
The Digital I/O Handbook – Chapter 4
sealevel.com/support/the-digital-io-handbook-chapter-4

The Digital I/O Handbook
A Practical Guide to Industrial Input & Output Applications

Digital I/O Explained
Renowned technical author Jon Titus and the
President and CEO of Sealevel Systems, Tom
O’Hanlan, clearly explain real-world digital
input/output implementation from both a hardware
and software perspective. Whether you are a
practicing engineer or a student, The Digital I/O
Handbook will provide helpful insight you will use
again and again.

Covers a wide range of devices including
optically isolated inputs, relays, and sensors
Shows many helpful circuit diagrams and drawings
Includes software code examples
Presents common problems and solutions
Detailed glossary of common industry terms

“What I like most is its mix of hardware and software. Most pages have a bit of code plus a
schematic. All code snippets are in C. This is a great introduction to the tough subject of
tying a computer to the real world. It’s the sort of quick-start of real value to people with no
experience in the field.” – Jack Ganssle, The Embedded Muse, January, 2005.

You can purchase the Digital I/O Handbook for $19.95 by clicking here. The Digital I/O
Handbook is FREE with any qualifying Sealevel Digital I/O product purchase.

Chapter 4 – Sensor Interfacing

In Chapter 3 you learned how to set up a computer to acquire data from electronic devices.
In this chapter, you’ll learn more about connecting, or interfacing, several types of sensor
outputs to a computer.

Topics Covered

Example 1: Thermal switch
Example 2: Level switch
Example 3: Hall-effect proximity switch
Example 4: Photoelectric sensor
Example 5: Shaft encoder
Example 6: Output more than 8 bits

Example 1. Thermal switch
1/15

http://www.sealevel.com/support/the-digital-io-handbook-chapter-4/
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF102
http://www.sealevel.com/store/i-o/digital-i-o.html

A thermal switch such as a Klixon Series 6786 from Texas Instruments (www.ti.com)
provides a snap-action metallic disk that responds to temperature changes. At a specified
temperature, the disk either makes or breaks an electrical contact, depending on the
model. Buyers can specify an operating temperature and whether the thermal switch
provides a normally-open (NO) or normally-closed (NC) contact. When the switch reaches
the specified temperature, an NC switch will open and an NO switch will close.

Assume you have a NO switch that operates at 40°C (104°F). When the contacts close, you
want a computer to start a process, say, turn on a fan. Because the switch supplies
uncommitted contacts — no connections to power or ground — you can connect the switch
to a computer in several ways, as shown in Figure 4-1a-d. In this type of application, it’s
unlikely the circuit needs to debounce the switch.

2/15

http://www.ti.com/

Figure 4-1
A simple on-off SPST switch can connect to a computer interface either directly or through an optical isolator. The

direct connection should limit the distance from the switch and the interface to a few inches.

If the switch forms part of the computer’s circuitry, perhaps as part of a controller that keeps
the computer cool, the circuit probably can use a power supply in common with the
computer, as shown in Figures 4-1a, -1c and -1d. (Note the use of a Schmitt trigger in one
circuit.) This device “cleans up” the edges of the logic transitions produced by the switch to
provide a “clean” TTL-compatible signal. If the thermal switch exists at some distance from
the computer, consider using an optical isolator, as shown in Figure 4-1b.

Switches with SPST contacts exist in many other devices, such as magnetic sensors, float
switches, and air-flow sensors. The circuits developed in this example should work well
with them all. Most temperature-sensitive switches exhibit an effect called hysteresis. In a
typical switch, the contacts close at, say, 40°C (104°F), but they don’t reopen until the
temperature decreases to 35°C (95°F), as shown in Figure 4-2. Thus, the thermal switch
will not rapidly open or close as the temperature hovers around 40°C. The temperature
must decrease to 35°C to reset the switch. This built-in effect keeps a computer from trying
to regulate a temperature within a degree or two of its setpoint. Even home heating and
cooling thermostats provide a few degrees of hysteresis. If they didn’t the heat and air
conditioner would go on and off in short cycles.

Figure 4-2
Many sensors exhibit some form of hysteresis. In this example, a thermal switch closes its contacts at 40°C. As the

switch cools, the contacts open only when the switch reaches 35°C. Hysteresis may have a narrower range,
depending on the sensor and its application.

Example 2. Level switch
A capacitive level detector provides a SPDT switch as its output indicator. The specification
sheet provides information about how the
detector works and it shows the switch’s operation when the detector senses a change in
capacitance near the probe. The detector operates an internal relay that provided a set of
SPDT contacts, so you can treat the sensor’s outputs just as you would the thermal switch
shown in Figure 4-1.

Because the switch offers SPDT contacts, you decide to add a cross-coupled NAND gate,
as shown previously in Figure 3-4, to debounce the switch. In theory, that circuit will work,
but the wires that connect the SPDT switch to the cross-coupled NAND gates may have to

3/15

run for a considerable distance. Unfortunately, most TTL signals should not run more than
about 10 inches from one device to another! So, we recommend you use one of the
optically isolated circuits shown in Figure 4-1.

If you sense a level using a float switch, a capacitance switch, or similar sensor, remember
that liquids can slosh around in containers and that pumping and draining may cause liquid
levels to fluctuate. Without some built-in hysteresis, a level switch can turn on and off when
it detects every slight disturbance in liquid level. Sensor specification sheets should specify
the hysteresis range for an on-off sensor.

If a sensor does not include some form of hysteresis, software can often “even out” a
switch signal to determine whether or not its contacts are closed. When the software
detects a switch closure (or opening), instead of immediately taking action, the software can
wait briefly and test the switch several more times with a short delay between tests. This
type of software filtering or “debouncing” proves helpful when you can’t find a suitable
sensor with hysteresis, or if you can’t easily debounce a switch with electronics.

The following program listing shows how software could test a switch several times in a
subroutine. In this example, the software must detect a logic 0 from the switch (at bit D2),
seven times in a row, with a 10-millisecond delay between tests. The logic-0 state indicates
a switch-closed condition. A subroutine (not shown) provides a 10-millisecond delay
between tests of the switch’s state.

Dim max_count As Byte

Dim switch_count As Byte

Dim switch_mask As Byte

Dim switch_port As
Integer

max_count = 7

switch_mask = &H02 '00000010

switch_port = 135

'Switch-debounce subroutine

Sub Switch_check

switch_count = 0 'Initialize counter

For loop = 1 to max_count

If (inportb(switch_port) AND switch_mask = 0)

Then

(switch_count = switch_count + 1)

End If

milli_sec_delay 10 'Millisecond-delay subroutine call

4/15

Next

If max_count = switch_count

Then 'Switch closed, so do this...

End If

End Sub

Each time through the test loop, the software increments a switch_count variable if it
detects a logic-0 from the switch. If at the end of seven tests, the switch_count equals the
number of passes through the loop, max_count, the software assumes the switch really
exists in its closed state.

As an alternate approach, the software could test for, say, five proper states out of seven
tries in the loop. To do so, substitute the following four statements for the last four in the
listing above:

If (max_count - 2) <= switch_count 'OK if at least

'5 of 7 tests

Then 'Switch closed, so do
this...

'detect a
switch

'closure

End If

End Sub

Before we leave this example, two notes about programming:

1. Most switches will stop bouncing in under 10 milliseconds, so your application
software may not need to go to the extremes shown above. We included the code as
a teaching example. Some switches, though, can bounce for as long as 1/6th or 1/5th
of a second! (Refs. 1 and 2.)

2. If you need to debounce several switches in software, you can set up a subroutine for
each one. Or, you can set up a general switch-test subroutine, procedure, or function
that can accept arguments (values) transferred to it. These values include
max_count, switch_mask, and switch_port for each switch you need to test. This
approach makes it easy to change your parameters without having to rewrite the
switch-test code for each switch.

Example 3. Hall-effect proximity switch
Semiconductor Hall-effect switches respond to changes in magnetic fields, so designers
use them to detect the proximity of ferro-magnetic materials. These solid state switches act
rapidly and can detect thousands of changes per second, so they find use in applications
that count revolutions on a mechanical shaft, detect the presence of a magnet, and so on.

5/15

Several Hall-effect switches from Phoenix America (www.phoenixamerica.com) and Allegro
Microsystems (www.allegromicro.com) provide “open collector” outputs. How can this
output connect to an input port? This type of output comes from an NPN transistor that
connects a circuit to ground, and it will readily provide a signal to an input port.

Many Hall-effect switches require an external power source. For these switches, you can
choose to connect the ground from that power source to your computer system ground and
directly connect the switch as shown in Figure 4-3a. That circuit will work when you can
make a short-distance connection between your computer system and the switch. We
recommend using the optically isolated circuit shown in Figure 4-3b because it keeps the
Hall-effect switch’s power isolated from the computer. If you use an optical isolator in your
interface circuit, the Hall-effect switch’s external power supply can provide current to drive
the LED.

Figure 4-3
A Hall-effect switch with an NPN output transistor (open collector) sinks current to ground. The switch can use

either a direct connection or an optically isolated connection to an input port.

Example 4. Photoelectric sensor
Commercial photoelectric sensor modules, such as those in the CX Series from
Automation Direct (www.automationdirect.com), detect the presence or absence of an
object in a light beam. Some detectors provide a built-in light source and rely on reflections

6/15

http://www.phoenixamerica.com/
http://www.allegromicro.com/
http://www.automationdirect.com/

from an object. Other sensors require a remote light source and detect objects that
interrupt a light beam. The sensor manufacturer offers models with four output options:
NPN NO, NPN NC, PNP NO, or PNP NC. How can you interface these sensors to a
computer?

First, the NC and NO refer to the output as either normally closed or normally open,
respectively. So, think in terms of a normally-open or normally-closed switch.

Second, the PNP and NPN refer to the type of transistor on the output. An NPN transistor
sinks current to ground while a PNP transistor sources current from a higher potential.
Treat these outputs as you would any other NPN or PNP output. The CX Series
photoelectric sensors provide a power source, so use an optical isolator to separate the
sensor circuits from the computer circuits as shown in Figure 4-4.

Figure 4-4
Some photoelectric sensors offer a choice of PNP or NPN outputs. This schematic diagram shows how to connect

either output type to an input port through an optical isolator.

Example 5: Shaft encoder
Incremental shaft encoders produce a fixed number of pulses or “counts” per revolution of a
central shaft. Manufacturers offer a range of encoder types that offer various

7/15

counts/revolution (CPR)—from 35 CPR to several thousand CPR. The phase of the output
pulses establishes the direction of the shaft’s rotation and its relative position. A 1000 CPR
encoder that produces a series of 212 pulses lets you determine the shaft has moved 360°
* 212/1000, or 76° from its previous position.

This type of incremental encoder does not provide an absolute position of, say, 95°. It only
provides an indication of the distance moved from the previous position. (By measuring the
rate at which pulses occur, you can determine the rotational speed of the shaft.)

An incremental encoder produces two square-wave outputs that an external counter can
accumulate to determine the relative change in a shaft’s position. The lead-lag phase
relationship between the two square waves indicates whether a shaft rotates clockwise or
counterclockwise, as shown in Figure 4-5. A D-type flip-flop can use the out-of-phase
signals to produce a “rotation” signal. The circuit shown includes two 74HCT4538
monostable circuits that combine to produce a short pulse for each transition on the A or B
square wave.

Additional circuitry, perhaps a 10- or 12-bit up-down counter (not shown), can use these
pulses and the flip-flop’s direction signal to keep track of the shaft’s position.
Microcontrollers that can connect directly to an incremental encoder can handle the
counting through software.

8/15

Figure 4-5
The phase relationship between square waves produced by a shaft encoder lets a flip-flop IC determine rotation
direction. A pair of monostable ICs produces a pulse for each transition on the A or B output from the encoder.

Some incremental encoders include an optional index output that produces a single short
pulse at one point in a complete rotation. Circuitry can use this pulse to reset a count or
increment a separate “turns” counter. US Digital (Vancouver, WA; www.usdigital.com)
provides a variety of encoders and interface ICs that can simplify the design of interface
circuits. We won’t go into more detail on how rotary encoders operate.

Assume for the moment you have purchased or designed an external counter circuit for an
incremental encoder with 1024 counts/revolution. That means each complete rotation of the
encoder’s shaft will produce a 10-bit binary count: 2 = 1024. So far, input ports have
acquired data in 8-bit bytes, so how can a computer input 10 bits from a counter? You can
split the 10 bits into an 8-bit byte at one input port, and route the remaining two bits to
another input port, as shown in Figure 4-6. (We have shown the unused bits at input port
202 connecter to logic 1; +5V through a pull-up resistor.)

10

9/15

http://www.usdigital.com/

Figure 4-6
Two input ports let software gather data from a device that puts out more than eight bits. If the data can change

rapidly, this arrangement can lead to errors.

This arrangement may run into problems because it requires two input operations,
separated by a finite time. To illustrate the potential problem, assume a split of a 10-bit
value 0011110101 (245) into 00, the two most-significant bits, and 11110101 , the eight
least-significant bits. Several counts, each incremented by 1 appear as:

00 11110101 (245)

00 11110110 (246)

00 11110111 (247)

00 11111000 (248)

00 11111001 (249)

and so on...

Assume the software first acquires the least-significant eight bits, D7—D0 at input-port 203
and then acquires the two most-significant bits, D9—D8 at input-port 202.

Given a count of 00 11110101 at the encoder’s circuit, you would expect to find those bits
in the computer after the two input-port commands execute. As long as the data remain
constant between the two input commands, you’ll see the expected result.

But suppose a mechanism moves the shaft between the time the software acquires bits D7

2 2

2

10/15

—D0 and when it acquires bits D9—D8. The movement adds 20 pulses to the count, which
goes from 00 11110101 (245) to 01 00001001 (265). That change represents a rotation of
only about 7°. The steps below show what happens in this case:

1. The computer acquires the eight LSBs: 00 11110101
2. A mechanism rotates the shaft and the counter increments its count by 20 to produce

a new count of: 01 00001001
3. The computer now acquires the two MSBs: 01 00001001

Now, when the computer combines the binary values, it turns into:
01 11110101 , which is WRONG!

The motion of the shaft between the two input operations caused the problem. Granted, this
condition won’t occur frequently, but without some way to prevent it, you will never know
when it has occurred!

Any circuit that must transfer more than eight bits at a time, from a single source such as a
counter, must first latch the entire n-bit value into a set of latches or D flip- flops as shown
in Figure 4-7. The 74LS374 inputs provide D flip-flops that latch the data (controlled by the
CLK inputs). The 74LS374 ICs also provide three-state outputs (controlled by the /OC
inputs). So the same ICs provide the latch and three-state logic functions. Some devices,
such as digital meters, may provide latched outputs, but they may lack three-state outputs.

Figure 4-7
The 74LS374 ICs in this circuit first latch all 10 bits and then transfer a byte at a time to a computer. Latching the

bits provides stable data for the software to acquire.

2 2

2

2

2

2

11/15

To start an acquisition, the computer first latches the entire 10-bit value from the counter by
strobing both 74LS374 ICs with the OUT231 pulse. In this case, the output-port instruction
such as outportb(231, n) simply generates the latch-control pulse. Although the 8-bit value
for n goes out on the data bus, no device actually uses it. So it doesn’t matter what value
you use for n. Software often uses output-port commands to create a pulse for use in an
interface circuit.

After latching the entire 10-bit value simultaneously, the computer can gather the bits from
input ports 202 and 203 and reassemble them with software. Any changes of the counter’s
outputs will not affect the data saved in the latch. After acquiring the two bytes from input
ports 202 and 203, how does the software recombine them into a value an application
program can use?

The software below shows the needed operations. The software needs two bytes to save
input-port data and an integer value (16 bits) to save the final 10-bit count:

Dim counter_value As Integer

Dim MS_bits As Byte

Dim LS_bits As Byte

outportb(231, 0) 'Latch all
bits

MS_bits = inportb(202) 'Get bits D9-D8

LS_bits = inportb(203) 'Get bits D7-D0

MS_bits = MS_bits AND &H03

counter_value = LS_bits + (256 *
MS_bits)

The last statement multiplies the decimal value of bits D9 and D8 by 256 to compute the
value they represent at the counter. Then the statement adds them to the decimal value of
bits D7—D0. The result, counter_value, will have a value of 0 to 1023. Remember, the
computer “sees” bits D9 and D8 at positions D1 and D0 at input port 202. The
input port and the computer have no knowledge of the “weights” of these bits as they come
from the 10-bit counter circuit. You must track their value and reconstruct it using software.

But why does the sequence of commands include a bit-wise AND with a mask of
00000011 ? That bit-wise AND operation ensures bits D7—D2 in the MS_bits byte get set
to zero so they will not get used in calculation of the 10-bit count value. The circuit in
Figure 4-7 forced the unused bits at input port 202 to logic 1, so the bit-wise AND clears
them to logic 0. Couldn’t the circuit have simply forced the bits to logic 0 (ground) to save
the trouble of using a bit-wise AND? Of course. But we would have included the logic
operation in any case. Never assume you know the state of unused bits. Always play it safe
and mask off any unused or unneeded bits.

At some point, an engineer might decide to use some of the “unused” bits at port 202 to
detect flags or input switch data. Masking out those bits while writing the software ensures
you won’t have difficulties later due to later unplanned changes in circuits.

2

12/15

Example 6: Output more than 8 bits
Simultaneously transferring more than eight bits to an external device may cause timing
problems much like those
experienced in the incremental-encoder example. Although two output ports handle 16 bits,
software can update only one port at a time. So, if an output device requires that an
interface circuit apply more than eight bits simultaneously, first set up an n-bit latch that
acquires all n bits at one time. Then use as many output ports as necessary to “feed” data
to that latch, one byte at a time.

Figure 4-8 shows a circuit set up as an interface for a 12-bit device. The circuit uses a
74LS374 D-flip-flop IC for output port 003 and another 74LS374 IC as output port 004. The
pair of 74LS374 ICs on the right side of the circuit forms an intermediate 16-bit latch that
will simultaneously transfer all data from the output ports to the 12-bit device. (The circuit
does not use four of the output bits. Never tie unused ports to +5V or ground!)

Figure 4-8
A double-buffered interface circuit lets two 8-bit output ports produce data for simultaneous transfer to a 12-bit

device. Many output devices come with built-in double buffers.

To perform a transfer, software first sends individual bytes to ports 003 and 004 and then
simultaneously transfers all the data to the 12-bit device by using an outportb command for
port 005. Keep in mind the needed outportb(005, n) command serves only to generate the
OUT005 pulse. Although the command transfers byte n onto the computer’s data bus, no
device uses it, so the value of n is immaterial.

This technique often goes by the name “double buffering,” and many manufacturers
13/15

provide the necessary double-buffer circuits in their devices. The Analog Devices
(Norwood, MA; www.analog.com) AD5341 12-bit digital-to-analog converter (ADC), for
example, includes double buffering in the chip so 8-bit microprocessors and
microcontrollers can use the IC without external circuitry.

Before software can send more than eight bits to an external device, it must “split” the data
into the various 8-bit bytes, and math and bit-wise-logic operations help. (We’ll assume a
16-bit value, but the techniques apply to higher bit counts, too.)

For this example, start with the 16-bit value 525 or 0000001000001101 , which software
must split into two bytes: 00000010 and 00001101 for transfer to the output ports. To get
the least-significant byte, use the modulus operation: mod in Visual Basic and % in C/C++.
This operation performs modulus division and produces the remainder of a division. So,
when software performs the operation:

525 Mod 256

the result yields a remainder of 13 (00001101), the lower byte. Then, software can divide
the entire value 525 by 256 and force the result of that operation into an integer value to
strip off the remainder:

525 / 256 = 2.05078 and then Int(525 / 256) yields 2

to yield the upper byte 00000010 .

Logical operations also can split a 16-bit value into two bytes. Again start with the value 525
or 0000001000001101 . Perform a bit-wise AND with 255 and the lower byte “falls through”
the mask:

0000001000001101

0000000011111111

0000000000001101

Then move the remaining value into an 8-bit integer to obtain the lower byte: 00001101

Next, use a mask on the upper eight bits:

0000001000001101

1111111100000000

0000001000000000

and divide by 256, which in effect shifts all the bits to the right by eight positions:

0000000000000010

Move the result into an 8-bit integer value to obtain 00000010 .

2

2 2

2

2

2

2
14/15

http://www.analog.com/

CAUTION: Before you apply math or bit-wise logic operations, always check the language
specifications to:

1. Ensure its math operations perform the mod and int functions.
2. Ensure you can use 16-bit unsigned integer value.

In most cases, you can use other programming steps to perform the same operations,
although they may get more complex. Always test your routines with known data. We
recommend you always check conversions and I/O operations for any error conditions-such
as using an integer instead of a byte value, trying to output a negative value, and so on.
Better to check thoroughly with test data than to dump the wrong chemical into a reaction or
send a space probe off course due to a software error.

References

1. Ganssle, Jack G., “The Secret Life of Switches,” Embedded Systems Programming,
April 2004. pp. 61—64. (www.embedded.com)

2. Ganssle, Jack G., “Solving Switch Bounce Problems,” Embedded Systems
Programming, May 2004. pp. 45—64.

For more information
We hope you found the Chapter 4 informative. To go back to the Main Page, click here.

You can purchase the complete Digital I/O Handbook for only $19.95 by clicking here. The
Digital I/O Handbook is FREE with any qualifying Sealevel Digital I/O product purchase.
You can find a listing of all Sealevel Digital I/O products by clicking here.

15/15

http://www.embedded.com/
http://www.sealevel.com/support/the-digital-io-handbook-chapter-4/ARTICLE_URL#352##AA-00391#
http://www.sealevel.com/support/the-digital-io-handbook-chapter-4/ARTICLE_URL#352##AA-00391#
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF101
http://www.sealevel.com/store/REF102
http://www.sealevel.com/store/i-o/digital-i-o.html
http://www.sealevel.com/store/i-o/digital-i-o.html
http://www.sealevel.com/store/i-o/digital-i-o.html

	The Digital I/O Handbook – Chapter 4
	Chapter 4 – Sensor Interfacing

