port address

mask_result = inportb(sensor_monitor_port) AND temp_sensor_D1_p

If mask_result = 0

Then... 'Temperature above limit, so do this...

End If

2
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These statements mask off all bits except D1 and then take action only if the resulting bit at
D1 equals a logic 0 — temperature over limit. To monitor for a  temperature-OK condition,
use an If-Then-Else command and also check for the mask_result = 2 (00000010 ):

If mask_result = 0

Then... 'Temperature above limit, so do
this...

Else If mask_result = 2

Then... 'Temperature OK, so do this...

End If

Flags
In the previous examples, signals remained static, or unchanged, at an input port for some
time. In many cases, though, data may exist for only a short period, say for the time an
operator presses a key on a control panel. If the key remains closed only briefly, the
program may miss “seeing” the key-switch closure because it does not check the switch
often enough. Such sources of transient information may require a latch circuit.

A keyboard, for example, may produce a “key-pressed” signal that indicates to external
circuitry that the keyboard’s output lines contain new information. A 74LS374 latch circuit
(Figure 3-10) can use the key-pressed signal to latch information and hold it so a computer
can access it through an input port. The latch circuit makes the keyboard data available
even after an operator releases a key.

This circuit will let the computer obtain keyboard data from an input port after a user
presses a key, but this scheme has a problem. Suppose the operator presses the “2” key
five times in sequence and expects the attached computer to receive five 2’s in a row. Each
time the operator presses the “2” key, the keyboard produces the same code,
00110010  for an ASCII 2, and the latch grabs it.

Figure 3-10

A 74LS374 latch circuit stores 8-bit data from a keyboard when it received a key-pressed
signal. When the user releases a key, the key’s code remains available at the latch’s
outputs.

2

2
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But to an observer looking only at the latch outputs, the code doesn’t change. (The
keyboard does not reset the latch between key presses.) Each update of the latch from
another push of the “2” keys simply leaves the same code, 00110010 , on the latch
outputs. So the computer cannot distinguish one 2 from any of the others. And because the
latch retains the data, the computer could continue to input “old” data even though no one
has pressed any other keys. Obviously, the computer and the keyboard need a way to
synchronize their operations. An additional circuit element, called a flag, lets the keyboard
circuit tell the computer, “I have new data.” In effect, a flag works like this:

1. The keyboard latches new data and raises a flag.
2. The computer regularly checks the flag.
3. If the computer sees the flag is “up”, it reads the keyboard’s data and then pulls the

flag “down.”

If the computer’s software checks the flag and finds it down, the software knows the
keyboard has no new information, and it continues to its next task. This sort of arrangement
lets the computer accept a series of five 2’s from the keyboard. Each press of the “2” key
raises the flag, signaling the computer to get the new data and then clear the flag so it’s
ready for the next keyboard operation.

Figure 3-11 includes a flip-flop circuit that serves as a flag. The flip-flop works like a 1-bit
memory. It transfers the state of the D input to the Q output during the logic-0 to logic-1
(positive-going) edge of the signal applied to the flip-flop’s clock (CLK) input. In this case,
the circuit designers have connected the D input to +5V or logic 1. The CLK signal comes
from the keyboard’s key-pressed signal, the same signal that latches the keyboard data.
When the flip-flop receives the CLK signal, the logic 1 at the D input gets transferred to the
Q output, which provides the flag signal to the computer. A logic 0 at the Q output indicates
no keyboard data, while a logic 1 tells the computer the latch has new keyboard data.

2
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Figure 3-11

A D-type flip flop serves as a flag that lets a computer know a keyboard has new data
available. The computer clears the flag after it gets the keyboard’s new information.

As part of a flag-detecting sequence, the software must clear the flag.  The flip-flop
provides a clear input (/CLR) that resets the Q output to a logic 0 state, thus clearing, or
“lowering,” the flag. A logic 0 on the /CLR input clears the flip-flop back to the Q=0 state.
The timing diagram in Figure 3-12 shows the sequence of events.

Figure 3-12

The keyboard timing starts when a user presses a key. The key-pressed signal latches new
data and sets the flag. After the computer detects a set flag, it grabs the keyboard’s data
and resets the flag for the next keystroke.

You may wonder how the computer detects the flag signal. The circuit designers connect
the flip-flop’s Q output to a TTL-compatible input-port line so the computer can monitor its
state. The signal to clear the flag comes from an output port. A complete keyboard
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interface circuit (Figure 3-13) uses an 8-bit input port (207) for the keyboard data, one bit
on an input port (206) for the keyboard flag, and one bit on an output port (123) to clear the
flag. The software must check the keyboard flag regularly to determine when the keyboard
latch has new information.

Figure 3-13

A complete keyboard circuit includes an input port for the keyboard data, an input port for
flags, and an output port to clear flags. The latter two ports may connect to additional flags
for other I/O devices.

Although using flags to indicate external activities and putting an application program in a
continuous flag-checking loop makes sense in some situations, it can needlessly tie up the
computer and can chew up valuable processing time. In Visual Basic, for example, you can
use the Timer control to govern reading and testing of external flags. Although Visual Basic
provides clock divisions of 1 millisecond, in practice the clock produces intervals of about
1/18th second. This rate for checking flags should suffice in many applications.

Put it all together

Now the keyboard circuit needs software to test and reset the flag and to get data. Assume
the flag input port (206) also connects to flags from other devices. To keep a design such
as that shown in Figure 3-13 easy to debug and document, we suggest you use the same
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bit position for a flag and its associated flag-clear signal. Thus, in the keyboard example,
the flag appears at input-port bit D7, and at output port (123), bit D7 clears that flag.

In the following example, when the software detects any set flag at input port 206, it checks
the flag bits in sequence, starting with D7 and ending with D0. This establishes a built-in
priority in servicing devices. So, if you have a device that requires fast service, make its flag
the first one checked (D7).

The following software does not maintain an output-port status byte for the port used to
clear the flags. We assumed a normal output state of 11111111  for this port. The software
will force an individual bit to logic 0 for a few microseconds to clear a corresponding flag bit,
and then restore the bit to logic 1.

'Establish mask bytes — See Chapter 2

Dim D7_1 As Byte

Dim D6_1 As Byte

'etc...

'Establish mask-byte values — See Chapter
2

D7_1 = &amp;H80 '10000000

D6_1 = &amp;H40 '01000000

'etc...

'Establish byte variables

Dim clear_all_flags As Byte

Dim normal_all_flags As Byte

Dim keyboard_input_port As
Integer

Dim flag_input_port As
Integer

Dim flag_clear_port As
Integer

Dim flag_status As Byte

Dim D7_flag_clear As Byte

Dim D6_flag_clear As Byte

Dim D5_flag_clear As Byte

Dim D4_flag_clear As Byte

Dim D3_flag_clear As Byte

Dim D2_flag_clear As Byte

Dim D1_flag_clear As Byte

Dim D0_flag_clear As Byte

2

22/25



'Define flag-clearing bit patterns

clear_all_flags = 0 '00000000

normal_all_flags = 255 '11111111

D7_flag_clear = 127 '01111111

D6_flag_clear = 191 '10111111

D5_flag_clear = 223 '11011111

D4_flag_clear = 239 '11101111

D3_flag_clear = 247 '11110111

D2_flag_clear = 251 '11111011

D1_flag_clear = 253 '11111101

D0_flag_clear = 254 '11111110

'Define I/O port addresses

keyboard_input_port = 207

flag_input_port = 206

flag_clear_port = 123

'First clear all flags to initialize the system

'Set all flag-clear signals to logic 0

'Then reset all flag-clear signals logic 1 to make flags
ready

outportb(flag_clear_port, clear_all_flags)

outportb(flag_clear_port, normal_all_flags)

'Main flag-checking routine...

'Get all flag bits

flag_status = inportb(flag_input_port)

'Any flags set? If so, check individual flags

If flag_status >0

Then

'Check flag at D7, highest priority =
keyboard

If (flag_status AND D7_1 >0)

Then

'Get the keyboard port's data

port_data = inportb(keyboard_input_port)
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'...other processing steps go here

'Clear the associated keyboard flag

outportb(flag_clear_port, D7_flag_clear)

outportb(flag_clear_port, normal_all_flags)

End If

'Check flag at D6, next highest priority

If (flag_status AND D6_1 >0)

Then

'Get the input port's data

some_data = inportb(some_port)

'Clear the associated flag

outportb(flag_clear_port, D6_flag_clear)

outportb(flag_clear_port, normal_all_flags)

'...other processing steps go here

End If

‘...and so on for the remaining six flags

End If

Note that the test of individual flags checked for >0, rather than for a specific value. You
can use either technique.

Routines can check for individual flags, too. You don’t need to check all eight flags at an
input port unless your interface circuits have implemented them. And at times, you will want
to monitor some flags more often than others.

A final note about I/O ports
In Chapter 2, a section explained that programmers should maintain a “status byte” for
every output port so they can determine the state of the outputs at any time. Some output
ports, typically those on I/O cards or built into electronic devices, may provide access to
that information through a built-in input port (Figure 3-14). The input port simply reads the
bits from the port’s output lines. Software can use this information instead of saving a status
byte. For clarity, the following example uses values in the port-control statements:

outportb(117, control_byte)

port_status = inportb(117)

24/25



Figure 3-14

Some output ports provide a means to read the state of the associated output lines. The
ports shown in this example actually exist within one IC or device.

You still might want to maintain information in a status byte, though.  In most cases, it
requires less time to get status information from a byte of stored data than to retrieve data
from an input port. So, if you have software that requires careful timing, use a status byte.
Software control of I/O ports in many PCs is not  deterministic. That means you cannot tell
exactly how long it will take for an I/O operation to take place after a computer receives a
port-control command.

Maintaining status bytes also simplifies debugging and testing. When you debug software,
you may have to do so without any connected I/O devices. So, if you rely on an output port
with an associated input port to maintain port-status information, you may not have access
to the port information until designers have configured and attached the I/O ports. Also,
during testing, you may need to compare port operations with variables you track using
special “watch” windows in your development-software suite; Visual Basic, C, C++, and so
on. If the hardware has problems, it may corrupt, or make unavailable, any data from an
output port’s built-in input port. So, by maintaining the output port’s status information in a
variable, you at least know what state the port is supposed to be in.

For more information
We hope you found the Chapter 3 informative. To go back to the Main Page, click here.

You can purchase the complete Digital I/O Handbook for only $19.95 by clicking here. The
Digital I/O Handbook is FREE with any qualifying Sealevel Digital I/O product purchase.
You can find a listing of all Sealevel Digital I/O products by clicking here.
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