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CHAPTER 1

OpenSPARC T2 Basics

1.1 Background
OpenSPARC T2 is the follow-on chip multi-threaded (CMT) processor to the highly
successful OpenSPARC T1 processor. The OpenSPARC T1 product line fully
implements Sun’s Throughput Computing initiative for the horizontal system space.
Throughput Computing is a technique that takes advantage of the thread-level
parallelism that is present in most commercial workloads. Unlike desktop
workloads, which often have a small number of threads concurrently running, most
commercial workloads achieve their scalability by employing large pools of
concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these processors by a combination of extremely
deep pipelines (over 20 stages in Pentium 4) and by executing multiple instructions
in parallel (referred to as instruction-level parallelism or ILP). The basic tenet behind
Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize
their underlying hardware very efficiently. For many commercial workloads, the
processor will be idle most of the time waiting on memory, and even when it is
executing it will often be able to only utilize a small fraction of its wide execution
width. So rather than building a large and complex ILP processor that sits idle most
of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with
1



multiple strands per processor, allows very high performance for highly threaded
commercial applications. This approach is called thread-level parallelism (TLP), and
the difference between TLP and ILP is shown in the FIGURE 1-1.

FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same processor, and multiple processors run their strands in parallel.
In the ideal case, shown in FIGURE 1-1, memory latency can be completely
overlapped with execution of other strands. In contrast, instruction-level parallelism
simply shortens the time to execute instructions and does not help much in
overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP processors of
today are the evolutionary outgrowth from a time when the processor was the
bottleneck in delivering good performance. With processors capable of multiple GHz
clocking, the performance bottleneck has shifted to the memory and I/O
subsystems, and TLP has an obvious advantage over ILP for tolerating the large I/O
and memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one disadvantage
to employing TLP over ILP is that execution of a single thread will be slower on the
TLP processor than an ILP processor. With processors running well over a GHz, a
strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.
1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this

overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.
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Executing Stalled on Memory
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instructions per
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1.2 OpenSPARC T2 Overview
OpenSPARC T2 is a single chip multi-threaded (CMT) processor. OpenSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are hard-
partitioned into two groups of four, and the four strands within a group share a
single integer pipeline. While all eight strands run simultaneously, at any given time
at most two strands will be active in the physical core, and those two strands will be
issuing either a pair of integer pipeline operations, an integer operation and a
floating-point operation, an integer operation and a memory operation, or a floating-
point operation and a memory operation. Strands are switched on a cycle-by-cycle
basis between the available strands within the hard-partitioned group of four using
a least recently issued priority scheme. When a strand encounters a long-latency
event, such as a cache miss, it is marked unavailable and instructions will not be
issued from that strand until the long-latency event is resolved. Execution of the
remaining available strands will continue while the long-latency event of the first
strand is resolved.

Each SPARC physical core has a 16 KB, 8-way associative instruction cache (32-byte
lines), 8 Kbytes, 4-way associative data cache (16-byte lines), 64-entry fully-
associative instruction TLB, and 128-entry fully associative data TLB that are shared
by the eight strands. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 4 Mbyte, 16-way associative L2 cache (64-byte lines).
The L2 cache is banked eight ways to provide sufficient bandwidth for the eight
SPARC physical cores. The L2 cache connects to four on-chip DRAM controllers,
which directly interface to a pair of fully buffered DIMM (FBD) channels. In
addition, an on-chip PCI-EX controller, two 1-Gbit/10-Gbit Ethernet MACs, and
several on-chip I/O-mapped control registers are accessible to the SPARC physical
cores. Traffic from the PCI-EX port coherently interacts with the L2 cache.

A block diagram of the OpenSPARC T2 chip is shown in FIGURE 1-2.
• 3



.

FIGURE 1-2 OpenSPARC T2 Chip Block Diagram
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1.3 OpenSPARC T2 Components
This section describes each component in OpenSPARC T2.

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches and TLBs. An auto-demap feature is included with
the TLBs to allow the multiple strands to update the TLB without locking.

Each SPARC physical core contains a floating-point unit, shared by all eight strands.
The floating-point unit performs single- and double-precision floating-point
operations, graphics operations, and integer multiply and divide operations.

1.3.2 L2 Cache
The L2 cache is banked eight ways. To provide for better partial-die recovery,
OpenSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/2 and
1/4 the total cache size respectively). Bank selection based on physical address bits
8:6 for 8 banks, 7:6 for 4 banks, and 6 for 2 banks. The cache is 4 Mbytes, and 16-way
set associative. The line size is 64 bytes. Unloaded access time is 26 cycles for an L1
data cache miss and 24 cycles for an L1 instruction cache miss.

1.3.3 Memory Controller Unit (MCU)
OpenSPARC T2 has four MCUs, one for each memory branch with a pair of L2
banks interacting with exactly one DRAM branch. The branches are interleaved
based on physical address bits 7:6, and support 1–16 DDR2 DIMMs. Each memory
branch is two FBD channels wide. A branch may use only one of the FBD channels
in a reduced power configuration.

Each DRAM branch operates independently and can have a different memory size
and a different kind of DIMM (for example, a different number of ranks or different
CAS latency). Software should not use address space larger than four times the
lowest memory capacity in a branch because the cache lines are interleaved across
branches. The DRAM controller frequency is the same as that of the DDR (Double
Data Rate) data buses, which is twice the DDR frequency. The FBDIMM links run at
six times the frequency of the DDR data buses.
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The OpenSPARC T2 MCU implements a DDR2 FBD design model that is based on
various JEDEC-approved DDR2 SDRAM and FBDIMM standards. JEDEC has
received information that certain patents or patent applications may be relevant to
FBDIMM Advanced Memory Buffer standard (JESD82-20) as well as other standards
related to FBDIMM technology (JESD206) (For more information, see
http://www.jedec.org/download/search/FBDIMM/Patents.xls). Sun
Microsystems does not provide any legal opinions as to the validity or relevancy of
such patents or patent applications. Sun Microsystems encourages prospective users
of the OpenSPARC T2 MCU design to review all information assembled by JEDEC
and develop their own independent conclusion

1.3.4 Noncacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and directs
them to the appropriate block (for example, DMU, CCU). In addition, the NCU
maintains the register status for external interrupts.

1.3.5 System Interface Unit (SIU)
The System Interface Unit connects the DMU and L2 Cache. SIU is the L2 Cache
access point for the Network subsystem. The SIU-L2 Cache interface is also the
ordering point for PCI-Express ordering rule.

1.3.6 SSI ROM Interface (SSI)
OpenSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an external
field-programmable gate array (FPGA) that interfaces to the boot ROM. In addition,
the SSI supports PIO accesses across the SSI, thus supporting optional Control and
Status registers (CSRs) or other interfaces within the FPGA.
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CHAPTER 2

Data Formats

Data formats supported by OpenSPARC T2 are described in the UltraSPARC
Architecture 2007 specification.
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CHAPTER 3

Registers

3.1 Ancillary State Registers (ASRs)
This chapter discusses the OpenSPARC T2 ancillary state registers. TABLE 3-1
summarizes and defines these registers.

TABLE 3-1 Summary of OpenSPARC T2 Ancillary State Registers

Address ASR Name Access priv
Replicated
per-Strand Description

0016 Y RW N Y Y Register

0116 Reserved — Any access causes a illegal_instruction
trap

0216 CCR RW N Y Condition Code register

0316 ASI RW N Y ASI register

0416 TICK RW Y1 Partially TICK register

0516 PC RO2 N Y Program counter

0616 FPRS RW N Y Floating-Point Registers Status register

0716–0E16 Reserved - — Any access causes an illegal_instruction
trap

0F16 (MEMBAR, STBAR, SIR) — N — Instruction opcodes only, not an actual
ASR.

1016 PCR RW Y3 Y Performance counter control register

1116 PIC RW Y4 Y Performance instrumentation counter

1216 Reserved — Any access causes an illegal_instruction
trap

1316 GSR RW N Y General Status register
9



Notes:

1. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt = 1 causes a
privileged_action trap. An attempted write by privileged software causes an
illegal_instruction trap. An attempted write by nonprivileged software causes a
privileged_opcode trap.

2. An attempted write to this register causes an illegal_instruction trap.

3. An attempted access in nonprivilged mode causes a privileged_opcode trap.

4. An attempted access in nonprivilged mode with PCR.priv = 1 causes a
privileged_action trap.

5. Read accesses cause an illegal_instruction trap. An attempted write access in
nonprivilged mode causes a privileged_opcode trap.

6. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt = 1 causes a
privileged_action trap. A write by privileged or user software causes an
illegal_instruction trap.

3.1.1 Tick Register (TICK)
The TICK register contains two fields: npt and counter. The npt field is replicated per
strand, while the counter field is shared by the eight strands on a physical core.
Hyperprivileged software on any strand can write the TICK register. A write of the
TICK register will update both the shared counter as well as the writing strand’s npt
field (the npt fields for other strands will be unaffected). The counter increments
each processor core clock that ASI_CMT_TICK_ENABLE.tick_enable is set to 1. See
ASI_CMT_TICK_ENABLE on page 183 for more details. On a warm reset, npt is set to

1416 SOFTINT_SET W Y5 Y Set bit in Soft Interrupt register

1516 SOFTINT_CLR W Y5 Y Clear bit in Soft Interrupt register

1616 SOFTINT RW Y3 Y Soft Interrupt register

1716 TICK_CMPR RW Y3 Y TICK Compare register

1816 STICK RW Y6 Partially System Tick register

1916 STICK_CMPR RW Y3 Y System TICK Compare register

1A16–1F16 Reserved — — Any access causes an illegal_instruction
trap

TABLE 3-1 Summary of OpenSPARC T2 Ancillary State Registers (Continued)

Address ASR Name Access priv
Replicated
per-Strand Description
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1, but counter continues counting (if ASI_CMT_TICK_ENABLE.tick_enable is 1) or
remains unchanged (if ASI_CMT_TICK_ENABLE.tick_enable is 0). On all other
resets, TICK does not change (other than the normal counting of counter).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.2 Program Counter (PC)
Each strand has a read-only program counter register. The PC contains a 48-bit
virtual address and VA{63:48} is sign-extended from VA{47}. The format of this
register is shown in TABLE 3-2.

3.1.3 Floating-Point State Register (FSR)
Each virtual processor has a Floating-Point State register. This register follows the
UltraSPARC Architecture 2007 specification, with the ver field permanently set to 0
and the qne field permanently set to 0 (OpenSPARC T2 does not support a FQ).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.4 General Status Register (GSR)
Each virtual processor has a nonprivileged general status register (GSR). When
PSTATE.pef or FPRS.fef is zero, accesses to this register cause an fp_disabled trap.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

TABLE 3-2 Program Counter – PC (ASR 0516)

Bit Field

Initial
(POR)
Value R/W Description

63:48 va_high FFFF16
1

1. Initial value listed is when ASI_RST_VEC_MASK.VEC_MASK = 0. If
ASI_RST_VEC_MASK.VEC_MASK = 1, the initial value for the register is 2016. See Section
20.1.4, ASI_RST_VEC_MASK, on page 434 for more details.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

RO Sign-extended from VA{47}.

47:2 va 3FFFFC00000816
1 RO Virtual address contained in the program counter.

1:0 — 0 RO The lower 2 bits of the program counter always read as 0.
• 11



3.1.5 Software Interrupt Register (SOFTINT)
Each virtual processor has a privileged software interrupt register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains three fields: sm, int_level, and tm. Note that while setting the sm (bit 16), tm
(bit 0), and SOFTINT{14} bits all generate interrupt_level_14, these bits are
considered completely independent of each other. Thus a STICK compare will only
set bit 16 and generate interrupt_level_14, not also set bit 14.

TABLE 3-3 specifies how interrupt_level_14 will be shared between SOFTINT writes,
STICK compares, and TICK compares.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.6 Tick Compare Register (TICK_CMPR)
Each virtual processor has a privileged Tick compare register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains two fields: int_dis and tick_cmpr. A full 63-bit tick_cmpr field is
implemented in the register, but the bottom seven bits are ignored when comparing
against the TICK counter field. The int_dis bit controls whether a TICK
interrupt_level_14 interrupt is posted in the SOFTINT register when tick_cmpr bits
62:7 match TICK bits 62:7.

TABLE 3-3 Sharing of interrupt_level_14

Event tm SOFTINT{14} sm Action

STICK compare when sm = 0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 14

Set sm = 1 when sm = 0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Set SOFTINT{14} = 1 when
SOFTINT{14} = 0.

Unchanged 1 Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

TICK compare when tm = 0 1 Unchanged Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Set tm=1 when tm = 0 1 Unchanged Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 4

Caution To reliably create interrupt_level_14 interrupts using the tick
compare register, software should ensure that the value written
to bits 62:7 of the Tick Compare Register is larger than the value
subsequently read from bits 62:7 of the TICK Register.
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For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.7 System Tick Register (STICK)
STICK and TICK are derived from the same register. Writes to STICK affect TICK
and vice versa.

Writes by user-level code to TICK generate a privileged_opcode trap, while writes by
user-level code to STICK generate an illegal_instruction trap.

Reads of STICK.counter{6:0} are tied to 7F16. This prevents software from setting the
System Tick Compare Register or Hyperprivileged System Tick Compare Register to
a value that should cause a subsequent interrupt but that would not be detected due
to the System Tick Compare Register and Hyperprivileged System Tick Compare
implementation. The compare registers are not continuously compared to STICK,
but are compared periodically (at least once every 128 cycles).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.8 System Tick Compare Register (STICK_CMPR)
Each virtual processor has a privileged System Tick Compare (STICK_CMPR
register. Nonprivileged accesses to this register cause a privileged_opcode trap.
STICK_CMPR contains two fields: int_dis and stick_cmpr. A full 63-bit stick_cmpr
field is implemented in the register, but the bottom seven bits are ignored when
comparing against the STICK counter field. To assist software in reliably creating
interrupt_level_14 interrupts using the system tick compare register, OpenSPARC T2
always returns reads of the system tick register with bits 6:0 set to 7’h7F. This
ensures that if software writes a value to the system tick compare register that is
greater than the value subsequently read from the system tick register that a match
will occur in the future.

The int_dis bit controls whether a STICK interrupt_level_14 interrupt is posted in the
SOFTINT register when stick_cmpr bits 62:7 match STICK bits 62:7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.
• 13



3.2 Privileged PR State Registers
TABLE 3-4 lists the privileged registers.

3.2.1 Trap State Register (TSTATE)
Each virtual processor has MAXTL (6) Trap State registers. These registers hold the
state values from the previous trap level. The format of one element the TSTATE
register array (corresponding to one trap level) is shown in TABLE 3-5.

TABLE 3-4 Privileged Registers

Register Register Name Access
Replicated
per-Strand Description

0016 TPC RW Y Trap PC1

1. OpenSPARC T2 only implements bits 47:0 of the TPC, TNPC, and TBA
registers. Bits 63:48 are always sign-extended from bit 47.

0116 TNPC RW Y Trap Next PC1

0216 TSTATE RW Y Trap State

0316 TT RW Y Trap Type

0416 TICK RW Partially Tick

0516 TBA RW Y Trap Base Address1

0616 PSTATE RW Y Process State

0716 TL RW Y Trap Level

0816 PIL RW Y Processor Interrupt Level

0916 CWP RW Y Current Window Pointer

0A16 CANSAVE RW Y Savable Windows

0B16 CANRESTORE RW Y Restorable Windows

0C16 CLEANWIN RW Y Clean Windows

0D16 OTHERWIN RW Y Other Windows

0E16 WSTATE RW Y Window State

1016 GL RW Y Global Level
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For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.2 Processor State Register (PSTATE)
Each virtual processor has a Processor State register. More details on PSTATE can be
found in the UltraSPARC Architecture 2007 specification. The format of this register
is shown in TABLE 3-6; note that the memory model selection field (mm) mentioned in
UltraSPARC Architecture 2007 is not implemented in OpenSPARC T2.

TABLE 3-5 Trap State Register

Bit Field

Initial
(POR)
Value R/W Description

63:42 — 0 RO Reserved.

41:40 gl 0 RW Global level at previous trap level

39:32 ccr 0 RW CCR at previous trap level

31:24 asi 0 RW ASI at previous trap level

23:21 — 0 RO Reserved

20 pstate tct 0 RW PSTATE.tct at previous trap level

19:18 — 0 RO Reserved (corresponds to bits 11:10 of PSTATE)

17 pstate cle 0 RW PSTATE.cle at previous trap level

16 pstate tle 0 RW PSTATE.tle at previous trap level

15:13 — 0 RO Reserved (corresponds to bits 7:5 of PSTATE)

12 pstate pef 0 RW PSTATE.pef at previous trap level

11 pstate am 0 RW PSTATE.am at previous trap level

10 pstate priv 0 RW PSTATE.priv at previous trap level

9 pstate ie 0 RW PSTATE.ie at previous trap level

8 — 0 RO Reserved (corresponds to bit 0 of PSTATE)

7:3 — 0 RO Reserved

2:0 cwp 0 RW CWP from previous trap level

TABLE 3-6 Processor State Register

Bit Field

Initial
(POR)
Value R/W Description

63:13 — 0 RO Reserved

12 tct 0 RW Trap on control transfer

11:10 — 0 RO Reserved

9 cle 0 RW Current little endian

8 tle 0 RW Trap little endian
• 15



For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.3 Trap Level Register (TL)
Each virtual processor has a Trap Level register. Writes to this register saturate at
MAXPTL (2) when in privileged mode and at MAXTL (6) in hyperprivileged mode. This
saturation is based on bits 2:0 of the write data; bits 63:3 of the write data are
ignored.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

7:6 — 0 RO Reserved (mm; not implemented in OpenSPARC T2)

5 — 0 RO Reserved (was red)

4 pef 1 RW Enable floating-point

3 am 0 RW Address mask

2 priv 1 RW Privileged mode

1 ie 0 RW Interrupt enable

0 — 0 RO Reserved (was ag)

Implementation
Note

Traps to hyperprivileged space will set PSTATE.priv to 0.
PSTATE.priv could be set to either a 0 or 1 for this case, as
HPSTATE.hpriv being a 1 overrides the setting in PSTATE.priv.

Programming
Note

Hyperprivileged changes to translation in delay slots of delayed
control transfer instructions should be avoided; see Section
12.3.2, Real-to-Physical Address Mapping and Speculative Instruction
Fetch, on page 111.

Note Hyperprivileged software can set TL to greater than MAXPTL for
user or supervisor code by writing to TSTATE followed by a
DONE/RETRY, doing a JMPL/WRHPR pair, etc. Operation of
the OpenSPARC T2 chip when HPSTATE.hpriv = 0 and TL >
MAXPTL follows UltraSPARC Architecture, and while in this state
all traps destined for privileged level will instead be delivered
to hyperprivileged level using the guest watchdog vector.

TABLE 3-6 Processor State Register

Bit Field

Initial
(POR)
Value R/W Description
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3.2.4 Current Window Pointer (CWP) Register
Since N_REG_WINDOWS = 8 on OpenSPARC T2, the CWP register in each virtual
processor is implemented as a 3-bit register.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2.5 Global Level Register (GL)
Each virtual processor has a Global Level register, which controls which set of four
global register windows is in use. The maximum global level (MAXGL) for
OpenSPARC T2 is 3, so GL is implemented as a 2-bit register on OpenSPARC T2. GL
is restricted to be less than or equal to MAXPTL (2) for privileged and nonprivileged
code. On a trap, GL is set to min(GL + 1, MAXGL) for traps to hyperprivileged mode
and to min(GL + 1,MAXPTL) for traps to privileged mode. On a DONE or RETRY, if
executed with HTSTATE[TL].HPSTATE.hpriv = 1 (so that the DONE or RETRY places
the virtual processor in hyperprivileged mode), the value of GL is restored from
TSTATE[TL].gl.

Writes to the GL register saturate at MAXPTL when in privileged mode, and MAXGL in
hyperprivileged mode. This saturation is based on bits 3:0 of the write data; bits 63:4
of the write data are ignored.

The format of the GL register is shown in TABLE 3-7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

TABLE 3-7 Global Level Register

Bit Field

Initial
(POR)
Value R/W Description

63:2 — 0 RO Reserved

1:0 gl 3 RW Global level.

Note Hyperprivileged software can still set GL to greater than MAXPTL

for nonprivileged or privileged code (although this is not
recommended, except in diagnostic code) by doing a JMPL/
WRHPR pair when GL > MAXPTL. The OpenSPARC T2 chip
allows software normal access to the global registers when
HPSTATE.hpriv = 0 and GL > MAXPTL.
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3.3 Hyperprivileged Registers
TABLE 3-8 shows the format of the OpenSPARC T2 hyperprivileged registers.

3.3.1 Hypervisor Processor State Register (HPSTATE)
Each virtual processor has a Hypervisor Processor State register, HPSTATE.

Full documentation on the Hypervisor Processor State register can be found in the
UltraSPARC Architecture 2007 specification.

3.3.2 Hypervisor Trap State Register (HTSTATE)
Each virtual processor has a set of Hypervisor Trap State registers, one per trap
level. These registers hold the hyperprivileged state values from the previous trap
level. Full documentation on this register can be found in the UltraSPARC
Architecture specification.

TABLE 3-8 Hyperprivileged Registers

Register Register Name Access
Replicated
by Strand Description

0016 HPSTATE RW Y Hypervisor Processor State register

0116 HTSTATE RW Y Hypervisor Trap State register

0316 HINTP RW Y Hypervisor Interrupt Pending register

0516 HTBA RW Y Hypervisor Trap Base Address register1

1. OpenSPARC T2 only implements bits 47:14 of the tba field. Bits 63:48 are
always sign-extended from bit 47.

0616 HVER RO N Version register

1E16 HALT RW Y Halt instruction

1F16 HSTICK_CMPR RW Y Hypervisor System Tick Compare register

Note The tlz bit retains its current value when a trap is taken, which is
different from the UltraSPARC Architecture specification, which
specifies it is cleared when any trap is taken.

Programming
Note

Hyperprivileged changes to translation in delay slots of delayed
control transfer instructions should be avoided; see Section
12.3.2, Real-to-Physical Address Mapping and Speculative Instruction
Fetch, on page 111.
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3.3.3 Hypervisor Interrupt Pending Register (HINTP)
Each virtual processor has a Hypervisor Interrupt Pending register. Full
documentation on this register can be found in the UltraSPARC Architecture
specification.

3.3.4 Hypervisor Trap Base Address Register (HTBA)
Each virtual processor has a Hypervisor Trap Base Address Register. Full
documentation on this register can be found in the UltraSPARC Architecture
specification.

3.3.5 Hyperprivileged Version Register (HVER)
The strands on a physical core share a read-only Version register. Writes to this
register generate an illegal_instruction trap.

3.3.6 Hyperprivileged System Tick Compare Register
(HSTICK_CMPR)
Each virtual processor has a Hyperprivileged System Tick Compare register.
HSTICK_CMPR register contains two fields: int_dis and hstick_cmpr.

In the OpenSPARC T2 implementation, a full 63-bit hstick_cmpr field is
implemented in the register but the bottom seven bits are ignored when comparing
to the STICK counter field. To assist software in reliably creating hstick_match traps
using the hyperprivileged system tick compare register, OpenSPARC T2 always
returns reads of the system tick register with bits 6:0 set to 7F16 (all ones). This
ensures that if software writes a value to HSTICK_CMPR that is greater than the
value subsequently read from the system tick register, a match will occur in the
future.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Note OpenSPARC T2 only implements bits 47:14 of the tba field of
HTBA. Bits 63:48 are always sign-extended from bit 47.
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3.3.7 Halt
OpenSPARC T2 provides an iimplementation-specific “halt” pseudo-instruction that
can place the virtual processor (strand) executing it into the halt state. The “halt”
pseudo-instruction is encoded as a write (via WRHPR) to HPR 1E16 (the “halt”
psuedo-register) The virtual strand enters the halt state when:
(a) hyperprivileged software writes to HPR 1E16 and
(b) there are no pending interrupts or modes (as described below) that would
prevent entering the halt state.

A RDHPR of HPR 1E16 returns zero.

The format of the “halt” pseudo-register is shown in Table 3-9 .

The operation of the Halt pseudo-instruction is as follows. The virtual processor can
be parked, disabled, running, or halted. A virtual processor can be enabled or
disabled by writing to ASI_CORE_ENABLE (see 14.1.3 on page 182). A virtual
processor, when enabled, can either be parked or unparked, by writing to the
ASI_CORE_RUNNING_RW register (see 14.1.7 on page 184). When enabled and
unparked, the virtual processor is normally running. A running virtual core may be
halted by writing to the Halt register. Once halted, the virtual processor remains
halted until an interrupt arrives. When the interrupt arrives, the processor
transitions back to running. It resumes execution at the NPC of the Halt instruction.

When halted, the virtual processor consumes no execution resource. It is similar to
the parked state except that it awakens upon an interrupt.

If an interrupt arrives coincident with the execution of the Halt instruction, the
virtual processor remains running and takes the interrupt.

The following interrupts transition a halted virtual processor back to the running
state:

1. The virtual processor receives an interrupt from another virtual processor via the
Interrupt Vector Dispatch Register(see 7.3.3 on page 57).

2. The virtual processor receives an XIR.

3. The virtual processor receives any disrupting or deferred error leading to a
software_recoverable_error trap, hardware_corrected_error trap, or a deferred
store_error trap. Note: ASI_SETER masking is not applied, so even if the virtual
processors ASI_SETER masks the error trap, the virtual processor transitions to
the running state.

TABLE 3-9 "Halt" Pseudo-Register

Bit Field

Initial
(POR)
Value R/W Description

63:0 — 0 RW Reserved.Reads return zero and write data is ignored.
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4. The virtual processor sets softint[16] (softint.sm). Only stick_match can do this
while in halted state. If softint[16] is 1 when the Halt instruction executes, the
virtual processor remains in running state. Masking via PIL is not applied, so
even if PIL masks the exception, the virtual processor transitions to running state.

5. The virtual processor sets softint[0] (softint.tm). Only tick_match can do this
while in halted state. If softint[0] is 1 when the Halt instruction executes, the
virtual processor remains in running state. Masking via PIL is not applied, so
even if PIL masks the exception, the strand transitions to running state

6. The virtual processor receives an hstick_match_interrupt. If hintp is 1 when the
Halt instruction executes, the strand remains in running state.

7. The virtual processor receives an interrupt_vector exception.

8. The virtual processor receives a park request, as a result of another virtual
processor writing to the ASI_CORE_RUNNING_RW or
ASI_CORE_RUNNING_W1C registers. In this case, the virtual processor
transitions from halted to running to parked.

9. Entry to Single Step mode

10. Entry to Disable Overlap mode

Note: If the virtual processor is executing in Single Step or Disable Overlap mode
and executes a Halt instruction, the virtual processor remains running in that mode.
It does not enter halt state.
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CHAPTER 4

Instruction Format

Instruction formats are described in the UltraSPARC Architecture 2006 specification.
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CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary
The OpenSPARC T2 CPU implements the UltraSPARC Architecture 2007UltraSPARC
Architecture 2007 instruction set.

TABLE 5-1 lists the complete OpenSPARC T2 instruction set supported in hardware.
All instructions are documented in the UltraSPARC Architecture 2007 specification.

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (1 of 6)

Opcode Description

ADD (ADDcc) Add (and modify condition codes)

ADDC (ADDCcc) Add with carry (and modify condition codes)

ALIGNADDRESS Calculate address for misaligned data access

ALIGNADDRESSL Calculate address for misaligned data access (little-endian)

ALLCLEAN Mark all windows as clean

AND (ANDcc) And (and modify condition codes)

ANDN (ANDNcc) And not (and modify condition codes)

ARRAY{8,16,32} 3-D address to blocked byte address conversion

Bicc Branch on integer condition codes

BMASK Writes the GSR.mask field

BPcc Branch on integer condition codes with prediction

BPr Branch on contents of integer register with prediction

BSHUFFLE Permutes bytes as specified by the GSR.mask field

CALL1 Call and link

CASA Compare and swap word in alternate space

CASXA Compare and swap doubleword in alternate space

DONE Return from trap

EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code altering}
25



FABS(s,d) Floating-point absolute value

FADD(s,d) Floating-point add

FALIGNDATA Perform data alignment for misaligned data

FANDNOT1{s} Negated src1 and src2 (single precision)

FANDNOT2{s} Src1 and negated src2 (single precision)

FAND{s} Logical and (single precision)

FBPfcc Branch on floating-point condition codes with prediction

FBfcc Branch on floating-point condition codes

FCMP(s,d) Floating-point compare

FCMPE(s,d) Floating-point compare (exception if unordered)

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2

FDIV(s,d) Floating-point divide

FEXPAND Four 8-bit to 16-bit expand

FiTO(s,d) Convert integer to floating-point

FLUSH Flush instruction memory

FLUSHW Flush register windows

FMOV(s,d) Floating-point move

FMOV(s,d)cc Move floating-point register if condition is satisfied

FMOV(s,d)R Move floating-point register if integer register contents satisfy condition

FMUL(s,d) Floating-point multiply

FMUL8SUX16 Signed upper 8- x 16-bit partitioned product of corresponding components

FMUL8ULX16 Unsigned lower 8- x 16-bit partitioned product of corresponding components

FMUL8X16 8- x 16-bit partitioned product of corresponding components

FMUL8X16AL Signed lower 8- x 16-bit lower α partitioned product of four components

FMUL8X16AU Signed upper 8- x 16-bit lower α partitioned product of four components

FMULD8SUX16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product of components

FMULD8ULX16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned product of components

FNAND{s} Logical nand (single precision)

FNEG(s,d) Floating-point negate

FNOR{s} Logical nor (single precision)

FNOT1{s} Negate (1’s complement) src1 (single precision)

FNOT2{s} Negate (1’s complement) src2 (single precision)

FONE{s} One fill (single precision)

FORNOT1{s} Negated src1 or src2 (single precision)

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (2 of 6)

Opcode Description
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FORNOT2{s} src1 or negated src2 (single precision)

FOR{s} Logical or (single precision)

FPACKFIX Two 32-bit to 16-bit fixed pack

FPACK{16,32} Four 16-bit/two 32-bit pixel pack

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision)

fPMERGE Two 32-bit to 64-bit fixed merge

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision)

FsMULd Floating-point multiply single to double

FSQRT(s,d) Floating-point square root

FSRC1{s} Copy src1 (single precision)

FSRC2{s} Copy src2 (single precision)

F(s,d)TO(s,d) Convert between floating-point formats

F(s,d)TOi Convert floating point to integer

F(s,d)TOx Convert floating point to 64-bit integer

FSUB(s,d) Floating-point subtract

FXNOR{s} Logical xnor (single precision)

FXOR{s} Logical xor (single precision)

FxTO(s,d) Convert 64-bit integer to floating-point

FZERO{s} Zero fill (single precision)

ILLTRAP Illegal instruction

INVALW Mark all windows as CANSAVE

JMPL Jump and link

LDBLOCKF 64-byte block load

LDDF Load double floating-point

LDDFA Load double floating-point from alternate space

LDF Load floating-point

LDFA Load floating-point from alternate space

LDFSR Load floating-point state register lower

LDSB Load signed byte

LDSBA Load signed byte from alternate space

LDSH Load signed halfword

LDSHA Load signed halfword from alternate space

LDSTUB Load-store unsigned byte

LDSTUBA Load-store unsigned byte in alternate space

LDSW Load signed word

LDSWA Load signed word from alternate space

LDTW Load twin words

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (3 of 6)

Opcode Description
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LDTWA Load twin words from alternate space

LDUB Load unsigned byte

LDUBA Load unsigned byte from alternate space

LDUH Load unsigned halfword

LDUHA Load unsigned halfword from alternate space

LDUW Load unsigned word

LDUWA Load unsigned word from alternate space

LDX Load extended

LDXA Load extended from alternate space

LDXFSR Load extended floating-point state register

MEMBAR Memory barrier

MOVcc Move integer register if condition is satisfied

MOVr Move integer register on contents of integer register

MULScc Multiply step (and modify condition codes)

MULX Multiply 64-bit integers

NOP No operation

NORMALW Mark other windows as restorable

OR (ORcc) Inclusive-or (and modify condition codes)

ORN (ORNcc) Inclusive-or not (and modify condition codes)

OTHERW Mark restorable windows as other

PDIST Distance between 8 8-bit components

POPC Population count

PREFETCH Prefetch data

PREFETCHA Prefetch data from alternate space

PST Eight 8-bit/4 16-bit/2 32-bit partial stores

RDASI Read ASI register

RDASR Read ancillary state register

RDCCR Read condition codes register

RDFPRS Read floating-point registers state register

RDHPR Read hyperprivileged register

RDPC Read program counter

RDPR Read privileged register

RDTICK Read TICK register

RDY Read Y register

RESTORE Restore caller’s window

RESTORED Window has been restored

RETRY Return from trap and retry

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (4 of 6)

Opcode Description
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RETURN Return

SAVE Save caller’s window

SAVED Window has been saved

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes)

SDIVX 64-bit signed integer divide

SETHI Set high 22 bits of low word of integer register

SIAM Set interval arithmetic mode

SIR Software-initiated reset

SLL Shift left logical

SLLX Shift left logical, extended

SMUL (SMULcc) Signed integer multiply (and modify condition codes)

SRA Shift right arithmetic

SRAX Shift right arithmetic, extended

SRL Shift right logical

SRLX Shift right logical, extended

STB Store byte

STBA Store byte into alternate space

STBAR Store barrier

STBLOCKF 64-byte block store

STDF Store double floating-point

STDFA Store double floating-point into alternate space

STF Store floating-point

STFA Store floating-point into alternate space

STFSR Store floating-point state register

STH Store halfword

STHA Store halfword into alternate space

STTW Store twin words

STTWA Store twin words into alternate space

STW Store word

STWA Store word into alternate space

STX Store extended

STXA Store extended into alternate space

STXFSR Store extended floating-point state register

SUB (SUBcc) Subtract (and modify condition codes)

SUBC (SUBCcc) Subtract with carry (and modify condition codes)

SWAP Swap integer register with memory

SWAPA Swap integer register with memory in alternate space

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (5 of 6)

Opcode Description
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TABLE 5-2 lists the SPARC V9 and sun4v instructions that are not directly
implemented in hardware by OpenSPARC T2, and the exception that occurs when
an attempt is made to execute it.

TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow)

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on overflow)

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if bit 7 is set trap to
hyperprivileged)

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes)

UDIVX 64-bit unsigned integer divide

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes)

WRASI Write ASI register

WRASR Write ancillary state register

WRCCR Write condition codes register

WRFPRS Write floating-point registers state register

WRHPR Write hyperprivileged register

WRPR Write privileged register

WRY Write Y register

XNOR (XNORcc) Exclusive-nor (and modify condition codes)

XOR (XORcc) Exclusive-or (and modify condition codes)

1. The PC format saved by the CALL instruction is the same as the format of the PC register spec-
ified in Section 3.1.2, Program Counter (PC), on page 11.

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by OpenSPARC T2
Hardware (1 of 2)

Opcode Description Exception

FABSq Floating-point absolute value quad illegal_instruction

FADDq Floating-point add quad illegal_instruction

FCMPq Floating-point compare quad illegal_instruction

FCMPEq Floating-point compare quad (exception if unordered) illegal_instruction

FDIVq Floating-point divide quad illegal_instruction

FdMULq Floating-point multiply double to quad illegal_instruction

FiTOq Convert integer to quad floating-point illegal_instruction

FMOVq Floating-point move quad illegal_instruction

FMOVqcc Move quad floating-point register if condition is satisfied illegal_instruction

TABLE 5-1 Complete OpenSPARC T2 Hardware-Supported Instruction Set (6 of 6)

Opcode Description
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5.2 OpenSPARC T2-Specific Instructions

5.3 Block Load and Store Instructions
See the LDBLOCKF and STBLOCKF instruction descriptions in the UltraSPARC
Architecture 2007 specification for the standard definitions of these instructions.

Block loads are not allowed to IO space (which is indicated on OpenSPARC T2 by
PA{39} = 1).

A block load to IO space generates a DAE_nc_page trap.

Block stores to IO space are permitted.

FMOVqr Move quad floating-point register if integer register contents
satisfy condition

illegal_instruction

FMULq Floating-point multiply quad illegal_instruction

FNEGq Floating-point negate quad illegal_instruction

FSQRTq Floating-point square root quad illegal_instruction

F(s,d,q)TO(q) Convert between floating-point formats to quad illegal_instruction

FQTOI Convert quad floating point to integer illegal_instruction

FQTOX Convert quad floating point to 64-bit integer illegal_instruction

FSUBq Floating-point subtract quad illegal_instruction

FxTOq Convert 64-bit integer to floating-point illegal_instruction

IMPDEP1 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

IMPDEP2 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

LDQF Load quad floating-point illegal_instruction

LDQFA Load quad floating-point into alternate space illegal_instruction

STQF Store quad floating-point illegal_instruction

STQFA Store quad floating-point into alternate space illegal_instruction

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by OpenSPARC T2
Hardware (2 of 2)

Opcode Description Exception
• 31



Block store commits in UltraSPARC T2 do NOT force the data to be written to
memory as specified in the UltraSPARC Architecture 2007 specification. Block store
commits are implemented the same as block stores in UltraSPARC T2. As with all
stores, block stores and block store commits will maintain coherency with all I-
caches, but will not flush any modified instructions executing down a pipeline.
Flushing those instructions requires the pipeline to execute a FLUSH instruction.

OpenSPARC T2 treats block loads as interlocked with respect to following
instructions. That is, all floating-point registers are updated before any subsequent
instruction issues.

STBLOCKF source data registers are interlocked against completion of previous
instructions, including block load instructions.

LDBLOCKF does not follow memory model ordering with respect to stores. In
particular, read-after-write hazards to overlapping addresses are not detected. The
side-effect bit associated with the access is ignored (see Translation Table Entry (TTE)
on page 101). If ordering with respect to earlier stores is important (for example, a
block load that overlaps previous stores), then there must be an intervening
MEMBAR #StoreLoad or stronger MEMBAR. If the LDBLOCKF overlaps a
previous store and there is no intervening MEMBAR or data reference, the
LDBLOCKF may return data from before or after the store.

STBLOCKF does not follow memory model ordering with respect to loads, previous
block stores, or subsequent stores. (OpenSPARC T2 orders block stores with respect
to previous nonblock stores). In particular, read-after-write hazards to overlapping
addresses are not detected. The side-effects bit associated with the access is ignored.

Notes If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
destination register number rd is specified which is not a
multiple of 8 (a misaligned rd), OpenSPARC T2 generates an
illegal_instruction exception (impl. dep. #255-U3-Cs10).

If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
memory address is specified with less than 64-byte alignment,
OpenSPARC T2 generates a mem_address_not_aligned
exception (impl. dep. #256-U3)

These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill(). On
OpenSPARC T2, a block load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

Compatibility
Note

Prior UltraSPARC implementations may have provided the first
two registers at the same time. If code depends upon this
unsupported behavior it must be modified for OpenSPARC T2.
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If ordering with respect to later loads is important then there must be an intervening
MEMBAR instruction. If the STBLOCKF overlaps a later load and there is no
intervening MEMBAR #StoreLoad instruction, the contents of the block are
undefined.

Compatibility
Notes

Block load and store operations do not obey the ordering
restrictions of the currently selected processor memory model
(TSO, PSO, or RMO); block operations always execute under an
RMO memory ordering model. In general, explicit MEMBAR
instructions are required to order block operations among
themselves or with respect to normal loads and stores. In
addition, block operations do not generally conform to
dependence order on the issuing virtual processor; that is, no
read-after-write or write-after-read checking occurs between
block loads and stores. Explicit MEMBARs are required to
enforce dependence ordering between block operations that
reference the same address. However, OpenSPARC T2 partially
orders some block operations.

TABLE 5-3 describes the synchronization primitives required in
OpenSPARC T2, if any, to guarantee TSO ordering between
various sequences of memory reference operations. The first
column contains the reference type of the first or earlier
instruction; the second column contains the reference type of the
second or the later instruction. OpenSPARC T2 orders loads and
block loads against all subsequent instructions.

TABLE 5-3 OpenSPARC T2 Synchronization Requirements for Memory Reference
Operations

First reference Second reference Synchronization Required

Load Load —

Block load —

Store —

Block store —

Block load Load —

Block load —

Store —

Block store —
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Block Initializing Store ASIs

Store Load —

Block load MEMBAR #StoreLoad or #Sync

Store —

Block store —

Block store Load MEMBAR #StoreLoad or #Sync

Block load MEMBAR #StoreLoad or #Sync

Store MEMBAR #Sync

Block store MEMBAR #Sync

Instruction imm_asi
ASI

Value Operation

ST[B,H,W,TW,X]A ASI_ST_BLKINIT_AS_IF_USER_
PRIMARY (ASI_STBI_AIUP)

2216 64-byte block initialing store to
primary address space, user privilege

ASI_ST_BLKINIT_AS_IF_USER_SEC
ONDARY (ASI_STBI_AIUS)

2316 64-byte block initialing store to
secondary address space, user
privilege

ASI_ST_BLKINIT_NUCLEUS
(ASI_STBI_N)

2716 64-byte block initialing store to
nucleus address space

ASI_ST_BLKINIT_AS_IF_USER_PRI
MARY_LITTLE
(ASI_STBI_AIUPL)

2A16 64-byte block initialing store to
primary address space, user privilege,
little-endian

ASI_ST_BLKINIT_AS_IF_USER_SEC
ONDARY_LITTLE
(ASI_STBI_AIUS_L)

2B16 64-byte block initialing store to
secondary address space, user
privilege, little-endian

ASI_ST_BLKINIT_NUCLEUS_LITTLE
(ASI_STBI_NL)

2F16 64-byte block initialing store to
nucleus address space, little-endian

ASI_ST_BLKINIT_PRIMARY
(ASI_STBI_P)

E216 64-byte block initialing store to
primary address space

TABLE 5-3 OpenSPARC T2 Synchronization Requirements for Memory Reference
Operations

First reference Second reference Synchronization Required
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Description Block initializing store instructions are selected by using one of the block initializing
store ASIs with integer store instructions. These ASIs allow block initializing stores
to be performed to the same address spaces as normal stores. Little-endian ASIs
access data in little-endian format, otherwise the access is assumed to be big-endian.

Integer stores of all sizes (to alternate space) are allowed to use these ASIs

All stores to these ASIs operate under relaxed memory ordering (RMO), regardless
of the PSTATE.mm setting, and software must follow a sequence of these stores with
a MEMBAR #Sync to ensure ordering with respect to subsequent loads and stores.
Stores to these ASIs where the least-significant 6 bits of the address are non-zero
(that is, not the first word in the cache line) behave the same as a normal RMO store.
A store to these ASIs where the least-significant 6 bits are zero will load a cache line
in the L2 cache with either all zeros or the existing data, and then update that line
with the new store data. This special store will make sure the line maintains
coherency when it is loaded into the cache, but will not generally fetch the line from
memory (initializing it with zeros instead). Stores using these ASIs to a noncacheable
address (PA{39} = 1) will behave the same as a normal store.

Access to these ASIs by a floating-point store (STFA, STDFA) will result in a
DAE_invalid_ASI trap (or mem_address_not_aligned trap if not properly aligned for
the store size).

The following pseudocode shows how these ASIs can be used to do a quadword
aligned (on both source and destination) copy of N quadwords from A to B (where
N > 3). Note that the final 64 bytes of the copy is performed using normal stores,
guaranteeing that all initial zeros in a cache line are overwritten with copy data.

%l0 ← [A]
%l1 ← [B]
prefetch [%l0]

for (i = 0; i < N-4; i++) {

ASI_ST_BLKINIT_SECONDARY
(ASI_STBI_S)

E316 64-byte block initialing store to
secondary address space

ASI_ST_BLKINIT_PRIMARY_LITTLE
(ASI_STBI_PL)

EA16 64-byte block initialing store to
primary address space, little-endian

ASI_ST_BLKINIT_SECONDARY_LITTLE
(ASI_STBI_SL)

EB16 64-byte block initialing store to
secondary address space, little-endian

Note These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill(). On
OpenSPARC T2, a quad load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

Instruction imm_asi
ASI

Value Operation
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if (!(i % 4)) {
      prefetch [%l0+64]
   }
   ldtxa [%l0] #ASI_TWINX_P, %l2
   add %l0, 16, %l0
   stxa %l2, [%l1] #ASI_ST_BLKINIT_PRIMARY
   add %l1, 8, %l1
   stxa %l3, [%l1] #ASI_ST_BLKINIT_PRIMARY
   add %l1, 8, %l1
}
for (i = 0; i < 4; i++) {
   ldtxa [%l0] #ASI_TWINX_P, %l2
   add %l0, 16, %l0
   stx %l2, [%l1]
   stx %l3,d [%l1+8]
   add %l1, 16, %l1
}
membar #Sync

5.3.1 Load Twin Extended Word
Load Twin Extended Word instructions are not allowed to access IO space (indicated
by PA{39} = 1 on OpenSPARC T2). An LDTXA to IO space generates a
DAE_nc_page trap.

Programming
Notes

These ASIs are specific to OpenSPARC T2 to provide a high-
performance bcopy alternative to block load and store (which
fetch the lined stored to from memory to the L2 cache, requiring
three memory operations for bcopy() and two memory
operations for a bfill()). These ASIs are of Class "N" and are
only allowed in dynamically linked, platform-specific, OS-
enabled libraries.

These ASIs provide a higher-performance bcopy() or bfill()
than LDBLOCKF and STBLOCKF, due to their ability to avoid
the unnecessary fetch from memory of the data that is
overwritten by the store.
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CHAPTER 6

Traps

6.1 Trap Levels
Each virtual processor supports six trap levels (MAXTL = 6). Traps to privileged mode
(supervisor software) while in privileged mode when TL = MAXPTL (2) will trap
instead to the hyperprivileged mode (hypervisor software), using the guest
watchdog vector in the hyperprivileged trap table. TL will be incremented, but the
processor will not enter RED_state and the trap type will be set to that of the trap
that caused the event, not the watchdog trap type.

6.2 Trap Behavior
TABLE 6-1 specifies the codes used in the tables below.

TABLE 6-1 Table Codes

Code Meaning

H Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode (HSTATE.hpriv = 1)

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)
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For example, trap 1 (“power on reset”) in TABLE 6-2, if delivered in any running
mode, results in a delivery directly to the hypervisor mode.

HU Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode (HSTATE.hpriv = 1).
However, the trap is unexpected. While hardware can legitimately generate this trap, it should not
do so unless there is a programming error or some other error. Therefore, occurrence of this trap
indicates an actual error to hyperprivileged software.

-x- Not possible. Hardware cannot generate this trap in the indicated running mode. For example, all
privileged instructions can be executed in both privileged and hyperprivileged modes, therefore a
privileged_opcode trap cannot occur in privileged or hyperprivileged mode.

— This trap can only legitimately be generated by hyperprivileged software, not by the CPU
hardware. So, for the purposes of sun4v, the trap vector has to be correct, but for a hardware CPU
implementation these trap types are not generated by the hardware, therefore the resultant
running mode is irrelevant.

TABLE 6-2 Trap Behavior (1 of 3)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged

016 Reserved — — — —

116 power_on_reset 0 H H H

216 watchdog_reset variable2 H H H

guest watchdog variable3 H H —

316 externally_initiated_reset 1.1 H H H

416 software_initiated_reset 1.3 -x- -x- H

516 RED_state_exception 1.4 H H H

616 Reserved — — — —

716 store_error 2.1 H H H

816 IAE_privilege_violation 3.1 H -x- -x-

916 instruction_access_MMU_miss 2.8 H H -x-9

A16 instruction_access_error 4 H H H

B16 IAE_unauth_access 2.94 H H HU

C16 IAE_nfo_page 3.3 H H HU

D16 instruction_address_range 2.6 H H HU

E16 instruction_real_range 2.6 H H HU

F16 Reserved — — — —

1016 illegal_instruction 6.15 H H H

1116 privileged_opcode 7 P -x- -x-

1216 unimplemented_LDTW — — — —

1316 unimplemented_STTW — — — —

TABLE 6-1 Table Codes

Code Meaning
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1416 DAE_invalid_asi 12.1 H H HU

1516 DAE_privilege_violation 12.4 H H HU

1616 DAE_nc_page 12.5 H H HU

1716 DAE_nfo_page 12.6 H H HU

1816–1F16 Reserved — — — —

2016 fp_disabled 8.1 P P HU

2116 fp_exception_ieee_754 11.1 P P HU

2216 fp_exception_other 11.1 P P HU

2316 tag_overflow 14 P P HU

2416–2716 clean_window 10.1 P P HU

2816 division_by_zero 15 P P HU

2916 internal_processor_error 8.2 or
12.106

H H H

2A16 instruction_invalid_TSB_entry 2.107 H H -x-

2B16 data_invalid_TSB_entry 12.3 H H H

2C16 Reserved — — — —

2D16 mem_real_range 11.3 H H HU

2E16 mem_address_range 11.3 H H HU

2F16 Reserved — — — —

3016 DAE_so_page 12.6 H H HU

3116 data_access_MMU_miss 12.3 H H H

3216 data_access_error 12.9 H H H

3316 data_access_protection — — — —

3416 mem_address_not_aligned 10.2 H H HU

3516 LDDF_mem_address_not_aligned 10.1 H H HU

3616 STDF_mem_address_not_aligned 10.1 H H HU

3716 privileged_action 11.1 H H -x-

3816 LDQF_mem_address_not_aligned — — — —

3916 STQF_mem_addess_not_aligned — — — —

3A16 Reserved — — — —

3B16 unsupported_page_size 13 H H HU

3C16 control_word_queue_interrupt 16.5 H H H

3D16 modular_arithmetic_interrupt 16.4 H H H

3E16 inst_real_translation_miss 2.8 H H N9

3F16 data_real_translation_miss 12.3 H H H

40 sw_recoverable_error 33.1 H H H

4116–4F16 interrupt_level_n 32 − n P P -x-

TABLE 6-2 Trap Behavior (2 of 3)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged
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4F16 pic_overflow (interrupt_level_15) 16.0,
variable8

P P -x-

5016–5D16 Reserved — — — —

5E16 hstick_match 16.1 H H H

5F16 trap_level_zero 2.2 H H -x-

6016 interrupt_vector_trap 16.3 H H H

6116 PA_watchpoint 12.8 H H H

6216 VA_watchpoint 11.2 H H -x-

6316 hw_corrected_error 33.2 H H H

6416
1 fast_instruction_access_MMU_miss 2.8 H H -x-

6816
1 fast_data_access_MMU_miss 12.3 H H H

6C16
1 fast_data_access_protection 12.7 H H H

7016 Reserved — — — —

7116 instruction_access_MMU_error 2.7 H H -x-

7216 data_access_MMU_error 12.2 H H H

7316 Reserved — — — —

7416 control_transfer_instruction 11.1 P P H

7516 instruction_VA_watchpoint 2.5 H H -x-

7616 instruction_breakpoint 6.25 H H H

7716–7B16 Reserved — — — —

7C16 cpu_mondo_trap 16.6 P P -x-

7D16 dev_mondo_trap 16.7 P P -x-

7E16 resumable_error 33.3 P P -x-

7F16 nonresumable_error
(generated by software only)

— — — —

8016–9C16
1 spill_n_normal (n = 0–7) 9 P P HU

A0–BC16
1 spill_n_other (n = 0–7) 9 P P HU

C016–DC16
1 fill_n_normal (n = 0–7) 9 P P HU

E016–FC16
1 fill_n_other (n = 0–7) 9 P P HU

10016–17F16 trap_instruction 16.2 P P H

18016–1FF16 htrap_instruction 16.2 -x- H HU

1. Trap extends across four TT #s to allow trap handler to contain 32 inline instructions
instead of the standard 8 inline instructions.

2. The watchdog_reset priority is inherited from the underlying exception.
3. The guest_watchdog priority is inherited from the underlying exception.
4. OpenSPARC T2 deviates from the 3.2 priority in UltraSPARC Architecture 2007 for

IAE_unauth_access.

TABLE 6-2 Trap Behavior (3 of 3)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged
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6.3 Trap Masking
TABLE 6-3 specifies the codes used inTABLE 6-3.

5. OpenSPARC T2 deviates from UltraSPARC Architecture 2007 and swaps the priority of
illegal_instruction (6.2 in UltraSPARC Architecture 2007) and instruction_breakpoint
(6.1 in UltraSPARC Architecture 2007)

6. IRF/FRF errors that are encountered on the second or subsequent passes of a multicycle
operation (partial store, compare and swap, block store) generate an
internal_processor_error trap at priority 12.10. All other internal_processor_error
traps are priority 8.2. See Error Trap Vectors on page 200.

7. OpenSPARC T2 deviates from the UltraSPARC Architecture 2007 priority of 2.8 for
instruction_invalid_TSB_entry.

8. To make the pic_overflow trap the highest-priority disrupting trap, pic_overflow has an
elevated priority over a normal interrupt_level_15 trap (such as would be generated by
writing 1 to SOFTINT{15}).   Per Section 10.2, SPARC Performance Instrumentation
Counter, on page 86, if the pic_overflow trap is taken on the instruction that caused the
overflow, then the effective priority of the pic_overflow inherits from the condition that
caused the overflow.

9. Hyperprivileged instruction access always bypasses translation. See Translation on page
124.

TABLE 6-3 Codes

Code Meaning

(nm) Never Masked — when the condition occurs in this running mode, it is
never masked out and the trap is always taken.

(ie) When the outstanding disrupting trap condition occurs in this privilege
mode, it may be conditioned (masked out) by PSTATE.ie = 0 (but remains
pending).

PIL Masked by PSTATE.ie and PIL

tct Masked by PSTATE.tct

ibe Masked by HPSTATE.ibe

tlz Masked by HPSTATE.tlz
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For example, trap 7C16 (“cpu mondo”) in TABLE 6-4 is masked by PSTATE.ie in
nonprivileged and privileged mode and is always masked in hyperprivileged mode.

TABLE 6-4 lists the trap mask behavior.

M Always masked

— This trap can only legitimately be generated by hyperprivileged software,
not by the CPU hardware. So, for the purposes of sun4v, the trap vector has
to be correct, but for a hardware CPU implementation these trap types are
not generated by the hardware, therefore the resultant running mode is
irrelevant.

TABLE 6-4 Trap Mask Behavior (1 of 3)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged

016 Reserved Reset (nm) (nm) (nm)

116 power_on_reset Reset (nm) (nm) (nm)

216 watchdog_reset Reset (nm) (nm) (nm)

guest watchdog Reset (nm) (nm) —

316 externally_initiated_reset Reset (nm) (nm) (nm)

416 software_initiated_reset Reset (nm) (nm) (nm)

516 RED_state_exception Reset (nm) (nm) (nm)

616 Reserved — — — —

716 store_error Deferred (nm) (nm) (nm)

816 IAE_privilege_violation Precise (nm) (nm) (nm)

916 instruction_access_MMU_miss Precise (nm) (nm) —

A16 instruction_access_error Precise (nm) (nm) (nm)

B16 IAE_unauth_access Precise (nm) (nm) (nm)

C16 IAE_nfo_page Precise (nm) (nm) (nm)

D16 instruction_address_range Precise (nm) (nm) (nm)

E16 instruction_real_range Precise (nm) (nm) (nm)

F16 Reserved — — — —

1016 illegal_instruction Precise (nm) (nm) (nm)

1116 privileged_opcode Precise (nm) — —

1216 unimplemented_LDTW — — — —

1316 unimplemented_STTW — — — —

1416 DAE_invalid_asi Precise (nm) (nm) (nm)

1516 DAE_privilege_violation Precise (nm) (nm) (nm)

1616 DAE_nc_page Precise (nm) (nm) (nm)

TABLE 6-3 Codes (Continued)

Code Meaning
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1716 DAE_nfo_page Precise (nm) (nm) (nm)

1816–1F16 Reserved — — — —

2016 fp_disabled Precise (nm) (nm) (nm)

2116 fp_exception_ieee_754 Precise (nm) (nm) (nm)

2216 fp_exception_other Precise (nm) (nm) (nm)

2316 tag_overflow Precise (nm) (nm) (nm)

2416–2716 clean_window Precise (nm) (nm) (nm)

2816 division_by_zero Precise (nm) (nm) (nm)

2916 internal_processor_error Precise (nm) (nm) (nm)

2A16 instruction_invalid_TSB_entry Precise (nm) (nm) —

2B16 data_invalid_TSB_entry Precise (nm) (nm) (nm)

2C16 Reserved — — — —

2D16 mem_real_range Precise (nm) (nm) (nm)

2E16 mem_address_range Precise (nm) (nm) (nm)

2F16 Reserved — — — —

3016 DAE_so_page Precise (nm) (nm) (nm)

3116 data_access_MMU_miss Precise (nm) (nm) (nm)

3216 data_access_error Precise (nm) (nm) (nm)

3316 data_access_protection — — — —

3416 mem_address_not_aligned Precise (nm) (nm) (nm)

3516 LDDF_mem_address_not_aligned Precise (nm) (nm) (nm)

3616 STDF_mem_address_not_aligned Precise (nm) (nm) (nm)

3716 privileged_action Precise (nm) — —

3816 LDQF_mem_address_not_aligned — — — —

3916 STQF_mem_addess_not_aligned — — — —

3A16 Reserved — — — —

3B16 unsupported_page_size Precise (nm) (nm) (nm)

3C16 control_word_queue_interrupt Disrupting (nm) (nm) (ie)

3D16 modular_arithmetic_interrupt Disrupting (nm) (nm) (ie)

3E16 inst_real_translation_miss Precise (nm) (nm) —

3F16 data_real_translation_miss Precise (nm) (nm) (nm)

40 sw_recoverable_error Disrupting (nm) (nm) (ie)

4116–4F16 interrupt_level_n Disrupting PIL PIL M

4F16 pic_overflow (interrupt_level_15) Disrupting PIL PIL M

5016–5D16 Reserved — — — —

5E16 hstick_match Disrupting (nm) (nm) (ie)

TABLE 6-4 Trap Mask Behavior (2 of 3)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged
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The OpenSPARC T2 implmentation deviates from UltraSPARC Architecture 2007 in
following way: when an SIR or XIR reset occurs, the virtual processor enters
RED_state regardless of the value of TL (that is, when TL = MAXTL, as well as when
TL < MAXTL.). In particular, when TL = MAXTL and an XIR occurs, UltraSPARC

5F16 trap_level_zero Disrupting tlz tlz —

6016 interrupt_vector_trap Disrupting (nm) (nm) (ie)

6116 PA_watchpoint Precise (nm) (nm) (nm)

6216 VA_watchpoint Precise (nm) (nm) —

6316 hw_corrected_error Disrupting (nm) (nm) (ie)

6416
1 fast_instruction_access_MMU_miss Precise (nm) (nm) —

6816
1 fast_data_access_MMU_miss Precise (nm) (nm) (nm)

6C16
1 fast_data_access_protection Precise (nm) (nm) (nm)

7016 Reserved — — — —

7116 instruction_access_MMU_error Precise (nm) (nm) —

7216 data_access_MMU_error Precise (nm) (nm) (nm)

7316 Reserved — — — —

7416 control_transfer_instruction Precise tct tct tct

7516 instruction_VA_watchpoint Precise (nm) (nm) —

7616 instruction_breakpoint Precise ibe ibe ibe

7716–7B16 Reserved — — — —

7C16 cpu_mondo_trap Disrupting (ie) (ie) M

7D16 dev_mondo_trap Disrupting (ie) (ie) M

7E16 resumable_error Disrupting (ie) (ie) M

7F16 nonresumable_error (generated by
software only)

— — — —

8016–9C16
1 spill_n_normal (n = 0–7) Precise (nm) (nm) (nm)

A0–BC16
1 spill_n_other (n = 0–7) Precise (nm) (nm) (nm)

C016–DC16
1 fill_n_normal (n =0–7) Precise (nm) (nm) (nm)

E016–FC16
1 fill_n_other (n = 0–7) Precise (nm) (nm) (nm)

10016–17F16 trap_instruction Precise (nm) (nm) (nm)

18016–1FF16 htrap_instruction Precise — (nm) (nm)

1. Trap extends across four TT #s to allow trap handler to contain 32 inline instructions instead
of the standard 8 inline instructions.

TABLE 6-4 Trap Mask Behavior (3 of 3)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged
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Architecture 2007 specifies that the virtual processor enters error_state to
generate a WDR reset, but an OpenSPARC T2 virtual processor instead directly takes
an XIR reset.
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CHAPTER 7

Interrupt Handling

The chapter describes the hardware interrupt delivery mechanism for the
OpenSPARC T2 chip. I/O and CPU cross-call interrupts are delivered to
hyperprivileged code on each virtual processor using an interrupt vector trap as
described in Interrupt Flow on page 48. Error interrupts are delivered to
hyperprivileged code on each virtual processor using the sw_recoverable_error and
hw_corrected_error traps. These error interrupts are described in Chapter 16, Error
Handling.

Hyperprivileged code notifies privileged code about interrupt_vector traps,
sw_recoverable_error traps hw_corrected_error traps (and precise error traps)
through the cpu_mondo, dev_mondo, and resumable_error traps as described in
Interrupt Queue Registers on page 54. Software interrupts are delivered to each virtual
processor using the interrupt_level_n traps. Software interrupts are described in the
UltraSPARC Architecture 2006 Specification. The pic_overflow trap, generated by the
performance counters, is described in Chapter 10, Performance Instrumentation. The
hstick_match and trap_level_zero interrupts are described in the UltraSPARC
Architecture 2006 specification.

Interrupt vector traps have a corresponding 64-bit ASI_INTR_RECEIVE register. I/
O devices and inter-CPU cross-call interrupts contain a 6-bit identifier, which
determines which interrupt vector (level) in the ASI_INTR_RECEIVE register the
interrupt will target. Each virtual processor’s ASI_INTR_RECEIVE register can
queue up to 64 outstanding interrupts, one for each interrupt vector. Interrupt
vectors are implicitly prioritized, with vector 63 being the highest priority and
vector 0 being the lowest priority.

Two types of I/O interrupts are supported. “Internal” I/O interrupts, such as those
generated by the Network Interface Unit, are generated by I/O devices on the
OpenSPARC T2 processor. Unlike “mondo” interrupts, these interrupts do not
contain any additional data payload. Each internal I/O interrupt source has a
hardwired interrupt number, which is used to index a table of interrupt vector
information (INT_MAN) in the NCU. Generally, each I/O interrupt source will be
assigned a unique virtual processor target and vector level. This association is
defined by software programming of the interrupt vector and strand fields in the
INT_MAN table in the NCU. Software must maintain the association between
interrupt vector and hardware interrupt number to index the appropriate entry in
the INT_MAN table.
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The second type of interrupts are external “mondo” interrupts, such as those
generated by PCI-Express. These interrupts follow the standard mondo interrupt
ACK/NACK flow control. Only the first two 64-bit words of mondo data are
supported by OpenSPARC T2.

7.1 Interrupt Flow

7.1.1 Sources
CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Interrupt Vector Dispatch Register on page 57. Dispatching inter-
CPU interrupts is described in Dispatching on page 48.

TAP interrupts can be generated by writing the NCU Interrupt Vector/Trap Dispatch
Register described in Mondo Data Tables on page 53.

SSI error interrupts (device ID = 1) are caused by SSI detected errors, as described in
Boot ROM Interface (SSI) on page 303.

SSI interrupts (device ID = 2) are caused by an assertion (edge trigger) on the
EXT_INT_L pin.

The network interface unit generates interrupts with device IDs 64–127.

7.1.2 Dispatching
CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Interrupt Vector Dispatch Register on page 57. Unlike mondo
interrupts, interrupts are always received by the destination, and stores to this
register will follow the TSO memory model (no MEMBAR #Sync is required). The
store data supplies the destination virtual processor and vector. The bit
corresponding to the specified vector is set in the Interrupt Receive register of the
destination virtual processor.
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7.1.3 States
Each bit in the Interrupt Receive register can be in one of two states: set or
cleared. If an incoming interrupt attempts to set an already set bit, the additional
incoming interrupt will be lost (there is no overflow indication on the interrupt bits).
Writes to the Interrupt Receive register will clear any bit in which the corresponding
write data is 0, and reads to the Incoming Vector register will clear the bit of the
highest-priority pending interrupt as a side effect. If another interrupt attempts to
set a bit on the same cycle as the bit is being cleared by an Interrupt Receive register
write or Incoming Vector register read, the additional interrupt will take precedence
over the clear and the bit will remain set.

Mondo interrupts have two states in the MONDO_INT_BUSY table, namely, BUSY
and IDLE (not BUSY). When a mondo interrupt transaction is received, if the current
state is IDLE, the transaction is accepted (and ACKed to the requestor), state is
changed to BUSY, the mondo data is stored in the MONDO_INT_DATA0/1 table, and
the bit specified by MONDO_INT_VEC is set in the Interrupt Receive register of the
virtual processor specified in the INT transaction. While in the BUSY state, any INT
transactions to the same virtual processor will be rejected and NACKed back to the
requestor, and the requestor is responsible for preserving that interrupt in a pending
state. When software has adequately serviced the interrupt, it explicitly clears the
busy bit in the MONDO_INT_BUSY register to return to the IDLE state.

For “internal” I/O interrupts, such as an SSI, network interface unit, or MCU error
interrupt, the bit specified by INT_MAN is set in the Interrupt Receive register of the
virtual processor specified in INT_MAN. Software can use the Incoming Vector
register described in Incoming Vector Register on page 58 to atomically clear and
return the vector of the highest status bit. Since there is no ACK/NACK flow control
on the internal interrupts and no indication of interrupt bit overflow, for sources
capable of generating multiple interrupts between interrupt servicing, software will
need to properly handle the multiple interrupt case.

Note An interrupt that is sent to a virtual processor that is not
enabled (has its bit clear in ASI_CORE_ENABLE_STATUS
described in ASI_CORE_ENABLE_STATUS on page 181) will be
lost. An interrupt that is sent to a virtual processor that is
parked (has its bit clear in ASI_CORE_RUNNING_STATUS
described in ASI_CORE_RUNNING_STATUS on page 185) will
result in the bit in the interrupt receive register being set, and
the interrupt will be taken once the virtual processor is
unparked and the interrupt is enabled.
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7.1.4 Prioritizing
Interrupt vector traps are implicitly prioritized by the Incoming Vector register
described in Section 7.3.4 from bit 63 (highest) to bit 0 (lowest).

The priority of I/O interrupts is done by specifying the vector value in the INT_MAN
table and in MONDO_INT_VEC (see Section 7.2.1).

7.1.5 Initialization
The interrupt vector traps are initialized by writing 016 to the Interrupt Receive
register described in Interrupt Receive Register on page 56.

I/O interrupt handling is initialized by

a. Specifying the strand/vector pair to receive “internal” I/O interrupts, such as
those generated by the network interface unit, by programming the INT_MAN
table, described in SSI Interrupt Management Registers on page 52.

b. Specifying the interrupt vector to receive external “mondo” interrupts, such as
those generated by PCI-Express, by programming the MONDO_INT_VEC
register, described in SSI Interrupt Management Registers on page 52.

c. Clearing the busy bits in the MONDO_INT_BUSY table, described in Mondo
Interrupt Busy Table on page 54.

7.1.6 Servicing
Interrupt vector traps are typically serviced by reading the Incoming Vector register
described in Incoming Vector Register on page 58. When this register is read by
software, the 6-bit vector corresponding to the highest priority pending interrupt in
the Interrupt Receive register is returned. The pending interrupt bit for that vector is
cleared.

If the incoming interrupt matches the virtual processor and vector for SSI error
interrupts (device ID = 1), the handler should read the SSI error logs, described in
SSI Error Registers on page 304, to determine the cause of the interrupt. It should
service the interrupt appropriately, checking for multiple interrupts that could have
occurred on the same bit in the Interrupt Receive register.

If the incoming interrupt matches the virtual processor and vector for SSI interrupts
(device ID = 2), the handler should service the interrupt appropriately, checking for
multiple interrupts that could have occurred on the same bit in the Interrupt Receive
register.
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If the incoming interrupt matches the vector for “mondo” interrupts, the handler
should then read the mondo source and data, from the MONDO_INT_ADATA0/1
registers (described in Mondo Data Tables) and MONDO_INT_ABUSY registers
(described in Mondo Interrupt Busy Table). After reading these registers, it should
enable receiving the next mondo interrupt to this virtual processor by clearing the
busy bit in the MONDO_INT_ABUSY register.

7.2 NCU Interrupt Registers
The following registers are defined for interrupt and reset management. The base
address is defined below.

The NCU handles interrupts generated externally through the SSI EXT_INT_L pin.

TABLE 7-1 lists the device ID assignment for interrupts.

On-chip interrupt hardware contains an SSI Interrupt Management table. Each
internal “Device ID” in the I/O subsystem has an entry in the SSI Interrupt
Management Table described in SSI Interrupt Management Registers.

Device ID 0 is used internally by hardware but is architecturally reserved.

Device ID 1 is used to report SSI Errors. Software will have to poll the SSI error
registers to determine the error type.

Device ID 2 is the interrupt from EXT_INT_L pin, of the SSI interface, which is
intended for use as a console interrupt.

Device IDs 3-63 are reserved.

TABLE 7-1 Device ID Assignments

Device ID Range Comment

Reserved 0

SSI Errors 1 SSI parity or timeout error.

SSI Interrupt 2 SSI interrupt from EXT_INT_L pin.

Reserved 3–63
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7.2.1 SSI Interrupt Management Registers
The SSI Interrupt Management registers specify the CPU ID to send the interrupt
and the interrupt vector associated with the interrupt issued by the NCU on behalf
of the device.

Each device will send its device ID to the NCU. The device ID is used to index into
the SSI Interrupt Management table. Before changing the SSI Interrupt Management
register, software must disable all incoming interrupts. Note that the offset address
of the corresponding device can be calculated by multiplying the device ID by 8 for
INT_MAN.

Software or boot code must program the INT_MAN table before any of the non-
mondo type interrupt is generated. Reading of the INT_MAN table without first
initializing it by software or boot code will result in false parity errors in NCU.

TABLE 7-2 shows the format of the SSI Interrupt Management register.

7.2.2 Mondo Interrupt Vector Register
The Mondo Interrupt Vector register specifies the interrupt vector for PCI-Express
mondo interrupts. Since the virtual strand ID is specified in the mondo interrupt,
this register is shared among the 64 virtual processors.

TABLE 7-3 shows the format of the Mondo Interrupt Vector register.

MONDO_INT_VEC performs the identical function for PCI-Express Mondo
interrupts that INT_MAN performs for the SSI interrupts, except that the virtual
strand ID is specified in the mondo interrupt transaction.

TABLE 7-2 SSI Interrupt Management – INT_MAN Register (80 0000 000016)

Bit Field Initial Value R/W Description

63:14 — 0 RO Reserved

13:8 cpu X RW ID of virtual processor to manage the device.

7:6 — 0 RO Reserved

5:0 vector 0 RW Interrupt vector (encodes bit set in ASI_INTR_RECEIVE).

TABLE 7-3 Mondo Interrupt Vector Register – MONDO_INT_VEC (80 0000 0A0016)

Bit Field Initial Value R/W Description

63:6 — 0 RO Reserved

5:0 vector X RW Interrupt vector for mondo interrupts (encodes bit set in
ASI_INTR_RECEIVE).
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7.2.3 Mondo Data Tables
The following registers manage the receipt from mondo interrupts.

The base address of the mondo interrupt registers is defined below.

There are two Mondo Interrupt Data tables. The tables are read-only by software,
and the entries are updated by an incoming mondo interrupts provided that the
interrupt is not busy. The NCU will ACK the interrupt if it is not busy; otherwise,
the NCU will NACK it.

TABLE 7-4 shows the format of the Mondo Interrupt Data 0 table.

TABLE 7-5 shows the format of the Mondo Interrupt Data 1 table.

TABLE 7-6 shows the format of the Mondo Interrupt Alias Data 0 table.

This register address is actually an alias for MONDO_INT_DATA0[My CPUID], so
each virtual processor can read its own interrupt payload without having to do an
address calculation based on strand_id. This address should never be accessed by the
TAP (since it does not have a strand_id).

TABLE 7-7 shows the format of the Mondo Interrupt Alias Data 1 Table.

This register address is actually an alias for MONDO_INT_DATA1[My CPUID], so
each virtual processor can read its own interrupt payload, without having to do an
address calculation based on strand_id. This address should never be accessed by the
TAP (since it does not have a strand_id).

TABLE 7-4 Mondo Interrupt Data 1 – MONDO_INT_DATA0 (80 0004 000016)

Bit Field Initial Value R/W Description

63:0 data0 X RO First 64 bits of mondo interrupt data.

TABLE 7-5 Mondo Interrupt Data 1 – MONDO_INT_DATA1 (80 0004 020016)

Bit Field Initial Value R/W Description

63:0 data1 X RO Second 64 bits of mondo interrupt data.

TABLE 7-6 Mondo Interrupt Alias Data 0 – MONDO_INT_ADATA0 (80 0004 040016)

Bit Field Initial Value R/W Description

63:0 data0 X RO First 64 bits of mondo interrupt data.

TABLE 7-7 Mondo Interrupt Alias Data 1 – MONDO_INT_ADATA1 (80 0004 060016)

Bit Field Initial Value R/W Initial Value

63:0 data1 X RO Second 64 bits of mondo interrupt data.
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7.2.4 Mondo Interrupt Busy Table
When the NCU receives a mondo interrupt, it sets the busy bit to 1 and ACKs the
interrupt. When the busy bit is set, it implies an interrupt is waiting to be serviced or
is being serviced. Software will reset the busy bit when it completes servicing the
interrupt. If the busy bit is already set when an interrupt is received, a NACK will be
sent to the interrupt source. The busy bit is set after a reset and software has to clear
it to begin receiving interrupts.

TABLE 7-8 shows the format of the Mondo Interrupt Busy table.

TABLE 7-9 shows the format of the Mondo Interrupt Alias Busy table.

This register address is actually an alias for MONDO_INT_BUSY[My CPUID], so
each virtual processor can update its own mondo interrupt busy bit without having
to do an address calculation based on strand_id. This address should never be
accessed by the TAP (since it does not have a strand_id).

7.3 CPU Interrupt Registers

7.3.1 Interrupt Queue Registers
Each virtual processor has eight ASI_QUEUE registers at ASI = 2516,
VA{63:0} = 3C016-3F816 that are used for communicating interrupts to the operating
system. These registers contain the head and tail pointers for four supervisor
interrupt queues: cpu_mondo, dev_mondo, resumable_error, nonresumable_error.

TABLE 7-8 Mondo Interrupt Busy – MONDO_INT_BUSY (80 0004 0800)16

Bit Field Initial Value R/W Description

63:7 — 0 RO Reserved

6 busy 1 RW Hardware sets busy to 1 when an interrupt is received.
Hardware NACKs an incoming interrupt if busy is set.

5:0 — 0 RO Reserved

TABLE 7-9 Mondo Interrupt Alias Busy – MONDO_INT_ABUSY (80 0004 0A0016)

Bit Field Initial Value R/W Description

63:7 — 0 RO Reserved

6 busy 1 RW Hardware sets busy to 1 when an interrupt is received.
Hardware NACKs an incoming interrupt if busy is set.

5:0 — 0 RO Reserved
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The tail registers are read-only by supervisor, and read/write by hypervisor. Writes
to the tail registers by the supervisor generate a DAE_invalid_ASI trap. The head
registers are read/write by both supervisor and hypervisor.

Whenever the CPU_MONDO_HEAD register does not equal the CPU_MONDO_TAIL
register, a cpu_mondo trap is generated. Whenever the DEV_MONDO_HEAD
register does not equal the DEV_MONDO_TAIL register, a dev_mondo trap is
generated. Whenever the RESUMABLE_ERROR_HEAD register does not equal the
RESUMABLE_ERROR_TAIL register, a resumable_error trap is generated. Unlike
the other queue register pairs, the nonresumable_error trap is not automatically
generated whenever the NONRESUMABLE_ERROR_HEAD register does not equal
the NONRESUMABLE_ERROR_TAIL register; instead, the hypervisor will need to
generate the nonresumable_error trap.

TABLE 7-10 through TABLE 7-17 define the format of the eight ASI_QUEUE registers.

TABLE 7-10 CPU Mondo Head Pointer – ASI_QUEUE_CPU_MONDO_HEAD (ASI 2516, VA 3C016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for CPU mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-11 CPU Mondo Tail Pointer – ASI_QUEUE_CPU_MONDO_TAIL (ASI 2516, VA 3C816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for CPU mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-12 Device Mondo Head Pointer – ASI_QUEUE_DEV_MONDO_HEAD (ASI 2516, VA 3D016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for device mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-13 Device Mondo Tail Pointer – ASI_QUEUE_DEV_MONDO_TAIL (ASI 2516, VA 3D816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for device mondo interrupt queue.

5:0 — 0 RO Reserved
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7.3.2 Interrupt Receive Register
Each virtual processor has a hyperprivileged ASI_INTR_RECEIVE register at
ASI = 7216, VA{63:0} = 0. Each time an interrupt transaction arrives for that virtual
processor, the bit corresponding to the interrupt vector will be set. Bit zero of the
register corresponds to interrupt vector number zero and so on. Interrupt vectors are
implicitly prioritized with vector number 63 being the highest priority and vector
number 0 being the lowest priority. Software writes to this register are anded with
the register contents to allow the software to selectively clear register bits, although
normally the incoming vector register described in Section 7.3.4 will be used to clear
the bit corresponding to the pending interrupt. When an interrupt arrives at the

TABLE 7-14 Resumable Error Head Pointer – ASI_QUEUE_RESUMABLE_HEAD (ASI 2516, VA 3E016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved.

17:6 head X RW Head pointer for resumable error queue.

5:0 — 0 RO Reserved

TABLE 7-15 Resumable Error Tail Pointer – ASI_QUEUE_RESUMABLE_TAIL (ASI 2516, VA 3E816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for resumable error queue.

5:0 — 0 RO Reserved

TABLE 7-16 Nonresumable Error Head Pointer – ASI_QUEUE_NONRESUMABLE_HEAD (ASI 2516, VA 3F016)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for nonresumable error queue.

5:0 — 0 RO Reserved

TABLE 7-17 Nonresumable Error Tail Pointer – ASI_QUEUE_NONRESUMABLE_TAIL (ASI 2516, VA 3F816)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv)
RO (priv)

Tail pointer for nonresumable error queue.

5:0 — 0 RO Reserved
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same time as a register write, the interrupt will take precedence over the write and
the bit will be set. Software can read this register to determine all pending
interrupts, although normally the incoming vector register will be used to get the
highest priority pending interrupt. Nonprivileged or supervisor access to this
register causes a privileged_action trap.

TABLE 7-18 defines the format of the ASI_INTR_RECEIVE register.

7.3.3 Interrupt Vector Dispatch Register
Each virtual processor has a hyperprivileged write-only ASI_INTR_W register at
ASI = 7316, VA{63:0} = 0 that is used to send CPU cross-call interrupts to other
virtual processors. Unlike mondo interrupts, interrupts cannot be NACKed by the
destination, and multiple interrupts that set the same Interrupt Receive register bit
before it has been cleared will only generate a single interrupt. Interrupts generated
by stores to this register will follow the TSO memory model (no MEMBAR #Sync is
required). The store data supplies the destination virtual processor and vector. The
bit corresponding to the specified vector is set in the Interrupt Receive register of the
destination virtual processor.

The format of the register is shown in TABLE 7-19.

Nonprivileged or supervisor access to this register causes a privileged_action trap. A
read from this ASI causes a DAE_invalid_asi trap.

TABLE 7-18 Interrupt Receive Register – ASI_INTR_RECEIVE (ASI 7216, VA 016)

Bit Field Initial Value R/W Description

63:0 pending X RW Pending interrupts.

Programming
Note

After an interrupt vector trap is taken by the destination virtual
processor, it is the responsibility of the interrupt handler to clear
the highest-priority pending bit in the interrupt register, usually
by a read to the Incoming Vector register as described in
Incoming Vector Register.

TABLE 7-19 Interrupt Vector Dispatch Register – ASI_INTR_W (ASI 7316, VA 016)

Bit Field Initial Value R/W Description

63:14 — 0 RO Reserved

13:8 strand X W Destination virtual processor

7:6 — 0 RO Reserved.

5:0 vector X W Interrupt Vector (encodes bit set in ASI_INTR_RECEIVE)

Implementation
Note

This register is actually implemented in the NCU and is also
available at address 9016-01CC16-000016 as described in Interrupt
Vector Dispatch Register (ASI 7316 VA 016) on page 194.
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7.3.4 Incoming Vector Register
Each virtual processor has a hyperprivileged read-only ASI_INTR_R register at
ASI = 7416, VA{63:} = 016. When this register is read by software, the 6-bit vector
corresponding to the highest priority pending interrupt in the Interrupt Receive
register is returned. The pending interrupt bit for that vector is cleared. If no
interrupt bits are set, a read of this register will return all zeros. When an interrupt
arrives at the same time as the register is read, the interrupt will take precedence
over the clearing and the bit will remain set. Nonprivileged or supervisor access to
this register causes a privileged_action trap. A store to this register will result in a
DAE_invalid_ASI trap.

TABLE 7-20 defines the format of the ASI_INTR_R register.

Programming
Note

The interrupt handler will normally use the Incoming Vector
register to determine the highest-priority interrupt that is
pending while atomically clearing the bit corresponding to that
highest priority interrupt.

TABLE 7-20 Incoming Vector Register – ASI_INTR_R (ASI 7416, VA 016)

Bit Field Initial Value R/W Description

63:6 — 0 RO Reserved

5:0 vector X RO Interrupt vector.
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CHAPTER 8

Memory Models

SPARC V9 defines the semantics of memory operations for three memory models.
From strongest to weakest, they are Total Store Order (TSO), Partial Store Order
(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the
freedom an implementation is allowed in order to obtain higher performance during
program execution. The purpose of the memory models is to specify any constraints
placed on the ordering of memory operations in uniprocessor and shared-memory
multiprocessor environments. OpenSPARC T2 supports only TSO, with the
exception that certain ASI accesses (such as block loads and stores) may operate
under RMO.

Although a program written for a weaker memory model potentially benefits from
higher execution rates, it may require explicit memory synchronization instructions
to function correctly if data is shared. MEMBAR is a SPARC V9 memory
synchronization primitive that enables a programmer to control explicitly the
ordering in a sequence of memory operations. Processor consistency is guaranteed in
all memory models.

The current memory model is indicated in the PSTATE.mm field. It is unaffected by
normal traps, but is set to TSO (PSTATE.mm = 0) when the virtual processor enters
RED_state. OpenSPARC T2 ignores the value set in this field and always operates
under TSO.

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit virtual address. The 8-bit ASI may be obtained from a ASI register or included in
a memory access instruction. The ASI is used to distinguish between and provide an
attribute for different 64-bit address spaces. For example, the ASI is used by the
OpenSPARC T2 MMU and memory access hardware to control virtual-to-physical
address translations, access to implementation-dependent control and data registers,
and for access protection. Attempts by nonprivileged software (PSTATE.priv = 0) to
access restricted ASIs (ASI{7} = 0) cause a privileged_action trap.

Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces, based on bit 39 of the physical
address (0 for real memory, 1 for I/O memory). Real memory spaces can be accessed
without side effects. For example, a read from real memory space returns the
information most recently written. In addition, an access to real memory space does
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not result in program-visible side effects. In contrast, a read from I/O space may not
return the most recently written information and may result in program-visible side
effects.

8.1 Supported Memory Models
The following sections contain brief descriptions of the two memory models
supported by OpenSPARC T2. These definitions are for general illustration. Detailed
definitions of these models can be found in The SPARC Architecture Manual-Version 9.
The definitions in the following sections apply to system behavior as seen by the
programmer.

8.1.1 TSO
OpenSPARC T2 implements the following programmer-visible properties in Total
Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR
#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores
must check (snoop) the store buffer for the most recent store to that address. A
MEMBAR #Lookaside is not needed between a store and a subsequent load at
the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store if Strong Sequential Order is desired.

■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

■ Accesses with PA{39} set (that is, to I/O space) are all strongly ordered with
respect to each other.

Notes Stores to OpenSPARC T2 internal ASIs, block loads, and block
stores and block initializing stores are outside the memory
model; that is, they need MEMBARs to control ordering.

Atomic load-stores are treated as both a load and a store and can
only be applied to cacheable address spaces.
60 UltraSPARC T2 Supplement • Draft D1.4.3, 19 Sep 2007



■ An L2 cache update is delayed on a store hit until all outstanding stores reach
global visibility. For example, a cacheable store following a noncacheable store is
not globally visible until the noncacheable store has reached global visibility;
there is an implicit MEMBAR #MemIssue between them.

8.1.2 RMO
OpenSPARC T2 implements the following programmer-visible properties for special
ASI accesses that operate under Relaxed Memory Order (RMO) mode:

■ There is no implicit order between any two memory references, either cacheable
or noncacheable, except that noncacheable accesses with PA{39} set (that is, to I/O
space) are all strongly ordered with respect to each other.

■ A MEMBAR must be used between cacheable memory references if stronger
order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable
after noncacheable accesses. A MEMBAR #Lookaside should be used between a
store and a subsequent load at the same noncacheable address.

Compatibility
Note

Prior UltraSPARC implementations strongly order accesses
based on the e bit being set. The e bit is ignored by OpenSPARC
T2 for the purposes of strong ordering; only PA{39} is used for
determining strong ordering.

Compatibility
Note

Prior UltraSPARC implementations strongly order accesses
based on the e bit being set. The e bit is ignored by OpenSPARC
T2 for the purposes of strong ordering, only PA{39} is used for
determining strong ordering.
• 61



62 UltraSPARC T2 Supplement • Draft D1.4.3, 19 Sep 2007



CHAPTER 9

Address Spaces and ASIs

9.1 Physical Address Spaces
OpenSPARC T2 supports a 48-bit virtual address space and a 40-bit physical address
space. The 40-bit physical address space is further broken into two sections, based
on bit 39. If bit 39 is a 0, the address maps to a memory location. If bit 39 is a 1, the
address maps to an I/O location.

9.1.1 Access to Nonexistent Physical Memory
Addresses
Access to nonexistent physical memory addresses is described in Access to
Nonexistent Memory on page 355.

9.1.2 Access to Nonexistent I/O Addresses
A load access from a nonexistent memory or I/O location will cause a
data_access_error exception. An instruction fetch from a nonexistent memory or I/
O location will cause an instruction_access_error exception. A store access to a
nonexistent memory or I/O location will be silently discarded by the system.

9.1.3 Instruction Fetching from I/O
Instruction fetching from I/O addresses is only permitted from the SSI
(FF 0000 000016–FF FFFF FFFC16) and L2CSR spaces (A0 0000 000016–
BF FFFF FFFC16). Instruction fetches from I/O addresses outside the SSI and L2CSR
spaces will take an instruction_access_error trap.
63



9.1.4 Supported vs. Unsupported Access Sizes to I/O
All I/O locations internal to OpenSPARC T2 are 64-bit locations, and only support 8-
byte (64-bit) loads and stores. Accesses in other sizes may cause traps or have other
unexpected results. In particular, non-8-byte aligned load accesses to internal
OpenSPARC T2 I/O addresses (except internal PCI-Express or SSI locations) will
result in data_access_error trap. Non-8-byte-aligned store accesses to internal
OpenSPARC T2 I/O addresses (except internal PCI-Express or SSI locations) will be
silently discarded by the system. Non-8-byte-aligned load accesses from internal
PCI-Express or SSI locations are treated internally as 8-byte loads, with potentially
undefined results. Non-8-byte-aligned store accesses to internal PCI-Express or SSI
locations are treated internally as 8-byte stores, also with potentially undefined
results.

OpenSPARC T2 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores via the
SSI bus (Boot ROM port). 8-byte stores under mask (generated by STDFA to
ASI_PST*) are undefined. 16-byte loads (generated by an LDDA to ASI_TWINX*),
block loads, and block stores generate a DAE_nc_page exception. (OpenSPARC T2
cannot generate a 16-byte store.)

OpenSPARC T2 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores, plus 8-
byte stores under mask (generated by STDFA to ASI_PST*) and block stores, to
PCI-Express (for external PCI-Express locations). 16-byte loads (generated by an
LDDA to ASI_TWINX*) and block loads are not supported to PCI-Express and
generate a DAE_nc_page exception.

9.1.5 48-bit Virtual and Real Address Spaces
OpenSPARC T2 supports a 48-bit subset of the full 64-bit virtual and real address
spaces. Although the full 64 bits are generated and stored in integer registers, legal
addresses are restricted to two equal halves at the extreme lower and upper portions
of the full virtual (real) address space. Virtual (real) addresses between
0000 8000 0000 000016 and FFFF 7FFF FFFF FFFF16 inclusive lie within a “VA hole”
(“RA hole”), are termed “out-of-range”1, and are illegal. Prior UltraSPARC
implementations introduced the additional restriction on software to not use pages
within 4 Gbytes of the VA (RA) hole as instruction pages to avoid problems with
prefetching into the VA (RA) hole. OpenSPARC T2 implements a hardware check for
instruction fetching near the VA (RA) hole and generates an
instruction_address_range or instruction_real_range trap when instructions are

Warning Instruction fetching from the L2CSR space can cause undefined
behavior. Software needs to prevent instruction fetches from
accessing the L2CSR space.

1. Another way to view an out-of-range address is as any address where bits {63:48} are not all equal to bit {47}.
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executed from a location in the address range 0000 7FFF FFFF FFE016 to
0000 7FFF FFFF FFFF16, inclusive. However, even though OpenSPARC T2 provides
this hardware checking, it is still recommended that software should not use the 8-
Kbyte page before the VA (RA) hole for instructions. Address translation and MMU
related descriptions can be found in Translation on page 124.

FIGURE 9-1 OpenSPARC T2’s 48-bit Virtual and Real Address Spaces, With Hole

Throughout this document, when virtual (real) address fields are specified as 64-bit
quantities, they are assumed to be sign-extended based on VA{47} (RA{47}).

A number of state registers are affected by the reduced virtual and real address
spaces. The PC, I/D-TLB Tag Access, instruction and data watchpoint registers are
48 bits, sign-extended to 64-bits on read accesses. DMMU SFAR, TBA, TPC, and
TNPC, registers are 48-bits and their values are not sign-extended when read. No
checks are done when these registers are written by software. It is the responsibility
of privileged (or hyperprivileged) software to properly update these registers.

An out-of-range virtual (real) address during an instruction access, caused by
execution into the VA (RA) hole or into 0000 7FFF FFFF FFE016 to
0000 7FFF FFFF FFFF16 inclusive, results in an instruction_address_range
(instruction_real_range) trap if PSTATE.am = 0. In addition, OpenSPARC T2
hardware detects when a branch target or the target of a DONE or RETRY
instruction is in the VA (RA) hole, and PSTATE.am changes from being set (’1’) for
the branch, DONE, or RETRY to being cleared (’0’) for the target instruction (via the
branch delay slot instruction or TSTATE) and generates an
instruction_address_range (instruction_real_range) exception.

FFFF FFFF FFFF FFFF

FFFF 8000 0000 0000

0000 0000 0000 0000

0000 7FFF FFFF FFFF

FFFF 7FFF FFFF FFFF

0000 8000 0000 0000

0000 7FFF FFFF DFFF
See Note (1)

Note (1): Use of this region restricted to data only.

Out of Range VA (RA)
(the “VA Hole” (“RA Hole”))
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If the target virtual (real) address of a JMPL, RETURN, branch, or CALL instruction
is an out-of-range address and PSTATE.am = 0, a mem_address_range
(mem_real_range) trap is generated with TPC equal to the address of the JMPL,
RETURN, branch, or CALL instruction. The target address is loaded into the D-
MMU SFAR. Because the D-MMU SFAR contains only 48 bits, the trap handler must
decode the load or store instruction if the full 64-bit virtual address is needed. See
also I-/D-MMU Synchronous Fault Address Registers (SFAR) on page 135.

An out-of-range virtual (real) address during a data access results in a
mem_address_range (mem_real_range) trap if PSTATE.am = 0. Because the D-MMU
SFAR contains only 48 bits, the trap handler must decode the load or store
instruction if the full 64-bit virtual address is needed. See also I-/D-MMU
Synchronous Fault Address Registers (SFAR) on page 135.

9.1.6 I/O Address Spaces
I/O addresses are distinguished from memory addresses via their high-order
physical address bit (bit 39). If bit 39 is 0, the address is a memory address. If bit 39
is 1, the address is an I/O address.

TABLE 9-1 summarizes the OpenSPARC T2 address space, which is broken down into
sections based on the eight most significant bits of the physical address.

Note The instruction_address_rangne and instruction_real_range
exceptions occur on a fetch that enters the VA hole or that is in
the cache line immediately before the VA hole (or when the
target of a branch or DONE/RETRY instruction is in the VA hole
and VA hole detection is enabled only for the target). Hardware
does not store state to create an instruction_address_range or
instruction_real_range exception when the strand is executing
from the VA hole in a state that cannot detect VA hole
exceptions (for example, when PSTATE.am = 1), and then
software transitions the strand to be able to detect the VA hole
(for example, by setting PSTATE.am = 0) from within the VA
hole itself.

TABLE 9-1 OpenSPARC T2 Address Space

Address Range
(PA{39:32}) Block Name Comment

0016 – 7F16 DRAM Main memory

8016 NCU Noncacheable Unit

8116 — —

8216 — Reserved

8316 CCU Clock Unit.
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9.2 Alternate Address Spaces
TABLE 9-2 summarizes the ASI usage in OpenSPARC T2. The Section/Page column
contains a reference to the detailed explanation of the ASI (the page number refers to
this chapter). For internal ASIs, the legal VAs are listed (or the field contains “Any”
if all VAs are legal). Only bits 47:0 are checked when determining the legal VA range.
An access outside the legal VA range will generate a DAE_invalid_asi trap.

8416 MCU Memory Control Unit, address bits {13:12} select one of the
four MCUs.

8516 TCU JTAG/TAP unit.

8616 DBG Debug.

8716 —1 Reserved

8816 DMU DMU CSRs.

8916 RST Reset.

8A16–8F16 —2 Reserved

9016 ASI CPU shared registers (directly accessible only by JTAG/TAP
unit).

9116–9F16 —2 Reserved

A016–BF16 L2CSR L2 control and status registers.

D016–FE16 —3 Reserved

FF16 SSI Boot ROM.

Programming
Note

Address space 9016 provides an alias for the shared CPU
registers. This alias is directly accessible only by the JTAG/TAP
unit. Access to these shared CPU registers by the strands should
be done directly through the ASIs listed in Alternate Address
Spaces on page 67.

TABLE 9-1 OpenSPARC T2 Address Space (Continued)

Address Range
(PA{39:32}) Block Name Comment
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Notes All internal, nontranslating ASIs in OpenSPARC T2 can only be
accessed using LDXA and STXA.

ASIs 8016–FF16 are unrestricted (access allowed in all modes --
nonprivileged, privileged, and hyperprivileged). ASIs 0016–2F16
are restricted to privileged and hyperprivileged modes, while
ASIs 3016–7F16 are restricted to hyperprivileged mode only.
Attempted access by nonprivileged or privileged code to a
hyperprivileged ASI will result in a privileged_action trap.

TABLE 9-2 OpenSPARC T2 ASI Usage (1 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page

0016–0316 Any — DAE_invalid_asi

0416 ASI_NUCLEUS RW Any — Implicit address space,
nucleus context, TL > 0

(See UA-2007)

0516–0B16 Any — DAE_invalid_asi

0C16 ASI NUCLEUS_LITTLE RW Any — Implicit address space,
nucleus context, TL > 0
(LE)

(See UA-2007)

0D16–0F16 Any — DAE_invalid_asi

1016 ASI_AS_IF_USER_PRIMARY RW Any — Primary address space,
user privilege

(See UA-2007)

1116 ASI_AS_IF_USER_SECONDA
RY

RW Any — Secondary address space,
user privilege

(See UA-2007)

1216–1316 Any —

1416 ASI_REAL RW Any — Real address (normally
used as cacheable)

page 78

1516 ASI_REAL_IO RW Any — Real address (normally
used as noncacheable,
with side effect)

page 78

1616 ASI_BLOCK_AS_IF_USER_P
RIMARY

RW Any — 64-byte block load/store,
primary address space,
user privilege

5.3

1716 ASI_BLOCK_AS_IF_USER_S
ECONDARY

RW Any — 64-byte block load/store,
secondary address space,
user privilege

5.3

1816 ASI_AS_IF_USER_PRIMARY
_LITTLE

RW Any — Primary address space,
user privilege (LE)

(See UA-2007)

1916 ASI_AS_IF_USER_SECONDA
RY_LITTLE

RW Any — Secondary address space,
user privilege (LE)

(See UA-2007)

1A16–1B16 Any —
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1C16 ASI_REAL_LITTLE RW Any — Real address (normally
used as cacheable) (LE)

page 78

1D16 ASI_REAL_IO_LITTLE RW Any — Real address (normally
used as noncacheable,
with side effect) (LE)

page 78

1E16 ASI_BLOCK_AS_IF_USER_P
RIMARY_LITTLE

RW Any — 64-byte block load/store,
primary address space,
user privilege (LE)

5.3

1F16 ASI_BLOCK_AS_IF_USER_S
ECONDARY_LITTLE

RW Any — 64-byte block load/store,
secondary address space,
user privilege (LE)

5.3

2016 ASI_SCRATCHPAD RW 016–1816 Y Scratchpad registers page 78

2016 ASI_SCRATCHPAD RW 2016–
2816

— page 78

2016 ASI_SCRATCHPAD RW 3016–
3816

Y Scratchpad registers page 78

2116 ASI_MMU RW 816 Y I/DMMU Primary
Context register 0

12.10.2

2116 ASI_MMU RW 1016 Y DMMU Secondary
Context register 0

12.10.2

2116 ASI_MMU RW 10816 Y I/DMMU Primary
Context register 1

12.10.2

2116 ASI_MMU RW 11016 Y DMMU Secondary
Context register 1

12.10.2

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, user privilege
Store: Block initializing
store, primary address
space, user privilege

5.7.4

2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

RW Any — Load: 128-bit atomic
load twin extended
word, secondary address
space, user privilege
Store: Block initializing
store

(See UA-2007)

2416 ASI_TWINX RO Any — 128-bit atomic load twin
extended word

(See UA-2007)

2516 ASI_QUEUE RW 3C016 Y CPU Mondo Queue head
pointer

7.3.1

TABLE 9-2 OpenSPARC T2 ASI Usage (2 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3C8 Y CPU Mondo Queue tail
pointer

7.3.1

2516 ASI_QUEUE RW 3D016 Y Device Mondo Queue
head pointer

7.3.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3D816 Y Device Mondo Queue
tail pointer

7.3.1

2516 ASI_QUEUE RW 3E016 Y Resumable Error Queue
head pointer

7.3.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3E816 Y Resumable Error Queue
tail pointer

7.3.1

2516 ASI_QUEUE RW 3F016 Y Nonresumable Error
Queue head pointer

7.3.1

2516 ASI_QUEUE RW (hyper-
priv)
RO (priv)

3F816 Y Nonresumable Error
Queue tail pointer

7.3.1

2616 ASI_TWINX_REAL R Any — 128-bit atomic LDDA,
real address

(See UA-2007)

2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

RW Any — Load: 128-bit atomic
load twin extended word
from nucleus context
Store: Block initializing
store from nucleus
context

(See UA-2007)

2816–2916 Any — DAE_invalid_asi

2A16 ASI_TWINX_AIUPL,
ASI_STBI_AIUPL

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, user privilege,
little endian
Store: Block initializing
store, primary address
space, user privilege,
little endian

(See UA-2007)

TABLE 9-2 OpenSPARC T2 ASI Usage (3 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

RW Any — Load: 128-bit atomic
load twin extended
word, secondary address
space, user privilege,
little endian
Store: Block initializing
store, secondary address
space, user privilege,
little endian

(See UA-2007)

2C16 ASI_TWINX_LITTLE RO Any — 128-bit atomic load twin
extended word, little
endian

(See UA-2007)

2D16 Any — DAE_invalid_asi

2E16 ASI_TWINX_REAL_LITTLE RO Any — 128-bit atomic LDDA,
real address (LE)

(See UA-2007)

2F16 ASI_TWINX_NL,
ASI_STBI_NL

RW Any — Load: 128-bit atomic
load twin extended word
from nucleus context,
little endian
Store: Block initializing
store from nucleus
context, little endian

(See UA-2007)

3016 ASI_AS_IF_PRIV_PRIMARY RW Any — Primary address space,
privilege access

(See UA-2007)

3116 ASI_AS_IF_PRIV_SECONDA
RY

RW Any — Secondary address space,
privilege access

(See UA-2007)

3216–3516 Any — DAE_invalid_asi

3616 ASI_AS_IF_PRIV_NUCLEUS RW Any — Nucleus address space,
privilege access

(See UA-2007)

3716 Any — DAE_invalid_asi

3816 ASI_AS_IF_PRIV_PRIMARY
_LITTLE

RW Any — Primary address space,
privileged access, little
endian

(See UA-2007)

3916 ASI_AS_IF_PRIV_SECONDA
RY_LITTLE

RW Any — Secondary address space,
privilege access, little
endian

(See UA-2007)

3A16–3D16 Any — DAE_invalid_asi

3E16 ASI_AS_IF_PRIV_NUCLEUS
_LITTLE

RW Any — Nucleus address space,
privilege access, little
endian

(See UA-2007)

3F16 Any — DAE_invalid_asi

TABLE 9-2 OpenSPARC T2 ASI Usage (4 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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4116 ASI_CMT RO 0 S Strand available 14.1.1

4116 ASI_CMT RO 1016 S Strand enable status 14.1.2

4116 ASI_CMT RW 2016 S Strand enable 14.1.3

4116 ASI_CMT RW 3016 S XIR steering 14.1.4

4116 ASI_CMT RW 3816 S Tick_Enable 14.1.5

4116 ASI_CMT RW 5016 S Running_RW 14.1.7

4116 ASI_CMT RO 5816 S Running Status 14.1.8

4116 ASI_CMT WO 6016 S Running_W1S 14.1.9

4116 ASI_CMT WO 6816 S Running_W1C 14.1.10

4216 ASI_INST_MASK_REG RW 816 N SPARC Instruction Mask
register

19.3.1

4216 ASI_LSU_DIAG_REG RW 1016 N Load/Store Unit
Diagnostic register

19.4.1

4316 ASI_ERROR_INJECT_REG RW 0 N ASI_ERROR_INJECT_R
EG

16.8.9

4416 Any DAE_invalid_asi

4516 ASI_LSU_CONTROL_REG RW 0 Y Load/Store Unit Control
register

19.1

4516 ASI_DECR RW 816 N Trap unit 16.7.10

4516 ASI_RST_VEC_MASK RW 1816 S SOC 20.1.4

4616 ASI_DCACHE_DATA RW Any Y Dcache data array
diagnostic access

19.6.1

4716 ASI_DCACHE_TAG RW Any Y Dcache tag and valid bit
diagnostic access

19.6.2

4816 ASI_IRF_ECC_REG RO Any Y IRF ECC diagnostic
access

19.7.1

4916 ASI_FRF_ECC_REG RO Any Y FRF ECC diagnostic
access

19.8.1

4A16 ASI_STB_ACCESS RO Any Y Store buffer diagnostic
access

19.9

4B16 Any — DAE_invalid_asi

4C16 ASI_DESR RO 0 Y Disrupting Error Status
register (DESR)

16.8.5

4C16 ASI_DFESR RO 816 Y Deferred Error Status
register

16.8.6

4C16 ASI_CERER RW 1016 N ASI_CORE_ERROR_
RECORDING_ENABLE_R
EGISTER

16.8.1

TABLE 9-2 OpenSPARC T2 ASI Usage (5 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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4C16 ASI_SETER RW 1816 Y ASI_STRAND_ERROR_T
RAP_ENABLE_
REGISTER

16.8.2

4C16 ASI_CLESR RO 2016 Y ASI_CLESR 16.8.7

4C16 ASI_CLFESR RO 2816 Y ASI_CLFESR 16.8.8

4D16 DAE_invalid_asi

4E16 ASI_SPARC_PWR_MGMT RW 0 N SPARC power
management register

18.1

4F16 ASI_HYP_SCRATCHPAD RW 016–3816 Y Hypervisor scratchpad page 79

5016 ASI_ITSB_TAG_TARGET RO 0 Y IMMU Tag Target
register

12.10.3

5016 ASI_ISFSR RW 18 Y IMMU Synchronous
Fault Status register

16.8.3

5016 ASI_ITLB_TAG_ACCESS RW 30 Y IMMU TLB Tag Access
register

12.10.5

5016 ASI_IMMU_VA_
WATCHPOINT

RW 38 Y IMMU Watchpoint
register

19.2.2

5116 ASI_MRA_ACCESS RO Y HWTW MRA access 19.13

5216 ASI_MMU_REAL_RANGE_0 RW 10816 Y MMU TSB real range 0 12.10.9

5216 ASI_MMU_REAL_RANGE_1 RW 11016 Y MMU TSB real range 1 12.10.9

5216 ASI_MMU_REAL_RANGE_2 RW 11816 Y MMU TSB real range 2 12.10.9

5216 ASI_MMU_REAL_RANGE_3 RW 12016 Y MMU TSB real range 3 12.10.9

5216 ASI_MMU_PHYSICAL_
OFFSET_0

RW 20816 Y MMU TSB physical offset
0

12.10.10

5216 ASI_MMU_PHYSICAL_
OFFSET_1

RW 21016 Y MMU TSB physical offset
1

12.10.10

5216 ASI_MMU_PHYSICAL_
OFFSET_2

RW 21816 Y MMU TSB physical offset
2

12.10.10

5216 ASI_MMU_PHYSICAL_
OFFSET_3

RW 22016 Y MMU TSB physical offset
3

12.10.10

5316 ASI_ITLB_PROBE RO Y ITLB Probe 12.10.8

5416 ASI_ITLB_DATA_IN_REG WO 0, 40016 Y IMMU data in register 12.10.15

5416 ASI_MMU_ZERO_
CONTEXT_TSB_CONFIG_0

RW 1016 Y Context zero TSB Config
0

12.10.11

5416 ASI_MMU_ZERO_
CONTEXT_TSB_CONFIG_1

RW 1816 Y Context zero TSB Config
1

12.10.11

5416 ASI_MMU_ZERO_
CONTEXT_TSB_CONFIG_2

RW 2016 Y Context zero TSB Config
2

12.10.11

5416 ASI_MMU_ZERO_
CONTEXT_TSB_CONFIG_3

RW 2816 Y Context zero TSB Config
3

12.10.11

TABLE 9-2 OpenSPARC T2 ASI Usage (6 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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5416 ASI_MMU_NONZERO_
CONTEXT_TSB_CONFIG_0

RW 3016 Y Context nonzero TSB
Config 0

12.10.11

5416 ASI_MMU_NONZERO_
CONTEXT_TSB_CONFIG_1

RW 3816 Y Context nonzero TSB
Config 1

12.10.11

5416 ASI_MMU_NONZERO_
CONTEXT_TSB_CONFIG_2

RW 4016 Y Context nonzero TSB
Config 2

12.10.11

5416 ASI_MMU_NONZERO_CONTEX
T_TSB_CONFIG_3

RW 4816 Y Context nonzero TSB
Config 3

12.10.11

5416 ASI_MMU_ITSB_PTR_0 RO 5016 Y I-ITSB Pointer 0 12.10.12

5416 ASI_MMU_ITSB_PTR_1 RO 5816 Y I-TSB Pointer 1 12.10.12

5416 ASI_MMU_ITSB_PTR_2 RO 6016 Y I-TSB Pointer 2 12.10.12

5416 ASI_MMU_ITSB_PTR_3 RO 6816 Y I-TSB Pointer 3 12.10.12

5416 ASI_MMU_DTSB_PTR_0 RO 7016 Y D-TSB Pointer 0 12.10.12

5416 ASI_MMU_DTSB_PTR_1 RO 7816 Y D-TSB Pointer 1 12.10.12

5416 ASI_MMU_DTSB_PTR_2 RO 8016 Y D-TSB Pointer 2 12.10.12

5416 ASI_MMU_DTSB_PTR_3 RO 8816 Y D-TSB Pointer 3 12.10.12

5416 ASI_PENDING_TABLEWALK_
CONTROL

RW 9016 Y Pending tablewalk
control

12.10.13

5416 ASI_PENDING_TABLEWALK_
STATUS

RO 9816 N Pending Tablewalk
status

12.10.14

5516 ASI_ITLB_DATA_ACCESS_R
EG

RW 0–1F816,
40016–
5F8

Y IMMU TLB Data Access
register

12.10.15

5616 ASI_ITLB_TAG_READ_
REG

RO 0–1F816,
40016–
5F816

Y IMMU TLB Tag Read
register

12.10.15

5716 ASI_IMMU_DEMAP WO Any Y IMMU TLB demap 12.11.1

5816 ASI_DTSB_TAG_TARGET RO 0 Y DMMU Tag Target
register

12.10.3

5816 ASI_DSFSR RW 1816 Y DMMU Synchronous
Fault Status register

16.8.4.1

5816 ASI_DSFAR RO 2016 Y DMMU Synchronous
Fault Address register

16.8.4.2

5816 ASI_DTLB_TAG_ACCESS RW 3016 Y DMMU TLB Tag Access
register

12.10.5

5816 ASI_DMMU_WATCHPOINT RW 3816 Y DMMU Watchpoint
register

19.2.1

5816 ASI_HWTW_CONFIG RW 4016 Y I/DMMU Hardware
Tablewalk Config
register

12.10.7

5816 ASI_PARTITION_ID RW 8016 Y I/DMMU Partition ID 12.10.6

TABLE 9-2 OpenSPARC T2 ASI Usage (7 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
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5916 ASI_SCRATCHPAD_
ACCESS

RO Any Y Scratchpad register
diagnostic access

19.10

5A16 ASI_TICK_ACCESS RO 0–816,
1016,
2016–
3016

Y TICK register diagnostic
access

19.11

5B16 ASI_TSA_ACCESS RO Any Y TSA diagnostic access 19.12

5C16 ASI_DTLB_DATA_IN_REG WO 0,40016 Y DMMU data-in register 12.10.15

5D16 ASI_DTLB_DATA_ACCESS_R
EG

RW 0–7F816 Y DMMU TLB Data Access
register

12.10.15

5E16 ASI_DTLB_TAG_READ_REG RO 0–7F816 Y DMMU TLB Tag Read
register

12.10.15

5F16 ASI_DMMU_DEMAP WO Any Y DMMU TLB demap 12.11

6016–6216 Any DAE_invalid_asi

6316 ASI_CMT_CORE_INTR_ID RO 0 Y Strand interrupt ID 14.2.1

6316 ASI_CMT_STRAND_ID RO 1016 Y Strand ID 14.2.2

6416–6516 Any DAE_invalid_asi

6616 ASI_ICACHE_INSTR RW Any Y Icache data array
diagnostics access

19.5.1

6716 ASI_ICACHE_TAG RW Any Y Icache tag and valid bit
diagnostics access

19.5.2

6816–7116 Any DAE_invalid_asi

7216 ASI_INTR_RECEIVE RW 0 Y Interrupt Receive register7.3.2

7316 ASI_INTR_W WO 0 Y Interrupt Vector Dispatch
register

7.3.3

7416 ASI_INTR_R RO 0 Y Incoming Vector register 7.3.4

7516–7F16 Any — DAE_invalid_asi

8016 ASI_PRIMARY RW Any — Implicit primary address
space

(See UA-2007)

8116 ASI_SECONDARY RW Any — Implicit secondary
address space

(See UA-2007)

8216 ASI_PRIMARY_NO_FAULT RO Any — Primary address space,
no fault

(See UA-2007)

8316 ASI_SECONDARY_NO_
FAULT

RO Any — Secondary address space,
no fault

(See UA-2007)

8416–8716 Any — DAE_invalid_asi

8816 ASI_PRIMARY_LITTLE RW Any — Implicit primary address
space (LE)

(See UA-2007)

8916 ASI_SECONDARY_LITTLE RW Any — Implicit secondary
address space (LE)

(See UA-2007)

TABLE 9-2 OpenSPARC T2 ASI Usage (8 of 11)

ASI ASI Name R/W VA
Copy per

Strand Description Section/Page
• 75



8A16 ASI_PRIMARY_NO_
FAULT_LITTLE

RO Any — Primary address space,
no fault (LE)

(See UA-2007)

8B16 ASI_SECONDARY_NO_
FAULT_LITTLE

RO Any — Secondary address space,
no fault (LE)

(See UA-2007)

8C16–BF16 Any — DAE_invalid_asi

C016 ASI_PST8_P Any — Eight 8-bit conditional
stores, primary address

(See UA-2007)

C116 ASI_PST8_S Any — Eight 8-bit conditional
stores, secondary address

(See UA-2007)

C216 ASI_PST16_P Any — Four 16-bit conditional
stores, primary address

(See UA-2007)

C316 ASI_PST16_S Any — Four 16-bit conditional
stores, secondary address

(See UA-2007)

C416 ASI_PST32_P Any — Two 32-bit conditional
stores, primary address

(See UA-2007)

C516 ASI_PST32_S Any — Two 32-bit conditional
stores, secondary address

(See UA-2007)

C616–C716 Any — DAE_invalid_asi

C816 ASI_PST8_PL Any — Eight 8-bit conditional
stores, primary address,
little endian

(See UA-2007)

C916 ASI_PST8_SL Any — Eight 8-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CA16 ASI_PST16_PL Any — Four 16-bit conditional
stores, primary address,
little endian

(See UA-2007)

CB16 ASI_PST16_SL Any — Four 16-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CC16 ASI_PST32_PL Any — Two 32-bit conditional
stores, primary address,
little endian

(See UA-2007)

CD16 ASI_PST32_SL Any — Two 32-bit conditional
stores, secondary
address, little endian

(See UA-2007)

CE16–CF16 Any — DAE_invalid_asi

D016 ASI_FL8_P Any — 8-bit load/store, primary
address

(See UA-2007)

D116 ASI_FL8_S Any — 8-bit load/store,
secondary address

(See UA-2007)

TABLE 9-2 OpenSPARC T2 ASI Usage (9 of 11)
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D216 ASI_FL16_P Any — 16-bit load/store,
primary address

(See UA-2007)

D316 ASI_FL16_S Any — 16-bit load/store,
secondary address

(See UA-2007)

D416–D716 Any — DAE_invalid_asi

D816 ASI_FL8_PL Any — 8-bit load/store, primary
address, little endian

(See UA-2007)

D916 ASI_FL8_SL Any — 8-bit load/store,
secondary address, little
endian

(See UA-2007)

DA16 ASI_FL16_PL Any — 16-bit load/store,
primary address, little
endian

(See UA-2007)

DB16 ASI_FL16_SL Any — 16-bit load/store,
secondary address, little
endian

(See UA-2007)

DC16–DF16 Any — DAE_invalid_asi

E016 ASI_BLK_COMMIT_PRIMARY RW Any — 64-byte block commit
store, primary address

5.3

E116 ASI_BLK_COMMIT_SECONDA
RY

RW Any — 64-byte block commit
store, secondary address

5.3

E216 ASI_TWINX_P,
ASI_STBI_P

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space
Store: Block initializing
store, primary address
space

(See UA-2007)

E316 ASI_TWINX_S,
ASI_STBI_S

RW Any — Load: 128-bit atomic
load twin extended
word, sedondary address
space
Store: Block initializing
store, sedondary address
space

(See UA-2007)

E416–E916 Any — DAE_invalid_ASI

EA16 ASI_TWINX_PL,
ASI_STBI_PL

RW Any — Load: 128-bit atomic
load twin extended
word, primary address
space, little endian
Store: Block initializing
store, primary address
space, little endian

(See UA-2007)

TABLE 9-2 OpenSPARC T2 ASI Usage (10 of 11)
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9.2.1 ASI_REAL, ASI_REAL_LITTLE, ASI_REAL_IO,
and ASI_REAL_IO_LITTLE

These ASIs are used to bypass the VA-to-RA translation. For these ASIs, the real
address is set equal to the truncated virtual address (that is, RA{39:0} ← VA{39:0}),
and the attributes used are those present in the matching TTE. The hypervisor will
normally set the TTE attributes for ASI_REAL and ASI_REAL_LITTLE to cacheable
(cp = 1) and for ASI_REAL_IO and ASI_REAL_IO_LITTLE to noncacheable, with
side effect (cp = 0, e = 1).

9.2.2 ASI_SCRATCHPAD

Each virtual processor has a set of six privileged ASI_SCRATCHPAD registers at ASI
2016 with VA{63:} = 016–1816, 3016–3816. These registers are for scratchpad use by
privileged software.

EB16 ASI_TWINX_PL,
ASI_STBI_PL

RW Any — Load: 128-bit atomic
load twin extended
word, sedondary address
space, little endian
Store: Block initializing
store, sedondary address
space, little endian

(See UA-2007)

EC16–EF16 Any — DAE_invalid_asi

F016 ASI_BLK_P RW Any — 64-byte block load/store,
primary address

5.3

F116 ASI_BLK_S RW Any — 64-byte block load/store,
secondary address

5.3

F216–F716 Any — DAE_invalid_asi

F816 ASI_BLK_PL RW Any — 64-byte block load/store,
primary address (LE)

5.3

F916 ASI_BLK_SL RW Any — 64-byte block load/store,
secondary address (LE)

5.3

FA16–FF16 Any — DAE_invalid_asi

OpenSPARC T2
Implementation

Note

Standard support of the ASI_SCRATCHPAD is eight registers, so
accesses to VA 2016 and 2816 cause a DAE_invalid_asi trap to
allow hyperprivileged software to emulate the additional
registers.

TABLE 9-2 OpenSPARC T2 ASI Usage (11 of 11)
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9.2.3 ASI_HYP_SCRATCHPAD

Each virtual processor has a set of eight hyperprivileged ASI_HYP_SCRATCHPAD
registers at ASI 4F16, VA{63:0} = 016–3168. These registers are for scratchpad use by
the hypervisor and for aliased access to the supervisor scratchpad registers.

OpenSPARC T2
Implementation

Note

There is only a single set of eight scratchpad registers, which are
accessible via both ASI_SCRATCHPAD and
ASI_HYP_SCRATCHPAD. ASI_SCRATCHPAD is intended to used
primarily by privileged code, and only has access to the first
four and last two registers of the eight entry scratchpad array.
ASI_HYP_SCRATCHPAD can only be accessed when
hyperprivileged and has full access to all eight scratchpad
registers. Note that the registers at VA 2016 and 2816 are
exclusively (directly) accessible via ASI_HYP_SCRATCHPAD.

OpenSPARC T2
Implementation

Note

There is only a single set of eight scratchpad registers, which are
accessible via both ASI_SCRATCHPAD and
ASI_HYP_SCRATCHPAD. ASI_SCRATCHPAD is intended to used
primarily by privileged code and only has access to the first four
and last two registers of the eight entry scratchpad array.
ASI_HYP_SCRATCHPAD can only be accessed when
hyperprivileged, and has full access to all eight scratchpad
registers. Note that the registers at VA 2016 and 2816 are
exclusively (directly) accessible via ASI_HYP_SCRATCHPAD.
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CHAPTER 10

Performance Instrumentation

10.1 SPARC Performance Control Register
Each virtual processor has a privileged Performance Control register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The Performance Control
register contains thirteen fields: hold_ov1, hold_ov0, ov1, sl1, mask1, ov0, sl0,
mask0, toe, ht, ut, st, and priv. hold_ov1 and hold_ov0 read as 0 and control whether
ov1 and ov0, respectively, are updated on a write. All bits except ov1 and ov0 are
always updated on a Performance Control register write. ov1 and ov0 are state bits
associated with the PIC.h and PIC.l overflow traps and are provided to allow
software to determine which PIC counter has overflowed. sl1 and sl0 controls which
events are counted in PIC.h and PIC.l, respectively. mask1 (mask0) is used in
conjunction with sl1 (sl0) in determining which set of subevents are counted in
PIC.h (PIC.l). toe controls whether a trap is generated when the PIC counter
overflows. ut controls whether user-level events are counted. st controls whether
supervisor-level events are counted. ht controls whether hypervisor level events are
counted. priv controls whether the PIC register can be read or written by
nonprivileged software. The format of this register is shown in TABLE 10-1. Note that
changing the fields in PCR does not affect the PIC values. To change the events
monitored, software needs to disable counting via PCR, reset the PIC, and then
enable the new event via the PCR.

Note As the ht bit controls the counting of hyperprivileged events,
writes to this bit while privileged are ignored.
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TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field
Initial
Value R/W Description

63 hold_ov1 0 Write to 0 or 1,
reads as 0

If set to 0 on a write, update ov1 from bit 31 of the write data; else,
don’t update ov1. In this case ov1 holds its previous value.

62 hold_ov0 0 Write to 0 or 1,
reads as 0

If set to 0 on a write, update ov0 from bit 18 of the write data; else,
don’t update ov0. In this case ov0 holds its previous value.

61:32 — 0 RO Reserved

31 ov1 0 RW Set to 1 when PIC.h wraps from 232 –1 to 0, or when PIC.h is within
--16..-1 inclusively, and an event occurs which causes PIC.h to
increment. Once set, ov1 remains set until reset by software.

30:27 sl1 0 RW Selects 1 of 16 events to be counted for PIC.h as per the following
table.

26:19 mask1 0 RW Mask event for PIC.h as listed in TABLE 10-2.

18 ov0 0 RW Set to 1 when PIC.l wraps from 232 –1 to 0, or when PIC.l is within
--16..-1 inclusively, and an event occurs which causes PIC.l to
increment. Once set, ov0 remains set until reset by software.

17:14 sl0 0 RW Selects one of sixteen events to be counted for PIC.l as per the
following table.

13:6 mask0 0 RW Mask event for PIC.l as listed in TABLE 10-2.

5:4 toe 0 RW Trap-on-Event: This field controls whether a disrupting trap to
hyperprivileged software (pic_overflow) will occur if the
corresponding counter overflows. toe{1} corresponds to ov1, and
toe{0} to ov0. Hardware will and the value of toe{i} with ov{i} to
produce a trap. Events in event groups 2) and 3) are “precisely”
trapped, assuming that PCR.toe = 1 — TPC will contain the
address of an instruction that generated a count event. If
PCR.toe = 0 when the counter overflows, TPC will contain the
address of the instruction to be executed next when the trap is
eventually taken. Events in other event groups are not directly
related to the instruction stream; therefore, the TPC may be some
number of instructions later than when the overflow event
occurred.

3 ht 0 RO (priv)
RW (hyperpriv)

If ht = 1, count events in hyperprivileged mode; otherwise, ignore
hyperprivileged mode events.

2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore user mode
events.

1 st 0 RW If st = 1, count events in privileged mode; otherwise, ignore
privileged mode events.

0 priv 0 RW If priv = 1, prevent access to PIC by user-level code. If priv = 0,
allow access to PIC by user-level code.
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Note that hold_ov1 and hold_ov0 control whether ov1 and ov0, respectively, are
updated when a write occurs. All of the 4 combinations of the hold_ov1 and
hold_ov0 fields are supported: both, either, or none of the ov1 and ov0 bits can be
updated independently. This allows software to avoid a race condition that may
occur, for example, if ov1 is set when the trap handler is entered, then ov0 is set by
a counter overflow between the time software reads PCR and resets ov1 prior to
leaving the trap handler.

TABLE 10-2 describes the settings of the sl0 and sl1 fields. Note that with the exception
of sl = 0, all events correspond to a given strand. Most sl fields have a mask
associated with them. Setting multiple mask bits at the same time can lead to
multiple events being counted as one event. More details are described in TABLE 10-2.

TABLE 10-2 sl Field Settings (1 of 3)

sl mask Event Description

0 — All strands idle Count cycles when no strand can be picked for the physical core on
which the monitoring strand resides.2

1 — — Reserved

2 011 Completed branches

0216 Taken branches Taken branches are always mispredicted3

0416 FGU arithmetic
instructions

All FADD, FSUB, FCMP, convert, FMUL, FDIV, FNEG, FABS, FSQRT,
FMOV, FPADD, FPSUB, FPACK, FEXPAND, FPMERGE, FMUL8,
FMULD8, FALIGNDATA, BSHUFFLE, FZERO, FONE, FSRC, FNOT1,
FNOT2, FOR, FNOR, FAND, FNAND, FXOR, FXNOR, FORNOT1,
FORNOT2, FANDNOT1, FANDNOT2, PDIST, SIAM.

0816 Load instructions

1016 Store instructions

2016 sethi %hi(fc00016),
%g0

Software count instructions.

4016 Other instructions

8016 Atomics Atomics are LDSTUB/A, CASA/XA, SWAP/A

Any other
value 0316–
FF16

Any subset of
instructions

Count instruction types identified by a 1 in the corresponding mask
register bit; e.g., FD16 counts all instructions.
Certain instructions (e.g., LDSTUB, CAS, SWAP) are decoded as both
Load and Store instructions.
• 83



3 0116 Icache misses Note: This counts only primary instruction cache misses, and does not
count duplicate instruction cache misses.4 Also, only “true” misses are
counted. If a thread encounters an I$ miss, but the thread is redirected
(due to a branch misprediction or trap, for example) before the line
returns from L2 and is loaded into the I$, then the miss is not counted.

0216 Dcache misses Note: This counts both primary and duplicate data cache misses.4

0416 — Undefined operation.

0816 — Undefined operation.

1016 L2 cache instruction
misses

2016 L2 cache load misses Note: Block loads are treated as one L2 miss event. In reality, each
individual load can hit or miss in the L2 since the block load is not
atomic.

0316, 1116,
1216, 1316,
2116, 2216,
2316, 3016,
3116, 3216,
3316

Subset of misses Count subset of misses identified by a '1' in corresponding mask bit;
e.g., 2316 counts I-cache, D-cache, and L2 load misses; this counter can
advance at most 1 per cycle.
Note: Instructions that get both an I-Cache miss (or an L2 cache
instruction miss) and a D-Cache miss (or L2 cache load miss) count as
one event.

Any other
value

— Reserved, Undefined operation.

4 0116 — Reserved

0216 — Reserved

0416 ITLB references to L2 For each ITLB miss with hardware tablewalk enabled, count each
access the ITLB hardware tablewalk makes to L2.

0816 DTLB references to L2 For each DTLB miss with hardware tablewalk enabled, count each
access the DTLB hardware tablewalk makes to L2.

1016 ITLB references to L2
which miss in L2

For each ITLB miss with hardware tablewalk enabled, count each
access the ITLB hardware tablewalk makes to L2 which misses in L2.
Note: Depending upon the hardware table walk configuration, each
ITLB miss may issue from 1 to 4 requests to L2 to search TSBs.

2016 DTLB references to L2
which miss in L2

For each DTLB miss with hardware tablewalk enabled, count each
access the DTLB hardware tablewalk makes to L2 which misses in L2.
Note: Depending upon the hardware tablewalk configuration, each
DTLB miss may issue from 1 to 4 requests to L2 to search TSBs.

C16, 1416,
1816, 1C16,
2416, 2816,
2C16, 3416,
3816 3C16

Subset of above events Count subset of misses identified by a 1 in corresponding mask bit;
e.g., 1416 counts ITLB and DTLB hardware tablewalk references to L2;
this counter can advance at most 1 per cycle. Certain combinations
(1416, 2816, 3416, 3816, 3C16) are likely not useful.

Any other
value

— Reserved. Undefined operation.

TABLE 10-2 sl Field Settings (2 of 3)

sl mask Event Description
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5
0016–0116 — Reserved

0416 CPU Load to PCX Count CPU loads to L2.

0816 CPU I-fetch to PCX Count I-fetches to L2.

1016 CPU Store to PCX Count CPU stores to L2.

2016 MMU Load to PCX Count MMU loads to L2.

Any other
value 0316–
3F16

Subset of PCX requests Count subset of PCX requests identified by a '1' in corresponding
mask bit; e.g., 3F16counts all PCX requests; this counter increments at
most one per cycle.

4016–FF16 — Reserved

61

0016–3F16 — Reserved

4016–FF16 — Reserved

71

0016–3F16 — Reserved

4016–FF16 — Reserved

8-10 — — Reserved

11 0416 ITLB misses Includes all misses (successful and unsuccessful tablewalks).

0816 DTLB misses Includes all misses (successful and unsuccessful tablewalks).

0C16 TLB misses Count both ITLB and DTLB misses, including successful and
unsuccessful tablewalks.

Any other
value

— Reserved. Undefined operation.

12-15 — — Reserved

1. PCR.UT, PCR.HT, and PCR.ST must all be set in order to properly count events in groups 6 and 7.
2. Unrestricted access to performance events for sl field setting 0 may have security implications

since they contain information about other strands. Privileged software can protect against unre-
stricted access by setting the PCR.priv bit.  Hyperprivileged software can protect against unre-
stricted access by not having partitions span an eight-strand boundary.

3. In conjunction with the completed branch count, the taken branch count can be used to compute
not-taken prediction accuracy. Also it can be used to sum idle cycles in single-strand mode by
assuming a fixed number of pipeline bubble cycles per mispredicted branch.

4. A duplicate miss is a miss for which another thread has already missed in the cache for the line,
and the cache fill is pending. UltraSPARC {N2} does not count duplicate I-cache misses but does
count duplicate D-cache misses.

TABLE 10-2 sl Field Settings (3 of 3)

sl mask Event Description
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10.2 SPARC Performance Instrumentation
Counter
Each virtual processor has a Performance Instrumentation Counter register. Access
privilege is controlled by the setting of PCR.priv. When PCR.priv = 1 an attempt to
access this register in nonprivileged mode causes a privileged_action trap.

The PIC counter contains two fields: h and l. The h field counts the event select by
PCR.sl1. The l field counts the event selected by PCR.sl0. The ut, st, and ht fields for
PCR control which combination of user, supervisor, and/or hypervisor events are
counted.

For the setting sl0 (sl1) = 2 and sl0 (sl1) = 3, when a counter overflow occurs for the
event, hardware generates a disrupting pic_overflow trap that is guaranteed to occur
immediately before an instruction that generated a count event. This instruction
causing the counter to be within epsilon1 of overflow will not have been executed,
and the PC and NPC of the instruction will be stored on the trap stack, assuming the
pic_overflow trap is enabled and is the highest priority trap when the counter
overflows2. The corresponding PIC counter will be incremented. In addition, the ov0
or ov1 bit (depending on which counter overflowed) will be set to help software
determine which counter overflowed. ov0 and ov1 can be cleared independently by
a write that sets the bit to 0 (see TABLE 10-1 on page 82 above).

For other settings of sl0 (sl1), the trap will not be “precise” to the instruction causing
the counter overflow. The amount of skid possible is TBD.

Counter overflow is recorded in the ov0 or ov1 bit of the counter as well as in bit 15
of the SOFTINT register. The overflow causes a disrupting pic_overflow exception.
The strand takes a pic_overflow trap if PSTATE.ie is set and the value in the
Processor Interrupt Level (PIL) is less than 15. The pic_overflow priority of 16.0 is
higher than the interrupt_level_15 trap priority of 17.

The format of the PIC register is shown in TABLE 10-3.

1. The definition of epsilon is −16 to -1, inclusive, instructions generating the event being counted before/after
the overflow. The PC is guaranteed to point to an instruction that generated the event being counted, if the
trap is taken when the counter "overflows".

2. In certain corner cases, the counter will not be incremented nor will the corresponding ov0/1 bit be set. These
cases are: [a) the counter is in range and the instruction will cause the counter to increment, or, b) the OV bit is
already set and the instruction will cause the counter to increment, ] and c) one of the following four pending
disrupting conditions are present: i) "disrupting single step completion" exception (this only occurs for
special ’replay’ conditions that occur in Single Step mode, which is a debug mode controlled via JTAG), or ii)
XIR request, or iii) store_error trap request, or iv) SIR (i.e., this instruction is an SIR instruction).
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10.3 DRAM Performance Counter
Each DRAM channel has a pair of performance counters, packed into a single
register, plus a register to control what is counted. The counters count all events for
that particular DRAM channel, which corresponds to traffic from a pair of L2 banks.

TABLE 10-3 Performance Instrumentation Counter Register – PIC (ASR 1116)

Bit Field Initial Value R/W Description

63:32 h 0 RW Programmable event counter, event controlled by PCR.sl1.

31:0 l 0 RW Programmable event counter, event controlled by PCR.sl0.

TABLE 10-4 DRAM Performance Control Register – DRAM_PERF_CTL_REG (8416-000016-040016) (Count
4 Step 4096)

Bit Field Initial Value R/W Description

63:8 — X RO Reserved

7:4 sel0 0 RW Select code for performance counter 0.

3:0 sel1 0 RW Select code for performance counter 1.

TABLE 10-5 DRAM Performance Counter Register – DRAM_PERF_COUNT_REG (8416-000016-040816)
(Count 4 Step 4096)

Bit Field Initial Value R/W Description

63 sticky0 0 RW Sticky overflow for counter 0.

62:32 counter0 0 RW Performance counter 0

31 sticky1 0 RW Sticky overflow for counter 1.

30:0 counter1 0 RW Performance counter 1.

TABLE 10-6 DRAM Performance Counter Select Codes

Select Description

0000 Read transactions.

0001 Write transactions.

0010 Read + write transactions.

0011 Bank busy stalls; incremented by 1 each cycle there are requests in the queue, but none can issue
because of bank conflicts
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0100 Read queue latency; incremented by n each cycle, where n is the number of read transactions in the
queue.

0101 Write queue latency; incremented by n each cycle, where n is the number of write transactions in the
queue

0110 (Read + Write) queue latency; incremented by n each cycle, where n is the number of transactions in the
queue

0111 Writeback buffer hits; incremented by 1 each time a read transaction is deferred because it conflicts with
a queued write transaction.

1xxx Reserved

TABLE 10-6 DRAM Performance Counter Select Codes

Select Description
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CHAPTER 11

Implementation Dependencies

11.1 SPARC V9 General Information

11.1.1 Level-2 Compliance (Impdep #1)
OpenSPARC T2 is designed to meet Level-2 SPARC V9 compliance. It

■ Correctly interprets all nonprivileged operations, and

■ Correctly interprets all privileged elements of the architecture.

11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
SPARC V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with
invalid values in reserved fields (other than reserved FPops) encountered during
execution cause an illegal_instruction trap. Unimplemented and reserved ASI values
cause a DAE_invalid_ASI trap.

11.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)
OpenSPARC T2 supports two privileged trap levels and six hyperprivileged trap
levels; that is, MAXPTL = 2 and at MAXTL = 6. Normal execution is at TL = 0. Traps at
MAXTL – 1 cause the virtual processor to enter RED_state. If a trap is generated
while the virtual processor is operating at TL = MAXTL, the virtual processor will pass
through error_state and generate a watchdog reset (WDR). Window traps that
cause a watchdog reset trap still update CWP if they would have done so with no
watchdog trap being generated.

Note System emulation routines (for example, quad-precision
floating-point operations) shipped with OpenSPARC T2 also
must be Level-2 compliant.
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A virtual processor normally executes at trap level 0 (execute_state, TL = 0). Per
SPARC V9, a trap causes the virtual processor to enter the next higher trap level,
which is a very fast and efficient process because there is one set of trap state
registers for each trap level. After saving the most important machine states (PC,
NPC, PSTATE) on the trap stack at this level, the trap (or error) condition is
processed.

For a complete description of traps and RED_state handling, see Machine State
After Reset and in RED_State on page 166.

11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)
OpenSPARC T2 supports precise trap handling for all operations except for deferred
and disrupting traps from hardware failures and interrupts. OpenSPARC T2
implements precise traps, interrupts, and exceptions for all instructions, including
long-latency floating-point operations. Multiple traps levels are supported, allowing
graceful recovery from faults. Three of the trap levels (zero through two) are
provided for application and OS use. The remaining three levels are provided for
hyperprivileged and RED_state use. OpenSPARC T2 can efficiently execute kernel
code even in the event of multiple nested traps, promoting strand efficiency while
dramatically reducing the system overhead needed for trap handling.

Four sets of global registers are provided, for use by TL0, TL1, TL2, and TL3-5. This
further increases OS performance, providing fast trap execution by avoiding the
need to save and restore registers while processing exceptions.

All traps supported in OpenSPARC T2 are listed in TABLE 6-2 on page 38.

11.1.5 SIR Support (Impdep #116)
OpenSPARC T2 initiates a software-initiated reset (SIR) by executing a SIR
instruction while in hyperprivileged mode. When executed in privileged or user
mode, SIR generates an illegal_instruction trap. See also Watchdog Reset (WDR) and
error_state on page 165.

Note The RED_state trap vector address (RSTVADDR) is 256 Mbytes
below the top of the virtual address space; this is, at virtual
address FFFF FFFF F000 000016, which is passed through to
physical address FF F000 000016 in RED_state.
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11.1.6 Secure Software
To establish an enhanced security environment, it may be necessary to initialize
certain virtual processor states between contexts. Examples of such states are the
contents of integer and floating-point register files, condition codes, and state
registers. See also Clean Window Handling (Impdep #102).

11.1.7 Operation in Nonprivileged Mode with TL > 0
Operation with HPSTATE.hpriv = 0, PSTATE.priv = 0, and TL > 0 is invalid and will
result in an IAE_privilege_violation trap on OpenSPARC T2.

11.1.8 Address Masking (Impdep #125)
OpenSPARC T2 follows UltraSPARC Architecture 2007 for PSTATE.am masking. In
addition to the masking required by UltraSPARC Architecture 2007, addresses to
non-translating ASIs and *REAL* ASIs are masked if PSTATE.am = 1. Translating
accesses that bypass translation are also masked if PSTATE.am = 1.

11.2 SPARC V9 Integer Operations

11.2.1 Integer Register File and Window Control
Registers (Impdep #2)
OpenSPARC T2 implements an eight-window 64-bit integer register file; that is,
N_REG_WINDOWS = 8. OpenSPARC T2 truncates values stored in the CWP,
CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This
includes implicit updates to these registers by SAVE, SAVED, RESTORE, and
RESTORED instructions. The most significant two bits of these registers read as zero.

11.2.2 Clean Window Handling (Impdep #102)
SPARC V9 introduced the concept of “clean window” to enhance security and
integrity during program execution. A clean window is defined to be a register
window that contains either all zeroes or addresses and data that belong to the
current context. The CLEANWIN register records the number of available clean
windows.
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When a SAVE instruction requests a window and there are no more clean windows,
a clean_window trap is generated. System software needs to clean one or more
windows before returning to the requesting context.

11.2.3 Integer Multiply and Divide
Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},
UDIV{cc}, UDIVX) are executed directly in hardware.

11.2.4 MULScc
SPARC V9 does not define the value of xcc and rd{63:32] for MULScc. OpenSPARC
T2 sets xcc.n to 0, xcc.z to 1 if rd{63:0} is zero and to 0 if rd{63:0} is not zero, xcc.v to
0, and xcc.c to 0. OpenSPARC T2 sets rd{63:33} to zeros, and sets rd{32} to icc.c (that
is, rd{32} is set if there is a carry-out of rd{31}; otherwise, it is cleared).

11.2.5 Version Register (Impdep #2, 13, 101, 104)
Consult the product data sheet for the contents of the Version register for a specific
OpenSPARC T2 implementation. The format of the Version register is described in
Hyperprivileged Version Register (HVER) on page 19.

11.3 SPARC V9 Floating-Point Operations

11.3.1 Subnormal Operands and Results; Nonstandard
Operation
OpenSPARC T2 handles some cases of subnormal operands or results directly in
hardware and traps on the rest. In the trapping cases, an fp_exception_other
[fft = unfinished_FPop] trap is signaled and these operations are handled in system
software.

Because trapping on subnormal operands and results can be quite costly,
OpenSPARC T2 supports the nonstandard result option of the SPARC-V9
architecture. When the FSR.ns bit is set, subnormal operands or results encountered
in trapping cases are flushed to zero and the unfinished_FPop floating-point trap is
not taken.
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11.3.2 Overflow, Underflow, and Inexact Traps (Impdep
#3, 55)
OpenSPARC T2 implements precise floating-point exception handling. Underflow is
detected before rounding. Prediction of overflow, underflow, and inexact traps for
operations as well as prediction of invalid operation is used to simplify the
hardware.

11.3.3 Quad-Precision Floating-Point Operations
(Impdep #3)
All quad-precision floating-point instructions, listed in TABLE 11-1, cause an
illegal_instruction trap. These operations are then emulated by system software.

Significant performance degradation may be observed while
running with the inexact exception enabled.

TABLE 11-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F<s|d>TOq Convert single-/double- to quad-precision floating-point.

F<i|x>TOq Convert 32-/64-bit integer to quad-precision floating-point.

FqTO<s|d> Convert quad- to single-/double-precision floating-point.

FqTO<i|x> Convert quad-precision floating-point to 32-/64-bit integer.

FCMP<E>q Quad-precision floating-point compares.

FMOVq Quad-precision floating-point move.

FMOVqcc Quad-precision floating-point move if condition is satisfied.

FMOVqr Quad-precision floating-point move if register match condition.

FABSq Quad-precision floating-point absolute value.

FADDq Quad-precision floating-point addition.

FDIVq Quad-precision floating-point division.

FdMULq Double- to quad-precision floating-point multiply.

FMULq Quad-precision floating-point multiply.

FNEGq Quad-precision floating-point negation.

FSQRTq Quad-precision floating-point square root.

FSUBq Quad-precision floating-point subtraction.
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11.3.4 Floating-Point Upper and Lower Dirty Bits in
FPRS Register
The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point
Registers State (FPRS) register are set when an instruction that modifies the
corresponding upper or lower half of the floating-point register file is issued.
Floating-point register file modifying instructions include floating-point operate,
graphics, floating-point loads and block load instructions.

While SPARC V9 allows FPRS.du and FPRS.dl to be set pessimistically, OpenSPARC
T2 only sets FPRS.du or FPRS.dl when an instruction that updates the floating-point
register file successfully completes. This implies that floating-point instructions that
do not update a floating-point register (for example, an FMOVcc that does not meet
the condition or a floating-point operate instruction that takes a trap) leave FPRS.du
and FPRS.dl unchanged.

11.3.5 Floating-Point Status Register (FSR) (Impdep #13,
19, 22, 23, 24)
OpenSPARC T2 supports precise-traps and implements all three exception fields
(tem, cexc, and aexc) conforming to IEEE Standard 754-1985.

OpenSPARC T2 implements the FSR register according to the definition in
UltraSPARC Architecture 2007, with the following implementation-specific
clarifications:

■ OpenSPARC T2 does not contain an FQ, therefore FSR.qne always reads as 0 and
an attempt to read the FQ with an RDPR instruction causes an illegal_instruction
trap.

■ OpenSPARC T2 does not detect the unimplemented_FPop, sequence_error,
hardware_error or invalid_fp_register floating-point trap types directly in
hardware, therefore does not generate a trap when those conditions occur.

11.4 SPARC V9 Memory-Related Operations

11.4.1 Load/Store Alternate Address Space (Impdep #5,
29, 30)
Supported ASI accesses are listed in Alternate Address Spaces on page 67.
94 UltraSPARC T2 Supplement • Draft D1.4.3, 19 Sep 2007



11.4.2 Read/Write ASR (Impdep #6, 7, 8, 9, 47, 48)
Supported ASRs are listed in Chapter 3, Registers.

11.4.3 MMU Implementation (Impdep #41)
OpenSPARC T2 memory management is based on Hardware Tablewalk-managed (or
software-managed if Hardware Tablewalk is disabled) instruction and data
Translation Lookaside Buffers (TLBs) and in-memory Translation Storage Buffers
(TSBs) backed by a Software Translation Table. See Chapter 12, Memory Management
Unit for more details.

11.4.4 FLUSH and Self-Modifying Code (Impdep #122)
FLUSH is needed to synchronize code and data spaces after code space is modified
during program execution. FLUSH is described in Memory Synchronization:
MEMBAR and FLUSH on page 493. On OpenSPARC T2, the FLUSH effective address
is ignored, and as a result, FLUSH cannot cause a DAE_invalid_ASI or a
data_access_MMU_miss trap.

11.4.5 PREFETCH{A} (Impdep #103, 117)
For OpenSPARC T2, PREFETCH{A} instructions follow TABLE 11-2 based on the fcn
value. All prefetches in OpenSPARC T2 are of the "weak" variety (that is, on an
MMU miss, the prefetch is dropped) so the only trap generated by prefetch is
illegal_instruction (for fcn = 516–F16).

Note SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing virtual processor. In other words, a store to
instruction space prior to the FLUSH instruction is visible
immediately after the completion of FLUSH. When a flush is
performed, OpenSPARC T2 guarantees that earlier code
modifications will be visible across the whole system.

TABLE 11-2 PREFETCH{A} Variants in OpenSPARC T2

fcn Prefetch Function Action

016 Weak prefetch for several reads Weak prefetch into Level 2 cache.

116 Weak prefetch for one read

216 Weak prefetch for several writes

316 Weak prefetch for one write
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11.4.6 LDD/STD Handling (Impdep #107, 108)
LDD and STD instructions are directly executed in hardware.

11.4.7 FP mem_address_not_aligned (Impdep #109, 110,
111, 112)
LDDF{A}/STDF{A} cause an LDDF_/STDF_ mem_address_not_aligned trap if the
effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an
illegal_instruction trap.

416 Prefetch Page No operation.

516–F16 — Illegal_instruction trap.

1016 Invalidate read-once prefetch Weak prefetch into Level 2 cache.

1116 Prefetch for read to nearest unified cache Weak prefetch into Level 2 cache.

1216–1316 Strong prefetches Weak prefetch into Level 2 cache.

1416 Strong prefetch for several reads Weak prefetch into Level 2 cache.

1516 Strong prefetch for one read

1616 Strong prefetch for several writes

1716 Strong prefetch for one write

1816 Invalidate cache entry No operation for PREFETCHA.
For Prefetch, if executed in user or
privileged mode, no operation. If
executed while hyperprivileged,
invalidate cache line from Level 2
cache (writing back to memory if
dirty) leaving Level 2 cache line
invalid.

1916–1F16 — No operation

Note LDD/STD are deprecated in SPARC V9. In OpenSPARC T2 it is
more efficient to use LDX/STX for accessing 64-bit data. LDD/
STD take longer to execute than two 32- or 64-bit loads/stores.

TABLE 11-2 PREFETCH{A} Variants in OpenSPARC T2

fcn Prefetch Function Action
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11.4.8 Supported Memory Models (Impdep #113, 121)
OpenSPARC T2 supports only the TSO memory model, although certain specific
operations such as block loads and stores operate under the RMO memory model.
See Chapter 8, Section 8.2. Supported Memory Models.”.

11.4.9 I/O Operations (Impdep #118, 123)
I/O spaces and their accesses are specified in I/O Address Spaces on page 66.

11.4.10 Implicit ASI When TL > 0 (Impdep #124)
OpenSPARC T2 matches all UltraSPARC Architecture implementations and makes
the implicit ASI for instruction fetching ASI_NUCLEUS when TL > 0, while the
implicit ASI for loads and stores when TL > 0 is ASI_NUCLEUS if PSTATE.cle=0 or
ASI_NUCLEUS_LITTLE if PSTATE.cle=1.

11.5 Non-SPARC V9 Extensions

11.5.1 Cache Subsystem
OpenSPARC T2 contains one or more levels of cache. The cache subsystem
architecture is described in Appendix D, Caches and Cache Coherency.

11.5.2 Memory Management Unit
OpenSPARC T2 implements a multi-level memory management scheme. The MMU
architecture is described in Chapter 12, Memory Management Unit.

11.5.3 Error Handling
OpenSPARC T2 implements a set of programmer-visible error and exception
registers. These registers and their usage are described in Chapter 16, Error Handling.
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11.5.4 Block Memory Operations
OpenSPARC T2 supports 64-byte block memory operations utilizing a block of eight
double-precision floating point registers as a temporary buffer. See Block Load and
Store Instructions on page 31.

11.5.5 Partial Stores
OpenSPARC T2 supports 8-/16-/32-bit partial stores to memory. See Block Load and
Store Instructions on page 31.

11.5.6 Short Floating-Point Loads and Stores
OpenSPARC T2 supports 8-/16-bit loads and stores to the floating-point registers.

11.5.7 Load Twin Extended Word
OpenSPARC T2 supports 128-bit atomic load operations to a pair of integer registers.
See Load Twin Extended Word on page 36.

11.5.8 Interrupt Vector Handling
CPUs and I/O devices can interrupt a selected virtual processor by assembling and
sending an interrupt packet. This allows hardware interrupts and cross-calls to have
the same hardware mechanism and to share a common software interface for
processing. Interrupt vectors are described in Chapter 7, Interrupt Handling.

11.5.9 Power-Down Support
OpenSPARC T2 supports the ability to power down virtual processors and I/O
devices to reduce power requirements during idle periods.

11.5.10 OpenSPARC T2 Instruction Set Extensions
(Impdep #106)
The OpenSPARC T2 processor supports VIS 2.0. VIS instructions are designed to
enhance graphics functionality and improve the efficiency of memory accesses.
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Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution
cause an illegal_instruction trap.

11.5.11 Performance Instrumentation
OpenSPARC T2 performance instrumentation is described in Chapter 10, Performance
Instrumentation.

11.5.12 Debug and Diagnostics Support
OpenSPARC T2 support for debug and diagnostics is described in Chapter 19,
Configuration and Diagnostics Support.
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CHAPTER 12

Memory Management Unit

This chapter provides detailed information about the OpenSPARC T2 Memory
Management Unit. It describes the internal architecture of the MMU and how to
program it.

12.1 Translation Table Entry (TTE)
The Translation Table Entry holds information for a single page mapping. The TTE is
broken into two 64-bit words, representing the tag and data of the translation. Just as
in a hardware cache, the tag is used to determine whether there is a hit in the TSB.

. TABLE 12-1 shows the sun4v TTE tag format.

The sun4v TTE data format is shown in TABLE 12-2.

TABLE 12-1 TTE Tag Format

Bit Field Description

63:61 — Reserved

60:48 context The 13-bit context identifier associated with the TTE.

47:42 — Reserved

41:0 va Virtual Address Tag{63:22}. The virtual page number. Bits 21 through
13 are not maintained in the tag, since these bits are used to index the
smallest TSB (512 entries).
NOTE: Hardware only supports a 48-bit VA.
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TABLE 12-2 TTE Data Format

Bit Field Description

63 v Valid. If the Valid bit is set, the remaining fields of the TTE are meaningful.

62 nfo No-fault-only. If this bit is set, loads with ASI_PRIMARY_NO_FAULT{_LITTLE},
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other DMMU access will
trap with a DAE_nfo_page trap. For the IMMU, if the nfo bit is set, an iae_nfo_page
trap will be taken.

61:56 soft2 soft2 and soft are software-defined fields, provided for use by the operating system.
Software fields are not implemented in the OpenSPARC T2 TLB. soft and soft2 fields
may be written with any value; they read from the TLB as zero, with the exception of
soft{61}, which contains the TLB data parity bit.

55:13 ra The real page1 number. For OpenSPARC T2, a 40-bit real address range is supported
by the hardware tablewalker, and bits {55:40} should always be zero.
NOTE: OpenSPARC T2 TLBs store physical addresses, not real addresses.
Hyperprivileged code is responsible for translation between real and physical
addresses. The OpenSPARC T2 TLBs store PA{39:13}.

12 ie Invert endianess. If this bit is set, accesses to the associated page are processed with
inverse endianness from what is specified by the instruction (big-for-little and little-
for-big). See Section 12.6 on page 122 for details. For the IMMU, the ie bit in the TTE is
written into the ITLB but ignored during ITLB operation. The value of the ie bit
written into the ITLB will be read out on an ITLB Data Access read.
Note: This bit is intended to be set primarily for noncacheable accesses.

11 e Side effect. If this bit is set, noncacheable memory accesses other than block loads and
stores are strongly ordered against other e bit accesses, and noncacheable stores are
not merged. This bit should be set for pages that map I/O devices having side effects.
Note, however, that the e bit does not prevent normal instruction prefetching. For the
IMMU, the e bit in the TTE is written into the ITLB, but ignored during ITLB
operation. The value of the e bit written into the ITLB will be read out on an ITLB Data
Access read.
NOTE: The e bit does not force an uncacheable access. It is expected, but not required,
that the cp and cv bits will be set to zero when the e bit is set.

10:9 cp, cv The cacheable-in-physically-indexed-cache and cacheable-in-virtually-indexed-cache
(cp, cv) bits determine the placement of data in OpenSPARC T2 caches, according to
TABLE 12-3. The MMU does not operate on the cacheable bits, but merely passes them
through to the cache subsystem. The cv bit is ignored by OpenSPARC T2, and is not
written into the TLBs and returns zero on a Data Access read.

TABLE 12-3 Cacheable Field Encoding (from TSB)

Cacheable
(cp:cv)

Meaning of TTE When Placed in:

iTLB
(I-cache PA-Indexed)

dTLB
(D-cache PA-Indexed)

0x
Cacheable L2 cache only Cacheable L2 cache only

1x
Cacheable L2 cache, I-cache Cacheable L2 cache, D-cache
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12.2 Translation Storage Buffer (TSB)
A TSB is an array of TTEs managed entirely by software. It serves as a cache of the
Software Translation table, used to quickly reload the TLB in the event of a TLB
miss. The discussion in this section assumes the use of the hardware support for TSB
access described in Section 12.3.1, although the operating system is not required to
make use of this support hardware.

Inclusion of the TLB entries in a TSB is not required; that is, translation information
may exist in the TLB that is not present in the TSB.

8 p Privileged. If the p bit is set, only privileged software can access the page mapped by
the TTE. If the p bit is set and an access to the page is attempted when
PSTATE.priv = 0, the MMU will signal an IAE_privilege_violation or
DAE_privilege_violation trap.

7 ep Executable. If the ep bit is set, the page mapped by this TTE has execute permission
granted. Otherwise, execute permission is not granted and the hardware table-walker
will not load the ITLB with a TTE with ep = 0. For the IMMU and DMMU, the ep bit
in the TTE is not written into the TLB, and returns zero on a Data Access read.

6 w Writable. If the w bit is set, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted and the MMU will cause a
fast_data_access_protection trap if a write is attempted. For the IMMU, the w bit in
the TTE is written into the ITLB, but ignored during ITLB operation. The value of the
w bit written into the ITLB will be read out on an ITLB Data Access read.

5:4 soft (see soft2, above)

3:0 size The page size of this entry, encoded as shown in TABLE 12-4.

1. sun4v supports translation from virtual addresses (VA) to real addresses (RA) to physical addresses (PA).
Privileged code manages the VA-to-RA translations, while hyperprivileged code manages the RA-to-PA
translations. The TLBs contain VA-to-PA translations or RA-to-PA translations (the latter are distinguished
from the former by a Real bit in the TLB).

TABLE 12-2 TTE Data Format (Continued)

Bit Field Description

TABLE 12-4 Size Field Encoding (from TTE)

Size{2:0} Page Size

0000 8 KB
0001 64 KB
0010 Reserved
0011 4 MB
0100 Reserved
0101 256 MB
0110-1111 Reserved
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A TSB is arranged as a direct-mapped cache of TTEs. The OpenSPARC T2 MMU
provides hardware tablewalk support and precomputed pointers into the TSB(s) for
both zero and nonzero contexts for four different TSB, as specified in the following
registers:
■ ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_0
■ ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_1
■ ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_2
■ ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_3
■ ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_0
■ ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_1
■ ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_2
■ ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_3

In each case, the n least significant bits of the respective virtual page number are
used as the offset from the TSB base address, with n equal to log base 2 of the
number of TTEs in the TSB.

Hardware TSB indexing support is provided for TTEs in the following registers:
■ ASI_MMU_ITSB_PTR_0
■ ASI_MMU_ITSB_PTR_1
■ ASI_MMU_ITSB_PTR_2
■ ASI_MMU_ITSB_PTR_3
■ ASI_MMU_DTSB_PTR_0, ASI_MMU_DTSB_PTR_1
■ ASI_MMU_DTSB_PTR_2
■ ASI_MMU_DTSB_PTR_3

While the hardware tablewalk uses the TSB configuration generated by these
pointers, the hardware tablewalk can be disabled and a full software implementation
for TLB miss handling can be used. Under a full software implementation, simple
modifications to the index pointers provided by the hardware allow formation of an
M-way set-associative TSB, multiple TSBs per page size, multiple page sizes per TSB,
and multiple TSBs per process.

The TSB exists as a normal data structure in memory and therefore may be cached.
Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the
level-2 cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but the dynamic sharing of the level-2 cache
resource should provide a better overall solution than that provided by a fixed
partitioning.

FIGURE 12-1 shows the TSB organization. The constant N is determined by the size
field in the TSB register; it may range from 512 entries to 16 M entries.
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FIGURE 12-1 TSB Organization

12.3 Hardware Support for Hypervisor
To support hypervisor, a number of additions to the MMU are included.

First, a 3-bit pid (partition ID) field is included in each TLB entry to allow multiple
guest OSs to share the MMU. This field is loaded with the value of the Partition
Identifier register when a TLB entry is loaded. In addition, the PID entry of a TLB is
compared against the Partition Identifier register to determine if a TLB hit occurs.

Second, the MMU is designed to support both virtual-to-physical and real-to-
physical translations, using a single r (real translation) bit included in the TLB entry.
This field is loaded with bit 10 from the VA used by the store to the I-/D-TLB Data
In register or the I-/D-TLB Data Access register. The real bit distinguishes between
VA → PA translations (r = 0) and RA → PA translations (r = 1). If the real bit is 1, the
context ID is ignored when determining a TLB hit. TLB misses on real to physical
translations generate a data_real_translation_miss or inst_real_translation_miss trap
instead of the fast_data_access_MMU_miss and fast_instruction_access_MMU_miss
traps respectively.

Finally, the translation operation performed depends on the state of HPSTATE.hpriv,
PSTATE.priv, the MMU enables, and PSTATE.red (for IMMU), as described in
Translation on page 124.

When the MMU is bypassed, TABLE 12-5 specifies the default physical page attribute
bits. When bypassed, all LDXA and STXA operations to internal registers are
correctly performed, and traps based on the page attribute bits are signaled just as if
the MMU were not bypassed.

Tag1 (8 bytes) Data1 (8 bytes)

000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in TSB
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12.3.1 Hardware Support for TSB Access
The MMU hardware provides services to allow the TLB miss handler to efficiently
reload a missing TLB entry. These services include:

■ Hardware reload of missing TTE entry (hardware tablewalk).

■ Formation of TSB Pointers based on the missing virtual address.

■ Formation of the TTE Tag Target used for the TSB tag comparison.

■ Efficient atomic write of a TLB entry with a single store ASI operation.

12.3.1.1 Hardware Tablewalk

Hardware Tablewalk is a hardware state machine that services reload requests from
the TLBs. It accesses the TSBs to find TTEs that match the VA and one of the contexts
of the request. Hardware Tablewalk can access up to four separate TSBs for each
request.

Hardware Tablewalk also provides a real page number (RPN) to physical page
number (PPN) translation mechanism. The supervisor controls the TTE, but the
supervisor cannot access or control physical memory, so its TTEs contain RPNs, not
PPNs The hypervisor programs the RPN-to-PPN translation within Hardware
Tablewalk to permit Hardware Tablewalk to load supervisor-controlled TTEs into
the TLBs that can translate VAs into PAs.

Hardware Tablewalk does not translate real requests. In the event that a Real
Address misses the TLB, the TLU signals a inst_real_translation_miss or
data_real_translation_miss trap, and software loads the TLB as described in Software
TLB Reload on page 110.

Hardware Tablewalk is stranded and pipelined; up to four TSB accesses for each of
the eight strands can be in the pending at one time. The basic dataflow is pipelined,
so that a single instance of the dataflow supports all eight strands.

TABLE 12-5 Default Physical Page Attribute Bits

Physical
Address{39}

Physical Page Attribute Bits

cp ie cv e p ep w nfo

0 1 0 0 0 0 1 1 0

1 0 0 0 1 0 1 1 0

Note If any of a strand’s TSB Config Registers has the Enable bit sit,
hardware tablewalk is considered to be enabled for the strand.
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A typical TLB miss and refill sequence when hardware tablewalk is enabled is as
follows:

1. Hardware Tablewalk uses the TSB Configuration registers and the VA of the
access to calculate the address of the TTE to examine. The TSB Configuration
register provides the base address of the TSB as well as the number of TTEs in the
TSB and the size of the pages translated by the TTEs.1 Hardware Tablewalk uses
a Nonzero Context TSB Configuration register if the context of the request is
nonzero; otherwise, it uses a Zero Context TSB Configuration register. The context
of the request is assumed to be the content of Context register 0 (in the event of a
TLB miss on a Primary or Secondary Context access). Hardware Tablewalk uses
the page size from the TSB Configuration register to calculate the presumed VPN
for the given VA.2 The VPN is generated with VA{63:48} sign-extended from
VA{47} to allow TTE entries pointing into the VA hole to mismatch in the
hardware tablewalk VPN comparison. Hardware Tablewalk then uses the number
of TTE entries and the presumed VPN to generate an index into the TSB. This
index is concatenated with the upper bits of the base address to generate the TTE
address, using the formula specified in MMU I-/D-TSB Pointer Registers on page
142.

2. Hardware Tablewalk forwards a quadword load request for the TTE address to
the L2 cache. At some later time, the L2 returns the TTE to Hardware Tablewalk.

3. Hardware Tablewalk compares the VPN (masked using the page size of the TTE)
and context of the request and the page size from the configuration register to
that from the TTE, and also examines the v bit, and for an ITLB miss, the ep bit of
the TTE. If the v bit is set, reserved fields in the TTE Tag ({63:61} and {47:42}) are
zero, the page size of the TTE is a supported page size that is not smaller than the
page size of the configuration register, and the VPN and context match (and for
an ITLB miss, the TTE ep bit is 1), Hardware Tablewalk forwards the TTE to the
TLB with the RPN translated into a PPN (see Real Page Number To Physical Page
Number Translation below). For an ITLB miss, if the v bit is set, reserved fields in
the TTE Tag are zero, the page size of the TTE is supported and not smaller than
the page size of the configuration register, and the VPN and context match, but
the ep bit of the TTE is 0, an IAE_unauth_access trap is generated. If the v bit is
clear, reserved fields in the TTE Tag are not all zero, the page size of the TTE is
unsupported or smaller than the page size of the configuration, or the VPN or
context do not match, Hardware Tablewalk waits for the rest of the enabled TSBs
to return TTEs; Hardware Tablewalk supports four TSBs per strand for zero
contexts and four for nonzero contexts. In some configurations, Hardware
Tablewalk ignores the context match; see Multiple Contexts below.

1. Hardware tablewalk will only be able to refill the TLB when the desired TTE in the TSB is the same size or
larger than that specified in the TSB Configuration register.

2. If pages of size larger than that specified in the TSB Configuration register are also cached in the TSB, this
implies that the TTE entry for the larger pages must be replicated in the TSB (e.g., a 64-Kbyte page in a TSB
configured for 8-Kbyte pages must occupy eight consecutive TSB entries).
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4. If none of the TTE entries from the four TSBs meet the v bit, reserved TTE Tag
fields, page size, and matching VPN and context requirements, hardware
generates an instruction_access_MMU_miss or data_access_MMU_miss trap.

Multiple Contexts. Multiple primary and secondary contexts permit different
processes to share TTEs within the TLBs. The use_context_0 and use_context_1 bits
in the TSB Configuration register disable the context match for Hardware Tablewalk.
Hardware Tablewalk ignores the contexts in the TSB TTEs if either of these bits is
active for requests with nonzero contexts. If either bit is 1 and the TTE v bit is set,
reserved fields in the TTE Tag are zero, the page size is supported by OpenSPARC
T2 and not smaller than the page size in the configuration register, and the VPN
matches, Hardware Tablewalk signals the TLB to write either context 0 or context 1
(depending on which bit is set) as the context of the TTE when it is loaded (instead
of the context in the TTE itself). Hardware Tablewalk ignores these bits for requests
with a zero (nucleus) context value.

Real Page Number To Physical Page Number Translation. When Hardware
Tablewalk fetches a TTE from a TSB, it can treat the ra field as either an RA or a PA
under control of the ra_not_pa field of the TSB config register. If the ra_not_pa bit is
set, the hardware tablewalker will translate the Real Page Number in the TTE into a
Physical Page Number. The TLBs store this physical page number. The TLBs use this
PPN to translate VAs into PAs. The hypervisor controls the RPN to PPN translation
mechanism.

The RPN-to-PPN translation mechanism provides both range checking as well as
mapping of address ranges from one location to another. The first check is that the
RPN does not contain a non-zero bits 55:40. If RPN{55:40} is nonzero, then an
instruction_invalid_TSB_entry or data_invalid_TSB_entry trap is generated to the
strand that initiated the Hardware Tablewalk. Otherwise, the translation mechanism
uses the RPN and page size in the TTE and calculates the starting and ending
addresses for the specified real page. It then checks that these addresses lie in one of
four ranges specified by the Real Range registers. If the real page lies completely
inside one of the ranges (and the range is enabled), then the translation mechanism
adds the RPN in the TTE to the corresponding field in the Physical Offset register to
create the Physical Page Number.1 If the real page does not lie completely within
either range, then an instruction_invalid_TSB_entry or data_invalid_TSB_entry trap
is generated to strand that initiated the Hardware Tablewalk. Each strand has four
dedicated ranges with corresponding physical offsets. The RPN-to-PPN translation
does not depend on the context value being zero or nonzero.

1. Strictly speaking, this is not a real page number but a real address, as the bits below the page size boundary in
the RPN may not be zeroed. They are zeroed when written into the TLB so the value that is written into the
TLB is a true RPN.

Note When the TSB Config register has ra_not_pa = 0, no range
checking is provided for PPNs.
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The following is pseudocode for the hardware tablewalk sequence (translation miss
address is in VA, miss context in ctxt, instruction miss is in inst_translate,
context type selection is in primary):

tsb_config = (ctxt) ? TSB_NONZERO_CONFIG[i] : TSB_ZERO_CONFIG[i];
for (i = 0; i < 4, i++) {
  vpn = generate_vpn(VA, tsb_config.page_size);
  ignore_context = (ctxt == 0) || tsb_config.use_context_0 ||
    tsb_config.use_context_1;
  tte_ptr = generate_tte_ptr(VA, tsb_config);
  tte = *tte_ptr;
  tte_vpn = generate_tte_vpn(tte.va, tsb_config.page_size)
  if ((tte.v == 1) && (tte.rsvd0 == 0) && (tte.rsvd1 == 0) &&
       ((tte.size < 2) || (tte.size == 3) || (tte.size == 5)) &&
       (tte.size >= tsb_config.page_size) &&
       (ignore_context || (tte.context == ctxt)) &&
       (tte_vpn == vpn)) {
    if (inst_translate && (tte.ep == 0) raise IAE_UNAUTH_ACCESS;
    break;
  }
}
if (i == 4) {
  // no matching TTE found
  raise (inst_translate) ?
    INST_ACCESS_MMU_MISS : DATA_ACCESS_MMU_MISS;
}
if (ctxt == 0) {
  tte.context = 0;
} else if (tsb_config.use_context_0) {
  tte.context = (primary_context) ? ASI_PRIMARY_CONTEXT_0 :
    ASI_SECONDARY_CONTEXT_0;
} else if (tsb_config.use_context_1) {
  tte.context = (primary_context) ? ASI_PRIMARY_CONTEXT_1 :
    ASI_SECONDARY_CONTEXT_1;
}
if (tsb_config.RA_not_PA == 0) {
  load_tlb(tte);
} else {
  if (tte.ra && RA_55_40_MASK) {
    raise (inst_translate) ?
      INST_INVALID_TSB_ENTRY : DATA_INVALID_TSB_ENTRY;
  }
  mask = (1 << (tte.size*3)) - 1;
  rpn_low = tte.ra & ~mask;
  rpn_high = tte.ra | mask;
  for (i = 0; i < 4; i++ ) {
    if ((rpn_low >= MMU_REAL_RANGE[i].rpn_low) &&
        (rpn_high <= MMU_REAL_RANGE[i].rpn_high)) {
      tte.ra += MMU_PHYSICAL_OFFSET[i].ppn;
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      load_tlb(tte);
      break;
    }
  }
  if (i == 4) {
    // ra does not lie entirely inside any real range
    raise (inst_translate) ?
      INST_INVALID_TSB_ENTRY : DATA_INVALID_TSB_ENTRY;
  }
}

12.3.1.2 Software TLB Reload

TLB misses can be either for virtual-to-physical translations or for real-to-physical
translations.

Virtual to Physical Address Translation. For a virtual address, a typical TLB
miss and refill sequence when hardware tablewalk is disabled is as follows:

1. A TLB miss causes either a fast_instruction_access_MMU_miss or a
fast_data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag Target
with loads from the MMU alternate space.

3. Using this information, the TLB miss handler checks to see if the desired TTE
exists in the TSB. If so, the TTE data is stored into the TLB Data In register (with
the Real bit in the virtual address clear) to initiate an atomic write of the TLB
entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, the TLB miss handler jumps to a more
sophisticated (and slower) TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the
Tag Access register (described in I-/D-TLB Tag Access Registers on page 136), which
holds the virtual address oF the load or store responsible for the MMU exception.
(Note that there are no separate physical registers in OpenSPARC T2 hardware for
the Pointer registers, but rather they are implemented through a dynamic re-
ordering of the data stored in the Tag Access and the TSB registers.)

Pointers are provided by hardware in the TSB Pointer registers for all four TSBs.
These pointers give the physical addresses where the TTEs for that VA and context
combination would be stored if it is present in the TSB.

The TSB Tag Target register (described in I-/D-TSB Tag Target Registers on page 134) is
formed by aligning the missing access VA (from the Tag Access register) and the
current context to positions found in the description of the TTE tag. This allows an
XOR instruction for TSB hit detection.
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Real-to-Physical Address Translation. For a real address, a typical TLB miss and
refill sequence when hardware tablewalk is disabled is as follows:

1. A TLB miss causes either a instruction_real_translation_miss or a
data_real_translation_miss exception.

2. The appropriate real miss handler determines whether and how to create a real to
physical translation.

3. If a real-to-physical translation is created it is inserted into the TLB with the r bit
set and the instruction is retried.

The real address used in the software formation of the pointer addresses comes from
the Tag Access register (described in Section 12.10.5), which holds the real address
and context of the load or store responsible for the MMU exception.

No pointers are provided by hardware for real to physical translations.

The TSB Tag Target register (described in Section 12.10.3) is formed by aligning the
missing access RA (from the Tag Access register) and the current context to positions
found in the description of the TTE tag. This allows an XOR instruction for TSB hit
detection.

12.3.2 Real-to-Physical Address Mapping and
Speculative Instruction Fetch
OpenSPARC T2 speculatively fetches instructions. Under certain conditions, this can
cause the memory controller to receive an unsupported physical address. Consider
the following instruction sequence which exits hyperprivileged mode and returns to
user or privileged mode (executed with HPSTATE.hpriv initially set to 1):

jmpl %g3 + %g0, %g0
wrhpr   %g0, %g0, %hpstate

This will cause the IMMU to go from bypass (during which VA{39:0} is passed
directly to PA{39:0}) into either RA → PA or VA → PA translation. However, since
the fetch of the target of the jmpl is fetched speculatively, the memory controller may
see VA{39:0} of the target of the jmpl as a physical address. This address may not be
supported, in which case a disrupting software_recoverable_error trap could result,
even though no real error has occurred.

To avoid this disrupting trap, hypervisor should avoid changing translation in the
delay slot of delayed control transfer instructions. For example, the sequence above
could be replaced with the following code:

mov %tl, %g5
add %g5, 1, %g5
mov %g5, %tl
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mov %g3, %tnpc
mov 0, %htstate
done

Although the example refers to changes in HPSTATE, any instruction that can
potentially change translation should avoid being placed in the delay slot of delayed
control transfer instructions. These include writes to PSTATE, I-/D-TLB Data-In/
Data-Access registers, I-/D-MMU Demap registers, and the
ASI_LSU_CONTROL_REG register.

12.4 MMU-Related Faults and Traps
TABLE 12-6 lists the traps recorded by the MMU.

TABLE 12-6 MMU Traps

Trap Name Trap Cause

Register Update

I-Tag
Access D-SFAR

D-Tag
Access

fast_instruction_access_MMU_miss iTLB miss with hardware tablewalk
disabled

x

instruction_access_MMU_miss iTLB miss with hardware tablewalk
enabled

x

instruction_real_translation_miss iTLB miss x

instruction_invalid_TSB_entry RA out of range on iTLB hardware
tablewalk reload

x

IAE_privilege_violation Privilege violation x

IAE_unauth_access Hardware tablewalk attempts to load
IMMU with page with ep clear

x

IAE_NFO_page Instruction fetch from nfo page x

instruction_address_range Fetch address out of range x

instruction_real_range Fetch address out of range
x

fast_data_access_MMU_miss dTLB miss with hardware tablewalk
disabled x

data_access_MMU_miss dTLB miss with hardware tablewalk
enabled x

data_invalid_TSB_entry RA out of range on dTLB hardware
tablewalk reload

x

data_real_translation_miss dTLB miss x

DAE_invalid_asi Invalid ASI, size, etc. x
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12.4.1 fast_instruction_access_MMU_miss Trap
This trap occurs when Hardware Tablewalk is disabled and the I-MMU is unable to
find a translation for an instruction access that is executing using a virtual address.

12.4.2 instruction_access_MMU_miss Trap
This trap occurs when Hardware Tablewalk is enabled and the I-MMU is unable to
find a translation for an instruction access that is executing using a virtual address.

DAE_privilege_violation Privilege violation x x

DAE_nc_page Atomic to noncacheable x x

DAE_nfo_page Access to nfo page by non no-faulting x x

DAE_side_effect_page Access to page with e =1 by nonfaulting
load

x x

mem_address_range va out of valid range x

mem_real_range ra out of valid range x

fast_data_access_protection Protection violation x x

privileged_action Use of privileged ASI

pa_watchpoint, va_watchpoint Data watchpoint hit x

instruction_va_watchpoint Instruction watchpoint hit

*_mem_address_not_aligned Misaligned memory op x

unsupported_page_size TLB or TSB register loaded with illegal
page size

Note The fast_data_access_protection trap is generated instead of the
data_access_protection trap.

Real-to-physical translations (for example, when
LSU_CONTROL.im = 0) that miss in the MMU generate an
instruction_real_translation_miss trap instead.

Implementation
Note

This trap is taken when the appropriate TTE is not present in the
iTLB with the r bit cleared and Hardware Tablewalk is unable to
find the appropriate TTE in any of up to four TSBs.

TABLE 12-6 MMU Traps (Continued)

Trap Name Trap Cause

Register Update

I-Tag
Access D-SFAR

D-Tag
Access
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12.4.3 instruction_real_translation_miss Trap
This trap occurs when the I-MMU is unable to find a translation for an instruction
access that is executing using a real address.

12.4.4 instruction_invalid_TSB_entry Trap
This trap occurs when the Hardware Tablewalk is loading the I-MMU with RA-to-
PA translation enabled and is unable to complete the RA-to-PA portion of the
translation due to the real address not lying completely in the range specified by any
of the valid MMU Range registers. It also occurs on real to physical translations
where bits 55:40 of the real address are non-zero.

12.4.5 IAE_privilege_violation Trap
The I-MMU detects a privilege violation for an instruction fetch; that is, an
attempted access to a privileged page when PSTATE.priv = 0.

12.4.6 IAE_unauth_access Trap
The I-MMU detects an access to a page marked with the ep (execute privilege) bit
clear during hardware tablewalk. There is no ep bit in the I-MMU, so on software
loads of the I-MMU there is no hardware check of the ep bit.

Note Real-to-physical translations (for example, when
LSU_CONTROL.im=0) that miss in the MMU generate an
instruction_real_translation_miss trap instead.

Note Hardware Tablewalk does not load real to physical translations,
and therefore instruction_real_translation_miss is taken
regardless of whether Hardware Tablewalk is enabled or
disabled.

Programming
Note

The MMU Real Range and Physical Offset registers are used in
the real-to-physical translation portion of a Hardware
Tablewalk’s virtual-to-physical translation and have no effect on
whether an instruction_real_translation_miss trap is taken.
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12.4.7 IAE_nfo_page Trap
The I-MMU detects an access to a page marked with the nfo (no-fault-only) bit.

12.4.8 instruction_address_range Trap
The instruction_address_range occurs when the virtual address out of range and
PSTATE.am = 0 (see 48-bit Virtual and Real Address Spaces on page 64). It also occurs
whenever OpenSPARC T2 is fetching from the address range 0000 7FFF FFFF FFE016
to FFFF 7FFF FFFF FFFF16 inclusive, the IMMU is in VA → PA translation mode, and
PSTATE.am = 0. The instruction_address_range exception also occurs whenever a
branch target or the target of a DONE or RETRY instruction is in the range
0000 800 0000 00016 to FFFF 7FFF FFFF FFFF16 inclusive, the IMMU is in VA → PA
translation mode, and PSTATE.am = 0.

12.4.9 instruction_real_range Trap
The instruction_real_range trap occurs when the Real address out of range (see 48-bit
Virtual and Real Address Spaces on page 64). It also occurs whenever OpenSPARC T2
is fetching from the address range 0000 7FFF FFFF FFE016 to FFFF 7FFF FFFF FFFF16
inclusive, the IMMU is in RA → PA translation mode, and PSTATE.am = 0. The
instruction_real_range exception also occurs whenever a branch target or the target
of a DONE or RETRY instruction is in the range 0000 8000 0000 000016 to
FFFF 7FFF FFFF FFFF16 inclusive, the IMMU is in RA → PA translation mode, and
PSTATE.am = 0.

12.4.10 fast_data_access_MMU_miss Trap
This trap occurs when Hardware Tablewalk is disabled and the MMU is unable to
find a translation for a data access that is using a virtual-to-physical translation.

12.4.11 data_access_MMU_miss Trap
This trap occurs when Hardware Tablewalk is enabled and the MMU is unable to
find a translation for a data access that is using a virtual-to-physical translation.

Implementation
Note

The nfo bit is only checked on I-MMU translations. It is not
checked on hardware tablewalk.

Note Real-to-physical translations (for example, through
ASI_*REAL*) that miss in the MMU generate a
data_real_translation_miss trap instead.
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12.4.12 data_invalid_TSB_entry Trap
This trap occurs when Hardware Tablewalk is loading the D-MMU with RA-to-PA
translation enabled and is unable to complete the RA-to-PA portion of the
translation due to the real address not lying completely in the range specified by any
of the valid MMU Range registers. It also occurs on real-to-physical translations
where bits 55:40 of the real address are non-zero.

12.4.13 data_real_translation_miss Trap
This trap occurs when the MMU is unable to find a translation for a data access that
is using a real-to-physical translation.

12.4.14 DAE_privilege_violation Trap
The D-MMU detects a privilege violation for a data access; that is, an attempted
access to a privileged page when PSTATE.priv = 0.

12.4.15 DAE_side_effect_page Trap
A speculative (nonfaulting) load instruction issued to a page marked with the side-
effect (e) bit = 1.

12.4.16 DAE_nc_page Trap
An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable in a physical cache; that is, with cp = 0 or with PA{39} = 1.

Note Real-to-physical translations (for example, through
ASI_*REAL*) that miss in the MMU generate a
data_real_translation_miss trap instead.

Note Hardware Tablewalk does not load real-to-physical translations,
and therefore data_real_translation_miss is taken regardless of
whether hardware tablewalk is enabled or disabled.

Programming
Note

The MMU Real Range and Physical Offset registers are used in
the real-to-physical translation portion of a Hardware
Tablewalk’s virtual-to-physical translation and have no effect on
whether a data_real_translation_miss trap is taken.
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12.4.17 DAE_invalid_asi Trap
An invalid LDA/STA ASI value, invalid virtual address, read to write-only register,
or write to read-only register, but not for an attempted user access to a restricted ASI
(see the privileged_action trap described below).

12.4.18 DAE_nfo_page Trap
An access with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the nfo
(no-fault-only) bit.

12.4.19 mem_address_range Trap
Virtual address out of range and PSTATE.am = 0 for data access, JMPL/RETURN, or
branch/CALL. See 48-bit Virtual and Real Address Spaces on page 64.

12.4.20 mem_real_range Trap
Real address out of range for data access, JMPL/RETURN, or branch/CALL. See 48-
bit Virtual and Real Address Spaces on page 64.

12.4.21 fast_data_access_protection Trap
This trap occurs when the MMU detects a protection violation for a data access. A
protection violation is defined to be an attempted store to a page without write
permission.

Implementation
Note

For OpenSPARC T2, cp only controls cacheability in the primary
cache, not the shared secondary, and thus the hardware
supports the ability to complete an atomic operation for pages
with the cp bit = 0 as long as the secondary cache is enabled.
However, to keep OpenSPARC T2 compliant with the
UltraSPARC Architecture 2006 specification, the DAE_nc_page
trap is generated when an atomic is issued to a memory address
marked with cp = 0.

Note Protection violations are checked for both virtual-to-physical
translations and real-to-physical translations.
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12.4.22 privileged_action Trap
This trap occurs when an access is attempted using a restricted ASI while in non-
privileged mode (PSTATE.priv = 0).

12.4.23 instruction_VA_watchpoint Trap
This trap occurs when instruction virtual watchpoints are enabled and the I-MMU
detects a instruction execution at the virtual address specified by the VA Instruction
Watchpoint register. See Watchpoint Support on page 395.

12.4.24 VA_watchpoint Trap
This trap occurs when virtual watchpoints are enabled and the D-MMU detects a
load or store to the virtual address specified by the VA Data Watchpoint register. See
Watchpoint Support on page 395.

12.4.25 PA_watchpoint Trap
This trap occurs when physical watchpoints are enabled and the D-MMU detects a
load or store to the physical address specified by the PA Data Watchpoint register. See
Watchpoint Support on page 395.

12.4.26 *_mem_address_not_aligned Traps
The lddf_mem_address_not_aligned, stdf_mem_address_not_aligned, and
mem_address_not_aligned traps occur when a load, store, atomic, or JMPL/
RETURN instruction with a misaligned address is executed. The LSU signals this
trap, but the D-MMU records the fault information in the DSFAR.

Programming
Note

instruction_VA_watchpoint is never generated when
HPSTATE.red = 1 or HPSTATE.hpriv = 1. In addition,
instruction_VA_watchpoint traps are only generated when a
virtual-to-physical translation is performed. Real accesses do not
generate instruction_VA_watchpoint traps.

Programming
Note

VA_watchpoint is never generated when HPSTATE.hpriv = 1. In
addition, VA_watchpoint traps are only generated when a
virtual-to-physical translation is performed. Real accesses (for
example, through ASI_*REAL*) do not generate VA_watchpoint
traps.
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12.4.27 Unsupported_page_size Trap
This trap occurs when the IMMU or DMMU is loaded with an illegal page size, or a
TSB register is programmed with an illegal page size.

12.5 MMU Operation Summary
TABLE 12-9 summarizes the behavior of the D-MMU for noninternal ASIs using
tabulated abbreviations. TABLE 12-10 summarizes the behavior of the I-MMU. In each
case, and for all conditions, the behavior of the MMU is given by one of the
abbreviations in TABLE 12-7. TABLE 12-8 lists abbreviations for ASI types.

TABLE 12-7 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal translation

dmiss fast_data_access_MMU_miss or data_access_MMU_miss trap

dasi DAE_invalid_asi trap

dreal data_real_translation_miss trap

dpriv DAE_privilege_violation trap

dse DAE_side_effect_page trap

dprot fast_data_access_protection trap

imiss fast_instruction_access_MMU_miss or instruction_access_MMU_miss trap

ireal instruction_real_translation_miss trap

iexc IAE_privilege_violation trap

TABLE 12-8 Abbreviations for ASI Types

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT

SEC Any ASI with SECONDARY translation, except *NO_FAULT

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_*_AS_IF_USER_PRIMARY*

U_SEC ASI_*_AS_IF_USER_SECONDARY*

U_PRIV ASI_*_AS_IF_PRIV_*

REAL ASI_*REAL*
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Other abbreviations include “w” for the writable bit, “e” for the side-effect bit, and
“p” for the privileged bit.

TABLE 12-9 and TABLE 12-10 do not cover the following cases:

■ Invalid ASIs, ASIs that have no meaning for the opcodes listed, or nonexistent
ASIs; for example, ASI_PRIMARY_NO_FAULT for a store or atomic; also, access to
OpenSPARC T2 internal registers other than LDXA, LDFA, STDFA or STXA; the
MMU signals a DAE_invalid_asi trap for this case.

■ Attempted access using a restricted ASI in nonprivileged mode; the MMU signals
a privileged_action trap for this case. Attempted use of a hyperprivileged ASI in
privileged mode; the MMU also signals privileged_action trap for this case.

■ An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable in a physical cache (that is, with cp = 0 or pa{39} = 1); the
MMU signals a DAE_nc_page trap for this case.

■ A data access with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} or an instruction access to a
page marked with the nfo (no-fault-only) bit; the MMU signals a DAE_nfo_page
or IAE_nfo_page trap for this case.

■ An instruction fetch to a memory address marked non-executable (ep = 0). This is
checked when Hardware Tablewalk attempts to load the I-MMU, and an
IAE_unauth_access trap is taken instead.

■ Real address out of range; the MMU signals an instruction_real_range or
mem_real_range trap for this case.

■ Virtual address out of range and PSTATE.am is not set; the MMU signals an
instruction_address_range or mem_address_range trap for this case.

Note The *_LITTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.
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When LSU_CONTROL_REG.dm = 0, the table above applies, but dmiss entries in the
TLB Miss column change to dreal.

TABLE 12-9 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode priv Mode ASI w TLB Miss
e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1

Load

non-
privileged

PRIM, SEC — dmiss ok dpriv ok dpriv

PRIM_NF, SEC_NF — dmiss ok dpriv dse dpriv

privileged

PRIM, SEC, NUC — dmiss ok

PRIM_NF, SEC_NF — dmiss ok dse

U_PRIM, U_SEC — dmiss ok dpriv ok dpriv

REAL — dreal ok

hyper-
privileged

PRIM, SEC, NUC1

1. When hyperprivileged, these context values use the default physical page attributes from
TABLE 12-5, which specify that w = 1, e = PA{39}, and p = 0.

1 — ok — ok —

PRIM_NF, SEC_NF1 1 — ok — dse —

U_PRIM, U_SEC — dmiss ok dpriv ok dpriv

U_PRIV — dmiss ok

REAL — dreal ok

FLUSH

non-
privileged

— ok

privileged — ok

hyper-
privileged

— ok

Store or
Atomic

non-
privileged

PRIM, SEC 0 dmiss dprot dpriv dprot dpriv

1 dmiss ok dpriv ok dpriv

privileged

PRIM, SEC, NUC 0 dmiss dprot

1 dmiss ok

U_PRIM, U_SEC 0 dmiss dprot dpriv dprot dpriv

1 dmiss ok dpriv ok dpriv

REAL 0 dreal dprot

1 dreal ok

hyper-
privileged

PRIM, SEC, NUC1 1 — ok — ok —

U_PRIM, U_SEC 0 dmiss dprot dpriv dprot dpriv

1 dmiss ok dpriv ok dpriv

U_PRIV 0 dmiss dprot ok dprot ok

1 dmiss ok

REAL 0 dreal dprot

1 dreal ok
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When LSU_CONTROL_REG.im = 0, the table above applies, but imiss entries in the
TLB Miss column change to ireal. When HPSTATE.red = 1, the ITLB is bypassed and
has the same behavior as the hyperprivileged mode row in the table.

See Alternate Address Spaces on page 67 for a summary of the OpenSPARC T2 ASI
map.

12.6 ASI Value, Context, and Endianness
Selection for Translation
The MMU uses a two-step process to select the context for a translation:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction,
trap level, and the virtual processor endian mode

2. The context register is determined directly from the ASI.

The ASI value and endianness (little or big) are determined for the I-MMU and D-
MMU respectively according to TABLE 12-11 and TABLE 12-12 on page 123.

TABLE 12-10 I-MMU Operations

Condition Behavior

priv Mode TLB Miss P = 0 P =1

nonprivileged imiss ok iexc

privileged imiss ok

hyperprivileged — ok

Notes The secondary context is never used to fetch instructions.

The endianness of a data access is specified by three conditions:
the ASI specified in the opcode or ASI register, the PSTATE
current little endian bit, and the D-MMU invert endianness bit.

The D-MMU invert endianness (ie) bit inverts the endianness for
all accesses to translating ASIs, including LD/st/Atomic
alternates that have specified an ASI. That is, LDXA
[%g1]ASI_PRIMARY_LITTLE will be big-endian if the ie bit is
on. Accesses to nontranslating ASIs are not affected by the
D-MMU’s ie bit. See Alternate Address Spaces on page 67 or
information about nontranslating ASIs.
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1 Accesses to nontranslating ASIs are always made in “big endian” mode, regardless of the setting of the
various ie bits. See Alternate Address Spaces on page 67 for information about nontranslating ASIs.

The context registers used by the data and instruction MMUs is determined from
TABLE 12-13. A comprehensive list of ASI values can be found in the ASI map in
Alternate Address Spaces on page 67. The context register selection is not affected by
the endianness of the access
.

TABLE 12-11 ASI Mapping for Instruction Accesses

Condition for Instruction Access Resulting Action

PSTATE.tl Endianness ASI Value (in SFSR)

0 Big ASI_PRIMARY

> 0 Big ASI_NUCLEUS

TABLE 12-12 ASI Mapping for Data Accesses

Condition for Data Access Access Processed with:

Opcode
PSTATE.

tl
PSTATE.

cle
TTE.

ie Endianness
ASI Value

(Recorded in SFSR)

LD/ST/Atomic/FLUSH
(Using Default ASI)

0 0 0 Big ASI_PRIMARY

1 Little

1 0 Little ASI_PRIMARY_LITTLE

1 Big

> 0 0 0 Big ASI_NUCLEUS

1 Little

1 0 Little ASI_NUCLEUS_LITTLE

1 Big

LD/st/Atomic Alternate
with specified ASI not
ending in “_LITTLE”

Don’t
Care

Don’t
Care

0 Big1 Specified ASI value from immediate field
in opcode or ASI register1 Little1

LD/st/Atomic Alternate
with specified ASI
ending in ‘_LITTLE”

Don’t
Care

Don’t
Care

0 Little Specified ASI value from immediate field
in opcode or ASI register1 Big

TABLE 12-13 I-MMU and D-MMU Context Register Usage

ASI Value Context Register

ASI_*NUCLEUS*1

1. Any ASI name containing the string “NUCLEUS”.

Nucleus (000016 hard-wired)

ASI_*PRIMARY*2

2. Any ASI name containing the string “PRIMARY”.

Primary 0 and Primary 1

ASI_*SECONDARY*3 Secondary 0 and Secondary 1

All other ASI values (Not applicable, no translation)
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12.7 Translation
The translation operation of MMUs is determined by the LSU_CONTROL_REG and
the HPSTATE registers.

12.7.1 Instruction Translation
TABLE 12-14 describes the operation of the I-MMU.

12.7.1.1 Instruction Prefetching

OpenSPARC T2 fetches instructions sequentially (including delay slots).
OpenSPARC T2 fetches delay slots before the branch is resolved (before whether the
delay slot will be annulled is known). OpenSPARC T2 also fetches the target of a
DCTI before the delay slot executes. For both these cases, OpenSPARC T2 may fetch
from a nonexistent PA (in the case of a fetch from memory) or from an I/O address
with side effects. Hypervisor should protect against this for virtual- and real-to-
physical translations by maintaining valid mappings of sequential and target
addresses at all times. Hypervisor should protect against this for bypassing
translations by ensuring that all sequential and target addresses are backed by
memory.

3. Any ASI name containing the string “SECONDARY”.

TABLE 12-14 IMMU Translation

Control State

IMMU TranslationLSU.im HPSTATE.hpriv HPSTATE.red

Don’t Care Don’t Care 1 Bypass1

1. VA{39:0} passed directly to PA{39:0}

Don’t Care 1 0 Bypass1

0 0 0 RA → PA2

2. VA{47:0} passed directly to RA{47:0}, RA{47:0} translated via the
IMMU.

1 0 0 VA → PA3

3. VA{47:0} translated via the IMMU.
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Certain instructions change the translation mode (writes to HPSTATE, stores to
ASI_LSU_CONTROL_REG). Both of these translation mode changes can only be made
while hyperprivileged. Since ASI_LSU_CONTROL_REG.im has no effect on
translation while hyperprivileged, there are no issues with the hypervisor storing to
ASI_LSU_CONTROL_REG.

However, a write to HPSTATE may change both the translation and privilege level at
the same time. This translation change may result in the sequential instruction or the
branch target being fetched in both the old translation mode (bypass) and then
refetched in the new translation mode (either real to physical or virtual to physical)
when OpenSPARC T2 realizes that translation has changed. For this case, it is
desirable that the hypervisor enforce that valid translations exist for fetches in both
the old translation mode (bypass) and the new translation mode (real to physical or
virtual to physical). If the hypervisor is only able to enforce translations for the real
or virtual to physical case, it is possible that an error may be encountered on the
bypassing instruction fetch. Any precise error trap associated with the error will be
suppressed and not be presented to the strand; however, the error status registers in
the L2 cache, memory controller, and/or IO subsystem will still record the error (and
possibly generate a disrupting trap in addition). Therefore, if the hypervisor is
unable to enforce translation for both the bypass and real-/virtual-to-physical
translations, it must be able to handle the potential spurious error logging in the L2
cache, memory controller, and/or IO subsystem.

12.7.2 Data Translation
TABLE 12-15 describes the operation of the D-MMU.

TABLE 12-15 DMMU Translation

Control State

DMMU TranslationLSU.dm HPSTATE.hpriv

0 0 RA → PA1

1. VA{63:0} passed directly to RA{63:0}, RA{63:0} trans-
lated via the DMMU.

0 1 Follows

1 See Follows
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TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm = 1 or HPSTATE.hpriv = 1 (1 of 5)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor

0016–
0316

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

0416 ASI_NUCLEUS privileged_action VA → PA bypass

0516–
0B16

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

0C16 ASI_NUCLEUS_LITTLE privileged_action VA → PA bypass

0D16–
0F16

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

1016 ASI_AS_IF_USER_PRIMARY privileged_action VA → PA VA → PA

1116 ASI_AS_IF_USER_SECONDARY privileged_action VA → PA VA → PA

1216–
1316

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

1416 ASI_REAL privileged_action RA → PA RA → PA

1516 ASI_REAL_IO privileged_action RA → PA RA → PA

1616 ASI_BLOCK_AS_IF_USER_PRIMARY privileged_action VA → PA VA → PA

1716 ASI_BLOCK_AS_IF_USER_
SECONDARY

privileged_action VA → PA VA → PA

1816 ASI_AS_IF_USER_PRIMARY_LITTLE privileged_action VA → PA VA → PA

1916 ASI_AS_IF_USER_SECONDARY_
LITTLE

privileged_action VA → PA VA → PA

1A16–
1B16

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

1C161 ASI_REAL_LITTLE privileged_action RA → PA RA → PA

1D16 ASI_REAL_IO_LITTLE privileged_action RA → PA RA → PA

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE

privileged_action VA → PA VA → PA

1F16 ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE

privileged_action VA → PA VA → PA

2016 ASI_SCRATCHPAD privileged_action nontranslating nontranslating

2116 ASI_MMU privileged_action nontranslating nontranslating

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

privileged_action VA → PA VA → PA

2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

privileged_action VA → PA VA → PA

2416 ASI_TWINX privileged_action VA → PA bypass

2516 ASI_QUEUE privileged_action nontranslating nontranslating

2616 ASI_TWINX_REAL privileged_action RA → PA RA → PA
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2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

privileged_action VA → PA bypass

2816–
2916

Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

2A16 ASI_TWINX_AIUPL,
ASI_STBI_AIUPL

privileged_action VA → PA VA → PA

2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

privileged_action VA → PA VA → PA

2C16 ASI_TWINX_LITTLE privileged_action VA → PA bypass

2D16 Reserved privileged_action DAE_invalid_asi DAE_invalid_asi

2E16 ASI_TWINX_REAL_LITTLE privileged_action RA → PA RA → PA

2F16 ASI_TWINX_NL,
ASI_STBI_NL

privileged_action VA → PA bypass

3016 ASI_AS_IF_PRIV_PRIMARY privileged_action privileged_action VA → PA

3116 ASI_AS_IF_PRIV_SECONDARY privileged_action privileged_action VA → PA

3216–
3516

Reserved privileged_action privileged_action DAE_invalid_asi

3616 ASI_AS_IF_PRIV_NUCLEUS privileged_action privileged_action VA → PA

3716 Reserved privileged_action privileged_action DAE_invalid_asi

3816 ASI_AS_IF_PRIV_PRIMARY_LITTLE privileged_action privileged_action VA → PA

3916 ASI_AS_IF_PRIV_SECONDARY_LITT
LE

privileged_action privileged_action VA → PA

3A16–
3D16

Reserved privileged_action privileged_action DAE_invalid_asi

3E16 ASI_AS_IF_PRIV_NUCLEUS_LITTLE privileged_action privileged_action VA → PA

3F16 Reserved privileged_action privileged_action DAE_invalid_asi

4016 ASI_STREAM privileged_action privileged_action nontranslating

4116 ASI_CMP privileged_action privileged_action nontranslating

4216 ASI_INST_MASK_REG/
ASI_LSU_DIAG_REG

privileged_action privileged_action nontranslating

4316 ASI_ERROR_INJECT_REG privileged_action privileged_action nontranslating

4416 Reserved privileged_action privileged_action DAE_invalid_asi

4516 ASI_LSU_CONTROL_REG,
ASI_DECR,
ASI_RST_VEC_MASK

privileged_action privileged_action nontranslating

4616 ASI_DCACHE_DATA privileged_action privileged_action nontranslating

4716 ASI_DCACHE_TAG privileged_action privileged_action nontranslating

4816 ASI_IRF_ECC_REG privileged_action privileged_action nontranslating

4916 ASI_FRF_ECC_REG privileged_action privileged_action nontranslating

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm = 1 or HPSTATE.hpriv = 1 (2 of 5)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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4A16 ASI_STB_ACCESS privileged_action privileged_action nontranslating

4B16 Reserved privileged_action privileged_action DAE_invalid_asi

4C16 ASI_DESR/ASI_DFESR/ASI_CERER/
ASI_SETER/ASI_CLESR/ASI_
CLFESR

privileged_action privileged_action nontranslating

4D16 Reserved privileged_action privileged_action DAE_invalid_asi

4E16 ASI_SPARC_PWR_MGMT privileged_action privileged_action nontranslating

4F16 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5016 ASI_IMMU privileged_action privileged_action nontranslating

5116 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5216 ASI_IMMU privileged_action privileged_action nontranslating

5316 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5416 ASI_IMMU privileged_action privileged_action nontranslating

5516 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5616 ASI_IMMU privileged_action privileged_action nontranslating

5716 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5816 ASI_IMMU privileged_action privileged_action nontranslating

5916 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5A16 ASI_IMMU privileged_action privileged_action nontranslating

5B16 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5C16 ASI_IMMU privileged_action privileged_action nontranslating

5D16 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

5E16 ASI_IMMU privileged_action privileged_action nontranslating

5F16 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

6016–
6216

Reserved privileged_action privileged_action DAE_invalid_asi

6316 ASI_HYP_SCRATCHPAD privileged_action privileged_action nontranslating

6416–
6516

ASI_IMMU privileged_action privileged_action DAE_invalid_asi

6616 ASI_ICACHE_INSTR privileged_action privileged_action nontranslating

6716 ASI_ICACHE_TAG privileged_action privileged_action nontranslating

6416–
7116

Reserved privileged_action privileged_action DAE_invalid_asi

7216 ASI_INTR_RECEIVE privileged_action privileged_action nontranslating

7316 ASI_INTR_W privileged_action privileged_action nontranslating

7416 ASI_INTR_R privileged_action privileged_action nontranslating

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm = 1 or HPSTATE.hpriv = 1 (3 of 5)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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7516–
7F16

Reserved privileged_action privileged_action DAE_invalid_asi

8016 ASI_PRIMARY VA → PA VA → PA bypass

8116 ASI_SECONDARY VA → PA VA → PA bypass

8216 ASI_PRIMARY_NO_FAULT VA → PA VA → PA bypass

8316 ASI_SECONDARY_NO_FAULT VA → PA VA → PA bypass

8416–
8716

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

8816 ASI_PRIMARY_LITTLE VA → PA VA → PA bypass

8916 ASI_SECONDARY_LITTLE VA → PA VA → PA bypass

8A16 ASI_PRIMARY_NO_FAULT_LITTLE VA → PA VA → PA bypass

8B16 ASI_SECONDARY_NO_FAULT_
LITTLE

VA → PA VA → PA bypass

8C16–
BF16

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

C016 ASI_PST8_P VA → PA VA → PA bypass

C116 ASI_PST8_S VA → PA VA → PA bypass

C216 ASI_PST16_P VA → PA VA → PA bypass

C316 ASI_PST16_S VA → PA VA → PA bypass

C416 ASI_PST32_P VA → PA VA → PA bypass

C516 ASI_PST32_S VA → PA VA → PA bypass

C616–
C716

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

C816 ASI_PST8_PL VA → PA VA → PA bypass

C916 ASI_PST8_SL VA → PA VA → PA bypass

CA16 ASI_PST16_PL VA → PA VA → PA bypass

CB16 ASI_PST16_SL VA → PA VA → PA bypass

CC16 ASI_PST32_PL VA → PA VA → PA bypass

CD16 ASI_PST32_SL VA → PA VA → PA bypass

CE16–
CF16

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

D016 ASI_FL8_P VA → PA VA → PA bypass

D116 ASI_FL8_S VA → PA VA → PA bypass

D216 ASI_FL16_P VA → PA VA → PA bypass

D316 ASI_FL16_S VA → PA VA → PA bypass

D416–
D716

DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

D816 ASI_FL8_PL VA → PA VA → PA bypass

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm = 1 or HPSTATE.hpriv = 1 (4 of 5)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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12.8 MMU Behavior During Reset and Upon
Entering RED_state
MMU Reset and RED_state behavior is described in Machine State After Reset and in
RED_State on page 166.

D916 ASI_FL8_SL VA → PA VA → PA bypass

DA16 ASI_FL16_PL VA → PA VA → PA bypass

DB16 ASI_FL16_SL VA → PA VA → PA bypass

DC16–
DF16

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

E016 ASI_BLK_COMMIT_PRIMARY VA → PA VA → PA bypass

E116 ASI_BLK_COMMIT_SECONDARY VA → PA VA → PA bypass

E216 ASI_TWINX_P,
ASI_STBI_P

VA → PA VA → PA bypass

E316 ASI_TWINX_S,
ASI_STBI_S

VA → PA VA → PA bypass

E416–
E916

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

EA16 ASI_TWINX_PL,
ASI_STBI_PL

VA → PA VA → PA bypass

EB16 ASI_TWINX_PL,
ASI_STBI_PL

VA → PA VA → PA bypass

EC16-
EF16

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

F016 ASI_BLK_PRIMARY VA → PA VA → PA bypass

F116 ASI_BLK_SECONDARY VA → PA VA → PA bypass

F216-
F716

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

F816 ASI_BLK_PRIMARY_LITTLE VA → PA VA → PA bypass

F916 ASI_BLK_SECONDARY_LITTLE VA → PA VA → PA bypass

FA16-
FF16

Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm = 1 or HPSTATE.hpriv = 1 (5 of 5)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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12.9 Compliance With the SPARC V9 Annex F
The OpenSPARC T2 MMU complies completely with the SPARC V9 MMU
Requirements described in Annex F of the The SPARC Architecture Manual, Version 9.
TABLE 12-17 shows how various protection modes can be achieved, if necessary,
through the presence or absence of a translation in the I- or D-MMU. Note that this
behavior requires specialized TLB miss handler code to guarantee these conditions.

12.10 MMU Internal Registers and ASI
Operations

12.10.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the virtual processor through
ASIs defined by OpenSPARC T2.

See Section 12.7 for details on the behavior of the MMU during all other
OpenSPARC T2 ASI accesses.

TABLE 12-17 MMU Compliance With SPARC V9 Annex F Protection Mode

Condition

Resultant
Protection Mode

TTE in
D-MMU

TTE in
I-MMU

Writable
Attribute Bit

Yes No 0 Read-only

No Yes Don’t Care Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute

Note STXA to an MMU register does not require any subsequent
instructions such as a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the register effect will be visible to load / store /
atomic accesses. OpenSPARC T2 resolves all MMU register
hazards via an automatic synchronization on all MMU register
writes.
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If the low order three bits of the VA are non-zero in an LDXA/STXA to/from these
registers, a mem_address_not_aligned trap occurs. Writes to read-only, reads to
write-only, illegal ASI values, or illegal VA for a given ASI may cause a
DAE_invalid_asi trap.

Writes to the TSB register, Tag Access register, and Instruction and Data Watchpoint
Address registers are not checked for out-of-range VA. No matter what is written to
the register, VA{63:47} will always be identical on a read.

Caution OpenSPARC T2 does not check for out-of-range virtual
addresses during an STXA to any internal register; it simply
sign-extends the virtual address based on VA{47}. Software must
guarantee that the VA is within range.

TABLE 12-18 OpenSPARC T2 MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI VA{63:0} Access Register or Operation Name

2116 816 Read/Write Primary Context 0 register

— 2116 1016 Read/Write Secondary Context 0 register

2116 10816 Read/Write Primary Context 1 register

— 2116 11016 Read/Write Secondary Context 1 register

5016 5816 016 Read-only I-/D-TSB Tag Target registers

— 5816 2016 Read-only D-TLB Synchronous Fault Address register

5016 5816 3016 Read/Write I-/D-TLB Tag Access registers

5016 5816 3816 Read/Write Watchpoint address

5816 4016 Read/Write Hardware Tablewalk Config register

5816 8016 Read/Write Partition identifier

5216 10816 Read/Write MMU Real Range 0 register

5216 11016 Read/Write MMU Real Range 1 register

5216 11816 Read/Write MMU Real Range 2 register

5216 12016 Read/Write MMU Real Range 3 register

5216 20816 Read/Write MMU Physical Offset 0 register

5216 21016 Read/Write MMU Physical Offset 1 register

5216 21816 Read/Write MMU Physical Offset 2 register

5216 22016 Read/Write MMU Physical Offset 3 register

5416 1016 Read/Write MMU Context Zero TSB Config 0 register

5416 1816 Read/Write MMU Context Zero TSB Config 1 register

5416 2016 Read/Write MMU Context Zero TSB Config 2 register

5416 2816 Read/Write MMU Context Zero TSB Config 3 register

5416 3016 Read/Write MMU Context Nonzero TSB Config 0 register

5416 3816 Read/Write MMU Context Nonzero TSB Config 1 register

5416 4016 Read/Write MMU Context Nonzero TSB Config 2 register
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12.10.2 Context Registers
OpenSPARC T2 supports a pair of primary and a pair of secondary context registers
per strand, which are shared by the I- and D-MMUs. Primary Context 0 and Primary
Context 1 are the primary context registers, and a TLB entry for a translating
primary ASI can match the context field with either Primary Context 0 or Primary
Context 1 to produce a TLB hit. Secondary Context 0 and Secondary Context 1 are
the secondary context registers, and a TLB entry for a translating secondary ASI can
match the context field with either Secondary Context 0 or Secondary Context 1 to
produce a TLB hit.

The Primary Context 0 and Primary Context 1 registers are defined as shown in
FIGURE 12-2, where pcontext is the context value for the primary address space.

5416 4816 Read/Write MMU Context Nonzero TSB Config 3 register

5416 5016 Read-only MMU I-TSB Pointer 0 register

5416 5816 Read-only MMU I-TSB Pointer 1 register

5416 6016 Read-only MMU I-TSB Pointer 2 register

5416 6816 Read-only MMU I-TSB Pointer 3 register

5416 7016 Read-only MMU D-TSB Pointer 0 register

5416 7816 Read-only MMU D-TSB Pointer 1 register

5416 8016 Read-only MMU D-TSB Pointer 2 register

5416 8816 Read-only MMU D-TSB Pointer 3 register

5416 9016 Read/Write MMU Tablewalk Pending Control register

5416 9816 Read-only MMU Tablewalk Pending Status register

5416 5C16 See
Section 12.10.15

Write-only I-/D-TLB Data In registers

5516 5D16 See
Section 12.10.15

Read/Write I-/D-TLB Data Access registers

5616 5E16 See
Section 12.10.15

Read-only I-/D-TLB Tag Read register

5716 5F16 See
Section 12.11.1

Write-only I-/D-MMU demap operation

Compatibility
Note

To maintain backward compatibility with software designed for
a single primary and single secondary context register, writes to
Primary (Secondary) Context 0 Register also update Primary
(Secondary) Context 1 Register.

TABLE 12-18 OpenSPARC T2 MMU Internal Registers and ASI Operations (Continued)

I-MMU
ASI

D-MMU
ASI VA{63:0} Access Register or Operation Name
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FIGURE 12-2 Primary Context 0/1 register

The Secondary Context 0 and Secondary Context 1 Registers are defined in
FIGURE 12-3, where scontext is the context value for the secondary address space.

FIGURE 12-3 Secondary Context 0/1 Register

The contents of the Nucleus Context register are hardwired to the value zero:

FIGURE 12-4 Nucleus Context Register

12.10.3 I-/D-TSB Tag Target Registers
The I- and D-TSB Tag Target registers are simply respective bit-shifted versions of
the data stored in the I- and D-Tag Access registers. Since the I- or D-Tag Access
registers are updated on I- or D-TLB misses, respectively, the I- and D-Tag Target
registers appear to software to be updated on an I- or D-TLB miss. A write to this
register results in a DAE_invalid_asi trap being taken. The registers are illustrated in
FIGURE 12-5 and described in the table below the figure.

FIGURE 12-5 MMU Tag Target Registers (Two Registers)

Bit Field Description

60:48 context I/D context{12:0}: The context associated with the missing virtual
address. For real translations, the context value is set to zero.

41:0 va I/D context{12:0}: The context associated with the missing virtual
address. For real translations, the context value is set to zero.

63 13 12 0

— pcontext

63 13 12 0

— scontext

63 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

63 61 47 4160 48 42 0

context000 — va{63:22}
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12.10.4 I-/D-MMU Synchronous Fault Address Registers
(SFAR)

12.10.4.1 I-MMU Fault Address

There is no I-MMU Synchronous Fault Address register. Instead, software must read
the TPC register appropriately as discussed here.

For instruction_access_MMU_miss traps, TPC contains the virtual address that was
not found in the I-MMU TLB.

For IAE_privilege_violation, IAE_unauth_access, and IAE_nfo_page traps, TPC
contains the virtual address of the instruction in the privileged page that caused the
exception.

For instruction_address_range and instruction_real_range traps, note that the TPC in
these cases contains only a 48-bit virtual (real) address, which is sign-extended based
on bit VA{47} (RA{47}) for read. Thus, the TPC contains only the lower 48 bits of the
virtual (real) address that is out of range.

12.10.4.2 D-MMU Fault Address

The Synchronous Fault Address register contains the virtual memory address of the
access that caused the following exceptions:

■ DAE_invalid_asi
■ DAE_privilege_violation
■ DAE_nc_page
■ DAE_nfo_page
■ DAE_side_effect_page
■ mem_address_range
■ mem_real_range
■ asi_data_access_protection
■ privileged_action
■ VA_watchpoint
■ PA_watchpoint
■ mem_address_not_aligned
■ LDDF_mem_address_not_aligned

Notes When PSTATE.am = 1, the upper 32 bits of the VA captured in
this register will be zero.

For a 256-Mbyte page, VA{27:22} contain bits 27:22 of the virtual
address and are not zeroed by hardware.
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■ STDF_mem_address_not_aligned

This register is read-only, a write to this register results in a DAE_invalid_asi trap
being taken.

FIGURE 12-6 illustrates the D-SFAR; the va field is described below the table.
.

FIGURE 12-6 D-MMU Synchronous Fault Address Register (SFAR) Format

12.10.5 I-/D-TLB Tag Access Registers
In each MMU the Tag Access register is used as a temporary buffer for writing the
TLB Entry tag information. The Tag Access register may be updated during any of
the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection. The MMU
hardware automatically writes the missing VA and the appropriate context
(ASI_PRIMARY_CONTEXT_0 for primary context accesses,
ASI_SECONDARY_CONTEXT_0 for secondary context accesses,
ASI_NUCLEUS_CONTEXT for other accesses) into the Tag Access register to
facilitate formation of the TSB Tag Target register. See TABLE 12-6 for the Tag
Access register update policy.

Bit Field Description

63:0 va Fault Address: The virtual (real) address associated with the
translation fault. This field is sign-extended based on VA{47}
(RA{47}), so bits VA{63:48} (RA{63:48}) do not correspond to the
virtual (real) address used in the translation for the case of a VA
(RA) out-of-range mem_address_range (mem_real_range) trap (for
this case, software must disassemble the trapping instruction).

Notes When PSTATE.am = 1, the upper 32 bits of the VA captured in
this register will be zero.

The DSFAR is shared for precise error handling, and contains
the error address as described in DMMU Synchronous Fault
Address Register on page 235 following an
internal_processor_error, data_access_MMU_error, or
data_access_error.

63 0

Fault Address va{63:0}
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2. An ASI write to the Tag Access register. Before an ASI store to the TLB Data
Access registers, the operating system must set the Tag Access register to the
values desired in the TLB Entry. Note that an ASI store to the TLB Data-In register
for automatic replacement also uses the Tag Access register, but typically the
value written into the Tag Access register by the MMU hardware is appropriate.

3. An I-/D-MMU demap operation. For an I-/D-MMU demap operation, the
corresponding Tag Access register va field is loaded with the matching VA bits
from the demap store address. If the Context ID field of the demap store address
(see Section 12.11.1) is 00, then the context field of the Tag Access register is
loaded with the context of ASI_PRIMARY_CONTEXT_0. Otherwise, the context
field of the Tag Access register is loaded with all zeros.

4. An I-/D-TLB load by the Hardware Tablewalker.

The TLB Tag Access registers are defined in FIGURE 12-7; register bits are described in
the table below the figure.

FIGURE 12-7 I/D MMU TLB Tag Access Registers

Caution – Stores to the Tag Access registers are not checked for out-of-range
violations. Reads from these registers are sign-extended based on VA{47}.

Note Any update to the Tag Access registers immediately affects the
data that is returned from subsequent reads of the Tag Target
and TSB Pointer registers.

Compatibility
Note

The updating of Tag Access on a demap operation and hardware
tablewalk is specific to OpenSPARC T2. No previous
UltraSPARC processors updated Tag Access on demap, and no
previous UltraSPARC processors supported Hardware
Tablewalk.

Bit Field Description

63:13 va The 51-bit virtual page number. Note that writes to this field are not
checked for out-of-range violation, but sign extended based on
VA{47}.
NOTE: When PSTATE.am = 1, the upper 32 bits of the VA captured
in this register will be zero.

12:0 context The 13-bit context identifier. This field reads zero when there is no
associated context with the access, such as for an internal ASI or a
real to physical translation.

va{63:13}

63 013 12

context{12:0}
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12.10.6 Partition Identifier
A partition identifier register is provided per strand to allow multiple OSs to share
the same TLB. The partition identifier register contents are compared in all TLB
operations such as demaps and translations, and are loaded into the pid field of the
TLB tag during insertions.

The Partition Identifier register is defined in FIGURE 12-8, where pid is the 3-bit
partition identifier.

FIGURE 12-8 Partition Identifier Register

12.10.7 Hardware Tablewalk Configuration Register
Each strand has a Hardware Tablewalk Configuration register that controls
operation of the Hardware Tablewalk unit.

The Hardware Tablewalk Configuration register is defined in FIGURE 12-9; the
register bits are described in the table below the figure.
.

FIGURE 12-9 Hardware Tablewalk Config Register

12.10.8 ITLB Probe
A read-only ITLB probe ASI assists software with determining the physical address
assigned to a virtual address of an instruction. The virtual address used with the ASI
is presented to the ITLB, and if a translation exists for the specified address and the
primary contexts in the ITLB, the result data will contain the physical page address
and have the valid bit set. If a translation does not exist for the specified address and

Bit Field Description

1 predict If burst is set to 0, predict controls whether hardware prediction is used to
order the TSB reads. If set to 0, the order of TSBs is always 0, 1, 2, 3. If set to
1, a hardware predictor is used to order the TSB reads as either 0, 1, 2, 3 or 1,
0, 2, 3. Initial value is 0.

0 burst If set to 1, TSB reads are issued to all four TSBs in parallel. If set to 0, TSB
reads are issued sequentially, stopping when a TSB hit is detected. Initial
value is 0.

63 0

— pid

3 2

63 0

— burst

2 1

predict
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the primary contexts in the ITLB, the result data will have the valid bit clear. The
ITLB probe does not trap on a probe that specifies a virtual address in the VA hole;
bits 63:48 of the address are ignored.

The format of the ITLB probe virtual address is shown in FIGURE 12-10; the fields are
described in the table below the figure

FIGURE 12-10 ITLB Probe Address Format.

The ITLB probe data format is defined in FIGURE 12-11; the fields are described in
TABLE 12-19.

FIGURE 12-11 ITLB Probe Data Format.

Programming
Note

The ITLB probe always uses the primary context registers to
determine an ITLB hit. If software desires to check for a nucleus
translation, it must first zero the primary context before issuing
a load to the ITLB probe ASI.

Bit Field Description

39:13 va The 35-bit virtual page number (real page number if the real bit is 1).

4 real If set, the ITLB is checked for real-to-physical translations. If cleared, the
ITLB is checked for virtual-to-physical translations.

TABLE 12-19 Format of ITLB Probe Data Fields

Bit Field Description

63 v Valid bit for the physical page number. Set if there was a match in the TLB.

62 mh Multiple hit. Valid only if v is 1. Set if there were multiple matches in the TLB.

61 tp Tag parity error. Valid only if v is 1 and mh is 0. Set if there was a tag parity
error in the matching TLB entry.

60 dp Data parity error. Valid only if v is 1, mh is 0, and tp is 0. Set if there was a data
parity error in the matching TLB entry.

39:13 pa The 27-bit physical page number.

va{47:13}
63 0

0000

4 3

— real

540 39

63 040 3962

v

1213

——
61 60 59

mh tp dp pa{39:13}
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12.10.9 MMU Real Range Registers
There are four Real Range registers per strand. The RPN-to-PPN translation
associates each Real Range register with its corresponding Physical Offset register.
The RA-to-PA translation applies to TTEs from TSBs with the ra_not_pa bit set in the
TSB Config register, regardless of zero or non-zero context, as described in Hardware
Tablewalk on page 106.

If the enable field is 0, then this range and offset pair are not used. If all range and
offset pairs are disabled, any hit in a TSB with the ra_not_pa bit set in the TSB
Config register results in an instruction_invalid_TSB_entry or
data_invalid_TSB_entry trap.

TABLE 12-20 lists the fields of the MMU Real Range registers.

12.10.10 MMU Physical Offset Registers
There are four Physical Offset registers per strand. The RPN-to-PPN translation
associates each Real Range register with its corresponding Physical Offset register.
The RA-to-PA translation applies to TTEs from TSBs with the ra_not_pa bit set in the
TSB Config register, regardless of zero or nonzero context, as described in
Section 12.3.1.1.

TABLE 12-21 lists the fields of the MMU Physical Offset registers.

TABLE 12-20 MMU Real Range Register Format

Bit Field Description

63 enable Enables range and offset pair.

62:54 — Reserved

53:27 rpn_high RA{39:13} of the upper limit of the RPN range (bounds).

26:0 rpn_low RA{39:13} of the lower limit of the RPN range (base).

Programming
Note

For proper operation at all page sizes, the value programmed
into the ppn field must be aligned to the size of the largest page
that will use the Physical Offset register for RA-to-PA
translation.

TABLE 12-21 MMU Physical Offset Register Format

Bit Field Description

63:40 — Reserved

39:13 ppn Added to RA{39:13} of the request to generate PA{39:13}.

12:0 — Reserved
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12.10.11 MMU TSB Config Registers
The TSB Config registers (MMU_{NON}ZERO_CONTEXT_TSB_CONFIG_<0,1,2,3>)
to provide information for Hardware Tablewalk and for the hardware formation of
TSB pointers and tag targets to assist software in handling TLB misses quickly. If the
TSB concept is not employed in the software memory management strategy, and
therefore the hardware tablewalk, pointer, and tag access registers are not used, then
the TSB Config registers need not contain valid data other than having the enable bit
set to 0. Each strand has four separate TSB pointers for both the zero and non-zero
contexts.

TABLE 12-22 describes the fields of the TSB Config registers.

TABLE 12-22 TSB Config Register Format

Bit Field Description

63 enable If set to 1, Hardware Tablewalk will search this TSB on TLB misses.
NOTE: If any of a strand’s TSB Config registers has the enable bit set, Hardware
Tablewalk is considered to be enabled for the strand.

62 use_context_0 With use_context_1, controls whether Hardware Tablewalk checks the context
value in the TTE from this TSB and what context value is written into the TTE in
the TLB. If both bits are 0, then Hardware Tablewalk compares the context in the
TTE from the TSB to the context of the request and stores that context into the
TLB if the TTE matches. If either bit is 1, Hardware Tablewalk ignores the context
of the TTE from the TSB. If use_context_0 is 1, Hardware Tablewalk writes the
value of Context Register 0 to the TLB; otherwise, if use_context_1 is 1,
Hardware Tablewalk writes the value of Context Register 1 to the TLB.
NOTE: When the requesting context is zero (nucleus), Hardware Tablewalk
ignores these bits.

61 use_context_1 See use_context_0 above.

60:40 — Reserved

39:13 tsb_base PA{39:13} of the base of the TSB table

12:9 — Reserved

8 ra_not_pa If set, enables RPN-to-VPN translation in Hardware Tablewalk.
CAUTION! When using Hardware Tablewalk for a TSB, the TSB may contain
either RAs or PAs, but not both. The ra_not_pa bit should be set when the TSB
contains RAs.

7:4 page_size Contains the size of the pages mapped by the TTEs in the TSB. This page size is
used to generate the TSB pointer. If a reserved page size value is attempted to be
stored to this field, an unsupported_page_size trap is taken instead.
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12.10.12 MMU I-/D-TSB Pointer Registers
The per-strand TSB Pointer registers (MMU_ITSB_POINTER_<0,1,2,3>,
MMU_DTSB_POINTER_<0,1,2,3>) are provided to allow software to location of a
missing TTE in a software-maintained TSB.

The TSB Pointer registers are implemented as a reorder of the current data stored in
the Tag Access register and the appropriate TSB Config register. If the Tag Access
register or the TSB Config register is updated through a direct software write (via an
STXA instruction), then the Pointer registers’ values will be updated as well.

The I-/D-TSB Pointer registers are defined in FIGURE 12-12. pa{39:0} is the full
physical address of the TTE in the TSB, as determined by the MMU hardware. The
formula to generate this field is as follows:

PA{39:0} = TSB_Base{39:13+N} || VA{21+N+3*PS:13+3*PS} || 0000
where N is defined to be the tsb_size field of the TSB Config register; it ranges from
0 to 15. TSB_Base refers to the tsb_base field of the TSB Config register. PS refers to
the page_size field of the TSB Config register.

FIGURE 12-12 I-/D-TSB Pointer Registers

12.10.13 MMU Tablewalk Pending Control Register
Each strand has a MMU Tablewalk Pending Control register. This register can be
used by software to indicate the status of a software tablewalk. Minimally, software
should write a 1 to the stp bit before it fetches a TTE from a TSB and should write a
0 to the STP bit after it has written the TTE to the TLB or has determined that the
TTE will not be written to the TLB.

3:0 tsb_size The size field provides the size of the TSB according to the following:
• Number of entries in the TSB = 512 × 2tsb_size.
• Number of entries in the TSB ranges from 512 entries at tsb_size = 0 (8-Kbyte

TSB), to 16 M entries at tsb_size =1 5 (256-Mbyte TSB).
NOTE: When the page size for a TSB Base is set to 5 (256-Mbyte pages), setting
tsb_size to a value greater than 11 is a programming error that creates a TSB that
maps a larger than 48-bit VA range. OpenSPARC T2 forces the TSB pointer bits
generated by VA bits above VA{47} to be 0 for this case.
NOTE: Any update to the TSB Config register immediately affects the data that is
returned from later reads of the corresponding TSB Pointer registers.

Note This register is completely maintained by software.

TABLE 12-22 TSB Config Register Format (Continued)

Bit Field Description

63 040

00016

39

pa{39:0}
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TABLE 12-24 lists the fields of the MMU Tablewalk Pending Control register.

12.10.14 MMU Tablewalk Pending Status Register
Each physical core has a read-only MMU Tablewalk Pending Status register. This
register allows software to identify when in-progress tablewalks have completed.
Software can invalidate an entry in a TSB and then poll this register to identify
tablewalks that may be temporarily caching the entry that has been invalidated. The
bits that are 1 on the initial poll indicate pending tablewalks. A bit that initially
sampled as 1 but later samples as 0 indicates an in-progress tablewalk has
completed. Once each of the bits that initially were sampled as 1 have been sampled
as 0, all tablewalks that were in progress when the initial poll was taken have been
completed.

TABLE 12-24 lists the fields of the MMU Tablewalk Pending Control register.

12.10.15 I-/D-TLB Data-In/Data-Access/Tag-Read
Registers
Access to the TLB is complicated due to the need to provide an atomic write of a
TLB entry data item (tag and data) that is larger than 64 bits, the need to replace
entries automatically through the TLB entry replacement algorithm as well as
provide direct diagnostic access, the need to allow that multiple strands on the

TABLE 12-23 MMU Tablewalk Pending Control Register Format

Bit Field Description

63:1 — Reserved

0 stp Indicates whether a software tablewalk is in progress.

Programming
Note

Because successive hardware tablewalks can set the htp bits
again, it is possible for software to undersample. That is, polling
software can miss a 1 to 0 transition if hardware clears and sets
the bit between adjacent polls. Polling software should be
structured to minimize the possibility of undersampling.

TABLE 12-24 MMU Tablewalk Pending Control Register Format

Bit Field Description

63:40 — Reserved

39:32 htp Indicates whether a hardware tablewalk is in progress for strands 7:0.

31:8 — Reserved

7:0 stp Indicates whether a software tablewalk is in progress for strands 7:0.
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physical core that share the TLB to do a lock-free TLB update, and the need for
hardware assist in the TLB miss handler. TABLE 12-25 shows the effect of loads and
stores on the Tag Access register and the TLB.

The Data In and Data Access registers are the means of reading and writing the TLB
for all operations. The TLB Data In register is used for TLB miss and TSB-miss
handler automatic replacement writes; the TLB Data Access register is used for
operating system and diagnostic directed writes (writes to a specific TLB entry). The
real bit of the TLB is under the control of bit 10 of the VA. If this bit is set, the real bit
of the TLB entry is set; otherwise, the real bit of the TLB entry is cleared.

The hardware supports an autodemap function to handle the case where two strands
sharing a TLB try to enter the same translation into the TLB (for example, due to
near-simultaneous TLB misses on the same page). A TLB replacement that attempts
to add an already existing translation will cause the existing translation to be
removed from the TLB.

TABLE 12-25 Effect of Loads and Stores on MMU Registers

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB tag TLB data Tag Access Register

Load Tag Read No effect.
Contents returned

No effect No effect

Tag Access No effect No effect No effect.
Contents returned

Data In Trap with DAE_invalid_asi

Data Access No effect No effect.
Contents returned

No effect

Store Tag Read Trap with DAE_invalid_asi

Tag Access No effect No effect Written with store
data

Data In TLB entry determined by
replacement policy written with
contents of Tag Access Register

TLB entry determined by
replacement policy written
with store data

No effect

Data Access TLB entry specified by STXA
address written with contents of
Tag Access Register

TLB entry specified by STXA
address written with store data

No effect

TLB miss No effect No effect Written with VA and
context of access

Notes When a real-to-physical translation is loaded into the TLB, the
context value loaded into the TLB is always 316.

Hardware Tablewalk updates the corresponding I- or D-Data
In/Data Access registers (in addition to the Tag Access register)
whenever it loads a translation into the TLB.
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The format of the TLB Data-In register virtual address is shown in FIGURE 12-13,
where real is written to the real bit of the TLB entry.

FIGURE 12-13 MMU TLB Data-In Virtual Address Format

The format of the TLB Data Access register virtual address is shown in FIGURE 12-14
and described in the table below the figure.

FIGURE 12-14 MMU TLB Data Access Virtual Address Format

Notes Autodemapping of existing translations will always remove an
existing page of the same size or larger than the one being
added to the TLB. For example, an insertion of a 8-Kbyte page
that sits inside the virtual address range of a 64-Kbyte page will
cause the 64-Kbyte page to be autodemapped. Smaller pages
that sit inside a page being added to the TLB may not be
autodemapped. For example, an insertion of a 4-Mbyte page
that overlaps the virtual address of one or more 64 KB pages
may not autodemap the overlapping 64-Kbyte pages.1 A
subsequent multiple-hit error in the TLB could be generated as
the result of a programming error that inserted a larger page in
the TLB that overlapped smaller pages present in the TLB. A
multiple-hit error occurs when a translation request matches
more than one TTE in the TSB, and so a multiple-hit error only
occurs for accesses of the region common to the overlapping
pages.

1. Whether the smaller pages are autodemapped depends on the actual demap address
used and the position of the smaller page within the larger page.

The pids and real bits on the pages must match for autodemap
to take place. If the real bit is 0, the context IDs must match as
well.
IF a TLB replacement is attempted using a reserved page size
value, an unsupported_page_size trap will be taken instead.
If a TLB replacement is attempted with the value of the valid bit
(v) equal to 0, the MMU will treat that the same as if the valid
bit was 1 for purposes of allocating and overwriting a TLB entry
and autodemapping matching pages, and the entry will be
written into the TLB with the v bit set to 0.

63 0

000

9 3 2

—— real

1011

63 0

000

9 3 2

TLB Entry— real

1011
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The data format for TLB Data In and TLB Data Access registers is shown in
TABLE 12-26. Reserved fields ignore writes and return all zeros on reads.

The format of the Tag Read register virtual address is shown in FIGURE 12-15 and
described in the table below the figure.

FIGURE 12-15 MMU Tag Read Virtual Address Format

Bit Field Description

10 real Written to the Real bit of the TLB entry.

9:3 TLB Entry The TLB Entry number to be accessed, in the range 0..63 for the
ITLB, 0..127 for the DTLB.

TABLE 12-26 I-/D-MMU TLB Data In and Data Access Registers

Bit Field Description

63 v Valid.

62 nfo No-fault-only.

61 parity Parity for the TLB Data Entry.1

1. Data parity is generated across pa{39:13}, nfo, ie, cp, e, p, w, and an encoded ver-
sion of the page size. The page size is encoded in three bits as follows: 111– 256
Mbytes; 011 – 4 Mbytes; 001 – 64 Kbytes;
000 – 8 Kbytes. For the encoded page sizes, 256 Mbyte changes from the
size{2:0} value of 101 to 111, while the encoding for all other pages match
size{2:0}.

60:40 — Reserved

39:13 pa PA{39:13}.

12 ie Invert endianess.

11 e Side-effect.

10 cp Cacheable in physically-indexed cache.

9 cv Reserved

8 p Privileged.

7 ep Reserved

6 w Writable.

5:4 soft Reserved

3:0 size Size.

63 0

000

9 3 2

TLB Entry— ctxtsel

10
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The data format for the Tag Read register is shown in FIGURE 12-16 and described in
TABLE 12-27.

FIGURE 12-16 I-/D-MMU TLB Tag Read Registers

An ASI store to the TLB Data Access register initiates an internal atomic write to the
specified TLB Entry. The TLB entry data is obtained from the store data, and the TLB
entry tag is obtained from the current contents of the TLB Tag Access register.

An ASI store to the TLB Data-In register initiates an automatic atomic replacement of
the TLB Entry pointed to by the replacement index generated internally by the TLB.
The TLB data and tag are formed as in the case of an ASI store to the TLB Data
Access register described above.

An ASI load from the TLB Data Access register initiates an internal read of the data
portion of the specified TLB entry.

Bit Field Description

10 ctxtsel If 0, context A is read out in the context field. If 1, context B is read out in the context field.
NOTE: The TLBs store duplicate copies of the context field for error detection, and ctxtsel
allows software to examine both copies.

9:3 TLB Entry The TLB Entry number to be accessed, in the range 0..63 for the ITLB, 0..127 for the DTLB

TABLE 12-27 Data Format for I-/D-MMU TLB Tag Read Registers

Bit Field Description

63:61 pid 3-bit partition identifier.

69 real If set, identifies an RA-to-PA translation instead of a VA-to-PA.

59 parity Parity for the tag entry. Parity is generated across pid, real, va{47:13}, and the context value
that was written into the pair of context fields.

58 used Used bit for replacement algorithm.

47:13 va_ra If the r bit is 0, contains the lower bits of the 51-bit virtual page number (VA{47:13}). If the
r bit is 1, contains the lower bits of a 51-bit real page number (RA{47:13}). Page offset bits
for page sizes larger than 8 KB are stored as zeros in the TLB and returned for a Tag Read
register read; that is, va_ra{15:13}, va_ra{21:13}, and va_ra{27:13} are zeroed for 64-Kbyte,
4-Mbyte, and 256-Mbyte pages, respectively.
PROGRAMMING NOTE: Software needs to sign-extend the va_ra field based on
va_ra{47}.
PROGRAMMING NOTE: If the ra bit is 1, it is up to software to ensure that va_ra{47:40}
are all zeros.

12:0 context 13-bit context identifier. The copy of context loaded from the TLB Tag entry is selected by
the ctxtsel bit of the address. If ctxtsel is 0, this field contains context A If ctxtsel is 1, this
field contains context B.

63 013 12

pid real

61 5960

parity used

58 57 4748

— va_ra{47:13} context{12:0}
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An ASI load from the TLB Tag Read register initiates an internal read of the tag
portion of the specified TLB entry.

ASI loads from the TLB Data-In register are not supported and generate a
DAE_invalid_asi trap.

12.11 I/D-MMU Demap

12.11.1 I-/D-MMU Demap
Demap is an MMU operation, as opposed to a register operation as described above.
The purpose of demap is to remove zero, one, or more entries in the TLB. Four types
of demap operation are provided: Demap Page, Demap Context, Demap All, and
Demap All Pages. All demap operations only demap those pages whose PID
matches the PID specified in the Partition Identifier register. Demap Page removes
zero or one1 TLB entry that matches exactly the specified virtual page number and
real bit. Demap Context removes zero, one, or many TLB entries that match the
specified context identifier and have the real bit cleared. Demap Context will never
demap a real translation (r = 1). Demap All Pages removes all pages that either have
their real bit set (if the r bit in the demap address is set) or their real bit clear (if the
r bit in the demap address is clear), regardless of their context. Demap All removes
all pages, regardless of their context or real bit.

The Demap Page operation has two forms: demap page and demap real page.
Address bit 10 controls which form of demap page is used. If address bit 10 is a 1,
only a real translation entry in the TLB (r = 1) where the RA matches the VA portion
of the demap address will be demapped (the context is ignored on demap real
translation). If address bit 10 is a 0, only a virtual-to-physical translation entry in the
TLB (r = 0) where the VA of the entry matches the VA of portion of the demap
address and the context matches the specified context will be demapped.

Demap causes the associated tag access register to be updated; see Section 12.10.5, I-
/D-TLB Tag Access Registers, on page 136.

Demap is initiated by an STXA with ASI = 5716 for I-MMU demap or 5F16 for
D-MMU demap. FIGURE 12-17 shows the Demap format; TABLE 12-28 describes the
fields.

1. Demap Page may in fact remove more than one TLB entry for the error case where multiple TLB entries match
the virtual page number and real bit. For this multiple match error case, Demap Page will remove all
matching TLB entries.
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FIGURE 12-17 MMU Demap Operation Format

A demap operation does not invalidate the TSB in memory. It is the responsibility of
the software to modify the appropriate TTEs in the TSB before initiating any Demap
operation.

TABLE 12-28 Field Description for MMU Demap Operation Format

Bit Field Description

63:13 va_ra The virtual page number of the TTE to be removed from the TLB; This field is not
used by the MMU for the Demap Context, Demap All, or Demap All Pages operations.
NOTE: The virtual address for demap is not checked for out-of-range violations;
instead, va{63:48} is ignored.

10 r Valid for Demap Page and Demap All Pages only, selects between demapping real
translation(s) (r = 1) or virtual translation(s) (r = 0).

7:6 type The type of demap operation, as described in TABLE 12-29.

5:4 context Context ID: Context register selection, as described in TABLE 12-30; Use of the reserved
value causes the demap to be ignored for demap page and demap context, but is a
valid value for a Demap All Pages or Demap All operation.

Note Address bits 12:11, 9:8 and 3 are ignored during a demap and
may be any value.

0000context

012
Address

Data

3463 13 9 56

type

063

—

81011

—— r

7

va_ra{63:13}

TABLE 12-29 MMU Demap Operation Type Field Description

Type Field Demap Operation

00 Demap Page

01 Demap Context

10 Demap All

11 Demap All Pages

TABLE 12-30 MMU Demap Operation Context Field Description

Context ID Field Context Used in Demap

00 Primary 0

01 Secondary 0

10 Nucleus

11 Reserved
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The demap operation produces no output.

12.11.2 I-/D-Demap Page (type = 0)
Demap Page removes the TTE from the specified TLB matching the specified virtual
page number, real bit, partition identifier register, and context register.

Virtual page offset bits {15:13}, {21:13}, and {27:13}, for 64-Kbyte, 4-Mbyte, and 256-
Mbyte page TLB entries, respectively, are stored in the TLB, but are always set to
zero and do not participate in the match for that entry. This is the same condition as
for a translation match.

12.11.3 I-/D-Demap Context (type = 1)
Demap Context removes all TTEs from the specified TLB having the specified
context, a real bit of 0, and matching the partition identifier register.

12.11.4 I-/D-Demap All (type = 2)
Demap All removes all TTEs from the specified TLB matching the partition identifier
register.

12.11.5 I-/D-Demap All Pages (type = 3)
Demap Real removes all TTEs from the specified TLB matching the specified real bit
and the partition identifier register.

Note For the IMMU, the Demap Page operation does not support the
Secondary Context encoding, and using it will cause the demap
to be ignored.

Note For the IMMU, the Demap Context operation does not support
the Secondary Context encoding, and using it will cause the
demap to be ignored.
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12.12 TLB Hardware

12.12.1 TLB Operations
The TLB supports exactly one of the following operations per clock cycle:

■ Translation. The TLB receives a virtual address or real address, a partition
identifier and context identifier as input and produces a physical address and
page attributes as output.

■ Demap operation. The TLB receives a virtual address and a context identifier as
input and sets the Valid bit to zero for any entry matching the demap page or
demap context criteria. This operation produces no output.

■ Read operation. The TLB reads either the CAM or RAM portion of the specified
entry. (Since the TLB entry is greater than 64 bits, the CAM and RAM portions
must be returned in separate reads. See I-/D-TLB Data-In/Data-Access/Tag-Read
Registers on page 143 for details.)

■ Write operation. The TLB simultaneously writes the CAM and RAM portion of
the specified entry, or the entry given by the replacement policy described in
Section 12.12.2.

■ No operation. The TLB performs no operation.

12.12.2 TLB Replacement Policy
OpenSPARC T2 uses a used bit scheme to generate a replacement index. Each TLB
entry has an associated valid and used bit. An entry’s used bit is set on each TLB
translation hit and also on the write of an entry. When setting the used bit for a
translation or TLB write would result in all used bits being set, the used bits for all
TLB entries are cleared instead.

On an automatic write to the TLB initiated through an ASI store to the TLB Data-In
register, the TLB replaces the first invalid or unused entry.
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CHAPTER 13

Clocks, Reset, RED_state, and
Initialization

13.1 Clock Unit
The clock unit block contains the control registers for chipwide clocking.

OpenSPARC T2 has three synchronous clock domains and two asynchronous clock
domains. The synchronous clock domains consist of:

■ CMP (physical processors, crossbar and L2 cache) clock domain (target 1.4 GHz)
■ IO clock domain (target 350 MHz)
■ Memory (DR) clock domain (target 333 MHz)

In the synchronous clock domains, all the clocks are derived from the same reference
clock. There is one PLL to generate CMP, IO, and memory clocks.

The two asynchronous clock domains are

■ PCI-Express clock domain 250 MHz
■ Ethernet MAC clock domain 312.5 MHz

The PCI-Express clock domain derives its clock from a PLL in the Tx SerDes which
is driven by an external clock. In mission mode, the external clock is asynchronous
to the CMP, I/O, and memory clock domains. The Ethernet MAC also has its own
clock domain asynchronous to the rest of the chip. It comes from its SerDes.

Controls for the PLL are found in the PLL Control register, whose format is shown in
TABLE 13-1.
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The recommended procedure for doing a frequency change with warm reset is listed
below:

1. Write the PLL_CTL register to the values needed for the new frequency point.
This write should have the change bit set to a 1 and must be a 64-bit write
(doubleword store).

2. Generate a warm reset.

TABLE 13-1 PLL Control Register – PLL_CTL (83 0000 000016)

Bit Field
Initial
Value

WMR
Protected R/W Description

63:37 — 0 — RO Reserved.

36 pll_clamp_ fltr 0 Yes RW PLL Clamp Filter Setting

35:34 st_delay_dr 016 Yes RW DR Stretch Delay Setting (40 ps intervals).
[00, 01, 10, 11] → [40, 80, 120, 160] ps

33 pll_char_in 0 Yes RW PLL characterization test input.

32 change 1 Yes RW If 1, change frequency on next warm reset.

31:30 align_shift 0 Yes RW Shift align detect point by [-1:1] CMP cycle. Affects
dr_sync pulse generation. All other sync pulses
unchanged.
00 : No shift, 01 : +1 cycle, 10 : −1 cycle, 11 : No shift.

29 serdes_dtm2 0 Yes RW Mode 2 - IO/IO2x set to DR rate; used for observing
debug data on MIO at (up to) CMP rate with DR sync en

28 serdes_dtm1 0 Yes RW Mode 1 - IO/IO2x set to DR rate; used for observing
MCU TX CRC bits on MIO at DR rate

27:26 st_delay_ cmp 0 Yes RW CMP Stretch delay setting (40 ps intervals).
[00, 01, 10, 11]→ [40, 80, 120, 160] ps

25 st_phase_hi 0 Yes RW If 1, stretch high phase of clock. If 0, stretch low phase of
clock.

24:18 pll_div4 8 Yes RW PLL VCO divisor (D4) for DR.

17:12 pll_div3 1 Yes RW PLL VCO divisor (D3) for CMP.

11:6 pll_div2 7 Yes RW PLL feedback divisor (D2).

5:0 pll_div1 1 Yes RW PLL prescalar (D1).

CAUTION! The values of pll_div1, pll_div2, pll_div3, and pll_div4 in the
PLL_CTL register are interdependent and must be changed
together in a coherent fashion. Illegal values exist that will
inhibit correct functional operation. In addition, valid values
should not be reverse engineered by experimentation. Values
exist that may work at some process, voltage, and temperature
points, but do not allow sufficient margin for correct electrical
operation across PVT combinations.
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The PLL is programmed through a combination of registers (csr fields), direct chip-
level pin control and combinational logic. External pin-level control is applicable
typically in test mode.

Dividers D1, D2, and D3 perform integer division. D4 has fractional divide
capability in discrete increments of 0.5 by using both phases of the VCO clock. The
divider configurations allow cmp_pll_clk to run at different multiples of pll_sys_clk,
but dr_pll_clk is always twice as fast as pll_sys_clk. The DR clock output may not
have 50/50 duty cycle, but should be within 10%.This is not an issue within
OpenSPARC T2 since there is no operation on the low phase.

The divider values are summarized in the table below with information on both
effective and actual bits.

Even though all four dividers can be programmed via CSR writes, there is a subset
of values that are valid. D3, for example, needs to be set to divide by 2. Putting a
divide by 3 or higher will result in a non 50/50 duty cycle CMP clock. dr_pll_clk may
not be produced correctly since it uses both phases of the VCO clock. Acceptable
values for normal operating or mission mode with corresponding clock frequencies
are given in Tables13-3 and 13-4.

The clock frequency multiplication equations with respect to the frequency (fsys) of
the sys_clk input pin are shown.

fvco ← (D2 × D3 ÷ D1) fsys

fcmp ← (1 /D3) fvco ← (D2 ÷ D1) fsys

fdr ← (1 /D4) fvco ← (D2 × D3) ÷ (D1 × D4) fsys

fio ← 1/4 fcmp ← (D2 ÷ 4D1) fsys

fio2x ← 1/2 fcmp ← (D2 ÷ 2D1) fsys

The first row in any of the three sets in the table below holds the default divider
ratio during power-on-reset. The rows in blue (14 and 10) of the two sets refer to the
targeted operating frequencies. Red sections are beyond the scope of expected
operation, even though within OpenSPARC T2 there is no check for these
configurations.

TABLE 13-2 PLL Divider Programming for Mission Mode

DIV Bits
(Effective)
Valid Range Binary Encoded Values Comments

D1 6 2 00_0001 Binary value = Effective value − 1

D2 6 8–21 00_0111 − 01_0100 Binary value = Effective value − 1

D3 6 2 00_0001 Binary value = Effective value − 1

D4 7 4.0–10.5 00_0100_0 − 00_1010_1 Binary value {6:1} = Effective value; bit 0 = 0 for
integer effective, and 1 for effective x.5
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TABLE 13-3 Div Ratios for sys_clk = 133.33 MHz

No
Sys_clk
(MHz)

Effec-
tive
D1

Effec-
tive
D2

Effec-
tive
D3

Effec-
tive
D4

D2 *
D3

vco
(MHz)

cmp_
clk
(MHz)

io_
clk
(MHz)

io2x_
clk
(MHz)

dr_
clk
(MHz)

cmp
: dr
ratio

1 133.33 2 8 2 4 16 1066.67 533.33 133.33 266.67 266.67 2.0

2 133.33 2 9 2 4.5 18 1200 600 150 300 266.67 2.25

3 133.33 2 10 2 5.0 20 1333.33 666.67 166.67 333.33 266.67 2.5

4 133.33 2 11 2 5.5 22 1466.67 733.33 183.33 367.67 266.67 2.75

5 133.33 2 12 2 6.0 24 1600 800 200 400 266.67 3.00

6 133.33 2 13 2 6.5 26 1733.33 866.67 216.67 433.33 266.67 3.25

7 133.33 2 14 2 7.0 28 1866.67 933.33 233.33 466.67 266.67 3.5

8 133.33 2 15 2 7.5 30 2000 1000 250 500 266.67 3.75

9 133.33 2 16 2 8.0 32 2133.33 1066.67 266.67 533.33 266.67 4.0

10 133.33 2 17 2 8.5 34 2266.67 1133.33 283.33 566.67 266.67 4.25

11 133.33 2 18 2 9.0 36 2400 1200 300 600 266.67 4.5

12 133.33 2 19 2 9.5 38 2533.33 1266.67 316.67 633.33 266.67 4.75

13 133.33 2 20 2 10.0 40 2666.67 1333.33 333.33 666.67 266.67 5.0

14 133.33 2 21 2 10.5 42 2800 1400 350 700 266.67 5.25

TABLE 13-4 Div Ratios for sys_clk = 166.67 MHz

No
Sys_clk
(MHz)

Effec-
tive
D1

Effec-
tive
D2

Effec-
tive
D3

Effec-
tive
D4

D2 *
D3

vco
(MHz)

cmp_clk
(MHz)

io_
clk
(MHz)

io2x_clk
(MHz)

dr_
clk
(MHz)

cmp
: dr
ratio

1 166.67 2 8 2 4 16 1333.33 666.67 166.67 333.33 333.33 2.0

2 166.67 2 9 2 4.5 18 1500 750 187.5 375 333.33 2.25

3 166.67 2 10 2 5.0 20 1666.67 833.33 208.33 416.67 333.33 2.5

4 166.67 2 11 2 5.5 22 1833.33 916.67 229.17 458.33 333.33 2.75

5 166.67 2 12 2 6.0 24 2000 1000 250 500 333.33 3.0

6 166.67 2 13 2 6.5 26 2166.67 1083.33 270.83 541.67 333.33 3.25

7 166.67 2 14 2 7.0 28 2333.33 1166.67 291.67 583.33 333.33 3.5

8 166.67 2 15 2 7.5 30 2500 1250 312.5 625 333.33 3.75

9 166.67 2 16 2 8.0 32 2666.67 1333.33 333.33 666.67 333.33 4.0

10 166.67 2 17 2 8.5 34 2833.33 1416.67 354.17 708.33 333.33 4.25
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13.1.1 Other Clock Unit Registers
The clock unit also contains the random number generator registers.

11 166.67 2 18 2 9.0 36 3000 1500 375 750 333.33 4.5

12 166.67 2 19 2 9.5 38 3166.67 1583.33 395.83 791.67 333.33 4.75

13 166.67 2 20 2 10.0 40 3333.33 1666.67 416.67 833.33 333.33 5.0

14 166.67 2 21 2 10.5 42 3500 1750 437.5 875 333.33 5.25

Note Data is shifted serially, so doing more than 1 read in 64 cycles
will not produce truly random data in diagnostic mode
(rng_ctl = 1).

TABLE 13-5 RNG_CTL Register (83 -0000 002016)

Bit Field
Initial
Value

WMR
Protected R/W Description

63:25 Reserved 016 — R Reserved

24:9 rng_wait_ cnt 003E16 No RW Minimum wait time before successive rng data is sent.

8 rng_bypass 016 No RW Controls VCO voltage source.
0 = sets noise cell VCO control voltage = output of
feedback amplifier. 1 sets noise cell VCO control voltage
= output of bias generator

7:6 rng_vcoctrl_sel 016 No RW Pmos diode D/A setting bus. Controls VCO rate for each
noise cell.

5:4 rng_anlg_ sel 016 No RW Analog mux select for characterization.

3 rng_ctl4 116 No RW Enables using LFSR or plain shift register. Set to LFSR
mode by default.

2 rng_ctl3 116 No RW Control for using noise cell 3.

1 rng_ctl2 116 No RW Control for using noise cell 2.

0 rng_ctl1 116 No RW Control for using noise cell 1.

TABLE 13-4 Div Ratios for sys_clk = 166.67 MHz

No
Sys_clk
(MHz)

Effec-
tive
D1

Effec-
tive
D2

Effec-
tive
D3

Effec-
tive
D4

D2 *
D3

vco
(MHz)

cmp_clk
(MHz)

io_
clk
(MHz)

io2x_clk
(MHz)

dr_
clk
(MHz)

cmp
: dr
ratio
• 157



The random number generator (rng) generates random numbers from three noise
cells. There is one rng block and one LFSR (Linear Feedback Shift Register) to be
shared among the eight processor cores. Only one of the cells may be active at a
time, all three may be active, or none of them may be active. Any other combination
defaults to selecting all three noise cells. The following encoding applies:

The raw generators will serially output 1 data bit into a 64-bit register. Under
functional mode, the register generates data by implementing the CRC polynomial.

P(x) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + x43 + x42 + x41
+ x39 + x38 + x37 + x35 + x32 + x28 + x25 + x22 + x21 + x17 + x15 + x13 + x12 + x11
+ x7 + x5 + x + 1

After each read request, it is important to not maintain any correlation with the past
generated values, so the LFSR will be flushed after every read acknowledge. The
register will be flushed with a non-zero state FFFF_FFFF_FFFF_FFFF16. Also,
multiple requests for rng_data are automatically separated by n + 2 cycles, where n
can be programmed by writing to the 16-bit field rng_wait_cnt in the RNG_CTL
register.

In diagnostic mode (ctl4 = 0), the LFSR acts as a simple shift register capturing the
noise cell output directly, determined independently by ctl1, ctl2, and ctl3 as per
encoding. The additional constraint in this mode is that successive read requests for
the rng_data will be delayed by 64 iol2clk cycles. Also, flushing the LFSR after every
read will be disabled in this mode.

The nominal frequency of the oscillator in each noise cell that generates a serial
output can also be set independently by programming the rng_vcoctrl_sel{1:0} field.
There are four settings that correspond to four different frequencies; however, each

TABLE 13-6 RNG_DATA Register (83 0000 003016)

Bit Field
Initial
Value

WMR
Protected R/W Description

63:0 rng_data X — R Random-number-generator data.

TABLE 13-7 Encoding for Noise Cell Selection

rng_ctl3 rng_ctl3 rng_ctl3 Effect

0 0 0 Deselect all noise cells (feeds 0 into LFSR)

0 0 1 Select noise cell 1

0 1 0 Select noise cell 2

1 0 0 Select noise cell 3

011,101,110,111 Select all 3 noise cells
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cell must be programmed one at a time. As an example, consider the following
configuration: noise cell1 → 00 setting, cell2 → 10 setting, cell 3 → 01 setting, and
observe all 3 cells. One would proceed as follows:

1. Set CTL3,CTL2,CTL1 = 001 and set RNG_VCO_CTRL = 00

2. Set CTL3,CTL2,CTL1 = 010 and set RNG_VCO_CTRL = 10

3. Set CTL3,CTL2,CTL1 = 100 and set RNG_VCO_CTRL = 01

13.2 Reset Unit

13.2.1 Reset Generation
The Reset Generation register, shown in TABLE 13-8, allows software to generate an
external (XIR) resets to all processors specified in the ASI_XIR_STEERING register
or a chipwide warm reset (WMR) or debug reset (DBR).

13.2.2 Reset Source
The Reset Source register, shown in TABLE 13-9 allows software to identify the source
of a reset. The bits in this register are write-one to clear.

TABLE 13-8 Reset Generation Register – RESET_GEN (89 0000 080816)

Bit Field
Initial
Value R/W Description

63:3 —0 0 RO Reserved

3 dbr_gen 0 RW Set to 1 to generate a DBR. Value is automatically cleared once the DBR is
complete.

2 — 0 RO Reserved (was por_gen on Fire).

1 xir_gen 0 RW Set to 1 to generate an XIR. Value is automatically cleared once the XIR is
complete.

0 wmr_gen 0 RW Set to 1 to generate a WMR. Value is automatically cleared once the WMR is
complete.

Programming
Note

Software may only write a 1 to one of the reset generation bits at
a time. Behavior of OpenSPARC T2 is undefined if software
writes 1’s to multiple reset generation bits.
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13.2.3 Reset Fatal Error Enable
The Reset Fatal Error Enable register, shown in TABLE 13-10 allows software to control
whether L2 fatal errors generate a warm reset.

TABLE 13-9 Reset Source Register – RESET_SOURCE (89 0000 081816)

Bit Field
Initial
Value R/W Description

63:16 —0 0 RO Reserved

15 l2t7_fatal 0 RW1C Bank 7 of the L2 cache detected a fatal error.

14 l2t6_fatal 0 RW1C Bank 6 of the L2 cache detected a fatal error.

13 l2t5_fatal 0 RW1C Bank 5 of the L2 cache detected a fatal error.

12 l2t4_fatal 0 RW1C Bank 4 of the L2 cache detected a fatal error.

11 l2t3_fatal 0 RW1C Bank 3 of the L2 cache detected a fatal error.

10 l2t2_fatal 0 RW1C Bank 2 of the L2 cache detected a fatal error.

9 l2t1_fatal 0 RW1C Bank 1 of the L2 cache detected a fatal error.

8 l2t0_fatal 0 RW1C Bank 0 of the L2 cache detected a fatal error.

7 ncu_fatal 0 RW1C The NCU or a block interfacing to it detected a fatal error.

6 pb_xir 0 RW1C The user asserted the BUTTON_XIR_ input pin.

5 pb_rst 0 RW1C The user asserted the PB_RST_L input pin.

4 pwron_rst 1 RW1C The system processor asserted the PWRON_RST_L input pin.

3 dbr_gen 0 RW1C Software wrote a 1 to the dbr_gen field of the RESET_GEN register.

2 — 0 RO Reserved (In Fire was, software wrote a 1 to the por_gen field of the
RESET_GEN register).

1 xir_gen 0 RW1C Software wrote a 1 to the xir_gen field of the RESET_GEN register.

0 wmr_gen 0 R/W1C Software wrote a 1 to the wmr_gen field of the RESET_GEN register.

TABLE 13-10 Reset Fatal Error Enable Register – RESET_FEE (89 0000 082016)

Bit Field
Initial
Value R/W Description

63:16 —0 0 RO Reserved

15 l2t7_fee 0 RW Allow Bank 7 of the L2 cache to generate a fatal error.

14 l2t6_fee 0 RW Allow Bank 6 of the L2 cache to generate a fatal error.

13 l2t5_fee 0 RW Allow Bank 5 of the L2 cache to generate a fatal error.

12 l2t4_fee 0 RW Allow Bank 4 of the L2 cache to generate a fatal error.

11 l2t3_fee 0 RW Allow Bank 3 of the L2 cache to generate a fatal error.

10 l2t2_fee 0 RW Allow Bank 2 of the L2 cache to generate a fatal error.
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13.2.4 Subsystem Reset
The Subsystem Reset Generation register, shown in TABLE 13-11, allows software to
reset selected I/O subsystems.

13.2.5 Reset Status
The chip Reset Status register, shown in TABLE 13-12, is maintained for all chipwide
reset and power management commands. The reset source bits in this register are
writable to allow software to clear them after the chip reset sequence is complete, in
order for virtual processor warm resets to be distinguished from chip resets.
Hardware will copy the current reset status into a shadow status whenever a warm
reset occurs.

9 l2t1_fee 0 RW Allow Bank 1 of the L2 cache to generate a fatal error.

8 l2t0_fee 0 RW Allow Bank 0 of the L2 cache to generate a fatal error.

7:0 — 0 RO Reserved

TABLE 13-11 Subsystem Reset Generation Register – SSYS_RESET (89 0000 083816)

Bit Field
Initial
Value R/W Description

63:7 —0 0 RO Reserved

6 — 0 RW

5 — 0 RW

4 — 0 RW Reserved (was set to 1 to protect the FBDIMM interfaces of each MCU
from being reset by either warm reset or debug reset).

3:2 —2 0 RO Reserved

1 — 0 RW

0 — 0 RW

TABLE 13-12 Reset Status Register – RESET_STAT (89 0000 0810)16

Bit Field Initial Value R/W Description

63:12 —0 0 RO Reserved

11 freq_s 0 RO Shadow status of FREQ

10 por_s 0 RO Shadow status of POR

9 wmr_s 0 RO Shadow status of WMR

8:5 — 0 RO Reserved

4 —2 0 RW Reserved

TABLE 13-10 Reset Fatal Error Enable Register – RESET_FEE (89 0000 082016)

Bit Field
Initial
Value R/W Description
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13.2.6 Lock Time
The Lock Time register determines the length of time the Reset Unit in OpenSPARC
T2 waits for all the PLLs in OpenSPARC T2 to lock. The initial value is an estimated
time only that software can reprogram during the warm reset sequence. Moreover,
software can enable the pre-WMR boot code to perform warm reset with the same
PLL configuration register values, obviating the need to wait for the PLLs to relock.

13.2.7 Propagation Time
The Propagation Time register indicates how long it takes for the longest scan chain
to flush. The register initializes to the estimated longest time needed (assuming the
highest planned reference clock frequency), that software can reprogram during
warm reset sequence.

3 freq 0 RW Set to 1 if the reset is a warm reset that changed frequency.

2 por 1 RW Set to 1 if the reset is from PWRON_RST_L pin.

1 wmr 0 RW Set to 1 if the reset is from the PB_RST_L pin.

0 — 0 RO Reserved

TABLE 13-13 Lock Time Register – LOCK_TIME (89 0000 087016)

Bit Field
Initial
Value R/W Description

63:16 — 0 RO Reserved

15:0 lock_time 140016 RW The length of time the Reset Unit in OpenSPARC T2 waits for all
the PLLs in OpenSPARC T2 to lock.

TABLE 13-14 Propagation Time Register – PROP_TIME (89 0000 088016)

Bit Field Initial Value R/W Description

63:16 — 0 RO Reserved

15:0 prop_time C0016 RW Time taken for longest scan chain to flush.

TABLE 13-12 Reset Status Register – RESET_STAT (89 0000 0810)16

Bit Field Initial Value R/W Description
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13.3 Reset Overview
A reset is anything that causes an entry to RED_state. Two classes of resets exist:
chipwide and virtual processor.

Chipwide resets are power-on reset (POR), warm reset (WMR), and debug reset
(DBR). POR affects all subsystems in OpenSPARC T2, while WMR affects all
subsystems and DBR affects all subsystems except PIU. Chipwide resets are
generated from the PWRON_RST_L input pin (POR), PB_RST_L pin (WMR), by
software writing a 1 to the wmr_gen field of the RESET_GEN register (WMR) or to
the dbr_gen field of the RESET_GEN register (DBR) and from fatal errors in the
processor (WMR).

Virtual processor resets are XIR, WDR, SIR and are generated by the BUTTON_XIR_
pin (XIR), software resets (SIR), software writing a 1 to the xir_gen field of the
RESET_GEN register (XIR), and error conditions (WDR), and only affect the
operation of a single virtual processor (or for the case of XIR, only the virtual
processors specified in XIR_STEERING as described in ASI_XIR_STEERING on
page 183). In addition to forcing entry to RED_state, various resets cause different
effects in initializing processor state, as discussed in the following sections. Reset
priorities from highest to lowest are: POR, WMR, DBR, XIR, WDR, SIR. Resets are
not maskable (that is, resets ignore PSTATE.ie).

13.4 Chipwide Resets
Chipwide resets affect all virtual processors in a chip, as well as all I/O, cache, and
DRAM subsystems and are categorized as power-on or warm reset. Power-on reset
is used when the chip power and clock inputs are outside their operating
specifications. Warm reset is used when the power and clock inputs are stable. Warm
reset is typically used to modify clock frequencies or ratios, or to reinitialize the chip
after an unrecoverable hardware or software failure. Warm reset resets all
subsystems in OpenSPARC T2.

Programming
Note

Chipwide resets cause the virtual processors to enter
RED_state and initialize some, but not all, of the processor
state. Significant programming effort is required to take the
OpenSPARC T2 chip from a chipwide reset to the point where
the operating system can be loaded.
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13.4.1 Power-on Reset (POR)
A power-on reset occurs when the PWRON_RST_L pin is asserted and then
deasserted. The PWRON_RST_L pin must be asserted until 1 clock after the CPU
voltages and input clocks reach their operating specifications. When the
PWRON_RST_L pin is asserted, all other resets and traps are ignored. Power-on
reset has a trap type of 00116 at physical address offset 2016. Since POR and warm
reset share the same trap type and trap vector, the RSET_STAT register described in
Section 13.2.5 has separate POR and warm reset bits to allow software to distinguish
between POR and warm resets. All pending transactions are cancelled. Strand 0 of
the first available physical core begins executing at the RED_State_Trap_Vector
base plus POR offset, while the remaining strands start out inactive. BIST testing
may optionally be initiated by software as part of the chip initialization sequence.

After a power-on reset, software must initialize values specified as unknown in
Machine State After Reset and in RED_State on page 166.

13.4.2 Warm Reset (WMR)
A warm reset occurs when the PB_RST_L pin is asserted and then deasserted, when
software writes a 1 to the wmr_gen field of the RESET_GEN register, or when a fatal
error is detected in the processor. When a warm reset is received, all other resets and
traps except POR are ignored. Warm reset has the same trap type and vector as
power-on reset: a trap type of 00116 at physical address offset 2016. Software can
distinguish between POR and the various sources of warm reset by checking the
RSET_STAT register. The memory controller places DRAM in self-refresh mode
prior to warm reset only if SSYS_RESET.mcu_selfrsh bit is set by software prior to
the warm reset. Otherwise, on a warm reset, the memory controller does not put the
DRAM in self-refresh.Warm reset can be programmed to do BIST testing. After
warm reset, strand 0 of the first available physical core begins executing at the
RED_State_Trap_Vector base plus POR offset, while the remaining strands start
out inactive.

After a warm reset, software must initialize values specified as unknown in Machine
State After Reset and in RED_State on page 166. If there was a clean shutdown, the
primary instruction, primary data, L2 caches, and main memory are still valid.
Otherwise, I-cache tags, D-cache tags, and L2 cache tags should be initialized before
enabling the caches. The iTLB and dTLB also must be initialized before enabling
memory management.

Note Each unknown register must be initialized before it is used.
Failure to initialize registers or states properly before use may
result in unpredictable or incorrect results.
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Note that if a warm reset is received without software first placing the chip in a
quiescent state, the hardware will still maintain the state of the primary instruction,
primary data, L2 caches, main memory, and all error registers/logs. However, the
caches and main memory may no longer be completely coherent after the warm
reset, because any transactions in flight when the warm reset was received will have
been lost. In particular, dirty lines in the process of being written back to main
memory may have been dropped.

13.4.3 Debug Reset (DBR)
A debug reset occurs when software writes a 1 to the dbr_gen field of the
RESET_GEN register. DBR behaves the same as warm reset, except that the PIUs are
not reset.

13.5 Virtual Processor Resets
Virtual processors can receive reset traps. Virtual processor reset traps do not set any
bits in the RSET_STAT register.

13.5.1 Externally Initiated Reset (XIR)
An externally initiated reset can be generated either from the BUTTON_XIR_ pin or
by writing a 1 to the xir_gen field of the RESET_GEN register. When either of these
events occurs, an XIR reset trap is sent to all virtual processors specified in the
XIR_STEERING register. This trap causes a SPARC V9 XIR, which has a trap type of
00316 at physical address offset 6016. It has higher priority than all other virtual
processor core resets. XIR is used for system debug.

13.5.2 Watchdog Reset (WDR) and error_state

A SPARC V9 WDR is generated when a virtual processor encounters a trap when
TL = MAXTL, it passes through error_state and signals itself internally to take a
WDR trap. Window traps that cause watchdog traps still update CWP if they would
have done so with no watchdog trap being generated.
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13.5.3 Software-Initiated Reset (SIR)
A SPARC V9 SIR interrupt can be generated on a virtual processor by issuing a SIR
instruction while operating in hyperprivileged mode. This virtual processor reset has
a trap type of 00416 at physical address offset 8016.

13.6 RED_state
RED_state is an acronym for Reset, Error, and Debug State. RED_state is
described in the UltraSPARC Architecture 2007 specification.

13.7 RED_state Trap Vector
When a SPARC V9 virtual processor processes a reset or trap that enters
RED_state, it takes a trap at an offset relative to the RED_state_trap_vector
base address (RSTVADDR). The trap offset depends on the type of red mode trap and
takes the values:

■ POR, WMR, or DBR 2016
■ XIR 6016
■ WDR 4016
■ SIR 8016
■ other A016

In OpenSPARC T2 the RSTV base address is FFFF FFFF F000 000016 if
ASI_RST_VEC_MASK.vec_mask = 0. If ASI_RST_VEC_MASK.vec_mask = 1, RSTV
base address is 0000 0000 0000 000016. See ASI_RST_VEC_MASK on page 434 for
more details on the ASI_RST_VEC_MASK register.

13.8 Machine State After Reset and in
RED_State
TABLE 13-15 shows CPU state created as a result of any reset, or after entering
RED_state.
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TABLE 13-15 CPU State After Reset and in RED_state (1 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2

Integer Registers 0 Unchanged

Floating Point Registers 0 Unchanged

iTLB/dTLB Mappings All invalid Unchanged

PSTATE tct 0 (Trap on control transfer)

mm 0 (TSO)

red 0 (RED_state bit is in HPSTATE register)

pef 1 (FPU on)

am 0 (Full 64-bit addresses)

priv 1

ie 0 (Disable interrupts)

ag 0 (Alternate globals always 0)

cle 0 (Current not little endian)

tle 0 (Trap not little endian) Unchanged

ig 0 (Interrupt globals always 0)

mg 0 (MMU globals always 0)

HPSTATE ibe 0 (Instruction breakpoint disabled)

red 1 (RED_state)

hpriv 1 (Hyperprivileged mode)

tlz 0 (tlz traps disabled)

TBA{63:15} 0 Unchanged

HTBA{63:15} 0 Unchanged

Y 0 Unchanged

PIL 0 Unchanged

CWP 0 Unchanged (except for window traps)

PC RSTV|2016 RSTV|2016 RSTV|4016 RSTV|6016 RSTV8016 RSTV|A016

NPC RSTV|2416 RSTV|2416 RSTV|4416 RSTV|6416 RSTV|1684 RSTV|A416

TT[TL] 1 1 2 or Trap
type

3 4 Trap type

TPC[TL] PC

TNPC[TL] 0 NPC

Store Buffer Empty Unchanged Empty

CCR 0 Unchanged

ASI 0 Unchanged

TL MAXTL min(TL+1,MAXTL)

GL MAXGL min(GL+1,MAXGL)
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TSTATE[TL] GL 0 pre-WMR1 GL

CCR 0 pre-WMR1 CCR

ASI 0 pre-WMR1 ASI

PSTATE 0 016 PSTATE

CWP 0 pre-WMR1 CWP

HTSTATE[TL] ibe 0 0 HPSTATE.ibe

red 0 0 HPSTATE.red

hpriv 0 0 HPSTATE.hpriv

tlz 0 0 HPSTATE.tlz

TICK npt 1 1 Unchanged

counter 0 Count Count

CANSAVE 616 Unchanged

CANRESTORE 016 Unchanged

OTHERWIN 016 Unchanged

CLEANWIN 716 Unchanged

WSTATE other 016 Unchanged

normal 016 Unchanged

VER manuf 003E16

impl 002416

mask Mask-dependent (4 bits major, 4 bits minor)

maxtl 6

maxgl 3

maxwin 7

FSR all 0 Unchanged

FPRS all 416 Unchanged

GSR all 0 Unchanged

PERF_CONTROL
(PCR)

all 0 (off) Unchanged

PIC 0 Unchanged

TICK_CMPR int_dis 1 Unchanged

tick_cmpr 0 Unchanged

STICK_CMPR int_dis 1 Unchanged

stick_cmpr 0 Unchanged

HSTICK_CMPR int_dis 1 Unchanged

hstick_cmpr 0 Unchanged

HINTP 0 Unchanged

SOFTINT 0 Unchanged

ASI_SCRATCHPAD_0_REG 0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (2 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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ASI_SCRATCHPAD_1_REG 0 Unchanged

ASI_SCRATCHPAD_2_REG 0 Unchanged

ASI_SCRATCHPAD_3_REG 0 Unchanged

ASI_SCRATCHPAD_6_REG 0 Unchanged

ASI_SCRATCHPAD_7_REG 0 Unchanged

ASI_PRIMARY_CONTEXT_0 0 Unchanged

ASI_SECONDARY_CONTEXT_0 0 Unchanged

ASI_PRIMARY_CONTEXT_1 0 Unchanged

ASI_SECONDARY_CONTEXT_1 0 Unchanged

ASI_CPU_MONDO_QUEUE_HEAD 0 Unchanged

ASI_CPU_MONDO_QUEUE_TAIL 0 Unchanged

ASI_DEVICE_QUEUE_HEAD 0 Unchanged

ASI_DEVICE_QUEUE_TAIL 0 Unchanged

ASI_RES_ERROR_QUEUE_HEAD 0 Unchanged

ASI_RES_ERROR_QUEUE_TAIL 0 Unchanged

ASI_NONRES_ERROR_QUEUE_
HEAD

0 Unchanged

ASI_NONRES_ERROR_QUEUE_
TAIL

0 Unchanged

ASI_CORE_AVAILABLE FFFFFFFFFF
FFFFFF16 (if
all cores
available)

Unchanged

ASI_CORE_ENABLE_STATUS ASI_CORE_
AVAILABLE

ASI_CORE_
ENABLE

Unchanged

ASI_CORE_ENABLE ASI_CORE_
AVAILABLE

Unchanged

ASI_XIR_STEERING ASI_CORE_
AVAILABLE

ASI_CORE_
ENABLE

Unchanged

ASI_CMT_TICK_ENABLE 0 Unchanged

ASI_CORE_RUNNING_RW 116 (or lowest enabled
strand)

Unchanged

ASI_CORE_RUNNING_STATUS 116 (or lowest enabled
strand)

Unchanged

ASI_INST_MASK_REG 0 Unchanged

ASI_LSU_DIAG_REG 0 Unchanged

ASI_ERROR_INJECT_REG 0 Unchanged

ASI_LSU_CONTROL_REG 0

ASI_DECR 0 Unchanged

ASI_RST_VEC_MASK 0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (3 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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ASI_DESR 0 Unchanged

ASI_DFESR 0 Unchanged

ASI_CERER 0 Unchanged

ASI_CETER 0 Unchanged

ASI_clesr 0 Unchanged

ASI_CLFESR 0 Unchanged

ASI_SPARC_PWR_MGMT 0 Unchanged

ASI_HYP_SCRATCHPAD_0_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_1_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_2_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_3_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_4_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_5_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_6_REG 0 Unchanged

ASI_HYP_SCRATCHPAD_7_REG 0 Unchanged

ASI_IMMU_TAG_TARGET 0 Unchanged

ASI_IMMU_SFSR 0 Unchanged

ASI_IMMU_TAG_ACCESS 0 Unchanged

ASI_IMMU_VA_WATCHPOINT 0 Unchanged

ASI_MMU_REAL_RANGE_0 0 Unchanged

ASI_MMU_REAL_RANGE_1 0 Unchanged

ASI_MMU_REAL_RANGE_2 0 Unchanged

ASI_MMU_REAL_RANGE_3 0 Unchanged

ASI_MMU_PHYSICAL_OFFSET_0 0 Unchanged

ASI_MMU_PHYSICAL_OFFSET_1 0 Unchanged

ASI_MMU_PHYSICAL_OFFSET_2 0 Unchanged

ASI_MMU_PHYSICAL_OFFSET_3 0 Unchanged

ASI_MMU_ZERO_CONTEXT_TSB
_CONFIG_0

0 Unchanged

ASI_MMU_ZERO_CONTEXT_
TSB_CONFIG_1

0 Unchanged

ASI_MMU_ZERO_CONTEXT_TSB_
CONFIG_2

0 Unchanged

ASI_MMU_ZERO_CONTEXT_TSB_
CONFIG_3

0 Unchanged

ASI_MMU_NONZERO_CONTEXT_
TSB_CONFIG_0

0 Unchanged

ASI_MMU_NONZERO_CONTEXT_
TSB_CONFIG_1

0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (4 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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ASI_MMU_NONZERO_CONTEXT_
TSB_CONFIG_2

0 Unchanged

ASI_MMU_NONZERO_CONTEXT_
TSB_CONFIG_3

0 Unchanged

ASI_MMU_ITSB_PTR_0 0 Unchanged

ASI_MMU_ITSB_PTR_1 0 Unchanged

ASI_MMU_ITSB_PTR_2 0 Unchanged

ASI_MMU_ITSB_PTR_3 0 Unchanged

ASI_MMU_DTSB_PTR_0 0 Unchanged

ASI_MMU_DTSB_PTR_1 0 Unchanged

ASI_MMU_DTSB_PTR_2 0 Unchanged

ASI_MMU_DTSB_PTR_3 0 Unchanged

ASI_PENDING_TABLEWALK_
CONTROL

0 Unchanged

ASI_PENDING_TABLEWALK_
STATUS

0 Unchanged

ASI_DMMU_TAG_TARGET 0 Unchanged

ASI_DMMU_SFSR 0 Unchanged

ASI_DMMU_SFAR 0 Unchanged

ASI_DMMU_TAG_ACCESS 0 Unchanged

ASI_DMMU_WATCHPOINT 0 Unchanged

ASI_HWTW_CONFIG 0 Unchanged

ASI_PARTITION_ID 0 Unchanged

ASI_CMT_CORE_INTR_ID COREID

ASI_CMT_CORE_INTR_ID 7003F000016 | COREID

ASI_INTR_RECEIVE 0 Unchanged

PLL_CTL 1000204E116 Unchanged

I/D cache tags All invalid Unchanged if BISI not run, else invalid

L2 tags and data Unknown Unchanged if BISI not run, else invalid

L2 directory All invalid Unchanged if BISI not run, else invalid

L2 Error En Reg all 0 (reporting disabled) Unchanged

L2 Error Status Reg synd Unknown Unchanged

Other fields 0 Unchanged

L2 Error Address Unknown Unchanged

L2 NotData Error vcid Unknown Unchanged

rw Unknown Unchanged

address Unknown Unchanged

Other fields 0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (5 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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L2 Error Inject 0 Unchanged

L2 Mask Reg 0 Unchanged

L2 Address Compare Reg 0 Unchanged

L2 Bank Available FF16 (if all
banks
available)

Unchanged

L2 Bank Enable FF16 (if all
banks
available)

Unchanged

L2 Bank Enable Status F0016 (if all
banks
available)

F0F16 (if all
banks
available)

Unchanged

L2 Index Hash Enable 016 Unchanged

L2 Control Reg 116 Unchanged

DRAM Refresh Counter 0 Unchanged

DRAM Error Status
Register

synd Unknown Unchanged

Other fields 0 Unchanged

DRAM Error Address Unknown Unchanged

DRAM Error Inject 0 Unchanged

DRAM Error Counter 0 Unchanged

DRAM FBD Error Syndrome 0 Unchanged

DRAM Error Location Unknown Unchanged

DRAM Debug
Enable Trigger

dbg_en 0 Unchanged

Other fields 116 Unchanged

DRAM CAS Address Width B16 Unchanged

DRAM RAS Address Width F16 Unchanged

DRAM CAS Latency 316 Unchanged

DRAM Scrub Frequency FFF16 Unchanged

DRAM Refresh Frequency 51416 Unchanged

DRAM Open Bank Max 0 Unchanged

DRAM Scrub Enable 0 Unchanged

DRAM Programmable Time
Counter

0 Unchanged

DRAM RAS to RAS Different
Banks Delay

0 Unchanged

DRAM RAS to RAS Same Bank
Delay

C16 Unchanged

DRAM RAS to CAS Delay 3 Unchanged

DRAM Write to Read CAS Delay 0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (6 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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DRAM Read to Write CAS Delay 0 Unchanged

DRAM Internal Read to Precharge
Delay

216 Unchanged

DRAM Active to Precharge Delay 916 Unchanged

DRAM Precharge Command
Period

316 Unchanged

DRAM Write Recover Period 316 Unchanged

DRAM Autorefresh to Active
Period

2716 Unchanged

DRAM Mode Register Set
Command Period

216 Unchanged

DRAM Four Activate Window 216 Unchanged

DRAM Internal Write to Read
Command Delay

216 Unchanged

DRAM DIMM Stacked 0 Unchanged

DRAM Extended Mode (2) 0 Unchanged

DRAM Extended Mode (1) 1816 Unchanged

DRAM Extended Mode (3) 0 Unchanged

DRAM 8 Bank Mode 116 Unchanged

DRAM Branch Disabled 0 Unchanged

DRAM Select Low Order Address
Bits

0 Unchanged

DRAM Single Channel Mode 0 Unchanged

DRAM DIMMs Present 116 Unchanged

DRAM Fail-Over Status 0 Unchanged

DRAM Fail-Over Mask 0 Unchanged

FBD Channel State 0 Unchanged

FBD Fast Reset Flag 0 Unchanged

FBD Channel Reset 0 Unchanged

TS1 Southbound to Northbound
Mapping

0 Unchanged

TS1 Test Parameter 0 Unchanged

TS3 Failover Configuration FFFF16 Unchanged

Disable State Period 3F16 Unchanged

Calibrate State Period 0 Unchanged

Training State Minimum Time FF16 Unchanged

Training State Timeout FF16 Unchanged

Testing State Timeout FF16 Unchanged

Polling State Timeout FF16 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (7 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
• 173



DRAM Per-Rank CKE FFFF16 Unchanged

L0s Duration 2A16 Unchanged

Channel Sync Frame Frequency 2A16 Unchanged

SerDes Configuration Bus 0 Unchanged

SerDes Transmitter and Receiver
Differential Pair Inversion

0 Unchanged

SerDes Test Configuration Bus C00016 Unchanged

DRAM FBD Injected Error Source 0 Unchanged

DRAM FBR Count 0 Unchanged

IMU Error Log Enable Register 7FFF16 Unchanged

IMU Error Status Clear Register 016 Unchanged

IMU Error Status Set Register 016 Unchanged

IMU RDS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in RDS Group is set

IMU SCS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in SCS Group is set

IMU EQS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in EQS Group is set

MMU Error Log Enable Register 1FFFFF16 Unchanged

MMU Error Status Clear Register 016 Unchanged

MMU Translation Fault Address
Register

016 Unchangedonly if any Primary Error bit is set inMMU Error
Status Clear Register

MMU Translation Fault Status
Register

016 Unchangedonly if any Primary Error bit is set inMMU Error
Status Clear Register

MMU TTE Cache Data Registers 016 Unchanged

MMU DEV2IOTSB Registers 016 Unchanged

MMU IOTSBDESC Registers 016 Unchanged

ILU Error Log Enable Register F016 Unchanged

ILU Error Status Clear Register 016 Unchanged

ILU Error Status Set Register 016 Unchanged

DMU ILU Diagnostic Register 016 Unchanged (only bits 3:2)

IBIST Registers 0 Unchanged

NCU Debug Trigger Enable 0 Unchanged

SOC DECR 0 Unchanged

SOC Error Status 0 Unchanged

SOC Pending Error Status 0 Unchanged

SOC SII Error Syndrome 0 Unchanged

SOC NCU Error Syndrome 0 Unchanged

Debug Port Configuration 0 Unchanged

TABLE 13-15 CPU State After Reset and in RED_state (8 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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IO Quiesce Control

dmu_stall 0 Unchanged

Other fields Unknown Unchanged

Serial Number Unique Value

EFUSE Status FFFF FFFF FFFF FFFF16

OVERLAP_MODE 0 Unchanged

CLK_SCKSEL 0 Unchanged

SSI_LOG 016 Unchanged

MBIST_MODE Bits{3:0} 0 Unchanged

MBIST_BYPASS Bits {47:0} 0 Unchanged

MBIST_RESULT Bits {1:0} 0 Unchanged

MBIST_DONE Bits {47:0} 0 Unchanged

MBIST_FAIL Bits {47:0} 0 Unchanged

LBIST_MODE Bits {1:0} 0 Unchanged

LBIST_BYPASS Bits {7:0} 0 Unchanged

LBIST_DONE Bits {7:0} 0 Unchanged

DCR Bits {2:0} 0 Unchanged

TRIGOUT 0 Unchanged

CYCLE_COUNTE
R

Bits {63:0} 0 Unchanged

CLOCK STOP
DELAY counter

Bits{6:0} 0 Unchanged

MBIST_START 0 Unchanged

MBIST_ABORT 0 Unchanged

MBIST_START_W
MR

0 Unchanged

LBIST_START 0 Unchanged

LOCK TIME 140016 Unchanged

PROP TIME C0016 Unchanged

1. The TSTATE fields are sampled from the relevant registers on WMR.  Since these registers are
preserved through WMR, the value in the TSTATE fields after a WMR are the pre-WMR values
from the relevant registers.

2. This column applies to all other traps that take the processor into RED_state (i.e., traps while at
MAXTL − 1).

TABLE 13-15 CPU State After Reset and in RED_state (9 of 9)

Name Fields POR WMR|DBR WDR XIR SIR RED_State2
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13.9 Boot Sequence
A high-level overview of the typical OpenSPARC T2 power-up reset sequence is as
follows:

1. On power-up of the system, the system controller asserts PWRON_RST_L and
RST asserts all other reset signals. This causes (1) all OpenSPARC T2 internal
states to reset, including all control registers and memory refresh state machines,
(2) causes IO outputs to reset, and (3) protects the internal tristate muxes. The
main CPU PLL will be locking to the default clock ratio during this time. The
other PLLs, in the PIU SerDes, also will be locking to their frequencies during this
time.

2. Once power is up in the system, the system controller then deasserts
PWRON_RST_L and the CPU fetches reset configuration programming code from
the boot PROM where configuration registers (clock ratios, etc.) are programmed.
RST must deassert all reset signals simultaneously and synchronously to their
respective clocks.

3. A second, warm reset caused by writing to wmr_gen bit is used to reset most of
OpenSPARC T2 (everything except items reset only by PWRON_RST_L above),
relock the CPU PLL, and restart instruction fetch of boot code running at the
reprogrammed clock ratio. The main PLL is locking during this time if the ratio is
updated.

4. Subsequent warm resets may take place later via writing to wmr_gen bit, which
do not disturb states which are reset only by PWRON_RST_L. Warm reset may
also be caused by assertion of the PB_RST_L pin.

13.9.1 Assumed POR Software Initialization Sequence
This is the sequence we envision a machine in normal use would follow. During
debug, an engineer may wish to forego some steps, such as the warm reset.

Guaranteed by hardware:

■ L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to empty
with good parity and good ECC.

■ L2 Directory (of L1 tags) is marked invalid on reset.

■ L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity

Assumptions:

■ Main Memory – Fast ECC initialization with Bzero ASI.
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■ SPD (Serial Presence Detect) – SPD is launched by software, and can take up to
~1/12 of a second to complete.

Sequence:

1. Service processor asserts TRST_L and PWRON_RST_L.

2. Power ramps up.

3. PLLs start up, and clocks start toggling.

4. Service processor asserts TMS and applies one TCK pulse.

5. Service processor deasserts TRST_L.

6. Service processor issues 5 TCK clock pulses - TMS still asserted.
At this point the JTAG logic is reset.

Once TRST_L is deasserted, registers in the JTag portion of the TCU may be accessed
via the JTag TAP using TCK while the PLLs in OpenSPARC T2 have not locked yet.
To do this, the user needs to execute TAP_JTPOR_ACCESS after deasserting TRST_L
but before deasserting PWRON_RST_L. The status of TCU can then be checked with
TAP_JTPOR_STATUS; a status of 1 indicates that the TCU is paused and the JTAG
programming window is active. JTAG instructions can be executed during this
window. To continue with POR, the user should execute TAP_JTPOR_CLEAR after
deasserting PWRON_RST_L, which will cause TCU to continue with the POR
sequence.

7. Service processor deasserts PWRON_RST_L. Note that it must deassert
PWRON_RST_L after deasserting TRST_L.

8. PLLs lock.

9. The lowest-numbered available virtual processor begins fetching and executing
instructions at RSTVADDR || 2016. The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.

10. Read RSET_STAT register, which indicates POR.

11. Initialize CLK_DIV register with desired ratios.

12. Write 1 to wmr_gen bit of RESET_GEN, to initiate warm reset.

13. The lowest-numbered available virtual processor begins fetching and executing
instructions at RSTVADDR || 2016. The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.

14. Read RSET_STAT register, which indicates warm reset, with clock change.

15. Enable error detection on L1 and L2 caches.
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16. Enable L1 and L2 caches.

17. Copy bootstrap into L2 cache, using ASI_BLK_INIT_ST_*.

18. Branch to bootstrap (now executing from cache).

19. Copy/decode code segments from PROM space to cacheable space, using
ASI_BLK_INIT_ST_*.

20. Initialize DRAM interface blocks.

21. Force refresh asynchronicity, by zeroing out the refresh counters on each DRAM
controller, at precise intervals (n/4 of the refresh interval value).

22. Initialize main memory using ASI_BLK_INIT_ST_*.

23. Initialize rest of blocks on the chips.

24. Slowly unpark the other enabled virtual processors via the
ASI_CORE_RUNNING_W1S or ASI_CORE_RUNNING_RW registers. Additional
virtual processors should be unparked one at a time, with at least 20
microseconds elapsing between successive unpark operations to avoid surges in
power consumption.

25. All virtual processors initialize strand-specific state.

26. Strand 0 in each available physical core initializes physical core state (such as
enable L1$).

27. Jump into hypervisor.

13.9.2 Assumed Warm Reset Software Initialization
Sequence

Assumptions:

■ Need to check whether error reset or software-generated reset.

Sequence:

1. Read RSET_STAT register, which indicates warm reset.

2. Check local error logs.

3. If errors, go to crash-dump handling.

4. If no errors, initialize/clear L1 caches.

5. Turn on caches.
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6. Initialize strand-specific state.

7. Slowly unpark the other enabled virtual processors via the
ASI_CORE_RUNNING_W1S or ASI_CORE_RUNNING_RW registers. Additional
virtual processors should be unparked one at a time, with at least 20
microseconds elapsing between successive unpark operations to avoid surges in
power consumption.

8. All virtual processors initialize strand-specific state.

9. Strand 0 in each available physical core initializes physical core state (such as
clear & enable L1$).

10. Continue, as desired by SW.
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CHAPTER 14

CMT

OpenSPARC T2 implements the Sun Microsystems Standard CMT Programming
Model Specification version 2.2.1 (as incorporated into the CMT chapter of the
UltraSPARC Architecture 2007 specification), with the exception that the
ASI_CMT_ERROR_STEERING register is not supported. Please refer to that
document for details of the operation of the CMT registers listed in this chapter.

14.1 CMT Registers

14.1.1 ASI_CORE_AVAILABLE

All virtual processors share a single ASI_CORE_AVAILABLE register at ASI 4116,
VA{63:0} = 016.

TABLE 14-1 defines the format of this register.

14.1.2 ASI_CORE_ENABLE_STATUS

All virtual processors share a single ASI_CORE_ENABLE_STATUS register at ASI
4116, VA{63:0} = 1016.

TABLE 14-1 Strand Available – ASI_CORE_AVAILABLE (ASI 4116, VA 016)

Bit Field Initial Value R/W Description

63:0 core_avail FFF FFFF FFFF FFFF16
1

1. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores unavailable may contain 0016 bytes in the initial value.

RO Bits are set to 1 if the virtual processor is available, 0 if
unavailable. Each physical core in OpenSPARC T2
(represented by a byte) will either be all 0s or all 1s.
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TABLE 14-2 defines the format of this register.

14.1.3 ASI_CORE_ENABLE

All virtual processors share a single ASI_CORE_ENABLE register at ASI 4116,
VA{63:0} = 2016.

TABLE 14-3 defines the format of this register.

TABLE 14-2 Strand Enable Status – ASI_CORE_ENABLE_STATUS (ASI 4116, VA 1016)

Bit Field Initial Value R/W Description

63:0 enable_status FFF FFFF FFFF FFFF16
1

1. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores unavailable may contain 0016 bytes in the initial value.

RO Bits are set to 1 if the virtual processor is enabled, 0 if
disabled. Loaded with the contents of
ASI_CORE_AVAILABLE upon completion of a power-
on reset. This register is loaded with the contents of
ASI_CORE_ENABLE upon completion of a warm reset.
Each physical core in OpenSPARC T2 (represented by a
byte) will either be all 0s or all 1s.

Notes The CMT spec uses CORE_ENABLE_STATUS instead of
ASI_CORE_ENABLE_STATUS. ASI_CORE_ENABLE_STATUS is
used in this document to avoid confusion between the two very
similar register names in the CMT spec.

If ASI_CORE_ENABLE is all zeros, the lowest available physical
core will remain enabled.
An interrupt sent to a disabled virtual processor will be ignored
by the disabled virtual processor and will not have any effect on
the virtual processor sending the interrupt.

TABLE 14-3 Strand Enable – ASI_CORE_ENABLE (ASI 4116, VA 2016)

Bit Field Initial Value R/W Description

63:0 enable FFF FFFF FFFF FFFF16
1

1. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores unavailable may contain 0016 bytes in the initial value.

RW Set bit to 1 to enable the virtual processor on the next
warm reset. Set bit to 0 to disable the virtual processor on
the next warm reset. Loaded with the contents of
ASI_CORE_AVAILABLE upon completion of a power-on
reset. Each physical core in OpenSPARC T2 (represented
by a byte) will either be all zeros or all ones. When written
to, if any bit within a byte is a zero, the whole byte will be
set to 0016.
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14.1.4 ASI_XIR_STEERING

All virtual processors share a single ASI_XIR_STEERING register at ASI 4116,
VA{63:0} = 3016.

TABLE 14-4 defines the format of this register.

14.1.5 ASI_CMT_TICK_ENABLE

All virtual processors share a single ASI_CMT_TICK_ENABLE register at ASI 4116,
VA{63:0} = 3816. This register is preserved across warm reset.

TABLE 14-5 defines the format of this register.

The ASI_CMT_TICK_ENABLE register synchronizes the tick registers in all physical
cores of OpenSPARC T2. Each physical core contains one tick register. A physical
core’s TICK register increments only when it is 1) available, 2) enabled, and 3)
ASI_CMT_TICK_ENABLE is set to 1. The output of the ASI_CMT_TICK_ENABLE
register is distributed synchronously and with the same delay to all physical cores.
Thus, when ASI_CMT_TICK_ENABLE changes, all available, enabled physical cores
start or stop incrementing their tick register at the same system clock cycle.

TABLE 14-4 XIR Steering – ASI_XIR_STEERING (ASI 4116, VA 3016)

Bit Field Initial Value R/W Description

63:0 xirsteering FFF FFFF FFFF FFFF16
1

1. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores unavailable may contain 0016 bytes in the initial value.

RW Bits are set to 1 if the virtual processor will receive an
XIR when the external XIR pin is asserted. Loaded with
the contents of ASI_CORE_AVAILABLE upon
completion of a power-on reset. This register is loaded
with the contents of ASI_CORE_ENABLE upon
completion of a warm reset.

Note OpenSPARC T2 allows the ASI_XIR_STEERING register to be
set to 016. When set to 016, assertion of the external XIR pin will
have no effect.

TABLE 14-5 Tick Enable – ASI_CMT_TICK_ENABLE (ASI 4116, VA 3816)

Bit Field
Initial
Value R/W Description

63:1 — 016 RO Reserved

0 tick_enable 016 RW Set to 1 to enable incrementing of TICK register in all available,
enabled physical cores
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14.1.6 ASI_CMT_ERROR_STEERING

OpenSPARC T2 does not implement the ASI_CMT_ERROR_STEERING (ASI 4116, VA
4016) register.

14.1.7 ASI_CORE_RUNNING_RW

All virtual processors share a single ASI_CORE_RUNNING_RW register at ASI 4116,
VA{63:0} = 5016.

TABLE 14-6 defines the format of this register.

Programming
Note

Hyperprivileged software can synchronize the tick registers
across all available, enabled physical cores as follows. First, one
strand writes 0 to ASI_CMT_TICK_ENABLE. Then it initializes a
mutex-protected counter (c) to the number of available, enabled
physical cores. Then, one strand on each available, enabled
physical core writes the desired tick value to its core’s tick
register and decrements c. Each strand checks the value of the
counter. If c is 0, that strand writes a 1 to the
ASI_CMT_TICK_ENABLE register.

TABLE 14-6 Strand Running RW – ASI_CORE_RUNNING_RW (ASI 4116, VA 5016)

Bit Field Initial Value R/W Description

63:0 running_rw 116
1,2

1. Initial value listed is that seen by software. After a power-on reset, the register contains 016 until
reset is complete and the initial strand is unparked, and an external agent viewing this register
(through the tap controller) may see the zero value.

2. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores enabled will have a single bit corresponding to the lowest enabled virtual processor set.

RW Bits are set to 0 to park a virtual processor and set to 1 to unpark
a virtual processor.
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14.1.8 ASI_CORE_RUNNING_STATUS

All virtual processors share a single ASI_CORE_RUNNING_STATUS register at ASI
4116, VA{63:0} = 5816.

TABLE 14-7 defines the format of this register.

Notes As per the CMT Programming Model Specification, OpenSPARC T2
prevents software from parking all strands and forces one
hardware strand (the one performing the parking) to keep
running when an attempt is made to park all strands. However,
software must allow for a change in ASI_CORE_RUNNING_RW to
propagate by waiting for the value of
ASI_CORE_RUNNING_STATUS to match the value written to
ASI_CORE_RUNNING_RW before making another update,
otherwise hardware operation is unpredictable. In particular, a
strand or all strands may become parked or unparked and
remain unresponsive to further unpark or park commands, until
a warm reset or POR is performed.

If a strand parks itself, the strand is guaranteed to not execute
any instructions beyond the instruction that parked it (i.e. there
is no skid following the parking instruction).

WARNINGS! Software must not attempt to park a strand that is not
completely unparked (that is, the strand’s bit in
ASI_CORE_RUNNING_STATUS must be 1 before clearing the
strand’s bit in ASI_CORE_RUNNING_RW). Operation of
OpenSPARC T2 is undefined when a strand that is not unparked
has its bit in ASI_CORE_RUNNING_RW cleared. In particular, the
strand may become unparked and remain unresponsive to
further park commands, until a warm reset or POR is
performed.
Software must not attempt to unpark a strand that is not
completely parked (that is, the strand’s bit in
ASI_CORE_RUNNING_STATUS must be 0 before setting the
strand’s bit in ASI_CORE_RUNNING_RW). Operation of
OpenSPARC T2 is undefined when a strand that is not parked
has its bit in ASI_CORE_RUNNING_RW set. In particular, the
strand may become parked and remain unresponsive to further
unpark commands, until a warm reset or POR is performed.
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14.1.9 ASI_CORE_RUNNING_W1S

All virtual processors share a single ASI_CORE_RUNNING_W1S register at ASI 4116,
VA{63:0} = 6016.

TABLE 14-8 defines the format of this register.

Software must not attempt to unpark a strand that is not completely parked (that is,
the strand’s bit in ASI_CORE_RUNNING_STATUS must be 0 before using
ASI_CORE_RUNNING_W1S to set the strand’s bit in ASI_CORE_RUNNING_RW).
Operation of OpenSPARC T2 is undefined when a strand that is not parked has its
bit in ASI_CORE_RUNNING_RW set. In particular, the strand may become unparked
and remain unresponsive to further park commands, until a warm reset or POR is
performed.

14.1.10 ASI_CORE_RUNNING_W1C

All virtual processors share a single ASI_CORE_RUNNING_W1C register at ASI 4116,
VA{63:0} = 6816.

TABLE 14-7 Strand Running Status – ASI_CORE_RUNNING_STATUS (ASI 4116, VA 5816)

Bit Field Initial Value R/W Description

63:0 running_status 116
1,2

1. Initial value listed is that seen by software. After a power-on reset, the register contains 016 until
reset is complete and the initial strand is unparked, and an external agent viewing this register
(through the tap controller) may see the zero value.

2. Initial value listed is for a fully available OpenSPARC T2. An OpenSPARC T2 with some physi-
cal cores enabled will have a single bit corresponding to the lowest enabled virtual processor set.

RO Bits are set to 0 if the virtual processor is currently parked and
set to 1 if the virtual processor is currently running.

Note While a virtual processor is parked, interrupt and XIR events
targeting the virtual processor will be held pending and will be
taken once the virtual processor is unparked.

TABLE 14-8 Strand Running W1S – ASI_CORE_RUNNING_W1S (ASI 4116, VA 6016)

Bit Field
Initial
Value R/W Description

63:0 running_w1s 016 WO Writing 1 to a bit will set the corresponding bit in
ASI_CORE_RUNNING_RW. Writing 0 to a bit will leave the
corresponding bit in ASI_CORE_RUNNING_RW unchanged.
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TABLE 14-9 defines the format of this register.

Software must not attempt to park a strand that is not completely unparked (that is,
the strand’s bit in ASI_CORE_RUNNING_STATUS must be 1 before using
ASI_CORE_RUNNING_W1C to clear the strand’s bit in ASI_CORE_RUNNING_RW).
Operation of OpenSPARC T2 is undefined when a strand that is not unparked has its
bit in ASI_CORE_RUNNING_RW cleared. In particular, the strand may become parked
and remain unresponsive to further unpark commands, until a warm reset or POR is
performed.

14.2 ASI_CMT_CORE Registers

14.2.1 ASI_CMT_CORE_INTR_ID

Each virtual processor has a read-only ASI_CMT_CORE_INTR_ID register at ASI
6316, VA{63:0} = 016.

TABLE 14-9 Strand Running W1C – ASI_CORE_RUNNING_W1C (ASI 4116, VA 6816)

Bit Field
Initial
Value R/W Description

63:0b running_w1c 016 WO Writing 1 to a bit will clear the corresponding bit in
ASI_CORE_RUNNING_RW. Writing a zero to a bit will leave the
corresponding bit in ASI_CORE_RUNNING_RW unchanged.

Notes As per the CMT Programming Model Specification, OpenSPARC T2
prevents software from parking all strands and forces one
hardware strand (the one performing the parking) to keep
running when an attempt is made to park all strands. However,
software must allow for a change in ASI_CORE_RUNNING_W1C
to propagate by waiting for the value of
ASI_CORE_RUNNING_STATUS to match the value written to
ASI_CORE_RUNNING_W1C before making another update,
otherwise hardware operation is unpredictable. In particular, the
strand may become parked and remain unresponsive to further
unpark commands, until a warm reset or POR is performed.
If a strand parks itself, the strand is guaranteed to not execute
any instructions beyond the instruction that parked it (i.e. there
is no skid following the parking instruction).
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TABLE 14-10 defines the format of this register.

14.2.2 ASI_CMT_STRAND_ID

Each virtual processor has a read-only ASI_CMT_STRAND_ID register at ASI 6316,
VA{63:0} = 1016.

TABLE 14-11 defines the format of this register.

TABLE 14-10 Strand Interrupt ID – ASI_CMT_CORE_INTR_ID (ASI 6316, VA 016)

Bit Field Initial Value R/W Description

63:16 — 016 RO Reserved

15:6 intr_id_hi 016 RO Upper bits of Interrupt ID are all 0.

5:0 intr_id_lo coreid RO Matches ASI_CMT_STRAND_ID bits 5:0.

TABLE 14-11 Strand ID – ASI_CMT_STRAND_ID (ASI 6316, VA 1016)

Bit Field Initial Value R/W Description

63:38 — 016 RO Reserved

37:32 max_strand_id 716 RO Each physical core on OpenSPARC T2 consists of 8 strands.

31:22 — 016 RO Reserved

21:16 max_strand_id 3F16 RO OpenSPARC T2 contains 64 virtual processors

15:6 — 016 RO Reserved

5:0 strand_id coreid RO Physical strand ID in 5:3, strand ID in 2:0.

Note The strand ID in OpenSPARC T2 is fixed based on physical core
and strand numbers. This implies that an OpenSPARC T2 with
unavailable cores will have holes in the strand ID space (for
example, if physical core 1 is unavailable, there will be no
strand_id 816–F16).
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CHAPTER 15

Noncacheable Unit (NCU) and Boot
ROM Interfaces

15.1 Noncacheable Unit (NCU)
The main functions of the NCU are to route PIO accesses from the CMP virtual
processors to the I/O subsystem and to vector interrupts from the I/O subsystem to
the CMP virtual processors. The NCU provides CSRs for NCU management and
mondo interrupt management.

The NCU decodes the I/O physical address space. OpenSPARC T2 supports 40-bit
physical addresses, where the MSB (bit 39) is 0 for cacheable accesses (memory
system) and 1 for noncacheable accesses (I/O subsystem).

NCU determines the destination of a PIO access by examining the 8 MSB (bit 39:32)
of the physical address. All accesses received by NCU have bit 39 of the physical
address set to 1. The address range of each IO subsystem block can be found in the
following table.

TABLE 15-1 Global Physical Address Assignments

MSB Address Range{39:32} Assignment

0016 ~ 7F16 Not supported by NCU (memory)

8016 NCU

8116 Reserved

8216 Reserved

8316 CCU

8416 MCUs
13:12 = 002 for MCU0, 13:12 = 012 for MCU1
13:12 = 102 for MCU2, 13:12 = 112 for MCU3

8516 TCU (JTAG / TAP unit)

8616 DBG
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15.2 NCU Management Registers
The NCU provides a unique serial number for each OpenSPARC T2 chip. In
addition, the NCU contains registers showing the eFuse, Sparc core, and L2 bank
status.

15.2.1 Serial Number
The serial number register format is show in TABLE 15-2.

8716 Reserved

8816 DMU

8916 RST

8A16 ~ 8F16 Reserved

9016 ASI CPU shared registers (directly accessible only by JTAG/TAP unit)

9116 ~ 9F16 Reserved

A016 ~ BF16 Not supported by NCU (L2 control and status registers)

C016 ~ CF16 Reserved

D016 ~ FE16 Reserved

FF16 SSI (boot ROM)

TABLE 15-2 Processor Serial Number – SER_NUM (80 0000 100016)

Bit Name Initial Value R/W Description

63:60 delta_vdd X RO Delta_Vdd[3] is a sign bit (increase or decrease
with respect to nominal). Bits [2:0] specify one of
8 increments.

59:50 delta_t X RO Indicates the temperature offset for the thermal
diode, in increments of 20 mV.

49 reserved 0 RO reserved for testinfo

48:46 fab X RO

45:41 reserved 0 RO reserved for testinfo

40 bin X RO

TABLE 15-1 Global Physical Address Assignments

MSB Address Range{39:32} Assignment
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15.2.2 eFuse Status
The eFuse Status register format is show in TABLE 15-3.

15.2.3 Strand Available
The Strand Available register format is show in TABLE 15-4. This register is an alias
for the ASI_CORE_AVAILABLE register described in 14.1.1 on page 181.

15.2.4 L2 Configuration Control and Status Registers
The NCU contains several L2 Configuration Control and Status registers.

■ The L2 Bank Available register is described in Section 19.14.2, L2 Bank Available,
on page 419.

■ The L2 Bank Enable register is described in Section 19.14.3, L2 Bank Enable, on
page 419.

■ The L2 Bank Enable Status Register is described in Section 19.14.4, L2 Bank Enable
Status, on page 421.

■ The L2 Index Hash Enable register is described in Section 19.14.5, L2 Index Hash
Enable, on page 422.

■ The L2 Index Hash Enable Status register is described in Section 19.14.6, L2 Index
Hash Enable Status, on page 423.

39:16 lot X RO

15:10 wafer X RO

9:5 column X RO

4:0 row X RO

TABLE 15-3 eFuse Status – EFU_STAT (80 0000 100816)

Bit Name Initial Value R/W Description

63:0 efu_status FFFF FFFF FFFF FFFF16 RO eFuse status programmed by eFuse block

TABLE 15-4 Strand Available – CORE_AVAIL (80 0000 101016)

Bit Name Initial Value R/W Description

63:0 avail FFFF FFFF FFFF FFFF16 RO Strand available programmed by eFuse. Note
that all strands within a physical core will be
programmed to the same value (all available or
all unavailable).

TABLE 15-2 Processor Serial Number – SER_NUM (80 0000 100016)
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15.2.5 Physical Address Partitioning
The 64-Gbyte region of noncacheable physical memory, from C0 0000 000016 to
CF FFFF FFFF16, is reserved for mapping NCU to access PCIE address space.

15.3 NCU ASI Registers
Several CMP and Interrupt registers are located in the NCU and made accessible to
the JTAG/TAP controller, as listed below. In addition, all ASI registers are made
accessible to the JTAG/TAP controller through the addressing shown in TABLE 15-5.

15.3.1 Strand Available Register (ASI 4116 VA 0016)
This register is described in Section 14.1.1, ASI_CORE_AVAILABLE, on page 181. It is
available to the JTAG/TAP controller at address 90 0104 000016.

15.3.2 Strand Enable Status Register (ASI 4116 VA 1016)
This register is described in Section 14.1.2, ASI_CORE_ENABLE_STATUS, on page
181. It is available to the JTAG/TAP controller at address 90 0104 001016.

TABLE 15-5 NCU ASI Register Physical Address Map

Bit Field Value Description

39:32 ncu 9016 Identifies NCU space.

31:29 core 016–716 Identifies physical core being targeted (set to 016 for a shared ASI register).

28:26 strand 016–716 Identifies strand being targeted (set to 016 for a shared ASI register).

25:18 asi 016–FF16 Identifies ASI being targeted.

17:3 va 016–7FFFF16 Identifies va{17:13} being targeted.

2:0 — 016 Always zero for 64-bit access.

Note For a shared ASI register, different virtual processor, thread may
access the same ASI VA register in NCU. For those registers,
NCU ignores PA{31:26} when PA{39:32} = 9016.
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15.3.3 Strand Enable Register (ASI 4116 VA 2016)
This register is described in Section 14.1.3, ASI_CORE_ENABLE, on page 182. It is
available to the JTAG/TAP controller at address 90 0104 002016.

15.3.4 XIR Steering Register (ASI 4116 VA 3016)
This register is described in Section 14.1.4, ASI_XIR_STEERING, on page 183. It is
available to the JTAG/TAP controller at address 90 0104 003016.

15.3.5 CMP Tick Enable Register (ASI 4116 VA 3816)
This register is described in Section 14.1.5, ASI_CMT_TICK_ENABLE, on page 183. It
is available to the JTAG/TAP controller at address 90 0104 003816.

15.3.6 Strand Running RW Register (ASI 4116 VA 5016)
This register is described in Section 14.1.7, ASI_CORE_RUNNING_RW, on page 184. It
is available to the JTAG/TAP controller at address 90 0104 005016.

15.3.7 Strand Running Status Register (ASI 4116 VA 5816)
This register is described in Section 14.1.8, ASI_CORE_RUNNING_STATUS, on page
185. It is available to the JTAG/TAP controller at address 90 0104 005816.

15.3.8 Strand Running W1S Register (ASI 4116 VA 6016)
This register is described in Section 14.1.9, ASI_CORE_RUNNING_W1S, on page 186.
It is available to the JTAG/TAP controller at address 90 0104 006016.

15.3.9 Strand Running W1C Register (ASI 4116 VA 6816)
This register is described in Section 14.1.10, ASI_CORE_RUNNING_W1C, on page 186.
It is available to the JTAG/TAP controller at address 90 0104 006816.

15.3.10 SOC Error Steering Register (90 0104 100016)
This register is described in Section 16.23.4, SOC Error Steering Register, on page 332.
It is available to the JTAG/TAP controller at address 90 0104 100016.
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15.3.11 Warm Reset Vector Mask Register (ASI 4516
VA 1816)
This register is described in Section 20.1.4, ASI_RST_VEC_MASK, on page 434. It is
available to the JTAG/TAP controller at address 90 0114 001816.

15.3.12 Interrupt Vector Dispatch Register (ASI 7316
VA 016)
This register is described in Section 7.3.3, Interrupt Vector Dispatch Register, on page
57. It is available to the JTAG/TAP controller at address 90 01CC 000016.

15.4 Boot ROM Address Region
The format of the Boot ROM Range register is defined in TABLE 15-6.

Addresses within the Boot ROM address range (FF F000 000016 to FF FFFF FFFF16)
are issued to the Boot ROM, aliasing the Boot ROM to cover the top 16 Mbytes of the
available space. The only transactions that are supported directly to the Boot ROM
are

■ 1, 2, 4, 8 byte-aligned reads
■ 1, 2, 4, 8 byte-aligned writes

Since the Boot ROM is predominantly used for instructions, which are explicitly
always big-endian, all accesses to the Boot ROM are treated as big-endian.

15.4.1 Boot ROM Interface Registers
All of the BOOT ROM Interface registers other than SSI Clock Select register are
defined elsewhere, specifically in Chapter 16, Error Handling.

TABLE 15-6 Address Range Definition Boot ROM Range (FF FXXX XXXX16)

Bit Field Value Description

39:32 bootspace FF16 Identifies BOOT ROM space

31:28 bootrom F16 Identifies BOOT ROM range

27:0 romaddr Byte address sent to Boot ROM (256 Mbyte available)
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15.4.1.1 SSI Clock Select Register

The SSI Clock Select register controls the SSI clock frequency as a fraction of the core
clock frequency. The format of the SSI Clock Select register is as shown in TABLE 15-7.

TABLE 15-7 SSI Clock Select Register – SSI_CLKSEL (80 0000 304016)

Bit Field Initial Value R/W Description

63:2 Reserved 016 RO Reserved

1:0 ssi_scksel 016 RW 016: SSI Clock = iol2clk/8
116: SSI Clock = iol2clk/4
216: SSI Clock = iol2clk/8
316: SSI Clock = iol2clk/8
Preserved on warm reset. Value programmed takes effect on next
warm reset.
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CHAPTER 16

Error Handling

16.1 Error Classes
Errors on OpenSPARC T2 fall into three main classes: fatal (FE), hardware
uncorrected (UE), and hardware corrected (CE). Hardware uncorrected errors have
two subclasses: software recoverable and software unrecoverable. Hardware
corrected errors have two subclasses: hardware corrected and cleared, and hardware
corrected but not cleared.

Fatal errors are generated whenever the hardware detects a condition where an error
has occurred and the extent to which the error may have propagated is unbounded.
An example of a fatal error is an uncorrectable VUAD corruption in the L2 cache;
this case implies that global cache coherence has been lost. Since a fatal error may
have corrupted key operating system or hypervisor data structures, fatal errors
generate an immediate warm reset to the OpenSPARC T2 chip.

Uncorrected errors are errors for which the hardware does not take corrective action.
Uncorrected errors fall into two classes: software recoverable and software
unrecoverable. For software unrecoverable errors, the extent to which the error may
have propagated is tightly bounded. Examples of uncorrected errors include a data
parity error on the DTLB, and a double-bit ECC error in the L2 cache data. The data
parity error in the DTLB may be recoverable in software by forcing the TLB entry
with the bad parity to be invalidated, which will then be reloaded over with a new
TTE entry and good parity on the subsequent TLB miss. A double-bit L2 ECC error
is unrecoverable as the data cannot be corrected by software, but the extent to which
the error could have propagated is limited to the address space of any process that
has access to that memory location, and software may be able to keep the system
running by killing all processes that could be affected by the error and then
scrubbing the bad memory location. Uncorrected errors are reported through several
traps, including precise, deferred, and disrupting traps.

Deferred errors consist solely of uncorrectable store buffer errors in the SPARC
virtual processor. They cause a nonmaskable, deferred store_error trap. NotData
errors (NDE) are a specific case of uncorrected errors, where the virtual processor
encountering the NotData error is not the first virtual processor to encounter the
error.
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Corrected errors are errors that are corrected by OpenSPARC T2 in hardware.
Corrected errors can either be cleared by hardware or require software to be cleared.
Examples of correctable errors that are cleared by hardware are a data parity error in
the instruction cache or a tag parity error in the data cache. Corrected errors that are
cleared by hardware generate a disrupting hw_corrected_error trap. Examples of
corrected errors that require clearing by software are a single-bit error in the L2
cache access for an instruction fetch or data fetch. Corrected errors that are not
cleared by hardware generate a disrupting sw_recoverable_error trap.

16.2 NotData Overview
NotData is used to flag a data value that has an uncorrectable error, after an
uncorrectable error trap has been signaled to one and only one virtual processor.
Subsequent accesses by virtual processors to NotData also take an uncorrectable
error trap, but their Error Status register flags the trap as having come from access to
NotData. Support for NotData prevents the problem of multiple virtual processors
attempting to fix the same error, and also prevents the problem of a single
uncorrectable error appearing as multiple errors as it enters different subsystems or
is accessed multiple times.

In OpenSPARC T2, NotData is implemented for items as they enter into the L2 cache
only. This handles the most significant sources of uncorrectable errors, namely, UEs
in main memory, UEs generated by the processor, or UEs coming in from the I/O
subsystem through the SIU. UEs arising in the L2 itself are kept to a very low
probability through hardware scrubbing.

On a cache fill, OpenSPARC T2 signals a UE trap to one and only one virtual
processor and loads each 16-byte chunk with a UE into the L2 with the NotData
indication (inverted check bits on the four 4-byte chunks). Likewise, on a processor
request with a UE, each 4-byte chunk of data in error is loaded into the L2 with the
NotData indication. The UE trap for processor requests has already been generated
by the processor subsystem.

The OpenSPARC T2 implementation of NotData protects for the most frequent UEs
but does not provide full NotData protection. The following very low probability
cases are not protected by NotData and can result in multiple UE traps:

■ Writeback of a line with a UE or NotData is written back to main memory with an
ECC encoding that is not distinguishable from a normal memory UE. Thus, a
refetch of the line from memory will generate a second UE trap.

■ A multiple-bit error in the L2 data array. The UE is not converted to NotData on
an access, scrubber read, etc., because this was too large a change from the
OpenSPARC T1 implementation and provided negligible impact on FIT rate.
Multiple accesses of the UE before software has a chance to clean up the line will
result in multiple UE traps.



16.3 CMP Error Overview
Errors detected in the CMP and memory subsystem are reported in three sets of
error registers: Core, L2 cache, and DRAM. Precise and deferred errors are reported
in the Core register set in program order. The Core Error Recording Enable register
(CERER) controls whether errors are recorded in the virtual processor. The Strand
Error Trap Enable register (SETER) controls whether the strand takes a trap as a
result of any reported errors. Errors are reported in the L2 cache and DRAM error
sets in the order the errors occur. The L2 cache Error Enable register controls
whether errors associated with the L2 cache and DRAM are reported back to the
initiator (logging of the errors in the L2 cache and DRAM registers is always
performed). If the L2 cache error enable bit (ceen or nceen, depending on whether
the error is correctable or uncorrectable/NotData) is not set, error information is not
reported back to the initiator. For the uncorrectable/NotData case (nceen clear), this
means that bad data will be executed/used, and thus the nceen bit is only intended
to be cleared during heavily controlled phases of diagnostic operation.

The OpenSPARC T2 core records errors in five error status registers (ESRs). All of
the ESRs provide one copy per strand (virtual processor). OpenSPARC T2 records
instruction-fetch-related errors in the I-SFSR (Instruction Synchronous Fault Status
register) and precise data-access-related errors in the D-SFSR (Data Synchronous
Fault Status register) and D-SFAR (Data Synchronous Fault Address register). The
D-SFAR is shared by the OpenSPARC T2 implementation between errors and MMU
processing to avoid the need for a separate address register for precise error logging.
OpenSPARC T2 also has a disrupting ESR (DESR) to log disrupting errors. Finally,
the OpenSPARC T2 core detects store buffer errors. Some of these are handled as
nonmaskable, deferred traps and are recorded in the deferred ESR (DFESR).

The L2 error registers can log detailed information for a single error. A dedicated
error register is provided for NotData errors, while correctable, uncorrectable, and
fatal errors share a single register. The L2 error registers have bits to indicate if
multiple errors have occurred.

The DRAM error registers can log detailed information for a single error. A single
error register is provided for the two different error classes: uncorrectable and
correctable. The DRAM error registers have bits to indicate if multiple errors have
occurred.

For the L2 and DRAM registers, fatal and uncorrectable errors overwrite earlier
correctable error information. The error registers have bits to indicate if multiple
errors have occurred. There are two bits for multiple errors: meu (multiple
uncorrectable errors) and mec (multiple correctable errors). TABLE 16-1 lists the
multiple error logging and overwrite behavior of the error registers (a CE for the
main logged error with the meu bit set is not possible due to FE and UE being higher
priority than CE in logging).



16.4 Error Trap Vectors
The following table describes the trap vectors used in OpenSPARC T2 to handle
hardware errors.

TABLE 16-1 Multiple Error Logging in the L2 and DRAM Registers

Main Logged
Error meu mec Description

FE 0 0 Single FE encountered and logged.

FE 0 1 Single FE encountered and logged. One or more correctable errors
encountered but details on the correctable errors not logged.

FE 1 0 Single FE encountered and logged. One or more uncorrectable errors
encountered but details on the uncorrectable errors not logged.

FE 1 1 Single FE encountered and logged. One or more uncorrectable errors
encountered but details on the uncorrectable errors not logged. One or
more correctable errors encountered but details on the correctable errors
not logged.

UE 0 0 Single UE encountered and logged.

UE 0 1 Single UE encountered and logged. One or more correctable errors
encountered but details on the correctable errors not logged.

UE 1 0 Two or more UEs encountered, details on the first logged.

UE 1 1 Two or more UEs encountered, details on the first logged. One or more
corrected errors encountered but details on the corrected errors not logged.

CE 0 0 Single CE encountered and logged.

CE 0 1 Two or more CEs encountered; details on the first logged.

TABLE 16-2 OpenSPARC T2 Error Traps

Trap Vector Trap Type Trap Class

OpenSPA
RC T2-
specific

Trap
Priority
Level Remarks

power_on_reset (warm reset) 0116 Reset N 0 Used for fatal errors. Error state captured in
L2 ESR/EAR.

store_error 0716 Deferred Y 2.1 Used for store buffer errors. Error state
captured in DFESR.

instruction_access_error 0A16 Precise N 4 Used for instruction access errors. Error
state captured in ISFSR or L2 ESR/EAR/
NDER.



To conform to the latest RAS specification, OpenSPARC T2 uses a different trap
vector for each type of hardware error (disrupting, precise, or deferred). There is no
unique trap vector for NotData errors. Instead NotData is indicated by an I-SFSR,
D-SFSR, or DESR encoding.

16.5 Error Barrier
A MEMBAR #Sync acts as an error barrier on OpenSPARC T2. Before a MEMBAR
#Sync completes, all previous, enabled precise and deferred error traps will be
taken by the strand. Disrupting errors related to the instruction execution stream
also treat MEMBAR #Sync as a memory barrier (with a possible skid of one
instruction as described below). Disrupting errors unrelated to the instruction
stream do not have a memory barrier operation on OpenSPARC T2.

internal_processor_error 2916 Precise N 8.2 Used for all IRF/FRF errors (IRFU/IRFC/
FRFU/FRFC) except those on the second or
subsequent passes of a multicycle operation
(partial store, compare and swap, block
store). Used for store buffer bypass errors
(SBDLU/SBDLC) and register array errors
(MRAU/TSAU/TSAC/SCAU/SCAC/
tcup/TCCP). Error state captured in
DSFSR/DSFAR.

internal_processor_error 2916 Precise N 12.10 Used for IRF/FRF errors (IRFU/IRFC/
FRFU/FRFC) on the second or subsequent
passes of a multicycle operation (partial
store, compare and swap, block store). Error
state captured in DSFSR/DSFAR.

data_access_error 3216 Precise N 12.9 Used for data access errors. Error state
captured in DSFSR or L2 ESR/EAR/NDER.

sw_recoverable_error 4016 Disrupting N 33.1 Used for disrupting errors not corrected and
not cleared by hardware. Error state
captured in DESR or L2 ESR/EAR/NDER.

hw_corrected_error 6316 Disrupting N 33.2 Used for disrupting errors corrected and
cleared by hardware. Error state captured in
DESR or L2 ESR/EAR/NDER.

instruction_access_MMU_
error

7116 Precise N 2.7 Used for IMMU errors. Error state captured
in ISFSR or L2 ESR/EAR/NDER.

data_access_MMU_error 7216 Precise N 12.2 Used for DMMU errors. Error state captured
in DSFSR/DSFAR or L2 ESR/EAR/NDER.

TABLE 16-2 OpenSPARC T2 Error Traps

Trap Vector Trap Type Trap Class

OpenSPA
RC T2-
specific

Trap
Priority
Level Remarks



The following lists the behavior for errors that treat MEMBAR #Sync as an error
barrier:

■ Any precise error that occurs (and is not masked) will cause a trap before the
MEMBAR #Sync executes, and TPC will be the PC of the instruction with the
precise error.

■ For deferred errors, if the error is detected before the MEMBAR #Sync executes,
the trap will be taken before the MEMBAR #Sync executes, and the TPC will be
the PC of the MEMBAR #Sync or the PC of some earlier instruction. If the
deferred error is detected during the execution of the MEMBAR #Sync (a
MEMBAR #Sync causes the store buffer to drain), then the trap will be taken
after execution of the MEMBAR #Sync, and the TPC will be the NPC of the
MEMBAR #Sync.

■ The disrupting errors listed below are related to the instruction stream. If the
error is detected before the MEMBAR #Sync executes and the trap is not masked,
the trap will be taken either before the MEMBAR #Sync executes, or on the first
instruction after the MEMBAR #Sync. The TPC will be the PC of the MEMBAR
#Sync, the PC of some earlier instruction, or the PC of the instruction after the
MEMBAR #Sync. If the error is detected during the execution of the MEMBAR
#Sync and the trap is not masked, then the trap will be taken after executing the
instruction following the MEMBAR #Sync, and the TPC will be the NPC of the
instruction following the MEMBAR #Sync.

■ Instruction Cache Valid bit Parity
■ Instruction Cache Tag Parity
■ Instruction Cache Tag Multiple
■ Instruction Cache Data Parity
■ Data Cache Valid bit Parity
■ Data Cache Tag Parity
■ Data Cache Tag Multiple
■ Data Cache Data Parity
■ Store Buffer Data PCX read Correctable ECC
■ Store Buffer Data PCX read Uncorrectable ECC
■ IT L2 Correctable
■ IC L2 Correctable
■ DT L2 Correctable
■ DC L2 Correctable

The following disrupting errors are not related to the instruction stream. So
MEMBAR #Sync has no relationship to these errors and therefore doesn’t act as a
barrier for these errors. If the error is detected before the MEMBAR #Sync executes
and the trap is not masked, the trap will be taken either before the MEMBAR #Sync
executes or on the first instruction after the MEMBAR #Sync. The TPC will be the
PC of the MEMBAR #Sync, the PC of some earlier instruction, or the PC of the
instruction after the MEMBAR #Sync. If the error is detected during the execution
of the MEMBAR #Sync and the trap is not masked, then the trap will be taken after
executing the instruction following the MEMBAR #Sync, and the TPC will be the



NPC of the instruction following the MEMBAR #Sync. If the error is detected after
the MEMBAR #Sync completes, the trap (if not masked) will be taken on some later
instruction.

■ Tick_compare correctable disrupting
■ Tick_compare uncorrectable disrupting
■ L2 correctable ECC error
■ L2 uncorrectable ECC error
■ L2 NotData error
■ SOC correctable
■ SOC uncorrectable

16.6 Virtual Processor Error Handling
Overview
The core RAS architecture has two objectives:

1. Provide a FIT rate sufficient for the target market at minimal core cost.

2. Conform to the architecture described by the SPARC SWG RAS & Error Handling
Working Group, with implementation suggestions from UltraSPARC Architecture
2007 specification.

To meet both these objectives, OpenSPARC T2 generally does not correct or retry
correctable errors detected by hardware. Any hardware-detected error that can be
attributed to an instruction’s execution results in a precise trap if enabled. Software
at the trap handler diagnoses the error. If the error is correctable, it attempts
recovery, for example by correcting a single-bit error in a register file. Software then
retries the instruction. If another failure occurs, software can determine the
appropriate action to take. This approach minimizes the hardware dedicated to
error-specific handling flows in OpenSPARC T2. Software is provided with sufficient
information to enable error recovery.

16.6.1 Error Status Registers
The OpenSPARC T2 core records errors in five per-strand error status registers
(ESRs): I-SFSR (Instruction Synchronous Fault Status register), D-SFSR (Data
Synchronous Fault Status register), D-SFAR (Data Synchronous Fault Address
register), DESR (disrupting ESR), and DFESR (deferred ESR).

OpenSPARC T2 cores detect errors as they occur but pipeline precise error
indications along with the instruction until commit time. At this time a precise error
is recorded in either the I-SFSR or D-SFSR and D-SFAR. The error is only recorded
if the appropriate CERER bit is set. In addition, for certain precise errors, the
SETER.pscce bit must also be set for the error to be recorded.



Disrupting errors are recorded only if the appropriate CERER bit is set.

Deferred errors are always recorded.

16.6.2 Error Summary
TABLE 16-3 lists the errors the OpenSPARC T2 core detects and also lists salient
information about each error. Columns in TABLE 16-3 are explained in the following
table.

Column Terminology

Error Type Specifies the type of error, as follows:
CE: hardware-corrected error
UEr: hardware-uncorrected error that is software recoverable
UEU: hardware-uncorrected error that is software unrecoverable (Note:
Software unrecoverable does not imply that the error is fatal).

Trap Type Specifies the type of trap that is caused, as follows:
P: precise—logged in either the I-SFSR or the D-SFSR
D: disrupting—logged in the DESR
Df: deferred error—results in a store_error trap to the virtual processor that
detected the error.

Trap Vector Describes the trap vector to which the processor will be directed when an
error occurs.
IAME: instruction_access_MMU_error
IA: instruction_access_error
IPE: internal_processor_error
DAM: data_access_MMU_error
DAE: data_access_error
HCE: hw_corrected_error
SRE: sw_recoverable_error
SE: store_error.
OpenSPARC T2 directs disrupting traps and precise traps to different
vectors. Software can then inspect the I-SFSR, D-SFSR, or DESR to
determine more information regarding the failure.

Maskable Defines which errors can be masked by SETER.pscce{62}, de{61} or
dhcce{60} bits, as follows:
N: Errors are not maskable by SETER bits.
Number (62, 61, or 60): Specifies which bit of SETER masks the error trap.



TABLE 16-3 OpenSPARC T2 Processor Error Types (1 of 5)

Error

Access
Type or
Unit

Error
Type

Trap
Type

Trap
Vector

Mask
able

ESR ErrorAddr
Info

HW Cor-
rected

HW
Cleared Notes

IT tag multiple
hit (ITTM)

IFetch UER P IAME N ISFSR.ittm N N HW does not invalidate
entry; SW should demap
all; cannot distinguish
between same or
different contexts.

ITLB tag parity
(ITTP)

IFetch UER P IAME N ISFSR.ittp N N HW does not invalidate
entry; SW should log tag
and data for all entries
and demap page.

ITLB data parity
(ITDP)

IFetch UER P IAME N ISFSR.itdp N N HW does not invalidate
entry; SW should demap
page.

ITLB MRA
uncorrectable
(ITMU)

IFetch UER P IAME N MRA
index{2:0}

N N SW should correct MRA
by reloading.

ITLB L2
correctable
(ITL2C)

IFetch UER D SRE 61 Recorded in L2
ESR

Y N SW should correct L2
error.

ITLB L2
uncorrectable
(ITL2U)

IFetch UEU P IAME N Recorded in L2
ESR

N N SW should correct L2
error if possible.

ITLB L2 NotData
(ITL2ND)

IFetch UEU P IAME N Recorded in L2
ESR

N N NotData should have
been preceded by a UE.

Icache valid bit
(ICVP)

IFetch CE D HCE 60 Index{5:0},
way{2:0}

Y Y HW invalidates all ways
of I$ index; HW
refetches.

Ic tag multiple hit
(ICTM) IFetch

CE D HCE 60 Index{5:0},
way{2:0}

Y Y HW invalidates all ways
of I$ index; HW
refetches.

Icache tag parity
(ICTP) IFetch

CE D HCE 60 Index{5:0},
way{2:0}

Y Y HW invalidates all ways
of I$ index; HW
refetches.

ICache data
parity (ICDP) IFetch

CE D HCE 60 Index{5:0} Y Y HW invalidates all ways
of I$ index; HW
refetches.

Icache L2
correctable
(ICL2C)

IFetch
UER D SRE 61 Recorded in L2

ESR
Y N SW should correct L2

error.

Icache L2
uncorrectable
(ICL2U)

IFetch UEU P IAE 62 Recorded in L2
ESR

N N SW should correct L2
error if possible.



Icache L2
NotData
(ICL2ND)

IFetch UEU P IAE 62 Recorded in L2
ESR

N N NotData should have
been preceded by a UE.

IRF correctable
ECC error (IRFC)

EXU UER P IPE 62 GL{1:0},
Index{4:0},
ECC
Syndrome{7:0}

N N SW should correct and
retry.

IRF uncorrectable
ECC error (IRFU)

EXU UEU P IPE 62 GL{1:0},
Index{4:0},
ECC
Syndrome{7:0}

N N

FRF correctable
ECC error (FRFC)

FGU UER P IPE 62 Index{5:0}, (2)
ECC
Syndrome{6:0}

N N SW should correct and
retry.

FRF uncorrectable
ECC error (FRFU)

FGU UEU P IPE 62 Index{5:0}, (2)
ECC
Syndrome{6:0}

N N

DTLB tag parity
(DTTP)

Load UER P DAME N VA{47:0} in D-
SFAR

N N HW does not invalidate
entry; SW should demap
page

DT tag multiple
hit (DTTM)

Load UER P DAME N VA{47:0} in D-
SFAR

N N HW does not invalidate
all entries, SW should
demap all; can not
distinguish between
same or different
contexts

DTLB data parity
(DTDP)

Load UER P DAME N VA{47:0} in D-
SFAR

N N HW does not invalidate
entry; SW should demap
page

DTLB MRA
uncorrectable
(DTMU)

Load UER P DAME N MRA
index{2:0}

N N SW can reload MRA

DTLB L2 correctable
(DTL2C)

Load UER D SRE 61 Recorded in L2
ESR

Y N SW should correct L2
error

DTLB L2
uncorrectable
(DTL2U)

Load UEU P DAME N Recorded in L2
ESR

N N SW should correct L2
error if possible

DTLB L2 NotData
(DTL2ND)

Load UEU P DAME N Recorded in L2
ESR

N N NotData should have
been preceded by a UE

Dcache valid bit
(DCVP)

Load CE D HCE 60 Index{6:0},
way{1:0}

Y Y HW invalidates all ways
of D$ index; HW
refetches data; if trap
taken, SW can log
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Error

Access
Type or
Unit

Error
Type

Trap
Type

Trap
Vector

Mask
able

ESR ErrorAddr
Info

HW Cor-
rected

HW
Cleared Notes



Dcache tag parity
(DCTP)

Load CE D HCE 60 Index{6:0},
way{1:0}

Y Y HW invalidates all ways
of D$ index; HW
refetches data; if trap
taken, SW can log

Dcache tag
multiple hit
(DCTM)

Load CE D HCE 60 Index{6:0},
way{1:0}

Y Y HW invalidates all ways
of D$ index; HW
refetches data; if trap
taken, SW can log

Dcache data
parity (DCDP)

Load CE D HCE 60 Index{6:0},
way{1:0}

Y Y HW invalidates all ways
of D$ index; HW
refetches data; if trap
taken, SW can log

Dcache L2
Correctable
(DCL2C)

Load UER D SRE 61 Recorded in L2
ESR

Y N SW should correct L2
error.

Dcache L2
Uncorrectable
(DCL2U)

Load UEU P DAE 62 Recorded in L2
ESR

N N SW should correct L2
error if possible.

Dcache L2
NotData
(DCL2ND)

Load UEU P DAE 62 Recorded in L2
ESR

N N NotData should have
been preceded by a UE.

Store buffer data
load hit
correctable ECC
(SBDLC)

RAW
(Read-
After-
Write)

UER P IPE 62 STB index{2:0} N N SW should MEMBAR
#Sync, then retry.

Store buffer data
load hit
uncorrectable
ECC (SBDLU)

RAW UEU P IPE 62 STB index{2:0} N N SW should MEMBAR
#Sync, then retry (likely
a nonrecoverable error).

Store buffer data
PCX read or ASI
store correctable
(SBDPC)

PCX CE D HCE 60 STB index{2:0} Y Y SW to log.

Store buffer data
PCX read
(SBDPU)

PCX UEU D SRE 61 STB index{2:0} N N HW generates NotData.

Store buffer
address PCX read
or ASI store
parity (SBAPP)

PCX UEU DF SE N DFESR bit 61,
privilege level,
STB index{2:0}

N N Nonmaskable, causes
store_error trap.
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Store buffer data
I/O read and ASI
store
uncorrectable
(SBDIOU)

PCX UEU DF SE N DFESR bit 60,
privilege level,
STB index{2:0} N N

Nonmaskable, causes
store_error trap.

TSA correctable
(TSAC)

TLU UER P IPE 62 TSA
index{2:0},
syndrome

N N
SW can correct or reload
TSA.

TSA
uncorrectable
(TSAU)

TLU UER P IPE 62 TSA
index{2:0},
syndrome

N N
SW can correct or reload
TSA.

MRA
uncorrectable
(MRAU)

MMU UER P IPE
(ASI
read or
read-
modify
-write)

62 MRA
index{2:0}

N N

SW can correct or reload
MRA.

SCA correctable
(SCAC)

MMU UER P IPE 62 SCA
index{2:0},
syndrome

N N
SW can correct SCA.

SCA
uncorrectable
(SCAU)

MMU UEU P IPE 62 SCA
index{2:0},
syndrome

N N

TICK_CMPR
correctable
precise (TCCP)

TLU UER P IPE 62 TCA
index{1:0},
syndrome

N N
SW can correct or reload
TICK_CMPR.

TICK_CMPR
correctable
disrupting
(TCCD)

TLU UER D SRE 61 TCA
index{1:0},
syndrome N N

SW can correct or reload
TICK_CMPR.

TICK_CMPR
uncorrectable
precise (TCUP)

TLU UER P IPE 62 TCA
index{1:0},
syndrome

N N SW can reload
TICK_CMPR.

TICK_CMPR
uncorrectable
disrupting
(TCUD)

TLU UER D SRE 61 TCA
index{1:0},
syndrome

N N SW can reload
TICK_CMPR.

L2C L2 CE D HCE 61 Recorded in L2
ESR

Y N See Section 16.9.

L2U L2 UEU D SRE 61 Recorded in L2
ESR

N N See Section 16.9.

L2ND L2 UEU D SRE 61 Recorded in L2
ESR

N N See Section 16.9.
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16.7 SPARC Error Descriptions

16.7.1 ITLB Errors
The priority of ITLB errors is ITTM → ITTP → ITDP → ITMU.

16.7.1.1 ITLB Tag Multiple Hit Error (ITTM)

The OpenSPARC T2 ITLB checks for multiple tag hits on each access if CERER.ittm
is set. A multiple tag hit error has higher priority than a tag parity error, and parity
is not factored into the tag hit determination. A multiple hit can occur as a result of
a hardware failure or a software error. Each ITLB tag entry is a tuple consisting of
partition ID, real address indicator, context, and VA, adjusted for page size. A
hardware error in any of these fields can cause a multiple tag hit. A multiple hit can
also occur if software maps the same virtual address using different contexts1, loads
the ITLB with those mappings simultaneously, and sets each context register to point
to one of the two contexts. A multiple hit can also occur if software loads pages with
differing pages sizes that do not cause the first page to be autodemapped1.

When a multiple hit error is detected, hardware records the error in the I-SFSR, and
a precise instruction_access_MMU_error trap is taken. The VA of the instruction
fetch is recorded in TPC[TL].

SOC Correctable
(SOCC)

SOC CE D HCE 61 Recorded in
SOC Error
Status Register

Y Y Software must read SOC
ESRs to determine details
of the error.

SOC
Uncorrectable
(SOCU)

SOC UEU D SRE 61 Recorded in
SOC Error
Status Register

N N Software must read SOC
ESRs to determine details
of the error.

1. The autodemap feature of the TLB, described in I-/D-TLB Data-In/Data-Access/Tag-Read Registers on page 143,
prevents translations with identical page sizes, VA, and context from existing in the TLB simultaneously.
However, software can generate multiple matches by inserting overlapping translations of differing page
sizes, or by inserting translations that differ only in context, and then programming the context 0 and context
1 registers to match the pair of translations.
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16.7.1.2 ITLB Tag Parity Error (ITTP)

Each ITLB tag entry is protected with parity. The tag entry bits covered by parity are
listed in I-/D-TLB Data-In/Data-Access/Tag-Read Registers on page 143.

ITLB tag parity is checked with each instruction translation if CERER.ittp is set.
ITLB tag parity is not checked on loads to ASI_ITLB_TAG_READ_REG. When a
parity error is detected, the error is logged in the I-SFSR and the strand takes a
precise instruction_access_MMU_error trap. The VA of the instruction fetch is
recorded in TPC[TL]. Software at the trap handler logs the error and issues a
demap_page to the TPC[TL]. Then software issues a RETRY instruction.
OpenSPARC T2 refetches the instruction and reaccesses the ITLB. This time either a
hit will occur (if the translation was reloaded by another strand), or a miss will
occur. If an ITLB miss occurs, hardware retranslates the address and reloads the
ITLB.

Programming
Notes

To handle an ITTM error, software at the trap handler logs the
error, and issues either a demap_all or a sequence of
demap_pages to all active contexts. Then software issues a
RETRY instruction. OpenSPARC T2 refetches the instruction and
reaccesses the ITLB. This time either a hit will occur (if the
translation was reloaded by another strand) or a miss will occur.
If an ITLB miss occurs, hardware retranslates the address and
reloads the ITLB.

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.

Implementation
Notes

Parity is only checked for translations that hit in the TLB. This
implies that a page that would otherwise hit in the TLB may
experience a TLB miss instead (for example., if a VA bit has
flipped). Normal replacement will eventually remove such a
TLB entry, or a page that would otherwise miss in the TLB may
experience an ITTP error instead, due to a VA bit flip.

If a parity error occurs in the page size stored in the TTE data, a
TLB tag parity error may result. This can occur since an error in
the page size will compute incorrect parity for the tag entry. In
this case, both tag and data parity errors are detected, but since
tag parity errors have higher priority than data parity errors,
only the tag parity error exception is taken and recorded.



16.7.1.3 ITLB Data Parity Error (ITDP)

Each ITLB data entry is protected with parity. The data entry bits covered by parity
are listed in I-/D-TLB Data-In/Data-Access/Tag-Read Registers on page 143.

ITLB data parity is checked with each instruction translation if CERER.itdp is set.
ITLB data parity is not checked on loads to ASI_ITLB_DATA_ACCESS_REG. When a
parity error is detected, hardware records the error in the I-SFSR, and takes a
precise instruction_access_MMU_error trap. The VA of the instruction fetch is
recorded in TPC[TL]. Software at the trap handler logs the error and issues a
demap_page to the TPC[TL]. Then software issues a RETRY instruction.
OpenSPARC T2 refetches the instruction and reaccesses the ITLB. This time either a
hit will occur (if the translation was reloaded by another strand) or a miss will occur.
If an ITLB miss occurs, hardware retranslates the address and reloads the ITLB.

16.7.1.4 ITLB MMU Register Array Uncorrectable Error
(ITMU)

The MMU register array (MRA) is protected by parity. When hardware tablewalk is
enabled, MRA parity is checked for all translations that do not have an entry present
in the ITLB during the ITLB reload process. If CERER.hwtwmu is set and a parity
error is encountered, hardware records the error in the I-SFSR and takes a precise
instruction_access_MMU_error trap. The VA of the instruction fetch is recorded in
TPC[TL], while the failing MRA index is recorded in the D-SFAR. To recover from
an ITMU error, software can reload the MRA register with a “clean” copy of the
MRA data which it has stored elsewhere.

16.7.2 DTLB Errors
The priority of DTLB errors is DTTM → DTTP → DTDP → DTMU.

Programming
Note

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.

Programming
Note

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.



16.7.2.1 DTLB Tag Multiple Hit Error (DTTM)

The OpenSPARC T2 DTLB checks for multiple tag hits on each access (including
prefetch instructions) if CERER.dttm is set. A multiple tag hit error has higher
priority than a tag parity error, and parity is not factored into the tag hit
determination. A multiple hit can occur as a result of a hardware failure or a
software error. Each DTLB tag entry is a tuple consisting of partition ID, real address
indicator, context, and VA, adjusted for page size. A hardware error in any of these
fields can cause a multiple tag hit. A multiple hit can also occur if software maps the
same virtual address using different contexts,1 loads the DTLB with those mappings
simultaneously, and sets each context register to point to one of the two contexts. A
multiple hit can also occur if software loads pages with differing pages sizes that do
not cause the first page to be autodemapped.1

When a multiple hit error is detected, hardware records the error in the D-SFSR,
and takes a precise data_access_MMU_error trap. The VA of the data access is
recorded in D-SFAR.

16.7.2.2 DTLB Tag Parity Error (DTTP)

Each DTLB tag entry is protected with parity. The tag entry bits covered by parity
are listed in I-/D-TLB Data-In/Data-Access/Tag-Read Registers on page 143.

DTLB tag parity is checked with each data translation (including prefetch
instructions) if CERER.dttp is set. DTLB tag parity is not checked on loads to
ASI_DTLB_TAG_READ_REG. When a parity error is detected, hardware records the

1. The autodemap feature of the TLB, described in Section 12.10.15, prevents translations with identical page
sizes, VA, and context from existing in the TLB simultaneously. However, software can generate multiple
matches by inserting overlapping translations of differing page sizes, or by inserting translations that differ
only in context and then programming the context 0 and context 1 registers to match the pair of translations.

Programming
Notes

To handle a DTTM error, software at the trap handler logs the
error, and issues either a demap_all or a sequence of
demap_pages to all active contexts. Then software issues a retry
instruction. OpenSPARC T2 refetches the instruction and
reaccesses the DTLB. This time either a hit will occur (if the
translation was reloaded by another strand) or a miss will occur.
If a DTLB miss occurs, hardware retranslates the address and
reloads the DTLB.

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.



error in the D-SFSR and takes a precise data_access_MMU_error trap. The VA of
the data access is recorded in the D-SFAR. Software at the trap handler logs the error
and issues a demap_page to the D-SFAR. Then software issues a RETRY instruction.
OpenSPARC T2 refetches the instruction and reaccesses the DTLB. This time either a
hit will occur (if the translation was reloaded by another strand) or a miss will occur.
If a DTLB miss occurs, hardware retranslates the address and reloads the DTLB.

16.7.2.3 DTLB Data Parity Error (DTDP)

Each DTLB data entry is protected with parity. The data entry bits covered by parity
are listed in I-/D-TLB Data-In/Data-Access/Tag-Read Registers on page 143.

DTLB data parity is checked with each data translation (including prefetch
instructions) if CERER.dtdp is set. DTLB data parity is not checked on loads to
ASI_DTLB_DATA_ACCESS_REG. When a parity error is detected, hardware records
the error in the D-SFSR, and takes a precise data_access_MMU_error trap. The VA
of the data access is recorded in D-SFAR. Software at the trap handler logs the error,
and issues a demap_page to the D-SFAR. Then software issues a retry instruction.
OpenSPARC T2 refetches the instruction and reaccesses the DTLB. This time either a
hit will occur (if the translation was reloaded by another strand), or a miss will
occur. If a DTLB miss occurs, hardware retranslates the address and reloads the
DTLB.

Implementation
Notes

Parity is only checked for data translations that hit in the TLB.
This implies that a page that would otherwise hit in the TLB
may experience a TLB miss instead (for example, if a VA bit has
flipped). Normal replacement will eventually remove such a
TLB entry, or a page that would otherwise miss in the TLB may
experience a DTTP error instead due to a VA bit flip.

If a parity error occurs in the page size stored in the TTE data, a
TLB tag parity error may result. This can occur since an error in
the page size will compute incorrect parity for the tag entry. In
this case, both tag and data parity errors are detected, but since
tag parity errors have higher priority than data parity errors,
only the tag parity error exception is taken and recorded.

Programming
Note

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.



16.7.2.4 DTLB MMU Register Array Uncorrectable Error
(DTMU)

The MMU register array (MRA) is protected by parity. When hardware tablewalk is
enabled, MRA parity is checked for all translations that do not have an entry present
in the DTLB during the DTLB reload process. If CERER.hwtwmu is set and a parity
error is encountered, hardware records the error in the D-SFSR, and takes a precise
data_access_MMU_error trap. The failing MRA index is recorded in the D-SFAR. To
recover from an DTMU error, software can reload the MRA register with a “clean”
copy of the MRA data which it has stored elsewhere.

16.7.3 Icache Errors
The priority of Icache errors is ICVP > ICTP > ICTM > ICDP.

16.7.3.1 Icache Valid Parity Error (ICVP)

The Icache tag valid bits are protected by duplication: there is a master copy and a
slave copy. The valid bits are checked for each instruction cache access for all ways in
the accessed set if CERER.icvp is set.

If CERER.icvp is not set, the master copy of the valid bit simply determines whether
a cache hit or miss occurred. If a valid bit mismatch occurs and CERER.icvp is set,
hardware invalidates all ways in the accessed Icache set.

If the DESR.f bit is clear, hardware records the index and the way1 with the error in
the DESR ErrorAddress field, and sets the DESR.f and DESR.icvp bits. If the DESR.f
bit is set, hardware sets the DESR.me bit but does not record the index and way in
the DESR.

A disrupting hw_corrected_error trap is generated to the requesting virtual core
when SETER.dhcce is set (and PSTATE.ie is set or HPSTATE.hpriv is clear) and
there is no higher priority trap. The earliest instruction on which the disrupting trap
can be taken is the instruction after the one that encountered the error.

Programming
Note

OpenSPARC T2 provides no special hardware to deal with
permanent single-bit failures in a TLB entry. To work around a
permanent single-bit failure, software must identify the bad TLB
entry, then disable hardware tablewalking and manage the TLB
in software to avoid the bad TLB entry.

1. The way information captured may not be correct for an instruction in a control transfer delay slot.



16.7.3.2 Icache Tag Parity Error (ICTP)

The Icache tag is protected with parity. The Icache tag parity is checked with each
instruction fetch if CERER.ictp is set. The parity is checked for each of the possible
valid ways in the set. If a parity error is found in any of the ways, hardware encodes
ictp and captures the way1 and set information in the DESR register. Hardware
invalidates all ways in the accessed Icache set.

A disrupting hw_corrected_error trap is generated to the requesting virtual core
when SETER.dhcce is set (and PSTATE.ie is set or HPSTATE.hpriv is clear) and
there is no higher priority trap. The earliest instruction on which the disrupting trap
can be taken is the instruction after the one that encountered the error.

16.7.3.3 Icache Tag Multiple Hit Error (ICTM)

Multiple errors in the tags can lead to multiple hits within a set. If CERER.ictm is
set, each instruction fetch is checked for multiple hits. If multiple hits are detected
on an instruction fetch, hardware encodes ictm and captures one of the ways that
hit2 and the set information in the DESR register. Hardware invalidates all ways in
the accessed Icache set.

A disrupting hw_corrected_error trap is generated to the requesting virtual core
when SETER.dhcce is set (and PSTATE.ie is set or HPSTATE.hpriv is clear) and
there is no higher priority trap. The earliest instruction on which the disrupting trap
can be taken is the instruction after the one that encountered the error.

Implementation
Note

Due to an implementation bug, the normal forwarding of the
instruction around the Icache (used to guarantee forward
progress with multiple strands) does not guarantee forward
progress for the case where the valid bit has a permanent error.

1. The way information captured may not be correct for an instruction in a control transfer delay slot.

Implementation
Note

The normal forwarding of the instruction around the Icache
(used to guarantee forward progress with multiple strands) will
also guarantee forward progress for the case where the tag has a
permanent error.

2. The way information captured may not be correct for an instruction in a control transfer delay slot.

Implementation
Note

The normal forwarding of the instruction around the Icache
(used to guarantee forward progress with multiple strands) will
also guarantee forward progress for the case where the tag has a
permanent error.



16.7.3.4 Icache Data Parity Error (ICDP)

Each 32-bit instruction in the Icache data array and the instruction buffers is
protected with parity. The instruction data parity is checked with each instruction
decode if CERER.icdp is set. Hardware can not distinguish between a parity error
that occurs in the instruction cache data array and a parity error that occurs in the
instruction buffer.

When a parity error is detected, hardware encodes icdp and captures the set
information in the DESR register. Hardware invalidates all ways in the accessed
Icache set. If the parity error actually occurred in the instruction buffer and not in
the data array, the set information in the DESR is irrelevant.

A disrupting hw_corrected_error trap is generated to the requesting virtual core
when SETER.dhcce is set (and PSTATE.ie is set or HPSTATE.hpriv is clear) and
there is no higher priority trap. The earliest instruction on which the disrupting trap
can be taken is the instruction after the one that encountered the error.

16.7.4 Dcache Errors
The priority of Dcache errors is DCVP > DCTP > DCTM > DCDP.

16.7.4.1 Dcache Valid Parity Error (DCVP)

The Dcache tag valid bits are protected by duplication: there is a master copy and a
slave copy. The valid bits are checked for each data load for all ways in the accessed
set if CERER.dcvp is set. If CERER.dcvp is not set, the master copy of the valid bit
simply determines whether a cache hit or miss occurred. If a valid bit mismatch
occurs and CERER.dcvp is set, hardware invalidates all ways in the accessed set. If
the DESR.f bit is clear, hardware records the index and the way with the error in the
DESR ErrorAddress field, and sets the DESR.f and DESR.dcvp bits. If the DESR.f
bit is set, hardware sets the DESR.me bit but does not record the index and way in
the DESR. In addition, if the SETER.dhcce bit is set (and PSTATE.ie is set or
HPSTATE.hpriv is clear), a disrupting hw_corrected_error trap is generated to the

Implementation
Notes

The normal forwarding of the instruction around the Icache
(used to guarantee forward progress with multiple strands) will
also guarantee forward progress for the case where the data has
a permanent error.

Programming
Note

If the D$ is in direct-mapped mode, and one of the following
parity errors occurs, the way replaced will be the way which
experienced the parity error, not the way specified by address
bits [12:11].



requesting virtual processor for logging of the error. If the hw_corrected_error trap is
not taken, the error is remembered via DESR.f and a disrupting hw_corrected_error
trap is generated to the requesting virtual processor when SETER.dhcce is later set
(and PSTATE.ie is set or HPSTATE.hpriv is clear) and there is no higher priority trap.

16.7.4.2 Dcache Tag Parity Error (DCTP)

The Dcache tag is protected with parity. The Dcache tag parity is checked with each
data load if CERER.dctp is set. If CERER.dctp is not set, the error is ignored. The
parity is checked for each of the possible valid ways in the set. If a parity error is
found in any of the ways, hardware invalidates all ways in the accessed set, encodes
dctp and captures the way and set information in the DESR register. In addition, if
the SETER.dhcce bit is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), a
disrupting hw_corrected_error trap is generated to the requesting virtual processor
for logging of the error. If the hw_corrected_error trap is not taken, the error is
remembered via DESR.f and a disrupting hw_corrected_error trap is generated to
the requesting virtual processor when SETER.dhcce is later set (and PSTATE.ie is
set or HPSTATE.hpriv is clear) and there is no higher-priority trap.

16.7.4.3 Dcache Tag Multiple Hit Error (DCTM)

Multiple errors in the tags can lead to multiple hits within a set. If CERER.dctm is
set, each data load checks for multiple hits. If multiple hits are detected on an data
load, hardware invalidates all ways in the accessed set, encodes dctm and captures
one of the ways that hit and the set information in the DESR register. In addition, if
the SETER.dhcce bit is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), a
disrupting hw_corrected_error trap is generated to the requesting virtual processor
for logging of the error. If the hw_corrected_error trap is not taken, the error is

Implementation
Notes

The normal forwarding of the data around the Dcache
guarantees forward progress for the case where the valid bit has
a permanent error.

Because stores do not read the Dcache they do not check the
Dcache valid parity. Stores do not read the Dcache since
coherency is maintained by the L2 directory.

Implementation
Notes

The normal forwarding of the data around the Dcache
guarantees forward progress for the case where the tag has a
permanent error.

Because stores do not read the Dcache they do not check the
Dcache tag parity. Stores do not read the Dcache since coherency
is maintained by the L2 directory.



remembered via DESR.f and a disrupting hw_corrected_error trap is generated to
the requesting virtual processor when SETER.dhcce is later set (and PSTATE.ie is
set or HPSTATE.hpriv is clear) and there is no higher priority trap.

16.7.4.4 Dcache Data Parity Error (DCDP)

Each byte in the Dcache data array is protected with parity. The Dcache data parity
is checked for each of the valid ways with each data load if CERER.dcdp is set.
When a parity error is detected, hardware invalidates all ways in the accessed set,
encodes dcdp and captures the set information in the DESR register. In addition, if
the SETER.dhcce bit is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), a
disrupting hw_corrected_error trap is generated to the requesting virtual processor
for logging of the error. If the hw_corrected_error trap is not taken, the error is
remembered via DESR.f and a disrupting hw_corrected_error trap is generated to
the requesting virtual processor when SETER.dhcce is later set (and PSTATE.ie is
set or HPSTATE.hpriv is clear) and there is no higher-priority trap.

16.7.5 IRF ECC Error (IRFC and IRFU)
Each IRF entry is protected by SEC/DED ECC. Up to three operands can be read
from the IRF at a time. Hardware checks each operand’s ECC independently.
Hardware prioritizes operand errors in the order rs1 > rs2 > rs3. This means that an
uncorrectable error which occurs on a lower-priority operand (e.g., rs2)
simultaneously with a correctable error on a higher-priority operand (e.g., rs1) will
not be reported (until the correctable error is cleared by software and the instruction
is retried).

Implementation
Notes

The normal forwarding of the data around the Dcache
guarantees forward progress for the case where the tag has a
permanent error.

Because stores do not read the Dcache, they do not check the
Dcache for multiple tag hits. Stores do not read the Dcache since
coherency is maintained by the L2 directory.

Implementation
Notes

The normal forwarding of the data around the Dcache
guarantees forward progress for the case where the data has a
permanent error.

Because stores do not read the Dcache, they do not check Dcache
data parity. Stores do not read the Dcache since coherency is
maintained by the L2 directory.



Hardware can only detect an IRF ECC error if CERER.irf is set. If hardware detects
either a correctable or uncorrectable error for any valid operand, what happens
depends upon the setting of SETER.pscce.

If SETER.pscce is set, hardware records the error type in the D-SFSR by encoding
IRFC or IRFU as appropriate, records the IRF index and the ECC syndrome in the D-
SFAR (see Table 16-11 on page 236), and generates a precise internal_processor_error
trap.

An IRFU error is generally not recoverable.

If the SETER.pscce bit is not set, the error is not recorded, and hardware continues
executing, using the uncorrected data read from the IRF. This will lead to data
corruption.

Since up to three operands can be read for each instruction, software may define an
appropriate error threshold for the instruction before considering the IRF broken.

16.7.6 FRF ECC Error (FRFC and FRFU)
Each FRF entry is protected by SEC/DED ECC. Up to two operands can be read
from the FRF at a time. Hardware checks each operand’s ECC independently. Note:
PDIST reads 3 operands over 2 cycles, so hardware still prioritizes three operands
for reporting errors. Hardware prioritizes operand errors in the order rs1 > rs2 > rs3.
This means that an uncorrectable error which occurs on a lower-priority operand
(e.g., rs2) simultaneously with a correctable error on a higher priority operand (e.g.,
rs1) will not be reported (until the correctable error is cleared by software and the
instruction is retried).

Programming
Note

Software should correct an IRFC error before issuing a retry
instruction. Software can correct the error as follows.

• It reads the D-SFAR contents and decodes the failing address
location in the IRF, turns off the SETER.pscce bit, and reads
the data. If desired for logging, software can also read the ECC
bits by using an LDXA to the ASI_IRF_ECC_REG register (See
ASI_IRF_ECC_REG on page 405).

• It decodes the ECC syndrome. If the error is in the data bits, it
xors the correction mask with the data read from the IRF.

• It then writes the corrected data into the IRF using a normal
integer instruction (hardware generates the proper ECC prior
to writing the IRF entry). In the process of reading the failing
location, another IRF ECC error will occur, but will not be
recorded or trapped as SETER.pscce is clear.

After correcting the data, software should turn the
SETER.pscce bit back on. Then software can retry the original
failing instruction.



Hardware can only detect an FRF ECC error if CERER.frf is set. If hardware detects
either a correctable or uncorrectable error for any valid operand, what happens
depends upon the setting of SETER.pscce.

If SETER.pscce is set, hardware records the error type by encoding FRFC or FRFU
in the D-SFSR as appropriate, records the failing FRF index and ECC syndrome in
the D-SFAR (see Table 16-11 on page 236), and generates a precise
internal_processor_error trap.

Programming
Note

Software should correct an FRFC error before issuing a retry
instruction. Handling of an FRFC error is similar to an IRFC
error. The additional complication is that each FRF entry
contains two ECC words (due to the single-precision FP
registers). So two corrections may have to be performed.
Software can correct a correctable error as follows:

• It reads the failing FRF index and ECC syndrome from the D-
SFAR. It decodes the failing address location in the FRF, turns
off the SETER.pscce bit, and reads the data. If desired for
logging, software can also read the ECC bits by using an LDXA
to the ASI_FRF_ECC_REG register (See ASI_FRF_ECC_REG on
page 406).

• Hardware reports 2 syndromes in the D-SFAR, even for single-
precision FP operations (the syndromes correspond to the 2 SP
registers of an even/odd SP pair). For a double-precision
operation, both syndromes are pertinent. Hardware does not
indicate which of the syndromes are pertinent for an SP
operation. Both syndromes may in fact indicate an ECC error. It
is also possible for one of the syndromes (the one
corresponding to the even or odd SP register which was not
read) to be incorrect.1 Software should inspect the instruction
at %tpc. If it was a double-precision operation, it should
decode both syndromes. If it was a single-precision operation,
it decodes the register numbers of the sources accordingly. That
identifies which of the syndromes is pertinent.

• If an error occurred in the data bits, software xors the
correction mask with the data.

• It then writes the corrected data into the FRF using a normal
FP operation (hardware generates the proper ECC before
writing the FRF). In the process of reading the failing FRF
location, another FRF ECC error will occur, but will not be
recorded or trapped as SETER.pscce is clear.

After correcting the data, software should turn the
SETER.pscce bit back on. Then software can retry the original
failing instruction.



An FRFU error is generally not recoverable.

If SETER.pscce is not set, the error is not recorded, and hardware continues
executing, using the uncorrected data read from the FRF. This will lead to data
corruption.

Software may define an appropriate error threshold for the instruction before
considering the FRF broken.

16.7.7 Store Buffer
The Store Buffer (STB) is organized as a CAM which contains the tag portion of the
address and a RAM which contains the data and status bits. The status bits consist of
the privilege level of the store. OpenSPARC T2 implements ECC in the data array for
data bits, and the Cam bits are protected by a single parity bit. The store buffer is
accessed on data loads (to check for RAW (Read-After-Write) hits) and on PCX
reads1 and ASI ring stores.2 It can also be accessed with diagnostic reads, but these
accesses do not cause parity or ECC errors.

16.7.7.1 Correctable Data ECC Error on a Load (SBDLC)

Hardware detects this error only if CERER.sbdlc is set. If a load which results in a
full RAW hit in the STB gets a single-bit data error, hardware does not correct the
load data.

1. Hardware captures the syndromes in the D-SFAR at the time an instruction
reads its operands from the FRF, without regard to previous single-precision
operations in the pipeline which may update the value of one of the SP registers
of an even/odd pair. If both the even and odd SP registers of an even-odd pair
have ECC errors,  hardware reports an error on the register being read, and the
other syndrome is unneeded.  Consider the following example. If the odd SP
register of an even/odd pair is being overwritten by a single-precision instruc-
tion still in the pipeline when the instruction reading from the even register
reads the FRF, hardware takes a trap on the instruction reading the even register.
Since at the time of the trap and the capture of the syndromes in the D-SFAR,
the instruction writing the odd register has not updated the register value, it still
shows as having an ECC error.

1. A PCX read occurs when the store is sent to the L2 cache or NCU. PCX stands for Processor to Cache Xbar.

2. Stores to ASI space which go over the ASI ring internal to the processor are referred to as ASI ring stores.



If SETER.pscce is set, hardware records the error in the D-SFSR by encoding sbdlc,
writes the store buffer index of the entry in error in the D-SFAR, and generates a
precise internal_processor_error trap. Since hardware will correct the data before
writing the store data to memory, this error is likely recoverable; software can issue
a retry to reexecute the load.

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.

16.7.7.2 Uncorrectable Data ECC Error on a Load (SBDLU)

Hardware detects this error only if CERER.sbdlu is set. If a load which results in a
full RAW hit in the STB gets an uncorrectable data ECC error, the following flow
occurs.

If SETER.pscce is set, the error is recorded in the D-SFSR by encoding sbdlu, and
writing the store buffer index of the entry in error to the D-SFAR, and generates a
precise internal_processor_error trap. Another uncorrectable error will likely occur
when hardware reads the store buffer entry to write the store data to memory. (See
Uncorrectable Data ECC Error on a PCX Read to Memory (SBDPU) below.)

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.

16.7.7.3 STB Address Parity Error on a Load

OpenSPARC T2 does not check CAM parity for load accesses.

16.7.7.4 Correctable Data ECC Error on a PCX Read to
Memory or I/O or Read for an ASI Ring Store (SBDPC)

If CERER.sbdpc is set, on a PCX read to memory or I/O space or a read for an ASI
ring store which results in a single bit ECC error, hardware corrects the error before
forwarding the data to the crossbar or the ASI ring. Hardware encodes sbdpc and
writes the failing store buffer index to the DESR.

If SETER.dhcce is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), hardware
presents a disrupting hw_corrected_error trap to the core.

If SETER.dhcce is not set, hardware continues executing. Assuming software has
not reset DESR.f, a disrupting trap will be presented to the core when software sets
SETER.dhcce (and PSTATE.ie is set or HPSTATE.hpriv is clear).



16.7.7.5 Uncorrectable Data ECC Error on a PCX Read to
Memory (SBDPU)

If CERER.sbdpu_sbdiou is set, on a PCX read to memory which results in an
uncorrectable ECC error, hardware generates NotData before forwarding the data to
the crossbar. The error is recorded in the DESR by encoding sbdpu, and writing the
store buffer index to the DESR.

If SETER.de is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), hardware
presents a disrupting sw_recoverable_error trap to the core.

If SETER.de is not set, hardware continues executing. Note that if SETER.de is not
set, hardware has performed a bad store which will not be detected until the bad
value is loaded. When software sets SETER.de (and PSTATE.ie is set or
HPSTATE.hpriv is clear), hardware will present a disrupting sw_recoverable_error
trap to the core.

16.7.7.6 Uncorrectable Data ECC Error on a PCX Read to I/O
or Read for an ASI Ring Store (SBDIOU)

If CERER.sbdpu_sbdiou is set, on a PCX read to I/O space or read for ASI Ring
Store which results in an uncorrectable ECC error, hardware suppresses the store
and all subsequent stores then in the store buffer for that strand. The error is
recorded in the DFESR by encoding sbdiou, and writing the store buffer index and
privilege level to the DFESR. The privilege level recorded is the highest privilege
level for any store in the store buffer at the time of the error.

Hardware presents a deferred store_error trap to the core. Software can decide what
termination action is appropriate. Software at the trap handler should read the store
buffer using store buffer diagnostic reads (see Store Buffer — ASI_STB_ACCESS on
page 407) before issuing any stores which will overwrite the store buffer.

16.7.7.7 Address Bit Parity Error on a PCX read or Read for
an ASI Ring Store (SBAPP)

If CERER.sbapp is set, on a PCX read or an ASI ring store read which exposes a
parity error on the address bits, hardware suppresses the store, and logs the error in
the DFESR by setting sbapp. Hardware suppresses other (younger, subsequent)
stores in the store buffer. The highest privilege level for any store in the store buffer
at the time of the error is also recorded.

Hardware presents a deferred store_error trap to the core.

If a user process was running, software may be able to avoid taking down the entire
chip; similarly if an operating system was running, software may be able to kill only
the partition the operating system was running in.



16.7.8 Scratchpad Array (SCAC and SCAU)
The Scratchpad array contains the scratchpad registers. It can be accessed only via
normal ASI loads and stores or diagnostic ASI loads. The array is protected via SEC/
DED ECC.

Hardware detects correctable Scratchpad errors only if CERER.scac is set, and
uncorrectable errors only if CERER.scau is set.

ECC is not checked for diagnostic reads of the array, so a diagnostic read can not
result in an error.

If a normal ASI read of the array results in a correctable ECC error, hardware
corrects neither the returned data nor the error in the array.

If the SETER.pscce bit is set, hardware records the error in the D-SFSR by encoding
scac, and records the array index with the error and syndrome in the D-SFAR.
Hardware signals a precise internal_processor_error trap to the core. When software
takes the trap, it can correct the data in the array. It decodes the syndrome, issues a
diagnostic ASI read to read the data and ECC check bits, computes the correct data,
and writes the corrected data back using a normal ASI store. Hardware generates the
proper ECC before writing to the array.

If the SETER.pscce bit is not set, hardware continues executing using the
uncorrected, and possibly erroneous, data. The error is not recorded.

If a normal ASI read of the array results in an uncorrectable ECC error, and
SETER.pscce is set, hardware records the error in the D-SFSR by encoding SCAU.
The array index with the error is stored in the D-SFAR. Hardware signals a precise
internal_processor_error trap to the core.

If the SETER.pscce bit is not set, hardware continues executing using the
uncorrected, and possibly erroneous, data. The error is not recorded.

16.7.9 Tick_compare (TCCP, TCUP, TCCD, TCUD)
The Tick_compare arrays are also protected via SEC/DED ECC. The Tick_compare
array stores TICK_CMPR, STICK_CMPR, and HSTICK_CMPR. The arrays have three
access means. The first is via ASR reads and writes. The second is via diagnostic ASI
loads. The third, compare access, is implicit as hardware cycles through the entries
to compare the TICK/STICK register with the TICK_CMPR registers.

Hardware detects correctable Tick_compare precise/disrupting errors only if
CERER.tccp/tccd is set, and uncorrectable precise/disrupting errors only if
CERER.tcup/tcud is set.

ECC is checked for a normal ASR read. If a correctable error occurs, hardware
corrects neither the returned data nor the array location.



If SETER.pscce is set, hardware records the error in the D-SFSR by encoding tccp
and the failing array index and syndrome is stored in the D-SFAR. Hardware
generates a precise internal_processor_error trap to the core. For a correctable error,
software at the trap handler can rewrite the array location and retry the failing
instruction. It decodes the syndrome, issues a diagnostic ASI read to read the data
and check bits, computes the correct data, and writes the corrected data back using a
normal ASR write. Hardware generates the proper ECC before writing the data to
the array.

If the SETER.pscce bit is not set, hardware continues executing using the
uncorrected, and possibly erroneous, data. The error is not recorded.

If an uncorrectable error occurs on a normal ASR read, and SETER.pscce is set,
hardware records the error in the D-SFSR by encoding tcup and writes the failing
index and syndrome to the D-SFAR. Hardware takes a precise
internal_processor_error trap. Software may be able to recover from this error by
picking a reasonable value to load the TICK_CMPR register with, and retrying the
ASR read.

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.

ECC is not checked for a diagnostic ASI load, so no error is recorded and no trap can
occur for this access type.

ECC is checked for a compare access. If a correctable or uncorrectable error occurs,
hardware does not correct the data in the array, and suppresses any compare
operation. Hardware records the error by encoding either tccd or tcud, and writing
the failing array index in the DESR. The DESR is updated irrespective of the setting
of SETER.de.

If SETER.de is set (and PSTATE.ie is set or HPSTATE.hpriv is clear), hardware
presents a disrupting sw_recoverable_error trap to the core.

If SETER.de is not set, hardware continues executing without regard to the error.
This can result in HW taking an hstick_match or interrupt_level_n trap based upon a
faulty comparison. When software sets SETER.de (and PSTATE.ie is set or
HPSTATE.hpriv is clear), hardware will present a disrupting sw_recoverable_error
trap to the core.

Programming
Note

For a TCCD error, software can attempt recovery by using
diagnostic array ASI accesses to correct the data as described for
TCCP processing above. For a TCUD error, software may be able
to recover from the error by setting the appropriate softened bit,
and reloading the TICK_CMPR register after processing of the
trap completes.



16.7.10 Trap Stack Array (TSAC and TSAU)
The TSA array is protected via SEC/DED ECC. It contains the Trap Stack array and
the mondo interrupt queue registers. It can be accessed via privileged register reads
and writes or diagnostic ASI accesses. Privileged register writes require a read-
modify-write operation, so privileged writes can generate an ECC error. The TSA is
also accessed during Done and Retry instructions. Diagnostic accesses to the TSA do
not generate ECC errors.

Hardware detects correctable TSA errors only if CERER.tsac is set. It detects
uncorrectable TSA errors only if CERER.tsau is set.

If hardware detects a correctable error during an ASR read or write, or a DONE or
RETRY instruction, hardware corrects neither the data returned by the read nor the
array location. If the access was an ASI write, hardware suppresses the array write.

If SETER.pscce is set, hardware records the error in the D-SFSR by encoding tsac,
and writes the failing TSA index and syndrome in the D-SFAR. Hardware presents
the core with a precise internal_processor_error trap. Software can attempt recovery
as follows. First note that each TSA array location contains several logical registers
(see Trap Stack Array (TSA) on page 410) for details). Also, certain bits in each array
location are unused (and assumed to be 0 during ECC generation). First, it turns off
TSA error reporting by setting CERER.tsac to 0. The decoded syndrome from the D-
SFAR indicates whether the error was in one of the unused bits in the array. If not,
based upon the decoded syndrome, it reads the architected register which spans the
failing bit using a RDPR/HPR instruction. After flipping the erroneous bit, it writes
the new value back to the architected register using a WRPR/HPR instruction. If the
decoded syndrome pointed to an unused bit, then software can read any register in
the failing location using a RDPR/HPR instruction, and write the same value back
using a WRPR/HPR instruction. Hardware will regenerate the correct ECC.
Software then sets CERER.tsac to 1 to reenable TSAC error reporting.

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.

If hardware detects an uncorrectable error during the read access for a privileged
register read or write, or a DONE or RETRY instruction, and SETER.pscce is set, it
records the uncorrectable error to the D-SFSR by encoding tsau, and writes the
failing array index to the D-SFAR. It then presents the core with a precise
internal_processor_error trap.

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.



16.7.11 MMU Register Array (MRAU)
The MRA (MMU Register Array) contains various pointers and configuration
registers used by hardware tablewalk and the MMU. Software can maintain a clean
copy of the MRA contents; hardware does not update or store any MRA contents
without software participation. (See MMU Register Array (MRA) on page 414 for
details of the information stored in the MRA).

Each MRA location is protected by parity. The MRA is accessed by normal ASI reads
and writes, diagnostic ASI reads and writes, and for hardware tablewalks. It is also
read-modify-write for ASI writes. Diagnostic accesses to the MRA do not generate
parity errors.

Hardware detects MRA parity errors only if CERER.mrau is set.

If hardware detects a parity error during a normal ASI access, hardware signals an
MRAU error to the trap unit. If the ASI access was a normal ASI write, hardware
suppresses the array update.

If SETER.pscce is set, hardware records the error in the D-SFSR by encoding mrau,
and writes the failing array index to the D-SFAR. Hardware presents a precise
internal_processor_error to the strand. Software can attempt recovery from the error
by reloading the entry from its clean copy of the MRA contents and retrying the ASI
access.

If SETER.pscce is not set, hardware continues executing using the uncorrected, and
possibly erroneous, data. The error is not recorded.

Parity is not checked for diagnostic ASI reads and writes.

If an MRA location gets a parity error during a hardware tablewalk, the MRA error
results in a precise instruction_access_MMU_error or data_access_MMU_error trap
to the strand (see previous error handling sections). Software can attempt recovery
from an error as above for an ASI access.

16.8 SPARC Error Registers
CERER (Core Error Recording Enable) register enables recording of an individual
hardware error in either the I-SFSR, D-SFSR and D-SFAR, DESR, or DFESR. Bits in
SETER (Core Error Trap Enable) register further control whether or not a trap
occurs for a recorded error. A trap can never occur for an error that is not recorded;
thus, a trap will be taken only if both CERER and associated SETER enable bits are
set. Additionally, precise traps which are masked off (either by the appropriate
CERER bit or SETER.pscce) will not update the I-SFSR or D-SFSR and D-SFAR.
Hardware only updates the I-SFSR or D-SFSR and D-SFAR if a precise trap is
taken.



16.8.1 ASI_CORE_ERROR_RECORDING_ENABLE_
REGISTER

The strands on a physical core share a hyperprivileged
ASI_CORE_ERROR_RECORDING_ENABLE_REGISTER (CERER) at ASI 4C16,
VA{63:0} = 1016. This register controls the reporting of errors to the virtual processor,
and is intended only for use during debug. Software may also use this register to
selectively disable error recording and trap generation in special circumstances. The
format of the CERER register is shown in TABLE 16-4.

TABLE 16-4 CERER – ASI_CORE_ERROR_RECORDING_ENABLE_REGISTER (ASI 4C16, VA 1016) (1 of 3)

Bit Field
Initial
Value R/W Description

63 ittp 0 RW If set to 0, mask ITTP errors. If set to 1, enable ITTP errors.

62 itdp 0 RW If set to 0, mask ITDP errors. If set to 1, enable ITDP errors.

61 ittm 0 RW If set to 0, mask ITTM errors. If set to 1, enable ITTM errors.

60 — 0 RO Reserved

59 hwtwmu 0 RW If set to 0, mask all uncorrectable MRA errors on hwtw. If set to 1, enable all
uncorrectable MRA errors on hwtw.

58 hwtwl2 0 RW If set to 0, mask all L2 errors on hwtw. If set to 1, enable all L2 errors on
hwtw.

57 — 0 RO Reserved

56 — 0 RO Reserved

55 icl2c 0 RW If set to 0, mask ICL2C errors. If set to 1, enable ICL2C errors.

54 icl2u 0 RW If set to 0, mask ICL2U errors. If set to 1, enable ICL2U errors.

53 icl2nd 0 RW If set to 0, mask ICL2ND errors. If set to 1, enable ICL2ND errors.

52 irf 0 RW If set to 0, mask all IRF errors. If set to 1, enable all IRF errors.

51 — 0 RO Reserved

50 frf 0 RW If set to 0, mask all FRF errors. If set to 1, enable all FRF errors.

49 — 0 RO Reserved

48 dttp 0 RW If set to 0, mask DTTP errors. If set to 1, enable DTTP errors.

47 dttm 0 RW If set to 0, mask DTTM errors. If set to 1, enable DTTM errors.

46 dtdp 0 RW If set to 0, mask DTDP errors. If set to 1, enable DTDP errors.

45 — 0 RO Reserved

44 — 0 RO Reserved

43 — 0 RO Reserved

42 — 0 RO Reserved

41 — 0 RO Reserved

40 dcl2c 0 RW If set to 0, mask DCL2C errors. If set to 1, enable DCL2C errors.

39 dcl2u 0 RW If set to 0, mask DCL2U errors. If set to 1, enable DCL2U errors.



38 dcl2nd 0 RW If set to 0, mask DCL2ND errors. If set to 1, enable DCL2ND errors.

37 sbdlc 0 RW If set to 0, mask SBDLC errors. If set to 1, enable SBDLC errors.

36 sbdlu 0 RW If set to 0, mask SBDLU errors. If set to 1, enable SBDLU errors.

35 — 0 RO Reserved

34 — 0 RO Reserved

33 mrau 0 RW If set to 0, mask MRAU errors. If set to 1, enable MRAU errors.

32 tsac 0 RW If set to 0, mask TSAC errors. If set to 1, enable TSAC errors.

31 tsau 0 RW If set to 0, mask TSAU errors. If set to 1, enable TSAU errors.

30 scac 0 RW If set to 0, mask SCAC errors. If set to 1, enable SCAC errors.

29 scau 0 RW If set to 0, mask SCAU errors. If set to 1, enable SCAU errors.

28 tccp 0 RW If set to 0, mask TCCP errors. If set to 1, enable TCCP errors.

27 tcup 0 RW If set to 0, mask TCUP errors. If set to 1, enable TCUP errors.

26:24 —0 0 RO Reserved

23 sbapp 0 RW If set to 0, mask SBAPP errors. If set to 1, enable SBAPP errors.

22 — 0 RO Reserved

21 l2c_socc 0 RW If set to 0, mask L2C and SOCC errors. If set to 1, enable L2C and SOCC
errors.

20 l2u_socu 0 RW If set to 0, mask L2U and SOCU errors. If set to 1, enable L2U and SOCU
errors.

19 l2nd 0 RW If set to 0, mask L2ND errors. If set to 1, enable L2ND errors.

18 icvp 0 RW If set to 0, mask ICVP errors. If set to 1, enable ICVP errors.

17 ictp 0 RW If set to 0, mask ICTP errors. If set to 1, enable ICTP errors.

16 ictm 0 RW If set to 0, mask ICTM errors. If set to 1, enable ICTM errors.

15 icdp 0 RW If set to 0, mask ICDP errors. If set to 1, enable ICDP errors.

14 dcvp 0 RW If set to 0, mask DCVP errors. If set to 1, enable DCVP errors.

13 dctp 0 RW If set to 0, mask DCTP errors. If set to 1, enable DCTP errors.

12 dctm 0 RW If set to 0, mask DCMH errors. If set to 1, enable DCMH errors.

11 dcdp 0 RW If set to 0, mask DCDP errors. If set to 1, enable dcDP errors.

10 sbdpc 0 RW If set to 0, mask SBDPC errors. If set to 1, enable SBDPC errors.

9 sbdpu_
sbdiou

0 RW If set to 0, mask SBDPU and SBDIOU errors. If set to 1, enable SBDPU and
SBDIOU errors.

8 mamu 0 RW If set to 0, mask MAMU errors. If set to 1, enable MAMU errors.

7 tccd 0 RW If set to 0, mask TCCD errors. If set to 1, enable TCCD errors.

6 tcud 0 RW If set to 0, mask tcud errors. If set to 1, enable tcud errors.

5 mal2c 0 RW If set to 0, mask MAL2C errors. If set to 1, enable MAL2C errors.

4 mal2u 0 RW If set to 0, mask MAL2U errors. If set to 1, enable MAL2U errors.

3 mal2nd 0 RW If set to 0, mask MAL2ND errors. If set to 1, enable MAL2ND errors.

TABLE 16-4 CERER – ASI_CORE_ERROR_RECORDING_ENABLE_REGISTER (ASI 4C16, VA 1016) (2 of 3)

Bit Field
Initial
Value R/W Description



Each bit of the enable fields for precise errors (CERER bits 63:61, 59:58, 54:53, 52, 50,
48:46, 39:36, 33:27) controls whether a corresponding precise error is recorded in the
I-SFSR or D-SFSR. A 1 in the CERER bit position enables the corresponding error
to be recorded if that error occurs. Otherwise, that error is not recorded. Similarly,
each bit of the DESR enable field For disrupting errors (CERER bits 55, 40, 21:10,
8:0) control whether the corresponding disrupting error is recorded in the DESR.
Bits 23 and 9 oF the CERER control whether the associated error is logged in the
DFESR.

Logically the CERER bit is anded with error sources before an error is encoded and
recorded in the I-SFSR, D-SFSR, DESR, or DFESR. A masked enable in the CERER
Precise Error enable field cannot cause the I-SFSR or D-SFSR to be updated if the
associated error occurs. Similarly a masked enable in the CERER DESR enable field
cannot cause the DESR.f or the DESR.me bits to be set, nor can a masked enable in
the DFESR enable field cause a DFESR bit to be set.

16.8.2 ASI_STRAND_ERROR_TRAP_ENABLE_REGISTER

Each virtual processor has a hyperprivileged
ASI_STRAND_ERROR_TRAP_ENABLE_REGISTER (SETER) at ASI 4C16,
VA{63:0} = 1816. This register controls the generation of traps for errors that are
reported to the virtual processor.

Each of the SETER bits apply to a particular class of maskable errors. Nonmaskable
errors always result in traps regardless of the setting of the SETER bits (assuming
that the CERER bit for the error is set).

Bit 62, pscce, controls whether a trap will be taken if a maskable, precise software
correctable error is detected during the execution of an instruction. Since hardware
performs neither correction nor clearing of the error, software must take action to
avoid unpredictable execution and possible data loss. This bit should always be set
for normal operation. An example of this type of error is a correctable IRF ECC error.
Furthermore, if pscce is 0, no maskable, precise software correctable errors will be
recorded in the I-SFSR or the D-SFSR and D-SFAR.

2 — 0 RW —

1 — 0 RW —

0 — 0 RW —

TABLE 16-4 CERER – ASI_CORE_ERROR_RECORDING_ENABLE_REGISTER (ASI 4C16, VA 1016) (3 of 3)

Bit Field
Initial
Value R/W Description



Bit 61, de, controls whether a sw_recoverable_error disrupting trap will be taken if
the DESR.f is set for a maskable disrupting error which is not hardware corrected
and cleared. (Note that a disrupting trap is also conditioned by the setting of the
PSTATE.ie bit when HPSTATE.hpriv is set; PSTATE.ie must be set in this case to
take a disrupting trap).

Bit 60, dhcce, controls whether a hw_corrected_error disrupting trap will be taken
for a maskable disrupting hardware error that was corrected and cleared. In this
case, software should log the error. (Note that a disrupting trap is also conditioned
by the setting of the PSTATE.ie bit when HPSTATE.hpriv is set; PSTATE.ie must be
set in this case to take a disrupting trap).

The format of the SETER register is shown in TABLE 16-5.

16.8.3 IMMU Synchronous Fault Status Register
OpenSPARC T2 uses the I-SFSR to record precise hardware errors encountered
during the instruction fetch process. For most instruction fetch errors, the TPC[TL]
records the relevant VA. For an IT MRA1correctable or uncorrectable error, the D-
SFAR records the failing MRA index. Using the D-SFAR obviates the need for an
ISFAR. If the error occurred for a fetch to L2 (either during an hwtw or instruction
fetch), an L2 ESR contains more information about the error.

Note In normal operation, pscce and de should always be set.
Otherwise, the OpenSPARC T2 core will continue to execute in
the face of hardware errors, leading to unpredictable behavior.

TABLE 16-5 SETER – ASI_STRAND_ERROR_TRAP_ENABLE_REGISTER (ASI 4C16, VA 1816)

B
i
t

F
i
e
l
d

Initial
Value R/W

Description

63 — 0 RO Reserved

62 pscce 0 RW If set to 1, trap on maskable, precise software corrected and cleared errors

61 de 0 RW If set to 1, trap on maskable, disrupting errors which are not hardware
corrected and cleared

60 dhcce 0 RW If set to 1, trap on maskable, disrupting hardware corrected and cleared
errors.

59:0 —1 0 RO Reserved

1. MRA stands for the MMU Register Array; it contains various configuration registers required for the MMU
and hardware tablewalk.



Each virtual processor has one hyperprivileged, read/write, ASI_IMMU_SFSR
register located at ASI 5016, VA 1816. The format of the ISFSR register is shown in
TABLE 16-6.

TABLE 16-7 describes the hardware errors that are recorded in the ISFSR register. If
multiple error conditions occur for the same instruction, only the highest priority is
logged. If multiple exceptions occur for the same instruction, the ISFSR will only be
updated if the error is the highest-priority exception for the instruction. For example,
if an access to a privileged page in user mode occurs in conjunction with an Icache
tag parity error, the I-SFSR will not be updated. Since ISFSR only logs precise
errors, a write clearing this register cannot be simultaneous to an error that would
set the I-SFSR.

TABLE 16-6 ISFSR – ASI_IMMU_SYNCHRONOUS_FAULT_STATUS_REGISTER (ASI 5016, VA 1816)

Bit Field
Initial
Value R/W Description

63:3 — 0 RO Reserved

2:0 errtype 0 RW Error type information, format defined in TABLE 16-7.

Note ISFSR is preserved across warm resets to allow software to
determine the cause of an error that required a warm reset.

Note There is no “latching” of the first error. If another error occurs
before the I-SFSR has been examined, the new error information
is captured in the I-SFSR, overwriting the old information.



The Trap Type column describes the trap type which will result if the error occurs
and the trap is enabled (see SETER in
ASI_STRAND_ERROR_TRAP_ENABLE_REGISTER on page 230). The Error Name
column names the hardware error, and the Error Description column provides a
brief description of the error. If multiple errors occur for the same instruction, the
error that is recorded in the I-SFSR is determined by the Relative Priority column,
with 1 being the highest priority. The error information recorded in the I-SFSR is
indicated by the encoding specified in the errortype field while the format of the
address information recorded in the D-SFAR is described by the entry in the last
column for ITMU errors, with reference to TABLE 16-11 on page 236.

16.8.4 DMMU Synchronous Fault Status and Address
Registers
OpenSPARC T2 records data-related precise hardware errors in the D-SFSR and D-
SFAR. Since a hardware error has higher priority than a normal program error,
OpenSPARC T2 saves hardware by using the D-SFSR and D-SFAR for precise data
hardware errors.

The error types recorded in the D-SFSR and D-SFAR are listed in TABLE 16-8. TSA
stands for Trap Stack Array; the TSA contains the V9 trap stack and mondo queue
interrupt registers. SCA stands for Scratchpad Array; the SCA contains the

TABLE 16-7 Hardware Errors Recorded in the ISFSR Register

Trap Type Error Name Error Description
Relative
Priority

Contents of
I-SFSR
ErrorType
Field

Contents of D-
SFAR (see
TABLE 16-11)

instruction_access_MMU_error ITTM IT Tag Multiple hit 1 1 TPC[TL]
contains VA

ITTP IT Tag Parity 2 2 TPC[TL]
contains VA

ITDP IT Data Parity 3 3 TPC[TL]
contains VA

ITMU IT MRA Uncorrectable 4 4 2

ITL2U IT L2 Uncorrectable 5 5 TPC[TL]
contains VA

ITL2ND IT L2 NotData 5 6 TPC[TL]
contains VA

instruction_access_error ICL2U IC L2 Uncorrectable 6 1 TPC[TL]
contains VA

ICL2ND IC L2 NotData 6 2 TPC[TL]
contains VA



scratchpad registers. If multiple error conditions occur for the same access, only the
highest priority is logged. If multiple exceptions occur for the same instruction, the
D-SFSR will only be updated if the error is the highest priority exception for the
instruction. For example, if an FRF ECC error occurs in conjunction with an
privileged opcode exception, the D-SFSR will not be updated. Since the D-SFSR
and D-SFAR log precise errors, a write clearing the D-SFSR cannot be simultaneous
to an error that would set the D-SFSR and D-SFAR.

Notes On a block store instruction which gets multiple FRF ECC
errors, only the first error is logged in the D-SFSR and D-SFAR.

There is no “latching” of the first error in the D-SFSR and D-
SFAR. If another error occurs before the D-SFSR and D-SFAR
have been examined, the new error information is captured in
the D-SFSR and D-SFAR, overwriting the old information.

TABLE 16-8 Hardware Errors Recorded in the D-SFSR and D-SFAR Registers

Trap Type Error Name Error Description
Relative
Priority

Contents of
D-SFSR
ErrorType
Field

Contents of
D-SFAR (see
TABLE 16-11

internal_processor_error IRFU Integer register file uncorrectable 1 1 8

IRFC Integer register file correctable 2 2 8

FRFU Floating-point register file
uncorrectable

3 3 9

FRFC Floating-point register file
correctable

4 4 9

SBDLC Store buffer data load hit
correctable

10 5 6

SBDLU Store buffer data load hit
uncorrectable

10 6 6

MRAU MRA uncorrectable 11 7 10

TSAC TSA correctable 11 8 11

TSAU TSA uncorrectable 11 9 11

SCAC SCA correctable 11 10 12

SCAU SCA uncorrectable 11 11 12

TCCP Tick compare correctable precise 11 12 13

tcup Tick compare uncorrectable
precise

11 13 13



16.8.4.1 DMMU Synchronous Fault Status Register

Each virtual processor has one hyperprivileged, read/write, ASI_DMMU_SFSR
register located at ASI 5816, VA 1816. The format of the DSFSR register is shown in
TABLE 16-9.

16.8.4.2 DMMU Synchronous Fault Address Register

Each virtual processor has one hyperprivileged, read-only, ASI_DMMU_SFAR register
located at ASI 5816, VA 2016. The format of the DSFAR register is shown in
TABLE 16-10.

data_access_MMU_error DTTM DT tag multiple hit 5 1 1

DTTP DT tag parity 6 2 1

DTDP DT data parity 7 3 1

DTMU DT MRA uncorrectable 8 4 2

DTL2U DT L2 uncorrectable 9 5 3

DTL2ND DT L2 NotData 9 6 3

data_access_error DCL2U dc L2 uncorrectable 11 1 3

DCL2ND dc L2 NotData 11 2 3

SOCU SOC uncorrectable 12 4 See
page 305

TABLE 16-9 DSFSR – ASI_DMMU_SYNCHRONOUS_FAULT_STATUS_REGISTER (ASI 5816, VA 1816)

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 errtype 0 RW Error type information, format defined in TABLE 16-8.

Note DSFSR is preserved across warm resets to allow software to
determine the cause of an error that required a warm reset.

TABLE 16-10 DSFAR – ASI_DMMU_SYNCHRONOUS_FAULT_ADDRESS_REGISTER (ASI 5816, VA 2016)

Bit Field
Initial
Value R/W Description

63:48 — 0 RO Reserved

47:0 erraddr 0 RO Error address information, format defined in TABLE 16-11.

TABLE 16-8 Hardware Errors Recorded in the D-SFSR and D-SFAR Registers (Continued)

Trap Type Error Name Error Description
Relative
Priority

Contents of
D-SFSR
ErrorType
Field

Contents of
D-SFAR (see
TABLE 16-11



TABLE 16-11 further describes the contents of the DSFAR or DESR registers, which
contain information about either the address or syndrome of the error, for each type
of error which can occur.

Note DSFAR is preserved across warm resets to allow software to
determine the cause of an error that required a warm reset.

TABLE 16-11 Contents of D-SFAR or DESR Error Address Field for Various Error Types

Error Class in I-SFSR, D-SFSR,
or DESR

Bit Index
in D-SFAR
or DESR ErrorAddr Information Remarks

1 (ITLB/DTLB) 47:0 VA{47:0} for D-SFAR Undefined for ITLBE: VA of ITLB error is
recorded in TPC[TL]; VA of DTLB error is
recorded in D-SFAR.

2 (MRA access for HWTW) 47:3 — Undefined.

2:0 MRA index{2:0}

3 (Memory access) 47:0 — Undefined; L2 ESR contains more information
about the error.

4 (IC access) 47:9 — Undefined.

8:6 Way{2:0} One of the ways if a multiple-way hit occurred;
not recorded for Icache data parity errors.

5:0 IC index{5:0}

5 (DC access) 47:9 — Undefined.

8:7 Way{1:0} One of the ways if a multiple-way hit occurred.

6:0 DC Index{6:0}

6 (Store Buffer Data ECC) 47:3 — Undefined.

2:0 STB Index{2:0}



8 (IRF ECC) 47:15 — Undefined.

14:7 Syndrome{7:0} ECC Syndrome; see Appendix G, ECC Codes for
ECC syndrome decode.

6:5 GL{1:0} GL field when error occurred.

4:0 IRF Index{4:0} Physical array index where the error occurred.
For indices which point to %in or %out registers,
the interpretation depends upon whether %cwp
is pointing to an even or an odd window, as
follows:

For an even window:
index 0 --> %g0
index 8 --> %o0
index 16 --> %l0
index 24 --> %i0

For an odd window, the indices which map to
%in and %out registers swap:

index 0 --> %g0
index 24 --> %o0
index 16 --> %l0
index 8 --> %i0

9 (FRF ECC) 47:20 — Undefined.

19:13 Even Syndrome{6:0} Syndrome of lower 32 bits (bits 31:0); see
Appendix G, ECC Codes for ECC syndrome
decode.

12:6 Odd Syndrome{6:0} Syndrome of upper 32 bits (bits 63:32); see
Appendix G, ECC Codes for ECC syndrome
decode.

5:0 FRF Index{5:0}

10 (MRA) 47:3 — Undefined. (No syndrome since parity is stored
in MRA.)

2:0 MRA Index{2:0}

11 (TSA) 47:19 — Undefined.

18:11 Odd Syndrome{7:0}

10:3 Even Syndrome{7:0}

2:0 TSA Index{2:0}

12 (Scratchpad) 47:3 — Undefined.

10:3 Syndrome{7:0}

2:0 SCPD Index{2:0}

TABLE 16-11 Contents of D-SFAR or DESR Error Address Field for Various Error Types (Continued)
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16.8.5 Disrupting Error Status Register (DESR)
Each virtual processor has a hyperprivileged, read-only DESR located at ASI 4C16,
VA 016. The DESR records all disrupting errors. A read of DESR clears all fields. The
format of the DESR register is shown in TABLE 16-12.

DESR captures information on both sw_recoverable_error and hw_corrected_error
errors. The s bit denotes the type of error whose information is logged in the
errortype and erroraddr fields. If set to 1, the errortype and erroraddr fields contain
information regarding a sw_recoverable_error; else, the errortype and erroraddr
fields contain information regarding a hw_corrected_error. The s bit is required since
OpenSPARC T2 can detect both hw_corrected_error and sw_recoverable_error
simultaneously. Furthermore, in the event DESR contains error information
regarding a hw_corrected_error and a sw_recoverable_error occurs, the
sw_recoverable_error must take precedence, to allow software the opportunity to
recover from the error.

Hardware sets the f bit when a disrupting error occurs and the corresponding
CERER bit is set; the f bit signifies that the register contains valid data (for example,
is full). The s bit is set when a sw_recoverable_error occurs and the s bit is not

13 (Tick_compare) 47:2 — Undefined.

9:2 Syndrome{7:0}

1:0 Tick_compare Index{1:0}

TABLE 16-12 DESR – ASI_DISRUPTING_ERROR_STATUS_REGISTER (ASI 4C16, VA 016)

Bit Field
Initial
Value R/W Description

63 f 0 RC Full, register contains valid data.

62 me 0 RC Multiple errors detected.

61 s 0 RC Error trap type. If 1, a sw_recoverable_error was logged. If 0, a
hw_corrected_error was logged.

60:56 errtype 0 RC Error type, format defined in TABLE 16-13.

55:11 — 0 RC Reserved

10:0 erraddr 0 RC Error address information, format defined in TABLE 16-11.

Note DESR is preserved across warm resets to allow software to
determine the cause of an error that required a warm reset.

TABLE 16-11 Contents of D-SFAR or DESR Error Address Field for Various Error Types (Continued)
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already set. The me bit is set when an error occurs and the f bit is already set, since
disrupting errors can occur while the f bit is set from a previous error. If the f bit was
set from a previous hw_corrected_error and the current error is a
sw_recoverable_error, the error information is captured for the
sw_recoverable_error. Otherwise, no additional information is captured about an
error that sets the me bit.

If the f bit is set and the s bit is cleared (which implies only hardware corrected and
cleared errors have occurred), a hw_corrected_error trap will be generated if
SETER.dhcce is set and either PSTATE.ie is set or HPSTATE.hpriv is clear. If not
enabled, the trap remains pending while the f bit is set and the s bit is cleared until
SETER.dhcce is set and either PSTATE.ie is set or HPSTATE.hpriv is clear.

If the f bit is set and the s bit is set (which implies an error that was not hardware
corrected and cleared has occurred), a sw_recoverable_error trap will be generated if
SETER.de is set and either PSTATE.ie is set or HPSTATE.hpriv is clear. If not
enabled, the trap remains pending while the f bit is set and the s bit is set until
SETER.de is set and either PSTATE.ie is set or HPSTATE.hpriv is clear.

A more detailed description of the DESR semantics is as follows:

1. If the f bit is clear and a sw_recoverable_error occurs, hardware sets the s and f
bits to 1 and captures the sw_recoverable_error information in the errortype and
erroraddr fields. If another hw_corrected_error or sw_recoverable_error occurs
before software reads the DESR and clears the s and f bits, hardware sets the me
bit and leaves the errortype and erroraddr fields unchanged.

2. If the f bit is clear and a hw_corrected_error occurs and there is no simultaneous
sw_recoverable_error, hardware sets DESR.s to 0, DESR.f to 1, and captures the
error information about the hw_corrected_error.

3. If the f bit is set and a sw_recoverable_error occurs:

a. If the s bit is set, hardware sets the me bit, and leaves all other DESR fields
unchanged.

b. If the s bit is clear, hardware overwrites the DESR as follows. It sets the s, f,
and me bits to 1 and overwrites the contents of the errortype and erroraddr
fields with the information about the sw_recoverable_error. In this case,
software could find that hardware took a hw_corrected_error trap and upon
reading the DESR, realize that a sw_recoverable_error occurred which
overwrote the hw_corrected_error. All detailed information about the
hw_corrected_error is lost.

4. If the f bit is set, and a hw_corrected_error occurs, hardware sets the me bit and
leaves the other DESR fields unchanged.



5. If a hw_corrected_error and a sw_recoverable_error occur simultaneously, the
sw_recoverable_error takes precedence. Hardware sets the f, s, and me bits to 1
and records the sw_recoverable_error in the DESR errortype and erroraddr fields.
The sw_recoverable_error exception becomes pending. The pending
hw_corrected_error exception is cleared.

6. If software performs an ASI read of the DESR simultaneously with hardware
reporting a new disrupting exception:

a. Hardware returns the value previously stored in the DESR to the ASI read.

b. Hardware stores the new disrupting exception in the DESR as if the f bit were
clear.

The DESR errortype field contains information that describes the error and is
detailed in TABLE 16-13 below. If multiple disrupting errors occur at the same time,
hardware prioritizes the errors and stores the syndrome for the highest-priority error
in the errortype field, according to the column labeled Relative Priority, with 1 being
the highest priority.

Programming
Notes

ASI reads of the DESR clear the DESR. Consequently, hardware
clears the corresponding f bit in the CLESR as well.

The DESR is read-only. To test error recovery code, software
must inject an error (using the ASI_CORE_ERROR_INJECT
register), then cause the erroneous data to be used, thereby
taking a hw_corrected_error or sw_recoverable_error trap.

TABLE 16-13 DESR Error Type Bits

Trap Type Error Name Description
Relative
Priority

Contents of
DESR
errortype
Field (bits
60:56)

Contents of
DESR
erroraddr
Field (see
TABLE 16-11)

hw_corrected_error

ICVP Instruction cache valid bit parity. 11.1 1 4

ICTP Instruction cache tag parity. 11.2 2 4

ICTM Instruction cache tag multiple. 11.3 3 4

ICDP Instruction cache data parity. 11.4 4 4

DCVP Data cache valid bit parity. 12.1 5 5

DCTP Data cache tag parity. 12.2 6 5

DCTM Data cache tag multiple. 12.3 7 5

DCDP Data cache data parity. 12.4 8 5

L2C L2 cache correctable. 13 9 3

SBDPC Store buffer data PCX read correctable ECC. 14 10 6

SOCC SOC correctable. 15 11 (see SOC)



16.8.6 Deferred Error Status Register (DFESR)
Each virtual processor has a hyperprivileged, read-only-and-clear DFESR at ASI
4C16, VA 816. A read of DFESR clears all fields to 0. DFESR records deferred errors
detected by the OpenSPARC T2 core. The format of the Deferred Error Status
register is shown in TABLE 16-14.

The content of the error type field is as follows:

sw_recoverable_error

SBDPU Store buffer data PCX read uncorrectable
ECC.

1 6 6

TCCD Tick_compare correctable disrupting. 2 14 13

TCUD Tick_compare uncorrectable disrupting. 2 15 13

L2C L2 correctable ECC error. 5 20 3

L2U L2 uncorrectable ECC error. 5 16 3

L2ND L2 NotData error. 5 17 3

ITL2C IT L2 correctable. 6 1 3

ICL2C ic L2 correctable. 6 2 3

DTL2C DT L2 correctable. 6 3 3

DCL2C dc L2 correctable. 6 4 3

SOCU SOC uncorrectable. 7 19 See
Section 16.17

TABLE 16-14 DFESR – ASI_DEFERRED_ERROR_STATUS_REGISTER (ASI 4C16, VA 816)

Bit Field
Initial
Value R/W Description

63:62 — 0 RO Reserved

61:60 type 0 RC Error type, format defined in TABLE 16-15.

59:58 priv 0 RC Privilege level, format defined in TABLE 16-16.

57:55 stbindex 0 RC Store buffer index.

54:0 — 0 RO Reserved

Note DFESR is preserved across warm resets to allow software to
determine the cause of an error that required a warm reset.

TABLE 16-13 DESR Error Type Bits (Continued)

Trap Type Error Name Description
Relative
Priority

Contents of
DESR
errortype
Field (bits
60:56)

Contents of
DESR
erroraddr
Field (see
TABLE 16-11)



The content of the privilege-level field is as follows:

Using the privilege level field, software can determine an appropriate response to a
fatal thread error. For example, if a user-level store received the error, software may
kill only the user process, instead of taking down the entire chip or partition. An
encoding of 11 in the privilege level field means that there was an error in this field
in the store buffer contents, so the privilege level of the store cannot be determined.

Bits 57:55 of the DFESR contain the index in the store buffer which had the error.

16.8.7 ASI_CLESR

Each physical core has a shared, read-only, hyperprivileged Core Local Error Status
register located at ASI 4C16, VA 2016.

TABLE 16-15 DFESR ErrorType

Bit Index in FESR Field Name Error Remarks

61 sba SBAPP Store buffer address parity error.

60 sbdio SBDIOU Store buffer data I/O uncorrectable error.

TABLE 16-16 Privilege Level Field Contents

Bit Index in FESR Field Name Interpretation Remarks

59:58 priv Highest privilege level of
any store in the store buffer

00 - User (hpriv = priv = 0).
01 - Supervisor (hpriv = 0, priv = 1).
10 - Hpriv (hpriv = 1).
11 - Error in privilege level field.

Programming
Note

Hardware cannot support simultaneous reads of the DFESR and
updates of the DFESR contents (which can occur due to a
previously issued store to any address). Therefore, software
must not attempt a store in the store error trap handler until it
has read the DFESR (and implicitly cleared the DFESR).

TABLE 16-17 CLESR Contents

T7 T6 T5 T4 T3 T2 T1 T0 Reserved

63:62 61:60 59:58 57:56 55:54 53:52 51:50 49:48 47:0



Each of the eight fields T7–T0 contains 2 bits. The high-order bit is a copy of the
DESR.f bit for that strand; the low-order bit is the or of the two DFESR.errortype
bits for that strand. For example, CLESR bit 54 is the or of the DFESR.errortype bits
for strand 3.

16.8.8 ASI_CLFESR

Each physical core has a shared, read-only, hyperprivileged Core Local First Error
Status register located at ASI 4C16, VA 2816. CLFESR logs the first error recorded by
a physical core’s strands DESRs and DFESRs in CLESR. Thus, there is a one-to-one
correspondence between the bits in the CLESR and CLFESR. When CLESR is clear,
any error that is recorded in a strand’s DESR or DFESR causes the error to be
logged in CLESR and CLFESR. If multiple strands log an error in their respective
DESR or DFESR simultaneously, then multiple bits can be set in the CLFESR.

Once the CLFESR has recorded an error, it will not log any subsequent error until
software clears all f bits in all the physical core’s strands’ DESRs and errortype bits
in the DFESRs. At this point the CLESR will be all zeroes, and hardware clears the
CLFESR.

16.8.9 ASI_ERROR_INJECT_REG

Each physical core has a hyperprivileged ASI_ERROR_INJECT_REG register at ASI:
4316, VA{63:0} = 0. The ASI_ERROR_INJECT register enables software to inject errors
into a subset of the OpenSPARC T2 core’s error protected arrays. The subset includes
all error-protected arrays except for the Icache and Dcache valid bit, tag, and data
arrays. The format of the Error Injection register is shown in TABLE 16-19.

TABLE 16-18 CLFESR contents

T7 T6 T5 T4 T3 T2 T1 T0 Reserved

63:62 61:60 59:58 57:56 55:54 53:52 51:50 49:48 47:0

TABLE 16-19 Error Injection Register – ASI_ERROR_INJECT_REGISTER (ASI 4316, VA 016)

Bit Field
Initial
Value R/W Description

63:32 — 0 RO Reserved

31 enb_hp 0 RW If 1, enable error injection; else disable error injection.

30 — 0 RO Reserved

29 imdu 0 RW Inject ITLB data array parity error on an ITLB update.

28 imtu 0 RW Inject ITLB CAM parity error on an ITLB update.

27 dmdu 0 RW Inject DTLB data array parity error on a DTLB update.



Setting more than one error source bit active at a time produces undefined results. In
order to inject an error, both the enb_hp bit and one of the error source bits (bits
29:17) must be set.

Only one strand should be active at a time when injecting errors, since hardware
may schedule a strand at any time and that strand may inject errors or receive the
effect of errors generated by another strand, complicating diagnosis.

Writes to ASI_ERROR_INJECT are actually post-synchronizing, so no MEMBAR
#Sync is required after the write. However, there are cases where writes to
ASI_ERROR_INJECT are not presynchronizing (that is, an instruction before the
write could see the effect). To guard against this, software needs to put a MEMBAR
#Sync before a write to ASI_ERROR_INJECT.

16.9 L2 Cache Error Descriptions
The L2 cache protects its tag with SEC ECC. Each 32-bit data subline is protected
with SECDED ECC. In the following L2 cache behavior descriptions, a partial store
refers to a store that updates less than the full 32 bits of any 32-bit data subline.

Errors detected in the L2 cache and also the DRAMs are reported back to the
requesting cores using two packet types. L2_Load_Return packets are sent by the L2
cache to the requesting core for synchronous requests such as loads and prefetches,
and Error_Indication_(L2) packets for asynchronous errors such as store, writeback,
and scrub errors.

26 dmtu 0 RW Inject DTLB CAM parity error on a DTLB update.

25 ircu 0 RW Inject an IRF ECC error on any IRF write.

24 frcu 0 RW Inject an FRF ECC error on any FRF write.

23 scau 0 RW Inject an ECC error into the Scratchpad array.

22 tcup 0 RW Inject an ECC error into the TICK_CMPR array.

21 tsau 0 RW Inject an ECC error into the TSA array.

20 mrau 0 RW Inject a parity error into the MRA array.

19 stau 0 RW Inject a parity error into the store buffer CAM.

18 — 0 RO Reserved

17 stdu 0 RW Inject an ECC error into the Store Buffer Data array.

16:8 — 0 RO Reserved

7:0 eccmask 0 RW Mask of bits to be xored with ECC bits for the IRF, FRF, SCA, TCA, TSA,
or STB data arrays.

TABLE 16-19 Error Injection Register – ASI_ERROR_INJECT_REGISTER (ASI 4316, VA 016)

Bit Field
Initial
Value R/W Description



The flow of errors detected in the L2 cache or detected in the DRAM and passed to
the L2 cache is shown in FIGURE 16-1 for synchronous (load) requests to the L2 cache
from the requesting core. Load request can be made from the SPARC core for load,
instruction fetches and TTE requests. The errors are presented in the 2-bit err field of
the L2_Load_Return packet, indicating correctable (01), uncorrectable (10) and
NotData (11).

FIGURE 16-1 L2$ Error Flow for Errors Detected by L2$/DRAM
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The flow of errors detected in the L2 cache or detected in the DRAM and passed to
the L2 cache is shown in FIGURE 16-1 for asynchronous errors from the L2 cache to
the requesting core or the L2_CSR_REG.errorsteer core. These errors include store
writeback, scrub, DMA access, and prefetch errors. The errors are presented in the 2-
bit err field of the Error_Indication_(L2) packet, indicating correctable (01),
uncorrectable (10) and NotData (11).

Uncorrectable and NotData errors presented in the L2_Load_Return packet for loads
requested by the core result in precise traps. Correctable errors on core loads result
in sw_recoverable_error disrupting traps.

Uncorrectable errors and some correctable errors (DMA Read and Prefetch)
presented in the Error_Indication_(L2) packet result in sw_recoverable_error
disrupting traps. The other correctable errors presented in the Error_Indication_(L2)
packet result in hw_corrected_error disrupting traps.

This section details the errors that occur from L2 hits. DRAM accesses are dealt with
in Section 16.11 on page 275.

The L2 cache error detection and reporting mechanism is functional whether the L2
cache is enabled or disabled. The only difference is that L2 cache data and tag array
errors are not detected since the arrays are disabled.

16.9.1 L2 Cache Data Correctable ECC Error for Access
(LDAC)
Correctable data errors are detected by the L2 cache, captured in the L2 Cache Error
Status register and the L2 Cache Error Address register, and then reported to the
requesting virtual processor. The following control bits are used:

L2 Cache Error Enable ceen bit — When set, causes the error to be sent to the
requesting virtual processor; when reset, error is ignored but still captured in the L2
Cache Error Status register and the L2 Cache Error Address register.

Associated CERER bit — When set causes L2$ error (assuming ceen = 1) to be
captured in DESR register, and conditions reporting of disrupting trap condition;
when disabled, L2$ error is ignored, and desr is not changed.

SETER.de bit — When set (along with ceen and associated CERER bit), causes
disrupting sw_recoverable_error trap condition to be presented to the virtual
processor for load requests that use the L2_Load_Return packet. The disrupting trap
is further conditioned by HPSTATE.hpriv and PSTATE.ie. When SETER.de/dhcce
is reset, the disrupting trap condition remains pending. When SETER.de/dhcce is
later set, the disrupting trap is taken, conditioned by HPSTATE.hpriv and
PSTATE.ie.



SETER.dhcce bit — When set (along with ceen and associated CERER bit), causes
disrupting hw_corrected_error trap condition to be presented to the virtual
processor for store requests that use the Error Indication L2) packet. The disrupting
trap is further conditioned by HPSTATE.hpriv and PSTATE.ie. When SETER.de/
dhcce is reset, the disrupting trap condition remains pending. When SETER.de/
dhcce is later set, the disrupting trap is taken, conditioned by HPSTATE.hpriv and
PSTATE.ie.

The error information stored in the L2 Cache Error Status register is shown in
TABLE 16-21 on page 265, and the physical address captured in the L2 Cache Error
Address register is shown in TABLE 16-25 on page 272. They are recorded as LDAC
errors.

16.9.1.1 TTE Request for ITLB (ITL2C)

When a correctable ECC error is detected, the error information (ldac, rw, vcid, moda,
synd) is captured in the L2 Cache Error Status register and PA{39:6} is captured in
the L2 Cache Error Address register. In addition, if the L2 Cache Error Enable ceen,
and SPARC CERER.hwtwl2 and SETER.de are set (and PSTATE.ie is set or
HPSTATE.hpriv is clear), hardware generates a disrupting sw_recoverable_error trap
to the requesting virtual processor. Assuming CERER.hwtwl2 is set and the DESR.f
bit is clear, hardware encodes itl2c in the DESR.errortype field. The DESR.erroraddr
field is undefined. Hardware corrects the error on the data being returned from the
L2 cache but does not correct the L2 cache data itself. Software can correct the L2
error by invalidating the L2 line as appropriate.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.2 TTE Request for DTLB (DTL2C)

When a correctable ECC error is detected the error information (ldac, vcid, synd) is
captured in the L2 Cache Error Status and PA{39:6} is captured in the L2 Cache Error
Address register. In addition, if the L2 Cache Error Enable ceen, and SPARC
CERER.hwtwl2 and SETER.de are set (and PSTATE.ie is set or HPSTATE.hpriv is
clear), hardware generates a disrupting sw_recoverable_error trap to the requesting
virtual processor. Assuming CERER.hwtwl2 is set, and the DESR.f bit is clear,
hardware encodes dtl2c in the DESR.errortype field. The DESR.erroraddr field is
undefined. Hardware corrects the error on the data being returned from the L2 cache
but does not correct the L2 cache data itself. Software can correct the L2 error by
invalidating the L2 line as appropriate.



If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.3 Instruction Fetch Hit (ICL2C)

When a correctable ECC error is detected the error information (ldac, rw, vcid, moda,
synd) is captured in the L2 Cache Error Status register and PA{39:6} is captured in
the L2 Cache Error Address register. In addition, if the L2 Cache Error Enable ceen,
and SPARC CERER.icl2c and SETER.de bits are set (and PSTATE.ie is set or
HPSTATE.hpriv is clear), hardware generates a disrupting sw_recoverable_error trap
to the requesting virtual processor. Assuming CERER.icl2c is set, and the DESR.f bit
is clear, hardware encodes icl2c in the DESR.errortype field. The DESR.erroraddr
field is undefined. Hardware corrects the error on the data being returned from the
L2 cache but does not correct the L2 cache data itself. Software can correct the L2
error by invalidating the L2 line as appropriate.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.4 Load Hit (DCL2C)

When a correctable ECC error is detected the error information (ldac, rw, vcid, moda,
synd) is captured in the L2 Cache Error Status register and PA{39:6} is captured in
the L2 Cache Error Address register. In addition, if the L2 Cache Error Enable ceen,
and SPARC CERER.dcl2c and SETER.de bits are set (and PSTATE.ie is set or
HPSTATE.hpriv is clear), hardware generates a disrupting sw_recoverable_error trap
to the requesting virtual processor. Assuming CERER.dcl2c is set and the DESR.f
bit is clear, hardware encodes dcl2c in the DESR.errortype field. The DESR.erroraddr
field is undefined. Hardware corrects the error on the data being returned from the
L2 cache, but does not correct the L2 cache data itself. Software can correct the L2
error by invalidating the L2 line as appropriate.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.5 Prefetch Hit (L2C)

When a correctable ECC data error is detected the error information (ldac, rw, vcid,
moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6} is
captured in the L2 Cache Error Address register. In addition, if the L2 Cache Error



Enable ceen and SPARC CERER.l2c_socc and SETER.de bits are set (and
PSTATE.ie is set or HPSTATE.hpriv is clear), hardware generates a disrupting
sw_recoverable_error trap to the requesting virtual processor. Assuming the DESR.f
bit is clear, hardware encodes l2c in the DESR.errortype field. The contents of the
DESR.erroraddr field are undefined.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.6 Partial Store Hit (L2C)

When a correctable ECC error is detected the error information (ldac, rw, vcid, moda,
synd) is captured in the L2 Cache Error Status and L2 Cache Error Address register.
In addition, if the L2 Cache Error Enable ceen and SPARC CERER.l2c_socc and
SETER.dhcce bits are set (and PSTATE.ie is set or HPSTATE.hpriv is clear), a
disrupting hw_corrected_error trap is generated to the requesting virtual processor.
Assuming CERER.l2c_socc is set and the DESR.f bit is clear, hardware encodes L2C
in the DESR.errortype field. The DESR.erroraddr field is undefined. Hardware
corrects the error in the L2 cache and returns the corrected data.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.9.1.7 Atomic Hit (DCL2C)

When a correctable ECC error is detected on the read portion of the read-modify-
write operation, the error information (ldac, rw, vcid, moda, synd) is captured in the
L2 Cache Error Status register and the PA{39:6} is captured in the L2 Cache Error
Address register. In addition, if the L2 Cache Error Enable ceen and SPARC
CERER.dcl2c and SETER.de bits are set (and PSTATE.ie is set or HPSTATE.hpriv is
clear), a disrupting sw_recoverable_error trap is generated to the requesting virtual
processor. Assuming CERER.dcl2c is set, and the DESR.f bit is clear, hardware
encodes dcl2c in the DESR.errortype field. The DESR.erroraddr field is undefined.

Hardware may or may not have corrected the error, depending upon whether the
error was completely contained in the data being updated as a result of a successful
atomic operation. For example, if a CASA operation succeeds, and a bit in the 4
bytes updated by CASA had the correctable error, then hardware corrected the error
simply by overwriting the data in error. The same is true for a successful LDSTUB
(on the byte in error being overwritten) or SWAP (on the 4 bytes in error being
overwritten) or CASXA (on the 8 bytes being overwritten).



If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears HPSTATE.hpriv,
causing hardware to take the trap.

16.9.2 L2 Cache Data Correctable ECC Error for
Writeback (LDWC)
When a correctable ECC error is detected the error information (ldwc) is captured in
the L2 Cache Error Status register and the PA{39:6} is captured in the L2 Cache Error
Address register. The synd field is not captured in the L2 Cache Error Status register.
Hardware corrects the error on the data being written to memory. In addition, if the
L2 Cache Error Enable ceen bit is set, an L2C error is reported to the virtual
processor specified in L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is
set, and the DESR.f bit is clear, hardware encodes L2C in the DESR.errortype field.
The DESR.erroraddr field is undefined. If SETER.dhcce is set, and PSTATE.ie is set
or HPSTATE.hpriv is clear, a disrupting hw_corrected_error trap is generated to the
virtual processor specified in L2_CSR_REG.errorsteer.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.9.2.1 DMA Read

When a correctable ECC error is detected, the error information (ldrc, rw) is captured
in the L2 Cache Error Status and the PA{39:6} is captured in the L2 Cache Error
Address register. Hardware corrects the error on the data being returned from the L2
cache but does not correct the L2 cache data itself. In addition, if the L2 Cache Error
Enable ceen bit is set, an L2C error is reported to the virtual processor specified in
L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is set and if the DESR.f
bit is clear, hardware records the error in the DESR by encoding L2C. The contents
of the DESR.erroraddr field are undefined. If SETER.de is also set, and PSTATE.ie is
set or HPSTATE.hpriv is clear, hardware takes a disrupting sw_recoverable_error
trap.

If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.



If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.2.2 DMA Write Partial

When a correctable ECC error is detected on the read portion of the read-modify-
write operation, the error information (ldrc, rw, synd) is captured in the L2 Cache
Error Status register and the PA{39:4} is captured in the L2 Cache Error Address
register. Hardware corrects the error in the L2 cache line. In addition, if the L2 Cache
Error Enable ceen bit is set, an L2C error is reported to the virtual processor
specified in L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is set and
the DESR.f bit is clear, hardware records the error in the DESR by encoding l2c. The
contents of the DESR.erroraddr field are undefined. If SETER.dhcce is also set, and
PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting hw_corrected_error trap is
generated.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

L2 Data ECC is only checked for partial DMA stores. Aligned 4-byte and 8-byte (and
larger) DMA writes overwrite previous contents and therefore never check data
ECC.

16.9.3 L2 Cache Data Correctable ECC Error for Scrub
(LDSC)
When a correctable ECC error is detected on a data array scrub, the error
information (ldsc) is captured in the L2 Cache Error Status register and the
{way[3:0],Index[8:0]} is captured in the L2 Cache Error Address register. Hardware
corrects the error in the L2 cache line by writing back the corrected data and parity
(this rewrite will be unable to correct a permanently failed bit). In addition, if the L2

If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.



Cache Error Enable ceen bit is set, an L2C error is reported to the virtual processor
specified in L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is set and
the DESR.f bit is clear, hardware records the error in the DESR by encoding l2c. The
contents of the DESR.erroraddr field are undefined. If SETER.dhcce is also set, and
PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting hw_corrected_error trap is
generated.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.9.4 L2 Cache Tag Correctable ECC Error (LTC)
OpenSPARC T2 provides SEC ECC on the L2 cache tags.

On every L2 access, ECC is checked for all 16 tags in the set. When a correctable ECC
error is detected the error information (LTC) is captured in the L2 Cache Error Status
register and the PA{21:6} is captured in the L2 Cache Error Address register. Note
that the Syndrome is not captured for a L2 cache tag ECC error. Hardware corrects
all errors in all the tags in the set. In addition, if the L2 Cache Error Enable ceen bit
is set, hardware generates an L2C error to the virtual processor specified in
L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is set and the DESR.f
bit is clear, hardware records the error in the DESR by setting L2C. The contents of
the DESR.erroraddr field are undefined. If SETER.dhcce is set, and PSTATE.ie is set
or HPSTATE.hpriv is clear, a disrupting hw_corrected_error trap is generated to the
virtual processor specified in L2_CSR_REG.errorsteer.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

Note If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

Implementation
Notes

Hardware generates the error report to the core on detection of
the error .However the error would get corrected by hardware
only if the access that detected the error was a miss in L2. Since
the error can be reported multiple times on L2 tag hits and not
get corrected, software should force the correction by issuing
Prefetch ICE instruction to that index . If the error is due to a
hard failure in the tag, hardware or software will not be able to
complete the correction and no further accesses will be able to
be processed by the L2 (that is, the L2 bank is hung.)



16.9.5 L2 Cache VUAD Correctable ECC Error (LVC)
On every L2 access, ECC is checked for all 32 vd (valid, dirty) bits and 32 ua (used,
allocate) bits in the set.1 When a correctable ECC single bit error is detected, the
error information (LVC, SYND) is captured in the L2 Cache Error Status register and
the PA{39:6} is captured in the L2 Cache Error Address register. Note that the
Syndrome is captured for a L2 cache VUAD ECC error. Hardware corrects the single
bit error in all the vd and ua bits in the set. In addition, if the L2 Cache Error Enable
ceen bit is set, hardware generates an L2C error to the virtual processor specified in
L2_CSR_REG.errorsteer. If the SPARC CERER.l2c_socc bit is set, and the DESR.f
bit is clear, hardware records the error in the DESR by setting l2c. The contents of
the DESR.erroraddr field are undefined. If SETER.dhcce is set, and PSTATE.ie is set
or HPSTATE.hpriv is clear, a disrupting hw_corrected_error trap is generated to the
virtual processor specified in L2_CSR_REG.errorsteer.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

Note If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

1. Even though the used bits need not be ECC protected (since their value is noncritical: any error in the used
bits will cause potentially different replacement order, but still functionally correct operation), since vd and ua
arrays are implemented out of the same Register File array, OpenSPARC T2 protects both the used bits and
the allocate bits with ECC.

Note If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit
is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

Implementation
Note

For instructions that require multiple passes through the L2
pipeline, VUAD ECC is only checked on the first pass.



16.9.6 L2 Cache Data Uncorrectable ECC Error for
Access (LDAU)
Uncorrectable data errors are detected by the L2 Cache, captured in the L2 Cache
Error Status register and the L2 Cache Error Address register, and then reported to
the requesting virtual processor. The following control bits are used:

L2 Cache Error Enable nceen bit — When set, causes the error to be sent to the
requesting virtual processor; when reset, error is ignored, but still captured in the L2
Cache Error Status register and the L2 Cache Error Address register.

Associated CERER bit — When set (along with nceen and SETER.pscce bit) causes
L2$ error to be captured in I/DSFSR register, and conditions reporting the precise
error trap; when disabled, L2$ error is ignored, I/DSFSR is not changed, the precise
error trap is lost, and processing continues with bad data.

SETER.pscce bit — When set (along with nceen and associated CERER bit), causes
L2$ error to be captured in I/DSFSR register, and conditions reporting the precise
error trap to be presented to virtual processor. When SETER.pscce is reset, the
precise error trap is lost, and processing continues with bad data.

The error information stored in the L2Cache Error Status register is shown in
TABLE 16-21, and the physical address captured in the L2 Cache Error Address
register is shown in TABLE 16-25. They are recorded as LDAU errors.

16.9.6.1 TTE Request for ITLB (ITL2U)

When an uncorrectable ECC data error is detected, the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. In addition, if the L2 Cache Error
Enable nceen and SPARC CERER.hwtwl2 bits are set, a precise
instruction_access_MMU_error trap is generated to the requesting virtual processor.
The ISFSR will have the itl2u encoding set. The VA of the instruction fetch is
available in TPC[TL]. Software can attempt recovery.

16.9.6.2 TTE Request for DTLB (DTL2U)

When an uncorrectable ECC data error is detected, the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. In addition, if the L2 Cache Error
Enable ceen and SPARC CERER.hwtwl2 bits are set, a precise
data_access_MMU_error trap is generated to the requesting virtual processor. The

Note If nceen or CERER.hwtwl2 are not set, the error is not reported
and no trap is generated. Hardware continues executing using
the (invalid) data read from L2.



DSFSR will have the dtl2u encoding set. The VA of the data access is not logged in
the D-SFAR. Bits {47:13} of the VA are available in the tag access register. Software
must search the L2 ESRs to determine the failing physical address.

16.9.6.3 Instruction Fetch Hit (ICL2U)

When an uncorrectable ECC data error is detected, the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. If the L2 Cache Error Enable
nceen and SPARC CERER.icl2u bits are set, the line is loaded into the L1 instruction
cache with bad parity. In addition, if the SPARC SETER.pscce bit is set, a precise
instruction_access_error trap is generated to the requesting virtual processor. The
ISFSR will contain icl2u, and the VA of the instruction fetch is logged in TPC[TL].
Software can attempt recovery.

16.9.6.4 Load Hit (DCL2U)

When an uncorrectable ECC data error is detected, the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. If the L2 Cache Error Enable
nceen and SPARC CERER.dcl2u bits are set, the line is loaded into the L1 data cache
with bad parity. Additionally, if the SPARC SETER.pscce bit is set, a precise
data_access_error trap is generated to the requesting virtual processor. The D-SFSR
will contain dcl2u. The VA of the data access is not logged in the D-SFAR. Software
must search the L2 ESRs to determine the failing physical address.

16.9.6.5 Atomic Hit (DCL2U)

When an uncorrectable ECC data error is detected, the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. In addition, if the L2 Cache Error
Enable nceen, and SPARC CERER.dcl2u and SETER.pscce bits are set, hardware
records the error in the DSFSR by encoding dcl2u. The VA of the data access is not

Note If nceen or CERER.hwtwl2 are not set, the error is not reported
and no trap is generated. Hardware continues executing with
the (invalid) data read from L2.

Note If nceen, CERER.icl2u, or SETER.pscce are not set, the error is
not reported and no trap is generated. Hardware continues
executing using the (invalid) data read from L2.

Note If nceen, CERER.dcl2u, or SETER.pscce is not set, the error is
not reported and no trap is generated. Hardware continues
executing using the (invalid) data read from L2.



logged in the D-SFAR. Software must search the L2 ESRs to determine the failing
physical address. Hardware generates a precise data_access_error trap to the
requesting virtual processor. The atomic operation will not complete its update,
leaving the original data and the bad ECC unchanged. Software can attempt
recovery.

16.9.6.6 Prefetch Hit (L2U)

When an uncorrectable ECC data error is detected the error information (ldau, rw,
vcid, moda, synd) is captured in the L2 Cache Error Status register and the PA{39:6}
is captured in the L2 Cache Error Address register. In addition, if the L2 Cache Error
Enable nceen and SPARC CERER.l2u_socu are set and the DESR.f bit is clear,
hardware records the error in the DESR by setting l2u. The contents of the
DESR.erroraddr field are undefined. If SETER.de is set and PSTATE.ie is set or
HPSTATE.hpriv is clear, a disrupting sw_recoverable_error trap is generated to the
requesting virtual processor.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.6.7 Partial Store Hit (L2U)

When an uncorrectable ECC data error is detected on the read portion of the read-
modify-write operation (assuming NotData is not set), the error information (ldau,
rw, vcid, moda, synd) is captured in the L2 Cache Error Status register and the
PA{39:6} is captured in the L2 Cache Error Address register. In addition, if the L2
Cache Error Enable nceen and SPARC CERER.l2u_socu bits are set, and if the
DESR.f bit is clear, hardware records the error in the DESR by setting l2u. The
contents of the DESR.erroraddr field are undefined. If SETER.de is set, and
PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting sw_recoverable_error trap
is generated to the requesting virtual processor. The partial store does not complete
its update, leaving the original data and the bad ECC unchanged. NotData will not
be set.

If SETER.dhcce is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

Note If nceen, CERER.dcl2u, or SETER.pscce is not set, hardware
neither records the error in the DSFSR nor takes a trap.



16.9.7 L2 Cache Data Uncorrectable ECC Error for
Writeback (LDWU)
When an uncorrectable ECC error is detected the error information (ldwu) is
captured in the L2 Cache Error Status register and the PA{39:6} is captured in the L2
Cache Error Address register. The synd field is not captured in the L2 Cache Error
Status register. Hardware indicates the error on the data being written to memory,
and the DRAM controller writes the data back with signaling ECC. The specific
signaling ECC used is described in Appendix G, ECC Codes. In addition, if the L2
Cache Error Enable nceen is set, hardware generates an L2U error to the virtual
processor specified in L2_CSR_REG.errorsteer. If the SPARC CERER.l2u_socu bit is
set, and if the DESR.f bit is clear, hardware records the error in the DESR by setting
l2u. The contents of the DESR.erroraddr field are undefined. If SETER.de is set, and
PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting sw_recoverable_error trap
is generated to the virtual processor specified in L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.8 L2 Cache Data Uncorrectable ECC Error for DMA
(LDRU)

16.9.8.1 DMA Read

When an uncorrectable ECC error is detected, the error information (ldru, rw) is
captured in the L2 Cache Error Status register and the PA{39:4} is captured in the L2
Cache Error Address register. The synd field is not captured for DMA reads.
Hardware returns the data with a UE error indicator back to the DMA requestor. In
addition, if the L2 Cache Error Enable nceen bit is set, hardware generates an L2U
error to the virtual processor specified in L2_CSR_REG.errorsteer. If the SPARC

Note If either the L2 Cache Error Enable nceen or CERER.l2u_socu
bit is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

Note If either the L2 Cache Error Enable nceen or CERER.l2u_socu
bit is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.



CERER.l2u_socu bit is set, and the DESR.f bit is clear, hardware records the error in
the DESR by setting l2u. The contents of the DESR.erroraddr field are undefined. If
SETER.de is set, and PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting
sw_recoverable_error trap is generated to the virtual processor specified in
L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.8.2 DMA Write Partial

When an uncorrectable ECC error is detected on the read portion of the read-
modify-write operation, the error information (ldru, rw, synd) is captured in the L2
Cache Error Status register and the PA{39:4} is captured in the L2 Cache Error
Address register. If the L2 Cache Error Enable nceen bit is set, hardware generates
an L2U error to the virtual processor specified in L2_CSR_REG.errorsteer. If the
SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware records the
error in the DESR by setting l2u. The contents of the DESR.erroraddr field are
undefined. If SETER.de is set, and PSTATE.ie is set or HPSTATE.hpriv is clear, a
disrupting sw_recoverable_error trap is generated to the virtual processor specified
in L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

The DMA write partial will not complete its update, leaving the original data and
the bad ECC unchanged. NotData is not set.

Note If either the L2 Cache Error Enable nceen or CERER.l2u_socu
bit is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

Note If either the L2 Cache Error Enable nceen or CERER.l2u_socu
bit is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.



16.9.9 L2 Cache Data Uncorrectable ECC Error for Scrub
(LDSU)
When an uncorrectable data ECC error is detected on a data array scrub, the error
information (ldsu) is captured in the L2 Cache Error Status register and the
{way[3:0],Index[8:0]} is captured in the L2 Cache Error Address register. In addition,
if the L2 Cache Error Enable nceen bit is set, hardware generates an L2U error to the
virtual processor specified in L2_CSR_REG.errorsteer. If the SPARC
CERER.l2u_socu bit is set, and the DESR.f bit is clear, hardware records the error in
the DESR by setting l2u. The contents of the DESR.erroraddr field are undefined. If
SETER.de is set, and PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting
sw_recoverable_error trap is generated to virtual processor specified in
L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

NotData is not set.

16.9.10 L2 Cache Tag Uncorrectable ECC Error
OpenSPARC T2 provides SEC ECC on the L2 cache tags, thus multiple bit ECC
errors are not detected (unless they happen to generate an illegal single-bit error
syndrome). An L2 Cache scrub mechanism is provided to detect single bit errors and
to correct the single bit errors before they can become double bit errors. However,
the scrubber only works on accessed indices. If an index is not accessed for a long
time, it is susceptible to double-bit errors. The probability of this is very low.

16.9.11 L2 Cache VUAD Uncorrectable ECC Error (LVF)
On every L2 access, ECC is checked for all 32 vd bits and 32 ua bits in the set. When
an uncorrectable ECC multiple bit error is detected, the error information (lvf, synd)
is captured in the L2 Cache Error Status register and the PA{39:6} is captured in the

Note If either the L2 Cache Error Enable nceen or CERER.l2u_socu
bit is reset, the error is ignored, but the error information is still
captured in the L2 Cache Error Status and L2 Cache Error
Address registers.

Note To ensure that all lines are routinely accessed, software can
provide a “software scrub” of each index.



L2 Cache Error Address register. Note that the Syndrome is captured for a L2 cache
VUAD ECC error. In addition, this fatal error generates a warm_reset trap to the
entire chip.

16.9.12 L2 Cache Directory Uncorrectable Parity Error
(LRF)
During every L2 store operation, parity is checked for the directory entry. When an
uncorrectable parity error is detected, the error information LRF is captured in the
L2 Cache Error Status register. The L2 Cache Error Address register captures the
following directory index information in the address field:

■ bits{15:12} — panel

■ bits{11:9} — strandid

■ bits{8:7} — l1way{1:0}

■ bit{6} — icachedir

If icachedir = 1, panel = PA{10, 9, 5, l1way2{2}}; else panel = PA{10, 9, 5, 4}

In addition, this fatal error generates a warm_reset trap to the entire chip.

16.9.13 L2 Cache Data NotData Error for Processor
Access (NDSP)
NotData errors are detected by the L2 Cache, captured in the L2 NotData Error
register and then reported to the requesting virtual processor. The following control
bits are used:

L2 Cache Error Enable nceen bit — When set, causes the error to be sent to the
requesting virtual processor; when reset, error is ignored, but still captured in the L2
NotData Error register.

Associated CERER bit — When set (along with nceen and SETER.pscce bit) causes
L2$ error to be captured in I/DSFSR register, and conditions reporting the precise
error trap; when disabled, L2$ error is ignored, I/DSFSR is not changed, the precise
error trap is lost, and processing continues with bad data.

SETER.pscce bit — When set (along with nceen and associated CERER bit), causes
L2$ error to be captured in I/DSFSR register, and conditions reporting the precise
error trap to be presented to the virtual processor. When SETER.pscce is reset, the
precise error trap is lost, and processing continues with bad data.

Implementation
Note

For instructions that require multiple passes through the L2
pipeline, VUAD ECC is only checked on the first pass.



The error information stored in the L2 NotData Error register is shown in TABLE 16-27
on page 273. The errors are recorded as NDSP errors.

16.9.13.1 TTE Request for ITLB (ITL2ND)

When a NotData error is detected on a TTE access for an instruction fetch, the error
information (ndsp, rw, vcid, PA{39:4}) is captured in the L2 NotData Error register. In
addition, if the L2 Cache Error Enable nceen and SPARC CERER.hwtwl2 bits are set,
a precise instruction_access_MMU_error trap is generated to the requesting virtual
processor. The ISFSR will have the itl2nd encoding set. The VA of the instruction
fetch is available in TPC[TL]. Software can attempt recovery.

16.9.13.2 TTE Request for DTLB (DTL2ND)

When a NotData error is detected on a TTE access for a load or store, the error
information (ndsp, rw, vcid, PA{39:4}) is captured in the L2 NotData Error register. In
addition, if the L2 Cache Error Enable nceen and SPARC CERER.hwtwl2 bits are set,
a precise data_access_MMU_error trap is generated to the requesting virtual
processor. The DSFSR will have the dtl2nd encoding set. The VA of the data access
is not logged in the D-SFAR. Bits 47:13 of the VA are available in the tag access
register. Software must search the L2 ESRs to determine the failing physical address.

16.9.13.3 Instruction Fetch (ICL2ND)

When a NotData error is detected on an instruction fetch access, the error
information (ndsp, rw, vcid, PA{39:4}) is captured in the L2 NotData Error register. If
the L2 Cache Error Enable nceen and SPARC CERER.icl2nd bits are set, the line is
loaded into the L1 instruction cache with bad parity. In addition, if the SPARC
SETER.pscce bit is set, a precise instruction_access_error trap is generated to the
requesting virtual processor. The ISFSR will contain icl2nd, and the VA of the
instruction fetch is logged in TPC[TL].

Note If nceen or CERER.hwtwl2 are not set, the error is not reported
and no trap is generated. Hardware continues executing using
the (invalid) data read from L2.

Note If nceen or CERER.hwtwl2 are not set, the error is not reported
and no trap is generated. Hardware continues executing using
the (invalid) data read from L2.

Note If nceen, CERER.icl2nd, or SETER.pscce are not set, the error is
not reported and no trap is generated. Hardware continues
executing using the (invalid) data read from L2.



16.9.13.4 Load Hit (DCL2ND)

When a NotData error is detected on a load access, the error information (ndsp, rw,
vcid, PA{39:4} is captured in the L2 NotData Error register. If the L2 Cache Error
Enable nceen and SPARC CERER.dcl2nd bits are set, the line is loaded into the L1
data cache with bad parity. In addition, if the SPARC SETER.pscce bit is set, a
precise data_access_error trap is generated to the requesting virtual processor. The
DSFSR will contain dcl2nd. The VA of the data access is not logged in the D-SFAR.
Software must search the L2 ESRs to determine the failing physical address.

16.9.13.5 Atomic Hit (DCL2ND)

When a NotData error is detected on an atomic access, the error information (ndsp,
rw, vcid, PA{39:4}) is captured in the L2 NotData Error register. In addition, if the L2
Cache Error Enable nceen, and SPARC CERER.dcl2nd and SETER.pscce bits are
set, hardware records the error in the DSFSR by encoding dcl2nd. The VA of the
data access is not logged in the D-SFAR. Software must search the L2 ESRs to
determine the failing physical address. Hardware generates a precise
data_access_error trap to the requesting virtual processor. The atomic operation
will not complete its update, leaving the original data unchanged and marked with
NotData.

16.9.13.6 Prefetch Hit (L2ND)

When a NotData error is detected on a prefetch access, the error information (ndsp,
rw, vcid, PA{39:4}) is captured in the L2 NotData Error register. In addition, if the L2
Cache Error Enable nceen and SPARC CERER.l2nd bits are set and the DESR.f bit is
clear, hardware records the error in the DESR by encoding l2nd. The contents of the
DESR.erroraddr field are undefined. If SETER.de is set and PSTATE.ie is set or
HPSTATE.hpriv is clear, a disrupting sw_recoverable_error trap is generated to the
requesting virtual processor.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

Note If nceen, CERER.dcl2nd, or SETER.pscce is not set, the error is
not reported and no trap is generated. Hardware continues
executing using the (invalid) data read from L2.

If nceen, CERER.dcl2nd, or SETER.pscce is not set, hardware
neither records the error in the DSFSR nor takes a trap. It
continues executing using the (invalid) data read from L2.



16.9.13.7 Partial Store Hit (L2ND)

When a NotData error is detected on the read portion of the store, the partial store
does not complete its update, leaving the original data unchanged, marked with
NotData. No trap is presented, and the L2 Notdata Error register is not updated.

16.9.14 L2 Cache Data NotData Error for DMA Access
(NDDM)

16.9.14.1 DMA Read (L2ND)

When a NotData error is detected on a DMA read, the error information (nddm, rw,
vcid = L2_CSR_REG.errorsteer, PA{39:4}) is captured in the L2 Notdata Error
register. Hardware returns the data with a UE error indicator back to the DMA
requestor. In addition, if the L2 Cache Error Enable nceen bit is set, hardware
generates an L2ND error to the virtual processor specified in
L2_CSR_REG.errorsteer. If the SPARC CERER.l2nd bit is set, and if the DESR.f bit
is clear, hardware records the error in the DESR by setting l2nd. The contents of the
DESR.erroraddr field are undefined. If SETER.de is set, and PSTATE.ie is set or
HPSTATE.hpriv is clear, a disrupting sw_recoverable_error trap is generated to the
virtual processor specified in L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.9.14.2 DMA Write Partial (L2ND)

When a NotData error is detected the error information (nddm, rw,
vcid = L2_CSR_REG.errorsteer, PA{39:4}) is captured in the L2 NotData Error
register. If the L2 Cache Error Enable nceen bit is set, hardware generates an L2ND
error to the virtual processor specified in L2_CSR_REG.errorsteer. If the SPARC
CERER.l2nd bit is set, and if the DESR.f bit is clear, hardware records the error in
the DESR by setting l2nd. The contents of the DESR.erroraddr field are undefined. If
SETER.de is set, and PSTATE.ie is set or HPSTATE.hpriv is clear, a disrupting
sw_recoverable_error trap is generated to the virtual processor specified in
L2_CSR_REG.errorsteer.

If SETER.de is not set, or PSTATE.ie is not set and HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.



The DMA write partial will not complete its update, leaving the original data
unchanged marked with NotData.

16.9.15 L2 Cache Data NotData Error for Writeback
When a NotData error is detected on an eviction, no error information is logged
since the NotData is simply being moved to memory. Hardware indicates the error
on the data being written to memory, where the DRAM controller will write back the
data with signaling ECC.

16.9.16 L2 Software Error Scrubbing Support
Errors which are software recoverable leave the L2 cache with a correctable error,
which then needs to be scrubbed to prevent repetitive traps for the same soft error.
Flushing the data from the cache to memory will cause the error to be corrected.
OpenSPARC T2 provides a mechanism for L2 flushing through a variant of prefetch
called invalidate cache entry (PrefetchICE), described in L2 Cache Flushing on page
423.

16.10 L2 Error Registers

16.10.1 L2 Error Enable Register
Each L2 bank has an Error Enable register that controls the reporting of L2 errors for
that bank back to the initiator of an operation (or to the virtual processor specified in
L2_CSR_REG.errorsteer if no initiator exists or can be readily identified). The L2
Error Enable register, the format of which is shown in TABLE 16-20, is available at
address AA 0000 000016 or BA 0000 000016. Address bits 8:6 select the cache bank,
and address bits 31:9 and 5:3 are ignored (that is, the register aliases across the
address range).

TABLE 16-20 Error Enable Register – L2_ERROR_EN_REG (AA 0000 000016) (Count 8 Step 64)

Bit Field
Initial
Value R/W Description

63:3 — 0 RO Reserved

2 debug_trig_en 0 RW Trigger enable on L2 cache errors for debug.

1 nceen 0 RW If set to 1, report uncorrectable errors.

0 ceen 0 RW If set to 1, report correctable errors.



16.10.2 L2 Error Status Register
Each L2 bank has an Error Status register that contains status on L2 errors for that
bank. The status bits in this register are cleared by writing a 1 to the bit. The error
register is not cleared on reset, so software can examine its contents after an error-
induced reset. The L2 Error Status register, the format of which is shown in
TABLE 16-21, is available at address AB 0000 000016 or BB 0000 000016. Address bits 8:6
select the cache bank, and address bits 31:9 and 5:3 are ignored (that is, the register
aliases across the address range).

Note Errors are always logged in the L2_ERROR_STATUS_REG and
L2_ERROR_ADDRESS_REG regardless of the setting of the
nceen and ceen bits in L2_ERROR_EN_REG.
L2_ERROR_EN_REG only controls whether or not the error is
reported back to the appropriate virtual processor (the requestor
or the virtual processor specified in L2_CSR_REG.errorsteer).

Note L2_ERROR_STATUS is not cleared on warm reset to allow
software to examine the error information that may have
required the warm reset.

TABLE 16-21 L2 Error Status Register – L2_ERROR_STATUS_REG (AB 0000 000016) (Count 8 Step 64)

Bit Field
POR
Value R/W Description

63 meu 0 R/W1C Multiple uncorrected or fatal errors (one or more uncorrected or fatal errors
were not logged).

62 mec 0 R/W1C Set by any error detected after vec = 1 (one or more corrected errors were not
logged).

61 rw 0 RW Specifies whether the error access was a read or write. Set to 1 for a write, 0 for
a read.

60 — 0 RW Set to 0.

59:54 vcid 0 RW ID of virtual processor that encountered error.

53 ldac 0 R/W1C Set to 1 if the error was an L2 cache data array access correctable error.

52 ldau 0 R/W1C Set to 1 if the error was an L2 cache data array access uncorrectable error.

51 ldwc 0 R/W1C Set to 1 if the error was an L2 cache data array writeback correctable error.

50 ldwu 0 R/W1C Set to 1 if the error was an L2 cache data array writeback uncorrectable error.

49 ldrc 0 R/W1C Set to 1 if the error was an L2 cache data array dma access correctable error.

48 ldru 0 R/W1C Set to 1 if the error was an L2 cache data array dma access uncorrectable error.

47 ldsc 0 R/W1C Set to 1 if the error was an L2 cache data array scrub correctable error.

46 ldsu 0 R/W1C Set to 1 if the error was an L2 cache data array scrub uncorrectable error.



The vec bit is set on all cycles where a correctable error is encountered. The veu bit
is set on all cycles where an uncorrectable or fatal error is encountered.

The synd field is only valid for LVF, LVC, LDAC, LDAU, LDRU and LDRC errors.
The rw bit will be set to 1 for a partial store, DMA write, and atomic load/store
operation if they detect an error while performing the read part of the L2 read-
modify-write operation. For DAC and DAU errors, if an L2 fill happens before the
data is returned to the requestor, the DAC or DAU error will be reported to the
virtual processor specified in L2_CSR_REG.errorsteer, and the rw bit will be 0. The
vcid field is valid only for LDAC, LDAU, DAC, and DAU errors where the error is
detected synchronous with the load or store operation. If the error is reported at the
time of the L2 cache fill operation, vcid will contain 0. For all other error types, this
field is not valid.

TABLE 16-22 summarizes the rw, vcid, moda, and synd fields.

45 ltc 0 R/W1C Set to 1 if the error was an L2 cache tag array correctable error.

44 lrf 0 R/W1C Set to 1 if the error was an L2 cache directory uncorrectable error.

43 lvf 0 R/W1C Set to 1 if the error was an L2 cache VUAD uncorrectable error.

42 dac 0 R/W1C Set to 1 if the error was a DRAM access correctable error.

41 dau 0 R/W1C Set to 1 if the error was a DRAM access uncorrectable error.

40 drc 0 R/W1C Set to 1 if the error was a DRAM dma access correctable error.

39 dru 0 R/W1C Set to 1 if the error was a DRAM dma access uncorrectable error.

38 dsc 0 R/W1C Set to 1 if the error was a DRAM scrub correctable error or a recoverable
DRAM link error.

37 dsu 0 R/W1C Set to 1 if the error was a DRAM scrub uncorrectable error or an unrecoverable
DRAM link error.

36 vec 0 R/W1C Set to 1 if the register contains a valid correctable error.

35 veu 0 R/W1C Set to 1 if the register contains a valid uncorrectable or fatal error.

34 lvc 0 R/W1C Set to 1 if the error was a L2 cache VUAD correctable error.

33:28 —1 0 RO Reserved

27:0 synd X RW Parity or ECC syndrome.

TABLE 16-21 L2 Error Status Register – L2_ERROR_STATUS_REG (AB 0000 000016) (Count 8 Step 64)

Bit Field
POR
Value R/W Description



The dsc and dsu bits are logged in L2 Error Status register to notify software to
check the DRAM error registers, and are set regardless of the status of the other bits.
Setting dsc and/or dsu does not cause any logging of the error address or syndrome
in the L2 Error Address register. It also does not update the vec/veu/mec/meu bits.

With regard to the remaining ue, ce bits, if multiple errors occur in the same cycle,
the meu or mec bit is set and only the highest-priority error is logged based on the
following priority shown in TABLE 16-23 (errors with the same priority are mutually
exclusive).

TABLE 16-22 rw, vcid, moda, and synd Fields Summary

Error rw vcid moda synd

During L2 fill for
DAC, DAU,
DRC, DRU

X L2_CSR_REG.
errorsteer

X X

LDAC, LDAU 1 for atomics and
partial stores,
else 0

VCID 0 synd_127_96{6:0}, synd_95_64{6:0},
synd_63_32{6:0}, synd_31_0{6:0}

LDWC, LDWU X X X X

LDRC, LDRU 1 for write, else 0 X X synd_127_96{6:0}, synd_95_64{6:0},
synd_63_32{6:0}, synd_31_0{6:0} for
write, X for read

LDSC,LDSU X X X X

LTC X X X X

LRF X X X X

LVC, LVF X L2_CSR_REG.
errorsteer

X 14’b0,synd_vd{6:0},synd_ua{6:0}

DAC, DAU 1 for atomics and
stores, else 0

vcid 0 X

DRC, DRU 1 for write, else 0 X X X

Note A dsc or dsu error will not be reported to the core responsible fo
r handling the error until an L2 miss occurs. The L2 cannot send
unsolicited packets to the cores, and the L2 miss response packet
has space to report these types of errors.

Note The syndrome is not logged on a L2 tag correctable error as well
as for NotData errors.



The syndrome, rw, moda, vcid, and address are captured for the highest-priority
error in that cycle.

If FE, UE, or CE errors occur in a cycle when an error status bit is already set
(indicating a previous error exists that hasn’t been cleared from the error status
register), the information in TABLE 16-24 applies.

TABLE 16-23 Priority for Simultaneous FE, UE, and CE Errors

Error Priority Bit Set if Higher Priority Error

LVF (FE) 1 Not Applicable

LRF (FE) 2 meu

LDAU (UE) 3 meu

LDSU (UE) 3 meu

LDWU (UE) 4 meu

LDRU (UE) 5 meu

DAU (UE) 6 meu

DRU (UE) 6 meu

LVC (CE) 7 mec

LTC (CE) 8 mec

LDAC (CE) 9 mec

LDSC (CE) 9 mec

LDWC (CE) 10 mec

LDRC (CE) 11 mec

DAC (CE) 12 mec

DRC (CE) 12 mec

TABLE 16-24 UE,CE Errors Occurring in a Cycle Where Error Status Bit Already Set

Existing Error Error Priority

Bit Set if
Highest-Priority
Error

Bit Set if Higher-
Priority Error in
Same Cycle

LVF/LRF LVF 1 meu Not Applicable

LVF/LRF LRF 2 meu meu

LDAU/LDSU/LDWU/LDRU/DRU/DAU LVF 1 lvf, meu Not Applicable

LDAU/LDSU/LDWU/LDRU/DRU/DAU LRF 2 lrf, meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDAU 3 meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDSU 3 meu meu



For the cases above where the “Bit Set If Highest-Priority Error” column contains a
value besides mec and meu, the syndrome, rw, moda, vcid, and address for the
highest-priority error in that cycle will overwrite the existing syndrome, rw, moda,
vcid, and address.

Once set, error status bits are only cleared by software. Hardware will never clear a
set status bit. If a software write of the error register happens on the same cycle as an
error, the setting of bits by the error will be based on the register state before the
write, following the rules of TABLE 16-24. The setting of fields by the error will take

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDWU 4 meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDRU 5 meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU DAU 6 meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU DRU 6 meu meu

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LVC 7 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LTC 8 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDAC 9 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDSC 9 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDWC 10 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDRC 11 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU DRC 12 mec mec

LVF/LRF/LDAU/LDSU/LDWU/LDRU/DRU/DAU DAC 12 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LVF 1 lvf, mec Not Applicable

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LRF 2 lrf, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDAU 3 ldau, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDSU 3 ldsu, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDWU 4 ldwu, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDRU 5 ldru, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DAU 6 dau, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DRU 6 dru, mec meu

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LVC 7 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LTC 8 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDAC 9 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDSC 9 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDWC 10 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDRC 11 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DRC 12 mec mec

LVC/LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DAC 12 mec mec

TABLE 16-24 UE,CE Errors Occurring in a Cycle Where Error Status Bit Already Set

Existing Error Error Priority

Bit Set if
Highest-Priority
Error

Bit Set if Higher-
Priority Error in
Same Cycle



precedence over the same field being updated by the write; however, fields that are
not changed by the error will be updated by the write (for example, if the register
has the vec and ltc bits set and software does a write to clear those bit on the same
cycle as a L2 cache data uncorrectable error, the error register would end up with the
veu and ldau bits set, the vec and ltc bits cleared, and the rw, moda, vcid, and synd
fields would contain the values for the LDAU error). The rw, moda, vcid, and synd
fields are always considered to be set by an error, even if the value they are being set
to is undefined (that is, set to X in TABLE 16-22).

Note When writing the error status register on the same cycle that
another error occurs, the error status register state before the
register write is applied determines which bits will be updated
in the register. If the error occurring on the same cycle as the
write is same or lower priority than the error currently logged in
the register that is being cleared by the write, this will result in
the error status register having only either the vec and mec pair
of bits set (for a correctable error) or veu and meu pair of bits set
(for an uncorrectable error) after both the new error and the
write which clears the old error bits are applied.

Note In case VEC and MEC bits are set and there is a write to the
error status register to clear the set bits, if a UE or CE occurs in
the same cycle of the write that would set MEC bit according to
TABLE 16-24 on page 268, the MEC bit will not get cleared but
VEC bit will get cleared. A subsequent read of the error status
register would see MEC bit set without VEC bit set . Similarly ,
in case VEU and MEU bits are set and there is a write to the
error status register to clear the set bits, if a UE occurs in the
same cycle of the write that would set MEU bit according to
TABLE 16-24 on page 268, the MEU bit will not get cleared but
VEU will get cleared. A subsequent read of the error status
register would see MEU bit set without VEU bit set.



16.10.3 L2 Error Address Register
Each L2 bank has an Error Address register that contains the address for the L2 error
within that bank. The error register is not cleared on reset, so software can examine
its contents after an error-induced reset. The L2 Error Address register is available at
address AC 0000 000016 or BC 0000 000016. Address bits 8:6 select the cache bank,
and address bits 31:9 and 5:3 are ignored (that is, the register aliases across the
address range).

Programming
Note

To minimize the possibility of missing notification of an error,
software should clear any multiple error indication as soon as
possible, since OpenSPARC T2 provides no indication of the
number of multiple errors represented by the multiple error bit.

An example of clearing behavior for the case where an DAC
error is followed closely by an DAU error would be to first log
that an DAC error was seen (which is indicated by the dac bit
still being set in the Error Status register), and then to do a write
to the Error Status register with bits 62, 42 and 36 set to clear the
mec, vec, and dac bits. The vcid, moda, rw, and synd fields of
error status would then be captured to memory or a register, the
physical address for the DAU would be read from the Error
Address register to memory or a register, and software could do
a write to the Error Status register with bits 41 and 35 set to clear
the dau and veu bits and put the error status register back in a
state where it can capture full error information.

Software would then invoke the code to shoot down all the TLB
entries for the page with the bad cache line, force the bad cache
line from L2 to memory, and kill all processes that had access to
the bad cache line. If another correctable error happened after
the DAU but before the write that cleared the mec, vec, and dac
bits, that error would not be logged. If another correctable error
happened simultaneously to or after the write that cleared the
mec, vec, and dac bits, but before or simultaneously to the write
that cleared the dau and veu bits, that error would be captured
by the mec and vec bits being set after the dau/veu-clearing
write. If another uncorrectable error happened after the DAU,
but before or simultaneously to the write that cleared the dau
and veu bits, that error would be captured by the meu and veu
bits being set after the dau/veu-clearing write.

Implementation
Note

Within the L2 cache itself, PA {17:9} indicates the set, and PA
{8:6} indicates the bank, if all eight banks are enabled. See L2
Bank Enable on page 419 for details on which bits are used to
select the set and the bank if fewer than all eight L2 banks are
enabled.



TABLE 16-25 shows the format of the L2 Error Address register.

TABLE 16-26 lists the bits captured for each of the FE/UE/CE error types.

Programming
Note

If L2_IDX_HASH_EN_STATUS.enb_hp = 1, the address stored in
the L2_ERROR_ADDRESS_REG will contain the hashed
PA{17:11} ← {(PA{32:28} xor PA{17:13}) :: (PA{19:18} xor
PA{12:11})}.

TABLE 16-25 L2 Error Address Register – L2_ERROR_ADDRESS_REG (AC 0000 000016) (Count 8 Step 64)

Bit Field POR Value R/W Description

39:4 address X RW Error address.

3:0 — 0 RO Reserved

Note L2_ERROR_ADDRESS is not cleared on warm reset to allow
software to examine the error information that may have
required the warm reset.

TABLE 16-26 Bits Captured for Each Error Type

Error
Address
Bits Address Contents

LDAC 39:4 Physical address of quadword accessed.

LDAU 39:4 Physical address of quadword accessed.

LDWC 39:6 Physical address of cache line.

LDWU 39:6 Physical address of cache line.

LDRC (rw = 0) 39:6 Physical address of cache line.

LDRC (rw = 1) 39:4 Physical address of quadword accessed.

LDRU (rw = 0) 39:6 Physical address of cache line.

LDRU (rw = 1) 39:4 Physical address of quadword accessed.

LDSC 21:9 Cache index (21:18 way, 17:9 set).

LDSU 21:9 Cache index (21:18 way, 17:9 set).

LTC 39:4 Physical address of quadword accessed.

LRF 15:6 Directory index (15:12 panel, 11:9 CoreID, 8:7 L1way{1:0}, 6 IcacheDir). If
IcacheDir = 1, panel = address{10,9,5,L1way{2}}, else panel = address{10,9,5,4}.

LVF 39:4 Physical address of quadword accessed.

LVC 39:4 Physical address of quadword accessed.



For a given error, the unused bits in the address field are not guaranteed to be zero,
and should be masked by software. This register is writable by software for register
diagnostics and isn’t expected to be written during normal operation. However, in
the event it is written on the same cycle that an error is reported, the update from
the error will take precedence over the write.

16.10.4 L2 NotData Error Register
Each L2 bank has a NotData Error register that contains the status and address for
the L2 NotData error within that bank. The error register is not cleared on reset, so
software can examine its contents after an error-induced reset. The L2 NotData Error
register is available at address AE 0000 000016 and BE 0000 000016. Address bits 8:6
select the cache bank, address bits 31:9 and 5:3 are ignored (that is, the register
aliases across the address range).

TABLE 16-27 shows the format of the L2 NotData Error register.

DAC 39:6 Physical address of cache line.

DAU 39:6 Physical address of cache line.

DRC 39:6 Physical address of cache line.

DRU 39:6 Physical address of cache line.

Programming
Note

If L2_IDX_HASH_EN_STATUS.enb_hp = 1, the address stored in
the L2_NOTDATA_ERROR_REG will contain the hashed
PA{17:11} ← {(PA{32:28} xor PA{17:13}) :: (PA{19:18} xor
PA{12:11})}.

TABLE 16-27 L2 NotData Error Register – L2_NOTDATA_ERROR_REG (AE 0000 000016) (Count 8 Step 64)

Bit Field
Initial
Value R/W Description

63:52 — 0 RO Reserved

51 mend 0 R/W1C Multiple NotData errors, one or more NotData errors were not logged.

50 rw X RW Specifies whether the NotData error access was a read or write. Set to 1
for a write or atomic, 0 for a read.

49 ndsp 0 R/W1C Set to 1 if the error was a L2 cache data array access NotData error (from
SPARC core).

48 nddm 0 R/W1C Set to 1 if the error was a L2 cache data array Dma access NotData error.

47:46 — 0 RO Reserved

TABLE 16-26 Bits Captured for Each Error Type (Continued)

Error
Address
Bits Address Contents



This register is writable by software for register diagnostic reasons and isn’t
expected to be written during normal operation. However, in the event it is written
on the same cycle that an error is reported, the update from the error will take
precedence over the write.

If multiple errors occur in the same cycle, the mend bit is set and only the highest-
priority error is logged based on the following priority shown in TABLE 16-28.

The rw, vcid, and address are captured for the highest-priority NotData error in that
cycle.

If NotData errors occur in a cycle when an error status bit is already set (indicating a
previous error exists that hasn’t been cleared from the error status register), the
mend bit is set.

16.10.5 L2 Error Injection Register
Each cache bank has an error injection register for use in injecting errors to test error
functionality or error handling code. L2 tag, VUAD, and data array errors can be
injected via the diagnostic access, so the L2 error injection register only provides for
the injection of directory parity errors. Errors can be injected either single/double-
shot or continuously (due to restrictions in implementation, a true single-shot mode
was not possible, because in a few cases the hardware must introduce two errors
back-to-back). Once the enb_hp bit set, either the first (and possibly second)
subsequent operation (for sdshot = 1), or all subsequent operations (for sdshot = 0)

45:40 vcid X RW ID of virtual processor that encountered error for ndsp, or
L2_CSR_REG.errorsteer for nddm.

39:4 address X RW Error address. Physical address of quadword accessed.

3:0 — 0 RO Reserved

Note L2_NOTDATA_ERROR is not cleared on warm reset to allow
software to examine the error information that may have
required the warm reset.

TABLE 16-28 Priority for Simultaneous NotData Errors

Error Priority Bit Set if Higher Priority Error

NDSP 1 Not Applicable

NDDM 2 mend

TABLE 16-27 L2 NotData Error Register – L2_NOTDATA_ERROR_REG (AE 0000 000016) (Count 8 Step 64)

Bit Field
Initial
Value R/W Description



that cause a directory update will result in the parity of the directory entry to be
inverted. When in single- or double-shot mode, after the injected error(s) are
generated, the enb bit is automatically reset by the hardware to 0. The L2 Error
Injection register, the format of which is shown in TABLE 16-29, is available at address
AD 0000 000016 or BD 0000 000016. Address bits 8:6 select the cache bank, address
bits 31:9 and 5:3 are ignored (that is, the register aliases across the address range).

16.11 DRAM Error Descriptions
Each 128-bit data block in memory is protected by QEC/OED (Quad Error Correct,
Octal Error Detect) ECC. This ECC code supports Extended ECC for x4 DRAM
chips, where the complete failure of any aligned 4-bit block can be corrected, and
any error where exactly two 4-bit blocks are in error is recognized as an
uncorrectable error.

L2 cache handling of DRAM detected errors for loads is processed differently,
depending on the following conditions:

■ If the error is detected on the bytes of the line requested by the core (critical
bytes), or in the other (non-critical) bytes of the line, and

■ If the error is indicated in the L2 cache during the line fill into the L2 cache .

If the error was in the block requested for load/ifetch/prefetch (the 16-byte primary
line for loads , 32-byte primary line for instruction fetches) and the error got
detected before the line fill , the error is delivered to the requesting virtual
processor with the data in the L2_Load_Return packet with the err field indicating
correctable or uncorrectable error. The error type (DSC/DSU/DAC/DAU), rw, vcid,
and moda fields are captured in the L2 Cache ESR, and the PA{39:6} is captured in
the L2 Cache Error Address register. The error information (DSC/DSU/DAC/DAU/
DBU/FBR/FBU) is captured in the DRAM ESR.

TABLE 16-29 L2 Error Injection Register – L2_ERROR_INJECT_REG (AD 0000 000016) (Count 8 Step 64)

Bit Field POR Value R/W Description

63:2 — X RO Reserved

1 sdshot 0 RW Controls type of error injection. 1 = single or double shot;
0 = continuous.

0 enb_hp 0 RW Enables directory error injection.

Note L2_ERROR_INJECT_REG is not cleared on warm reset to allow
software to examine the error information that may have
required the warm reset.



If the cache is filled before the data is returned to the requestor on a load/ifetch and
error got delivered to the L2 cache from DRAM on that line fill, or if the error is
delivered to the L2 cache from DRAM during the line fill of a TTE fetch, the error is
reported to the virtual processor indicated by L2_CSR_REG.errorsteer, with the
data in the Error_Indication_(L2) packet with the err field indicating correctable or
uncorrectable error. The error type (DSC/DSU/DAC/DAU) field is captured in the
L2 cache ESR, and the PA 39:6 is captured in the L2 Cache Error Address register.
The error information (DSC/DSU/DAC/DAU/DBU/FBR/FBU) is captured in the
DRAM ESR.

If the error is delivered to the L2 cache during the line fill, upto two errors could be
presented: one to the strand indicated by the L2_CSR_REG.errorsteer on the line fill,
and conditionally an L2 cache detected error reported on the err field of the data
return packet to the requestor, when the L2 Cache is accessed for the load/ifetch/
TTE data after the line fill.

In case the line fill detected uncorrectable error from DRAM ,the subsequent L2
cache detected error can be only Notdata Error to the critical quarter-line since the
Uncorrectable Error would already been reported on the line fill. In case the line fill
detected correctable error from DRAM, there will not be a subsequent L2 cache
detected error since the line fill would fill corrected data from DRAM.

The following errors are detected in the MCU and sent to the L2 cache, where they
are returned to the requesting core/strand, using the L2_Load_Return packet/
L2_Ifetch_Return packet:

■ DAC, DAU, DBU, FBR, and FBU errors related to a load/ifetch/prefetch access
when the error (as indicated by the err field of the packet) is observed on critical
data prior to the line fill.

The following errors are detected in the MCU and sent to the L2 cache, where they
are returned to the core/strand indicated by the L2_CSR_REG.errorsteer, using the
Error_Indication_(L2) packet:

■ DSC and DSU errors

■ DAC, DAU, DBU, FBR, and FBU errors related to a store,TTE fetch,atomic access

■ DAC, DAU, DBU, FBR, and FBU errors related to a load/ifetch/prefetch access
when the error (as indicated by the err field of the packet) is observed on the line
fill .

The flow of DRAM errors through the L2cache is shown in FIGURE 16-2.



FIGURE 16-2 DRAM Error Flow From MCU to L2 Cache

Note DRAM correctable errors (DAC, DSC, FBR) can result in two
traps if error reporting is enabled both through the L2 and
through the MCU Correctable/Recoverable Error Count register
described in MCU Correctable/Recoverable Count Errors on page
321.
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16.11.1 DRAM Correctable Error for Access (DAC)
The DRAM detects correctable data ECC errors and reports them to the L2 cache as
DAC errors. These errors errors are indicated by setting the dac,vec bits and the
synd field in the DRAM ESR

For disrupting sw_recoverable_error trap conditions, if SETER.de is not set (or
PSTATE.ie is clear and HPSTATE.hpriv is set), the error is still recorded in the
DESR, but the trap remains pending until software sets SETER.de (and PSTATE.ie
is set or HPSTATE.priv is clear).

For disrupting hw_corrected_error trap conditions, if SETER.dhcce is not set (or
PSTATE.ie is clear and HPSTATE.hpriv is set), the error is still recorded in the
DESR, but the trap remains pending until software sets SETER.dhcce (and
PSTATE.ie is set or HPSTATE.priv is clear).

If either the L2 Cache Error Enable ceen or CERER.l2c_socc bit is reset, the error is
ignored, but the error information is still captured in the DRAM Error Status
register, the L2 Cache Error Status register, and the L2 Cache Error Address register.

These errors are logged and cause traps without regard to the ECC and FBR Error
Count registers described in sections 25.12.4 and 25.12.9.

16.11.1.1 Load Miss / Instruction Fetch Miss / Prefetch Miss

The handling of the error in the L2 cache and the virtual processor depend on
whether the error is reported on critical load data and whether the load occurs
before the line fill.

Critical load data delivered before L2 cache line fill. When the load miss/
ifetch miss/prefetch miss request replay occurs before the line fill in the L2
cache and detects the correctable DRAM error on its critical bytes, the error
information (dac,vec, rw, vcid, and moda) is captured in the L2 Cache Error
Status register and PA{39:6} in the L2 Cache Error Address register.

Hardware corrects the error before the data is placed into the L2 cache and returned
to the virtual processor.

If the L2 Cache Error Enable ceen bit is set, an L2C error is signaled to the
requesting virtual processor. The error information is delivered in the err field of an
L2_Load_Return packet with the data. The requesting virtual processor indicates a
sw_recoverable_error disrupting error condition. These errors are handled as
follows:

Note If L2_CONTROL_REG.dis = 1 (the L2 cache is disabled), no
logging or trap generation is performed for DRAM correctable
ECC errors encountered on 32-bit and 64-bit stores.



■ If the access was an Ifetch request, and CERER.icl2c is set and DESR.f is clear,
hardware encodes ICL2C in the DESR. The contents of the DESR.erroraddr field
are undefined. In addition, if the SETER.de bit is set, and PSTATE.ie is set or
HPSTATE.hpriv is clear, hardware takes a disrupting sw_recoverable_error trap.

■ If the access was a load request, and CERER.dcl2c is set and DESR.f is clear,
hardware encodes DCL2C in the DESR. The contents of the DESR.erroraddr field
are undefined. In addition, if the SETER.de bit is set, and PSTATE.ie is set or
HPSTATE.hpriv is clear, hardware takes a disrupting sw_recoverable_error trap.

■ In all cases, if SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is
set, hardware keeps the trap request pending until software either a) resets
DESR.f, clearing the trap request, or b) sets SETER.de and either sets PSTATE.ie
or clears HPSTATE.hpriv, causing hardware to take the trap.

Critical load data delivered after line fill. When the load miss/ifetch miss/
prefetch miss request replay occurs after the line fill in the L2 cache and a
correctable DRAM error is presented to the L2 cache during the line fill, the error
information (dac,vec and vcid = L2_CSR_REG.errorsteer) is captured in the L2
Cache Error Status register and PA{39:6} in the L2 Cache Error Address register.

If the L2 Cache Error Enable ceen bit is set, an L2C error is signaled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of an Error_Indication_(L2) packet. That virtual processor indicates a
hw_corrected_error disrupting error condition. These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.dhcce bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting hw_corrected_error trap to the requesting virtual
processor.

■ If SETER.dhcce is not set, or PSTATE.ie is not set, or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.11.1.2 Atomic Miss / TTE Miss

On an atomic request or a TTE miss request, the line fill into the L2 cache with
corrected data occurs first. Then the critical data is accessed from the L2 cache.

When the correctable DRAM error is presented to the L2 cache on an atomic/TTE
miss request, the error information (dac,vec and vcid = L2_CSR_REG.errorsteer) is
captured in the L2 Cache Error Status register and PA{39:6} in the L2 Cache Error
Address register.



If the L2 Cache Error Enable ceen bit is set, an L2C error is signaled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of a Error_Indication_(L2) packet. That virtual processor indicates a
hw_corrected_error disrupting error condition. These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.dhcce bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting hw_corrected_error trap to the requesting virtual
processor.

■ If SETER.dhcce is not set, or PSTATE.ie is not set, or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.11.1.3 Partial Store Miss

When the correctable DRAM error is presented to the L2 cache, the error information
(dac,vec and vcid = L2_CSR_REG.errorsteer) is captured in the L2 Cache Error
Status register and PA{39:6} in the L2 Cache Error Address register.

If the L2 Cache Error Enable ceen bit is set, an L2C error is signalled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of an Error_Indication_(L2) packet. That virtual processor indicates a
hw_corrected_error disrupting error condition. These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.DHCCE bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting hw_corrected_error trap to the requesting virtual
processor.

■ If SETER.dhcce is not set or PSTATE.ie is not set or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

16.11.1.4 Store Miss

When the correctable DRAM error is presented to the L2 cache, the error information
(dac,vec and vcid = L2_CSR_REG.errorsteer) is also captured in the L2 Cache Error
Status register and PA{39:6} in the L2 Cache Error Address register. Hardware
corrects the error before the data is placed into the L2 cache (the new store data will
also be correct).



If the L2 Cache Error Enable ceen bit is set, an L2C error is signaled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of an Error_Indication_(L2) packet. That virtual processor indicates a
hw_corrected_error disrupting error condition. These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.dhcce bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting hw_corrected_error trap to the requesting virtual
processor.

■ If SETER.dhcce is not set or PSTATE.ie is not set or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

If the L2 Cache is disabled (L2Control register dis bit is set), no logging occurs in the
L2 Cache Error Status register and L2 Cache Error Address register, and no trap is
presented.

16.11.1.5 DMA Read (DRC/DAC)

When a correctable error is presented to the L2 cache, the error information (drc,vec
and rw) bits are captured in the L2 Cache Error Status register and PA{39:6} in the L2
Cache Error Address register. Hardware corrects the error and returns it to the DMA
requestor. In addition, if the L2 Cache Error Enable ceen bit is set, hardware
generates an L2C error to the virtual processor specified in L2_CSR_REG.errorsteer.
The error information is delivered in the err field of a Error_Indication_(L2) packet.
That virtual processor indicates a sw_recoverable_error disrupting error condition.
These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear, hardware
generates a disrupting sw_recoverable_error trap.

■ If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

L2 Error status reports DRC (DMA correctable) for this error, while DRAM reports
DAC.

16.11.1.6 DMA Write Partial (DRC/DAC)

When a correctable error is presented to the L2 cache, the error information (drc,vec
and rw) bits are captured in the L2 Cache Error Status register and PA{39:6} in the L2
Cache Error Address register. Hardware corrects the error in the L2 cache line. In



addition, if the L2 Cache Error Enable ceen bit is set, hardware generates an L2C
error to the virtual processor specified in L2_CSR_REG.errorsteer. The error
information is delivered in the err field of a Error_Indication_(L2) packet. That
virtual processor indicates a hw_corrected_error disrupting error condition. These
errors are handled as follows:

■ If the SPARC CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes
l2c in the DESR. The contents of the DESR.erroraddr field are undefined. In
addition, if the SETER.dhcce bit is set, and PSTATE.ie is set or HPSTATE.hpriv is
clear, hardware generates a disrupting hw_corrected_error trap to the virtual
processor specified in L2_CSR_REG.errorsteer.

■ If SETER.dhcce is not set or PSTATE.ie is not set or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

L2 Error status reports DRC (DMA correctable) for this error, while memory reports
DAC.

16.11.2 DRAM Correctable ECC Error for Scrub (DSC/
FBR)
The DRAM controller detects two types of correctable errors that are reported to the
L2 as DSC:

■ Correctable ECC error found during a scrub, the error information (dsc, synd) is
captured in the DRAM Error Status register, and PA{39:4} in the DRAM Error
Address register.

■ Recoverable FBD link error associated with DRAM accesses. These errors are
indicated by the fbr bit set in the DRAM ESR. The error information is captured in
the DRAM FDB Error Syndrome register.

When a correctable scrub error is presented to the L2 cache, DSC bit is set in the L2
Cache Error Status register. Hardware corrects the error in memory by writing back
the corrected data and parity (this rewrite will be unable to correct a permanently
failed bit). In addition, if the L2 Cache Error Enable ceen bit is set, hardware
generates an L2C error to the virtual processor specified in L2_CSR_REG.errorsteer.
The error information is delivered in the err field of a Error_Indication_(L2) packet.
That virtual processor indicates a hw_corrected_error disrupting error condition.
These errors are handled as follows:

■ If the CERER.l2c_socc bit is set and DESR.f is clear, hardware encodes l2c in the
DESR. The contents of the DESR.erroraddr field are undefined. In addition, if the
SETER.dhcce bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting hw_corrected_error trap.



■ If SETER.dhcce is not set or PSTATE.ie is not set or HPSTATE.hpriv is set,
hardware keeps the trap request pending until software either a) resets DESR.f,
clearing the trap request, or b) sets SETER.dhcce and either sets PSTATE.ie or
clears HPSTATE.hpriv, causing hardware to take the trap.

Note that the dsc bit is set in the L2 Cache ESR regardless of the status of any other
bits in the register. The dsc bit is logged to notify software to check the DRAM error
register.

16.11.2.1 FBD Channel Recoverable Error (FBR)

There are four FBDIMM channel recoverable error conditions that the DRAM
controller detects: CRC error on data, Alert Frames from the AMBs, Alert Asserted
in Status Frames from the AMBs, or Status Frame Parity Error. When one of these
conditions is detected, the DRAM controller will attempt to recover from the
condition. If it successfully recovers, an FBR will be logged in the MCU ESR, the
error condition will be logged in the MCU Error Syndrome Register, and a DSC will
be reported to the L2.

16.11.3 DRAM Uncorrectable Error for Access (DAU/
DBU/FBU)
The DRAM detects three types of uncorrectable errors and reports them to the L2
cache as DAU errors:

■ Uncorrectable data ECC errors, indicated by setting the dau,veu bits and the synd
field in the DRAM ESR.

■ Out-of-bounds errors to nonexistent DRAM addresses (for details on out-of-
bounds addresses, see Access to Nonexistent Memory on page 355). An out-of-
bounds error is signaled as a cache line with all data marked with an
uncorrectable error. For each 32-bit chunk, the data is loaded into the L2 cache
with signaled ECC. These errors are indicated in the DRAM ESR with the dbu bit
set. Note that writeback and block stores to out-of-bounds addresses are dropped
with no error indication provided. Refer to TABLE 17-3 on page 356 for the
complete list of OOB address ranges for different memory configurations.

■ Unrecoverable FBD link error associated with DRAM accesses. These errors are
indicated by the fbu bit set in the DRAM ESR. The error information is captured
in the DRAM FDB Error Syndrome register.

16.11.3.1 Load Miss/Instruction Fetch Miss

The handling of the error in the L2 cache and the virtual processor depend on
whether the error is reported on critical load data and whether the load occurs
before the line fill. The line fill data is loaded into the L2 cache with signaled ECC.



Critical load data delivered before L2 cache line fill. When the load/ifetch
miss request replay occurs before the line fill in the L2 cache and detects the
uncorrectable DRAM error on its critical bytes(the 16-byte primary line for loads/
prefetches, 32-byte primary line for instruction fetches), the error information
(dau,veu, rw, vcid, and moda) is captured in the L2 Cache Error Status register and
PA{39:6} in the L2 Cache Error Address register.

For each 32-bit chunk with an error, the data is loaded into the L2 cache with
corrupted ECC. The L1 cache data is loaded with bad parity.

If the L2 Cache Error Enable nceen bit is set, an L2U error is signaled to the
requesting virtual processor. The error information is delivered in the err field of a
L2_Load_Return packet with the data. The requesting virtual processor indicates a
precise error condition. These errors are handled as follows:

■ If the access was an instruction fetch and the SPARC CERER.icl2u bit is set and
SETER.pscce is set, hardware records icl2u in the ISFSR and takes a precise
instruction_access_error trap. The VA of the instruction access is in TPC[TL]. If
SETER.pscce is clear, hardware does not take a trap nor does it record any error
in the ISFSR. Instead, it continues executing using the (corrupt) data from
memory.

■ If the access was a data fetch and the CERER.dcl2u bit is set and SETER.pscce is
set, hardware records dcl2u in DSFSR, and takes a precise data_access_error
trap. The VA of the data access is not logged in DSFSR. Software must examine
the L2 ESRs to determine the failing physical address. If SETER.pscce is clear,
hardware does not take a trap nor does it record any error in DSFSR or DSFAR.
Instead, it continues executing using the corrupt data.

Critical load data delivered after L2 cache line fill. When the load/ifetch
request replay occurs after the line fill in the L2 cache and an uncorrectable DRAM
error is presented to the L2 cache during the line fill, the error information (dau,veu
and vcid = L2_CSR_REG.errorsteer) is captured in the L2 Cache Error Status
register and PA{39:6} in the L2 Cache Error Address register.

If the L2 Cache Error Enable nceen bit is set, an L2U error is signaled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of a Error_Indication_(L2) packet. That virtual processor indicates a
sw_recoverable_error disrupting error condition. These errors are handled as
follows:

■ If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes L2U in the DESR. The contents of the DESR.erroraddr field are
undefined. In addition, if the SETER.de bit is set, and PSTATE.ie is set or
HPSTATE.hpriv is clear, hardware generates a disrupting sw_recoverable_error
trap.



■ If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.11.3.2 Atomic Miss/TTE Miss

Since the atomic access or TTE miss service always occurs after the L2 cache line fill,
the L2 cache presents the error after the line fill. The L2 cache also writes the data
with signaled ECC. The error information (dau,veu and
vcid = L2_CSR_REG.errorsteer) is captured in the L2 Cache Error Status register
and PA{39:6} in the L2 Cache Error Address register.

If the L2 Cache Error Enable nceen bit is set, an L2U error is signaled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of a Error_Indication_(L2) packet. That virtual processor indicates a
sw_recoverable_error disrupting error condition. These errors are handled as
follows:

■ If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes l2u in the DESR. The contents of the DESR.erroraddr field are undefined.
In addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is
clear, hardware generates a disrupting sw_recoverable_error trap.

■ If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

When the atomic accesses the L2 cache after the line fill , it will detect a NotData
condition on the load and store accesses. See Atomic Hit (DCL2ND) on page 262.

For an atomic, if the error was in the word to be updated, the atomic operation will
not complete its update, leaving the original data and the bad ECC unchanged.

When the TTE miss accesses the L2 cache after the line fill , it will detect a NotData
condition . See TTE Request for ITLB (ITL2ND) on page 261 and TTE Request for DTLB
(DTL2ND) on page 261

16.11.3.3 Prefetch Miss

When an uncorrectable error is presented to the L2 cache, the L2 cache presents the
error after the line fill. The L2 cache also writes the data with signaled ECC. The
error information (dau,veu, vcid = L2_CSR_REG.errorsteer) is captured in the L2
Cache Error Status register and PA{39:6} in the L2 Cache Error Address register.



If the L2 Cache Error Enable nceen bit is set, an L2U error is signalled to the virtual
processor specified in L2_CSR_REG.errorsteer. The error information is delivered in
the err field of a Error_Indication_(L2) packet. That virtual processor indicates a
sw_recoverable_error disrupting error condition. These errors are handled as
follows:

■ If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes l2u in the DESR. The contents of the DESR.erroraddr field are undefined.
In addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is
clear, hardware generates a disrupting sw_recoverable_error trap.

■ If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

Prefetch does not load data into the requesting core’s data cache.

16.11.3.4 Store Miss

When an uncorrectable error is presented to the L2 cache, the error information
(dau,veu, rw, vcid) is captured in the L2 Cache Error Status register and PA{39:6} in
the L2 Cache Error Address register. For each 32-bit chunk with an error, the data is
loaded into the L2 cache with signaled ECC. For a partial store, the partial store will
not complete its update, leaving the original data and the bad ECC unchanged. In
addition, if the L2 Cache Error Enable nceen bit is set, a disrupting L2U error is
generated to the virtual processor specified in L2_CSR_REG.errorsteer.

If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes L2U in the DESR. The contents of the DESR.erroraddr field are undefined.
In addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is
clear, hardware generates a disrupting sw_recoverable_error trap.

If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATDE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

16.11.3.5 DMA Read (DRU/DAU)

When the uncorrectable error is presented to the L2 cache, the error information
(dru,veu, vcid = L2_CSR_REG.errorsteer) are captured in the L2 Cache Error Status
register and PA{39:6} in the L2 Cache Error Address register. Hardware returns the
data back to the DMA requestor, with a UE error indicator for each 128-bit chunk
with an error. In addition, if the L2 Cache Error Enable nceen bit is set, an L2U error
is reported to the virtual processor specified in L2_CSR_REG.errorsteer.



If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes l2u in the DESR. The contents of the DESR.erroraddr field are undefined. In
addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting sw_recoverable_error trap.

If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

L2 Error status will report DRU (DMA uncorrectable) for this error, while the MCU
DRAM will report DAU.

16.11.3.6 DMA Write Partial (DRU/DAU)

When the uncorrectable error is presented to the L2 cache, the error information
(dru,veu and vcid = L2_CSR_REG.errorsteer) are captured in the L2 Cache Error
Status register and PA{39:6} in the L2 Cache Error Address register.

These errors occur for DMA 8-byte writes where the line is read from DRAM into
the L2 cache where the DMA write data is merged. For each 32-bit chunk with an
error, the data is loaded into the L2 cache with signaled ECC. In addition, if the L2
Cache Error Enable nceen bit is set, an L2U error is reported to the virtual processor
specified in L2_CSR_REG.errorsteer.

If the SPARC CERER.l2u_socu bit is set, and the DESR.f bit is clear, hardware
encodes l2u in the DESR. The contents of the DESR.erroraddr field are undefined. In
addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting sw_recoverable_error trap.

If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

L2 Error status will report DRU (DMA uncorrectable) for this error, while the MCU
DRAM will report DAU.

16.11.3.7 FBD Channel Unrecoverable CRC Error (FBU)

When the MCU detects a CRC error on a read packet, it will retry the read
transaction. If the error condition persists, the MCU will force a Fast Reset of the
FBD channel and retry the read transaction. If the error persists after the Fast Reset,
the error is logged as an FBU in the MCU ESR, a CRC error is logged in the MCU
Error Syndrome Register, and the error is reported to the L2 as a DAU along with
the corrupted data from the channel.



16.11.4 DRAM Uncorrectable ECC Error for Scrub (DSU/
FBU)
When an uncorrectable ECC error is found during a scrub, the information (dsu,
synd) is captured in the DRAM Error Status register, with PA{39:4} captured in the
DRAM Error Address register.

When the uncorrectable ECC error for scrub is presented to the L2 cache, the error
information (dsu) is captured in the L2 Cache Error Status register. In addition, if the
L2 Cache Error Enable nceen bit is set, an L2U error is reported to the virtual
processor specified in L2_CSR_REG.errorsteer.

If the SPARC CERER.l2u_socu bit is set and the DESR.f bit is clear, hardware
encodes l2u in the desr. The contents of the DESR.erroraddr field are undefined. In
addition, if the SETER.de bit is set, and PSTATE.ie is set or HPSTATE.hpriv is clear,
hardware generates a disrupting sw_recoverable_error trap.

If SETER.de is not set or PSTATE.ie is not set or HPSTATE.hpriv is set, hardware
keeps the trap request pending until software either a) resets DESR.f, clearing the
trap request, or b) sets SETER.de and either sets PSTATE.ie or clears
HPSTATE.hpriv, causing hardware to take the trap.

Note that the dsu bit is set in the L2 Cache ESR regardless of the status of any other
bits in the register. The dsc bit is logged to notify software to check the DRAM error
register.

16.11.4.1 FBD Channel Unrecoverable Status Frame Parity
and Alert Frame Errors

When the MCU detects a Status Frame Parity r an Alert Frame Error, it first issues a
Soft Channel Reset on the FBD channel to try to clear the condition. If the error
condition persists, it forces a Fast Reset of the FBD channel. If the error conditon
persists after the Fast Reset, an FBU is logged in the MCU ESR, the error condition is
logged in the MCU Error Syndrome Register, and the error is reported to the L2 as a
DSU.

16.11.5 DRAM Software Error Scrubbing Support
Some errors will leave the DRAM with a correctable error, which then needs to be
scrubbed to prevent repetitive traps for effectively the same soft error. DRAM
scrubbing can be done through the L2 cache. To scrub, load the line into the L2, dirty
it without modifying it (via a CAS that matches on the compare and has the same
store data as the data returned on the load), then use a PrefetchICE to flush the line
back to DRAM.



16.12 DRAM Error Registers
This section describes the error control and log registers for the DRAM. Each DRAM
channel has its own set of error registers.

16.12.1 DRAM Error Status Register
This register contains status on DRAM errors. The status bits in this register are
cleared by writing a 1 to the bit position.

TABLE 16-30 shows the format of the DRAM Error Status register.

If both correctable and uncorrectable errors occur in the same cycle, the mec bit is set
and only the appropriate bit for the uncorrectable error is set. With the exception of
DBU, the syndrome is captured for the highest-priority error in that cycle (DSU,
DAU, and FBU are priority 1, DSC, DAC, and FBR are priority 2). The syndrome
remains unchanged if the error is a DBU. The address is loaded if the highest-
priority error in the cycle is either a DSU or DSC.

Note DRAM_ERROR_STATUS is not cleared on warm reset to allow
software to examine the error information that may have
required the warm reset.

TABLE 16-30 DRAM Error Status Register – DRAM_ERROR_STATUS_REG (84 0000 028016) (Count 4 Step
4096)

Bit Field
POR
Value R/W Description

63 meu 0 R/W1C Multiple uncorrected errors, one or more uncorrected errors were not
logged.

62 mec 0 R/W1C Multiple corrected errors, one or more corrected errors were not logged.

61 dac 0 R/W1C Set to 1 if the error was a DRAM access correctable error.

60 dau 0 R/W1C Set to 1 if the error was a DRAM access uncorrectable error.

59 dsc 0 R/W1C Set to 1 if the error was a DRAM scrub correctable error.

58 dsu 0 R/W1C Set to 1 if the error was a DRAM scrub uncorrectable error.

57 dbu 0 R/W1C Set to 1 if the error was an access to a nonexistent DRAM address
(address out of bounds).

56 meb 0 R/W1C Set to 1 if there were multiple out-of-bound errors

55 fbu 0 RW1C Set to 1 if the error was a FBDIMM channel unrecoverable error

54 fbr 0 R/W1C Set to 1 if the error was a FBDIMM channel recoverable error

53:16 — 0 RO Reserved

15:0 synd X RW ECC syndrome.



If there are multiple errors, in different 16-byte chunks, in a single access, they are
treated as multiple errors, since there is only logging state to describe a single 16-
byte chunk error.

If errors occur in a cycle where an error status bit is already set, TABLE 16-31 applies.

For the cases above where the “Bit Set” column contains a value besides meb, mec,
and meu, the syndrome (for DSU/DAU/FBU/DSC/DAC/FBR) and address (for
DSU/DSC) for the highest-priority error will overwrite the existing syndrome and
address.

Once set, error status bits are only cleared by software. Hardware will never clear a
set status bit. If a software write of the error register happens on the same cycle as an
error, the setting of bits by the error will be based on the register state before the
write. The setting of fields by the error will take precedence over the same field
being updated by the write; however, fields that are not changed by the error will be

Note MCU FBDIMM Unrecoverable error (FBU) can be injected
through NCU; but error is not reported back to NCU, unlike
FBR.

TABLE 16-31 Errors When Error Status Bit Is Already Set

Existing Error Error Priority Bit Set

DSU/DAU/FBU DSU, DAU, or FBU 1 meu

DSU/DAU/FBU DBU 1 dbu

DSU/DAU/FBU DSC, DAC or FBR 2 mec

DBU DSU 1 dsu

DBU DAU 1 dau

DBU FBU 1 fbu

DBU DBU 1 meb

DBU DSC 2 dsc

DBU DAC 2 dac

DBU FBR 2 fbr

DSC/DAC/FBR DSU 1 dsu

DSC/DAC/FBR DAU 1 dau

DSC/DAC/FBR DBU 1 dbu

DSC/DAC/FBR FBU 1 fbu

DSC/DAC/FBR DSC, DAC, or FBR 2 mec



updated by the write (for example, if the register has the dac bit set and software
does a write to clear that bit on the same cycle as a DRAM scrub uncorrectable error,
the error register would end up with the dac bit cleared and the mec bit set, and the
rw and synd fields would contain the values for the error).

16.12.2 DRAM Error Address Register
The DRAM Error Address register contains the physical address for the DRAM
scrub error. DRAM load access address for errors are expected to be logged by L2
controller.

TABLE 16-32 shows the format of the DRAM Error Address register.

This register is writable by software for register diagnostic reasons and isn’t
expected to be written during normal operation. However, in the event it is written
on the same cycle that an error is reported, the update from the error will take
precedence over the write.

16.12.3 DRAM Error Injection Register
Each DRAM channel has an Error Injection register for use in injecting DRAM errors
to test error functionality or error handling code. The DRAM Error Injection register
only provides for the injection of bad ECC on data written to memory. To inject an
ECC error on data read from memory, bad ECC must be set up via a memory write,
and then the memory locations with the bad ECC accessed with a read. Errors can be
injected either single-shot or continuously. Once the enb_hp bit is set, either the first
subsequent operation (for sshot = 1), or all subsequent operations (for sshot = 0) that
cause a DRAM write will xor eccmask with the normally generated ECC when
writing memory. When in single-shot mode, after the first injected error is generated,
the sshot and enb_hp are automatically reset by the hardware to 0.

TABLE 16-33 shows the format of the DRAM Error Injection register.

Note DRAM_ERROR_ADDRESS is not cleared on warm reset to
allow software to examine the error information that may have
required the warm reset.

TABLE 16-32 DRAM Error Address Register – DRAM_ERROR_ADDRESS_REG (84 0000 028816) (Count 4
Step 4096)

Bit Field POR Value R/W Description

63:40 — 0 RO Reserved

39:4 address X RW Error address.

3:0 — 0 RO Reserved



16.12.4 DRAM Error Counter Register
Each DRAM channel has an Error Counter register for use in counting DRAM
correctable ECC errors and generating a trap when the counter decrements to 0.
Each 16-byte chunk with an error will cause the count field to decrement by one.

When count transitions from 1 to 0, the corresponding mcu{0-3} ECC bit is set in the
SOC_ERROR_STATUS_REG described in SOC Error Status Register on page 323,
which if enabled will generate a sw_recoverable_error trap to the strand in the
SOC_ERROR_STEER_REG.

TABLE 16-34 shows the format of the DRAM Error Counter register.

TABLE 16-33 DRAM Error Injection Register – DRAM_ERROR_INJECT_REG (84 0000 029016) (Count 4
Step 4096)

Bit Field POR Value R/W Description

63:32 — 0 RO Reserved

31 enb_hp 0 RW Enables error injection.

30 sshot 0 RW Controls type of error injection. 1 = single shot; 0 = continuous.

29:16 — 0 RO Reserved

15:0 eccmask 0 RW ECC mask for error injection. The mask is xored with the
computed ECC.

Note DRAM_ERROR_INJECT_REG is not cleared on warm reset to
allow software to examine the error information that may have
required the warm reset.

TABLE 16-34 DRAM Error Counter Register – DRAM_ERROR_COUNTER_REG (84 0000 029816) (Count 4
Step 4096)

Bit Field POR Value R/W Description

63:16 — X RO Reserved

15:0 COUNT 0 RW Counter that decrements with each ECC correctable error
unless already 0.

Note DRAM_ERROR_COUNTER_REG is not cleared on warm reset
to allow software to examine the error information that may
have required the warm reset.



16.12.5 DRAM Error Location Register
Each DRAM channel has an Error Location register for software to sample to locate
a bad memory part. The register is set on a correctable DRAM error if a correctable
error is not already logged in the MCU ESR. The bit set corresponds to the nibble
that was corrected. Bits 35:32 correspond to the ECC nibbles and 31:0 to data
nibbles. When in dual-channel mode, 35:18 refer to nibbles in channel 0 and 17:0
refer to nibbles in channel 1.

TABLE 16-35 shows the format of the DRAM Error Location register.

16.12.6 DRAM Error Retry Register
Each DRAM channel has an Error Retry register for software to sample to locate a
bad memory part. The register is set on each correctable DRAM error.

TABLE 16-36 shows the format of the DRAM Error Retry register.

TABLE 16-35 DRAM Error Location Register – DRAM_ERROR_LOCATION_REG (84 0000 02A016) (Count
4 Step 4096)

Bit Field
POR
Value R/W Description

63:36 — 0 RO Reserved

35:0 location X RW DRAM ECC error location.

Note DRAM_ERROR_LOCATION_REG is not cleared on warm reset
to allow software to examine the error information that may
have required the warm reset.

TABLE 16-36 DRAM Error Retry Register – DRAM_ERROR_RETRY_REG (84 0000 02A816) (Count 4 Step
4096)

Bit Field POR Value R/W Description

63:37 — 0 RW Reserved

36 valid 0 RW Error Retry register is valid.

35:20 synd2 0 RO Syndrome from second retry read.

19:18 type2 0 RW Result of second retry read.

17:2 synd1 0 RO Syndrome from first retry read

1:0 type1 0 RW Result of first retry read.
00 – No read.
01 – No error.
10 – Correctable error.
11 – Uncorrectable error.



16.12.7 DRAM FBD Error Syndrome Register
Each DRAM channel has an FBD Error Syndrome for FBD link errors. When an FBD
link error is detected, the syndrome is captured in this register. For a recoverable
link error, if the count field of the DRAM_FBR_COUNT_REG register is zero, the
corresponding mcu{0-3} FBR{} bit is set in the SOC_ERROR_STATUS_REG register
as described in SOC Error Status Register on page 323. If enabled, setting of this bit
generates a hw_corrected_error trap to the strand in the SOC_ERROR_STEER_REG
register. Once the valid bit is set, no further FBD link errors are logged, so software
will need to clear the valid bit to enable further FBD link error detection.

TABLE 16-37 shows the format of the DRAM FBD Error Syndrome register.

16.12.8 DRAM FBD Injected Error Source Register
When the NCU signals the MCU to inject an error, this register determines into
which error detection logic the error will be injected.

Note DRAM_ERROR_RETRY_REG is not cleared on warm reset to
allow software to examine the error information that may have
required the warm reset.

TABLE 16-37 DRAM FBD Error Syndrome Register – DRAM_FBD_ERROR_SYND_REG (84 0000 0C0016)
(Count 4 Step 4096)

Bit Field
POR
Value R/W Description

63 valid 0 RW Valid.

62:30 — 0 RO Reserved

29:18 alert1 0 RW AMB alert bits set in Channel 1.

17:6 alert0 0 RW AMB alert bits set in Channel 0.

5 softreset 0 RW MCU issued a soft channel reset command to the channel.

4 fastreset 0 RW MCU performed a fast reset of a channel due to a soft channel reset for
the error not being effective.

3 sfpe 0 RW Status frame parity error.

2 aa 0 RW Alert asserted.

1 afe 0 RW Alert frame error.

0 c 0 RW CRC error.

Note DRAM_FBD_ERROR_SYND_REG is not cleared on warm reset
to allow software to examine the error information that may
have required the warm reset.



TABLE 16-38 shows the format of the DRAM FBD Injected Error Source register.

16.12.9 DRAM FBR Count Register
This register controls the sending of FBD recoverable error interrupts to the NCU.
Each DRAM channel has an FBR Count register for use in counting FBD recoverable
channel errors and generating a trap when the counter decrements to 0. Each FBR
will cause the count field to decrement by one.

When count transitions from 1 to 0, the corresponding mcu{0-3} FBR bit is set in the
SOC_ERROR_STATUS_REG described in SOC Error Status Register on page 323,
which if enabled will generate a hw_corrected_error trap to the strand in the
SOC_ERROR_STEER_REG.

TABLE 16-39 shows the format of the DRAM FBR Count register.

TABLE 16-38 DRAM FBD Error Syndrome Register – DRAM_FBD_INJ_ERROR_SRC_REG (84 0000 0c0816)
(Count 4 Step 4096)

Bit Field POR Value R/W Description

62:2 — 0 RO Reserved

1:0 errorsource 0 RW Source of the error.
0 – CRC error.
1 – Alert frame error.
2 – Alert asserted.
3 – Status frame parity error.

Note DRAM_FBD_INJ_ERROR_SRC_REG is not cleared on warm
reset to allow software to examine the error information that
may have required the warm reset.

Note Continuous injection of Alert Frame errors may cause a system
to hang. The memory controller will be continually processing
the Alert Frame errors and will not have time to service DRAM
read requests.

Note When injecting Alert Asserted errors, the memory controller will
only report one AA error to the L2 until the MCU Error
Syndrome register is cleared.



16.13 Block Loads and Stores
OpenSPARC T2 supports 64-byte block load and store access to ASI_BLK_P,
ASI_BLK_S, ASI_BLK_COMMIT_P, ASI_BLK_COMMIT_S, ASI_BLK_PL,
ASI_BLK_SL, ASI_BLK_AIUP, ASI_BLK_AIUS, ASI_BLK_AIUPL,
ASI_BLK_AIUSL.

Loads for these operations consist of four 16-byte “helper” loads, while stores are
composed of eight 8-byte “helper” stores. Store buffer errors encountered on any of
the helper stores will be logged the same as if it was a non-helper store and will not
affect the issuing of subsequent helper stores. For block stores, if there is an error on
any of the helper stores, the entire block store will be terminated and no memory
updates performed.

For the helper loads, errors (including L2C) will be accumulated on all four helpers
and reported (and trapped if enabled) after the final helper completes. The error
reported will be the highest-priority error (ND → UE → CE) if one or more errors
are detected. If multiple errors of the highest priority are detected, the error reported
will be the one associated with the earliest helper.

The block load is considered a single operation, and even if multiple uncorrectable
or correctable errors (or a combination of the two) are encountered, they are treated
as a single error with respect to updating the D-SFSR. The floating-point register file
will be updated with load results up to the point of the earliest helper that
encountered an uncorrectable error. Loading of results into the floating-point register
file will be suppressed for the helper that encountered the uncorrectable error and
any subsequent helpers.

TABLE 16-39 DRAM FBR Count Register – DRAM_FBR_COUNT_REG (84 0000 0C1016) (Count 4 Step
4096)

Bit Field
POR
Value R/W Description

63:17 — 0 RO Reserved

16 countone 0 RW If set, the MCU will generate an interrupt to the NCU on every
FBR error.

15:0 count 0 RW Count of FBR errors, decremented on every FBR error if countone
is not set. When this value decrements from 1 to 0, an FBR
interrupt will be sent to the NCU.

Note DRAM_FBR_COUNT_REG is not cleared on warm reset to
allow software to examine the error information that may have
required the warm reset.



Programming
Note

When a block load encounters an error, the destination registers
of the helper operations issued before the helper encountering
the error will be updated. This implies that the exception taken
for the error will not be strictly precise. However, the TPC and
TNPC will still be updated as if the exception were fully precise
and TPC will point to the block load instruction that
encountered the error.



16.14 CMP Error Summary
TABLE 16-40 summarizes CMP error handling. Column heads and error-type
abbreviations are described in TABLE 16-41 on page 302.

TABLE 16-40 SPARC, L2 and DRAM Error Handling Summary (1 of 5)

Error Type Error
ISFSR/DSFSR/
DESR/DFESR

L2 ESR
(NotData ESR =
ND)

DRAM
Status PA Syn Trap

Trap
Type Section

ITLB tag parity CE ITTP is p IM 16.7.1.2

IT tag multiple hit CE ITTM is p IM 16.7.1.1

ITLB Data Parity CE ITDP is p IM 16.7.1.3

ITLB MRA uncorrectable UE ITMU is p IM 16.7.1.4

ITLB L2 correctable CE ITL2C LDAC L l di E 16.9.1.1

ITLB L2 uncorrectable UE ITL2U LDAU L l p IM 16.9.6.1

ITLB L2 NotData ND ITL2ND ND.NDSP N p IM 16.9.13.1

Icache valid bit CE ICVP de di C 16.7.3.1

Icache tag parity CE ICTP de di C 16.7.3.2

Icache tag multiple hit CE ICTM de di C 16.7.3.3

Icache data parity CE ICDP de di C 16.7.3.4

Icache L2 correctable CE ICL2C LDAC L l di E 16.9.1.3

Icache L2 uncorrectable UE ICL2U LDAU L l p I 16.9.6.3

Icache L2 NotData ND ICL2ND ND.NDSP N p I 16.9.14.2

IRF correctable ECC error CE IRFC ds p P 16.7.5

IRF uncorrectable ECC
error

UE IRFU ds p P 16.7.5

FRF correctable ECC error CE FRFC ds p P 16.7.6

FRF uncorrectable ECC
error

UE FRFU ds p P 16.7.6

DTLB tag parity CE DTTP ds p DM 16.7.2.2

DT tag multiple hit CE DTTM ds p DM 16.7.2.1

DTLB data parity CE DTDP ds p DM 16.7.2.3

DTLB MRA uncorrectable UE DTMU ds p DM 16.7.2.4

DTLB L2 correctable CE DTL2C LDAC L l di E 16.9.1.2

DTLB L2 uncorrectable UE DTL2U LDAU L l p 16.9.6.2

DTLB L2 NotData ND DTL2ND ND.NDSP N p DM 16.9.13.2

Dcache valid bit CE DCVP de di C 16.7.4.1

Dcache tag parity CE DCTP de di C 16.7.4.2

Dcache tag multiple hit CE DCTM de di C 16.7.4.3

Dcache Data Parity CE DCDP de di C 16.7.4.4



Dcache L2 Correctable CE DCL2C LDAC L l di E 16.9.1.4

Dcache L2 Uncorrectable UE DCL2U LDAU L l p D 16.9.6.4 and
16.9.6.5

Dcache L2 NotData ND DCL2ND ND.NDSP N p D 16.9.13.4 and
16.9.13.5

Store Buffer Data Load hit
Correctable ECC

CE SBDLC ds p P 16.7.7.1

Store Buffer Data Load hit
Uncorrectable ECC

UE SBDLU ds p P 16.7.7.2

Store Buffer Data PCX
read or ASI store
Correctable

CE SBDPC de di C 16.7.7.4

Store Buffer Data PCX
read or ASI store
Uncorrectable

UE SBDPU de di E 16.7.7.5

Store Buffer Address PCX
read or ASI ring store read
Uncorrectable

DE SBDIOU df df S 16.7.7.6

Store Buffer Address PCX
read or ASI ring store read
Address Bit Parity

DE SBAPP df df S 16.7.7.7

TSA Correctable CE TSAC ds p P 16.7.10

TSA Uncorrectable UE TSAU ds p P 16.7.10

MRA Uncorrectable UE MRAU ds p P 16.7.11

SCA Correctable CE SCAC ds p P 16.7.8

SCA Uncorrectable UE SCAU ds p P 16.7.8

Tick_Compare Correctable
Precise

CE TCCP ds p P 16.7.9

Tick_Compare Correctable
Disrupting

CE TCCD de di E 16.7.9

Tick_Compare
Uncorrectable Precise

UE TCUP ds p P 16.7.9

Tick_Compare
Uncorrectable Disrupting

UE TCUD de di E 16.7.9

IO error from Load from
noncacheable address

UE SOCU S s p D

IO error from Ifetch from
noncacheable address

UE ICL2U S s p I
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L2$ data ecc: LD_h, If_h,
ATOM_h, PF_h

CE LDAC L l di E

L2$ data ecc: LD_h,
ATOM_h

UE LDAU LDAU LS l p D

L2$ data ecc: PF_h UE LDAU L l di E

L2$ data ecc: If_h UE LDAU LDAU LS l p I

L2$ data NotData: LD_h,
ATOM_h

ND DCL2ND ND.NDSP N p D

L2$ data NotData: PF_h ND ND.NDSP N di E

L2$ data NotData: If_h ND ICL2ND ND.NDSP N p I

L2$ data ecc: PST_h CE LDAC L l di C

L2$ data ecc: PST_h UE LDAU L l di E

L2$ data ecc: PST_h ND L2ND ND.NDSP N de di E

L2$ data ecc: wb CE LDWC L l di (ES) C

L2$ data ecc: wb UE LDWU L l di (ES) E

L2$ data ecc:dma_read CE LDRC L l di (ES) E

L2$ data ecc:dma_read UE LDRU L l di (ES) E

L2$ data ecc:dma_read ND L2ND ND.NDDM N de di (ES) E

L2$ data
ecc:dma_write_partial

CE LDRC L l di (ES) C

L2$ data
ecc:dma_write_partial

UE LDRU L l di (ES) E

L2$ data
ecc:dma_write_partial

ND L2ND ND.NDDM N de di (ES) E

L2$ data ecc: scrub CE LDSC L l di (ES) C

L2$ data ecc: scrub UE LDSU L l di (ES) E

L2$ tag ecc: all refs CE LTC L — di (ES) C

L2 $ dir parity: scrub FE LRF L l F R

L2 $ vuad ecc: all refs FE LVF L l F R

L2 $ vuad ecc: all refs CE LVC L l di (ES) C

Dram ECC error:
LD_m_cc, If_m_c32B,
PF_m_cc

CE DAC DAC L D di E

FBDIMM recoverable
error: LD_m_cc,
If_m_c32B, PF_m_cc

CE DAC FBR L F di E

Dram ECC error:
LD_m_cc, ATOM_m_cc

UE LDAU DAU DAU LS D p D

Dram ECC error: PF_m_cc UE DAU DAU L D di E

TABLE 16-40 SPARC, L2 and DRAM Error Handling Summary (3 of 5)

Error Type Error
ISFSR/DSFSR/
DESR/DFESR

L2 ESR
(NotData ESR =
ND)

DRAM
Status PA Syn Trap

Trap
Type Section



Dram ECC error:
If_m_c32B

UE LDAU DAU DAU LS D p I

FBDIMM unrecoverable
error: LD_m_cc,
ATOM_m_cc

UE LDAU DAU FBU LS F p D

FBDIMM unrecoverable
error: PF_m_cc

UE DAU FBU L F di E

FBDIMM unrecoverable
error: If_m_c32B

UE LDAU DAU FBU LS F p I

Dram address out of
bounds: LD_m, ATOM_m

UE LDAU DAU DBU LS D p D

Dram address out of
bounds: PF_m

UE DAU DBU L D di E

Dram address out of
bounds: If_m

UE LDAU DAU DBU LS D p I

Dram ECC error: ST_m,
PST_m, LD_m_ncc,
If_m_nc32B, ATOM_m,
PF_m_ncc

CE DAC DAC L D di (ES) C

Dram ECC error:
dma_read_req,
dma_write_partial

CE DRC DAC L D di (ES) C

FBDIMM recoverable
error: Status Frame Parity
Error, Alert Frames, AMB
Alert Asserted, CRC

CE DSC FBR L F di (ES) C

Dram ECC error:
ST_m,PST_m, LD_m_ncc,
If_m_nc32B, ATOM_m,
PF_m_ncc

UE DAU DAU L D di (ES) E

Dram ECC error:
dma_read_req,
dma_write_partial

UE DRU DAU L D di (ES) E

FBDIMM unrecoverable
error: CRC

UE DAU FBU L F di (ES) E

FBDIMM unrecoverable
error: Status Frame Parity
Error, Alert Frame

UE DSU FBU L F di (ES) E

Dram address out of
bounds: ST_m, PST_m

UE DAU DBU L D di (ES) E
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TABLE 16-41 describes the column heads and error-type abbreviations (in alphabetical
order) of TABLE 16-40.

Dram address out of
bounds: dma_read_req,
dma_write_partial

UE DRU (DMA
read)
DAU (DMA
write)

DBU L D di (ES) E

Dram Scrub error CE DSC DSC D D di (ES) C

Dram Scrub error UE DSU DSU D D di (ES) E

TABLE 16-41 Description of Column Heads and Error-Type Abbreviations in TABLE 16-40

Column or
Error-Type Abbr Meaning

Error FE – fatal error; UE – uncorrected error; CE – corrected error, ND - NotData error,
DF – deferred error

PA logging S – D-SFAR; N – L2 NotData error; L – L2 error address; D – DRAM error address

SYN logging is – I-SFSR; ds – D-SFSR; de – DESR; df – DFESR; l – L2 error status; D – DRAM error status;
F – DRAM FBD error syndrome

Trap p – precise to requestor; di – disrupting to requestor; di (ES) – disrupting to the virtual
processor specified in L2_CSR_REG.errorsteer; f - fatal warm reset to all virtual processors

Trap Type I – instruction_access_error; IM – instruction_access_MMU_error; D – data_access_error,
DM – data_access_MMU_error; P - internal_processor_error,; E - sw_recoverable_error,
C – hw_corrected_error; S – store_error; R – warm_reset

ATOM_h Atomic operation hit

ATOM_m_cc Atomic operation miss critical 16-byte chunk

ATOM_m_ncc Atomic operation miss noncritical chunk

dma_read DMA read any size

dma_write_partial subline DMA write

If_h I-fetch hit

If_m_c32B Ifetch miss critical 32-byte chunk

If_m_nc32B Ifetch miss noncricital 32-byte chunk

LD_h Load hit

LD_m_cc Load miss critical 16-byte chunk

LD_m_ncc Load miss noncritical chunk

PF_h Prefetch hit

PF_m_cc Prefetch miss critical 16-byte chunk

PF_m_ncc Prefetch miss noncritical chunk
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16.15 Boot ROM Interface (SSI)
TABLE 16-42 describes the SSI’s handling of errors. The error indication on read
returns is delivered regardless of the SSI_TIMEOUT.erren bit, where it is up to the
virtual processor to ignore the error or receive it based on whether or not
CERER.icl2u and CERER.dcl2u bit are set. Logging the error and sending an error
trap request are controlled by the erren bit. Note that returning zeros on an I-fetch
timeout will tend to cause an illegal_instruction trap.

16.15.1 SSI Parity Error
SSI has serial parity on all requests and responses. Odd parity on any response will
be treated as a parity error.

PST_h Partial Store hit

PST_m Partial Store miss

wb writeback to memory

TABLE 16-42 SSI Error Handling

Error TType Severity Core Error Info
Trap Taken

Error Returned on
Transaction

NCU Error Info
(if SSI_TIMEOUT.
erren =1)

SSI parity error Read Uncorrectable I-SFSR = icl2u
or
D-SFSR = dcl2u

instruction_
access_error
or
data_access_
error

Yes (with data) SSI_LOG. parity

SSI parity error Write Uncorrectable Not Recorded None No SSI_LOG. parity

SSI timeout Read Uncorrectable I-SFSR = icl2u
or
D-SFSR = dcl2u

instruction_
access_error
or
data_access_
error

Yes (with data =
0)

SSI_LOG. tout

SSI timeout Write Uncorrectable Not Recorded None No SSI_LOG. tout

Note I-fetch to any other I/O space other than SSI boot ROM space
would result in error packet being returned to the requesting
SPC by NCU.

TABLE 16-41 Description of Column Heads and Error-Type Abbreviations in TABLE 16-40 (Continued)

Column or
Error-Type Abbr Meaning



On reads, the SSI block will return the data, but marked with an error indication,
which will tend to cause an NCU error at the requesting SPARC. For both reads and
writes, the SSI block will issue an error interrupt via int_man{1} (if
SSI_TIMEOUT.erren is set).

16.15.2 SSI Timeout
SSI only supports a single transaction outstanding at any time, and write
transactions receive a positive acknowledgement to inform OpenSPARC T2 of their
completion. Whenever OpenSPARC T2 issues a read or write transaction, it starts a
timer to the value specified in SSI_TIMEOUT[TIMEVAL], which then decrements by
1 every SSI cycle. If the time underflows before the transaction completes, it is
treated as a timeout.

On reads, the SSI block will return zeros, but marked with an error indication, which
will tend to cause an NCU error at the requesting SPARC. For both reads and writes,
the SSI block will issue an error interrupt via int_man{1} (if SSI_TIMEOUT.ERREN is
set).

16.15.3 SSI Error Registers
The serial bus interface to the Boot ROM is called SSI, hence the registers dealing
with errors on this interface are SSI registers.

TABLE 16-43 and TABLE 16-44 define the format of the SSI Timeout and Log registers,
respectively.

The default value for timeout is about 40 msec.

TABLE 16-43 SSI Timeout Register– SSI_TIMEOUT (FF 0001 008816)

Bit Field Initial Value R/W Description

63:25 — X RO Reserved

24 erren 0 RW Enables error logging and error interrupt generation in the SSI.

23:0 timeval 20000016 RW Number of SSI cycles before an unacknowledged request causes a
timeout error.

TABLE 16-44 217 SSI Log Register – SSI_LOG (FF 0000 001816)

Bit Field Initial Value R/W Description

63:2 — X RO Reserved

1 parity 0 RW1C Parity error detected on response.

0 tout 0 RW1C No response before TIMEVAL.



16.16 Error Injection Summary
Most of the large arrays on OpenSPARC T2 have some error protection, and also the
capability of getting an error injected. TABLE 16-45 specifies the programmatic
interface for injection, plus some notes of the type of injection.

16.17 SOC Error Descriptions
An error in the system-on-the-chip (SOC) can occur on the major types of SOC
operations. The SOC detects correctable and uncorrectable errors; it does not detect
NotData errors. Any error in the SOC can be made fatal under the control of the
SOC Fatal Error Enable register, see SOC Fatal Error Enable Register on page 332 for
details.

TABLE 16-45 Error Injection Summary

Error Control Notes

ITLB data parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

ITLB CAM parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

DTLB data parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

DTLB CAM parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

Icache data parity ASI_ICACHE_INSTR Optionally flip parity on ASI write.

Icache tag parity ASI_ICACHE_TAG Optionally flip parity on ASI write.

Dcache data parity ASI_DCACHE_DATA Flip parity bits under mask on ASI write.

Dcache tag parity ASI_DCACHE_TAG Optionally flip parity on ASI write.

Int RegFile ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

FP RegFile ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

Scratchpad array ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

Tick_compare Array ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

TSA ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

MRA parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

Store buffer CAM parity ASI_ERROR_INJECT_REG Continuous parity flip on update.

Store buffer data ECC ASI_ERROR_INJECT_REG Continuous ECC XOR on update.

L2 data ECC L2_DIAG_DATA Write 4B data and computed ECC.

L2 tag ECC L2_DIAG_TAG Write tag and computed ECC.

L2 directory parity L2_ERROR_INJECT_REG Single/double or continuous parity flip on update.

L2 UA ECC L2_DIAG_UA Write UA bits and computed ECC.

L2 VD ECC L2_DIAG_VD Write VD bits and computed ECC.

DRAM ECC DRAM_ERROR_INJECT_REG Continuous syndrome XOR on write.

SOC errors SOC_ERROR_INJECT_REG Continuous parity/ECC corrupt.



The SOC operation types are as follows:

■ Error on load to I/O space (PIO load)
■ Error on store to I/O space (PIO store)
■ Errors on an interrupt request
■ Errors on DMA reads and writes
■ Error interrupts from the MCU due to an error count registers

These errors are discussed in the following sections.

16.18 PIO Load Errors
Three classes of PIO load errors are detected in the SOC: fatal errors (FE), which
cause a warm reset; uncorrectable errors (UE), which generate a data_access_error
trap to the requesting strand or sw_recoverable_error to the strand specified in the
SOC Error Steering Register ; or correctable errors (CE), which generate a
hw_corrected_error trap to the requesting strand .

See TABLE 16-46 for details.

TABLE 16-46 SOC Errors for a PIO Load Request

Error SOCESR bit

Recom-
mended
Error
Type

Error Info
(Core)

Error Info
(NCU) Trap

NCU uncorrectable on
command or thread_id
from PCX

ncupcxue{19} FE DESR = SOCU if
SOC EIE bit (SOC
Error Interrupt
Enable bit) set

NCUSYN
(etag, rqtyp,
cpu_id,
thread_id,
and pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set.

SII command parity
error or Ctag UE

siidmuue{1} FE DESR = SOCU if
SOC EIE bit set

NCUSIISYN
(etag, ctag,
and pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU Ctag UE ncuctague{22} FE DESR = SOCU if
SOC EIE bit set

NCUSYN
(ctag)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU data parity ncudataparity{14} FE D-SFSR = SOCU,
DESR = SOCU if
SOC EIE bit set

NCUSYN
(ctag)

Warm reset if configured as
fatal; otherwise,
data_access_error. and
sw_recoverable_error if SOC
EIE bit set



16.18.1 Uncorrectable PIO Load Errors Recommended as
Fatal
The following uncorrectable PIO Load errors are recommended to be set as fatal in
the SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on
page 332. Fatal errors associated with a PIO load cause the PIO load to be dropped
and a warm reset to be initiated.NCUPCXDATANCUPCXDATA

NCU Mondo Table
Parity

ncumondotable{15} UE D-SFSR = SOCU,
DESR = SOCU if
SOC EIE bit set

Not
recorded

Warm reset if configured as
fatal; otherwise,
data_access_error , and
sw_recoverable_error if SOC
EIE bit set

NCU DMU data parity ncudmuue{21} FE DESR = SOCU,
DESR = SOCU IF
SOC EIE BIT SET

NCUSYN
(etag,
reqtype,
cpuid,
strandid, pa)

Warm reset if configured as
fatal; otherwise
data_access_error , and,
sw_recoverable_error if
SOC EIE bit set

NCU FIFO output error ncucpxue{20} FE DESR = SOCU if
SOC EIE bit set

Not
recorded

Warm reset if configured as
fatal; otherwise
sw_recoverable_error if
SOC EIE bit set

NCU timeout,
unmapped error or
uncorrected error

— UE D-SFSR = SOCU Not
recorded

Warm reset if configured as
fatal; otherwise,
data_access_error.

NCU PCX Data ncupcxdata{18} UE DESR = SOCU if
SOC EIE bit set

NcuSyn
(Etag,
Rqtyp,
Cpu_id,
Thread_id,
and PA)

Warm reset if configured as
fatal; otherwise
sw_recoverable_error if
SOC EIE bit set

SII Ctag CE siidmuce{3} CE DESR = SOCC if
SOC EIE bit set

Not
recorded

Warm reset if configured as
fatal; otherwise
hw_corrected_error if SOC
EIE bit set.

NCU Ctag CE ncuctagce{23} CE DESR = SOCC if
SOC EIE bit set

Not
recorded

Warm reset if configured as
fatal; otherwise,
hw_corrected_error if SOC
EIE bit set.

TABLE 16-46 SOC Errors for a PIO Load Request
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16.18.1.1 Uncorrectable NCU FIFO Errors (NcuPcxUE)

The NCU provides DEDSEC protection on the NCU FIFO. If an uncorrectable error
is detected on the command or thread ID fields, bit 19, ncupcxue, in the SOC ESR is
set. The error information (etag, rqtyp, cpu_id, thread_id, and PA{39:0}) is recorded in
the NCUSYN register.

No response is returned, so the requesting strand will become hung. Therefore, this
error needs to be fatal.

16.18.1.2 Uncorrectable SII Ctag/Command Parity Errors
(SiiDmuCtagUE)

For PIO load return requests (through the DMU) to the SII, the Ctag ECC is checked
and also the command parity. If an uncorrectable Ctag ECC error or command parity
error is detected, bit 1, siidmuctague, in the SOC ESR is set. The error information
(etag, ctag, and PA{39:0}) is recorded in the NCUSIISYN register.

No response is returned, so the requesting strand will become hung. Therefore, this
error needs to be fatal.

16.18.1.3 Uncorrectable NCU Ctag Error (NcuCtagUe)

The NCU also checks Ctag ECC from the SII. If an uncorrectable Ctag ECC error is
detected, bit 22, ncuctague, in the SOC ESR is set. The error information (Ctag) is
recorded in the NCUSYN register. A return packet is never generated to the
requesting strand and that strand will become hung. Therefore, this error needs to be
fatal.

16.18.1.4 NCU Data Parity Error (NcuDataParity)

The NCU checks data parity for returning PIO load requests from the DMU (via the
SII). If a data parity error is detected, bit 14, ncudataparity, in the SOC ESR is set. The
error information (Ctag) is recorded in the NCUSYN register. For a PIO load, this
error does not need to be fatal, because an error packet is returned to the requesting
strand. However, since the ncudataparity bit in the SOCESR is shared with
interrupts from the SII, which do need to be fatal, the fatal error will also occur for
interrupts when the ncuctague bit is set.

16.18.1.5 NCU FIFO Output Error (NcuCpxUe)

The NCU checks the output FIFO to the CPX. If the NCU detects an error in the
output FIFO, bit 20, ncucpxue, in the SOC ESR is set.No other error information is
captured.



No response is returned to the requesting strand, which will become hung.
Therefore, this error needs to be fatal.

16.18.1.6 NCU Parity Error from NCU DMU PIO Req FIFO
(NcuDmuUe)

If NCU detects a parity error from the NCU DMU PIO Req FIFO on a PIO load, bit
21, ncudmuue, in the SOC ESR is set. The error information (etag, rqtyp, cpu_id,
thread_id and PA{39:0}) is recorded in the NCUSYN register. NCU returns data on
CPX packet marked with UE. NCU squashes the PIO load request to DMU.

However since the parity error can be in cpu_id[2:0] bits , the load return might
happen to the wrong CPU. Hence this error needs to be fatal.

16.18.2 Uncorrectable PIO Load Errors
The following uncorrectable PIO load errors are recommended to not be set as fatal
in the SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on
page 332. For uncorrectable SOC detected errors associated with the PIO load, the
NCU Load Return packet is sent to the requesting virtual processor with the err field
indicating uncorrectable error.

16.18.2.1 NCU Mondo Table Error (NcuMondoTable)

A PIO load can access the Mondo Table in the NCU. If the NCU detects a data parity
error, bit 15, ncumondotable, in the SOC ESR is set. No other error is information
captured.

16.18.2.2 NCU PCX FIFO Data Parity Error (NcuPCXData)

A PIO load request to NCU that has parity error in the data (payload) logs
ncupcxdata bit 18 in the SOC ESR, eventhough the data is ignored by NCU. The
error information (etag, rqtyp, cpu_id, thread_id and PA{39:0}) is recorded in the
NCUSYN register. NCU returns data on CPX packet without any error bit set.

16.18.2.3 Other Uncorrectable NCU Errors

Errors may have been detected for the PIO load request. These errors are reported as
bits in the packet from the SII. The NCU checks the error bits 29:31 in the SII to NCU
packet. If bit 31, timeout; bit 30, Unmapped address error (dmuae); or bit 29,
uncorrected error from DMU (dmuue), is set, a UE is reported back to the thread that
issue the PIO load. Bits 29:31 are logically ored. No ESR is set in the SOC.



16.18.3 Correctable PIO Load Errors
The following correctable PIO load errors are recommended to not be set as fatal in
the SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on
page 332. For correctable SOC detected errors associated with the PIO load, the NCU
Load Return packet is sent to the requesting virtual processor with the err field
indicating correctable error.

16.18.3.1 Correctable SII Ctag Error (SiiDmuCtagCE)

If a correctable Ctag error is detected, the Ctag is corrected and bit 3, siidmuctagce,
in the SOC ESR is set. No other error information is provided. Data parity is not
checked at this point. It will be checked in the NCU.

16.18.3.2 Correctable NCU Etag Error

If a correctable Ctag error is detected by the NCU, the Ctag is corrected and bit 2,
ncuctagce, in the SOC ESR is set. No other error information is provided.

16.19 PIO Store Errors
There are two classes of PIO store errors detected in the SOC, fatal errors (FE), which
cause a warm reset, and uncorrectable errors (UE), which generate a
sw_recoverable_error.

The PIO store errors are presented in TABLE 16-47.



16.19.1 Uncorrectable PIO Store Errors Recommended as
Fatal
The following uncorrectable PIO Store errors are recommended to be set as fatal in
SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on page
332. Fatal errors associated with a PIO store cause the PIO store to be dropped and a
warm reset to be initiated.

16.19.1.1 Uncorrectable NCU FIFO Errors (NcuPcxUE)

The NCU provides DEDSEC protection on the NCU FIFO. If an uncorrectable error
is detected on the command or thread ID fields, bit 19, ncupcxue, in the SOC ESR is
set. The error information (etag, rqtyp, cpu_id, thread_id, and PA{39:0}) is recorded in
the NCUSYN register.

TABLE 16-47 SOC Errors for a PIO Store Request

Error SOCESR bit

Recom-
mended

Error
Type

Error Info
(core) Error Info (NCU) Trap

NCU uncorrectable on
command or thread_id
from PCX

ncupcxue{19} FE DESR = SOCU if
SOC EIE bit set

NCUSYN
(etag, rqtyp,
cpu_id,
thread_id, and
pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set.

NCU store data parity ncupcxdata{18} UE DESR = SOCU if
SOC EIE bit set

NCUSYN
(etag, rqtyp,
cpu_id,
thread_id, and
pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set.

NCU DMU Credit
parity

ncudmucredit{42
}

UE DESR = SOCU if
SOC EIE bit set

Not Recorded Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU FIFO output error ncucpxue{20} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set.

NCU DMU data parity ncudmuue{21} FE DESR = SOCU
if SOC EIE bit set

NCUSYN
(etag, reqtype,
cpuid, strandid,
pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set.



No store ACK is returned, so the requesting strand will become hung. Therefore this
error needs to be fatal.

16.19.1.2 NCU FIFO Output Error (NcuCpxUe)

The NCU checks the output FIFO to the CPX. If the NCU detects an error in the
output FIFO, bit 20, ncucpxue, in the SOC ESR is set. No other error information is
captured.

No store ACK is returned to the requesting strand, which will become hung.
Therefore this error needs to be fatal.

16.19.1.3 NCU Parity Error from NCU DMU PIO Req FIFO
(NcuDmuUe)

If the NCU detects a parity error from the NCU DMU PIO Req FIFO on a PIO Store,
bit 21, ncudmuue, in the SOC ESR is set. The error information (etag, rqtyp, cpu_id,
thread_id and PA{39:0}) is recorded in the NCUSYN register. NCU returns store ACK
on CPX packet without any error. NCU squashes the PIO store request to DMU.

However since the parity error can be in cpu_id[2:0] bits , the store ACK might
happen to the wrong CPU. Hence this error needs to be fatal.

16.19.2 Uncorrectable PIO Store Errors
The following uncorrectable PIO Store errors are not recommended to be set as fatal
in SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on
page 332. The SOC sends an Error Indication (SOC) packet to the CPX with the err
field indicating uncorrectable error.

16.19.2.1 NCU Store Data Parity Error (NcuPcxData)

The NCU checks data parity on the store data. If a data parity error is detected, bit
18, ncupcxdata, in the SOC ESR is set. No other error information is provided.

16.19.2.2 NCU DMU Credit Parity (NcuDmuCredit)

If NCU detects a parity error on the token returned from DMU to NCU after
completion of a PIO Store Request , bit 42, ncudmucredit, in the SOC ESR is set . No
other error information is provided.



16.20 Interrupt Errors
Interrupts can be sourced from the DMU. There are three classes of interrupt errors
detected in the SOC: fatal errors (FE), which cause a warm reset; uncorrectable errors
(UE), which generate a sw_recoverable_error trap to the strand specified in the SOC
Error Steering register; or correctable errors (CE), which generate a
hw_corrected_error trap to the strand specified in the SOC Error Steering register.
The SOC Error Steering register is described in SOC Error Steering Register on page
332. Interrupt errors are presented in TABLE 16-48.

TABLE 16-48 SOC Errors for Interrupts

Error SOCESR bit

Recom-
mend-

ed Error
Type

Error Info
(core) Error Info (NCU) Trap

SII command parity
error or Ctag UE

siidmuue{1} FE DESR = SOCU if
SOC EIE bit set

NCUSIISYN
(etag, ctag,
and pa)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU Ctag UE ncuctague{22} FE DESR = SOCU if
SOC EIE bit set

NCUSYN
(ctag)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

DMU mondo ACK
credit parity

dmuncucredit {9} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU data parity ncudataparity14} FE DESR = SOCU if
SOC EIE bit set

NCUSYN
(ctag)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU mondo FIFO
parity

ncumondofifo {16} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU interrupt table
parity

ncuinttable{17} FE DESR = SOCU if
SOC EIE bit set

NCUSYN
(etag,
reqtype,
cpuid,
strandid)

Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set

NCU FIFO output error ncucpxue{20} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
sw_recoverable_error if
SOC EIE bit set



16.20.1 Uncorrectable Interrupt Errors Recommended as
Fatal
The following uncorrectable Interrupt errors are recommended to be set as fatal in
SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on page
332. Fatal errors associated with an interrupt cause the interrupt to be dropped, and
a warm reset to be initiated.

16.20.1.1 Uncorrectable SII Ctag/Command Parity Errors
(SiiDmuCtagUE)

For interrupt requests (through the DMU) to the SII, the Ctag ECC is checked and
also the command parity. If an uncorrectable Ctag ECC error or command parity
error is detected, bit 1, siidmuctague, in the SOC ESR is set. The error information
(etag, ctag and pa{39:0}) is recorded in the NCUSIISYN register.

For interrupts, this error condition does not have to be a fatal error, since the
thread_id is not contained in the Ctag for interrupts. However, since the
siidmuctague bit in the SOC ESR is shared with PIO loads, which do need to be fatal,
the fatal error will also occur for interrupts when the siidmuctague bit is set.

NCU mondo table
parity

NCU Mondo
Table{15}

UE D-SFSR= SOCU,
and
DESR= SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
data_access_error. and
sw_recoverable_error if
SOC EIE bit set

SII Ctag CE siidmuce{3} CE DESR = SOCC if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
hw_corrected_error if SOC
EIE bit set

NCU Ctag CE ncuctagce{23} CE DESR = SOCC if
SOC EIE bit set

Not recorded Warm reset if configured as
fatal; otherwise,
hw_corrected_error if SOC
EIE bit set

TABLE 16-48 SOC Errors for Interrupts

Error SOCESR bit

Recom-
mend-

ed Error
Type

Error Info
(core) Error Info (NCU) Trap



16.20.1.2 Uncorrectable NCU Ctag Error (NcuCtagUe)

The NCU also checks Ctag ECC from the SII. If an uncorrectable Ctag ECC error is
detected, bit 22, ncuctague, in the SOC ESR is set. The error information (etag, ctag)
is recorded in the NCUSYN register.

For interrupts, this error condition does not have to be a fatal error, since the
thread_id is not contained in the Ctag for interrupts. However, since the ncuctague
bit in the SOC ESR is shared with PIO loads, which do need to be fatal, the fatal
error will also occur for interrupts when the ncuctague bit is set.

16.20.1.3 DMU Mondo Ack Credit Parity(DmuNcuCredit)

DMU checks parity of Mondo Ack Credit from NCU. If a parity error is detected, bit
9, dmuncucredit , in the SOC ESR is set. There is no other information captured.

DMU Interrupt control unit keeps waiting for Ack forever, no future interrupt
requests can be issued. So this needs to be a fatal error.

16.20.1.4 NCU Data Parity Error (NcuDataParity)

The NCU checks data parity for the interrupt requests from the DMU (via the SII). If
a data parity error is detected, bit 14, ncudataparity, in the SOC ESR is set. The error
information (Etag, Ctag) is recorded in the NCUSYN register.

The interrupt is lost, so this needs to be a fatal error.

16.20.1.5 NCU FIFO Output Error (NcuCpxUe)

The NCU checks the output FIFO to the CPX. If the NCU detects an error in the
output FIFO, bit 20, ncucpxue, in the SOC ESR is set. There is no other error
information captured.

The interrupt is lost, so this needs to be a fatal error.

16.20.1.6 NCU Mondo FIFO Parity Error (NcuMondoFifo)

The NCU checks the data parity of the Mondo FIFO during interrupt processing. If a
data parity error is detected during the read of the NCU Mondo FIFO, bit 16,
ncumondofifo, in the SOC ESR is set. No other error information is captured.

NCU does not send data return CPX packet for load, so thread hangs. So this needs
to be a fatal error.



16.20.1.7 NCU Interrupt Table Parity Error (NcuIntTable)

The NCU checks the data parity of the NCU Interrupt table during the processing of
a non-Mondo interrupt. If a data parity error is detected during the read of the NCU
Interrupt table, bit 17, ncuinttable, in the SOC ESR is set. The error information (etag,
rqtyp, cpu_id, thread_id) is recorded in the NCUSYN register.

The interrupt is lost, so this needs to be a fatal error.

16.20.2 Uncorrectable Interrupt Errors
All uncorrectable Interrupt errors other than ncumondotable are recommended to be
set as fatal. For uncorrectable SOC detected errors associated with an interrupt, the
SOC sends the error Indication (SOC) packet to the CPX with the err field indicating
uncorrectable error. The packet is sent to the target thread of the interrupt.

16.20.2.1 NCU Mondo Table Parity Error (NcuMondoTable)

NCU checks for data parity error while reading the Mondo table for a PIO read
request.If the NCU detects an error, bit 15, ncumondotable, in the SOC ESR is set.
There is no other error information captured. PIO load returns UE on the CPX packet
to the requesting core.

16.20.3 Correctable Interrupt Errors
The following correctable Interrupt errors are recommended not to be set as fatal in
SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on page
332. For correctable SOC detected errors associated with an interrupt, the SOC sends
the Error Indication (SOC) packet to the CPX with the err field indicating correctable
error. The packet is sent to the target thread of the interrupt

16.20.3.1 Correctable SII Ctag Error (SiiDmuCtagCE)

If a correctable Ctag error is detected, the Ctag is corrected and bit 3, siidmuctagce,
in the SOCESR is set. No other error information is provided. Data parity is not
checked at this point. It will be checked in the NCU.

16.20.3.2 Correctable NCU Ctag Error (NCUCtagCE)

If a correctable Ctag error is detected by the NCU, the Ctag is corrected and bit 23,
ncuctagce, in the SOC ESR is set. No other error information is provided.



16.21 DMA Reads and Writes
I/O DMA requests to the L2 cache can be made from the DMU. There are three
classes of DMA errors detected in the SOC: fatal errors (FE), which cause a warm
reset; uncorrectable errors (UE), which generate a sw_recoverable_error trap to the
strand specified in the SOC Error Steering register; or correctable errors (CE), which
generate a hw_corrected_error trap to the strand specified in the SOC Error Steering
register. The SOC Error Steering register is described in SOC Error Steering Register
on page 332.

For DMA writes, errors can be detected in the SII section of the SOC and the L2
cache. See the L2 cache section for details on DMA errors.

For DMA reads, errors can be detected in the SII, SIO, and DMU sections of the SOC,
and the L2 cache.

For DMA errors, the transaction continues to completion for correctable and
uncorrectable errors. The e and ue bits in the I/O block packet indicate
uncorrectable errors. For fatal errors, the transaction continues until the warm reset
is effective.

TABLE 16-49 SOC Errors for DMA Read and Write Request

Error SOC ESR bit

Recom-
mend-
ed Error
Type

Error Info
(Core) Error Info (NCU) Trap

SII command parity
error or Ctag UE from
DMU

siidmuue{1} FE DESR = SOCU if
SOC EIE bit set

NCUSIISYN
(etag, ctag,
and pa)

Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

SIO Ctag UE sioctague{25} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

DMU Ctag UE dmuctague{11} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

DMU Credit parity
from SII

dmusiicredit{12} FE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

SII address parity from
DMU

siidmuaparity{7} FE DESR = SOCU if
SOC EIE bit set

NCUSIISYN
(etag, ctag,
and pa)

Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

SII data parity from
DMU

siidmudparity{5} UE DESR = SOCU if
SOC EIE bit set

NCUSIISYN
(etag, ctag,
and pa)

Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.



16.21.1 Uncorrectable DMA Errors Recommended as
Fatal
The following uncorrectable DMA errors are recommended to be set as fatal in the
SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on page
332. For fatal errors, the DMA transaction attempts to continue (with the write being
quashed) until the warm reset occurs.

16.21.1.1 Uncorrectable SII Ctag ECC Error or Command
Parity Error (SiiDmuCtagUe)

If an uncorrectable Ctag ECC error or command parity error is detected by the SII on
a DMA access from the DMU, a fatal error is presented. The DMA access attempts to
complete by setting the e bit in the packet to the L2 cache; however, the DMA write
is quashed. If the DMA request is sourced from the DMU, the bit 1, siidmuctague, in
the SOC ESR is set. The error information (etag, ctag and pa[39:0]) is recorded in the
NCUSIISYN register.

This error does not have to be fatal. However, the siidmuctague bit is shared with the
PIO load access, which must be fatal.

DMU Data parity from
SIO

dmudataparity
{13}

UE DESR = SOCU if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, sw_recoverable_error
if SOC EIE bit set.

SIO Ctag CE sioctagce{26} CE DESR = SOCC if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, hw_corrected_error if
SOC EIE bit set.

SII Ctag CE from DMUsiidmuce{3} CE DESR = SOCC if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, hw_corrected_error if
SOC EIE bit set.

DMU Ctag CE dmuctagce{10} CE DESR = SOCC if
SOC EIE bit set

Not recorded Warm reset if configured as fatal;
otherwise, hw_corrected_error if
SOC EIE bit set.

TABLE 16-49 SOC Errors for DMA Read and Write Request (Continued)

Error SOC ESR bit

Recom-
mend-
ed Error
Type

Error Info
(Core) Error Info (NCU) Trap



16.21.1.2 Uncorrectable SIO Ctag ECC Error (SioCtagUe)

The L2 cache provides a response to the SIO for DMA reads, DMA 8-byte writes and
write invalidates. If an uncorrectable Ctag ECC error is detected by the SIO on a
DMA access, bit 25, sioctague, in the SOC ESR is set. No other error information is
provided in the SOC. This error is recommended as fatal because it would cause
indeterministic machine behavior.

16.21.1.3 Uncorrectable DMU Ctag ECC Error (DmuCtagUe)

If an uncorrectable Ctag ECC error is detected by the DMU on a DMA read access
from the SIO, bit 11, dmuctague, in the SOC ESR is set. No other error information is
provided in the SOC. This error is recommended as fatal because it would cause
indeterministic machine behavior.

16.21.1.4 DMU Credit Parity error (DmuSiiCredit)

If the DMU detects a parity error in the credit field during a DMA write
acknowledge from the SII, bit 12, dmusiicredit, in the SOC ESR is set. No other error
information is provided in the SOC.This error is recommended as fatal because it
would cause indeterministic machine behavior.

16.21.1.5 SII Address Parity Error (SiiDmuAParity)

If an address parity error is detected by the SII on a DMA write from the DMU, the
write is squashed. For a DMA read, the e bit is set in the packet sent to the L2 cache.
If the DMA request is sourced from the DMU, bit 7, siidmuaparity, in the SOC ESR is
set. The error information (etag, ctag, and PA{39:0}) is recorded in the NCUSIISYN
register. This error is recommended as fatal because it would cause indeterministic
machine behavior.

16.21.2 Uncorrectable DMA Errors
The following uncorrectable DMA errors are recommended to not be set as fatal in
SOC Fatal Error Enable register described in SOC Fatal Error Enable Register on page
332. For uncorrectable SOC detected errors associated with a DMA read or write, the
transaction continues with the DMA write being squashed in the L2 cache; the DMA
read continues with the e bit set in the I/O Block header for address parity errors,
and the ue bit set for data parity errors.

The SOC sends the Error Indication (SOC) packet to the CPX with the err field
indicating uncorrectable error. The packet is sent to the target thread of the trap
request.



16.21.2.1 SII Data Parity Error (SiiDmuDParity)

If a data parity error is detected by the SII on a 64 byte DMA write from the DMU,
data is corrupted (poisoned) by flipping the two least significant bits of the Data
ECC field. If the data is sourced from the DMU, bit 5, siidmudparity, in the SOC ESR
is set. The error information (etag, ctag, and PA{39:0}) is recorded in the NCUSIISYN
register.

However if there is a data parity error on a partial DMA write (less than or equal to
8 bytes) from the DMU, SII cannot detect the error and poison the data going to L2.
As a result, silent data corruption happens in L2 and eventually memory.

16.21.2.2 DMU Data Parity Error (DmuDataParity)

On a DMA read access, if a data parity error is detected by the DMU on the data
from the SIO, bit 13, dmudataparity, in the SOC ESR is set. No other error
information is provided in the SOC.

16.21.3 Correctable DMA Errors
The following correctable DMA errors are recommended to not be set as fatal in SOC
Fatal Error Enable register described in SOC Fatal Error Enable Register on page 332.
For correctable SOC detected errors associated with a DMA access, the SOC sends
the Error Indication (SOC) packet to the CPX with the err field indicating correctable
error. The packet is sent to the thread indicated in the Error Steering register field of
the NCU Strand Enable Status register.

For correctable errors, the DMA read or write operation completes.

16.21.3.1 Correctable SII Ctag ECC Error (SiiDmuCtagCe)

If a correctable Ctag ECC error is detected by the SII on a DMA access from the
DMU, the access completes. If the DMA request is sourced from the DMU, bit 3,
siidmuctagce, in the SOC ESR is set. No other error information is provided in the
SOC.

16.21.3.2 Correctable SIO Ctag ECC Error (SioCtagCe)

If a correctable Ctag ECC error is detected by the SIO on a DMA access from the
DMU, the access completes, and bit 26, sioctagce, in the SOC ESR is set. No other
error information is provided in the SOC.



16.21.3.3 Correctable DMU Ctag ECC Error (DmuCtagCe)

If a correctable Ctag ECC error is detected by the DMU on a DMA read access, the
access completes, and bit 10, dmuctagce, in the SOC ESR is set. No other error
information is provided in the SOC.

16.22 MCU Correctable/Recoverable Count
Errors
The MCU correctable/recoverable count errors are recommended to not be set as
fatal in SOC Fatal Error Enable register described in SOC Fatal Error Enable Register
on page 332. There are four MCU FBdimms (MCU0 –MCU3. Each MCU FBdimm has
an associated MCU Syndrome register, MCU ECC Correctable Error Count register,
MCU Recoverable Error Count register, and associated error bits in the SOC ESR.

When the count registers transition from 1 to 0, an error signal is sent to the SOC.
The SOC sets the corresponding bit in the SOC ESR, and sends the Error Indication
(SOC) packet to the CPX with the err field indicating correctable error. The packet is
sent to the thread indicated by the SOC Error Steering register.

TABLE 16-50 SOC Errors for MCU Error Count Interrupts

Error SOCESR Bit

Recom-
mend-
ed Error
Type Error Info (Core) Error Info (MCU) Trap

MCU0 correctable ECC
error count reg = 0

mcu0ecc{32} CE DESR = SOCC DRAM ESR0
(dsc, dac)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

MCU1 correctable ECC
error count reg = 0

mcu1ecc{35} CE DESR = SOCC DRAM ESR1
(dsc, dac)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

MCU2 correctable ECC
error count reg = 0

mcu2ecc{38} CE DESR = SOCC DRAM ESR2
(dsc, dac)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

MCU3 correctable ECC
error count reg = 0

mcu3ecc{41} CE DESR = SOCC DRAM ESR3
(dsc, dac)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

MCU0 recoverable error
count reg = 0

mcu0fbr{31} CE DESR = SOCC DRAM FDB
SYN REG0
(alert, soft reset,
fast reset, error
source)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.



16.22.1 MCU ECC Correctable Errors (Mcu0ECC,
Mcu1ECC, Mcu2ECC, Mcu3ECC)
Each MCU maintains a DRAM_ERROR_COUNT_REGISTER for counting
correctable ECC errors and generating an error signal when the count decrements to
zero.

When the count transitions from 1 to 0, the corresponding error bit in the SOC ESR
is set: bit 32, mcu0ecc, for MCU0; bit 35, mcu1ecc, for MCU1; bit 38, mcu2ecc, for
MCU2; and bit 41, mcu3ecc, for MCU3. Additional error information (DSC, DAC) is
provided in the DRAM Error Status register in the corresponding MCU.

16.22.2 MCU Recoverable Errors (Mcu0Fbr, Mcu1Fbr,
Mcu2Fbr, Mcu3Fbr)
Each MCU maintains a DRAM_FBR_COUNT_REG for counting recoverable link
errors and generating an error signal when the count decrements to zero.

When the count transitions from 1 to 0 or if the count_one field in MCU Count
register or MCU fbrcnt are set to 1, the corresponding error bit in the SOC ESR is set:
bit 31, mcu0fbr, for MCU0; bit 34, mcu1fbr, for MCU1; bit 37, mcu2fb, for MCU2; and
bit 40, mcu3fbr, for MCU3.

MCU1 recoverable error
count reg = 0

mcu1fbr{34} CE DESR = SOCC DRAM FDB
SYN REG1
(alert, soft reset,
fast reset, error
source)

Warm reset PF if configured as
fatal; otherwise,
hw_corrected_error.

MCU2 recoverable error
count reg = 0

mcu2fbr{37} CE DESR = SOCC DRAM FDB
SYN REG2
(alert, soft reset,
fast reset, error
source)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

MCU3 recoverable error
count reg = 0

mcu3fbr{40} CE DESR = SOCC DRAM FDB
SYN REG3
(alert, soft reset,
fast reset, error
source)

Warm reset if configured as fatal;
otherwise, hw_corrected_error.

TABLE 16-50 SOC Errors for MCU Error Count Interrupts (Continued)

Error SOCESR Bit

Recom-
mend-
ed Error
Type Error Info (Core) Error Info (MCU) Trap



Additional error information (alert, soft reset, fast reset, error source) is captured in
the corresponding DRAM FDB Syndrome register.

16.23 SOC Error Registers
This section describes the error control and log registers for the SOC. The SOC error
registers are located in the NCU.

Error injection for the SOC error sources are provided by the SOC Error Injection
register. The SOC provides a double-buffered error register for sw_recoverable_error
or hw_corrected_error handling. All errors that are enabled by the SOC Error Log
Enable register are captured in the SOC Error Status register. In addition, when a
sw_recoverable_error or hw_corrected_error trap request is generated, the contents
of the SOC Error Status register are copied to the SOC Pending Error Status register,
and the SOC Error Status register is cleared. Each error source can generate no trap
request, a sw_recoverable_error trap request, a hw_corrected_error trap request, or a
warm reset of the OpenSPARC T2 chip under control of the SOC Error Interrupt
Enable and SOC Fatal Error Enable registers. The strand receiving a trap request
takes a disrupting trap, subject to masking and other restrictions of the specific trap.

16.23.1 SOC Error Status Register
The Error Status register contains status on SOC errors. The status bits in this
register are cleared by writing a 0 to the bit position. This register is not changed on
a warm reset to allow inspection of the error status by software following the warm
reset. This register is cleared on generation of a trap request, and its contents are
copied to the SOC Pending Error Status register.

TABLE 16-51 shows the format of the SOC Error Status register.

Note All SOC errors may be set to fatal using the SOC Fatal Error
Enable register described in SOC Fatal Error Enable Register on
page 332. The error type column lists the error type assuming
the error has not been set to be fatal.



TABLE 16-51 SOC Error Status Register – SOC_ERROR_STATUS_REG (80 0000 300016) (1 of 4)

Bit Field
Error
Type

Initial
Value R/W

Error Information
(core)

Error
Information

(SOC) Description

63 v — 0 RW — — Multiple uncorrected errors, one or
more uncorrected errors were not
logged.

62:4
3

SPARE4 — 016 RW — — Reserved for errors to be assigned in
future versions of chip if required

42 ncudmucredit UE 0 RW DESR = SOCU Not recorded Set to 1 if an uncorrectable parity
error is detected on the credit token
bus to NCU for DMU PIO write
credits.

41 mcu3ecc CE 0 RW DESR = SOCC DRAM ESR3
(dsc, dac)

Set to 1 if MCU 3 detected a
correctable DRAM ECC error with its
DRAM Error Count register reaching
zero.

40 mcu3fbr CE 0 RW DESR = SOCC DRAM FBD
SYN REG3
(alert, soft
reset, fast
reset, error
source)

Set to 1 if MCU 3 detected a
FBDIMM recoverable error with its
DRAM Recoverable Link Error
Count register reaching zero.

39 SPARE3 — 0 RW — — Reserved for errors to be assigned in
future versions of chip if required

38 mcu2ecc CE 0 RW DESR = SOCC DRAM ESR2
(dsc, dac)

Set to 1 if MCU 3 detected a
correctable DRAM ECC error with its
DRAM Error Count register reaching
zero.

37 mcu2fbr CE 0 RW DESR = SOCC DRAM FDB
SYN REG2
(alert, soft
reset, fast
reset, error
source)

Set to 1 if MCU 3 detected a
FBDIMM recoverable error with its
DRAM Recoverable Link Error
Count register reaching zero.

36 SPARE2 — 0 RW — — Reserved for errors to be assigned in
future versions of chip if required

35 mcu1ecc CE 0 RW DESR = SOCC DRAM ESR1
(dsc, dac)

Set to 1 if MCU 3 detected a
correctable DRAM ECC error with its
DRAM Error Count register reaching
zero.

34 mcu1fbr CE 0 RW DESR = SOCC DRAM FDB
SYN REG1
(alert, soft
reset, fast
reset, error
source)

Set to 1 if MCU 3 detected a
FBDIMM recoverable error with its
DRAM Recoverable Link Error
Count register reaching zero.



33 SPARE1 — 0 RW — — Reserved for errors to be assigned in
future versions of chip if required

32 mcu0ecc CE 0 RW DESR = SOCC DRAM ESR0
(dsc, dac)

Set to 1 if MCU 0 detected a
correctable DRAM ECC error with
the DRAM Error Count register
reaching zero.

31 mcu0fbr CE 0 RW DESR = SOCC DRAM FDB
SYN REG0
(alert, soft
reset, fast
reset, error
source)

Set to 1 if MCU 0 detected a
FBDIMM recoverable error with the
DRAM Recoverable Link Error
Count register reaching zero.

30 SPARE0 — 0 RW — — Reserved for errors to be assigned in
future versions of chip if required

29 0 Reserved.

28 0 Reserved.

27 0 Reserved.

26 sioctagce CE 0 RW DESR = SOCC Not recorded Set to 1 if the SIO detected a CTAG
corrected error from the old FIFO.

25 sioctague UE 0 RW DESR = SOCU Not recorded Set to 1 if the SIO detected a CTAG
uncorrected error from the old FIFO.

24 spare 0 RW — — Hardware does not log any error for
this or can inject any error for this,
but asserts interrupt on software
write.

23 ncuctagce CE 0 RW DESR = SOCC Not recorded Set to 1 if the NCU detected a CTAG
corrected error on an interrupt write
or a PIO read return from the SII.

22 ncuctague UE 0 RW DESR = SOCU NCUSYN
(ctag)

Set to 1 if the NCU detected a CTAG
uncorrected error on an interrupt
write or a PIO read return from the
SII.

21 ncudmuue UE 0 RW D-SFSR = SOCU,
DESR = SOCU

NCUSYN
(etag, rqtyp,
cpu_id,
thread_id,
and PA)

Set to 1 if the NCU detected a parity
error in the NCU DMU PIO Req
FIFO.

20 ncucpxue UE 0 RW DESR = SOCU Not recorded Set to 1 if the NCU detected an error
in the output FIFO to the crossbar.

TABLE 16-51 SOC Error Status Register – SOC_ERROR_STATUS_REG (80 0000 300016) (2 of 4)

Bit Field
Error
Type

Initial
Value R/W

Error Information
(core)

Error
Information

(SOC) Description



19 ncupcxue UE 0 RW DESR = SOCU NCUSYN
(etag, rqtyp,
cpu_id,
thread_id,
and PA)

Set to 1 if the NCU detected a
command or Thread_id parity error
in PIO/CSR commands from the
processors (PCX FIFO).

18 ncupcxdata UE 0 RW DESR = SOCU NCUSYN
(etag, rqtyp,
cpu_id,
thread_id,
and PA)

Set to 1 if the NCU detected a data
parity error in PIO/CSR data from
the processors (PCX FIFO).

17 ncuinttable UE 0 RW DESR = SOCU NCUSYN
(etag, rqtyp,
cpu_id,
thread_id,
and pa)

Set to 1 if the NCU detected an error
while reading the interrupt table for
a non-mondo interrupt request.

16 ncumondofifo UE 0 RW DESR = SOCU Not recorded Set to 1 if the NCU detected an error
while reading the mondo FIFO for an
interrupt request.

15 ncumondotable UE 0 RW D-SFSR = SOCU,
DESR = SOCU

Not recorded Set to 1 if the NCU detected an error
while reading the mondo table for a
PIO read request.

14 ncudataparity UE 0 RW D-SFSR = SOCU,
DESR = SOCU

NCUSYN
(ctag)

Set to 1 if the NCU detected a data
parity error for interrupt write or
PIO read return data through the SII
from the DMU.

13 dmudataparity UE 0 RW DESR = SOCU Not recorded Set to 1 if the DMU detected a data
parity error in a DMA read return
from the SIO.

12 dmusiicredit UE 0 RW DESR = SOCU Not recorded Set to 1 if the DMU detected a parity
error in the DMA write acknowledge
credit from the SII.

11 dmuctague UE 0 RW DESR = SOCU Not recorded Set to 1 if the DMU detected an
uncorrected CTAG error in the DMA
read return from the SIO.

10 dmuctagce CE 0 RW DESR = SOCC Not recorded Set to 1 if the DMU detected a
corrected CTAG error in the DMA
read return from the SIO.

9 dmuncucredit UE 0 RW DESR = SOCU Not recorded Set to 1 if the DMU detected a parity
error in the mondo acknowledge
credit from NCU.

8 dmuinternal UE 0 RW Not recorded Not recorded Set to 1 if the DMU detected an
internal error.

TABLE 16-51 SOC Error Status Register – SOC_ERROR_STATUS_REG (80 0000 300016) (3 of 4)

Bit Field
Error
Type
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Value R/W

Error Information
(core)

Error
Information

(SOC) Description



If a software write of the error register happens on the same cycle as an error, the
setting of bits by the error will be based on the register state before the write. The
setting of fields by the error will take precedence over the same field being update
by the write; however, fields that are not changed by the error will be updated by
the write (for example, if the register has the ncucpxue bit set and software does a
write to clear that bit and the v bit on the same cycle as a NCUCTAGCE error, the
error register would end up with the ncucpxue bit cleared and the ncuctagce and v
bits set).

16.23.2 SOC Error Log Enable Register
This register enables the logging of SOC errors.

TABLE 16-52 shows the format of the SOC Error Log Enable register.

7 siidmuaparity UE 0 RW DESR = SOCU NCUSIISYN
(etag, ctag,
and pa)

Set to 1 if the SII detected a parity
error on address field for DMA
transactions from DMU FIFO.

6 0 Reserved.

5 siidmudparity UE 0 RW DESR = SOCU NCUSIISYN
(etag, ctag,
and pa)

Set to 1 if the SII detected a parity
error on data for DMA write
transactions from DMU FIFO.

4 0 Reserved.

3 siidmuctagce CE 0 RW DESR = SOCC Not recorded Set to 1 if the SII detected a corrected
ECC CTAG error on a transaction
from the DMU FIFO.

2 0 Reserved.

1 siidmuctague UE 0 RW DESR = SOCU NCUSIISYN
(etag, ctag,
and pa)

Set to 1 if the SII detected an
uncorrectable ECC CTAG error or
Command Parity error on a
transaction from the DMU FIFO.

0 0 Reserved.

TABLE 16-52 SOC Error Log Enable Register – SOC_ERROR_LOG_ENABLE_REG (80 0000 300816) (1 of 3)

Bit Field
Initial
Value R/W Description

63:43 SPARE4 016 RW Reserved (for errors to be assigned in future versions of chip if required).

42 ncudmucredit 116 RW Set to 1 to log an uncorrectable parity error is detected on the credit
token bus to NCU for DMU PIO write credits.

41 mcu3ecc 116 RW Set to 1 to log MCU 3 exceeded data CE threshold.

TABLE 16-51 SOC Error Status Register – SOC_ERROR_STATUS_REG (80 0000 300016) (4 of 4)
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40 mcu3fbr 116 RW Set to 1 to log MCU 3 generated a FBDIMM recoverable error.

39 SPARE3 116 RW Reserved (for errors to be assigned in future versions of chip if required).

38 mcu2ecc 116 RW Set to 1 to log MCU 2 exceeded data CE threshold.

37 mcu2fbr 116 RW Set to 1 to log MCU 2 generated a FBDIMM recoverable error.

36 SPARE2 116 RW Reserved (for errors to be assigned in future versions of chip if required).

35 mcu1ecc 116 RW Set to 1 to log MCU 1 exceeded data CE threshold.

34 mcu1fbr 116 RW Set to 1 to log MCU 1 generated a FBDIMM recoverable error.

33 SPARE1 116 RW Reserved (for errors to be assigned in future versions of chip if required).

32 mcu0ecc 116 RW Set to 1 to log MCU 0 exceeded data CE threshold.

31 mcu0fbr 116 RW Set to 1 to log MCU 0 generated a FBDIMM recoverable error.

30 SPARE0 116 RW Spare 0 (for errors to be assigned in future versions of chip if required).

29 116 Reserved.

28 116 Reserved

27 116 Reserved.

26 sioctagce 116 RW Set to 1 to log the SIO detected a CTAG corrected error from the old
FIFO.

25 sioctague 116 RW Set to 1 to log the SIO detected a CTAG uncorrected error from the old
FIFO.

24 SPARE 116 RW Hardware does not log any error for this or can inject any error for this,
but asserts interrupt on software write.

23 ncuctagce 116 RW Set to 1 to log the NCU detected a CTAG corrected error on an interrupt
write or a PIO read return.

22 ncuctague 116 RW Set to 1 to log the NCU detected a CTAG uncorrected error on an
interrupt write or a PIO read return.

21 ncudmuue 116 RW Set to 1 to log the NCU detected a parity error in the NCU DMU PIO
Req FIFO.

20 ncucpxue 116 RW Set to 1 to log the NCU detected an error in the Output FIFO to the
crossbar.

19 ncupcxue 116 RW Set to 1 to log the NCU detected an error in PIO/CSR commands from
the processors.

18 ncupcxdata 116 RW Set to 1 to log the NCU detected an error in PIO/CSR data from the
processors.

17 ncuinttable 116 RW Set to 1 to log the NCU detected an error while reading the interrupt
table.

16 ncumondofifo 116 RW Set to 1 to log the NCU detected an error while reading the mondo
FIFO.

15 ncumondotable 116 RW Set to 1 to log the NCU detected an error while reading the mondo table.

14 ncudataparity 116 RW Set to 1 to log the NCU detected an parity error for interrupt write or
PIO read return data.

TABLE 16-52 SOC Error Log Enable Register – SOC_ERROR_LOG_ENABLE_REG (80 0000 300816) (2 of 3)

Bit Field
Initial
Value R/W Description



16.23.3 SOC Error Interrupt Enable Register
This register controls which errors will generate a Error Indication (SOC) error
packet to the CPX. If the eie bit is set, Error Indication (SOC) error packet will
always be sent to the CPX irrespective of whether the error caused the transaction to
be terminated or not. The Correctable SOC errors will set an error code of 012 in the
err field of the packet while uncorrectable SOC errors set an error code of 102 in the
err field.

TABLE 16-53 shows the format of the SOC Error Interrupt Enable register.

13 dmudataparity 116 RW Set to 1 to log the DMU detected a parity error in a DMA read return
from the SIO.

12 dmusiicredit 116 RW Set to 1 to log the DMU detected a parity error in the DMA write
acknowledge credit from the SII.

11 dmuctague 116 RW Set to 1 to log the DMU detected an uncorrected error in the DMA read
return from the SIO.

10 dmuctagce 116 RW Set to 1 to log the DMU detected a corrected error in the DMA read
return from the SIO.

9 dmuncucredit 116 RW Set to 1 to log the DMU detected a parity error in the Mondo
acknowledge credit from NCU.

8 dmuinternal 116 RW Set to 1 to log the DMU detected an internal error.

7 siidmuaparity 116 RW Set to 1 to log the SII detected a parity error on address field for DMA
transactions from DMU FIFO.

6 116 Reserved.

5 siidmudparity 116 RW Set to 1 to log the SII detected a parity error on data for DMA
transactions from DMU FIFO.

4 116 Reserved.

3 siidmuctagce 116 RW Set to 1 to log the SII detected a corrected error on a transaction from the
DMU FIFO.

2 116 Reserved.

1 siidmuctague 116 RW Set to 1 to log the SII detected an uncorrected error on a transaction
from the DMU FIFO.

0 116 Reserved.

TABLE 16-52 SOC Error Log Enable Register – SOC_ERROR_LOG_ENABLE_REG (80 0000 300816) (3 of 3)

Bit Field
Initial
Value R/W Description



TABLE 16-53 SOC Error Interrupt Enable Register – SOC_ERROR_INTERRUPT_ENABLE_REG
(80 0000 301016)

Bit Field
Initial
Value R/W Description

62:43 SPARE4 0 RW Set to 1 to request trap on errors for whatever error bits would get
assigned to bits 62:43 in future versions of chip.

42 ncudmucredit 0 RW Set to 1 to request trap on an uncorrectable parity error is detected on
the credit token bus to NCU for DMU PIO write credits.

41 mcu3ecc 0 RW Set to 1 to request trap on MCU 3 exceeded data CE threshold.

40 mcu3fbr 0 RW Set to 1 to request trap on MCU 3 generated a FBDIMM recoverable
error.

39 spare3 0 RW Set to 1 to request trap error for whatever error bit would get assigned
to bits 39 in future versions of chip.

38 mcu2ecc 0 RW Set to 1 to request trap on MCU 2 exceeded data CE threshold.

37 mcu2fbr 0 RW Set to 1 to request trap on MCU 2 generated a FBDIMM recoverable
error.

36 SPARE2 0 RW Set to 1 to request trap error for whatever error bit would get assigned
to bits 36 in future versions of chip.

35 mcu1ecc 0 RW Set to 1 to request trap on MCU 1 exceeded data CE threshold.

34 mcu1fbr 0 RW Set to 1 to request trap on MCU 1 generated a FBDIMM recoverable
error.

33 SPARE1 0 RW Set to 1 to request trap error for whatever error bit would get assigned
to bits 33 in future versions of chip

32 mcu0ecc 0 RW Set to 1 to request trap on MCU 0 exceeded data CE threshold.

31 mcu0fbr 0 RW Set to 1 to request trap on MCU 0 generated a FBDIMM recoverable
error.

30 SPARE0 0 RW Set to 1 to request trap error for whatever error bit would get assigned
to bits 30 in future versions of chip

29 0 Reserved.

28 0 Reserved.

27 0 Reserved.

26 sioctagce 0 RW Set to 1 to request trap on the SIO detected a CTAG corrected error
from the old FIFO.

25 sioctague 0 RW Set to 1 to request trap on the SIO detected a CTAG uncorrected error
from the old FIFO.

24 spare 0 RW HW does not log any error for this or can inject any error for this, but
requests trap on SW write.

23 ncuctagce 0 RW Set to 1 to request trap on the NCU detected a CTAG corrected error
on an interrupt write or a PIO read return.

22 ncuctague 0 RW Set to 1 to request trap on the NCU detected a CTAG uncorrected error
on an interrupt write or a PIO read return.

21 ncudmuue 0 RW Set to 1 to request trap on the NCU detected a parity error in the NCU
DMU PIO Req FIFO.



20 ncucpxue 0 RW Set to 1 to request trap on the NCU detected an error in the output
FIFO to the crossbar.

19 ncupcxue 0 RW Set to 1 to request trap on the NCU detected an error in PIO/CSR
commands from the processors.

18 ncupcxdata 0 RW Set to 1 to request trap on the NCU detected an error in PIO/CSR data
from the processors.

17 ncuinttable 0 RW Set to 1 to request trap on the NCU detected an error while reading the
interrupt table.

16 ncumondofifo 0 RW Set to 1 to request trap on the NCU detected an error while reading the
mondo FIFO.

15 ncumondotable 0 RW Set to 1 to request trap on the NCU detected an error while reading the
mondo table.

14 ncudataparity 0 RW Set to 1 to request trap on the NCU detected an parity error for
interrupt write or PIO read return data.

13 dmudataparity 0 RW Set to 1 to request trap on the DMU detected a parity error in a DMA
read return from the SIO.

12 dmusiicredit 0 RW Set to 1 to request trap on the DMU detected a parity error in the
DMA write acknowledge credit from the SII.

11 dmuctague 0 RW Set to 1 to request trap on the DMU detected an uncorrected error in
the DMA read return from the SIO.

10 dmuctagce 0 RW Set to 1 to request trap on the DMU detected a corrected error in the
DMA read return from the SIO.

9 dmuncucredit 0 RW Set to 1 to request trap on the DMU detected a parity error in the
Mondo acknowledge credit from NCU.

8 dmuinternal 0 RW Set to 1 to request trap on the DMU detected an internal error.

7 siidmuaparity 0 RW Set to 1 to request trap on the SII detected a parity error on address
field for DMA transactions from DMU FIFO.

6 0 Reserved.

5 siidmudparity 0 RW Set to 1 to request trap on the SII detected a parity error on data for
DMA transactions from DMU FIFO.

4 0 Reserved.

3 siidmuctagce 0 RW Set to 1 to request trap on the SII detected a corrected error on a
transaction from the DMU FIFO.

2 0 Reserved.

1 siidmuctague 0 RW Set to 1 to request trap on the SII detected an uncorrected error on a
transaction from the DMU FIFO.

0 0 Reserved.

TABLE 16-53 SOC Error Interrupt Enable Register – SOC_ERROR_INTERRUPT_ENABLE_REG
(80 0000 301016) (Continued)

Bit Field
Initial
Value R/W Description



16.23.4 SOC Error Steering Register
This register controls which virtual processor will be sent SOC error disrupting trap
requests.

TABLE 16-53 shows the format of the SOC Error Steering register.

16.23.5 SOC Fatal Error Enable Register
This register controls which errors will generate a fatal error, resetting OpenSPARC
T2.

TABLE 16-55 shows the format of the SOC Fatal Error Enable register.

TABLE 16-54 SOC Error Steering Register – SOC_ERROR_STEER_REG (90 0104 100016)

Bit Field
Initial
Value R/W Description

62:6 — 0 RO Reserved

5:0 vcid 0 RW ID of virtual processor that will be target of SOC error trap requests.

Notes Software should program the Error Steering register the same in
NCU and L2 so that multiple errors for the same error reported
by both L2 and NCU go to same thread.

For errors reported multiple times (through PIO load return
precise trap on crossbar and then SOC error packet and
disruptive trap) the vcid can be different for the traps.

If the Error Steering register points to a virtual processor that is
not available or not enabled, any SOC error disurpting trap
request will be dropped.

If the Error Steering register points to a virutal processor that is
parked, any SOC error disrupting trap request will be held
pending by target virtual processor until it is running and the
trap is unmasked.

If the Error Steering register points to a virutal processor that is
halted, any SOC error disrupting trap request will cause the
target virtual processor to return to running state; the trap
request will be held pending until the trap is unmasked.



TABLE 16-55 SOC Fatal Error Enable Register – SOC_FATAL_ERROR_ENABLE_REG (80 0000 302016) (1 of 2)

Bit Field
Initial
Value R/W Description

62:43 SPARE4 0 RW Set to 1 to make fatal for whatever error bit would get assigned to
bits 62:43 in future versions of chip

42 ncudmucredit 0 RW Set to 1 to make fatal an uncorrectable parity error detected on the
credit token bus to NCU for DMU PIO write credits.

41 mcu3ecc 0 RW Set to 1 to make fatal MCU 3 exceeded data CE threshold.

40 mcu3fbr 0 RW Set to 1 to make fatal MCU 3 generate an FBDIMM recoverable error.

39 SPARE3 0 RW Set to 1 to make fatal whatever error bit would get assigned to bits
39 in future versions of chip

38 mcu2ecc 0 RW Set to 1 to make fatal MCU 2 exceeded data CE threshold.

37 mcu2fbr 0 RW Set to 1 to make fatal MCU 2 generated a FBDIMM recoverable error.

36 SPARE2 0 RW Set to 1 to make fatal for whatever error bit would get assigned to
bits 36 in future versions of chip

35 mcu1ecc 0 RW Set to 1 to make fatal MCU 1 exceeded data CE threshold.

34 mcu1fbr 0 RW Set to 1 to make fatal MCU 1 generated a FBDIMM recoverable error.

33 SPARE1 0 RW Set to 1 to make fatal for whatever error bit would get assigned to
bits 33 in future versions of chip

32 mcu0ecc 0 RW Set to 1 to make fatal MCU 0 exceeded data CE threshold.

31 mcu0fbr 0 RW Set to 1 to make fatal MCU 0 generated a FBDIMM recoverable error.

30 SPARE0 0 RW Set to 1 to make fatal for whatever error bit would get assigned to
bits 30 in future versions of chip.

29 0 Reserved.

28 0 Reserved.

27 0 Reserved.

26 sioctagce 0 RW Set to 1 to make fatal the SIO detected a CTAG corrected error from
the old FIFO.

25 sioctague 0 RW Set to 1 to make fatal the SIO detected a CTAG uncorrected error
from the old FIFO.

24 spare 0 RW HW does not log any error for this or can inject any error for this,
but reuests trap on SW write.

23 ncuctagce 0 RW Set to 1 to make fatal the NCU detected a CTAG corrected error on
an interrupt write or a PIO read return.

22 ncuctague 0 RW Set to 1 to make fatal the NCU detected a CTAG uncorrected error
on an interrupt write or a PIO read return.

21 ncudmuue 0 RW Set to 1 to make fatal the NCU detected a parity error in the NCU
DMU PIO Req FIFO.

20 ncucpxue 0 RW Set to 1 to make fatal the NCU detected an error in the output FIFO
to the crossbar.

19 ncupcxue 0 RW Set to 1 to make fatal the NCU detected an error in PIO/CSR
commands from the processors.



16.23.6 SOC Pending Error Status Register
The Pending Error Status register contains the state of the
SOC_ERROR_STATUS_REG when the disrupting trap request was generated as a
result of an SOC error logged that had its corresponding bit set in
SOC_ERROR_INTERRUPT_ENABLE_REG. The valid bit of this register prevents

18 ncupcxdata 0 RW Set to 1 to make fatal the NCU detected an error in PIO/CSR data
from the processors.

17 ncuinttable 0 RW Set to 1 to make fatal the NCU detected an error while reading the
interrupt table.

16 ncumondofifo 0 RW Set to 1 to make fatal the NCU detected an error while reading the
mondo FIFO.

15 ncumondotable 0 RW Set to 1 to make fatal the NCU detected an error while reading the
mondo table.

14 ncudataparity 0 RW Set to 1 to make fatal the NCU detected an parity error for interrupt
write or PIO read return data.

13 dmudataparity 0 RW Set to 1 to make fatal the DMU detected a parity error in a DMA
read return from the SIO.

12 dmusiicredit 0 RW Set to 1 to make fatal the DMU detected a parity error in the DMA
write acknowledge credit from the SII.

11 dmuctague 0 RW Set to 1 to make fatal the DMU detected an uncorrected error in the
DMA read return from the SIO.

10 dmuctagce 0 RW Set to 1 to make fatal the DMU detected a corrected error in the
DMA read return from the SIO.

9 dmuncucredit 0 RW Set to 1 to make fatal the DMU detected a parity error in the Mondo
acknowledge credit from NCU.

8 dmuinternal 0 RW Set to 1 to make fatal the DMU detected an internal error.

7 siidmuaparity 0 RW Set to 1 to make fatal the SII detected a parity error on address field
for DMA transactions from DMU FIFO.

6 0 Reserved.

5 siidmudparity 0 RW Set to 1 to make fatal the SII detected a parity error on data for DMA
transactions from DMU FIFO.

4 0 Reserved.

3 siidmuctagce 0 RW Set to 1 to make fatal the SII detected a corrected error on a
transaction from the DMU FIFO.

2 0 Reserved.

1 siidmuctague 0 RW Set to 1 to make fatal the SII detected an uncorrected error on a
transaction from the DMU FIFO.

0 0 Reserved.

TABLE 16-55 SOC Fatal Error Enable Register – SOC_FATAL_ERROR_ENABLE_REG (80 0000 302016) (2 of 2)

Bit Field
Initial
Value R/W Description



further disrupting trap requests from being generated by the SOC. This register is
not changed on a warm reset to allow inspection of the error status by software
following the warm reset.

TABLE 16-56 shows the format of the SOC Pending Error Status register.

TABLE 16-56 SOC Pending Error Status Register – SOC_PENDING_ERROR_STATUS_REG (80 0000 302816) (1 of
2)

Bit Field
Initial
Value R/W Description

63 v 0 RW Valid bit, prevents generation of further SOC sw_recoverable_error traps.

62:43 SPARE4 0 RW Reserved for future versions of the chip.

42 ncudmucredit 0 RW Set to 1 to if an uncorrectable parity error is detected on the credit token
bus to NCU for DMU PIO write credits.

41 mcu3ecc 0 RW Set to 1 if MCU 3 exceeded data CE threshold.

40 mcu3fbr 0 RW Set to 1 if MCU 3 generated a FBDIMM recoverable error.

39 SPARE3 0 RW Reserved for future versions of the chip.

38 mcu2ecc 0 RW Set to 1 if MCU 2 exceeded data CE threshold.

37 mcu2fbr 0 RW Set to 1 if MCU 2 generated a FBDIMM recoverable error.

36 SPARE2 0 RW Reserved for future versions of the chip.

35 mcu1ecc 0 RW Set to 1 if MCU 1 exceeded data CE threshold.

34 mcu1fbr 0 RW Set to 1 if MCU 1 generated a FBDIMM recoverable error.

33 spare1 0 RW Reserved for future versions of the chip.

32 mcu0ecc 0 RW Set to 1 if MCU 0 exceeded data CE threshold.

31 mcu0fbr 0 RW Set to 1 if MCU 0 generated a FBDIMM recoverable error.

30 SPARE0 0 RW Reserved for future versions of the chip.

29 0 Reserved.

28 0 Reserved.

27 0 Reserved.

26 sioctagce 0 RW Set to 1 if the SIO detected a CTAG corrected error from the old FIFO.

25 sioctague 0 RW Set to 1 if the SIO detected a CTAG uncorrected error from the old FIFO.

24 spare 0 RW Hardware does not log any error for this or can inject any error for this,
but requests trap on SW write.

23 ncuctagce 0 RW Set to 1 if the NCU detected a CTAG corrected error on an interrupt write
or a PIO read return.

22 ncuctague 0 RW Set to 1 if the NCU detected a CTAG uncorrected error on an interrupt
write or a PIO read return.

21 ncudmuue 0 RW Set to 1 if the NCU detected a parity error in the NCU DMU PIO Req
FIFO.

20 ncucpxue 0 RW Set to 1 if the NCU detected an error in the output FIFO to the crossbar.

19 ncupcxue 0 RW Set to 1 if the NCU detected an error in PIO/CSR commands from the
processors.



16.23.7 SOC Error Injection Register
This register controls the injection of errors. Continuous errors are generated for any
error types with their bit set in the register.

TABLE 16-57 shows the format of the SOC Error Injection register.

18 ncupcxdata 0 RW Set to 1 if the NCU detected an error in PIO/CSR data from the
processors.

17 ncuinttable 0 RW Set to 1 if the NCU detected an error while reading the interrupt table.

16 ncumondofifo 0 RW Set to 1 if the NCU detected an error while reading the mondo FIFO.

15 ncumondotable 0 RW Set to 1 if the NCU detected an error while reading the mondo table.

14 ncudataparity 0 RW Set to 1 if the NCU detected an parity error for interrupt write or PIO
read return data.

13 dmudataparity 0 RW Set to 1 if the DMU detected a parity error in a DMA read return from the
SIO.

12 dmusiicredit 0 RW Set to 1 if the DMU detected a parity error in the DMA write
acknowledge credit from the SII.

11 dmuctague 0 RW Set to 1 if the DMU detected an uncorrected error in the DMA read return
from the SIO.

10 dmuctagce 0 RW Set to 1 if the DMU detected a corrected error in the DMA read return
from the SIO.

9 dmuncucredit 0 RW Set to 1 if the DMU detected a parity error in the Mondo acknowledge
credit from NCU.

8 dmuinternal 0 RW Set to 1 if the DMU detected an internal error.

7 siidmuaparity 0 RW Set to 1 if the SII detected a parity error on address field for DMA
transactions from DMU FIFO.

6 0 Reserved.

5 siidmudparity 0 RW Set to 1 if the SII detected a parity error on data for DMA transactions
from DMU FIFO.

4 0 Reserved.

3 siidmuctagce 0 RW Set to 1 if the SII detected a corrected error on a transaction from the
DMU FIFO.

2 0 Reserved.

1 siidmuctague 0 RW Set to 1 if the SII detected an uncorrected error on a transaction from the
DMU FIFO.

0 0 Reserved.

TABLE 16-56 SOC Pending Error Status Register – SOC_PENDING_ERROR_STATUS_REG (80 0000 302816) (2 of
2)

Bit Field
Initial
Value R/W Description



TABLE 16-57 SOC Error Injection Register – SOC_ERROR_INJECTION_REG (80 0000 301816) (1 of 2)

Bit Field
Initial
Value R/W Description

63:43 SPARE4 0 RW Reserved for future versions of the chip.

42 ncudmucredit 0 RW Set to 1 to enable error injection for an uncorrectable parity error is
detected on the credit token bus to NCU for DMU PIO write credits.

41 mcu3ecc 0 RW Set to 1 to enable error injection on MCU 3 exceeded data CE threshold.

40 mcu3fbr 0 RW Set to 1 to enable error injection on MCU 3 generated a FBDIMM
recoverable error.

39 mcu3fbu 0 RW Set to 1 to enable error injection on MCU 3 generated a FBDIMM
unrecoverable error.

38 mcu2ecc 0 RW Set to 1 to enable error injection on MCU 2 exceeded data CE threshold.

37 mcu2fbr 0 RW Set to 1 to enable error injection on MCU 2 generated a FBDIMM
recoverable error.

36 mcu2fbu 0 RW Set to 1 to enable error injection on MCU 2 generated a FBDIMM
unrecoverable error.

35 mcu1ecc 0 RW Set to 1 to enable error injection on MCU 1 exceeded data CE threshold.

34 mcu1fbr 0 RW Set to 1 to enable error injection on MCU 1 generated a FBDIMM
recoverable error.

33 mcu1fbu 0 RW Set to 1 to enable error injection on MCU 1 generated a FBDIMM
unrecoverable error.

32 mcu0ecc 0 RW Set to 1 to enable error injection on MCU 0 exceeded data CE threshold.

31 mcu0fbr 0 RW Set to 1 to enable error injection on MCU 0 generated a FBDIMM
recoverable error.

30 mcu0fbu 0 RW Set to 1 to enable error injection on MCU 0 generated a FBDIMM
unrecoverable error.

29 0 Reserved.

28 0 Reserved.

27 0 Reserved.

26 sioctagce 0 RW Set to 1 to enable error injection on the SIO detected a CTAG corrected
error from the old FIFO.

25 sioctague 0 RW Set to 1 to enable error injection on the SIO detected a CTAG
uncorrected error from the old FIFO.

24 SPARE 0 RW Hardware does not log any error for this or can inject any error for this,
but asserts requests trap on software write.

23 ncuctagce 0 RW Set to 1 to enable error injection on the NCU detected a CTAG corrected
error on an interrupt write or a PIO read return.

22 ncuctague 0 RW Set to 1 to enable error injection on the NCU detected a CTAG
uncorrected error on an interrupt write or a PIO read return.

21 ncudmuue 0 RW Set to 1 to enable error injection on the NCU detected a parity error in
the NCU DMU PIO Req FIFO.

20 ncucpxue 0 RW Set to 1 to enable error injection on the NCU detected an error in the
output FIFO to the crossbar.



19 ncupcxue 0 RW Set to 1 to enable error injection on the NCU detected an error in PIO/
CSR commands from the processors.

18 ncupcxdata 0 RW Set to 1 to enable error injection on the NCU detected an error in PIO/
CSR data from the processors.

17 ncuinttable 0 RW Set to 1 to enable error injection on the NCU detected an error while
reading the interrupt table.

16 ncumondofifo 0 RW Set to 1 to enable error injection on the NCU detected an error while
reading the mondo FIFO.

15 ncumondotable 0 RW Set to 1 to enable error injection on the NCU detected an error while
reading the mondo table.

14 ncudataparity 0 RW Set to 1 to enable error injection on the NCU detected an parity error for
interrupt write or PIO read return data.

13 dmudataparity 0 RW Set to 1 to enable error injection on the DMU detected a parity error in a
DMA read return from the SIO.

12 dmusiicredit 0 RW Set to 1 to enable error injection on the DMU detected a parity error in
the DMA write acknowledge credit from the SII.

11 dmuctague 0 RW Set to 1 to enable error injection on the DMU detected an uncorrected
error in the DMA read return from the SIO.

10 dmuctagce 0 RW Set to 1 to enable error injection on the DMU detected a corrected error
in the DMA read return from the SIO.

9 dmuncucredit 0 RW Set to 1 to enable error injection on the DMU detected a parity error in
the Mondo acknowledge credit from NCU.

8 dmuinternal 0 RW Set to 1 to enable error injection on the DMU detected an internal error.

7 siidmuaparity 0 RW Set to 1 to enable error injection on the SII detected a parity error on
address field for DMA transactions from DMU FIFO.

6 0 Reserved.

5 siidmudparity 0 RW Set to 1 to enable error injection on the SII detected a parity error on
data for DMA transactions from DMU FIFO.

4 0 Reserved.

3 siidmuctagce 0 RW Set to 1 to enable error injection on the SII detected a corrected error on
a transaction from the DMU FIFO.

2 0 Reserved.

1 siidmuctague 0 RW Set to 1 to enable error injection on the SII detected an uncorrected error
on a transaction from the DMU FIFO.

0 0 Reserved.

TABLE 16-57 SOC Error Injection Register – SOC_ERROR_INJECTION_REG (80 0000 301816) (2 of 2)

Bit Field
Initial
Value R/W Description



16.23.8 SOC SII Error Syndrome Register
This register logs the SII Error Syndrome for the errors listed in the etag field. This
register is not changed on a warm reset to allow inspection of the syndrome by
software following the warm reset.

TABLE 16-58 shows the format of the SOC SII Error Syndrome register.

16.23.9 SOC NCU Error Syndrome Register
This register logs the NCU Error Syndrome for the NCUCTAGUE, NCUDMUUE,
NCUPCXUE, NCUPCXDATA, NCUINTTABLE, and NCUDATAPARITY errors. This
register is not changed on a warm reset to allow inspection of the syndrome by
software following the warm reset.

TABLE 16-59 shows the format of the SOC NCU Error Syndrome register.

TABLE 16-58 SOC SII Error Syndrome Register – SOC_SII_ERROR_SYNDROME_REG (80 0000 303016)

Bit Field
Initial
Value R/W Description

63 v 0 RW Valid bit, set to 1 when the syndrome has been logged.

62:59 — 0 RO Reserved

58:56 etag 0 RW Error tag:
7 – SIIDMUAPARITY;5 – SIIDMUDPARITY;1– SIIDMUCTAGUE

55:40 ctag 0 RW ctag field from the header.

39:0 pa 0 RW Physical address.

TABLE 16-59 SOC NCU Error Syndrome Register – SOC_NCU_ERROR_SYNDROME_REG (80-0000-303816)

Bit Field
Initial
Value R/W Description

63 v 0 RW Valid bit, set to 1 when the syndrome has been logged.

62 g 0 RW Valid bit for CTAG field. If g = 0, none of the other field valid bits (r, c, s,
or p) will be set and bits 15:0 indicate the Ctag. If v = 1, the other field
valid bits can be nonzero and bits 39:0 indicate the PA.

61 r 0 RW Valid bit for reqtype field.

60 c 0 RW Valid bit for coreid field.

59 s 0 RW Valid bit for strandid field.

58 p 0 RW Valid bit for pa field.

57:56 — 0 RO Reserved



55:51 etag 0 RW Error tag:
42 – NCUDMUCredit; 41 – MCU3ECC; 40 – MCU3FBR;
38 – MCU2ECC; 37 – MCU2FBR; 35 – MCU1ECC; 34 – MCU1FBR;
32 – MCU0ECC; 31 – MCU0FBR;
26 – SIOCTAGCE;

25 – SIOCTAGUE; 24 – TESTMODE; 23 – NCUCTAGCE;
22 – NCUCTAGUE; 21 – NCUDMUUE; 20 – NCUCPXUE;
19 – NCUPCXUE; 18 – NCUPCXDATA; 17 – NCUINTTABLE
16 – NCUMONDOFIFO; 15 – NCUMONDOTABLE
14 – NCUDATAPARITY; 13 – DMUDATAPARITY; 12 – DMUSIICREDIT
11 – DMUCTAGUE; 10 – DMUCTAGCE; 9 – DMUNCUCREDIT
8 – DMUINTERNAL; 3 – SIIDMUCTAGCE

50:46 reqtype 0 RW Request type

45:43 coreid 0 RW Physical strand ID.

42:40 strandid 0 RW Strand ID on physical core.

39:0 pa_ctag 0 RW Physical address{39:0} if p is set. If g bit is set, contains ctag in 15:0.

TABLE 16-59 SOC NCU Error Syndrome Register – SOC_NCU_ERROR_SYNDROME_REG (80-0000-303816)

Bit Field
Initial
Value R/W Description



CHAPTER 17

Memory Controller

17.1 Overview
OpenSPARC T2 interfaces to external registered DDR2 fully buffered DIMMs (FBDs)
through unidirectional high-speed links. OpenSPARC T2 II interfaces directly to
external registered DDR2 DIMMs. There are four memory branches on OpenSPARC
T2. Each memory branch services 64-byte read and write requests from two L2 cache
banks of the on-chip L2 Cache unit.

The features of the OpenSPARC T2 memory controller are as follows:

■ Uses 10-bit southbound and 14-bit northbound FBD channel protocols running at
12 times the SDRAM cycle rate.

■ Supports 256-Mbit DRAM components for x4 data width; supports 512-Mbit, 1-
Gbit, and 2-Gbit DRAM components for x4 and x8 data widths.

■ Maximum memory of 128 Gbytes per branch using sixteen 8-Gbyte DDR2 FBDs
■ Supports up to 16 ranks of DDR2 DIMMs per branch (8 pairs of double-sided

FBDs)
■ Supports registered DDR2 DIMMs of clock frequency up to 400 MHz
■ Supports 128 bits of write data and 16 bits ECC per SDRAM cycle and 256 bits of

read data and 32 bits ECC per SDRAM cycle.
■ Supports DDR2 SDRAM burst length of 4 when using both FBD channels in a

branch, burst length of 8 when using a single channel per branch.
■ ECC generation, check, correction, and Extended ECC.
■ Programmable DDR2 SDRAM power throttle control
■ System peak memory bandwidth (4 branches): 50 Gbytes/s for reads, 25 Gbytes/

s for writes.
■

Note OpenSPARC T2 does not support the FBD Hot Plug feature.
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17.2 Memory Terminology
A few of the more common memory and DRAM terms are described here.

bank Most DDR SDRAM chips are broken up into four or eight logical banks
internally to enable full pipelining of memory operations.

channel Port connecting processor chip to DIMM.

DIMM Dual Inline Memory Module. Industry-standard SDRAM module package. A
stick of memory.

DRAM chip Single chip inside the DIMM. We differentiate the type by how many bits it
outputs and its capacity. (x4 means 4-bit output, x8 means 8-bit output, x16,
x32 etc., and 256-Mbit or 512-Mbit capacity). Most common ones are the x4, x8
outputs.

rank A data group that can be accessed from a DIMM. Each DIMM has two chip
selects. When a DIMM has two ranks, each chip select accesses DRAMs on one
side of the DIMM independently. When a DIMM has one rank, both chip
selects must be asserted at the same time to access all DRAMs on the DIMM.
For x4 SDRAMs, single-rank DIMMs have 18 devices and double-rank DIMMs
have 36 devices.

RAS/CAS RAS stands for “row address strobe.” When this signal is asserted, a particular
bank is enabled. It is also often referred to as “active” command. CAS stands
for “column address strobe.” When this signal is asserted, the column address
and Read/Write signals are transmitted.

refresh DRAM requires what is often referred to as “refresh” cycle. Every row in the
DRAM requires a refresh access every 15.6µS/7.8µS.

single-channel mode A low-power configuration with one DIMM per memory channel. Only one
FBD channel is used, and the memory burst length is 8.

17.3 Fully Buffered DIMM (FBD)
Terminology
A few of the more common FBD terms are described here.
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advanced memory
buffer (AMB) Buffers memory traffic between the host and the SDRAMs. Requests are sent

by the host to the AMB across a high-speed link, and the AMB drives the
requests to the SDRAMs using the DDR2 protocol.

bit lane A differential pair of signals in one direction.

cyclic redundancy code
(CRC) An error detection code sent with data across the FBD link to protect the data

from errors. When a CRC error is detected, the faulty frame must be
retransmitted.

DDR branch A minimum aggregation of DDR channels that operate in lock-step to support
error correction. A rank spans a branch. In OpenSPARC T2, a branch consists
of one or two DDR channels.

DDR channel A channel that consists of a data channel with 72 bits of data and an addr/cntrl
channel.

DDR data channel A data channel that consists of 72 bits of data divided into 18 data groups.

FBD Fully buffered DIMM.

frame Groups of bits containing commands or data sent across the link over 12 cycles.

Linear Feedback Shift
register (LFSR) A shift register where the data input to the last register is a function of the

outputs of other registers.

link High-speed parallel differential point-to-point interface.

northbound (NB) The direction of signals running from the farthest DIMM toward the host.

slot Socket for a DIMM.

southbound (SB) The direction of signals running from the host controller toward the DIMMs.

training sequence
(TS) A sequence of bits sent per bit lane from the host to the FBDs to initialize the

channel operation.

unit interval (UI) Average time interval between voltage transitions of a signal. Approximately
200 ps for DIMMs running at 800 MHz.
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17.4 DRAM Branch Configuration
Each DRAM branch can have a different memory size and a different kind of DIMM
(for example, a different number of ranks or different CAS latency). Software should
not use address space larger than four times the lowest memory capacity in a
channel because the cache lines are interleaved across channels.

The MCU employs the following design requirements:

■ x4 and x8 DRAM parts are supported. Extended ECC is not supported for x8
DRAM parts.

■ DIMM capacity, configuration, and timing parameters cannot be different within
a memory branch.

■ DRAM banks are always closed after read or write command by issuing an
autoprecharge command.

■ Burst length is 4 (bl = 4) when using a two channels per DDR branch. Burst length
is 8 (bl = 8) when using a single channel per branch.

■ There is a fixed 1 dead cycle for switching commands from one rank on a DIMM
to the other rank on the same DIMM.

■ Reads, writes, and refreshes across DDR branches have no relationship to each
other. They are all independent.

There are four independent DDR branches per CPU chip, each controlled by a
separate MCU. Each branch can be configured with one or two channels and
supports up to 16 ranks of DIMMs as shown in FIGURE 17-1. Each channel can be
populated with up to eight single- or dual-rank FBDs. When a branch is configured
with two channels, the two FBDs that share the same AMB ID are accessed in lock-
step. Data is returned 144 bits per frame for 8 frames in single channel mode and 288
bits per frame for 4 frames in dual channel mode. In either mode, the total data
transfer size is 512 bits, or 64 bytes, the cache line size for the L2 cache.

FIGURE 17-1 DDR Branch Configuration
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Each FBD contains four or eight internal banks that can be controlled independently.
These internal banks are controlled inside the SDRAM chips themselves. Accesses
can overlap between different internal banks. In a normal configuration, every read
and write operation to SDRAM will generate a burst length of 4 with 16 bytes of
data transferred every half memory clock cycle. In single-channel mode, reads and
writes will have a burst length of 8 with 8 bytes of data transferred every half
memory cycle.

TABLE 17-1 shows the memory organizations supported by OpenSPARC T2. Table 26-
2 shows how the MCU should be programmed for the supported DIMM
configurations.

TABLE 17-2 MCU programming for supported DIMMs

TABLE 17-1 OpenSPARC T2 Memory Configurations

DIMM Base Device Part Ranks # of Devices Min. Memory per Branch Max. Memory per Branch

512 MB 256 Mb x4 1 18 512 MB 8 GB

1 GB 256 Mb x4 2 36 1 GB 16 GB

1 GB 512 Mb x4 1 18 1 GB 16 GB

2 GB 512 Mb x4 2 36 2 GB 32 GB

2 GB 1 Gb x4 1 18 2 GB 32 GB

4 GB 1 Gb x4 2 36 4 GB 64 GB

4 GB 2 Gb x4 1 18 4 GB 64 GB

8 GB 2 Gb x4 2 36 8 GB 128 GB

512 MB 512 Mb x8 1 9 512 MB 8 GB

1 GB 512 Mb x8 2 18 1 GB 16 GB

1 GB 1 Gb x8 1 9 1 GB 16 GB

2 GB 1 Gb x8 2 18 2 GB 32 GB

2 GB 2 Gb x8 1 9 2 GB 32 GB

4 GB 2 Gb x8 2 18 4 GB 64 GB

DIMM Base Device Ranks
8 bank
mode

RAS Address
Width CAS Addr Width Stacked

512 MB 256 Mb (64 Mb x4) 1 0 D16 B16 0

1 GB 256 Mb (64 Mb x4) 2 0 D16 B16 1

1 GB 512 Mb (128 Mb x4) 1 0 E16 B16 0

2 GB 512 Mb (128 Mb x4) 2 0 E16 B16 1

2 GB 1 Gb (256 Mb x4) 1 1 E16 B16 0

4 GB 1 Gb (256 Mb x4) 2 1 E16 B16 1

4 GB 2 Gb (512 Mb x4) 1 1 F16 B16 0

8 GB 2 Gb (512 Mb x4) 2 1 F16 B16 1

512 MB 512 Mb (64 Mb x8) 1 0 D16 A16 0
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17.5 FBD Channel Configuration
The FBD specification supports two southbound channel configurations and five
northbound channel configurations. OpenSPARC T2 will support both southbound
configurations—the 10-bit and 10-bit failover modes—and two of the northbound
configurations, the 14-bit and 14-bit failover modes. These modes support data
packets of 64-bit data and 8-bit ECC. The 10-bit southbound mode provides 22 bits
of CRC while the 10-bit failover mode has 10 bits of CRC. The 14-bit northbound
mode provides 24 bits of CRC on read data (12 bits per 72-bit data packet), and the
14-bit failover mode provides 12 bits of CRC (6 bits per 72-bit data packet).

During channel initialization, software will determine if a channel can be fully
utilized (10-bit southbound or 14-bit northbound mode) or if a failover mode must
be used in which one of the bit lanes is muxed out.

17.5.1 FBD Channel Initialization
There are two ways to initialize the FBD channels. The first way uses a hardware
state machine for initialization. This initialization triggered by writing to the
Channel Reset register. In addition to a hardware state machine, the FBD channels
can also be initialized through a software interface. This allows more flexibility in
the initialization over the dedicated hardware state machine. Software must perform
the following sequence of events to initialize an FBD channel:

1. Because the SerDes PLLs are enabled before the TXBCLKIN is stable, the transmit
FIFO which tracks the phase drift between TXBCLKIN and the SerDes internal
clock may be too far off center when the MCU begins transmitting data. In order
to re-center this FIFO, software must toggle the TX_ENFTP bit in the
SERDES_CONFIG_BUS_REG from 0 to 1 and back to 0.

2. Drive Electrical Idle on the SB channel's TX outputs by setting the Channel State
register to disable. Channels must remain in Disable state for at least tDisable
(51 frames) before transitioning to Calibrate state.

1 GB 512 Mb (64 Mb x8) 2 0 D16 A16 1

1 GB 1 Gb (128 Mb x8) 1 0 E16 A16 0

2 GB 1 Gb (128 Mb x8) 2 0 E16 A16 1

2 GB 2 Gb (256 Mb x8) 1 1 E16 A16 0

4 GB 2 Gb (256 Mb x8) 2 1 E16 A16 1

DIMM Base Device Ranks
8 bank
mode

RAS Address
Width CAS Addr Width Stacked
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3. To transition to Calibrate state, set Channel State register to calibrate for longer
than twice tClkTrain time (42 frames). Once the AMBs are in the Calibrate
state, they must remain in this state for at least tCalibrate time (480K frames).

4. Drive Electrical Idle on SB channel to transition AMBs to Disable state. Remain
in Disable state for at least tDisable time (51 frames).

5. Set the Channel State register to training to begin driving TS0 patterns on the SB
channel to transition the AMBs to the Training state. The TS0 patterns are sent
to the last AMB until TS0 patterns are received on the northbound channel with
the AMB ID from the last AMB. Software will use the Training State Loopback
registers to determine how many correct TS0 patterns have been received on the
northbound channel. This training requires approximately 275 frames with eight
DIMMs per channel. After several correct TS0 patterns have been received on 13
of 14 of the bit lanes, initialization can proceed to step 5.

6. Set the Channel State register to testing to begin driving TS1 patterns on the SB
channel to transition the AMBs to the Testing state. The IBIST engine within the
MCU will take over after the TS1 header has been sent, and it will signal the MCU
upon its completion so the MCU can send the trailer and begin the next training
sequence. After several TS1 patterns with the AMB ID of the last AMB have been
received correctly, and software/IBIST has determined that at least 9 southbound
and 13 northbound bit lanes are working, initialization can proceed to step 6.

7. Set the Channel State register to polling to begin driving TS2 patterns on the SB
channel to transition the AMBs to the Polling state. Continue sending TS2
patterns to the last AMB until correct TS2 patterns are received on the NB
channel. This determines the read round-trip delay for the channel. TS2 patterns
can be sent to intermediate AMBs to determine which channel protocols they
support and to check that they can properly merge their data into the NB data
stream. AMBs that are not able to merge their data into the NB data stream
correctly will assert their data_merge_error status bit. Once initialization reaches
the L0 state, software can check these bits by using AMB Configuration register
read commands to determine how to adjust the COMMAND_TO_DATA_INCR
registers in the AMBs to increase the channel latency.

8. Set the Channel State register to config to begin driving TS3 patterns on the SB
channel to transition the AMBs to the Config state. The TS3 patterns program
the configuration of the SB and NB channels (always 10 SB and 14 SB for
OpenSPARC T2) and which channel bits are muxed out if using a failover mode.
TS3 patterns are issued until the patterns are correctly received on the NB
channel.

9. Set the Channel State register to l0 to transition AMBs to L0 state. After four
consecutive NOPs have been sent on the SB channel, the channel is ready to
accept channel and DRAM commands.
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17.5.2 Interconnect BIST (IBIST)
Interconnect BIST provides a mechanism for system level testing of the FBD channel
connections. The memory controller has IBIST transmit and receive engines, each
with a pattern generater. The transmit engine sends patterns to an AMB on the
southbound channel. The AMB loops the patterns back to the receive engine which
checks the patterns for errors.

IBIST is optionally run during the TS1 stage of the FBD channel initialization
sequence. The following sequence is used to run IBIST.

1. Set AMBID in FBD_CHANNEL_STATE_REG to the target AMB.

2. Set channel to be test in TS1_SB_NB_MAPPING_REG.

3. Set SBTS0CNT field in SBFIBINIT_REG and TRAINING_STATE_MIN_TIME_REG
such that SBTS0CNT * 12 is greater than TRAINING_STATE_MIN_TIME_REG +
240.

4. Start RX engine by setting start bit in NBFIBPORTCTL_REG.

5. Start TX engine by setting start bit in SBFIBPORTCTL_REG.

After starting the TX engine, the memory controller will sequence the initialization
state machine to the TS0 state and then to the TS1 state, buring which IBIST will be
run. After IBIST completes, the memory controller will continue sequencing to the
TS2 and TS3 states and complete in L0 state. Error status for the IBIST run will be
logged in the NBFIBPORTCTL_REG.

17.6 AMB Initialization
1. 1.5V, 1.8V, and 3.3V power supplies come up:

■ RESET# asserted low while power supplies are coming up.
■ CKEs are low upon 1.8V power-up.

2. BIOS queries SPD on all the FBDs on the channel to determine operating
conditions:

■ Channel frequency, compatible DIMMs, DRAM, and AMB parameters

3. Clocks up and stable at required frequency.

■ Reference clocks should be stable for at least 1 ms before RESET# deasserted.
■ DRAM clocks (CLK/CLK) may be toggling at this time.

4. RESET# deasserted high.
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■ CKEs to DRAMs remain low.

5. No in-band or SMBus transactions for at least 2 ms after RESET# deasserted.

6. AMB parameters critical for robust link initialization are programmed via SMBus.

■ Architected link registers:

i. LINKPARNXT: link frequency. Note: some AMBs may use this write to
trigger PLL init. After writing to LINKPARNXT, 200 µs is required prior to
any in-band activity. Note: It is generally satisfied by additional SMBus
activity.

ii. FBDSBCFGNXT: SB transmitter drive strength, de-emphasis setting, and
pass-through mode

iii. FBDNBCFGNXT: NB transmitter drive strength, de-emphasis setting, and
pass-through mode

■ Personality bytes from SPD needed for link inititalization

i. PERSBYTE{5:0}NXT: Remaining Personality bytes are not required for
link init and may be loaded over the high speed FBD configuration register
accesses

■ These next register values must be transferred to the matching current registers
before the FBD link leaves the Disable state

i. Updates may be done right after the NXT register is updated when link is
in electrical idle. Updates must be complete before the beginning of
training.

7. FBD link is initialized including Calibration state.

■ Refer to FBD Channel Configuration” for initialization sequence.

8. Remaining AMB configuration is loaded over high speed FBD channel

■ CMD2DATA, remaining Personality bytes, other SPD parameters, DRAM
parameters (MTR, DRT, DRC, etc.), Errors enabled, etc.

■ These AMB registers are loaded through the MCU Configuration register
Access Address and Data registers

9. FBD Link goes through fast reset (no calibration) to establish the desired
configuration.

■ DRAM clocks should be stable at this time (that is, after link train).

10. DRAM interface can now be established

a. MRS/EMRS set up and DRAM initialization sequence using DCALCSR and
DCALADDR.

i. Refer to Memory Initialization for DRAM initialization sequence
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ii. The DCALCSR and DCALADDR registers are accessed through the MCU
Configuration register Access Address and Data registers. The address
associated with the DRAM command is placed in the DCALADDR register.
The command is programmed in the DCALCSR with bit 31 set to initiate
the command. Software then polls this register until bit 31 is reset,
indicating that the command has completed.

b. DRAM interface calibrated using DCALCSR.

c. Optionally, Membist functionality can be used to test the DRAMs.

d. DRAMs can be initialized with MemBist.

e. AMB autorefresh engine is enabled at this time.

11. Refresh must now be transferred to the host.

■ Option 1:

i. Use fast reset on the link with DRAMs in self-refresh.

ii. Clear DSREFTC.dissrexit to enable fast self-refresh exit when link is re-
established

iii. Put the link in disable state which automatically puts the DRAMs in self-
refresh.

iv. Start the refresh engine on the host.

v. Bring up the link again.

vi. Host starts sending refresh commands as soon as L0 state is reached.

■ Option 2:

i. Write control register to disable autorefresh engine followed by

ii. Clear DAREFTC.arefen to turn off autorefresh.

iii. Host then immediately takes over sending refresh commands.

12. Host now has complete control of the FBD Channel.
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17.7 Memory Initialization
The power-up sequence for the SDRAMs is same as the JEDEC specification (JC
42.3). Software controls the sequence through the DDR Calibration Control and
Status register and the DDR Calibration Address register within the AMB. These are
accessed with AMB Configuration register reads and writes using the MCU’s
Configuration Register Access Address and Data registers.

17.7.1 Power On
Apply power, and maintain CKE below 0.2 * VDDQ and ODT at a low state. All
other inputs may be undefined. Once RESETn is asserted to the AMB, it will drive
CKE low.

17.7.2 Clocks Stable
Clocks to the DIMMs start as soon as power is enabled to the AMB. The clocks
should be stable for at least 1 ms before RESETn is deasserted.

17.7.3 Assert CKE
Software has to write to the DRAM Controller Mode register within the AMB to
enable CKEs to the DRAMs.

17.7.4 Software Configuration
Software needs to set all the DRAM configuration registers within the AMB to the
desired value.

17.7.5 Pause for 200 µs
DDR SDRAM initialization requires a 200 µs wait after clock has been stable. The
memory controller counts a fixed number of cycles to pause for this time.

17.7.6 Pause 400 ns
Controller waits for 400 ns before issuing precharge all command.
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17.7.7 precharge_all Command
Controller issue a precharge_all command for all banks of the device and for all
DIMMs present. This is done with a single command to all the DIMMs.

17.7.8 Issue EMRS(2) Write Command
Even though these registers contain no useful information, it is required that a write
to this register be performed. The default data of 0 is written by controller.

17.7.9 Issue EMRS(3) Write Command
Even though these registers contain no useful information, it is required that a write
to this register be performed. The default data of 0 is written by controller.

17.7.10 Issue EMRS(1) write command to enable DLL
Memory controller issues the extended mode register set command for DLL enable.

17.7.11 Reset DLL
Controller issues mode register set command for DLL reset.

17.7.12 precharge_all command
precharge_all command is issued for all banks of the devices and for all DIMMs
present by the controller.

17.7.13 Two Auto Refresh Cycles
JEDEC specifies to issue two or more autorefresh commands, and the memory
controller issues two autorefresh commands.

17.7.14 Set Mode Register to Configure the Device
Mode register command to initialize device operation is issued by the memory
controller.
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17.7.15 200 Cycles After DLL Reset, Set OCD Default
Command
Controller counts the number of cycles from the DLL reset to this command and if it
meets 200 cycle count, OCD default command is issued to the DIMMs.

17.7.16 Perform OCD Calibration
Software must read the ocd_sense_pull[up|down] CSRs within the AMBs and adjust
each DRAM device accordingly. The encoded commands for the adjustments are
written into the AMBs’ write data FIFOs. When the OCD adjust command is issued,
the data from the FIFOs is driven to the DRAMs.

The following pseudocode can be used to adjust the impedance of the SDRAM lines.

foreach (DRAM rank) {
  foreach (pullup, pulldown) {
    reset impedance strength;
    sense OCD;
    until (all DRAM devices set) {
       adjust each device accordingly;
       sense OCD;
    }
  }
}

17.7.17 Set OCD Exit Command
An OCD exit command is required to get out of the OCD calibration mode and is
issued by the controller.

17.7.18 Initialization Complete
After the above step is performed, the DDR2 SDRAM initialization is finished,
normal memory accesses are now allowed.

Note To guarantee ODT off, vref must be valid and a low level must
be applied to the ODT pin.
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17.8 RAS Feature Overview

17.8.1 ECC and Extended ECC
The data sent to the DRAMs is protected by SEC-DED error correction. Galois field
multiplication techniques are used to generate 16 bits of ECC for each 128 bits of
data.

Extended ECC (failover) is a feature of the ECC bits, where they contain enough
information to correct any nibble within a 128-bit word. If a single x4 SDRAM
component fails, the SDRAM, which would normally hold parity information for
double error detection, will be reused for normal data or single error correction
information. Thus, when in failover mode, single-bit errors can still be detected and
corrected, but multiple errors can no longer be detected. The DRAM Fail-Over Status
register and the DRAM Fail-Over Mask register control the operation of the failover
mode. Extended ECC is not supported in single channel mode.

Appendix A of the OpenSPARC T2 Programmer's Reference Manual discusses the
ECC and Extended ECC algorithms for the OpenSPARC T2 MCU.

17.8.2 Memory Scrubbing
Memory scrubbing refers to the regeneration of ECC for data in memory and the
correction of single-bit errors and detection of double-bit errors. When scrubbing is
enabled through the DRAM Scrub Enable register described in DRAM Scrub Enable
Register on page 360, at the end of the time interval defined by the DRAM Scrub
Frequency register described in DRAM Scrub Frequency Register on page 358, a
memory scrub request is issued to the DIMMs. The scrubbing requests have priority
over L2 cache requests. First, a scrubbing read request is issued to the DIMMs, and
L2 requests to the same bank as the scrub request are blocked. When the scrubbing
read data returns, the error detection and correction logic is used on the data. ECC is
regenerated and compared with the ECC data read from memory. If an error is
detected, subsequent L2 cache transactions are halted and a single-bit or double-bit
error is flagged in the DRAM Error Status register as well as being signaled to the L2
cache; then the MCU generates additional requests to the SDRAMs to collect more
information on the error, as detailed in the following section. After the scrubbing
transaction completes, the L2 cache requests are able to proceed.

Once a scrubbing request is sent, the time interval counter is reset and begins
counting down again, and the scrub address is incremented to the next memory
location.
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17.8.3 ECC Error Handling
When an error occurs on a scrub read or an L2 cache read request, the MCU will flag
the error to the L2 and log its error in the MCU ESR. Then it will try to determine if
the error is a hard error or a transient error. When the error occurs, subsequent L2
requests will be blocked. The MCU will perform the first retry read and log its ECC
status in the Retry Status register. If the first retry read does not have an
uncorrectable error, the corrected read data is written back to the SDRAM, and a
second retry read will be issued and its status will also be logged. Only the status
from the original read will be sent to the L2 cache and logged in the ESR. One of the
virtual processors must perform a register read to check the status of the subsequent
reads. Full details on error handling can be found in L2 Cache Error Descriptions on
page 244 and L2 Error Registers on page 264.

17.8.4 Data Poisoning
Data poisoning involves marking known corrupt data in memory with bad ECC so
that any later access will get an ECC error. MCU memory poisoning is performed by
flipping ECC check bits 15, 9, 5, and 0. This will generate a failing syndrome of
822116 which, when encountered on a read, will most likely indicate poisoned data.

17.9 Access to Nonexistent Memory
Load accesses from nonexistent memory will take a data_access_error trap.
Instruction fetches from nonexistent memory will take an instruction_access_error
trap. Store accesses to nonexistent memory will be silently discarded by the system.

Please refer to TABLE 17-3 for out-of-bound address ranges for different memory
configurations.

Implementation
Note

There can only be one outstanding scrub command to the
DIMMs. So, having a very low number in scrub frequency
register does not issue a lot of scrubs.
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TABLE 17-3 Out-of-Bound Address Ranges for Different Memory Configurations

DIMMs per
Channel DIMM Capacity Ranks

Dual Channel
Memory

Dual Channel
Out-of-Bound

Single Channel
Memory

Single Channel
Out-of-Bound

1 256 Mb × 4 1 1 GB PA{39:32} 512 MB PA{39:31}

2 256 Mb × 4 1 2 GB PA{39:33} 1 GB PA{39:32}

4 256 Mb × 4 1 4 GB PA{39:34} 2 GB PA{39:33}

8 256 Mb × 4 1 8 GB PA{39:35} 4 GB PA{39:34}

1 256 Mb × 4 2 2 GB PA{39:33} 1 GB PA{39:32}

2 256 Mb × 4 2 4 GB PA{39:34} 2 GB PA{39:33}

4 256 Mb × 4 2 8 GB PA{39:35} 4 GB PA{39:34}

8 256 Mb × 4 2 16 GB PA{39:36} 8 GB PA{39:35}

1 512 Mb × 4 1 2 GB PA{39:33} 1 GB PA{39:32}

2 512 Mb × 4 1 4 GB PA{39:34} 2 GB PA{39:33}

4 512 Mb × 4 1 8 GB PA{39:35} 4 GB PA{39:34}

8 512 Mb × 4 1 16 GB PA{39:36} 8 GB PA{39:35}

1 512 Mb × 4 2 4 GB PA{39:34} 2 GB PA{39:33}

2 512 Mb × 4 2 8 GB PA{39:35} 4 GB PA{39:34}

4 512 Mb × 4 2 16 GB PA{39:36} 8 GB PA{39:35}

8 512 Mb × 4 2 32 GB PA{39:37} 16 GB PA{39:36}

1 1 Gb × 4 1 4 GB PA{39:34} 2 GB PA{39:33}

2 1 Gb × 4 1 8 GB PA{39:35} 4 GB PA{39:34}

4 1 Gb × 4 1 16 GB PA{39:36} 8 GB PA{39:35}

8 1 Gb × 4 1 32 GB PA{39:37} 16 GB PA{39:36}

1 1 Gb × 4 2 8 GB PA{39:35} 4 GB PA{39:34}

2 1 Gb × 4 2 16 GB PA{39:36} 8 GB PA{39:35}

4 1 Gb × 4 2 32 GB PA{39:37} 16 GB PA{39:36}

8 1 Gb × 4 2 64 GB PA{39:38} 32 GB PA{39:37}

1 2 Gb × 4 1 8 GB PA{39:35} 4 GB PA{39:34}

2 2 Gb × 4 1 16 GB PA{39:36} 8 GB PA{39:35}

4 2 Gb × 4 1 32 GB PA{39:37} 16 GB PA{39:36}

8 2 Gb × 4 1 64 GB PA{39:38} 32 GB PA{39:37}

1 2 Gb × 4 2 16 GB PA{39:36} 8 GB PA{39:35}

2 2 Gb × 4 2 32 GB PA{39:37} 16 GB PA{39:36}

4 2 Gb × 4 2 64 GB PA{39:38} 32 GB PA{39:37}

8 2 Gb × 4 2 128 GB PA{39:39} 64 GB PA{39:38}
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17.10 Power Management
The power used by the SDRAMs will be a significant portion of the system power
usage. Some high-performance systems may be able to handle the maximum power
consumption rates, but low-cost systems may need to limit their power usage due to
cooling issues, etc. The power throttling scheme of OpenSPARC T2 limits the
number of SDRAM memory access transactions during a specified time period. This
is done by counting the number of banks that are opened (that is, activate cycles)
during this time. Since all of the write and read transactions of OpenSPARC T2 use
auto-precharge, the number of banks opened is equivalent to the number of write
and read transactions. If the number of transactions during this time period exceeds
a preprogrammed limit, no more memory transactions are dispatched until the time
period expires. More details on memory power management can be found in
Memory Access Throttle Control on page 391.

17.11 DRAM Control and Status Registers
This section describes the control registers and diagnostic access for the DRAM.
Each DRAM branch has its own set of control, status, and error registers. Note that
each DRAM branch requires that all DIMMs on that branch be of exactly the same
kind. There is no requirement on the kind of DIMMs used by different DRAM
branches. It is better if the size of physical memory on each branch is equal, but it
would still work if the software programs the registers to the lowest value of the
branches.

Note: When operating in Partial-Bank mode, the CSRs in the disabled memory
controllers will not be accessible because the clocks to these controllers will be
turned off to reduce power.

17.11.1 DRAM CAS Address Width Register
TABLE 17-4 shows the format of the DRAM CAS Address Width register.
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TABLE 17-4 DRAM CAS Address Width Register – DRAM_CAS_ADDR_WIDTH_REG (84 0000 000016)
(Count 4 Step 4096)

17.11.2 DRAM RAS Address Width Register
This register indicates the number of RAS Address bits for a x4 DRAM part of a
given density. When x8 parts are being used, this register should be programmed
for the x4 part of the same density. The hardware will make the address width
correction based on the DRAM CAS Address Width register.

TABLE 17-5 shows the format of the DRAM RAS Address Width register.

TABLE 17-5 DRAM RAS Address Width Register – DRAM_RAS_ADDR_WIDTH_REG (84 0000 000816)
(Count 4 Step 4096)

17.11.3 DRAM CAS Latency Register
TABLE 17-6 shows the format of the DRAM RAS Address Width register.

TABLE 17-6 DRAM CAS Address Latency Register – DRAM_CAS_LAT_REG (84 0000 001016) (Count 4
Step 4096)

17.11.4 DRAM Scrub Frequency Register
TABLE 17-7 shows the format of the DRAM Scrub Frequency register.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 width B16 RW Defines the number of bits of CAS address width. Any value other than A16
or B16 will be ignored. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 width F16 RW Defines the number of bits of RAS address width. Legal values are D16 to F16.
Values outside this range will be treated as F16. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:3 — 0 RO Reserved

2:0 lat 316 RW Defines the CAS latency. 216 = CL of 2; 316 = CL of 3; and so on. Reset only on POR.
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TABLE 17-7 DRAM Scrub Frequency Register – DRAM_SCRUB_FREQ_REG (84 0000 001816) (Count 4
Step 4096)

17.11.5 DRAM Refresh Frequency Register
TABLE 17-8 shows the format of the DRAM Refresh Frequency register.

TABLE 17-8 DRAM Refresh Frequency Register – DRAM_REFRESH_FREQ_REG (84 0000 002016) (Count
4 Step 4096)

17.11.6 DRAM Refresh Counter Register
This register is the free-running counter that triggers refresh when it equals
DRAM_REFRESH_FREQ_REG. Refreshes are not issued to the DRAMs if the
DRAM_DIMM_INIT_REG bit 0 is set to 1.

TABLE 17-9 shows the format of the DRAM Refresh Counter register.

TABLE 17-9 DRAM Refresh Counter Register – DRAM_REFRESH_COUNTER_REG (84 0000 003816)
(Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:12 — 0 RO Reserved

11:0 freq FFF16 RW Defines how often scrubbing should be performed in terms of DRAM clocks.
Reset only on POR. A smaller number causes more frequent scrubbing.

Bit Field Initial Value R/W Description

63:13 — 0 RO Reserved

12:0 freq 82016 (for
266 MHz
DIMMs)

RW Defines how often refresh should be performed in terms of DRAM clocks.
It is 2080 (82016) cycles at 266 MHz clock, 2600 (A2816) for 333 MHz, and
3120 (C3016) for 400 MHz. These values are approximately 7.8us.
When this register value is written, the refresh counter value is reset. A
smaller value generates more frequent refresh requests. This register is only
reset on POR.

Bit Field
Initial
Value R/W Description

63:13 — 0 RO Reserved

12:0 count 0 RW Free running counter to issue refresh command when it equals Refresh
frequency register. This register is reset to 0 when the DRAM Refresh
Frequency register is written or when the count equals or exceeds the DRAM
Refresh Frequency value. Reset on POR, WMR, or DBR.
• 359



17.11.7 DRAM Scrub Enable Register
This register controls whether scrub should happen in background to DRAM.

TABLE 17-10 shows the format of the DRAM Scrub Enable register.

TABLE 17-10 DRAM Scrub Enable Register – DRAM_SCRUB_ENABLE_REG (84 0000 004016) (Count 4 Step
4096)

17.11.8 DRAM RAS to RAS Different Bank Delay Register
TABLE 17-11 shows the format of the DRAM RAS to RAS Different Bank Delay
register.

TABLE 17-11 DRAM RAS to RAS Different Bank Delay Register – DRAM_TRRD_REG (84 0000 008016)
(Count 4 Step 4096)

17.11.9 DRAM RAS to RAS Same Bank Delay Register
TABLE 17-12 shows the format of the DRAM RAS to RAS Same Bank Delay register.

TABLE 17-12 DRAM RAS to RAS Sam Bank Delay Register – DRAM_TRC_REG (84 0000 0088)16 (Count 4
Step 4096)

17.11.10 DRAM RAS to CAS Delay Register
TABLE 17-13 shows the format of the DRAM RAS to CAS Delay register.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 enab 0 RW If 1, scrub is enabled. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 216 RW Trrd delay. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:5 — 0 RO Reserved

4:0 delay C16 RW Trc delay. This is by default equals to tRAS + tRP. Reset only on POR.
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TABLE 17-13 DRAM RAS to CAS Delay Register – DRAM_TRCD_REG (84 0000 009016) (Count 4 Step 4096)

17.11.11 DRAM Write to Read CAS Delay Register
TABLE 17-14 shows the format of the DRAM Write to Read CAS Delay register.

TABLE 17-14 DRAM Write to Read CAS Delay Register – DRAM_TWTR_REG (84 0000 009816) (Count 4
Step 4096)

17.11.12 DRAM Read to Write CAS Delay Register
TABLE 17-15 shows the format of the DRAM Read to Write CAS Delay register.

TABLE 17-15 DRAM Read to Write CAS Delay Register – DRAM_TRTW_REG (84 0000 00A016) (Count 4
Step 4096)

17.11.13 DRAM Internal Read to Precharge Delay Register
TABLE 17-16 shows the format of the DRAM internal Read to Precharge Delay register.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 316 RW Trcd delay. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 016 RW Twtr delay. Actual delay is this register value + CL − 1 + BL/2 + iWTR.
Reset only on POR. DRAM controller supports a total of these values not to
exceed F16.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 016 RW Trtw delay. Actual delay is this register value + BL/2 + 2 tCK. Reset only on
POR. DRAM controller supports a total of these values not to exceed F.16
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TABLE 17-16 DRAM internal Read to Precharge Delay Register – DRAM_TRTP_REG (84 0000 00A816)
(Count 4 Step 4096)

17.11.14 DRAM Active to Precharge Delay Register
TABLE 17-17 shows the format of the DRAM Active to Precharge Delay register.

TABLE 17-17 DRAM Active to Precharge Delay Register – DRAM_TRAS_REG (84 0000 00B016) (Count 4
Step 4096)

17.11.15 DRAM Precharge Command Period Register
TABLE 17-18 shows the format of the DRAM Precharge Command Period register.

TABLE 17-18 DRAM Precharge Command Period Register – DRAM_TRP_REG (84 0000 00B816) (Count 4
Step 4096)

17.11.16 DRAM Write Recovery Period Register
TABLE 17-19 shows the format of the DRAM Write Recovery Period register.

Bit Field
Initial
Value R/W Description

63:3 — 0 RO Reserved

2:0 delay 216 RW Trtp delay. The minimum value for this register is 216. If software tries to
program a value less than 216, the register will be loaded with the value 216.
Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 916 RW Tras delay. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 316 RW Trp delay. Reset only on POR.
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TABLE 17-19 DRAM Write Recovery Period Register – DRAM_TWR_REG (84 0000 00C016) (Count 4 Step
4096)

17.11.17 DRAM Autorefresh to Active Period Register
TABLE 17-20 shows the format of the DRAM Autorefresh to Active Period register.

TABLE 17-20 DRAM Autorefresh to Active Period Register – DRAM_TRFC_REG (84 0000 00C816) (Count 4
Step 4096)

17.11.18 DRAM Mode Register Set Command
Period Register
TABLE 17-21 shows the format of the DRAM Mode Register Set Command Period
register.

TABLE 17-21 DRAM Mode Register Set Command Period Register – DRAM_TMRD_REG (84 0000 00D016)
(Count 4 Step 4096)

17.11.19 DRAM Four-Activate Window Register
TABLE 17-22 shows the format of the DRAM Four-Activate Window Register.

Bit Field
Initial
Value R/W Description

63:4 — 0 RO Reserved

3:0 delay 316 RW Twr delay. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:7 — 0 RO Reserved

6:0 delay 2716 RW Trfc delay (195 ns @ 200MHz). Reset only on POR.

Bit Field
Initial
Value R/W Description

63:2 — 0 RO Reserved

1:0 delay 216 RW Tmrd delay. Reset only on POR.
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TABLE 17-22 DRAM Four-Activate Window Register – DRAM_FAWIN_REG (84 0000 00D816) (Count 4 Step
4096)

17.11.20 DRAM Internal Write to Read Command
Delay Register
TABLE 17-23 shows the format of the DRAM Internal Write to Read Command Delay
register.

TABLE 17-23 DRAM Internal Write to Read Command Delay Register – DRAM_TIWTR_REG
(84 0000 00E016) (Count 4 Step 4096)

17.11.21 DRAM Precharge Wait Register During
Power Up
This register is no longer used by hardware.

This register controls the wait time before a precharge can be issued during the
power up sequence.

TABLE 17-24 shows the format of the DRAM Precharge Wait Register During Power
Up.

TABLE 17-24 DRAM Precharge Wait Register – DRAM_PRECHARGE_WAIT_REG (84 0000 00E816) (Count
4 Step 4096)

Bit Field
Initial
Value R/W Description

63:5 — 0 RO Reserved

4:0 mode A16 RW Tfaw. Number of cycles in which four activate commands may be sent to a
DIMM. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:2 — 0 RO Reserved

1:0 delay 216 RW Tiwtr delay. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:8 — 0 RO Reserved

7:0 bunch 5516 RW Equivalent to 80 dram cycles, which is 400 ns @ 200 MHz.
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17.11.22 DRAM DIMM Stacked Register
TABLE 17-25 shows the format of the DRAM DIMM Stacked register.

TABLE 17-25 DRAM DIMM Stacked Register – DRAM_DIMM_STACK_REG (84 0000 010816) (Count 4 Step
4096)

17.11.23 DRAM Extended Mode (2) Register
TABLE 17-26 shows the format of the DRAM Extended Mode (2) register.

TABLE 17-26 DRAM Extended Mode (2) Register – DRAM_EXT_WR_MODE2_REG (84 0000 011016) (Count
4 Step 4096)

17.11.24 DRAM Extended Mode (1) Register
TABLE 17-27 shows the format of the DRAM Extended Mode (1) register.

TABLE 17-27 DRAM Extended Mode (1) Register – DRAM_EXT_WR_MODE1_REG (84 0000 011816) (Count
4 Step 4096)

17.11.25 DRAM Extended Mode (3) Register
TABLE 17-28 shows the format of the DRAM Extended Mode (3) register.

Bit Field
Initial
Value R/W Description

63:1 — 0 RO Reserved

0 stack 016 RW Set to 1 if DIMMs are stacked, 0 otherwise. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:15 — 0 RO Reserved

14:0 mreg 016 RW Default value of Extended mode register (2) defined by JEDEC. Reset only on
POR.

Bit Field
Initial
Value R/W Description

63:15 — 0 RO Reserved

14:0 mreg 1816 RW Extended mode register (1) defined by JEDEC. Reset only on POR.
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TABLE 17-28 DRAM Extended Mode (3) Register – DRAM_EXT_WR_MODE3_REG (84 0000 012016)
(Count 4 Step 4096)

17.11.26 DRAM 8 Bank Mode Register
This register indicates whether a x4 DRAM part of a given density has 4 or 8 internal
banks. When x8 parts are being used, this register should be programmed for the x4
part of the same density. The hardware will make the 8 bank mode correction based
on the DRAM CAS Address Width register.

Note: When the CAS Address Width register is programmed to A16, the 8 bank mode
register will always be read as a 1; however, the hardware will use the value that
was written to this register.

TABLE 17-29 shows the format of the DRAM 8 Bank Mode register.

TABLE 17-29 DRAM 8 Bank Mode Register – DRAM_8_BANK_MODE_REG (84 0000 012816) (Count 4 Step
4096)

17.11.27 DRAM Branch Disabled Register
TABLE 17-30 shows the format of the DRAM Branch Disabled register.

TABLE 17-30 DRAM Branch Disabled Register – DRAM_BRANCH_DISABLED_REG (84 0000 013816)
(Count 4 Step 4096)

17.11.28 DRAM Select Low Order Address Bits Register
TABLE 17-31 shows the format of the DRAM Select Low Order Address Bits register.

Bit Field
Initial
Value R/W Description

63:15 — 0 RO Reserved

14:0 mreg 016 RW Extended mode register (3) defined by JEDEC. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 disable 116 RW If 1, the dram devices have 8 banks instead of 4 banks. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 disable 016 RW Set to 1 if branch is not present or is disabled. Reset only on POR.
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TABLE 17-31 DRAM Select Low Order Address Bits Register – DRAM_SEL_LO_ADDR_BITS_REG
(84 0000 014016) (Count 4 Step 4096)

17.11.29 DRAM Single Channel Mode Register
TABLE 17-32 shows the format of the DRAM Single Channel Mode register.

TABLE 17-32 DRAM Single Channel Mode register – DRAM_SNGL_CHNL_MODE_REG (84 0000 014816)
(Count 4 Step 4096)

17.11.30 DRAM DIMM Initialization Register
TABLE 17-33 shows the format of the DRAM DIMM Initialization register.

TABLE 17-33 DRAM DIMM Initialization Register – DRAM_DIMM_INIT_REG (84 0000 01A016) (Count 4
Step 4096)

17.11.31 DRAM Mode Reg Write Status Register
This register is no longer used by hardware.

TABLE 17-34 shows the format of the DRAM Mode Reg Write Status register.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 bunch 0 RW If 1, then bits after the bank are used for stack and rank instead of the top
most bits of PA. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 mode 0 RW If 1, enables single channel mode for FBD. Burst length becomes 8. Reset only
on POR.

Bit Field
Initial
Value R/W Description

63:2 — X RO Reserved

1 cke 0 RW CKE enable to the controller. Set to 1 to assert CKE high to the DIMMS.

0 init 116 RW Software must clear this register upon completing the initialization of the
MCU and AMB registers and the DRAM initialization sequence.
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TABLE 17-34 DRAM Mode Reg Write Status Register – DRAM_MODE_WRITE_STATUS_REG
(84 0000 020816) (Count 4 Step 4096)

17.11.32 DRAM Initialization Status Register
TABLE 17-35 shows the format of the DRAM Initialization Status register.

TABLE 17-35 DRAM HW Initialization Status Register – DRAM_INIT_STATUS_REG (84 0000 021016)
(Count 4 Step 4096)

17.11.33 DRAM DIMMs Present Register
TABLE 17-36 shows the format of the DRAM DIMMs Present register.

TABLE 17-36 DRAM DIMMs Present Register – DRAM_DIMMS_PRESENT_REG (84 0000 021816) (Count 4
Step 4096)

17.11.34 DRAM Failover Status Register
Each DRAM branch has a failover status register which can be set by software to
move a nibble of data from a bad chip to replace one of the ECC chips.

TABLE 17-37 shows the format of the DRAM Fail-Over Status register.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 done 016 RO 1 if mode reg write done, 0 otherwise. Also its reset to 0 if register 1A016 is
written to. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 done 016 RO 1 if DRAM initialization sequence is done, 0 otherwise. Also its reset to 0 if
register 1A016 is written to. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:4 — X RO Reserved

3:0 num 116 RW Number of DIMMs per channel. Reset only on POR.
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TABLE 17-37 DRAM Fail-Over Status Register – DRAM_FAILOVER_STATUS_REG (84 0000 022016) (Count
4 Step 4096)

17.11.35 DRAM Failover Mask Register
Each DRAM branch has a failover status mask register which can be set by software
to specify which nibble to ignore the data from.

TABLE 17-38 shows the format of the DRAM Fail-Over Mask register.

TABLE 17-38 DRAM Fail-Over Mask Register – DRAM_FAILOVER_MASK_REG (84 0000 022816) (Count 4
Step 4096)

17.11.36 Power Down Mode Register
TABLE 17-39 shows the format of the DRAM Power Down Mode register.

TABLE 17-39 Power Down Mode Register (84 0000 023816) (Count 4 Step 4096)

17.11.37 FBD Channel State Register
TABLE 17-40 shows the format of the FBD Channel State register.

Bit Field
Initial
Value R/W Description

63:1 — X RO Reserved

0 en 016 RW Set if in fail-over mode. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:35 — 0 RO Reserved

34:0 mask 016 RW Mask register to shift data. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — 0 RO Reserved

0 enb_hp 016 RW Enables the use of DRAM power down mode for power saving.

Note The Power Down Mode register should not be changed during
normal system operation. Doing so may cause transactions to
be dropped or memory contents to be updated incorrectly.
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17.11.38 FBD Fast Reset Flag Register
TABLE 17-41 shows the format of the FBD Fast Reset Flag register.

17.11.39 FBD Channel Reset Register
Writing to bit 0 of this register causes the MCU to sequence through the AMB
initialization states. If the FBD Fast Reset Flag is set, the Calibration stage will not be
included in the initialization.

TABLE 17-42 shows the format of the FBD Channel Reset register.

TABLE 17-42 FBD Channel Reset Register – FBD_CHNL_RESET_REG (84 0000 081016) (Count 4 Step 4096)

TABLE 17-40 FBD Channel State Register – FBD_CHANNEL_STATE_REG (84 0000 080016) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:8 — 016 RO Reserved

7 mdisable 016 RW Disable AMB data merging for TS2 patterns.

6:3 ambid 016 RW Target AMB for training sequences. Reset only on POR.

2:0 state 016 RW State in initialization sequence: 016 = Disable; 116 = Calibrate; 216 = Training;
316 = Testing; 416 = Polling; 516 = Config, 616 = L0.

TABLE 17-41 FBD Fast Reset Flag Register – FBD_FAST_RESET_FLAG_REG (84 0000 080816) (Count 4
Step 4096)

Bit Field
Initial
Value R/W Description

63:4 — 016 RO Reserved

3 sync_ier 016 RW Enable use of ier bit in Sync command. ier will be issued in last sync frame
before a channel reset.

2:1 sync_r 016 RW Indicates which status register will be received from the AMBs.

0 fastreset 016 RW Causes MCU to use the Fast Reset sequence for FBDIMM channel
initialization. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1 err 016 RW Set to 1 if an error occurred during FBD channel initialization.

0 fbdinit 016 RW Causes MCU to initialize FBD channels. Reset to 0 when initialization is
complete.
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17.11.40 TS1 Southbound to Northbound Mapping
Register
TABLE 17-43 shows the format of the TS1 Southbound to Northbound Mapping
register.

TABLE 17-43 TS1 Southbound to Northbound Mapping Register – TS1_SB_NB_MAPPING_REG
(84 0000 081816) (Count 4 Step 4096)

17.11.41 TS1 Test Parameter Register
TABLE 17-44 shows the format of the TS1 Test Parameter register.

TABLE 17-44 TS1 Test Parameter Register – TS1_TEST_PARAMETER_REG (84 0000 082016) (Count 4 Step
4096)

17.11.42 TS3 Failover Configuration Register
TABLE 17-45 shows the format of the TS3 Failover Configuration register.

Bit Field
Initial
Value R/W Description

63:4 — 016 RO Reserved

3 ibrx_chnl 016 RW Indicates which channel for IBIST to check. Reset only on POR.

2:0 mapping 016 RW Determines how targeted AMB maps data from SB bit lanes to NB bit lanes.
Reset only on POR

Bit Field
Initial
Value R/W Description

63:24 — 016 RO Reserved

23:0 param 016 RW AMB test parameters for TS1 sequence. Reset only on POR.

TABLE 17-45 TS3 Failover Configuration Register – TS3_FAILOVER_CONFIG_REG (84 0000 082816)
(Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15:12 sbconfig1 F16 RW Indicates which southbound lanes for channel 1 will be used. Reset only on POR.

11:8 nbconfig1 F16 RW Indicates which northbound lanes for channel 1 will be used. Reset only on POR.

7:4 sbconfig0 F16 RW Indicates which southbound lanes for channel 0 will be used. Reset only on POR.

3:0 nbconfig0 F16 RW Indicates which northbound lanes for channel 0 will be used. Reset only on POR.
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17.11.43 Electrical Idle Detected Register
TABLE 17-46 shows the format of the Electrical Idle Detected register.

TABLE 17-46 Electrical Idle Detected Register – ELECTRICAL_IDLE_DETECTED_REG (84 0000 083016)
(Count 4 Step 4096)

17.11.44 Disable State Period Register
TABLE 17-47 shows the format of the Disable State Period register.

TABLE 17-47 Disable State Period Register – DISABLE_STATE_PERIOD_REG (84 0000 083816) (Count 4
Step 4096)

17.11.45 Disable State Period Done Register
TABLE 17-48 shows the format of the Disable State Period Done register.

TABLE 17-48 Disable State Period Done Register – DISABLE_STATE_PERIOD_DONE_REG
(84 0000 084016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:28 — 016 RO Reserved

27:14 electidle1 3FF16 RO Electrical Idle detected from bit lanes in channel 1

13:0 electidle0 3FF16 RO Electrical Idle detected from bit lanes in channel 0

Bit Field
Initial
Value R/W Description

63:10 — 016 RO Reserved

9:0 count FF16 RW Counter value for the Disable state. Once Disable state is entered, a counter
will count to this value. Once the count is reached, the Disable Done bit will
be set. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — 016 RO Reserved

0 done 016 RW If set, indicates that the counter for the Disable state period has completed
counting.
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17.11.46 Calibrate State Period Register
TABLE 17-49 shows the format of the Calibrate State Period register.

TABLE 17-49 Calibrate State Period Register – CALIBRATE_STATE_PERIOD_REG (84 0000 0848)16 (Count
4 Step 4096)

17.11.47 Calibrate State Period Done Register
TABLE 17-50 shows the format of the Calibrate State Period Done register.

TABLE 17-50 Calibrate State Period Done Register – CALIBRATE_STATE_PERIOD_DONE_REG
(84 0000 085016) (Count 4 Step 4096)

17.11.48 Training State Minimum Time Register
TABLE 17-51 shows the format of the Training State Minimum Time register.

TABLE 17-51 Training State Minimum Time Register – TRAINING_STATE_MIN_TIME_REG
(84 0000 085816) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:20 — 016 RO Reserved

19:0 count 016 RW Counter value for the Calibrate state. Once Calibrate state is entered, a
counter will count to this value. Once the count is reached, the
calibrate_done bit will be set. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:1 — 016 RO Reserved

0 done 016 RW If set, indicates that the counter for the Calibrate state period has completed
counting.

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15:0 count FF16 RW Minimum number of frames for Training state before starting to check for
Done. Reset only on POR.
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17.11.49 Training State Done Register
TABLE 17-52 shows the format of the Training State Done register.

TABLE 17-52 Training State Done Register – TRAINING_STATE_DONE_REG (84 0000 086016) (Count 4 Step
4096)

17.11.50 Training State Timeout Register
TABLE 17-53 shows the format of the Recalibration Duration register.

TABLE 17-53 Training State Timeout Register – TRAINING_STATE_TIMEOUT_REG (84 0000 086816) (Count
4 Step 4096)

17.11.51 Testing State Done Register
TABLE 17-54 shows the format of the Testing State Done register.

TABLE 17-54 Testing State Done Register – TESTING_STATE_DONE_REG (84 0000 087016) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1 timeout 016 RW Set if MCU does not recognize 16 Training state sequences from FBDs
before Training state timeout period has elapsed.

0 done 016 RW Set when MCU has recognized 16 training state sequences from FBDs after
minimum Training state period has elapsed.

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15:0 count FFFF16 RW Timeout period for Training state. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1 timeout 016 RW Set if MCU does not recognize 16 Testing state sequences from FBDs before
testing state timeout period has elapsed.

0 done 016 RW Set when MCU has recognized 16 Testing state sequences from FBDs.
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17.11.52 Testing State Timeout Register
TABLE 17-55 shows the format of the Testing State Timeout register.

TABLE 17-55 Testing State Timeout Register – TESTING_STATE_TIMEOUT_REG (84 0000 087816) (Count 4
Step 4096)

17.11.53 Polling State Done Register
TABLE 17-56 shows the format of the Polling State Done register.

TABLE 17-56 Polling State Done Register – POLLING_STATE_DONE_REG (84 0000 088016) (Count 4 Step
4096)

17.11.54 Polling State Timeout Register
TABLE 17-57 shows the format of the Polling State Timeout register.

TABLE 17-57 Polling State Timeout Register – POLLING_STATE_TIMEOUT_REG (84 0000 088816) (Count 4
Step 4096)

Bit Field
Initial
Value R/W Description

63:8 — 016 RO Reserved

7:0 count FF16 RW Timeout period for Testing state. Reset only on POR.

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1 timeout 016 RW Set if MCU does not recognize 16 Polling state sequences from FBDs before
Polling State Timeout period has elapsed.

0 done 016 RW Set when MCU has recognized 16 Polling state sequences from FBDs.

Bit Field
Initial
Value R/W Description

63:8 — 016 RO Reserved

7:0 count FF16 RW Timeout period for Polling state. Reset only on POR.
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17.11.55 Config State Done Register
TABLE 17-58 shows the format of the Config State Done register.

TABLE 17-58 Config State Done Register – CONFIG_STATE_DONE_REG (84 0000 089016) (Count 4 Step
4096)

17.11.56 Config State Timeout Register
TABLE 17-59 shows the format of the Config State Timeout register.

TABLE 17-59 Config State Timeout Register – CONFIG_STATE_TIMEOUT_REG (84 0000 089816) (Count 4
Step 4096)

17.11.57 DRAM Per-Rank CKE Register
Writing this register or the cke bit of the DIMM Initialization register,
84 0000 01A016, will cause the MCU to send a CKE command to the FBDIMMs. Each
bit corresponds to a rank in a fully populated FBDIMM branch. The enable bits for
the CKE command are qualified by the number of DIMMS in the branch, whether
the DIMMs are stacked and whether the DIMM Initialization register cke bit is set.

Memory traffic must be disabled by setting bit 0 of the DIMM Initialization register
when using the Per-Rank CKE register because timing checks are not performed
between CKE commands and DRAM transactions.

TABLE 17-60 shows the format of the DRAM Per-Rank CKE register.

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1 timeout 016 RW Set if MCU does not recognize 16 Config state sequences from FBDs before
Config State Timeout period has elapsed.

0 done 016 RW Set when MCU has recognized 16 Config state sequences from FBDs.

Bit Field
Initial
Value R/W Description

63:8 — 0 RO Reserved

7:0 count FF16 RW Timeout period for Config state. Reset only on POR.
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17.11.58 L0s Duration Register

TABLE 17-61 shows the format of the L0s Duration register.

TABLE 17-60 PER_RANK_CKE_REG (84 0000 08A016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15 d7r1 116 RW CKE enable for DIMM 7, Rank 1. Reset only on POR.

14 d7r0 116 RW CKE enable for DIMM 7, Rank 0. Reset only on POR.

13 d6r1 116 RW CKE enable for DIMM 6, Rank 1. Reset only on POR.

12 d6r0 116 RW CKE enable for DIMM 6, Rank 0. Reset only on POR.

11 d5r1 116 RW CKE enable for DIMM 5, Rank 1. Reset only on POR.

10 d5r0 116 RW CKE enable for DIMM 5, Rank 0. Reset only on POR.

9 d4r1 116 RW CKE enable for DIMM 4, Rank 1. Reset only on POR.

8 d4r0 116 RW CKE enable for DIMM 4, Rank 0. Reset only on POR.

7 d3r1 116 RW CKE enable for DIMM 3, Rank 1. Reset only on POR.

6 d3r0 116 RW CKE enable for DIMM 3, Rank 0. Reset only on POR.

5 d2r1 116 RW CKE enable for DIMM 2, Rank 1. Reset only on POR.

4 d2r0 116 RW CKE enable for DIMM 2, Rank 0. Reset only on POR.

3 d1r1 116 RW CKE enable for DIMM 1, Rank 1. Reset only on POR.

2 d1r0 116 RW CKE enable for DIMM 1, Rank 0. Reset only on POR.

1 d0r1 116 RW CKE enable for DIMM 0, Rank 1. Reset only on POR.

0 d0r0 116 RW CKE enable for DIMM 0, Rank 0. Reset only on POR.

Note The enb_hp bit of this register should always be set to 0.
OpenSPARC T2 does not fully support the AMB L0s state, and
enabling this feature will cause unrecoverable channel errors.

TABLE 17-61 L0s Duration Register – L0S_DURATION_REG (84 0000 08A816) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:7 — 016 RO Reserved

6 enb_hp 016 RW Enables use of L0s state.

5:0 count 2A16 RW Determines the number of frames that the branch will be in L0s state. Legal
values are 2016 to 2A16. Values below 2016 will be treated as 2016, and values
above 2A16 will be treated as 2A16. Reset only on POR.
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17.11.59 Channel Sync Frame Frequency Register
TABLE 17-62 shows the format of the Channel Sync Frame Frequency register.

17.11.60 Channel Read Latency Register
TABLE 17-63 shows the format of the Channel Read Latency register.

17.11.61 Channel Capability Register
TABLE 17-64 shows the format of the Channel Capability register.

17.11.62 Loopback Mode Control Register
TABLE 17-65 shows the format of the Loopback Mode Control register.

TABLE 17-62 Channel Sync Frame Frequency Register – CHANNEL_SYNC_FRAME_FREQ_REG
(84 0000 08B016) (Count 4 Step 4096)

Bit Field
Initial
Value

R/W
Description

63:6 — 016 RO Reserved

5:0 freq 2A16 RW Frequency at which sync frames are sent on channels. Reset only on POR.

TABLE 17-63 Channel Read Latency Register – CHANNEL_READ_LAT_REG (84 0000 08B816) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15:8 latency1 FF16 RW Read latency for channel 1. Determined during Polling state.

7:0 latency0 FF16 RW Read latency for channel 0. Determined during Polling state.

TABLE 17-64 Channel Capability Register – CHANNEL_CAPABILITY_REG (84 0000 08C016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:10 — 016 RO Reserved

9:5 capabil1 016 RO Channel capabilities for selected AMB in channel 1. Determined during
Polling state.

4:0 capabil0 016 RO Channel capabilities for selected AMB in channel 0. Determined during
Polling state.
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17.11.63 SerDes Configuration Bus Register
TABLE 17-66 shows the format of the SerDes Configuration Bus register.

17.11.64 SerDes Transmitter and Receiver Differential Pair
Inversion Register
TABLE 17-67 shows the format of the SerDes Transmitter and Receiver Differential Pair
Inversion register.

TABLE 17-65 Loopback Mode Control Register – LOOPBACK_MODE_CNTL_REG (84 0000 08C816) (Count 4
Step 4096)

Bit Field
Initial
Value R/W Description

63:2 — 016 RO Reserved

1:0 mode 016 RW Branch Loopback Mode. 0 = Loopback Mode disabled; 10 = Place low-order
NB data on SB bus; 11 = Place high-order NB data on SB bus

TABLE 17-66 SerDes Configuration Bus Register – SERDES_CONFIG_BUS_REG (84 0000 08D016) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:30 — 016 RO Reserved

29:28 rxtx_rate 016 RW Receiver/transmitter operating rate. Reset only on POR.

27 tx_cm 016 RW Transmitter common mode. Reset only on POR.

26:24 tx_swing 116 RW Transmitter output swing. Reset only on POR.

23:20 tx_de 016 RW Transmitter de-emphasis. Reset only on POR.

19 tx_enftp 016 RW Transmitter enable fixed TXBCLKIN phase. Reset only on POR.

18:16 rx_term 016 RW Receiver termination. Reset only on POR.

15 — 016 RO Reserved

14:12 rx_cdr 016 RW Receiver Clock/Data Recovery algorithm. Reset only on POR.

11:8 rx_eq 016 RW Receiver adaptive equalizer configuration. Reset only on POR.

7:6 — 016 RO Reserved

5:2 pll_mpy 616 RW PLL multiplier. reset only on POR.

1:0 pll_lb 016 RW PLL loopback bandwidth. Reset only on POR.
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17.11.65 SerDes Test Configuration Bus Register
TABLE 17-68 shows the format of the SerDes Test Configuration Bus register.

TABLE 17-67 SerDes Transmitter and Receiver Differential Pair Inversion Register – SERDES_INVPAIR_REG
(84 0000 08D816) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:48 — 016 RO Reserved

47:42 tx1_invpair 016 RW Invert Channel 1 TXPi/TXNi if bit is 1. Reset only on POR.

41:28 tx0_invpair 016 RW Invert Channel 0 TXPi/TXNi if bit is 1. Reset only on POR.

27:14 rx1_invpair 016 RW Invert Channel 1 RXPi/RXNi if bit is 1. Reset only on POR.

13:0 rx0_invpair 016 RW Invert Channel 0 RXPi/RXNi if bit is 1. Reset only on POR.

TABLE 17-68 SerDes Test Configuration Bus Register – SERDES_TEST_CONFIG_BUS_REG
(84 0000 08E016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:32 — 016 RO Reserved

31 fsr1_tx_entest 016 RW Enable testing of FSR1 transmit ports. Reset only on POR.

30 fsr0_tx_entest 016 RW Enable testing of FSR0 transmit ports. Reset only on POR.

29 fsr1_rx_entest 016 RW Enable testing of FSR1 receive ports. Reset only on POR.

28 fsr0_rx_entest 016 RW Enable testing of FSR0 receive ports. Reset only on POR.

27 fsr1_invpatt 016 RW FSR1 invert polarity. Reset only on POR.

26:25 fsr1_rate 016 RW FSR1 operating rate. Reset only on POR.

24 fsr1_enbspls 016 RW FSR1 receiver pulse boundary scan. Reset only on POR.

23 fsr1_enbsrx 016 RW FSR1 receiver boundary scan. Reset only on POR.

22 fsr1_enbstx 016 RW FSR1 transmitter boundary scan. Reset only on POR.

21:20 fsr1_loopback 016 RW FSR1 loopback. Reset only on POR.

19:18 fsr1_clkbyp 016 RW FSR1 clock bypass. Reset only on POR.

17 fsr1_enrxpatt 016 RW FSR1 enable RX patterns. Reset only on POR.

16 fsr1_entxpatt 016 RW FSR1 enable TX patterns. Reset only on POR.

15:14 fsr1_testpatt 316 RW FSR1 test patterns. Reset only on POR.

13 fsr0_invpatt 016 RW FSR0 invert polarity. Reset only on POR.

12:11 fsr0_rate 016 RW FSR0 operating rate. Reset only on POR.

10 fsr0_enbspls 016 RW FSR0 receiver pulse boundary scan. Reset only on POR.

9 fsr0_enbsrx 016 RW FSR0 receiver boundary scan. Reset only on POR.

8 fsr0_enbstx 016 RW FSR0 transmitter boundary scan. Reset only on POR.

7:6 fsr0_loopback 016 RW FSR0 loopback. Reset only on POR.
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17.11.66 SerDes PLL Status Register
TABLE 17-69 shows the format of the SerDes PLL Status register.

17.11.67 SerDes Test Status Register
TABLE 17-70 shows the format of the SerDes Test Status register.

17.11.68 Configuration Register Access Address Register
TABLE 17-71 shows the format of the Configuration Register Access Address register.

5:4 fsr0_clkbyp 016 RW FSR0 clock bypass. Reset only on POR.

3 fsr0_enrxpatt 016 RW FSR0 enable RX patterns. Reset only on POR.

2 fsr0_entxpatt 016 RW FSR0 enable TX patterns. Reset only on POR.

1:0 fsr0_testpatt 316 RW FSR0 test patterns. Reset only on POR.

TABLE 17-69 SerDes PLL Status Register – SERDES_PLL_STATUS_REG (84 0000 08e816) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:6 — 016 RO Reserved

5:3 fsr1_stspll 016 RO PLL lock status for FSR1 macros

2:0 fsr0_stspll 016 RO PLL lock status for FSR0 macros

TABLE 17-70 SerDes Test Status Register – SERDES_TEST_STATUS_REG (84 0000 08F016) (Count 4 Step
4096)

Bit Field
Initial
Value R/W Description

63:48 — 016 RO Reserved

47:38 fsr1_tx_testfail 016 RO Test status for FSR1 transmit ports

37:28 fsr0_tx_testfail 016 RO Test status for FSR0 transmit ports

27:14 fsr1_rx_testfail 016 RO Test status for FSR1 receive ports

13:0 fsr0_rx_testfail 016 RO Test status for FSR1 receive ports

TABLE 17-68 SerDes Test Configuration Bus Register – SERDES_TEST_CONFIG_BUS_REG
(84 0000 08E016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description
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17.11.69 Configuration Register Access Data Register
TABLE 17-72 shows the format of the Configuration Register Access Data register.

17.11.70 AMB IBIST SBFIBPORTCTL and SBFIBPGCTL
Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-73 shows the format of the AMB IBIST SBFIBPORTCTL and SBFIBPGCTL
registers.

TABLE 17-71 Configuration Register Access Address Register – CONFIG_REG_ACCESS_ADDR_REG
(84 0000 090016) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:16 — 016 RO Reserved

15 channel 016 RW Channel of Configuration register access.

14:11 amb 016 RW AMB ID of Configuration register access.

10:2 data 016 RW Address for Configuration register read or write. Bits 10:8 are function and
bits 7:2 are offset within the function

1:0 — 016 RO Reserved

TABLE 17-72 Configuration Register Access Data Register – CONFIG_REG_ACCESS_DATA_REG
(84 0000 090816) (Count 4 Step 4096)

Bit Field
Initial
Value R/W Description

63:32 — 016 RO Reserved

31:0 data 016 RW Data for Configuration register read or write. Writing to this register
generates a Configuration register write on the FBD Channel. Reading from
this register generates a Configuration register read on the FBD Channel.

TABLE 17-73 AMB IBIST SBFIBPORTCTL and SBFIBPGCTL Register –
SBFIBPORTCTL_SBFIBPGCTL_REG (84 0000 0E8016) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:56 — 016 RO Reserved

55 sbfibportctl_
sbnbmap

016 RW Loopback mapping bit. Reset only on POR.

54:38 — 016 RO Reserved
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17.11.71 AMB IBIST SBFIBPATTBUF1 and SBFIBTXMSK
Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-75 shows the format of the AMB IBIST SBFIBPATTBUF1 and SBFIBTXMSK
registers.

37 sbfibportctl_
autoinvswpen

016 RW Auto Inversion sweep enable. Reset only on POR.

36 — 016 RO Reserved

35 sbfibportctl_
loopcon

016 RW Loop forever. Reset only on POR.

34 sbfibportctl_
complete

016 RW1C IBIST done flag. Reset only on POR.

33 sbfibportctl_
mstrmd

116 RO Master mode enable. Reset only on POR.

32 sbfibportctl_
ibistr

016 RW IBIST start. Setting this bit initiates a channel reset in which
IBIST is run during Testing stage. Reset only on POR.

31:26 sbfibpgctl_
ovrloopcnt

F16 RW Overall Loop Count. Reset only on POR.

25:21 sbfibpgctl_
cnstgencnt

016 RW Constant generator loop counter. Reset only on POR.

20 sbfibpgctl_
cnstgenset

016 RW Constant generator setting. Reset only on POR.

19:13 sbfibpgctl_
modloopcnt

F16 RW Modulo-N loop counter. Reset only on POR.

12:10 sbfibpgctl_
modperiod

116 RW Period of the modulo-n counter. Reset only on POR.

9:3 sbfibpgctl_
pattloopcnt

F16 RW Pattern buffer loop counter. Reset only on POR.

2:0 sbfibpgctl_
ptgenord

016 RW Pattern generator order. Reset only on POR.

TABLE 17-73 AMB IBIST SBFIBPORTCTL and SBFIBPGCTL Register –
SBFIBPORTCTL_SBFIBPGCTL_REG (84 0000 0E8016) (Count 4 Step 4096) (Continued)

Bit Field Initial Value R/W Description
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17.11.72 AMB IBIST SBFIBTXSHFT Register
This 32-bit register is documented in the FBDIMM AMB Specification.

TABLE 17-75 shows the format of the AMB IBIST SBFIBTXSHFT register.

17.11.73 AMB IBIST SBFIBPATTBUF2 and SBFIBPATT2EN
Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-76 shows the format of the AMB IBIST SBFIBPATTBUF2 and
SBFIBPATT2EN registers.

TABLE 17-74 AMB IBIST SBFIBPATTBUF1 and SBFIBTXMSK Register –
SBFIBPATTBUF1_SBFIBTXMSK_REG (84 0000 0E8816) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:56 — 016 RO Reserved

55:32 sbfibpattbuf1 2CCFD16 RW IBIST pattern buffer. Reset only on POR.

31:10 — 016 RO Reserved

9:0 sbfibtxmsk 3FF16 RW Selects which channels to enable for testing. Reset only on POR.

TABLE 17-75 AMB IBIST SBFIBTXSHFT Register – SBFIBTXSHFT_REG (84 0000 0E9016) (Count 4
Step 4096)

Bit Field Initial Value R/W Description

63:10 — 016 RO Reserved

9:0 sbfibtxshft 3FF16 RW Transmitter Inversion Shift register. Reset only on POR.

TABLE 17-76 AMB IBIST SBFIBPATTBUF2 and SBFIBPATT2EN Register –
SBFIBPATTBUF2_SBFIBPATT2EN_REG (84 0000 0EA016) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:56 — 016 RO Reserved

55:32 sbfibpattbuf2 FD330216 RW IBIST Pattern Buffer 2. Reset only on POR.

31:10 — 016 RO Reserved

9:0 sbfibpatt2en 016 RW IBIST Pattern Buffer 2 enable. Reset only on POR.
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17.11.74 AMB IBIST SBFIBINIT and SBIBISTMISC Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-77 shows the format of the AMB IBIST SBFIBINIT and SBIBISTMISC
registers.

17.11.75 AMB IBIST NBFIBPORTCTL and NBFIBPGCTL
Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification. For
NBFIBPORTCTL, since the MCU will always be a slave on the northbound port, Bits
0, 1, 22, and 23 will not be used by the MCU and will be read only. Bit 1 will be 02
and bits 23:22 will be 016.

TABLE 17-78 shows the format of the AMB IBIST NBFIBPORTCTL and NBFIBPGCTL
registers.

TABLE 17-77 AMB IBIST SBFIBINIT and SBIBISTMISC Register – SBFIBINIT_SBIBISTMISC_REG
(84 0000 0EB016) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63 — 016 RO Reserved

62:53 sbts0cnt C816 RW Southbound TS0 count. Reset only on POR.

52:45 sbts1cnt 116 RW Southbound TS1 count. Reset only on POR.

44:35 sbdiscnt 10016 RW Southbound disable state count. Reset only on POR.

34 sbcaliben 116 RW Southbound calibration enable. Reset only on POR.

33 — 016 RO Reserved

32 sbfibiniten 016 RW IBIST initialization enable. This bit performs no function in the
MCU. The IBIST Start bit of the SBFIBPORTCTL register must
be written to initiate IBIST. Bit Reset only on POR.

31:24 — 016 RO Reserved

23:20 ambid 016 RW Value of AMB ID field during TS0. Reset only on POR.

19:0 sbibistcalperiod 61A8016 RW Number of cycles to drive 1 during Calibration. Reset only on
POR.
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17.11.76 AMB IBIST NBFIBPATTBUF1 Register
This 32-bit register is documented in the FBDIMM AMB Specification.

TABLE 17-79 shows the format of the AMB IBIST NBFIBPATTBUF1 register.

TABLE 17-78 AMB IBIST NBFIBPORTCTL and NBFIBPGCTL Register –
NBFIBPORTCTL_NBFIBPGCTL_REG (84 0000 0EC016) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:54 — 016 RO Reserved

53:44 nbfibportctl_
errcnt

016 RW1C Error counter. Reset only on POR.

43:40 nbfibportctl_
errlnnum

016 RO Error lane number. Reset only on POR.

39:38 nbfibportctl_
errstat

016 RW1C Port error status. Reset only on POR.

37 nbfibportctl_
autoinvswpen

016 RW Auto inversion sweep enable. Reset only on POR.

36 nbfibportctl_
stoponerr

016 RW Stop IBIST on error. Reset only on POR.

35 nbfibportctl_
loopcon

016 RW Loop forever. Reset only on POR.

34 nbfibportctl_
complete

016 RW1C IBIST done flag. Reset only on POR.

33 nbfibportctl_
mstrmd

016 RO Master mode enable. Reset only on POR.

32 nbfibportctl_
ibistr

016 RW IBIST start. Reset only on POR.

31:26 nbfibpgctl_
ovrloopcnt

F16 RW Overall loop count. Reset only on POR.

25:21 nbfibpgctl_
cnstgencnt

016 RW Constant generator loop counter. Reset only on POR.

20 nbfibpgctl_
cnstgenset

016 RW Constant generator setting. Reset only on POR.

19:13 nbfibpgct_
modloopcnt

F16 RW Modulo-n loop counter. Reset only on POR.

12:10 nbfibpgctl_
modperiod

116 RW Period of modulo-n counter. Reset only on POR.

9:3 nbfibpgctl_
pattloopcnt

F16 RW Pattern buffer loop counter. Reset only on POR.

2:0 nbfibpgctl_
ptgenord

016 RW Pattern generation order. Reset only on POR.
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17.11.77 AMB IBIST NBFIBRXMSK Register
This 32-bit register is documented in the FBDIMM AMB Specification.

TABLE 17-80 shows the format of the AMB IBIST NBFIBRXMSK register.

17.11.78 AMB IBIST NBFIBRXSHFT and NBFIBRXLNERR
Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-81 shows the format of the AMB IBIST NBFIBRXSHFT and
NBFIBRXLNERR register.

TABLE 17-79 AMB IBIST NBFIBPATTBUF1 Register – NBFIBPATTBUF1_REG (84 0000 0EC816) (Count 4
Step 4096)

Field Bit Initial Value R/W Description

— 63:56 016 RO Reserved

nbfibpattbuf1 55:32 2CCFD16 RW IBIST pattern buffer. Reset only on POR.

— 31:0 016 RO Reserved

TABLE 17-80 AMB IBIST NBFIBRXMSK Register – NBFIBRXMSK_REG (84 0000 0ED016) (Count 4
Step 4096)

Field Bit Initial Value R/W Description

— 64:46 016 RO Reserved

nbfibrxmsk 45:32 3FFF16 RW NB IBIST receiver mask. Reset only on POR.

— 31:0 016 RO Reserved

TABLE 17-81 AMB IBIST NBFIBRXSHFT and NBFIBRXLNERR Register –
NBFIBRXSHFT_NBFIBRXLNERR_REG (84 0000 0ED816) (Count 4 Step 4096)

Field Bit Initial Value R/W Description

— 64:46 016 RO Reserved

nbfibrxshft 45:32 3FFF16 RW Receiver Inversion Shift register. Reset only on POR.

— 31:14 016 RO Reserved

nbfibrxlnerr 13:0 016 RO Receiver error status. Reset only on POR.
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17.11.79 AMB IBIST NBFIBPATTBUF2 and
NBFIBPATT2EN Register
This pair of 32-bit registers are documented in the FBDIMM AMB Specification.

TABLE 17-82 shows the format of the AMB IBIST NBFIBPATTBUF2 and
NBFIBPATT2EN register.

17.11.80 Other DRAM Registers
Other DRAM registers are defined in other chapters, particularly in the Performance
Instrumentation chapter, Power Management chapter, and HW Debug chapter.

TABLE 17-82 AMB IBIST NBFIBPATTBUF2 and NBFIBPATT2EN Register –
NBFIBPATTBUF2_NBFIBPATT2EN_REG (84 0000 0EE016) (Count 4 Step 4096)

Field Bit Initial Value R/W Description

— 63:56 016 RO Reserved

nbfibpattbuf2 55:32 FD330216 RW IBIST Pattern Buffer 2. Reset only on POR.

— 31:14 016 RO Reserved

nbfibpatt2en 13:0 016 RW IBIST Pattern Buffer 2 enable. Reset only on POR.
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CHAPTER 18

Power Management

18.1 SPARC Power Management
The OpenSPARC T2 virtual processor contains extensive power management
features. Besides clock gating at the core, there is clock gating within functional units
down to the L1 clock headers.

As a safety device, OpenSPARC T2 includes an ASI register to enable lower-level
clock gating.

The strands on each physical core share the ASI_SPARC_PWR_MGMT register. The
ASI_SPARC_PWR_MGMT register, described in TABLE 18-1, is a hyperprivileged, read-
write register located at ASI 4E16, VA 016.

TABLE 18-1 ASI_SPARC_PWR_MGMT Register Format

Bit Field Remarks

63:16 — Reserved

15 dc If 1, enables power management in data cache.

14 ic If 1, enables power management in instruction cache.

13 ifu_cmu If 1, enables power management in instruction cache miss unit.

12 ifu_ftu If 1, enables power management in instruction fetch logic excluding instruction cache.

11 ifu_ibu If 1, enables power management in instruction buffers.

10 dec If 1, enables power management in decoder.

9 pku If 1, enables power management in pick unit.

8 lsu If 1, enables power management in load-store unit excluding data cache.

7 exu If 1, enables power management in integer execution unit.

6 fgu If 1, enables power management in floating-point and graphics unit.

5 tlu If 1, enables power management in trap unit.

4 gkt If 1, enables power management in crossbar interface.
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Reserved bits read as zeroes and are ignored on writes. The POR value of this
register is 0. Writes to this register take effect immediately; this register is
synchronizing so that all subsequent activity in the core is performed with the new
setting of the power management enables when the next instruction is fetched from
the thread that issued the write.

18.2 CPU Throttle Control
The CPU_THROTTLE_CTL register, shown in TABLE 18-2, displays the current value
of the three CPU_THROTTLE_CTL pins on OpenSPARC T2. The
CPU_THROTTLE_CTL pins are controlled by an external agent that does thermal
monitoring of the OpenSPARC T2 chip.

CPU throttling is done by limiting instruction issue for each physical core over an
eight-cycle window. At the lowest throttle setting of 0, a physical core issues an
instruction on all eight cycles of a window. With each increase in the throttle setting,
the physical core issues one fewer instruction per eight cycles, until at the maximum
throttle setting of 7, the physical core issues only one instruction each eight-cycle
window.

2 pmu If 1, enables power management in performance monitor unit.

1 mmu If 1, enables power management in memory management unit.

0 misc If 1’ enables power management in remainder of SPARC core.

TABLE 18-2 Chip CPU Throttle Control – CPU_THROTTLE_CTL (98 0000 082816)

Bit Field Initial Value R/W Description

63:3 — 0 RO Reserved

2:0 throttle 0 RO Controls the issuing of instructions to the pipeline across an 8-cycle
window as follows (I – issue, N – no issue):
0 – I I I I I I I I
1 – I I I I I I I N
2 – I I I N I I I N
3 – I I N I I N I N
4 – I N I N I N I N
5 – N N I N N I N I
6 – N N N I N N N I
7 – N N N N N N N I

TABLE 18-1 ASI_SPARC_PWR_MGMT Register Format

Bit Field Remarks
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18.3 Memory Access Throttle Control

18.3.1 DRAM Open Bank Max Register
The DRAM Open Bank Max register controls the maximum number of banks that
can be open across the entire memory. A single register was desired; however, for
implementation reasons, a copy of this register is present for each memory
controller. All four registers must be set to the same value for the power throttle
feature to function properly. Setting the registers to different values will result in
undefined behavior.

TABLE 18-3 shows the format of the DRAM Open Bank Max register.

18.3.2 DRAM Programmable Time Counter Register
This register controls a programmable time value in which max banks can be open.

TABLE 18-4 shows the format of the DRAM Programmable Time Counter register.

TABLE 18-3 DRAM Open Bank Max Register – DRAM_OPEN_BANK_MAX_REG (84 0000 002816) (Count
4 Step 4096)

Bit Field Initial Value R/W Description

63:17 — 0 RO Reserved

16:0 freq 1FFFF16 RW Maximum banks open across the entire memory at any given time.
Reset only on POR.

TABLE 18-4 DRAM Programmable Time Counter Register – DRAM_PROG_TIME_CNTR_REG
(84 0000 004816) (Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:16 — 0 RO Reserved

15:0 bunch FFFF16 RW The time value in DRAM clocks. Reset only on POR.
• 391



18.4 DRAM Refresh Asynchronicity
Memory refresh operations draw more current than normal memory operations. To
avoid current spikes, and to ease the burden on the system power distribution, the
OpenSPARC T2 memory controller allows memory refresh asynchronicity,
guaranteeing that all refreshes are at least 100 nsec from any other refresh.

Each DRAM controller has a background refresh timer, programmable to trigger a
refresh every n cycles. Each time it triggers, the controller will schedule a refresh for
all banks within a single rank on its channel. Subsequent refreshes will cycle through
the ranks attached to that channel. When a refresh is scheduled, it is a high-priority
request, so it is guaranteed to be issued in a relatively small number of cycles.

To get asynchronicity, the refresh counters on the different channel controllers must
be started up n/4 DRAM cycles apart, after which they will remain neatly out of
sync.
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CHAPTER 19

Configuration and Diagnostics
Support

19.1 ASI_LSU_CONTROL_REG
Each virtual processor has a hyperprivileged ASI_LSU_CONTROL_REG register at
ASI 4516, VA{63:0} = 0, which contains fields that control several memory-related
hardware functions. Nonprivileged or supervisor access to this register causes a
privileged_action trap.

The format of the register is shown in TABLE 19-1.
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TABLE 19-1 LSU Control Register – ASI_LSU_CONTROL_REG (ASI 4516, VA 016)

Bit Field
Initial
Value R/W Description

63:35 — 0 RO Reserved

34:33 mode 0 RW Watchpoint mode. Controls whether VA, PA, or no addresses are checked for data
watchpoints. TABLE 19-2 lists the settings of the mode field.

32:25 bm 0 RW Data watchpoint byte mask. For virtual or physical address data watchpointing,
the ASI_DMMU_VA_WATCHPOINT register contains the virtual or physical address
of a 64-bit word to be watched. The 8-bit bm controls which byte(s) within the 64-
bit word should be watched. If all 8 bits are cleared, the watchpoint is disabled. If
the watchpoint is enabled and a data reference overlaps any of the watched bytes
in the watchpoint mask, a VA_watchpoint or PA_watchpoint trap is generated.

24 re 0 RW Data watchpoint Read and Write Enable. If re or we is set, a read or write that
matches the virtual or physical address in ASI_DMMU_VA_WATCHPOINT and the
vm byte masks causes a VA_watchpoint or PA_watchpoint trap. Both re and we can
be set to place a watchpoint for either a read or write access. Atomic operations
are considered both a read and a write, and watchpoints for atomics are enabled
if re, we, or both are set.

23 we 0 RW

22:5 — 0 RO Reserved

4 se 0 RW Speculation enable. If set, loads are predicted to hit in the primary cache, branches
are predicted not taken, and the floating-point unit predicts exceptions and runs
in a pipelined mode.

3 dm 0 RW DMMU enable. If cleared, when HPSTATE.hpriv = 0 the DMMU treats all data
addresses as real addresses and performs a real-to-physical translation. See
Translation on page 124 for more details.

TABLE 19-2 Mode Field Settings

Mode Field Watchpoint Function

002 Watchpoint disabled
012

102 Match on data physical address

112 Match on data virtual address

TABLE 19-3 VA and PA Data Watchpoint Byte
Mask Examples

Watchpoint Mask
Address of Bytes Watched

7654 3210

0016 Watchpoint disabled

0116 0000 0001

3216 0011 0010

FF16 1111 1111
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19.2 Watchpoint Support
OpenSPARC T2 supports both instruction VA and data VA/PA watchpoints.

19.2.1 ASI_DMMU_WATCHPOINT

Each virtual processor has a hyperprivileged ASI_DMMU_WATCHPOINT register at
ASI 5816, VA{63:0} = 3816 that is used for controlling the address (or address range if
bytes are masked) for data PA and VA watchpoints. The format of the register is
shown in TABLE 19-4.

Nonprivileged and supervisor access to this register causes a privileged_action trap.

2 im 0 RW IMMU enable. If cleared, when HPSTATE.hpriv = 0 and HPSTATE.red = 0 the
IMMU treats all instruction addresses as real addresses and performs a real-to-
physical translation. See Translation on page 124.

1 dc 0 RW Dcache enable. If cleared, the primary data cache does not allocate a line on a
miss.

0 ic 0 RW Icache enable. If cleared, the primary instruction cache does not allocate a line on
a miss.
Note: The Dcache and Icache are still kept coherent by OpenSPARC T2 when the
dc and ic bits are set to 0. This includes updating the Dcache when stores from a
strand hit in the Dcache.

Note Also see the ASI_LSU_CONTROL_REG definition in
ASI_LSU_CONTROL_REG on page 393, which contains control
bits for data watchpoint support.

TABLE 19-4 DMMU Watchpoint – ASI_DMMU_WATCHPOINT (ASI 5816, VA 38)16

Bit Field
Initial
Value R/W Description

63:48 va_high X RO Ignores writes, returns value of VA{47} on reads.

47:40 va X RW VA watchpoint address{47:40}.

39:3 vapa X RW VA/PA watchpoint address{39:3}.

2:0 — 0 RO Bits 2:0 of the VA/PA watchpoint address are all zeros, watchpointing
is done for 8-byte memory locations.

TABLE 19-1 LSU Control Register – ASI_LSU_CONTROL_REG (ASI 4516, VA 016) (Continued)

Bit Field
Initial
Value R/W Description
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19.2.2 ASI_IMMU_VA_WATCHPOINT

Each physical core has a pair of hyperprivileged ASI_IMMU_VA_WATCHPOINT
register at ASI 5016, VA{63:0} = 3816 that are used for controlling the address and
enabling of instruction VA watchpoints. Strands 0-3 on the physical core share one of
the registers, and strands 4-7 on the physical core share the other register. The format
of the register is shown in TABLE 19-5.

Notes The VA_watchpoint trap is never generated while executing in
hyperprivileged mode. This implies that the AS_IF_USER ASIs
will not generate a VA_watchpoint trap when accessed in
hyperprivileged mode, even though a VA_watchpoint trap might
be generated when accessed in user mode. The PA_watchpoint
trap can be taken in hyperprivileged mode.

For quadword accesses, VA and PA watchpoint checking is only
done on the lower 8 bytes of the access. This implies that a
VA_watchpoint or PA_watchpoint trap will only be generated for
a quadword load if vapa{3} is set to zero.

For quadword accesses, VA and PA watchpoint checking is only
done on the lower 8 bytes of the access. This implies that a
VA_watchpoint or PA_watchpoint trap will only be generated for
a quadword load if vapa{3} is set to zero.

Implementation
Note

The data VA watchpoint comparison is done only on VA{47:3},
and does not mask ASI_DMMU_WATCHPOINT{47:32} when
PSTATE.am = 1. This implies that out-of-range accesses to the
VA hole will generate a VA_watchpoint trap if bits 47:3 and the
byte mask match for data. In addition, when PSTATE.am = 1,
bits 47:32 in the VA will be zero and ASI_DMMU_WATCHPOINT
needs to have bits 47:32 loaded with zeros to produce a data VA
watchpoint match.

TABLE 19-5 IMMU VA Watchpoint – ASI_IMMU_VA_WATCHPOINT (ASI 5016, VA 38)16

Bit Field
Initial
Value R/W Description

63:48 va_high X RO Ignores writes, returns value of VA{47} on reads.

47:2 va X RW VA watchpoint address {47:2}.

1 — 0 RO Reserved

0 enable 0 RW If 1, instruction VA watchpoint is enabled. If 0, instruction VA watchpoint is
disabled.
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Nonprivileged and supervisor access to this register causes a privileged_action trap.

19.3 Breakpoint Support

19.3.1 ASI_INST_MASK_REG

Each physical core has a pair of hyperprivileged ASI_INST_MASK_REG registers at
ASI 4216, VA{63:0} = 816. Strands 0–3 on the physical core share one of the registers,
and strands 4–7 on the physical core share the other register. This register is used to
disable execution of a particular instruction or class of instructions for diagnostic or
debug purposes, under the control of HPSTATE.ibe. If HPSTATE.ibe = 1 and any of
the enable fields are set to 1, execution of any instruction that matches all the
enabled bits in the inst field of this register results in an instruction_breakpoint trap.
Nonprivileged or supervisor access to this register causes a privileged_action trap.

TABLE 19-6 defines the format of the ASI_INST_MASK_REG register.

Notes The instruction_VA_watchpoint trap is never generated while
executing in hyperprivileged mode.

No instruction_VA_watchpoint trap is generated by OpenSPARC
T2 for real-to-physical translations (RA → PA in TABLE 12-15 on
page 125).

Implementation
Note

The instruction VA watchpoint comparison is done only on
VA{47:2}, and does not mask
ASI_IMMU_VA_WATCHPOINT{47:32} when PSTATE.am = 1. This
implies that out-of-range accesses to the VA hole will generate
an instruction_VA_watchpoint trap if bits 47:2 match. In addition,
when PSTATE.am = 1, bits 47:32 in the VA will be zero and
ASI_IMMU_VA_WATCHPOINT needs to have bits 47:32 loaded
with zeros to produce an instruction VA watchpoint match.

TABLE 19-6 SPARC Instruction Mask Register – ASI_INST_MASK_REG (ASI 4216, VA 816)

Bit Field Initial Value R/W Description

63:39 — 0 RO Reserved

38 enb31_30 0 RW Enable matching on INST 31:30.

37 enb29_25 0 RW Enable matching on INST 29:25.

36 enb24_19 0 RW Enable matching on INST 24:19.

35 enb18_14 0 RW Enable matching on INST 18:14.
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19.3.2 Trap on Control Transfer
If PSTATE.tct is set, a taken control transfer will result in a
control_transfer_instruction trap. Control transfers include conditional branches,
jumps, done, and retry. The trap is precise and taken before the instruction executes.
Once the trap is taken, PSTATE.tct is cleared. The virtual address of the control
transfer instruction will be contained in TPC[TL].

19.4 Instruction and Data Cache Control

19.4.1 ASI_LSU_DIAG_REG

Each physical core has a hyperprivileged ASI_LSU_DIAG_REG register at ASI 4216,
VA{63:0} = 1016. This register disables associativity in the primary instruction and/or
data caches for diagnostic or debug purposes. Nonprivileged or supervisor access to
this register causes a privileged_action trap.

TABLE 19-7 defines the format of the ASI_LSU_DIAG_REG register.

34 enb13 0 RW Enable matching on INST 13.

33 enb12_5 0 RW Enable matching on INST 12:5.

32 enb4_0 0 RW Enable matching on INST 4:0.

31:0 inst 0 RW Instruction pattern to be trapped.

Programming
Note

While there is a pair of instruction mask registers per physical
processor core, each strand is under the control of its own
HPSTATE.ibe bit. All HPSTATE.ibe bits for the strands in a
physical processor core must be set to have the physical
processor core fully trap on the instruction pattern.

TABLE 19-6 SPARC Instruction Mask Register – ASI_INST_MASK_REG (ASI 4216, VA 816) (Continued)
Bit Field Initial Value R/W Description
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19.5 L1 I-Cache Diagnostic Access

19.5.1 ASI_ICACHE_INSTR

Each virtual processor shares a read/write, hyperprivileged ASI_ICACHE_INSTR
register at ASI 6616, VA 016– 7FF816 which provides diagnostic access to the Icache
data array.

TABLE 19-8 describes the VA format when accessing ASI_ICACHE_INSTR.

The data field is interpreted as shown in TABLE 19-9.

TABLE 19-7 LSU Diagnostic Register – ASI_LSU_DIAG_REG (ASI 4216, VA 1016)

Bit Field
Initial
Value R/W Description

63:2 — 0 RO Reserved

1 dassocdis 0 RW If 1, the Dcache replacement algorithm is not LRU but instead uses bits
12:11 of the virtual address to determine the replacement way when a miss
occurs

0 iassocdis 0 RW If 1, the Icache replacement algorithm is not LRU but instead uses bits 13:11
of the virtual address to determine the replacement way when a miss
occurs.

TABLE 19-8 ASI_ICACHE_INSTR Address Format

VA Bits Field Remarks

63:15 — Reserved

14:12 way{2:0} Selects cache way to be read or written.

11:6 index{5:0] Selects cache index to be read or written.

5:3 word Selects aligned 4 bytes out of 32 bytes in cache line to be read or
written. (See below for data dependency on bit 4.)

2:0 — Reserved

Note The diagnostic VA is shifted left one bit from what would
normally be used to index the cache to fetch an instruction (for
example, bits 11:3 are used instead of bits 10:2).
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The bit ordering of the data to or from the instruction cache depends on the word
address. Specifically, on read or write via this ASI, if bit 4 of the virtual address is
set, then the parity and instruction bits (32:0) must be bit-reversed (i.e., bit 0 becomes
bit 32, bit 1 becomes bit 31, etc.) to be consistent with functional read and write
paths.

TABLE 19-9 ASI_ICACHE_INSTR Register

Operation Type Data Bits Field Remarks

Store if
VA[4]==0

63:33 — Reserved

32 perrinj xor this bit with generated parity bit

31:0 instr{31:0} 32 bits of instruction data

Store if
VA[4]==1

63:33 — Reserved

32 instr{0} bit 0 of instruction data

31 instr{1} bit 1 of instruction data

... ... ...

1 instr{31} bit 31 of instruction data

0 perrinj xor this bit with generated parity bit

Data read if
VA[4]==0

63:33 — Reserved

32 parity Parity bit read from array

31:0 instr{31:0} 32 bits of instruction data read from array

Data read if
VA[4]==1

63:33 — Reserved

32 instr{0} bit 0 of instruction data read from array

31 instr{1} bit 1 of instruction data read from array

... ... ...

1 instr{31} bit 31 of instruction data read from array

0 parity Parity bit read from array

Note Since hardware does not keep diagnostic stores to the data array
consistent with the L2 reverse directory, the L2 cache, and other
instruction and data caches, software must flush the L2 cache or
otherwise restore system caches to a coherent state after
performing a diagnostic store to the data array.
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19.5.2 ASI_ICACHE_TAG

Each virtual processor has a shared, hyperprivileged, read-write ASI_ICACHE_TAG
register located at ASI 6716, VA 016–FFE016, which provides diagnostic access to the
Icache tags and valid bit array. Diagnostic reads of the tag and valid bit arrays do
not cause parity errors. The VA format is shown in TABLE 19-10.

The data format is shown in TABLE 19-11.

TABLE 19-10 ASI_ICACHE_TAG Address Format

VA Bits Field Remarks

63:17 — Reserved

16 perren xors this value with the computed tag parity bit (even parity is computed and stored;
ignored on a read)

15 vb_err_en Forces the slave copy of the valid bit to be the inversion of the master copy (ignored
on a read)

14:12 way{2:0} Identifies the way whose tag and valid bit will be accessed

11:6 index{5:0} Identifies the index whose tag and valid bit will be accessed

5:0 — Reserved

Note The diagnostic VA is shifted left one bit from what would
normally be used to index the cache to fetch an instruction (for
example, bits 11:3 are used instead of bits 10:2).

TABLE 19-11 ASI_ICACHE_TAG Register

Operation Type Data bits Field Remarks

Store

63:31 — Reserved

30:2 tag{39:11} Contents of the tag array.

1 valid{1} valid bit master copy.

0 — Reserved. valid bit slave copy (ignored on write).

Load

63:32 — Reserved

31 Tag Parity parity bit of the tag entry.

30:2 tag{39:11} Contents of the tag array.

1 valid{1} valid bit master copy.

0 valid{0} valid bit slave copy.
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19.6 L1 D-Cache Diagnostic Access

19.6.1 ASI_DCACHE_DATA

Each virtual processor has a shared, hyperprivileged, read-write ASI_DCACHE_DATA
register located at ASI 4616, VA 016–1FFFF816 that is used for diagnostic accesses to
the L1 data cache data array. Stores update 64 bits of the data array at one time and
can optionally invert each computed byte parity bit independently. Hardware
computes and stores even parity. Loads specify whether to load parity or data bits.
Loads that specify parity bits load all eight byte parity bits at a time. Loads that
specify data bits load 64 data bits at a time.

TABLE 19-12 describes the VA format for a store to ASI_DCACHE_DATA.

For a load to ASI_DCACHE_DATA, the VA is interpreted as follows.

Notes Since hardware does not keep diagnostic stores to the tag and
valid bit arrays consistent with the L2 reverse directory, the L2
cache, and other instruction and data caches, software must
flush the L2 cache or otherwise restore system caches to a
coherent state after performing a diagnostic store to the L1 tags
and valid bit array.

The Icache Tag includes physical address bit 39, even though in
normal system operation bit 39 will always be 0 for any
cacheable access.

TABLE 19-12 ASI_DCACHE_DATA Store Address Format

VA Bits Field Remarks

63:21 — Reserved

20:13 perrmask{7:0} xors this value with computed parity bits; bit 7 corresponds to parity for bits
63:56, bit 6 to bits 55:48, etc.

12:11 way{1:0} Selects cache way to be written.

10:4 Index{6:0} Selects cache index to be written.

3 doubleword Selects aligned 8 bytes out of 16 bytes in cache line to be written.

2:0 — Reserved
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The data field is interpreted as follows.

19.6.2 ASI_DCACHE_TAG

Each virtual processor has a shared, read/write, hyperprivileged ASI_DCACHE_TAG
register located at ASI 4716, VA 016–7FF016. This register reads and writes the
contents of the Dcache valid bit and tag arrays for diagnostic purposes.

The VA field is interpreted as follows.

TABLE 19-13 ASI_DCACHE_DATA Load Address Format

VA Bits Field Remarks

63:14 — Reserved

13 data_notparity If 1, selects data field to be returned by load; if 0, selects parity bits to be
returned by load.

12:11 way{1:0} Selects cache way to be written.

10:4 index{6:0} Selects cache index to be read.

3 doubleword Selects aligned 8 bytes out of 16 bytes in cache line to be read.

2:0 — Reserved

TABLE 19-14 ASI_DCACHE_DATA Format

Operation Type Data Bits Field Remarks

Store 63:0 data{63:0} Contains the 64-bit data field to be written to the data array.

Data read 63:0 data{63:0} Contains the 64-bit data field read from the data array.

Parity read 63:8 — Reserved. Read as all zeroes.

7:0 parity{7:0} Contains the 8 parity bits read from the data array.

Note Since hardware does not keep diagnostic stores to the data array
consistent with the L2 reverse directory, the L2 cache, and
instruction and other data caches, software must flush the L2
cache or otherwise restore system caches to a coherent state after
performing a diagnostic store to the data array.
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The data field is interpreted as follows.

Loads from this ASI do not cause parity errors if the stored parity is bad or if the
valid bit copies differ from each other.

TABLE 19-15 ASI_DCACHE_TAG Address Format

VA Bits Field Remarks

14 vb_err_en Forces the slave copy of the valid bit to be the inversion of the master copy (ignored
on a read).

13 perren xors this value with the computed tag parity bit (even parity is computed and stored;
ignored on a read).

12:11 way{1:0} Identifies the way whose tag and valid bit will be accessed.

10:4 index{6:0} Identifies the index whose tag and valid bit will be accessed.

3:0 — Reserved

TABLE 19-16 ASI_DCACHE_TAG Format

Operation Type Data Bits Field Remarks

Store 63:31 — Reserved

30:2 tag{39:11} Contents of the tag array.

1 valid{1} valid bit master copy.

0 — Reserved. valid bit slave copy (ignored on write).

Load 63:32 — Reserved

31 Tag Parity Parity bit of the tag entry.

30:2 tag{39:11} Contents of the tag array.

1 valid{1} valid bit master copy.

0 valid{0} valid bit slave copy.

Note Since hardware does not keep diagnostic stores to the tag and
valid bit arrays consistent with the L2 reverse directory, the L2
cache, and instruction and other data caches, software must
flush the L2 cache or otherwise restore system caches to a
coherent state after performing a diagnostic store to the L1 tags
and valid bit array.
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19.7 Integer Register File
To read or write the IRF data portions, normal SPARC integer loads and stores or
arithmetic instructions can be used. Instructions that read the IRF data may result in
ECC errors. These ECC errors can be suppressed by setting CERER.irf or
SETER.pscce to 0.

To read the ECC check bits for the IRF, software can load from the
ASI_IRF_ECC_REG, described below.

19.7.1 ASI_IRF_ECC_REG

Each virtual processor has a hyperprivileged, read-only ASI_IRF_ECC_REG located
at ASI 4816, VA 016–F816. A load to this register with VA bits 7:3 set to the 5-bit
register number to be read returns the ECC bits of the IRF register entry accessed by
VA bits 4:0, in the current register window. Nonprivileged or supervisor access to
this register causes a privileged_action trap. Writes to this register cause a
DAE_invalid_ASI.

The format of the ASI_IRF_ECC_REG address is as follows.

When a read to this register occurs, the format of the returned data is as follows.

A read of this register never results in an ECC error.

TABLE 19-17 ASI_IRF_ECC_REG address

Bit Field Remarks

63:8 — Reserved. Ignored

7:3 irf_index Integer register number to be read. Note this should be the same as the index
contained in the DSFARwhen an error occurs. See Table 16-11 on page 236 for
details.

2:0 — Reserved

TABLE 19-18 ASI_IRF_ECC_REG format

Bit Field Remarks

63:8 — Reserved. Reads return zeroes.

7:0 ecc ECC bits read from IRF.
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19.8 Floating-Point Register File
To read or write the FRF data portions, normal SPARC FGU loads and stores or
arithmetic instructions can be used. Instructions that read the FRF data may result in
ECC errors. These ECC errors can be suppressed by setting CERER.frf or
CETER.pscce to 0.

To read the ECC check bits for the FRF, software can load from the
ASI_FRF_ECC_REG, described below.

19.8.1 ASI_FRF_ECC_REG

Each virtual processor has a hyperprivileged, read-only ASI_FRF_ECC_REG located
at ASI 4916, VA 016–F816. A load to this register with VA bits 7:3 set to the double-
precision 6-bit register number returns the even and odd ecc bits for the even and
odd halves of the FRF register entry accessed by VA bits 7:3. Nonprivileged or
supervisor access to this register causes a privileged_action trap. Writes to this
register cause a DAE_invalid_ASI. The format of the ASI_FRF_ECC_REG is as
follows.

When a read to this register occurs, the format of the returned data is as follows.

A read of this register never results in an ECC error.

TABLE 19-19 ASI_FRF_ECC_REG Address

Bit Field Remarks

63:8 — Reserved. Ignored

7:3 frf_index{4:0} Index in the FRF register file to be read. The contents of this field specify the precise
index of the FRF to be read, not the encoded SPARC V7 FRF register number; e.g.,
an FRF_index{4:0} value of 101102 will read FRF index 22.

2:0 — Reserved. Ignored.

TABLE 19-20 ASI_FRF_ECC_REG Format

Bit Field Remarks

63:14 — Reserved. Reads return zeroes.

13:7 ecc_even ECC bits read from FRF for even half of register.

6:0 ecc_odd ECC bits read from FRF for odd half of register.
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19.9 Store Buffer — ASI_STB_ACCESS
Diagnostic access to the store buffer is complicated by the width of each entry and
the fact that all stores (even diagnostic ASI stores) are written to the store buffer.

Each strand has a hyperprivileged, read-only ASI_STB_ACCESS register located at
ASI 4A16, VA 016–3F16. Diagnostic software can read any entry (belonging to its own
strand) by using the ASI_STB_ACCESS register.

The store buffer is divided into three parts. The cam field contains bits 39:3 of the
physical address, 8 byte marks, and a parity bit. The data array contains two sub-
fields. The first field consists of a 64-bit data field and two 7-bit SEC/DED ecc fields
(ECC is stored on a 32-bit word basis). The second field of the data array consists of
encoded privilege-level information (encoded with hamming [?] distance of 2
between valid codes for a total of 3 bits). Finally, as will be explained shortly, there is
a read that returns the current store buffer pointer for the thread.

To read a store buffer entry, diagnostic software issues a load to the
ASI_STB_ACCESS register, specifying the entry and subfield of the store buffer to
read in the virtual address of the load, as detailed below.

Software cannot write directly into a store buffer entry. All stores are placed into the
store buffer. This includes stores to ASI registers as well as stores to memory and I/
O space.

Software can inject an error into the store buffer by setting the stau or stdu bit in the
ASI_ERROR_INJECT_REG. Hardware xors the values of the computed ecc bits with
ASI_ERROR_INJECT_REG.eccmask{6:0} if stdu is set, or xors the computed parity
for the address with ASI_ERROR_INJECT_REG.eccmask{6:0} if stau is set. If
multiple bits are set, hardware xors each field independently. Once software sets the
enb_hp bit in the ASI_ERROR_INJECT_REG, all future stores will be written to the
store buffer with errors injected according to which of the stau or stdu bits is set.
Errors cease to be injected once software resets the enb_hp bit. Note that hardware
will not inject an error for a store to the ASI_ERROR_INJECT_REG.

Software has control over the contents of any of the store buffer subfields. For
example, the contents of the store data field and the type of store determine the
settings of the data field data bits and byte mark bits. The privilege level of the store
also determine the contents of the privilege level field.

The format of the va field for accesses to ASI_STB_ACCESS is detailed below.
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The data field of a load or store to the ASI_STB_ACCESS field is detailed below.

TABLE 19-21 ASI_STB_ACCESS Address Format

Operation Type Bit Field Remarks

Store buffer read 63:9 — Reserved

8:6 field Determines subset of store buffer entry to be read as follows:
000 – Store buffer data
001 – Store buffer data ECC (14 bits)
010 – Store buffer control and address parity
011 – Store buffer address and byte marks
100 – Current store buffer pointer
101 – Reserved
110 – Reserved
111 – Reserved

5:3 entry Contains store buffer entry ID (of this thread's store buffer) to read.

2:0 — Reserved

TABLE 19-22 ASI_STB_ACCESS Format

Operation Type Bit Field Remarks

STB data read 63:0 data Contains data in the store buffer entry addressed by
ASI_STB_ACCESS.

STB data ECC
read

63:14 — Reserved. Read as all zeroes.

13:7 ecc_odd ECC for bits 63:32 of the data field.

6:0 ecc_even ECC for bits 31:0 of the data field.

STB control
read

63:4 — Reserved. Read as all zeroes.

3 c_p Parity over bm_asi and PA{39:3}.

2:0 control Privilege level encoding:
000 – user; 011 – priv; 101 – hpriv; all others – parity error).

STB CAM read 63:48 — Read as all zeroes.

47:40 bm_asi Byte marks{7:0} or ASI value.

39:3 pa{39:3} Contents of PA cam field.

2:0 — Reserved. Read as all zeroes.
408 UltraSPARC T2 Supplement • Draft D1.4.3, 19 Sep 2007



19.10 Scratchpad Registers
Each strand has a hyperprivileged, read-only ASI_SCRATCHPAD_ACCESS register
located at ASI 5916, VA 016–7816.

Diagnostic software can read the data bits or ecc bits using this register. The format
and usage of this register are described below.

The data returned by an access to the ASI_SCRATCHPAD_ACCESS register is defined
as follows.

Diagnostic reads to the scratchpad array using this ASI never result in ECC errors.

19.11 Tick Compare
Each strand has a hyperprivileged, read-only ASI_TICK_ACCESS register located at
ASI 5A16, VA 016–3816.

Diagnostic software can read the data or ecc bits using this register.

TABLE 19-23 ASI_SCRATCHPAD_ACCESS Address Format

Operation Type Bit Field Remarks

Load 63:7 — Reserved

6 data_np If 1, return the data entry contents; if 0, return the eight 8 ecc bits
in bit positions 7:0 of the returned data field.

5:3 index Index in Scratchpad array to be read.

2:0 — Reserved

TABLE 19-24 ASI_SCRATCHPAD_ACCESS Format

Operation Type
Data
Bits Field Remarks

Data read 63:0 data{63:0} Contains the 64-bit data field read from the data array.

ECC read 63:8 — Reserved. Read as all zeroes

7:0 ecc{7:0} Contains the eight ecc bits read from the data array.
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The format and usage of this register are described below.

The data returned by an access to the ASI_TICK_ACCESS register is defined as
follows.

Diagnostic reads to the TICK_CMPR array using this ASI never result in ECC errors.

In order to cause an ECC error, software can first set up the ASI_ERROR_INJECT
register as described in ASI_ERROR_INJECT_REG on page 243. Then, software can
write to the TICK_CMPR registers using normal instructions.

19.12 Trap Stack Array (TSA)
Each strand has a hyperprivileged, read-only ASI_TSA_ACCESS register located at
ASI 5B16, VA 016–3816.

Diagnostic software can read the ecc bits by using this register. The format and
usage of this register are described below.

Implementation
Note

The intdis bit of the various TICK_CMPR registers is inverted
before being used in the ECC calculation.

TABLE 19-25 ASI_TICK_ACCESS Address Format

Operation Type Bit Field Remarks

Load 63:6 — Reserved

5 data_np If 1, returns the data entry contents; if 0, returns the 8 ecc bits in bit
positions 7:0 of the returned data field.

4:3 index{1:0} Index in TICK_CMPR array to be read: 00 – TICK_CMPR;
01 – STICK_CMPR; 10 – HSTICK_COMPARE; 11 – Reserved.

2:0 — Reserved

TABLE 19-26 ASI_TICK_ACCESS Format

Operation Type Data Bits Field Remarks

Data read 63:0 data{63:0} Contains the 64-bit data field read from the data array

ECC read
63:8 — Reserved. Read as all zeroes

7:0 ecc{7:0} Contains the 8 ecc bits read from the data array
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The data returned by an access to the ASI_TSA_ACCESS register is defined as
follows:.

Diagnostic reads to the TSA using this ASI never result in ECC errors.

To cause an ECC error, software can first set up the ASI_ERROR_INJECT register as
described in ASI_ERROR_INJECT_REG on page 243. Then, software can write to the
TSA using normal instructions.

The TSA stores several logical registers. TABLE 19-29 documents the internal
organization of the array and the mapping of the contents of the logical registers to
their physical locations within the array. Note that some bits of some entries of the
array are reserved for hardware use. If a correctable ECC error occurs in these bits or
an error occurs in the ecc bits themselves, software can correct the error by doing
the following:

1. Disabling correctable ECC checking on the TSA by setting CERER.tsac to 0.

2. Reading any logical register in the entry with an error.

3. Writing this logical register back with the same data as was read.

This causes the ECC to be recalculated.

TABLE 19-27 ASI_TSA_ACCESS Address Format

Operation Type Bit Field Remarks

Load

63:6 — Reserved

5:3 index{2:0} Index in TSA to be read

2:0 — Reserved

TABLE 19-28 ASI_TSA_ACCESS Format

Operation Type Data Bits Field Remarks

ECC read
63:16 — Reserved. Read as all zeroes

15:0 ecc{15:0} Contains the 16 ecc bits read from the data array
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TABLE 19-29 TSA Entry Contents

Entry Data Bits Logical Description Remarks

0 151 Not software-accessible; reserved for hardware VA out-
of range detection in the event that a trap handler
enables translation or changes PSTATE.am. If an error
causes this bit to flip from 1 to 0 and the trap handler
enables translation or changes PSTATE.am, it is possible
that the hardware will fail to take an
instruction_address_range or instruction_real_range
trap after the done or retry. If an error causes this bit to
flip from 0 to 1 and the trap handler enables translation
or changes PSTATE.am, it is possible that the hardware
will incorrectly take an instruction_address_range or
instruction_real_range trap after the DONE or RETRY
instruction.

150 Not software-accessible; reserved for hardware VA out-
of-range detection in the event that a trap handler
enables translation or changes PSTATE.am. If an error
causes this bit to flip from 1 to 0 and the trap handler
enables translation or changes PSTATE.am, it is possible
that the hardware will fail to take an
instruction_address_range or instruction_real_range
trap after the done or retry. If an error causes this bit to
flip from 0 to 1 and the trap handler enables translation
or changes PSTATE.am, it is possible that the hardware
will incorrectly take an instruction_address_range or
instruction_real_range trap after the DONE or RETRY
instruction.
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149:142 ECC for bits 151,150,133:68

141:134 ECC for bits 67:0

133 — Not software-accessible; reserved for hardware usage

132:131 TSTATE{41:40} TSTATE1.GL{1:0}

130:123 TSTATE1{39:32} TSTATE1.CCR

122:115 TSTATE1{31:24} TSTATE1.ASI

114 HTSTATE{10} HTSTATE.ibe

113 TSTATE1{17} TSTATE1.PSTATE.cle

112 TSTATE1{16} TSTATE1.PSTATE.tle

111 TSTATE1{20} TSTATE1.PSTATE.tct

110 HTSTATE1{2} HTSTATE.priv

109 HTSTATE1{5} HTSTATE1.red

108 TSTATE1{12} TSTATE1.PSTATE.pef

107 TSTATE1{11} TSTATE1.PSTATE.am

106 TSTATE1{10} TSTATE1.PSTATE.priv

105 TSTATE1{9} TSTATE1.PSTATE.ie

104 HTSTATE1{0} HTSTATE1.tlz

103:101 TSTATE1{2:0} TSTATE1.CWP{2:0}

100:92 TT1{8:0}

91:46 TPC1{47:2}

45:0 TNPC1{47:2}

1–5 All Same as entry 0; Trap Stack entries 2-6

TABLE 19-29 TSA Entry Contents (Continued)

Entry Data Bits Logical Description Remarks
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19.13 MMU Register Array (MRA)
Each strand has a hyperprivileged, read-only ASI_MRA_ACCESS register located at
ASI 5116, VA 016–3816.

Diagnostic software can read the parity bits using this register. The format and usage
of this register are described below.

6 149:142 ECC for bits 133:67

141:134 ECC for bits 66:0

133:92 — Reserved. Unused

91:80 mondo_queue_tail{17:6}

79:68 dev_queue_tail{17:6}

67:46 — Reserved. Unused

45:34 mondo_queue_head{17:6}

33:22 dev_queue_head{17:6}

21:0 — Reserved. Unused

7 149:142 ECC for bits 133:67

141:134 ECC for bits 66:0

133:92 — Reserved. Unused

91:80 res_err_queue_tail{17:6}

79:68 nonres_err_queue_tail{17:6}

67:46 — Reserved. Unused

45:34 res_err_queue_head{17:6}

33:22 nonres_err_queue_head{17:6}

21:0 — Reserved. Unused

TABLE 19-29 TSA Entry Contents (Continued)

Entry Data Bits Logical Description Remarks
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The data returned by an access to the ASI_MRA_ACCESS register is defined as
follows.

Diagnostic reads to the MRA using this ASI never result in parity errors.

To cause a parity error, software can first set up the ASI_ERROR_INJECT register as
described in ASI_ERROR_INJECT_REG on page 243. Then, software can write to the
MRA using ASI store instructions.

The MRA stores several MMU configuration registers. TABLE 19-32 documents the
internal organization of the array and the mapping of the contents of the logical
registers to their physical locations within the array. Note that bits 81:78 of the array
are not used for entries 3:0. Software can correct any MRA parity error by reloading
the entry from a “clean” copy in memory. Hardware generates the correct parity for
the entry as it is written back to the array.

TABLE 19-30 ASI_MRA_ACCESS Address Format

Operation Type Bit Field Remarks

Load 63:6 — Reserved

5:3 index{2:0} Index in MRA array to be read.

2:0 — Reserved

TABLE 19-31 ASI_MRA_ACCESS Data Format

Operation Type Data Bits Field Remarks

Parity read 63:2 — Reserved. Read as all zeros.

1:0 pty{1:0} Contains the parity bits for each 41-bit subfield.
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TABLE 19-32 MRA Entry Contents

Entry Bit Logical Description Remarks

0

83 Parity for bits 81:41

82 Parity for bits 40:0

81:77 — Reserved

76:75 z_tsb_config_0{62:61}

74:48 z_tsb_config_0{39:13}

47:39 z_tsb_config_0{8:0}

38 — Reserved

37:36 z_tsb_config_1{62:61}

35:9 z_tsb_config_1{39:13}

8:0 z_tsb_config_1{8:0}

1

83 Parity for bits 81:41

82 Parity for bits 40:0

81:77 — Reserved

76:75 z_tsb_config_2{62:61}

74:48 z_tsb_config_2{39:13}

47:39 z_tsb_config_2{8:0}

38 — Reserved

37:36 z_tsb_config_3{62:61}

35:9 z_tsb_config_3{39:13}

8:0 z_tsb_config_3{8:0}

2

83 Parity for bits 81:41

82 Parity for bits 40:0

81:77 — Reserved

76:75 nz_tsb_config_0{62:61}

74:48 nz_tsb_config_0{39:13}

47:39 nz_tsb_config_0{8:0}

38 — Reserved

37:36 nz_tsb_config_1{62:61}

35:9 nz_tsb_config_1{39:13}

8:0 nz_tsb_config_1{8:0}
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3

83 Parity for bits 81:41

82 Parity for bits 40:0

81:77 — Reserved

76:75 nz_tsb_config_2{62:61]

74:48 nz_tsb_config_2{39:13]

47:39 nz_tsb_config_2{8:0]

38 — Reserved

37:36 nz_tsb_config_3{62:61]

35:9 nz_tsb_config_3{39:13]

8:0 nz_tsb_config_3{8:0]

4

83 Parity for bits 81:41

82 Parity for bits 40:0

81 real_range_0{63] Unused

80:27 real_range_0{53:0]

26:0 physical_offset_0{39:13]

5

83 Parity for bits 81:41

82 Parity for bits 40:0

81 real_range_1{63] Unused

80:27 real_range_1{53:0]

26:0 physical_offset_1{39:13]

6

83 Parity for bits 81:41

82 Parity for bits 40:0

81 real_range_2{63] Unused

80:27 real_range_2{53:0]

26:0 physical_offset_2{39:13]

7

83 Parity for bits 81:41

82 Parity for bits 40:0

81 real_range_3{63] Unused

80:27 real_range_3{53:0]

26:0 physical_offset_3{39:13]

TABLE 19-32 MRA Entry Contents (Continued)

Entry Bit Logical Description Remarks
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19.14 L2 Cache Registers
This section discusses L2 control and status registers.

19.14.1 L2 Control Register
Each cache bank has a control register. To enable the L2 cache, the dis bit must be set
to 0 for all enabled banks. The L2 cache can be disabled by setting the dis bit for all
enabled banks to 1. Operation when the dis bit of the enabled L2 banks are not all
the same is undefined. Note that while the L2 cache can be disabled during normal
operation, it must be completely flushed of dirty cache lines before being disabled
because once disabled it will no longer participate in the coherence protocol (that is,
when disabled, the L2 cache is treated as if all its contents are invalid). Likewise,
reenabling the L2 cache requires that the L2 cache be completely invalidated before
clearing the dis bit since the data in the L2 cache can be stale. In addition, before
disabling the L2 cache, the L1 instruction and data caches must be disabled in all
strands’ ASI_LSU_CONTROL_REG registers, as the L1 caches cannot operate
properly when the L2 cache is disabled. The L2 Control register is available at
address A9 0000 000016 or B9 0000 000016. Address bits 8:6 select the cache bank,
address bits 31:9 and 5:3 are ignored (that is, the register aliases across the address
range).

The L2 Control register format is shown in TABLE 19-33.

TABLE 19-33 L2 Control Register – L2_CONTROL_REG (A9 0000 000016) (Count 8 Step 64)

Bit Field
Initial
Value R/W Description

63:23 — X RO Reserved

22 dirclear 0 WO Writing 1 clears I-Cache and D-Cache directories.

21 dbgen 0 RW Unused

20:15 errorsteer 0 RW Specifies the physical core (bits 20:18) and strand (bits 17:15) that
receives all the L2 errors whose cause can't be linked to a specific
virtual processor.

14:3 scrubinterval 0 RW Interval between scrubbing of adjacent sets in L2 in processor core
clocks. In units of 1M cycles.

2 scrubenable 0 RW If set to 1, enable hardware scrub.

1 dmmode 0 RW If set to 1, address bits 21 to 18 indicate the replacement way (direct-
mapped mode). If set to 0, all L2 ways are enabled under LRU control.

0 dis 1 RW If set to 1, disable the L2 cache. If set to 0, enable the L2 cache.
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19.14.2 L2 Bank Available
The L2 Bank Available register format is shown below.

19.14.3 L2 Bank Enable
The L2 Bank Enable register, described in TABLE 19-35, allows software to enable a
legal combination of L2 banks. Initially this register is set identical to BANK_AVAIL.
Software must program BANK_ENABLE to a legal combination of banks, as listed in
TABLE 19-36.

TABLE 19-34 L2 Bank Available – BANK_AVAIL (80 0000 101816)

Bit Field Initial Value R/W Description

63:8 rsvd 0 RO Reserved

7:0 avail FF16 RO L2 bank available programmed by eFuse.

Note After programming BANK_ENABLE to a legal combination of
banks, SW needs to initiate a warm reset to have the effect take
place, i.e have all appropriate banks be enabled or disabled.

Note The BANK_AVAIL.avail field is anded with value written to
BANK_ENABLE, preventing software from being able to enable
a bank that is not available.

TABLE 19-35 L2 Bank Enable – BANK_ENABLE (80 0000 102016)

Bit Field Initial Value R/W Description

63:8 rsvd 0 RO Reserved

7:0 enable BANK_AVAIL.avail RW L2 banks enabled.

TABLE 19-36 Legal Values for BANK_ENABLE.enable.

Value Description

0316 2-bank mode

0C16 2-bank mode

0F16 4-bank mode

3016 2-bank mode

3316 4-bank mode
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TABLE 19-36 specifies the following rules:

1. Two banks enabled: Any one of BA01, BA23, BA45, or BA67.

2. Four banks enabled: Any one of {BA01, BA23},{BA23, BA45}, {BA45, BA67},
{BA67, BA01}, {BA01,BA45}, or {BA23,BA67}.

3. Eight banks enabled: {BA01, BA23, BA45, BA67}.

3C16 4-bank mode

C016 2-bank mode

C316 4-bank mode

CC16 4-bank mode

F016 4-bank mode

FF16 8-bank mode

TABLE 19-37 3 bank pair to 2 bank pair remap of BANK_ENABLE.enable.

BANK_ENABLE.enable Remapped To

3F16 0F16

CF16 0F16

F316 F016

FC16 F016

Note In case Software programs 3 bank pairs to be enabled in the L2
Bank Enable register in violation of the legal values indicated in
TABLE 19-36, OpenSPARC T2 hardware remaps it to 2 bank pairs
as per TABLE 19-37 on page 420 .

WARNING! Because the L2 reverse directory can accommodate no more than
1/8 of the L1 cache lines per virtual processor, in the partial
bank enabled configurations, the number of SPC cores enabled
through CMP registers must be less than or equal to n, where n
is the number of available banks.

Notes Software needs to ensure PA{39} = 0 in 8-bank, PA{39:38} = 02 in
4-bank mode and PA{39:37} = 0002 in 2-bank mode.

PA{39:38} = 02 in 4-bank mode and PA{39:37} = 0002 in 2-bank
mode.

TABLE 19-36 Legal Values for BANK_ENABLE.enable.
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19.14.4 L2 Bank Enable Status
The Bank Enable Status register shows the status of the hardware signals generated
as a result of the BANK_ENABLE register. Software can use this register to determine
when the effects of a write to BANK_ENABLE are complete. The preview versions of
the status change immediately after BANK_ENABLE is written, while the non-

Note Because a pair of L2 banks are directly connected to a single
memory port, in a 2-bank configuration, only a single memory
port will be usable. In a 4-bank configuration, only a pair of
memory ports will be usable.

Note In 2 or 4 bank enabled modes, other than accesses to Bank
Enable,Bank Enable Status,Index Hash Enable, Index Hash
Enable Status registers which reside in NCU block, OpenSPARC
T2 would have CSR/Diagnostic accesses to all of disabled L2
banks aliased and remapped to enabled banks by SPC.

Implementation
Notes

In the 2-bank configuration, the L2 bank is selected by PA{6},
with PA{6} = 0 selecting the even bank and PA{6} = 1 selecting
the odd bank. In the 4-bank configuration, the L2 index is
selected by PA{7:6}. PA{7} selects between the pair of banks
enabled, with PA{7} = 0 selecting the lower numerical pair of
banks (except for the case where banks BA67 and BA01 are
enabled, where PA{7} = 0 selects BA67), and PA{7} = 1 selecting
the higher numerical pair of banks (again except for the case
where banks BA67 and BA01 are enabled, where PA{7} = 1
selects BA01). PA{6} selects between the even and odd banks of
the bank pair selected by PA{7}, with PA{6} = 0 selecting the
even bank and PA{6} = 1 selecting the odd bank.

In the 2-bank configuration, the L2 index is formed from
PA{15:7} and the tag from PA{37:16} (and PA{39:38} is zeroed
out). The usual addr{10,9,5,4} accesses reverse directory CAM
panel (1 of 16, each is 32 way), but PA{8:7} is used to access 8 out
of the 32 ways in the directory CAM. In the 4-bank
configuration, the L2 index is formed from PA{16:8} and the tag
from PA{38:17} (and PA{39} is zeroed out). The usual
addr{10,9,5,4} accesses reverse directory CAM panel (1 of 16,
each is 32 way), but PA{8} accesses 16 out of the 32 ways in the
directory CAM.
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preview version change only after the next warm reset when all appropriate banks
have been enabled or disabled.SW needs to initiate a warm reset to have all
appropriate banks have been enabled or disabled.

19.14.5 L2 Index Hash Enable
The L2 has a hashing function available to relieve hot-spotting in certain L2 sets.
Hashing is controlled through the L2_IDX_HASH_EN and
L2_IDX_HASH_EN_STATUS registers. The hashing enable can be changed only
following a warm reset. After a warm reset, the value written into
L2_IDX_HASH_EN is sent the L2 and reflected in L2_IDX_HASH_EN_STATUS once
the L2 completes hashing setup.

TABLE 19-38 L2 Bank Enable Status – BANK_ENABLE_STATUS (80 0000 102816)

Bit Field
Initial
Value R/W Description

63:13 — 0 RO Reserved

12 pm_preview 0 RO L2 partial mode enable. Set if BANK_ENABLE is not FF16.

11 ba67_preview 1 RO Banks 6 and 7 enable. Set if bits 7:6 of BANK_ENABLE are 316.

10 ba45_preview 1 RO Banks 4 and 5 enable. Set if bits 5:4 of BANK_ENABLE are 316.

9 ba23_preview 1 RO Banks 3 and 2 enable. Set if bits 3:2 of BANK_ENABLE are 316.

8 ba01_preview 1 RO Banks 1 and 0 enable. Set if bits 1:0 of BANK_ENABLE are 316.

7:5 — 0 RO Reserved

4 pm 0 RO L2 partial mode enabled. Set if 4 or 2 L2 banks are enabled.

3 ba67 1 RO Banks 6 and 7 enabled. Set if L2 banks 7:6 are enabled.

2 ba45 1 RO Banks 4 and 5 enabled. Set if L2 banks 5:4 are enabled.

1 ba23 1 RO Banks 3 and 2 enabled. Set if L2 banks 3:2 are enabled.

0 ba01 1 RO Banks 1 and 0 enabled. Set if L2 banks 1:0 are enabled.

TABLE 19-39 L2 Index Hash Enable – L2_IDX_HASH_EN (80 0000 103016)

Bit Field
Initial
Value R/W Description

63:1 — 0 RO Reserved

0 enb_hp 0 RW If 1, enable L2 index hashing following next warm reset. If 0,
disable L2 index hashing following next warm reset.

Implementation
Note

The hashing function used by OpenSPARC T2 sets the effective
PA{17:11} ← {(PA{32:28} xor PA{17:13}) :: (PA{19:18} xor
PA{12:11})}. This hashing function is unaffected by the
BANK_ENABLE_STATUS register settings.
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19.14.6 L2 Index Hash Enable Status

19.14.7 Other L2 Registers
Other L2 Cache registers are defined in other chapters, particularly the error control
and status registers are in the Error Handling chapter.

19.15 L2 Cache Flushing
OpenSPARC T2 provides Prefetch [address], 1816 (PrefetchICE) for invalidating and
coherently committing an L2 cache line to memory. This PrefetchICE is only
available in hyperprivileged mode. Execution of a PrefetchICE instruction while in
user or privileged mode is a NOP. TABLE 19-41 lists the address format for the
PrefetchICE.

TABLE 19-40 L2 Index Hash Enable Status – L2_IDX_HASH_EN_STATUS (80 0000 103816)

Bit Field Initial Value R/W Description

63:1 — 0 RO Reserved

0 enb_hp 0 RO Set if L2 index hashing is enabled.

TABLE 19-41 PrefetchICE Address Format

Bit Field Description

63:40 — Reserved

39:37 key Must be 011. Use of any other value places OpenSPARC T2 in an undefined state.

36:221

1. When index hashing is enabled, bits 32:28 will affect the set selection.

— Reserved, can be any value.

21:182

2. When index hashing is enabled, bits 19:18 will affect the set selection.

way Selects way in cache set.

17:93

3. When four L2 banks are enabled, set is specified in bits 16:8 and bit 17 may be any value, while
when two banks are enabled, set is specified in bits 15:7 and bits 17:16 may be any value.

set Selects cache set in bank.

8:64

4. When four L2 banks are enabled, bank is specified in bits 7:6 only, while when two banks are
enabled, bank is specified in bit 6 only.

bank Selects cache bank.

5:0 — Reserved, can be any value.
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Note The PrefetchICE address specifies which particular L2 cache
way, set, and bank are committed to memory. To flush a specific
address, software must either issue a PrefetchICE to all 16
possible ways or, if software can guarantee that the address will
not be refetched during the flushing code, software can use
diagnostic reads to find which way contains the cache address
and then issue a PrefetchICE to that specific way. A series of
PrefetchICE’s to a particular L2 bank can be guaranteed
complete if followed by any load to that bank (even diagnostic
load). The completion of the load will indicate that the
PrefetchICE instructions are complete.

Programming
Notes

When L2 index hashing is enabled (as specified in
L2_IDX_HASH_EN_STATUS), software will need to generate the
nonhashed index for use by the PrefetchICE. While bits 32:28
can be set to zero to remove their effect on hashing, bits 19:18
are part of the hash calculation, and the bits 12:11 of the desired
set must be xored with bits 19:18 to generate the bits 12:11 used
in the PrefetchICE. For example, if software desired to flush all
16 ways of bank 0, set 0, it would need to generate the following
addresses: 60 0000 000016, 60 0004 080016, 60 0008 100016,
60 000C 180016, 60 0010 000016, 60 0014 080016, 60 0018 100016,
60 001C 180016, 60 0020 000016, 60 0024 080016, 60 0028 100016,
60 002C 180016, 60 0030 000016, 60 0034 080016, 60 0038 100016,
60 003C 180016.

When four or two L2 banks are enabled (as specified in
BANK_ENABLE_STATUS), PrefetchICE will shift the set and
bank bits (for 4 banks set is 16:8 and bank is 7:6, for 2-banks set
is 15:7 and bank is 6). The way will always be specified in bits
21:18 and will not be shifted based on BANK_ENABLE_STATUS.

Note If a PrefetchICE instruction detects a tag parity error it issues a
scrub of the tag array index and gets replayed after the scrub. It
completes normally if there is no further tag parity error. If the
PrefetchICE instruction detects a VUAD correctable error, the
PrefetchICE instruction just completes as normal and the VUAD
error gets silently corrected (without being logged). Since the
VUAD error gets corrected early in the L2 pipeline, the
PrefetchICE instruction always gets the correct value of the
Dirty bits in its eviction pass and hence completes normally.
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19.16 L2 Cache Diagnostic Access
This section describes the control registers and diagnostic access for the L2 cache.

Diagnostic accesses will functionally work in the midst of other operations, but the
results of L2 diagnostic accesses are inherently somewhat indeterminate because the
state of the L2 cache is a moving target. Of course, diagnostic writes have the
capability of putting OpenSPARC T2 into an inconsistent or illegal state.

TABLE 19-42 shows the breakdown of the L2 address range.

19.16.1 L2 Data Diagnostic Access
Diagnostic access to the L2 data array is done through 64-bit read/writes that access
a 32-bit data subblock along with the corresponding 7-bit ecc. The format for
addressing the entire L2 cache is shown in TABLE 19-43.

Note A PrefetchICE instruction when used to invalidate a line from
OpenSPARC T2 L2 Cache might cause a tag parity error or data
correctable/uncorrectable error to be detected and reported . In
case the reporting has been turned off by software prior to the
issue of the Prefetch ICE, the error would still be in pending
state until the next miss is serviced by the L2 cache. In order not
to have this error reported in the future, software should clear
this internal error reporting pending state in L2 cache by forcing
a miss to that particular L2 bank after the Prefetch ICE . One
way to force the miss is to issue a load to the same physical
address as the line which got invalidated by Prefetch ICE.

TABLE 19-42 Breakdown of the L2 Diagnostic Address Range

Address Range (8 MSBs of the 40-bit Address) Assigned to: Comment

A016–A316/B016–B316 L2 Data Diagnostic access to the L2 data array.

A416–A516/B416–B516 L2 Tag Diagnostic access to the L2 tag array.

A616–A716/B616–B7 16 L2 Tag VUAD Diagnostic access to the L2 VUAD array.

A8 16–AF16/B816–BF16 L2 Registers Error, control, and status registers.

Note Diagnostic loads of the L2 data do not check the ecc, and thus
cannot generate an ECC error.
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The data format is shown in TABLE 19-44.

Programming
Note

L2 Data diagnostic addresses are not affected by L2 index
hashing (as specified in L2_IDX_HASH_EN_STATUS). If index
hashing is enabled and software wants to access a line
corresponding to a specific PA, software must adjust the L2 Data
diagnostic address accordingly.

Programming
Note

In case L2 is configured in partial bank mode, for a L2 data
diagnostic access, the L2 index gets picked up from bits 16:8 in
4 bank mode and 15:7 in 2 bank mode from the L2 data
diagnostic address packet which is similar to the way L2 index
is constructed for any cacheable access to L2 in partial bank
modes. Bits 17:6 should be the same as the original PA in partial
bank mode.

TABLE 19-43 Format 6 L2 Data Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be A016, A116, A216, A316, B016, B116, B216, or B316 to select L2 data diagnostic
access.

31:23 — Reserved, can be any value (that is, the data diagnostic access is aliased throughout the
A0 – A3/B0–B3 address range).

22 oddeven Selects 32 bit word from 64 bit word selected by word field.

21:18 way Selects way in cache set.

17:9 set Selects cache set in bank.

8:6 bank Selects cache bank.

5:3 word Selects 64 bit word in 64 byte cache line.

2:0 — All zero for 64-bit access.

TABLE 19-44 23 L2 Diagnostic Data – L2_DIAG_DATA (A0 0000 000016) (Count 2, Step 4194304) (Count
393216, Step 8)

Bit Field Initial Value R/W Description

63:39 — X RO Reserved

38:7 data X RW Data.

6:0 ecc X RW ECC value for data.
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19.16.2 L2 Tag Diagnostic Access
Diagnostic access to the L2 tag array is done through 64 bit read/writes that access
the tag along with the corresponding 6-bit ecc. The format for addressing the entire
L2 cache is shown in TABLE 19-45.

The data format is shown in TABLE 19-46.

Note Diagnostic loads of the L2 tag do not check the ecc, and thus
cannot generate an ECC error.

Programming
Note

L2 Tag diagnostic addresses are not affected by either partial L2
banks (as specified in BANK_ENABLE_STATUS) or L2 index
hashing (as specified in L2_IDX_HASH_EN_STATUS). If either
index hashing is enabled or not all banks are enabled and software
wants to access a line corresponding to a specific PA, software
must adjust the L2 Tag diagnostic address accordingly. In case L2 is
configured in partial bank mode, for a L2 tag diagnostic access, the
L2 index gets picked up from 17:9 of the L2 Tag Diagnostic address
packet . Hence software should precompute the physical index from
the specific PA based on the partial bank configuration (16:8 for 4
bank and 15:7 for 2 bank) and present in on bits 17:9 of the L2 Tag
diagnostic packet. However bits 8:6 should be the same as the
original PA in partial bank mode.

TABLE 19-45 Format 7 L2 Tag Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be A416, A516, B416, or B516 to select L2 tag diagnostic access.

31:22 — Reserved, can be any value (i.e., the tag diagnostic access is aliased throughout the
A4 – A5/B4 – B5 address range).

21:18 way Selects way in cache set.

17:9 set Selects cache set in bank.

8:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 — All zero for 64-bit access.
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19.16.3 L2 VUAD Diagnostic Access
Diagnostic access to the L2 VUAD array is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the ECC for
those bits across the set via 64-bit read/writes. The format for addressing the entire
L2 cache is shown in TABLE 19-47.

TABLE 19-46 24 L2 Diagnostic Tag – L2_DIAG_TAG (A4-0000-000016) (Count 49152, Step 64)

Bit Field Initial Value R/W Description

63:30 — X RO Reserved

27:6 tag X RW Tag, corresponds to addr{39:18}1.

1. With the L2 in 4 bank mode, the tag contains addr{38:17} if index hashing is disabled, and
{addr{38:18}, addr{32}^addr{17}} if index hashing is enabled. With the L2 in 2-bank mode,
the tag contains addr{37:16} if index hashing is disabled, and {addr{36:18},addr{32:31} xor
addr{17:16}} if index hashing is enabled.

5:0 ecc X RW ECC value for tag.

Note Restraint must be exercised when using this register to inject
errors into the L2 tags. Since a tag correction takes much longer
than an injection and since correction causes a retry for an access
that discovers an error, repeatedly injecting errors at a high rate
can prevent forward progress of another virtual processor
accessing a line at that cache index (set). Injecting each error just
once (potentially for many individual errors) or ensuring that
the injections to the same index are at least 1000 cycles apart are
both sufficient to avoid this problem.

Note Diagnostic loads of the VUAD do not check ecc, and thus
cannot generate ECC errors.

Programming
Note

L2 VUAD diagnostic addresses are not affected by L2 index
hashing (as specified in L2_IDX_HASH_EN_STATUS). If index
hashing is enabled software wants to access a line corresponding to
a specific PA, software must adjust the L2 VUAD diagnostic address
accordingly.
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The data format is shown in TABLE 19-48.

The second range accesses the AD bits for an entire set via 64 bit read/writes.
The format for addressing the entire L2 cache is shown in TABLE 19-49.

Programming
Note

In case L2 is configured in partial bank mode, for a L2 VUAD
diagnostic access, the L2 physical index gets picked up from
bits 16:8 in 4 bank mode and 15:7 in 2 bank mode from the L2
VUAD diagnostic address packet which is similar to the way L2
index is constructed for any cacheable access to L2 in partial
bank modes.Bits 17:6 should be the same as the original PA in
partial bank mode.

TABLE 19-47 Format 8 L2 VD Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be A616, A716, B616, or B716 to select L2 VD diagnostic access.

31:23 — Reserved, can be any value (i.e., the VD diagnostic access is aliased throughout the
A6–A7/B6–B7 address range where bit 22 is 1).

22 vdsel Must be set to 1

21:18 — Reserved, can be any value (i.e., the VD diagnostic access is aliased throughout the
A6– A7/B6–B7 address range where bit 22 is 1).

17:9 set Selects cache set in bank.

8:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 rsvd4 All zero for 64 bit access

TABLE 19-48 25 L2 Diagnostic VD – L2_DIAG_VD (A6 0040 000016) (count 4096 step 64)

Bit Field Initial Value R/W Description

63:39 — X RO Reserved

38:32 vdecc X RW ECC for all dirty and valid bits.

31:16 valid X RW Valid bits for way 15 down to way 0.

15:0 dirty X RW Dirty bits for way 15 down to way 0.

TABLE 19-49 Format 9 L2 UA Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be A616, A716, B616, or B716 to select L2 UA diagnostic access.

31:23 — Reserved, can be any value (i.e., the UA diagnostic access is aliased throughout the
A6–A7/B6–B7 address range where bit 22 is 0).
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The data format is shown in TABLE 19-50.

19.17 Built-In Self-Test (BIST)

19.17.1 L2 BIST Control
On OpenSPARC T2, each L2 bank has its BIST control coming from the Test Control
Unit (TCU). The software-visible BIST state of each L2 bank is also available in TCU.
Hence the L2 Control register at address A8 0000 000016/B8 0000 000016 is reserved
and returns a 64-bit zero value when read.

22 vdsel Must be set to 0.

21:18 — Reserved, can be any value (i.e., the UA diagnostic access is aliased throughout the
A6–A7/B6–B7 address range where bit 22 is 0).

17:9 set Selects cache set in bank.

8:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 rsvd4 All zero for 64 bit access.

TABLE 19-50 26 L2 Diagnostic UA – L2_DIAG_UA (A6 000 0000016) (Count 4096 Step 64)

Bit Field Initial Value R/W Description

63:39 — X RO Reserved

38:32 uaecc X RW ECC for all used and alloc bits.

31:16 used X RW Used bits for way 15 down to way 0.

15:0 alloc X RW Allocated bits for way 15 down to way 0.

TABLE 19-49 Format 9 L2 UA Diagnostic Addressing (Continued)

Bit Field Description
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CHAPTER 20

Hardware Debug Support

20.1 SPARC Core Debug Features
Each physical OpenSPARC T2 SPARC core contains several hardware debug
features. Some (breakpoints and watchpoints, for example) have already been
mentioned in Chapter 19, Configuration and Diagnostics Support.

20.1.1 Shadow Scan
Each physical OpenSPARC T2 SPARC core supports the ability to capture a subset of
each strand’s state for inspection via a shadow scan facility. The shadow scan is
invoked by JTAG commands (see Appendix H, JTAG (IEEE 1149.1) Scan Interface).
Please refer to section Shadow Scan Chains on page 542 for Shadow Scan in
OpenSPARC T2.

The TCU continually specifies a strand ID to each physical OpenSPARC T2 SPARC
core. In response, the physical core atomically captures the state as described in the
following table in a scan string. The TCU then accesses the scan string and captures
it in a JTAG-visible register for presentation over the JTAG interface.

TABLE 20-1 lists the state that can be gathered from each running virtual processor.

TABLE 20-1 SPARC Shadow Scan State

Data Bits Field Remarks

117:72 VA{47:2} Virtual address of last instruction executed by that strand

71 ibe HPSTATE.ibe

70 cle PSTATE.cle

69 tle PSTATE.tle

68 tct PSTATE.tct
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VA is updated when an instruction is executed. When the TCU changes the strand
ID that controls which strand’s state is captured, the VA field can capture spurious
values. Between the time that the TCU updates the strand ID and the time that the
new strand executes an instruction, the VA field reflects either the VA of the last
instruction that executed on the previous strand ID or a spurious value captured
during the strand ID transition. After the first instruction executes on the new
strand, the VA field correctly reflects the VA for the new strand. There is no valid bit
or strand ID captured in the shadow scan to distinguish when the VA has updated
for the new strand.

HPSTATE, PSTATE, and TL are updated dynamically. Thus, they correctly reflect
updates after a trap, a DONE, a RETRY, or a software write to %tl. These fields also
update immediately after the TCU changes the strand ID.

TPC, TT, and TL_FOR_TT, however, 0

are updated only when the strand takes a trap. They are not updated for DONE,
RETRY, or software writes to %tl. For example, if the processor traps from TL = 0 to
TL = 1 to TL = 2 and then uses DONE and/or RETRY to get back to TL = 0, shadow
scan will still reflect TT{2}, TPC{2}, and TL_FOR_TT will still be 2. Similarly, if the
processor traps out to TL = 2 and then software writes TL to 1 or 0, shadow scan will
still show TT{2}, TPC{2}, and TL_FOR_TT will still be 2. Simiarly, after TCU
changes the strand ID, these fields reflect state for the previous strand ID until the
new strand takes a trap. There is no valid bit or strand ID captured in the shadow
scan to distinguish when these fields have updated for the new strand.

On the JTAG bus, bit 117 appears first, followed by bit 116, sequentially down to and
including bit 0.

67 hpriv HPSTATE.hpriv

66 red HPSTATE.red

65 pef PSTATE.pef

64 am PSTATE.am

63 priv PSTATE.priv

62 ie PSTATE.ie

61 tlz HPSTATE.tlz

60:58 TL{2:0} TL

57:12 TPC{47:2} TPC for the last trap

11:3 TT{8:0} TT for the last trap

2:0 TL_FOR_TT{2:0} TL for the last trap

TABLE 20-1 SPARC Shadow Scan State

Data Bits Field Remarks
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If multiple traps occur after the state was atomically captured into the shadow scan
string, but while the shadow scan string is being scanned, only the state belonging to
the last trap remains to be (potentially) captured on the next capture point. Due to
the length of time to perform a shadow scan relative to the time between traps,
sampling via shadow scan can miss several traps.

All eight core shadow scans are scanned serially as one chain, with strand 0 closest
to TDI and strand 7 closest to TDO. Any strand marked unavailable in the CMP
STRAND_AVAILABLE register will not be included when scanned via TDI to TDO.
The shadow scan chain for a given strand is placed in that strand’s second scan
chain during ATPG test mode; they are accessible otherwise only via JTAG shadow
scan instructions (that is, not during JTAG serial scan).

20.1.2 SPARC Debug Event Control Register
There is one debug control register per physical OpenSPARC T2 SPARC core
(ASI_DECR). Each event type field in the ASI_DECR contains two bits that encode
the type of response for that event as shown in TABLE 20-2.

All strands of a physical OpenSPARC T2 SPARC core share a hyperprivileged, read/
write, Debug Event Control register located at ASI 4516, VA 816. The DECR controls
the debug event response (hard stop or soft stop or watchpoint) for an associated
core debug event if that event occurs.

The format of the ASI_DECR register is described in TABLE 20-3.

TABLE 20-2 ASI_DECR Debug Event Response Type Encoding

DECR Event Response Type Encoding Response If Debug Event Occurs

00 Debug event disabled.

01 Soft stop.

10 Hard stop.

11 Pulse TRIGOUT/
Watchpoint.
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20.1.3 Disable Overlap and Single-Stepping Modes
Each core can disable overlap of instruction execution within all threads. In this
mode, each thread issues one instruction, waits for the instruction to commit and
any associated memory operations to be globally observed, then fetches and
executes the next instruction. This mode essentially disables pipelining for all of a
physical core’s strands.

Additionally, each core has the capability of executing one instruction from each
enabled strand. This is referred to as single-step.

These two features are controlled through JTAG only by the TAP_DOSS_ENABLE,
TAP_DOSS_MODE, TAP_SS_REQUEST, TAP_DOSS_STATUS, TAP_CS_MODE,
TAP_CS_STATUS JTAG commands described in TABLE H-1 on page 531.

20.1.4 ASI_RST_VEC_MASK

All physical cores share a hyperprivileged, read/write ASI_RST_VEC_MASK register
located as ASI 4516, VA 1816. Reserved bits read as zero and are ignored on write.
The contents of this register are preserved across warm reset. In normal operation,

TABLE 20-3 ASI_DECR Register (ASI 4516, VA 816)

Bit Field Initial Value R/W Description

63:62 iwa_de 0 (preserved across
warm and debug reset)

RW Instruction breakpoint match debug event enable.

61:60 iva_de 0 (preserved across
warm and debug reset)

RW Instruction virtual address match debug event enable.

59:58 dva_de 0 (preserved across
warm and debug reset)

RW Data virtual address match debug event enable.

57:56 dpa_de 0 (preserved across
warm and debug reset)

RW Data physical address match debug event enable.

55:54 tct_de 0 (preserved across
warm and debug reset)

RW Trap on Control Transfer debug event enable.

53:52 pe_de 0 (preserved across
warm and debug reset)

RW Precise error event (an event which would be recorded
in the I-SFSR or D-SFSR) debug event enable.

51:50 de_de 0 (preserved across
warm and debug reset)

RW Disrupting error event (an event which would be
recorded in the DESR) debug event enable.

49:48 df_de 0 (preserved across
warm and debug reset)

RW Deferred error event (an event which would be recorded
in the DFESR) debug event enable.

47:46 pm_de 0 (preserved across
warm and debug reset)

RW Performance monitor event which causes a performance
counter to wrap debug event enable.

45:0 — 0 RO Reserved
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resets trap to the RSTVADDR or (TT ← 5) (FF FFFF FFF0 000016x0), which maps to
ROM. To enhance repeatability, OpenSPARC T2 can direct resets to RAM instead. To
redirect resets to RAM, hyperprivileged software can set the vec_mask bit of the
ASI_RST_VEC_MASK register.

20.2 SOC Debug Features

20.2.1 SOC Debug Event Control Register
There is one debug control register for SOC (SOC_DECR). SOC_DECR controls the
debug response type (hard stop or watchpoint) for an associated SOC debug event if
that event occur. Each event type field in SOC_DECR contains two bits that encode
the type of response for that event as shown in the following table.

The format of the SOC_DECR is described in the following table.

TABLE 20-4 ASI_RST_VEC_MASK Register (ASI 4516, VA 1816)

Bit Field Initial Value R/W Description

63:1 — 0 RO Reserved

0 vec_mask 0 (preserved across
warm and debug
reset)

RW If 1, set RSTV to 0000 0000 0000 000016. If 0 set
RSTV to FFFF FFFF F000 000016.

TABLE 20-5 SOC_DECR Debug Event Response Type Encoding

DECR Event Response Type Encoding Response If Debug Event Occurs

00 Debug event disabled

01 Reserved

10 Hard-stop

11 Pulse TRIGOUT/Watchpoint
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TABLE 20-6 SOC_DECR Register – SOC_DECR (86 0000 001016)

Bit Field Initial Value R/W Description

63:22 — 0 RO Reserved

21:20 se_de 0 (preserved across
warm and debug
reset)

RW SOC (SII, SIO, NCU, DMU) error debug event enable.

19:18 me_de 0 (preserved across
warm and debug
reset)

RW MCU error debug event enable.

17:16 l2e_de 0 (preserved across
warm and debug
reset)

RW L2 error debug event enable.

15:14 l2b7_de 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 7 debug event enable.

13:12 l2b6_de 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 6 debug event enable.

11:10 l2b5_de 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 5 debug event enable.

9:8 l2b4_de 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 4 debug event enable.

7:6 l2b3_de 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 3 debug event enable.

5:4 L2B2_DE 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 2 debug event enable.

3:2 L2B1_DE 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 1 debug event enable.

1:0 L2B0_DE 0 (preserved across
warm and debug
reset)

RW L2 PA match bank 0 debug event enable.
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20.2.2 L2 Cache Debug Features

20.2.2.1 L2 Address Mask and Compare Registers

Each L2 Cache bank has a pair of registers per bank to control debug based on PA
matching. The L2_MASK_REG controls which bits are compared against the values
set in the L2_COMP_REG. A debug event is asserted if data and
L2_MASK_REG = L2_COMP_REG and data is valid.

Since there are eight L2 cache banks in OpenSPARC T2, there are eight debug events
based on PA matching. Debug response for these events are controlled by
SOC_DECR{15:0}.

TABLE 20-7 L2 Address Mask Register – L2_MASK_REG (AF 0000 000016) (Count 8 Step 64)

Bit Field Initial Value R/W Description

63:52 — 0 RO Reserved

51:48 ttype 0 (preserved across
warm and debug
reset)

RW ttype{3:0} mask.

47:46 —1 0 RO Reserved

45:40 vcid 0 (preserved across
warm and debug
reset)

RW Virtual processor ID mask.

39:34 — 0 RO Reserved (Physical Address{39:34} ignored.)

33:2 addr 0 (preserved across
warm and debug
reset)

RW Physical Address{33:2} mask.

1:0 —3 0 RO Reserved (Physical Address{1:0} ignored.)

TABLE 20-8 L2 Address Compare Register – L2_COMP_REG (BF 0000 000016) (Count 8 Step 64)

Bit Field Initial Value R/W Description

63:52 — 0 RO Reserved

51:48 ttype 0 (preserved across
warm and debug
reset)

RW ttype{3:0} compare value.

47:46 —1 0 RO Reserved

45:40 vcid 0 (preserved across
warm and debug
reset)

RW Virtual processor ID compare value.
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20.2.2.2 L2 Shadow Scan

Shadow scan for L2 Error registers is controlled via JTAG. The contents to be
captured in the shadow scan are as shown in TABLE 20-9. Refer also to Shadow Scan
Chains on page 542 for L2 shadow scan.

All eight L2 Tag shadow scan contents are captured at the same time, and are
available at TDO with L2T7 first and L2T0 last . JTAG instructions to support L2 Tag
shadow scan are shown in TABLE D-1.

On the JTAG bus, bits appear in the order:
15:0, 31:16, 47:32 ,63:48, 79:64, 95:80, 111:96, 127:112, 141:128.

20.2.3 Debug Event Trigger Enables
The registers described in this section contain the masks for generating debug events
in SOC_DECR.

20.2.3.1 DRAM Debug Event Trigger Enable Register

Each DRAM controller has a register that contains the debug event trigger enable for
DRAM controller related debug events.

TABLE 20-10 shows the format of the DRAM Debug Trigger Enable register.

39:34 — 0 RO Reserved (Physical Address{39:34} ignored.)

33:2 addr 0 (preserved across
warm and debug
reset)

RW Physical Address{33:2} compare value.

1:0 —3 0 RO Reserved (Physical Address{1:0} ignored.)

TABLE 20-9 L2 Shadow Scan State

Data Bits Remarks

141:84 L2 Error Status register.

83:36 Notdata error register.

35:0 FE/UE/CE Error Address register.

TABLE 20-8 L2 Address Compare Register – L2_COMP_REG (BF 0000 000016) (Count 8 Step 64)

Bit Field Initial Value R/W Description
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20.2.3.2 NCU Debug Event Trigger Enable Register

The NCU block has a register that contains the debug event trigger enable for NCU-
related debug events.

The format of the NCU Debug Event Trigger Enable register is shown in TABLE 20-11.

20.2.3.3 L2 Debug Event Trigger Enable Register

The L2 Debug Event Trigger Enable is described in L2 Error Enable Register on page
264.

TABLE 20-10 DRAM Debug Event Trigger Enable Register – DRAM_DBG_TRG_EN_REG (84 0000 023016)
(Count 4 Step 4096)

Bit Field Initial Value R/W Description

63:5 —0 016 RO Reserved

4 dtm_mask1 016 RW If set to 1, mask off CRC data for FBD Channel 1 going to
Debug bus. Reset only on POR.

3 dtm_mask0 016 RW If set to 1, mask off CRC data for FBD Channel 0 going to
Debug bus. Reset only on POR.

2 dbg_trig_en 016 RW Trigger enable for DRAM errors. dbg_en is cleared when
triggered. Reset only on POR.

1 mask_err 016 (preserved
across WMR and
DBR)

RW If set to 1, all LFSR mismatches on ALERT frame patterns
coming in from the AMB are masked.

0 kp_lnk_up 016 (preserved
across WMR and
DBR)

RW If set to 1, MCU keeps sending out sync pulses on the
southbound links during the entire duration of the
debug/warm reset, thereby keeping the links enabled
during the duration of the debug/warm reset.
Clearing this bit to 0 after the debug/warm reset takes the
MCU’s FBDIMM interface state machine to L0 state, where
it gets ready to dispatch new read/write requests from
SPC’s/SOC to the DIMMs.

TABLE 20-11 NCU Debug Event Trigger Enable Register – NCU_DBG_TRG_EN_REG (80 0000 400016)

Bit Field Initial Value RW Description

63:1 — 0 RO Reserved

0 dbg_trig_en 016 RW Trigger enable for SOC Error Status register errors.
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20.3 TCU Debug Support
The TCU handles debug events requests from the SPARC virtual processors directly
or from the SOC. The response to these requests is to stop the clocks (hard or soft) or
pass the watchpoint signal to the I/O pins. A set of registers is provided in the TCU
to assist in control of these responses to debug event requests.

TCU is not designed to handle burst CSR read requests from SPARC virtual
processors, that is, a CSR read request cannot be followed immediately by another
CSR read request, otherwise the second one may be dropped and no read data will
be returned and the thread issuing the second request may hang. Users should
program the second CSR read request after the data for the first one has returned. In
the case of multiple SPARC threads accessing TCU CSRs, some mechanism (such as
a semaphore lock) should be used to guarantee only one thread accesses any TCU
CSR register at a given time.

20.3.1 Action in Response to a Soft-Stop Event
If the DECR bits for a particular event are configured for a soft-stop (set to 012), and
that event occurs, the following sequence of operations results. The OpenSPARC T2
core or SOC sends a soft stop request to the TCU. The TCU lowers the
strand_running inputs for all strands. The strand stops issuing instructions and
waits for all core activity to quiesce. “Quiesce” means that all in-flight instructions
have completed (or taken exceptions) all memory references issued by the core have
been globally observed. Each strand lowers STRAND_RUNNING_STATUS as it
quiesces. Once all strands of a physical core quiesce, the TCU subsequently stops the
OpenSPARC T2 core’s clocks.

The cycle when the stop occurs is a function of the value of the TCU cycle counter
(refer to TCU Cycle Counter Register on page 442) as well as the transmission delay
from the core to the TCU and from the TCU to the clock network in the core. If the
TCU cycle counter is non-zero when the core generates a soft-stop request, the TCU
will decrement the cycle counter until it reaches 0. When it reaches 0, the TCU will
stop the core’s clocks (note that it may take several cycles before the processor clocks
stop after the counter reaches 0 due to the propagation delay from the TCU to the
core clock network).
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20.3.2 Action in Response to a Hard-Stop Event
If the DECR bits for an event are set to 102 and that event occurs, the OpenSPARC
T2 core requests the TCU to stop the clocks as soon as the TCU cycle counter reaches
0. TCU does not wait for SPC to quiesce before stopping the clocks to the SPCs on a
hard stop request.

20.3.3 Action in Response to an External Hard Stop
TRIGIN pin when asserted from the system will have TCU initiate a hard stop of
OpenSPARC T2 based on the values programmed in the TCU Clock CLK Stop Delay
register and TCU Clock Domain Stop register. Please refer to TABLE H-15 on page 541
for description of TCU Clock CLK Stop Delay register.

20.3.4 TCU Debug Event Counter Register
The 32-bit TCU Debug Even Counter register must be zero before the cycle counter
is enabled. If it is non-zero, then each SPC debug event request received at the TCU
will decrement it by 1, and each SOC debug event request received at the TCU will
decrement it by 4; when zero is reached, the cycle counter will begin decrementing
with the next debug event request. No differentiation is made regarding debug event
requests, so it is up to the user to ensure that only one type of debug event is
enabled when using the debug event counter. Debug event requests consist of soft
stop, hard stop, and watchpoint requests from SPC, and hard stop, watchpoint
requests from SOC blocks. These debug events have been described in ASI_DECR
and SOC_DECR registers.

The Debug Event Counter is only recognized when
TCU_DEBUG_CONTROL_REG.enable = 0. When
TCU_DEBUG_CONTROL_REG.enable = 1, the debug event counter is disabled. The
debug event counter is accessed with JTAG instruction TAP_DE_COUNT; default
value upon reset is zero. Refer to TCU Debug Control Register on page 442 for the
description of the TCU Debug Control register.

The format of the TCU Debug Event Counter register is shown in TABLE 20-12.

Note A hard stop request from any SPC or SOC would have TCU
stopping the clocks to the entire chip.
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20.3.5 TCU Cycle Counter Register
The 64-bit TCU Cycle Counter register counts off of OpenSPARC T2 core clock and
can delay the response to a debug event. For example, if the TCU receives a hard-
stop request, the cycle counter will begin counting down with each CMP clock cycle,
and when it reaches zero, the hard stop will be performed. All debug event requests
from the SPARC cores or a hard-stop request from SOC logic will be delayed by the
cycle counter.

These actions are only valid when TCU_DEBUG_CONTROL_REG.enable = 0. For
behavior when TCU_DEBUG_CONTROL_REG.enable = 1, see the next section. The
cycle counter is loaded with JTAG instruction TAP_CYCLE_COUNT; default value
on reset is zero.

The format of the TCU Cycle Counter register is shown in TABLE 20-13.

20.3.6 TCU Debug Control Register
The TCU has a 4-bit register to control responses to debug events, the TCU Debug
Control Register (DCR). When bit 2 of TCU DCR is 0, the cycle counter and debug
event counters perform as described above.

When bit 2 of the TCU DCR is set to 1, the lower 32 bits of the cycle counter are
treated as a reset counter. In this mode, the reset counter is decremented with each
core clock cycle after the power-on reset (POR) sequence ends. Once zero is reached,
a watchpoint, a hard clock stop, or a clock stretch can be performed, or the upper 32
bits of the cycle counter can then be used. In this mode (bit 2 of TCU DCR = 1) the
debug event counter will be ignored.

TABLE 20-12 TCU Debug Event Counter Register – TCU_DEBUG_EVENT_COUNTER_REG
(85 0000 0011816)

Bit Field Initial Value R/W Description

63:32 — 0 RO Reserved

31:0 counter 0 RW Debug event counter.

TABLE 20-13 TCU Cycle Counter Register – TCU_CYCLE_COUNTER_REG (85 0000 010016)

Bit Field Initial Value R/W Description

63:0 counter 0 RW Cycle counter.

Note A hard stop request from any SPC or SOC would have TCU
stopping the clocks to the entire chip.
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The behavior of the debug event and cycle counters is determined by the values in
the TCU DCR as specified in TABLE 20-14. The TCU DCR is loaded with JTAG
instruction TAP_TCU_DCR; default value on reset is 0.

The format of the TCU Debug Control Register is shown in TABLE 20-14.

The soft_stop bit 3 when set will cause TCU to soft-stop all SPCs when any SPC
requests a soft stop. It is only active when bit 2 is 0. The following actions are valid
when bit 2 of the TCU DCR is set to 1:

■ Watchpoint. If the TCU DCR bits 2:0 are set to 100, then a single pulse of an
external chip pin (TRIGOUT) will occur when the reset counter reaches zero. The
upper 32 bits of the cycle counter are ignored.

■ Hard stop. A hard clock stop will be performed if the TCU DCR bits 2:0 are set to
101, as specified in Action in Response to a Hard-Stop Event on page 441, and a
watchpoint pulse generated, when the reset counter reaches zero. The upper 32-
bits of the cycle counter are ignored.

■ Clock Stretch. If the TCU DCR bits 2:0 are set to 110, then a clock-stretch signal
will be pulsed out of the TCU when the reset counter reaches zero, and a
watchpoint pulse will also be generated. The upper 32 bits of the cycle counter are
ignored.

TABLE 20-14 TCU Debug Control Register – TCU_DEBUG_CONTROL_REG (85 0000 010816)

Bit Field Initial Value R/W Description

63:4 — 0 RO Reserved

3 soft_stop 016 RW Enables all strands to soft-stop upon a debug event.

2 enable 016 RW Trigger enable for the action field.

1:0 action 016 RW Refer to Description in TABLE 20-15, below.

TABLE 20-15 TCU Debug Actions

soft_stop{3} enable{2} action{1:0} Description

0/1 0 xx Debug event and cycle counter recognize SPC debug events.

x 1 00 Watchpoint pulsed.

x 1 01 Hard stop and watchpoint pulsed.

x 1 10 Clock stretch and watchpoint pulsed.

x 1 11 Clock stretch and watchpoint, followed by hard stop and
watchpoint.
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■ Clock Stretch then Hard Stop. If the TCU DCR bits 2:0 are set to 111, then when
the reset counter reaches zero, a clock stretch will be triggered and a watchpoint
pulse will also be generated. Then the upper 32 bits of the cycle counter will be
allowed to count down to trigger a clock hard stop and a second watchpoint will
also be generated.

20.3.7 SW/JTAG Trigger Output Register
The format of the SW/JTAG Trigger Output register is shown in TABLE 20-16.

20.4 Debug Port Support
OpenSPARC T2 has a 166-pin-wide debug port that is used as an observability
vehicle to promote repeatability, tester characterization, chip debug, and general SPC
and SOC debug. The debug port can be enabled through software and JTAG access
to the Debug Port Configuration register, described in Debug Port Configuration
Register on page 448. The debug port can be configured into any one of six
observability modes. The following are the different observability modes of the
debug port based on bits 3:1 of the Debug Port Configuration register:

■ 0002: SOC observability mode. OpenSPARC T2 reset state (Reset State Machine
Output), MCU,SII → L2,L2 → SIO signals to help chip debug (sent out on 159
pins).

■ 0012: Tester charac/SPC debug mode. {SPC_id,thread_id} on per L2 bank basis
and SPC instruction commit status on per SPC basis, sent out on 160 pins.

■ 0102: Repeatability mode. SII and NCU inputs from DMU on debug port double-
pumped on 166 pins.

■ 0112: Core and SOC debug. SII and NCU inputs from DMU and SPC instruction
commit status on per SPC basis.

■ 1002:

■ 1012:

■ 1102–1112: Reserved for future use.

The following sections describe these modes in detail.

TABLE 20-16 SW/JTAG Trigger Output Register – TCU_TRIGOUT_REG (85 0000 011016)

Bit Field Initial Value R/W Description

63:1 — 0 RO Reserved

0 trigout 016 RW Pulses TRIGOUT when written to 1; reset automatically after being
written.
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20.4.1 SOC Observability Mode
This mode will be used to capture a variety of critical SOC signals which will be
helpful to debug OpenSPARC T2. The following is the breakup of the signals in this
mode.

■ 5-bit encoded state for reset state machine (has 20 states) from RST block to MIO block
to monitor reset state on the tester and LA. Sent out at sys_clk frequency from reset block
in OpenSPARC T2 (feedthrough in MIO) on 5 pins.

■ Each MCU will send the following new signals to DBG block, which will be useful to
debug MCU hangs/scheduler issues or MCU error handling issues on both FBDIMM
channel errors and ECC errors. These signals will all be synchronized by MCU to the
iol2clk domain and sent to DBG block. This leads to a total of 21 wires per MCU.
Since there are 4 MCUs, this will lead to a total of 84 wires to DBG block from all
MCUs together. DBG block will drive this information out on 84/2 = 42 pins of
the debug port @ io2xclk.

■ mcu_dbg_rd_req_in_0{3:0} – Read request from L2 bank 0 to MCU (id + valid).

■ mcu_dbg_rd_req_in_1{3:0} – Read request from L2 bank 1 to MCU (id + valid).

■ mcu_dbg_rd_request_out{4:0} – Read ACK from MCU to L2 bank 0 or 1 (id +
valid + dest_l2_bank).

■ mcu_dbg_wr_req_in_0 – Write request valid from L2 bank 0.

■ mcu_dbg_wr_req_in_1 – Write request valid from L2 bank 1.

■ mcu_dbg_wr_req_out{1:0} – 0, 1, 2, 3 writes completed at DRAM indication.
(MCU dispatches up to a maximum of three writes on any cycle on two
FBDIMM channels; then samples information coming FBDIMM channels to see
if there were any errors. If no errors were reported, MCU interprets this as all
writes completed.)

■ mcu_dbg_mecc_err – MCU has detected an MECC error on a L2 read or scrub.

■ mcu_dbg_secc_err – MCU has detected a SECC error on a L2 read or scrub.

■ mcu_dbg_fbd_err – MCU has detected a FBDIMM channel error.

■ mcu_dbg_err_mode – FBDIMM interface logic has gone into error handling
mode. This bit stays on until error handling complete.

■ SII and SIO will send the following signals to DBG block, which will be useful to
debug L2 hang cases (SII sent DMA request to L2, L2 never sends an ACK or data
return back):

■ sii_dbg_l2t[0:7]_req{1:0} – Req type encoded on 2 bits from sii to each l2t bank
(00 – no request; 01 – RDD; 10 – WRI; 11 – WR8).

■ l2t[0:7]_dbg_sii_iq_dequeue – L2 dequeue from IQ.

■ l2t[0:7]_dbg_sii_wib_dequeue – L2 dequeue from IOWB.

■ l2b[0:7]_dbg_sio_ctag_vld – response valid from L2 to SIO.

■ l2b[0:7]_dbg_sio_ack_type – Read or write ACK from L2 to SIO
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■ l2b[0:7]_dbg_sio_ack_test – ACK to DMU

Which leads to a total of (7 × 8) = 56 wires for all L2 banks together @ 1.4 GHz to
DBG block. DBG block will drive this information out on 56 × 2 = 112 pins of the
debug port @ io2xclk.

Thus, the total number of debug pins that will be used up in the SOC observability
mode will be 42 + 112 = 154.

20.4.2 Tester Characterization / SPC Debug Mode
The signals that will be observed on the debug port in this mode will be used for
general SPC debug and tester characterization of multithreaded diagnostics and also
for SPC speed binning on the tester. Each SPC will have four signals driven to the
DBG block, and each L2 bank will have six signals driven to the DBG block. All
these signals will be at CMP clk frequency, that is, 1.4 GHz nominal. Eight virtual
processors and eight L2 banks will lead to a total of (4 + 6) x 8 = 80 signals at 1.4
GHz driven to the DBG block. Since the debug port will drive the signals out @
io2xclk, the DBG block will sample two consecutive cycles of these 80-bit wires and
drive out 160 signals @ io2xclk to the debug pins for LA sampling.

For each SPC, these four wires are chosen as follows. Since each core has two thread
groups, we have the following encoding per thread group, using 2 bits/thread
group:

■ 002 – Instruction noncommitted
■ 012 – Control Transfer instruction committed in pipe
■ 102 – Integer or FPU instruction committed in pipe
■ 112 – Load/Store instruction committed in pipe

That is, every instruction committed per cycle in each thread group will be visible.
for each L2 bank, the six wires are vcid{5:0} {spc_id{2:0}, thread_id{2:0}} of each
crossbar packet to that bank on every cycle.

The combination of these two groups of signals will be adequate to keep track of
execution of instructions in both single and multithreaded diagnostics on the tester
and also could be useful for SPC speed binning on the tester.

20.4.3 Repeatability Mode
In this mode, a total of 353 signals (in iol2clk domain) will be routed to DBG block
(from DMU). From , 166 wires will get driven at io2xclk to the debug pins. These
signals capture both inbound DMA and PIO returns in OpenSPARC T2 to SII and
NCU and will be used as bus traces for checkpoint/replay scheme in OpenSPARC
T2. These 353 signals and rate conversion to debug port frequency are listed below.

1. dmu_ncu_wrack_vld;
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2. dmu_ncu_wrack_tag{3:0};
3. dmu_ncu_stall; // total 6 bits @ iol2clk = 3 pins @ io2xclk (DDR)
4. dmu_ncu_vld;
5. dmu_ncu_data{31:0}; // 33 bits get driven over four clocks. Eight clocks

minimum before next set of four clocks, so total of 132 bits to be emptied over 12
iol2clks, that is, 66 bits DDR over 12 clocks, that is, 6 pins @ io2xclk (DDR).

6. dmu_sii_hdr_vld;
7. dmu_sii_reqbypass;
8. dmu_sii_datareq;
9. dmu_sii_datareq16;
10. dmu_sii_data{127:0};
11. dmu_sii_be{15:0}; // 148 bits @ iol2clk = 74 pins @ io2xclk (DDR)

Total = 66 + 74 + 17 + 3 + 6 = 166 pins @ io2xclk (DDR)

20.4.4 Core and SOC Debug mode.
SII and NCU inputs from DMU and SPC instruction commit status on per SPC basis:

1. dmu_ncu_wrack_vld;
2. dmu_ncu_wrack_tag{3:0};
3. dmu_ncu_stall; // total 6 bits @ iol2clk = 3 pins @ io2xclk(DDR)
4. dmu_ncu_vld;
5. dmu_ncu_data{31:0}; // 33 bits get driven over four clocks. Eight clocks

minimum before next set of four clks, so a total of 132 bits will be emptied over 12
iol2clks, that is, 66 bits DDR over 12 clocks, that is, 6 pins @ io2xclk (DDR)

6. dmu_sii_hdr_vld;
7. dmu_sii_reqbypass;
8. dmu_sii_datareq;
9. dmu_sii_datareq16;
10. dmu_sii_data{127:0};
11. dmu_sii_be{15:0}; // 148 bits @ iol2clk = 74 pins @ io2xclk (DDR)

Each SPC will have four signals driven to the DBG block at core clk frequency. Since
there are eight cores, this will lead to a total of (4) x 8 = 32 signals @ l2 clk driven to
DBG block. Since the debug port will drive the signals out @ io2xclk, the DBG block
will sample two consecutive cycles of these 32-bit wires and drive out 64 signals @
io2xclk to the debug pins for LA sampling.

For each SPC, these four wires are chosen as follows.

Since each core has 2 thread groups, we have the following encoding per thread
group using 2 bits/thread group:

■ 002 – Instruction non committed
■ 012 – Control Transfer instruction committed in pipe
■ 102 – Integer or FPU instruction committed in pipe
■ 112 – Load/Store instruction committed in pipe
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Thus total number of pins used to drive out debug info in this mode =
(3 + 6 + 74 + 64) = 147.

20.4.5 Debug Port Configuration Register
The Debug Port Configuration register enables the debug port in one of six modes.

TABLE 20-17 shows the format of the Debug Port Configuration register.

20.4.6 Debug Port Training Sequence
The data coming out from OpenSPARC T2 on the debug port needs to be aligned
properly in the Logic Analyzer connected to the debug port after cancelling out
signal to clock and signal to signal skews. To support this, OpenSPARC T2 would
provide training sequence in all the debug port modes. For all modes, this sequence
will be a repetitive pattern of three 1’s, followed by a single 0. This asymmetrical
pattern will ease the alignment and deskewing of the data bits in the LA in case the
skew for some bits is as large as one cycle.

TABLE 20-17 Debug Port Configuration – DEBUG_PORT_CONFIG (86 0000 000016)

Bit Field Initial Value R/W Description

63:62 imp_ctrl 0 (preserved
on WMR/
DBR)

RW MIO driver impedance control:
11 – Strong driver
10 – Nominal driver
01 – Weak driver
00 – Low power driver

61:10 — 0 RO Reserved

9:5 — 0 (preserved
on WMR/
DBR)

Reserved.

4 debug_train 0 (preserved
on WMR/
DBR)

RW When set to 1, enables training for Debug port in modes 000,
001, 010, and 011.

3:1 debug_conf 0 (preserved
on WMR/
DBR)

RW Debug Port Configuration:
000 – SOC observability
001 – Tester characterization/SPC debug
010 – Repeatability
011 – CORE_SOC debug
100 –
101 –
110–111 – Reserved

0 debug_en 0 (preserved
on WMR/
DBR)

RW When set to 1, enables Debug port output drivers.
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20.4.7 IO Quiesce Control Register
The IO Quiesce Control register format is shown in TABLE 20-18.

20.5 Repeatability Support
To effectively run processor tests in the post-silicon phase with or without the
presence of I/O (on OpenSPARC T2’s XAUI and PCI_EX interfaces) and to debug
them, we need to have a high level of repeatability within OpenSPARC T2’s
synchronous clock domains. These include the core clock domain (covers SPARC
cores, crossbar, L2’s, portions of SII, SIO, NCU), the DRAM domain (covers MCU
logic before SerDes), and the I/O clock domain (rest of SII, SIO, NCU).

This will allow us to run a group of tests many times, with slightly different starting
parameters (for example, SPARC threads starting at slightly different times or with
different cache initialization) that shouldn’t affect the outcome, looking for failing
corner cases. When a failing case is found, the test and the particular seed
parameters will be used to simulate the test in the pre-silicon environment, to see
what caused the failure.

The overall approach involves very close interaction between some debug software
(part of Hypervisor software) and OpenSPARC T2 chip hardware. This is commonly
known as the checkpoint/replay mechanism, where the debug software will
periodically put the synchronous portion of the chip (as described before) into an
idle state (idle all threads other than one, and also stall I/O into the synchronous
domain) at what are called checkpoints. Once the synchronous portion of the chip is
put into this idle state, the debug software will dump all software-visible state of
the machine to memory, and then initiate a debug reset of OpenSPARC T2.

TABLE 20-18 IO Quiesce Control Register – IO_QUIESCE_CONTROL (86 0000 000816)

Bit Field Initial Value R/W Description

63:4 — X RO Reserved

3 — Reserved.

2 dmu_stall_done X RO Set to 1 by hardware when DMU stall completes in
hardware. Cleared by hardware when DMU_STALL cleared
from 1 to 0 by SW.

1 — 0 (preserved
on WMR/
DBR)

Reserved.

0 dmu_stall 0 (preserved
on WMR/
DBR)

RW When set to 1, causes DMU traffic to stall. When cleared to 0
from 1, causes DMU traffic to resume.
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The debug software will initiate by writing a 1 to the dbr_gen bit in reset_gen
register.

20.5.1 Debug Reset
The debug reset is a flavor of l in OpenSPARC T2 which is identical to the
functionality of warm reset other than it will not reset the MCU FBDIMM links.

The duration of the debug reset is small enough (in the range of 40 µsecs), so to
address the data integrity in DRAM during the debug reset, OpenSPARC T2 will
either (1) address it through self-refresh during the debug reset or (2) autorefresh in
small intervals before going to debug reset and then doing some in small intervals
after coming out of debug reset. Besides, OpenSPARC T2 would keep the FDIMM
links up during debug reset and keep issuing sync pulses to the AMBs.

After debug reset, the reset vector will be fetched from memory from a different
location (00000002016) from a regular reset. This is because the boot code for a debug
reset will be different from a regular reset. The boot code will do several things at
the beginning including program the Memory refresh registers, reinstate the
software-visible state to the state before reset for those states that lose value over
debug reset), before enabling all threads to start executing.

Notes Program counter continues to advance for some time after the
debug reset request from the RST block till the reset takes effect
on the SPC blocks.

PCI_EX device has a hardcoded timeout of 50 msec, so the
duration of the back pressure exerted by OpenSPARC T2 during
checkpoint and debug reset should be well below 50 msec so as
not to starve any access from the device by more than that
amount (to avoid PCI_EX errors and system panics). This means
that checkpoint snap, debug reset, FBDIMM initialization and
resumption of I/O traffic to synchronous domain of
OpenSPARC T2 should finish well before 50 msec.

OpenSPARC T2, like previous Sun processors, keeps a fair
amount of architected state unchanged for warm reset. Also
contents of arrays (TLBs, L1/L2 caches, etc.) are unchanged.
Please refer to Table 11-13 in section 11.8 for a list of
OpenSPARC T2 software-visible state that will be lost over
debug reset and will need to be retrieved after debug reset. So
before invoking debug reset, software should copy the software-
visible state that loses value over debug reset to memory, and
retrieve it back from memory after the reset.
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In normal operation POR and warm reset both trap to the RSTVADDR | 2016
(FFFF FFFF F000 002016), which maps to ROM. To enhance repeatability,
OpenSPARC T2 will have the capability of directing POR, WMR, or DBR to RAM. To
POR or WMR or DBR from RAM at location (0 0000 002016), hyperprivileged
software can set the ASI_WMR_VEC_MASK register.

The idea is that by capturing the software-visible state of OpenSPARC T2 (in the
synchronous domain of the chip) on the last checkpoint before the failure and by
initializing the synchronous portion of OpenSPARC T2 to known state, we can create
a common starting point between silicon and the synchronous portion of the chip in
the pre-silicon environment. Then by running the same code sequence on the SPARC
core from the last checkpoint to the failure point and capturing the I/O traffic to the
SII, NCU inputs (synchronous I/O interface of OpenSPARC T2: debug port mode
0002) from DMU on the debug port lossless and feeding it back to the same nodes in
the pre-silicon environment, we can create the event sequence in pre-silicon
environment leading to the failure.

Thus, checkpoint/replay approach intrudes on the state of the machine in the
context of the tests or applications running on the chip, in that it periodically halts
all threads and I/O and takes the machine to reset state. This might change the
timing of events to cause the bug to manifest itself later than usual, but eventually it
will, with millions of cycles of instructions executed in between checkpoints. And
when it does, it can be recreated in pre-silicon environment.

20.5.2 Keeping FBDIMM Links Up During Debug Reset
If debug reset did reset the whole MCU, the FBDIMM links will have to be retrained
after reset deassertion, and this will change the FBDIMM data round-trip latency for
subsequent requests until the next debug reset. Debug software can live with this by
reading the MCU Channel Read Latency register after every debug reset, or MCU
needs to keep sending sync pulses during the debug reset.

To support the latter, MCU will keep a small amount of logic running during warm/
debug reset while the rest of it gets reset through the flush mechanism. This logic
will consist of (1) logic to keep the links enabled and generate sync pulses in a fixed

Note For checkpoint/replay, we do not need to observe the FBDIMM
interface on the debug port. This is because once the links are
trained, data will always come back to the MCU data return
FIFO in a fixed latency from the time of issue of the request.
After link training, MCU logic will record this latency (in terms
of MCU clocks) in the MCU Channel Read Latency register. So
the debug software can probe this value and feed that same
latency to the equivalent point in the pre-silicon environment
and thereby achieve cycle accuracy with respect to silicon
without having to probe the FBDIMM interface.
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repetitive manner under software control and (2) logic to keep incrementing the read
pointers of the northbound MCU FIFOs and two synchronizers per FIFO (this way,
during debug/warm reset, the read and the write pointers constantly increment and
are always offset by 2: delay through the two synchronizers).

Also each MCU would support two new CSR bits, located in the DRAM Debug
Event Trigger Enable register for software to control this feature:

■ kp_lnk_up.

When written to 2,

■ Keeps the southbound links enabled during the duration of the debug reset to
send out the sync pulses.

■ Selects the output of the sync pulse gen logic in the new MCU control module
to generate sync pulses.

When written to 0,

■ Selects the output of the regular sync pulse gen logic in MCU.

■ Clears the counter for the regular sync pulse gen logic in MCU.

■ Takes the MCU FBDIMM interface state machine to L0 state, where it is ready
to dispatch new read/write requests to the DIMMs.

■ mask_err.

When written to 1,

■ Makes MCU mask all the errors it normally detects on LFSR mismatches on
ALERT frame patterns coming in from AMB.

Cleared by MCU hardware 4K cycles after reset when the LFSRs are realigned by
the MCU.

Thus, the interaction between software and hardware to achieve determinism on
FMDIMM interface after debug reset is as follows:

1. After making sure no transactions are pending in MCU, software sets kp_lnk_up
and mask_err just before initiating debug reset.

2. Debug reset happens. The entire MCU gets reset other than the control logic
module, which has its clock running keeping the sync pulses going and the FIFO
read pointer incrementing every cycle.

3. Debug reset finishes. The MCU FBDIMM interface state machine comes up in
DISABLED state. Sync ACKs keep coming, but since the mask_err bit is set, no
errors are flagged. MCU logic counts 4K cycles after reset and realigns the LFSRs
and clears the mask_err bit.

Note Both kp_lnk_up and mask_err bits are protected on warm reset/
debug reset.
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4. After a certain time T1 (but always fixed from the deassertion of debug reset),
software writes a 0 to the kp_lnk_up bit. This clears the sync pulse gen counter,
takes the FBDIMM interface state machine to L0 state, and selects the sync pulse
gen counter output to generate the sync pulses.

5. After a time T2 from the point where software wrote kp_lnk_up with 0, the first
fetch is issued on the southbound link. T2 should be the same all the time.

20.5.3 I/O Quiescing in OpenSPARC T2 During
Checkpoint
An inherent requirement for checkpoint/replay in OpenSPARC T2 is to stall I/O to
the synchronous domain of the chip (SII and NCU inputs). This is part of the effort
to get the chip to a quiescent state on every checkpoint before dumping software-
visible state and asserting debug reset to get the synchronous portion of the chip to
a known state.

This I/O quiescing will get implemented in OpenSPARC T2 under software control
by having the DBG module contain a CSR bit (dmu_stall) in OpenSPARC T2 I/O
Quiesce Control register (refer to IO Quiesce Control Register on page 449) which
software can set to 1’s by writing a 1 to them. Once these bits are set, the debug
module in OpenSPARC T2 will assert a signal, called dbg_dmu_stall to DMU.

On seeing the assertion of these signals, DMU should suspend all transactions to SII
and NCU at any convenient point and send back dmu_dbg_stall_ack to the debug
module after they have received all pending ACKs and data returns from SIU and
NCU. At the point at which these two ACKs are sent to the DBG block, NCU and
DMU → SII, NCU interfaces will be considered as having quiesced. This applies to
interrupts also. DMU should not send any interrupt requests to NCU or SII after
having sent the ACKs. On sampling dmu_dbg_stall_ack signals, DBG block will set
dmu_stall_done bits in the two I/O Quiesce Control registers. The debug software
that will have been polling these status bits will then see that both bits are set and
will proceed to dump software-visible state of machine to memory and then initiate
a debug reset.

Note that even during the time this interface is quiesced, the Xaui and PCI_EX
interface SerDes links are active and running.

After debug reset, the reset code will clear the dmu_stall CSR bits in DBG block,
which will cause DBG block to assert a signal to DMU called dbg_dmu_resume. On
receiving these “resume” signals, DMU will unquiesce their respective interfaces
with NCU and continue issuing transactions to NCU.

Note The FBDIMM links would be retrained after every warm reset.
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20.6 Clock/PLL Observability
OpenSPARC T2 has two pins called PLL_CHAR_OUT{1:0} dedicated for PLL/clock
observability output.
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APPENDIX A

Programming Guidelines

A.1 Multithreading
In OpenSPARC T2, each physical core contains eight strands. The strands are
divided into two thread groups, with strands 0–3 occupying one thread group and
strands 4–7 occupying the other.

Within a thread group, among the available strands, the least recently picked strand
is selected for execution every cycle. Thus, up to two instructions can be picked each
cycle.

Since each physical core has only one load/store unit and one floating-point and
graphics unit, only one load/store or FGU instruction may be picked each cycle. One
thread group can issue a load/store instruction while the other thread group issues
an FGU instruction. Arbitrating between the two thread groups is done with a least-
recently-picked mechanism, to ensure fairness.

Since context switching is built into the OpenSPARC T2 pipeline (via the D and P
stages), strands are switched each cycle with no pipeline stall penalty (except when
resource collisions occur, such as when both thread groups require the load/store
unit or the FGU).

In normal operation, OpenSPARC T2 speculates that most control-transfer
instructions will be “not taken” and that loads hit in the L1 data cache. An enable
bit, accessible to hyperprivileged software, controls whether OpenSPARC T2
speculates on these instructions or not (see ASI_LSU_CONTROL_REG description in
ASI_LSU_CONTROL_REG on page 393).

The following instructions change a strand from available to unavailable until
hardware determines that their input/execution requirements can be satisfied,
assuming speculation is enabled:

■ CALL, DONE, RETRY, JMPL
■ LDFSR, LDXFSR, STFSR, STXFSR
■ All WRPR, WR, WRHPR
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■ All RDPR, RD, RDHPR
■ SAVE(D), RESTORE(D), RETURN, FLUSHW (all register-window management)
■ All MUL and DIV
■ MULX, UMUL, SMUL, POPC
■ MEMBAR#, FLUSH
■ FCMP
■ All memory operations to/from alternate space
■ All atomic (load-store) operations
■ PREFETCH

If speculation is not enabled, the following instruction types also change a strand
from available to unavailable until hardware determines that their execution
requirements can be satisfied:

■ All control transfer instructions

■ All loads

A.2 Instruction Latency
TABLE A-1 lists the minimum single-strand instruction latencies for OpenSPARC T2.
When multiple strands are executing, some or much of the additional latency for
multicycle instructions will be overlapped with execution of the additional strands.

TABLE A-1 OpenSPARC T2 Instruction Latencies (1 of 8)

Opcode Description Latency Notes

ADD (ADDcc) Add (and modify condition codes) 1

ADDC (ADDCcc) Add with carry (and modify condition codes) 1

ALIGNADDRESS Calculate address for misaligned data access 1

ALIGNADDRESSL Calculate address for misaligned data access (little-endian) 1

ALLCLEAN Mark all windows as clean 25

AND (ANDcc) Logical and (and modify condition codes) 1

ANDN (ANDNcc) Logical and not (and modify condition codes) 1

ARRAY{8,16,32} 3-D address to blocked byte address conversion 6

Bicc Branch on integer condition codes 1 not-
taken, 6
taken

BMASK Write the GSR.mask field 25
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BPcc Branch on integer condition codes with prediction 1 not-
taken, 6
taken

BPr Branch on contents of integer register with prediction 1 not-
taken, 6
taken

BSHUFFLE Permute bytes as specified by the GSR.mask field 6

CALL Call and link 6

CASA Compare and swap word in alternate space 20-30 Done in L2
cache

CASXA Compare and swap doubleword in alternate space 20-30 Done in L2
cache

DONE Return from trap 6

EDGE{8,16,32}{L}{
N}

Edge boundary processing {little-endian} {non-condition-code
altering}

6

FABS(s,d) Floating-point absolute value 6

FADD(s,d) Floating-point add 6

FALIGNDATA Perform data alignment for misaligned data 6

FANDNOT1{s} Negated src1 and src2 (single precision) 6

FANDNOT2{s} src1 and negated src2 (single precision) 6

FAND{s} Logical and (single precision) 6

FBPfcc Branch on floating-point condition codes with prediction 1 not-
taken, 6
taken

FBfcc Branch on floating-point condition codes 1 not-
taken, 6
taken

FCMP(s,d) Floating-point compare 6

FCMPE(s,d) Floating-point compare (exception if unordered) 6

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2 6

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2 6

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2 6

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2 6

FDIV(s,d) Floating-point divide 19 SP,
33 DP

TABLE A-1 OpenSPARC T2 Instruction Latencies (2 of 8)

Opcode Description Latency Notes
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FEXPAND Four 8-bit to 16-bit expand 6

FiTO(s,d) Convert integer to floating-point 6

FLUSH Flush instruction memory variable

FLUSHW Flush register windows 25

FMOV(s,d) Floating-point move 6

FMOV(s,d)cc Move floating-point register if condition is satisfied 6

FMOV(s,d)R Move floating-point register if integer register contents satisfy
condition

6

FMUL(s,d) Floating-point multiply 6

FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding
components

6

FMUL8ULx16 Unsigned lower 8- x 16-bit partitioned product of
corresponding components

6

FMUL8x16 8- x 16-bit partitioned product of corresponding components 6

FMUL8x16AL Signed lower 8- x 16-bit lower α partitioned product of 4
components

6

FMUL8x16AU Signed upper 8- x 16-bit lower α partitioned product of 4
components

6

FMULD8SUx16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product
of components

6

FMULD8ULx16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned
product of components

6

FNAND{s} Logical nand (single precision) 6

FNEG(s,d) Floating-point negate 6

FNOR{s} Logical nor (single precision) 6

FNOT1{s} Negate (1’s complement) src1 (single precision) 6

FNOT2{s} Negate (1’s complement) src2 (single precision) 6

FONE{s} One fill (single precision) 6

FORNOT1{s} Negated src1 or src2 (single precision) 6

FORNOT2{s} src1 or negated src2 (single precision) 6

FOR{s} Logical or (single precision) 6

FPACKFIX Two 32-bit to 16-bit fixed pack 6

FPACK{16,32} Four 16-bit/two 32-bit pixel pack 6

TABLE A-1 OpenSPARC T2 Instruction Latencies (3 of 8)

Opcode Description Latency Notes
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FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision) 6

FPMERGE Two 32-bit to 64-bit fixed merge 6

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision) 6

FsMULd Floating-point multiply single to double 6

FSQRT(s,d) Floating-point square root 19 SP,
33 DP

FSRC1{s} Copy src1 (single precision) 6

FSRC2{s} Copy src2 (single precision) 6

F(s,d)TO(s,d) Convert between floating-point formats 6

F(s,d)TOi Convert floating point to integer 6

F(s,d)TOx Convert floating point to 64-bit integer 6

FSUB(s,d) Floating-point subtract 6

FXNOR{s} Logical xnor (single precision) 6

FXOR{s} Logical xor (single precision) 6

FxTO(s,d) Convert 64-bit integer to floating-point 6

FZERO{s} Zero fill (single precision) 6

ILLTRAP Illegal instruction

INVALW Mark all windows as CANSAVE 6

JMPL Jump and link 6

LDBLOCKF 64-byte block load 32

LDD Load doubleword 3

LDDA Load doubleword from alternate space variable

LDDF Load double floating-point 3

LDDFA Load double floating-point from alternate space variable

LDF Load floating-point 3

LDFA Load floating-point from alternate space variable

LDFSR Load floating-point state register lower 1-8 pre-sync to
previous
FGU op
from that
thread

LDSB Load signed byte 3

TABLE A-1 OpenSPARC T2 Instruction Latencies (4 of 8)

Opcode Description Latency Notes
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LDSBA Load signed byte from alternate space variable

LDSH Load signed halfword 3

LDSHA Load signed halfword from alternate space variable

LDSTUB Load-store unsigned byte 3

LDSTUBA Load-store unsigned byte in alternate space variable

LDSW Load signed word 3

LDSWA Load signed word from alternate space variable

LDUB Load unsigned byte 3

LDUBA Load unsigned byte from alternate space variable

LDUH Load unsigned halfword 3

LDUHA Load unsigned halfword from alternate space variable

LDUW Load unsigned word 3

LDUWA Load unsigned word from alternate space variable

LDX Load extended 3

LDXA Load extended from alternate space variable

LDXFSR Load extended floating-point state register 1-8 pre-sync to
previous
FGU op
from that
thread

MEMBAR Memory barrier variable

MOVcc Move integer register if condition is satisfied 1

MOVr Move integer register on contents of integer register 1

MULScc Multiply step (and modify condition codes)

MULX Multiply 64-bit integers 5

NOP No operation 1

NORMALW Mark other windows as restorable 25

OR (ORcc) Inclusive-or (and modify condition codes) 1

ORN (ORNcc) Inclusive-or not (and modify condition codes) 1

OTHERW Mark restorable windows as other 6

PDIST Distance between eight 8-bit components 6 1 per 2
cycles

TABLE A-1 OpenSPARC T2 Instruction Latencies (5 of 8)

Opcode Description Latency Notes
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POPC Population count 5

PREFETCH Prefetch data variable >6

PREFETCHA Prefetch data from alternate space variable >6

RDASI Read ASI register variable

RDASR Read ancillary state register variable

RDCCR Read condition codes register variable

RDFPRS Read floating-point registers state register variable

RDHPR Read hyperprivileged register variable

RDPC Read program counter variable

RDPR Read privileged register variable

RDTICK Read TICK register variable

RDY Read Y register variable

RESTORE Restore caller’s window 6

RESTORED Window has been restored 6

RETRY Return from trap and retry

RETURN Return 7

SAVE Save caller’s window 6

SAVED Window has been saved 6

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes) 12-41

SDIVX 64-bit signed integer divide 12-41

SETHI Set high 22 bits of low word of integer register 1

SIAM Set interval arithmetic mode 6

SIR Software-initiated reset

SLL Shift left logical 1

SLLX Shift left logical, extended 1

SMUL (SMULcc) Signed integer multiply (and modify condition codes) 5

SRA Shift right arithmetic 1

SRAX Shift right arithmetic, extended 1

SRL Shift right logical 1

SRLX Shift right logical, extended 1

TABLE A-1 OpenSPARC T2 Instruction Latencies (6 of 8)

Opcode Description Latency Notes
• 461



STB Store byte 1

STBA Store byte into alternate space

STBAR Store barrier variable

STBLOCKF 64-byte block store 16 Assuming
store buffer
empty when
STBLOCKF
decodes

STD Store doubleword 1

STDA Store doubleword into alternate space

STDF Store double floating-point 1

STDFA Store double floating-point into alternate space

STF Store floating-point 1

STFA Store floating-point into alternate space

STFSR Store floating-point state register 1-8 pre-sync to
previous
FGU op
from that
thread

STH Store halfword 1

STHA Store halfword into alternate space

STPARTIALF Eight 8-bit/4 16-bit/2 32-bit partial stores 1

STW Store word 1

STWA Store word into alternate space

STX Store extended 1

STXA Store extended into alternate space variable

STXFSR Store extended floating-point state register

SUB (SUBcc) Subtract (and modify condition codes) 1

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 1

SWAP Swap integer register with memory 20-30 Done in L2
cache

SWAPA Swap integer register with memory in alternate space 20-30 Done in L2
cache

TABLE A-1 OpenSPARC T2 Instruction Latencies (7 of 8)

Opcode Description Latency Notes
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TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow) 1 If no trap, 6
if trap

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on
overflow)

1 If no trap, 6
if trap

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if
bit 7 is set, trap to hyperprivileged)

1 If no trap, 6
if trap

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes) 12-41

UDIVX 64-bit unsigned integer divide 12-41

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes) 5

WRASI Write ASI register

WRASR Write ancillary state register variable

WRCCR Write condition codes register 25

WRFPRS Write floating-point registers state register 25

WRHPR Write hyperprivileged register 15

WRPR Write privileged register variable

WRY Write Y register 25

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 1

XOR (XORcc) Exclusive-or (and modify condition codes) 1

TABLE A-1 OpenSPARC T2 Instruction Latencies (8 of 8)

Opcode Description Latency Notes
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APPENDIX B

IEEE 754 Floating-Point Support

OpenSPARC T2 conforms to the SPARC V9 Appendix B (IEEE Std 754-1985
Requirements for SPARC-V9) recommendation.

B.1 Special Operand Handling
The OpenSPARC T2 FGU follows the UltraSPARC I/UltraSPARC II handling of
special operands instead of that used in OpenSPARC T1. While OpenSPARC T1
provides full hardware support for subnormal operands and results, OpenSPARC T2
generates an fp_exception_other exception (with FSR.ftt = unfinished_FPop) in some
cases. In addition, OpenSPARC T2 implements a nonstandard floating-point mode
(enabled when FSR.ns = 1), whereas OpenSPARC T1 does not.

The FGU generates +∞, −∞, +largest number, −smallest number (depending on
round mode) for overflow cases for multiply, divide, and add operations.

For higher-to-lower precision conversion instructions FdTOs:

■ Overflow, underflow, and inexact exceptions can be raised

■ Overflow is treated the same way as an unrounded add result: Depending on
the round mode, we will either generate the properly signed infinity or largest
number.

■ Underflow for subnormal or gross underflow results: (see Subnormal Handling
on page 474).

For conversion to integer instructions {F<s|d>TOi, F<s|d>TOx}: OpenSPARC T2
follows The SPARC Architecture Manual-Version 9 (appendix B.5, pg 246.

For NaN’s: OpenSPARC T2 follows The SPARC Architecture Manual-Version 9
appendix B.2 (particularly Table 27) and B.5, pg 244-246.

Note OpenSPARC T2 detects tininess before rounding.
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■ Please note that Appendix B applies to those instructions listed in IEEE 754
section 5: “All conforming implementations of this standard shall provide
operations to add, subtract, multiply, divide, extract the sqrt, find the remainder,
round to integer in fp format, convert between different fp formats, convert
between fp and integer formats, convert binary<->decimal, and compare.
Whether copying without change of format is considered an operation is an
implementation option.”

■ The instructions involving copying/moving of fp data (FMOV, FABS, and FNEG)
will follow earlier UltraSPARC implementations by doing the appropriate sign bit
transformation but will not cause an invalid exception nor do a rs2 = SNaN to
rd = QNaN transformation.

■ Following UltraSPARC II/UltraSPARC III implementations, all Fpops as defined
in V9 will update cexc. All other instructions will leave cexc unchanged.

The remainder of this section gives examples of special cases to be aware of that
could generate various exceptions.

B.1.1 Infinity Arithmetic
Let “num” be defined as unsigned in the following tables.

B.1.1.1 One Infinity Operand Arithmetic
■ Do not generate exceptions.

TABLE B-1 One-Infinity Operations That Do Not Generate Exceptions

Cases

+∞ plus +num = +∞
+∞ plus -num = +∞
-∞ plus +num = −∞
-∞ plus -num = −∞
+∞ minus +num = +∞
+∞ minus -num = +∞
-∞ minus +num = −∞
-∞ minus −num = −∞
+∞ multiplied by +num = +∞
+∞ multiplied by -num = −∞
−∞ multiplied by +num = −∞
−∞ multiplied by −num = +∞
+∞ divided by +num = +∞
+∞ divided by −num = −∞
−∞ divided by +num = −∞
−∞ divided by −num = +∞
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+num divided by +∞ = +0
+num divided by -∞ = −0
−num divided by +∞ = −0
−num divided by −∞ = +0

FsTOd, FdTOs (+∞) = +∞
FsTOd, FdTOs (−∞) = −∞
sqrt(+∞) = +∞
+∞ divided by +0 = +∞
+∞ divided by −0 = −∞
−∞ divided by +0 = −∞
−∞ divided by −0 = +∞
Any arithmetic operation involving infinity as one operand and a QNaN as the other operand:
V9, B.2.2, Table 27.
(± ∞) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (± ∞) = QNaN1

Compares when other operand is not a NaN treat infinity just like a regular number:
+∞ = +∞, +∞ > anything else;
−∞ = −∞, −∞ < anything else.
Effects following instructions:
V9 fp compares (rs1 and/or rs2 could be ± ∞):

* FCMPE
* FCMP

Compares when other operand is a QNaN, SPARC V9 A.13, B.2.1; fcc value = unordered = 112
FCMP(s,d) (± ∞) with (QNaN2) – no invalid exception
FCMP(s,d) (QNaN1) with (±∞) – no invalid exception

TABLE B-1 One-Infinity Operations That Do Not Generate Exceptions (Continued)

Cases
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■ Could generate exceptions

1. Similar invalid exceptions also included in SPARC V9 B.5 are generated when the source operand
is a NaN(QNaN or SNaN) or a resulting number that cannot fit in 32-bit[64-bit] integer format:

(large positive argument ≥ 231[263] or large negative argument

≤ −(231 + 1)[−(263+1)]

TABLE B-2 One Infinity Operations That Could Generate Exceptions

Cases Possible Exception
Result (in addition to accrued
exception) if tem is cleared

V9, Appendix B.51

F<s|d>TOi (+∞) = invalid
F<s|d>TOx (+∞) = invalid

F<s|d>TOi (−∞) = invalid
F<s|d>TOx (−∞) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

231−1
263−1

−231

−263

V9, B.2.2
sqrt(−∞) = invalid

+∞ multiplied by +0 = invalid
+∞ multiplied by −0 = invalid
−∞ multiplied by +0 = invalid
−∞ multiplied by −0 = invalid

IEEE_754 7.1
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN

QNaN
QNaN
QNaN
QNaN

V9, B.2.2, Table 272

Any arithmetic operation involving infinity
as one operand and SNaN as the other
operand except copying/moving data
(± ∞) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

V9, A.13, B.2.12

Any compare operation involving infinity as
one operand and a SNaN as the other
operand:
FCMP<s|d> (± ∞) with (SNaN2)
FCMP<s|d> (SNaN1) with (± ∞)

FCMPE<s|d> (± ∞) with (SNaN2)
FCMPE<s|d> (SNaN1) with (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 112
fcc value = unordered = 112

fcc value = unordered = 112
fcc value = unordered = 112

V9, A.132

Any compare & generate exception operation
involving infinity as 1 operand and a QNaN
as the other operand:

FCMPE<s|d> (± ∞) with (QNaN2)
FCMPE<s|d> (QNaN1) with (± ∞)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b112
fcc value = unordered = 2’b112
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2. Note that in the IEEE 754 standard, infinity is an exact number; so this exception could also
applies to non-infinity operands as well. Also note that the invalid exception and SNaN to QNaN
transformation does not apply to copying/moving fpops (FMOV, FABS, FNEG).

B.1.1.2 Two Infinity Operand Arithmetic
■ Do not generate exceptions

TABLE B-3 Two Infinity Operations That Do Not Generate Exceptions

Cases

+∞ plus +∞ = +∞
−∞ plus −∞ = −∞
+∞ minus −∞ = +∞
−∞ minus +∞ = −∞
+∞ multiplied by +∞ = +∞
+∞ multiplied by −∞ = −∞
−∞ multiplied by +∞ = −∞
−∞ multiplied by −∞ = +∞
Compares treat infinity just like a regular number:
+∞ = +∞, +∞ > anything else;
−∞ = −∞, −∞ < anything else.
Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be ± ∞):

* FCMPE
* FCMP
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■ Could generate exceptions

TABLE B-4 Two Infinity Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, B.2.2
+∞ plus −∞ = invalid
−∞ plus +∞ = invalid

+∞ minus +∞ = invalid
−∞ minus −∞ = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN

QNaN
QNaN

V9, B.2.2
+∞ divided by +∞ = invalid
+∞ divided by −∞ = invalid
−∞ divided by +∞ = invalid
−∞ divided by −∞ = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN
QNaN
QNaN
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B.1.2 Zero Arithmetic

1.In this context, 0 is again another exact number; so this exception could also applies to non-zero
operands as well. Also note that the invalid exception and SNaN to QNaN transformation does
not apply to copying/moving data instructions (FMOV, FABS, FNEG)

TABLE B-5 Zero Arithmetic Operations that generate exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, B.2.2 & 5.1.7.10.4
+0 divided by +0 = invalid
+0 divided by −0 = invalid
−0 divided by +0 = invalid
−0 divided by −0 = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand
result)
QNaN
QNaN
QNaN
QNaN

V9. 5.1.7.10.4
+num divided by +0 = divide by zero
+num divided by −0 = divide by zero
−num divided by +0 = divide by zero
−num divided by −0 = divide by zero

IEEE_754 7.2
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero

+∞
−∞
−∞
+∞

V9, B.2.2 Table 271

Any arithmetic operation involving
zero as 1 operand and a SNaN as the
other operand except copying/moving
data
(± 0) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± 0)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

TABLE B-6 Interesting Zero Arithmetic Sign Result Case

Cases

+0 plus −0 = +0 for all round modes except round to −infinity where the
result is −0.

sqrt (−0) = −0
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B.1.3 NaN Arithmetic
■ Do not generate exceptions

■ Could Generate Exceptions

TABLE B-7 NaN Arithmetic Operations That Do Not Generate Exceptions

Cases

V9, B.2.1: Fp convert to wider NaN transformation
FsTOd (QNaN2) = QNaN2 widened

FsTOd (7FD1 000016) = 7FFA 2000 0000 000016
FsTOd (FFD1 000016) = FFFA 2000 0000 000016

V9, B.2.1: Fp convert to narrower NaN transformation
FdTOs (QNaN2) = QNaN2 narrowed

FdTOs (7FFA 2000 0000 000016) = 7FD 100016
FdTOs (FFFA 2000 0000 000016) = FFD 100016

V9, B.2.2 Table 27
Any noncompare arithmetic operations. Result takes sign of QNaN pass through operand.
[Note this rule is applicable to sqrt(QNaN2) = QNaN2 as well].
(± num) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (± num) = QNaN1
(QNaN1) OPERATOR (QNaN2) = QNaN2

TABLE B-8 NaN Arithmetic Operations That Could Generate Exceptions

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared

V9, B.2.1: Fp convert to wider NaN transformation
FsTOd (SNaN2) = QSNaN2 widened

FsTOd (7F91 000016) = 7FFA 2000 0000 000016
FsTOd (FF91 000016) = FFFA 2000 0000 000016

IEEE_754 7.1

IEEE_754 invalid QSNaN2
widened

V9, B.2.1: Fp convert to narrower NaN transformation
FdTOs (SNaN2) = QSNaN2 narrowed

FdTOs (7FF2 2000 0000 000016) = 7FD 100016
FdTOs (FFF2 2000 0000 000016) = FFD 100016

IEEE_754 7.1

IEEE_754 invalid QSNaN2
narrowed
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B.1.4 Special Inexact Exceptions
OpenSPARC T2 follows SPARC V9 5.1.7.10.5 (IEEE_754 Section 7.5) and sets
FSR_inexact whenever the rounded result of an operation differs from the infinitely
precise unrounded result.

V9, B.2.2 Table 27
Any noncompare arithmetic operations except copying/moving
(FMOV, FABS, FNEG) [Note this rule applies to
sqrt(SNaN2) = QNaN2 and invalid exception as well]
(± num) OPERATOR (SNaN2)
(SNaN1) OPERATOR (± num)
(SNaN1) OPERATOR (SNaN2)
(QNaN1) OPERATOR (SNaN2)
(SNaN1) OPERATOR (QNaN2)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

QSNaN2
QSNaN1
QSNaN2
QSNaN2
QSNaN1

V9, Appendix B.5
F<s|d>TOi (+QNaN) = invalid
F<s|d>TOi (+SNaN) = invalid
F<s|d>TOx (+QNaN) = invalid
F<s|d>TOx (+SNaN) = invalid

F<s|d>TOi (−QNaN) = invalid
F<s|d>TOi (−SNaN) = invalid
F<s|d>TOx (−QNaN) = invalid
F<s|d>TOx (−SNaN) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

231−1
231−1
263−1
263−1

−231

−231

−263

−263

TABLE B-8 NaN Arithmetic Operations That Could Generate Exceptions (Continued)

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared
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Additionally, there are a few special cases to be aware of:

B.2 Subnormal Handling
The OpenSPARC T2 FGU follows the UltraSPARC I/UltraSPARC II subnormal
handling instead of that used in OpenSPARC T1. While OpenSPARC T1 provides
full hardware support for subnormal operands and results, OpenSPARC T2
generates an unfinished_FPop trap type in some cases. In addition, OpenSPARC T2
implements a nonstandard floating-point mode, whereas OpenSPARC T1 does not.

OpenSPARC T2 provides limited subnormal support in hardware when in standard
mode (FSR.ns = 0) or interval arithmetic mode (GSR.im = 1) [Note that when
GSR.im = 1, regardless of FSR.ns, OpenSPARC T2 operates in standard mode.]:

TABLE B-9 Fp ↔ Int Conversions With Inexact Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

V9, A.14: Fp convert to 32-bit integer when source operand lies
between −(231−1) and 231 but is not exactly an integer.
FsTOi, FdTOi.

IEEE_754 7.5

IEEE_754 inexact An integer number

V9, A.14: Fp convert to 64-bit integer when source operand lies
between −(263−1) and 263 but is not exactly an integer.
FsTOx, FdTOx.

IEEE_754 7.5

IEEE_754 inexact An integer number

V9, A.15: Convert integer to fp format when 32-bit integer source
operand magnitude is not exactly representable in single precision
(23-bit mantissa). Note, even if the operand is > 224−1, if enough of
its trailing bits are zeros, it may still be exactly representable.
FiTOs.

IEEE_754 7.5

IEEE_754 inexact An SP number

V9, A.15: Convert integer to fp format when 64-bit integer source
operand magnitude is not exactly representable in single precision
(23-bit mantissa). Note, even if the operand is > 224−1, if enough of
its trailing bits are zeros, it may still be exactly representable.
FxTOs.

IEEE_754 7.5

IEEE_754 inexact An SP number

V9, A.15: Convert integer to fp format when 64-bit integer source
operand magnitude is not exactly representable in double
precision (52-bit mantissa). Note, even if the operand is > 253−1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOd.

IEEE_754 7.5

IEEE_754 inexact A DP number
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■ OpenSPARC T2 supports full subnormal operand handling for single and double
precision fp compares;

■ OpenSPARC T2 supports gross underflow results for fp-to-fp conversions from
higher to lower precision (FdTOs);

■ OpenSPARC T2 supports gross underflow results in hardware for FMUL(s,d) and
FDIV(s,d) which gives 90% of the optimal underflow performance at a fraction of
the cost to completely support subnormal operands and results;

■ For those instructions without any subnormal support, an unfinished trap is
taken.

OpenSPARC T2 supports the following in nonstandard mode ((FSR.ns = 1) and
(GSR.im = 0)):

■ Subnormal operands and results are flushed to zero with the same sign, and
execution is allowed to proceed without incurring the performance cost of an
unfinished trap.

TABLE B-11 and TABLE B-12 show how each instruction type is explicitly handled.

Handling of the FMUL<s|d>, FDIV<s|d>, FdTOs instructions requires a few
additional definitions:

■ Let Signr = sign of result, RP = round to +infinity, RM = round to −infinity. Define
RND as round mode bits. In standard mode, these can have two different sources:

When in typical standard mode ((FSR.ns = 0) and (GSR.im = 0)),
RND = FSR.rd

When in interval arithmetic mode (GSR.im = 1), RND = GSR.irnd

■ Let E(rs1) = biased exponent of rs1 operand, and E(rs2) = biased exponent of rs2
operand

■ Let Er = unnormalized and unrounded biased exponent result

For FMUL<s|d>: Er = E(rs1) + E(rs2) − EBIAS(P)

For FDIV<s|d>: Er = E(rs1) − E(rs2) + EBIAS(P) − 1

For FdTOs: Er = E(rs2) − EBIAS(P_rs2) + EBIAS(P_rd), where P_rs2 is the
larger precision of the source and P_rd is the smaller precision of the
destination

■ Let Ef = final normalized and rounded biased exponent result
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■ Define constants dependent on precision type (see TABLE B-10)

FIGURE B-1 Single Precision Unbiased vs. Biased Subnormals and Gross Underflow

■ Note that even though 0 ≤ [E(rs1) or E(rs2)] ≤ 255 for each single precision biased
operand exponent, the computed Er can be 0 ≤ Er ≤ 255 or can even be negative.
For example, for a FMULS instruction:

If E(rs1) = E(rs2) = +127, then Er = 127 + 127 −127 = +127

If E(rs1) = E(rs2) = 0, then Er = 0 + 0 - 127 = −127

■ Following the sections 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10 of The SPARC
Architecture Manual-Version 9, Overflow Result is defined as follows:

If the appropriate trap enable masks are not set (FSR.ofm = 0 and
FSR.nxm = 0), then set aexc and cexc overflow and inexact flags:
FSR.ofa = 1, FSR.nxa = 1, FSR.ofc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ofm = 1 or
FSR.nxm = 1), then only an IEEE overflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from previous UltraSPARC I/
UltraSPARC II implementations to follow the SPARC V9 section 5.1.7.9
errata:

If FSR.ofm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

TABLE B-10 Subnormal Handling Constants Per Destination Precision Type

Precision (P)

Number of
exponent field
bits

Exponent Bias
(EBIAS)

Exponent Max
(EMAX)

Exponent Gross
Underflow (EGUF)

Single 8 127 255 −25

Double 11 1023 2047 −54

+127 +254

+255

+1

0
-25

(∞, NaNs)

normal number > 1normal number < 1

(0, subnormal numbers)

8b representable Biased E

gross
subnormal numbersunderflow
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If FSR.ofm = 1, independent of FSR.nxm, then FSR.ofc = 1 and
FSR.nxc = 0.

■ Following the sections 5.1.7.6, 5.1.7.8, 5.1.7.9 and figures in 5.1.7.10 of The SPARC
Architecture Manual-Version 9, Gross Underflow Zero Result is defined as follows:

Result = 0 (with correct sign)

If the appropriate trap enable masks are not set (FSR.ufm=0 and
FSR.nxm = 0), then set aexc and cexc underflow and inexact flags:
FSR.ufa = 1, FSR.nxa = 1, FSR.ufc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ufm = 1 or
FSR.nxm = 1), then only an IEEE underflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/
UltraSPARC II implementations to follow the SPARC V9 section 5.1.7.9
errata:

If FSR.ufm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ufm = 1, independent of FSR.nxm, then FSR.ufc = 1 and
FSR.nxc = 0.

■ Subnormal handling is overridden for the following cases:

■ Result is a QNaN or SNaN — by The SPARC Architecture Manual-Version 9
Appendix B.2.2 (Table 27).

Define “OP_NaN” as instruction uses a SNaN or QNaN operand.

Examples:

subnormal + SNaN = QNaN with invalid exception (No unfinished trap in
standard mode and no FSR.nx in nonstandard mode)

subnormal + QNaN = QNaN, no exception (No unfinished trap in
standard mode and no FSR.nx in nonstandard mode)

■ Result already generates an exception.

Define “OP_lt_0” as instruction uses an operand less than zero.

Examples:

sqrt(number less than zero) = invalid

■ Result is infinity.

Define “OP_inf” as instruction uses infinity operand.

Examples:

subnormal +∞ = ∞ (No unfinished trap in standard mode and no FSR.nx
in nonstandard mode)

subnormal × ∞ = ∞ in standard mode; subnormal × ∞ = QNaN with
invalid exception in nonstandard mode since subnormal is flushed to zero.

■ Result is zero.

Define “OP_0” as instruction uses a zero operand
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Example:

subnormal × 0 = 0 (No unfinished trap in standard mode, and no FSR.nx
in nonstandard mode)

B.2.1 One or Both Subnormal Operands

TABLE B-11 One or Both Subnormal Operands Handling (1 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode

ingle/Double
recision add,
ubtract
FADD<s|d>,
SUB<s|d>]

if (not (OP_NaN or OP_inf)) {
generate unfinished trap

}

if (not(OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0
with the same sign
FSR.nx ← 1

}

ingle/Double
recision
PCOMPARE
FCMP<s|d>,
CMPE<s|d>]

if (not OP_NaN) {
execute the compare using the subnormal

operand(s)
}

if (not OP_NaN) {
executes the compare using the subnormal
operand(s)3

}

ingle/Double
recision
ultiply

FMUL<s|d>]

if (not (OP_NaN or OP_inf or OP_0)) {
If ((Er > EGUF(P))

or
(Er ≤ EGUF(P) and Signr=0 and

RND=RP)
or
(Er ≤ EGUF(P) and Signr=1 and

RND=RM))
{generate unfinished trap}

else {
generate gross underflow zero

result1 }
}

if (not(OP_NaN or OP_0) {
if (not(OP_inf)) {
executes w/subnormal operand flushed to 0 with
the same sign

FSR.nx ← 1
} else { // 1 op is subnormal, other is ∞

executes w/subnormal operand flushed to 0
with the same sign

FSR.nv ← 1 & return QNaN
}

}
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In
ingle/double
recision
ivide

FDIV<s|d>]

if (not (OP_NaN or OP_inf or OP_0)) {
if (not (Ef > EMAX(P))) {

// not overflow
if ( (Er > EGUF(P))

or
(Er ≤ EGUF(P) and (Signr=0)

and (RND=RP))
or
(Er ≤ EGUF(P) and (Signr=1)

and (RND=RM)) )
{

generate unfinished trap
} else {
generate gross-underflow zero

result1

}
} else {

generate overflow result2

}
}

if (not(OP_NaN) {
if (not(OP_inf or OP_0) {

executes w/subnormal operand flushed to 0
with the same sign
if (rs1 and rs2 are flushed to zero) {

FSR.nv ← 1 // 0 ÷ 0 is invalid
} else if (rs2 divisor is flushed to zero) {

FSR.dz ← 1
} else {

FSR.nx ← 1
}

} else if (OP_inf) { // 1 op is subnormal,
// other = ∞

executes w/subnormal operand flushed
to 0 with the same sign

// 0 ÷ ∞ is 0, and ∞ ÷ 0 is ∞
No exceptions are set.
Even if divisor is flushed to zero: no need
to set FSR.dz

} else if (OP_0) { // 1 op subnorm, other = 0
executes w/subnormal operand flushed to 0
with the same sign

// 0 ÷ 0 is invalid exception
FSR.nv ← 1 // overrides FSR.dz

}
}

ingle to
ouble
recision
ultiply

FSMULD]

if (not (OP_NaN or OP_inf or OP_0)) {
generate unfinished trap

}

if (not(OP_NaN or OP_0) {
if (not(OP_inf)) {

executes w/subnormal operand flushed to 0
with the same sign
Set FSR.nx

} else { // 1 op is subnormal, other is ∞
executes w/subnormal operand flushed to 0

with the same sign
Set FSR.nv & return QNaN

}
}

TABLE B-11 One or Both Subnormal Operands Handling (Continued) (2 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode
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1. See gross underflow zero result definition on page 477.
2. See overflow definition on page 477.
3. This errata (not flushing subnormal operands to zero for only single and double precision fpcom-

pares) ensures OpenSPARC T2 is backward compatible with UltraSPARC I/UltraSPARC II and
UltraSPARC III.

ingle/Double
recision
quare root
FSQRT(s,d)]
*note: single
perand
struction)

if (not (OP_NaN or OP_inf)) {
if (OP_lt_0) {

FSR.nv ← 1 & return QNaN
} else {

generate unfinished trap
}

}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
if (OP_lt_0) { //that is, subnormal

FSR.nx ← 1; return −0
} else if (OP_eq_0) { //that is, 0

No exception; return 0 with same sign
} else {

FSR.nx ← 1
}

}

p to Int and
p Single to
ouble

onversion
FsTOx,
dTOx, FsTOi,
dTOi,
sTOd]
*note single
perand
structions)

if (not (OP_NaN or OP_inf)) {
generate unfinished trap

}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
FSR.nx ← 1

}

p Double to
ingle
onversion
FdTOs] (*note
ingle
perand
struction)

if (not (OP_NaN or OP_inf)) {
if ((Signr = 0 and RND = RP)

or
(Signr = 1 and RND = RM)) {

generate unfinished trap
} else {

generate gross underflow zero result1

}
}

if (not (OP_NaN or OP_inf)) {
executes w/subnormal operand flushed to 0

with the same sign
FSR.nx ← 1

}

TABLE B-11 One or Both Subnormal Operands Handling (Continued) (3 of 3)

structions
(FSR.ns = 0) or (GSR.im = 1)
Standard Mode

(FSR.ns = 1) and (GSR.im = 0)
Nonstandard mode
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B.2.2 Normal Operand(s) Giving Subnormal Result

1. See gross underflow zero result definition on page 477.

■ For those instructions found in TABLE B-11 but not in TABLE B-12, TABLE B-11 is
sufficient for their subnormal handling; so the additional rules in TABLE B-12 need
not be applied.

■ Multiplies that include a conversion from a smaller to larger precision (FSMULD)
are not included in TABLE B-12 along with FMUL<s|d> because the larger
precision result’s exponent range is sufficient to represent a number that would
have underflowed in the smaller precision’s exponent range.

TABLE B-12 Subnormal Result Handling for Two Normal Operands

Instructions (FSR.ns = 0) or (GSR.im = 1) (FSR.ns = 1) and (GSR.im = 0)

Single/Double
Precision
add, subtract
[FADD<s|d>),
FSUB<s|d>]

Generate unfinished trap Generate gross underflow zero
result1

Single/Double
Precision
multiply
[FMUL<s|d>]
and divide
[FDIV<s|d>], Fp
double-to-single
conversion
[FdTOs] (*note
single operand
instruction)

if (not (Ef >= 1)) { // that is, not subnormal
intermediate result that rounded to normalized
result

if ((1 > Er > EGUF(P))
or

(Er ≤ EGUF(P) and Signr = 0 and RND = RP)
or

(Er ≤ EGUF(P) and Signr = 1 and RND =
RM)) {

generate unfinished trap
}
else {

generate gross underflow zero result1

}
} else {

generate normalized result
}

Generate gross underflow zero
result1
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APPENDIX C

Differences From OpenSPARC T1

C.1 General Architectural and
Microarchitectural Differences
OpenSPARC T2 follows the CMT philosophy of OpenSPARC T1, but adds more
execution capability to each physical core, as well as significant system-on-a-chip
components and an enhanced L2 cache. The following lists the microarchitectural
differences:

■ Physical core consists of two integer execution pipelines and a single floating-
point pipeline. OpenSPARC T1 had a single integer execution pipeline and all
cores shared a single floating-point pipeline.

■ Each physical core in OpenSPARC T2 supports eight strands, which all share the
floating-point pipeline. The eight strands are partitioned into two groups of four
strands, each of which shares an integer pipeline. OpenSPARC T1 shared the
single integer pipeline among four strands.

■ Pipeline in OpenSPARC T2 is eight stages, two stages longer than OpenSPARC
T1.

■ Instruction cache is 8-way associative, compared to 4-way in OpenSPARC T1.

■ The L2 cache is 4 Mbyte, 8-banked and 16-way associative, compared to 3 Mbyte,
4-banked and 12-way associative in OpenSPARC T1.

■ Data TLB is 128 entries, compared to 64 entries in OpenSPARC T1.

■ The memory interface in OpenSPARC T2 supports fully buffered DIMMS (FBDs),
providing higher capacity and memory clock rates, as described in Chapter 17.

■ The OpenSPARC T2 memory channels support a single-DIMM option for low-
cost configurations.
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C.2 ISA Differences
There are a number of ISA differences between OpenSPARC T2 and OpenSPARC T1,
as follows:

■ OpenSPARC T2 fully supports all VIS 2.0 instructions. OpenSPARC T1 supports a
subset of VIS 1.0 plus SIAM (the remainder of VIS 1.0 and 2.0 instructions trap to
software for emulation, on OpenSPARC T1).

■ OpenSPARC T2 supports the CMP spec, as described in Chapter 14. OpenSPARC
T1 has its own version of CMP control/status registers. OpenSPARC T2 consists
of eight physical cores, with eight virtual processors per physical core.

■ OpenSPARC T2 does not support OpenSPARC T1’s idle state or its idle, halt, or
resume messages. Instead, OpenSPARC T2 supports parking and unparking as
specified in the CMP chapter of UltraSPARC Architecture 2007. Note that parking
is similar to OpenSPARC T1’s idle state. OpenSPARC T2 does support an
equivalent to the halt state, which on OpenSPARC T1 was entered via writing to
HPR 1E16. However, OpenSPARC T2 does not support OpenSPARC T1’s
STRAND_STS_REG ASR, which holds the strand state. Halted state is not
software-visible on OpenSPARC T2.

■ OpenSPARC T2 does not support the INT_VEC_DIS register (which allowed any
OpenSPARC T1 strand to generate an interrupt, reset, idle, or resume message to
any strand). Instead, an alias to ASI_INTR_W is provided, which allows only the
generation of an interrupt to any strand.

■ OpenSPARC T2 supports ALLCLEAN, INVALW, NORMALW, OTHERW, POPC,
and FSQRT<s|d> in hardware.

■ OpenSPARC T2 has a floating-point unit that generates fp_unfinished_operation
for most denorm cases and supports a nonstandard mode that flushes denorms to
zero, as described in Appendix B. OpenSPARC T1 handles denorms in hardware,
never generates an FP_unfinished_operation trap and does not support a
nonstandard mode.

■ OpenSPARC T2 generates an illegal_instruction trap on any quad-precision FP
instruction, while OpenSPARC T1 generates an fp_exception_other trap on
numeric and move-FP-quad instructions. See Table 5-2 on page 30.

■ OpenSPARC T2 generates a privileged_action exception upon attempted access to
hyperprivileged ASIs by privileged software whereas, in such cases, OpenSPARC
T1 takes a data_access_exception exception.

■ OpenSPARC T2 supports PSTATE.tct; OpenSPARC T1 did not.

■ OpenSPARC T2 implements SAVE similar to all previous UltraSPARC processors.
OpenSPARC T1 implements a SAVE that updates the locals in the new window to
be the same as the locals in the old window, and swaps the ins (outs) of the old
window with the outs (ins) of the new widow.
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■ PSTATE.am masking details differ between OpenSPARC T1 and OpenSPARC T2,
as described in Section 11.1.8, Address Masking (Impdep #125), on page 91.

■ OpenSPARC T2 implements PREFETCH fcn = 1816 as a prefetch invalidate cache
entry, for efficient software cache flushing, as described in Section 19.15, L2 Cache
Flushing, on page 423.

C.3 MMU Differences
The OpenSPARC T2 MMU is described in Chapter 12. The OpenSPARC T2 and
OpenSPARC T1 MMUs differ as follows:

■ OpenSPARC T2 has a 128-entry DTLB, whereas OpenSPARC T1 has a 64-entry
DTLB.

■ OpenSPARC T2 supports a pair of primary context registers and a pair of
secondary context registers. OpenSPARC T1 supports a single primary context
and single secondary context register.

■ OpenSPARC T2 does not support a locked bit in the TLBs. OpenSPARC T1
supports a locked bit in the TLBs.

■ OpenSPARC T2 supports only the sun4v TTE format for I/D-TLB Data-In and
Data-Access registers. OpenSPARC T1 supports both the sun4v and the sun4u
TTE formats.

■ OpenSPARC T2 is compatible with UltraSPARC Architecture 2007 with regard to
multiple flavors of data access exception (DAE_*) and instruction access exception
(IAE_*). OpenSPARC T1 uses the UltraSPARC single flavor of
data_access_exception and instruction_access_exception, indicating the "flavors"
in its SFSR register.

■ OpenSPARC T2 supports a hardware Table Walker to accelerate ITLB and DTLB
miss handling.

■ The number and format of TSB configuration and pointer registers differs
between OpenSPARC T1 and OpenSPARC T2. OpenSPARC T2 uses physical
addresses for TSB pointers, OpenSPARC T1 uses virtual addresses for TSB
pointers.

■ OpenSPARC T1 and OpenSPARC T2 support the same four page sizes (8 Kbyte,
64 Kbyte, 4 Mbyte, 256 Mbyte). OpenSPARC T2 supports an
unsupported_page_size trap when an illegal page size is programmed into TSB
registers or attempted to be loaded into the TLB. OpenSPARC T1 forces an illegal
page size being programmed into TSB registers to be 256 Mbytes and generates a
data_access_exception trap when a page with an illegal size is loaded into the
TLB.

■ OpenSPARC T2 adds a demap real operation, which demaps all pages with r = 1
from the TLB.
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■ OpenSPARC T2 supports an I-TLB probe ASI.

■ Autodemapping of pages in the TLBs only demaps pages of the same size or of a
larger size in OpenSPARC T2, as described in Section 12.11.3, I-/D-Demap Context
(type = 1), on page 150. In OpenSPARC T1, autodemap demaps pages of the same
size, larger size, or smaller size.

■ OpenSPARC T2 supports detection of multiple hits in the TLBs as described in
Section 16.7.1.1, ITLB Tag Multiple Hit Error (ITTM), on page 209 and Section
16.7.2.1, DTLB Tag Multiple Hit Error (DTTM), on page 212.

C.4 Performance Instrumentation
Differences
Both OpenSPARC T1 and OpenSPARC T2 provide access to hardware performance
counters through the PIC and PCR registers. However, the events captured by the
hardware differ significantly between OpenSPARC T1 and OpenSPARC T2, with
OpenSPARC T2 capturing a much larger set of events, as described in Chapter 10.
OpenSPARC T2 also has support to count events in hyperprivileged mode;
OpenSPARC T1 did not.

In addition, the implementation of pic_overflow differs between OpenSPARC T1 and
OpenSPARC T2. OpenSPARC T1 provides a disrupting pic_overflow on the
instruction following the one that caused the overflow event. OpenSPARC T2
provides a disrupting pic_overflow on an instruction that generates the event but is
within an epsilon number of event-generating instructions from the actual overflow.

Both OpenSPARC T2 and OpenSPARC T1 support DRAM performance counters.

C.5 Reset Differences
TBD
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C.6 Error Handling Differences
Error handling differs quite a bit between OpenSPARC T2 and OpenSPARC T1.
OpenSPARC T1 primarily employs hardware correction of errors, whereas
OpenSPARC T2 primarily employs software correction of errors, as described in
Chapter 16.

■ OpenSPARC T2 uses the store_error, sw_recoverable_error, data_access_error,
instruction_access_error, internal_processor_error, hw_corrected_error,
instruction_access_MMU_error, and data_access_MMU_error traps for error
handling. OpenSPARC T1 uses the data_access_error, instruction_access_error,
internal_processor_error, hw_corrected_error, and data_error traps.

■ OpenSPARC T2 IRF and FRF ECC errors are handled in software. OpenSPARC T1
corrects single-bit transient errors in hardware.

■ OpenSPARC T2 has the ability to disable both error reporting and error traps.
OpenSPARC T1 only has the ability to disable error traps.

■ OpenSPARC T2 takes a deferred store_error trap on store buffer uncorrectable
errors. OpenSPARC T1 does not have error correction on its store buffers.

■ OpenSPARC T2 generates a trap on multiple hits in the ITLB, DTLB, I-cache, or D-
cache. OpenSPARC T1 simply uses one of the matching entries.

■ OpenSPARC T2 protects its MMU register array with parity, taking a trap if an
error is detected during a tablewalk. OpenSPARC T1 MMU registers are not
protected by parity. OpenSPARC T2 MMU error handling is described in Section
16.7.1, ITLB Errors, on page 209, Section 16.7.2, DTLB Errors, on page 211, and
Section 16.7.11, MMU Register Array (MRAU), on page 227.

■ OpenSPARC T2 protects the TICK (TICK, STICK, HSTICK) compare registers,
scratchpad registers, and trap stack registers with SECDED ECC, taking a trap if
an error is detected while accessing the registers. OpenSPARC T1 left these
registers unprotected by ECC.

■ OpenSPARC T2 supports NotData in the L2 cache (NotData is not supported in
memory in either OpenSPARC T1 or OpenSPARC T2).

■ OpenSPARC T2 protects the vuad bits by SECDED ECC. OpenSPARC T1 protects
the vuad bits by parity.
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C.7 Power Management Differences
Both OpenSPARC T2 and OpenSPARC T1 support memory access throttling. The
mechanisms for supporting CPU throttling differ between OpenSPARC T1 and
OpenSPARC T2. OpenSPARC T2 power management is described in Chapter 18.

C.8 Configuration, Diagnostic, and Debug
Differences
OpenSPARC T2 configuration and diagnostic support is described in Chapter 28.
Debug support is described in Chapter 29. OpenSPARC T2 additions over
OpenSPARC T1 include:

■ OpenSPARC T2 supports instruction VA watchpoints.

■ OpenSPARC T2 supports PA watchpoints.

■ OpenSPARC T2 supports the control_transfer_instruction trap.

■ OpenSPARC T2 implements Prefetch fcn = 1816 as a prefetch invalidate cache
entry, for efficient software L2 cache flushing. In OpenSPARC T1, flushing of a
cache line requires entering “direct-mapped replacement mode,” where the L2
LRU is overridden by the address and then forcing out all 12-ways in a set via a
displacement with the proper address.

■ OpenSPARC T2 supports diagnostic access to the integer register file, store
buffers, scratchpad, TICK (TICK, STICK, HSTICK) compare, trap stack, and MMU
register arrays.

■ OpenSPARC T2 does not require the diagnostic virtual address to match a valid
tag for ASI_DCACHE_DATA.
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APPENDIX D

Caches and Cache Coherency

D.1 Cache and Memory Interactions
This appendix describes various interactions between the caches and memory, and
the management processes that an operating system must perform to maintain data
integrity in these cases. In particular, it discusses the following:

■ Invalidation of one or more cache entries—when and how to do it

■ Differences between cacheable and noncacheable accesses

■ Ordering and synchronization of memory accesses

■ Accesses to addresses that cause side effects (I/O accesses)

■ Nonfaulting loads

■ Cache sizes, associativity, replacement policy, etc.

D.2 Cache Flushing
Data in the level-1 (read-only or writethrough) caches can be flushed by invalidating
the entry in the cache (in a way that also leaves the L2 directory in a consistent
state). Modified data in the level-2 (writeback) cache must be written back to
memory when flushed.

Cache flushing is required in the following cases:

■ I-cache: Flush is needed before executing code that is modified by a local store
instruction. This is done with the FLUSH instruction. Flushing the I-cache with
ASI accesses (Section 19.5, L1 I-Cache Diagnostic Access, on page 399) does not
work, because it will leave the I-cache and the L2 directory inconsistent, thus
breaking coherency and leading to the possibility of data corruption.
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■ D-cache: Flush is needed when a physical page is changed from (physically)
cacheable to (physically) noncacheable. This is done with a displacement flush
(Displacement Flushing, below).

■ L2 cache: Flush is needed for stable storage. Examples of stable storage include
battery-backed memory and transaction logs. The recommended way to perform
this is by using the PrefetchICE instruction (see Section 19.15, L2 Cache Flushing,
on page 423). Alternatively, this can be done by a displacement flush (see the
next section). Flushing the L2 cache flushes the corresponding blocks from the I-
and D-caches, because OpenSPARC T2 maintains inclusion between the L2 and
L1 caches.

D.2.1 Displacement Flushing
Cache flushing of the L2 cache or the D-cache can be accomplished by a
displacement flush. This is done by placing the cache in direct-map mode, and
reading a range of read-only addresses that map to the corresponding cache line
being flushed, forcing out modified entries in the local cache. Care must be taken to
ensure that the range of read-only addresses is mapped in the MMU before starting
a displacement flush; otherwise, the TLB miss handler may put new data into the
caches. In addition, the range of addresses used to force lines out of the cache must
not be present in the cache when starting the displacement flush. (If any of the
displacing lines are present before starting the displacement flush, fetching the
already present line will not cause the proper way in the direct-mapped mode L2 to
be loaded; instead, the already present line will stay at its current location in the
cache.)

D.2.2 Memory Accesses and Cacheability

In OpenSPARC T2, all memory accesses are cached in the L2 cache (as long as the L2
cache is enabled). The cp bit in the TTE corresponding to the access controls whether
the memory access will be cached in the primary caches (if cp = 1, the access is
cached in the primary caches; if cp = 0 the access is not cached in the primary
caches). Atomic operations are always performed at the L2 cache.

Note Diagnostic accesses to the L2 cache can be used to invalidate a
line, but they are not an alternative to PrefetchICE or
displacement flushing. L2 diagnostic accesses do not cause
invalidation of L1 lines (breaking L1 inclusion) and modified
data in the L2 cache will not be written back to memory using
these ASI accesses. See Section 19.16, L2 Cache Diagnostic Access,
on page 425.

Note Atomic load-store instructions are treated as both a load and a
store; they can be performed only in cacheable address spaces.
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D.2.3 Coherence Domains
Two types of memory operations are supported in OpenSPARC T2: cacheable and
noncacheable accesses, as indicated by the page translation. Cacheable accesses are
inside the coherence domain; noncacheable accesses are outside the coherence
domain.

SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses. OpenSPARC T2 maintains TSO ordering, regardless of the cacheability of
the accesses, relative to other access by processors. (Ordering of processor accesses
relative to DMA accesses roughly follows PCI ordering rules; see I/O Ordering Rules
on page 502.)

See the The SPARC Architecture Manual-Version 9 for more information about the
SPARC V9 memory models.

On OpenSPARC T2, a MEMBAR #Lookaside is effectively a NOP and is not
needed for forcing order of stores vs. loads to noncacheable addresses.

D.2.3.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses. They
are implemented in OpenSPARC T2 with the following properties:

■ Data resides in real memory locations.

■ They observe the supported cache coherence protocol.

■ The unit of coherence is 64 bytes at the system level (coherence between the
virtual processors and I/O), enforced by the L2 cache.

■ The unit of coherence for the primary caches (coherence between multiple virtual
processors) is the primary cache line size (16 bytes for the data cache, 32 bytes for
the instruction cache), enforced by the L2 cache directories.

D.2.3.2 Noncacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.
Accesses of some of these memory (or memory mapped) locations may result in side
effects. Noncacheable accesses are implemented in OpenSPARC T2 with the
following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side effects; for example, memory-
mapped I/O control registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.
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Noncacheable accesses are all strongly ordered with respect to other noncacheable
accesses (regardless of the e bit). Speculative loads with the e bit set cause a
DAE_so_page trap.

D.2.3.3 Global Visibility and Memory Ordering

To ensure the correct ordering between the cacheable and noncacheable domains,
explicit memory synchronization is needed in the form of MEMBARs or atomic
instructions. CODE EXAMPLE D-1 illustrates the issues involved in mixing cacheable
and noncacheable accesses.

CODE EXAMPLE D-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:
While (1)
{

Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag
While F1 is set (spin on flag)
Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D2
}

Process B:
While (1)
{

  While F1 is cleared (spin on flag)

      Load F1
2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D1

  Store D2
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag
}

Note The side-effect attribute does not imply noncacheability.
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Due to load and store buffers implemented in OpenSPARC T2, CODE EXAMPLE D-1
may not work for RMO accesses without the MEMBARs shown in the program
segment.

Under TSO, loads and stores (except block stores) cannot pass earlier loads, and
stores cannot pass earlier stores; therefore, no MEMBAR is needed.

Under RMO, there is no implicit ordering between memory accesses; therefore, the
MEMBARs at both #1 and #2 are needed.

D.2.4 Memory Synchronization: MEMBAR and FLUSH
The MEMBAR (STBAR in SPARC V8) and FLUSH instructions provide for explicit
control of memory ordering in program execution. MEMBAR has several variations;
their implementations in OpenSPARC T2 are described below. See the references to
“Memory Barrier,” “The MEMBAR Instruction,” and “Programming With the
Memory Models,” in The The SPARC Architecture Manual-Version 9 for more
information.

D.2.4.1 MEMBAR #LoadLoad

All loads on OpenSPARC T2 switch a strand out until the load completes. Thus,
MEMBAR #LoadLoad is treated as a NOP on OpenSPARC T2.

D.2.4.2 MEMBAR #StoreLoad

MEMBAR #StoreLoad forces all loads after the MEMBAR to wait until all stores
before the MEMBAR have reached global visibility. MEMBAR #StoreLoad behaves
the same as MEMBAR #Sync on OpenSPARC T2.

D.2.4.3 MEMBAR #LoadStore

All loads on OpenSPARC T2 switch a strand out until the load completes. Thus,
MEMBAR #LoadStore is treated as a NOP on OpenSPARC T2

D.2.4.4 MEMBAR #StoreStore and STBAR

Stores on OpenSPARC T2 maintain order in the store buffer. Thus Membar
#StoreStore is treated as a NOP on OpenSPARC T2.

Note A MEMBAR #MemIssue or MEMBAR #Sync is needed if
ordering of cacheable accesses following noncacheable accesses
must be maintained for RMO cacheable accesses.
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D.2.4.5 MEMBAR #Lookaside

Loads and stores to noncacheable addresses are “self-synchronizing” on
OpenSPARC T2. Thus MEMBAR #Lookaside is treated as a NOP on OpenSPARC
T2.

D.2.4.6 MEMBAR #MemIssue

MEMBAR #MemIssue forces all outstanding memory accesses to be completed before
any memory access instruction after the MEMBAR is issued. It must be used to
guarantee ordering of cacheable accesses following noncacheable accesses. For
example, I/O accesses must be followed by a MEMBAR #MemIssue before
subsequent cacheable stores; this ensures that the I/O accesses reach global visibility
(as viewed by other strands) before the cacheable stores after the MEMBAR.

Since loads are already self-synchronizing, Membar #MemIssue just needs to drain
the store buffer (and receive all the store ACKs) before allowing memory operations
to issue again. This is the same operation as OpenSPARC T2’s Membar #Sync.

D.2.4.7 MEMBAR #Sync (Issue Barrier)

Membar #Sync forces all outstanding instructions and all deferred errors to be
completed before any instructions after the MEMBAR are issued.

D.2.4.8 Self-Modifying Code (FLUSH)

The SPARC V9 instruction set architecture does not guarantee consistency between
code and data spaces. A problem arises when code space is dynamically modified by
a program writing to memory locations containing instructions. Dynamic

Notes STBAR has the same semantics as MEMBAR #StoreStore; it is
included for SPARC-V8 compatibility.

OpenSPARC T2 block stores and block-init stores are RMO. If a
program needs to maintain order between RMO stores to
different L2 cache lines, it should use a MEMBAR #Sync.

Note For SPARC V9 compatibility, this variation should be used
before issuing a load to an address space that cannot be
snooped,

Note MEMBAR #Sync is a costly instruction; unnecessary usage may
result in substantial performance degradation.
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optimizers, LISP programs, and dynamic linking require this behavior. SPARC V9
provides the FLUSH instruction to synchronize instruction and data memory after
code space has been modified.

In OpenSPARC T2, FLUSH behaves like a store instruction for the purpose of
memory ordering. In addition, all instruction fetch (or prefetch) buffers are
invalidated. The issue of the FLUSH instruction is delayed until previous (cacheable)
stores are completed. Instruction fetch (or prefetch) resumes at the instruction
immediately after the FLUSH.

D.2.5 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion. These
instructions behave like both a load and a store but the operations are carried out
indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in unprivileged mode (PSTATE.priv = 0)
causes a privileged_action trap. An atomic access with a noncacheable address
causes a DAE_nc_page trap. An atomic access with an unsupported ASI causes a
DAE_invalid_ASI trap. TABLE D-1 lists the ASIs that support atomic accesses.

TABLE D-1 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name

ASI_NUCLEUS{_LITTLE}

ASI_AS_IF_USER_PRIMARY{_LITTLE}

ASI_AS_IF_USER_SECONDARY{_LITTLE}

ASI_AS_IF_PRIV_PRIMARY{_LITTLE}

ASI_AS_IF_PRIV_SECONDARY{_LITTLE}

ASI_AS_IF_PRIV_NUCLEUS{_LITTLE}

ASI_PRIMARY{_LITTLE}

ASI_SECONDARY{_LITTLE}

ASI_REAL{_LITTLE}

Notes Atomic accesses with nonfaulting ASIs are not allowed, because
these ASIs have the load-only attribute.

For all atomics, allocation is done to the L2 cache only and will
invalidate the L1s.
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D.2.5.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent
loads interlock on earlier SWAPs.

D.2.5.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer
register and atomically writes all 1’s (FF16) into the addressed byte.

D.2.5.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic
instruction. It compares the value in an integer register to a value in memory; if they
are equal, the value in memory is swapped with the contents of a second integer
register. All of these operations are carried out atomically; in other words, no other
memory operation may be applied to the addressed memory location until the entire
compare-and-swap sequence is completed.

D.2.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, except that

■ It does not allow side-effect access. An access with the e bit set causes a
DAE_so_page trap.

■ It can be applied to a page with the nfo bit set; other types of accesses will cause
a DAE_NFO_page trap.

Nonfaulting loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a
DAE_invalid_ASI trap.

When a nonfaulting load encounters a TLB miss, the operating system should
attempt to translate the page. If the translation results in an error (for example,
address out of range), a 0 is returned and the load completes silently.

Typically, optimizers use nonfaulting loads to move loads before conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, to hide latency; it allows for
more flexibility in code scheduling. It also allows for improved performance in
certain algorithms by removing address checking from the critical code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a read-ahead fashion if the operating system can ensure that
the page at virtual address 016 is accessed with no penalty. The nfo (nonfault access
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only) bit in the MMU marks pages that are mapped for safe access by nonfaulting
loads but can still cause a trap by other, normal accesses. This allows programmers
to trap on wild pointer references (many programmers count on an exception being
generated when accessing address 016 to debug code) while benefitting from the
acceleration of nonfaulting access in debugged library routines.

D.3 L1 I-Cache
The L1 Instruction cache is 16 Kbytes, physically tagged and indexed, with 32-byte
lines, and 8-way associative with random replacement. The format used to index the
cache is shown in TABLE D-2.

D.3.1 LFSR Replacement Algorithm
Details TBD.

D.3.2 Direct-Mapped Mode
The I-cache direct-mapped mode (see Section 19.4.1, ASI_LSU_DIAG_REG, on page
398) works by forcing all replacements to the “way” identified by bits [13:11] of the
virtual address. Since lines already present are not affected but only new lines
brought into the cache are affected, it is safe to turn on (or off) the direct-mapped
mode at any time.

D.3.3 I-Cache Disable
Clearing the I-cache enable bit (see Section 19.1, ASI_LSU_CONTROL_REG, on page
393) stops all accesses to the I-cache for that strand. All fetches will miss, and the
returned data will not fill the I-cache. Invalidates will still be serviced while the
I-cache is disabled.

TABLE D-2 L1 Instruction Cache Addressing

Bit Field Description

39:11 tag Tag for cache line.

10:5 set Selects cache set containing the cache line.

4:2 instr Selects 32-bit instruction in cache line.

1:0 — Always 0 for access to 32-bit instructions.
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D.4 L1 D-Cache
The L1 Data cache is 8 Kbytes, writethrough, physically tagged and indexed, with
16-byte lines, and 4-way associative with true LRU replacement. The format used to
index the cache is shown in TABLE D-3.

D.4.1 LRU Replacement Algorithm
The D-cache replacement algorithm is true least-recently-used (LRU). Six bits are
maintained for each cache index.

D.4.2 Direct-Mapped Mode
In direct-mapped mode, the D-cache (see Section 19.4.1, ASI_LSU_DIAG_REG, on
page 398) works by changing the replacement algorithm from LRU to instead use
two bits of index (address[12:11]) to select the “way.” Since lines already present are
not affected but only new lines brought into the cache are affected, it is safe to turn
on (or off) the direct-mapped mode at any time.

Note that if the D-cache is in direct-mapped mode, and a parity error occurs, the
way replaced will be the way which experienced the parity error. This overrides the
index selected by the address in direct-mapped mode.

D.4.3 D-Cache Disable
The D-cache may be disabled by setting dc = 0 in the
ASI_LSU_CONTROL_REGISTER (see Section 19.1, ASI_LSU_CONTROL_REG, on
page 393). When disabled, accesses to the D-cache behave as follows. A load which
hits in the D-cache ignores the cached data, and fetches the data from L2. A load
which misses in the cache fetches the data from L2, but does not allocate the line in
the data cache. Stores that miss in the data cache never allocate in the data cache (as
normal). Stores that hit in the data cache are performed in the L2, then update the
data cache (as normal).

TABLE D-3 L1 Data Cache Addressing

Bit Field Description

39:11 tag Tag for cache line.

10:4 set Selects cache set containing the cache line.

3:0 data Selects data byte(s) in cache line.
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Even if the D-cache is disabled, L2 still keeps the D-cache coherent. Invalidations
caused by L2 replacements, stores from other cores, or DMA stores from I/O activity
which hit data in the D-cache cause those lines to be invalidated.

To get the D-cache fully disabled, the dc bit must be off on all strands in the virtual
processor, and the D-cache must be flushed in a way that doesn’t bring new lines
back in. This can be done by storing (from a different core) to each line that is in the
D-cache, or by displacement flushing the L2 cache so that inclusion will force all
D-cache lines to be invalidated.

D.5 L2 Cache
The L2 combined instruction/data cache is 4 Mbytes, writeback, physically tagged
and indexed, with 64B lines, 8-banked, and 16-way associative with pseudo-LRU
replacement. The format used to index the full cache is shown in TABLE D-4.

OpenSPARC T2 also supports 4-banked and 2-banked modes to assist in the
recovery of partially good die. TABLE D-5 and TABLE D-6 show the format used to
index the cache in these reduced modes.

TABLE D-4 L2 Cache Addressing (8 banks)

Bit Field Description

39:18 tag Tag for cache line.

17:9 set Selects cache set containing the cache line. Bit positions listed are used when
L2_IDX_HASH_EN.enb_hp = 0. If L2_IDX_HASH_EN.enb_hp = 1, the set selection is
done using PA{17:13} xor PA{32:28}, PA{19:18C xor PA{12:11}, PA{10:9}.

8:6 bank Selects bank containing the cache line.

5:0 data Selects data byte(s) in the cache line.

TABLE D-5 L2 Cache Addressing (4 banks)

Bit Field Description

38:17 tag Tag for cache line. Bit positions listed are used when L2_IDX_HASH_EN.enb_hp = 0. If
L2_IDX_HASH_EN.enb_hp = 1, the tag stored is PA{38:18}, PA{17} xor PA{32}.

16:8 set Selects cache set containing the cache line. Bit positions listed are used when enb_hp=0.
If L2_IDX_HASH_EN.enb_hp = 1, the set selection is done using PA{16:13}^PA{31:28},
PA{19:18} xor PA{12:11}, PA{10:8}.

7:6 bank Selects bank containing the cache line.

5:0 data Selects data byte(s) in the cache line.
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D.5.1 NRU Replacement Algorithm
A used-bit scheme is used to implement an NRU (Not Recently Used) replacement.
The used bit is set each time a cache line is accessed or when initially fetched from
memory. If setting the used-bit causes all used bits (at an index) to be set, the
remaining used bits are cleared instead.

In addition, each line has an allocate bit (a), which is set while a line is in a
multicycle operation. This can be a cache fill, in which case the a bit gets set when
the location is allocated, and the a bit gets cleared when the location is filled with
memory data. Alternatively, this could be a multipass operation, either an atomic
operation or a subword store (which requires read-modify-write); where the a bit is
set on the first pass and cleared on the second/final pass. Any line that has the a bit
set is ineligible for replacement.

Each L2 bank has a single rotating replacement pointer, which is the “starting point”
to find the “way” to replace. On a miss, the L2 looks for the first line at that index
with both u bit and a bit clear, starting with the “way” pointed at by the replacement
pointer. If all lines have u bit or a bit set, all u bits are cleared and the scan repeated.
The replacement pointer is then rotated forward one “way.”

Since the replacement pointer is used by all sets of the L2, replacement is somewhat
more random than if each set/index had its own replacement pointer. The
replacement pointer is incremented on any L2 miss that causes a cache fill (that is,
not DMA reads or full-line DMA writes). The replacement pointer is only reset (put
to a known state) by POR, warm reset, or debug reset.

Valid bits do not affect the NRU replacement. In normal use, the only case that
creates a line marked Invalid is when a WRI transaction (full-line DMA write) hits in
the L2. The WRI will invalidate the L1 and L2, but write directly to memory. This is
rare enough that it is not worthwhile to take Valid into account in the replacement
algorithm.

TABLE D-6 L2 Cache Addressing (2 banks)

Bit Field Description

37:16 tag Tag for cache line. Bit positions listed are used when L2_IDX_HASH_EN.enb_hp = 0. If
L2_IDX_HASH_EN.enb_hp = 1, the tag stored is PA{37:18}, PA{17:16} xor PA{32:31}.

15:7 set Selects cache set containing the cache line. Bit positions listed are used when
L2_IDX_HASH_EN.enb_hp = 0. If L2_IDX_HASH_EN.enb_hp = 1, the set selection is
done using PA{15:13} xor PA{30:28}, PA{19:18} xor PA{12:11}, PA{10:7}.

6 bank Selects bank containing the cache line.

5:0 data Selects data byte(s) in the cache line.
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D.5.2 Directory Coherence
The L2 cache has a directory of all L1 lines, both I-cache and D-cache, implemented
as duplicate tags. Thus, the L2 always knows exactly which lines are in which L1
caches, and in which “way” of each cache. When the L1 requests a line from the L2,
the virtual processor specifies whether the line will be allocated (put into the cache),
and which “way” it will go into.

The L2 to virtual processor (CPX) protocol allows the L2 to issue invalidates to any/
all of the cores simultaneously, but only a single invalidation to each core. For this
reason, for a given virtual processor, an L1 line is only allowed to be in either I-cache
or the D-cache, but not both. The invalidate transaction includes only index, way,
and L1-cache (I or D); it does not include the address.

Since the L2 tracks which lines are in which L1 ways, just invalidating an L1 line via
ASI_ICACHE_TAG or ASI_DCACHE_TAG is not safe and can lead to stale data
problems and data corruption. The problem occurs if a line is marked invalid, and a
subsequent access to the L1-cache refetches the line, but into a different “way.” At
this time, the L2 directory has the same line in two places in its directory. Later,
when the L2 wants to invalidate that address, it gets a double hit on its CAM access,
which the logic does not support. (If an L1 line needs to be invalidated, it can be
done by injecting an error into its tag, then accessing it. The hardware error handling
will invalidate the line, and inform the L2 directory.)

D.5.3 Direct-Mapped Mode
The L2-cache direct-mapped mode (see Section 19.14.1, L2 Control Register, on page
418) works by changing the replacement algorithm from NRU to instead use four
bits of index (address{21:18}) to select the “way.” Since lines already present are not
affected but only new lines brought into the cache are affected, it is safe to turn on
(or off) the direct-mapped mode at any time.

D.5.4 L2 Cache Disable
The L2 cache disable (see Section 19.14.1, L2 Control Register, on page 418) actually
disables an L2 bank. Thus, it is recommended that the L2 be flushed first so that
modified lines are written back to memory. While an L2 bank is disabled, the cache
effectively has only a single line, which is invalidated or written back at the end of
the access. Thus, a store will miss to memory, perform the write into the one-line
cache, then flush. Then, the next cache access can be started.

The L2 directory is not used while the L2 cache is disabled. Thus, all L1 caches must
be disabled and emptied before disabling any (or all) L2 banks.
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D.6 I/O Ordering Rules
OpenSPARC T2 supports the PCI ordering rules to a much higher degree than recent
SPARC processors. In particular, OpenSPARC T2 supports maintaining the order of
DMA completion notification relative to previous DMA writes, where DMA
completion notification can be achieved by (1) receiving an interrupt, (2) reading the
device’s control register (PIO read return), or (3) reading updated device status in
memory (DMA write).

OpenSPARC T2 does not support the following PCI ordering rules:

1. DMA reads may pass previous DMA writes, unless they are to the same address.
This rule is not needed for Producer/Consumer, and no need has ever been seen
for this.

2. DMA read returns may pass previous PIO writes. This means that if a processor
issues a PIO store, followed by a memory store, and wants to guarantee that the
I/O device sees the PIO store before seeing the updated memory data, the
processor must issue an intervening PIO load to the same device.

The complete rules are described in the following two tables.

Notes:

1. PIO requests are ordered relative to each other, as long as they are to the same
“device.”

2. DMA read completions follow a different path than PIO requests and are thus
unordered relative to PIO requests. So if a processor issues a PIO store followed
by a memory store, other processors see them in that order, but an I/O device
may see the memory store first.

TABLE D-7 Outbound (Memory-to-I/O) Transaction Ordering

Row pass Column? PIO Write PIO Read Request
DMA Read

Completion

PIO Write No No Yes

PIO Read Request No No Yes

DMA Read Compl Yes Yes Yes
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.

TABLE D-8 Inbound (I/O-to-Memory) Transaction Ordering

Row pass Column?
DMA Write

(Col. 2)

JBUS Mondo
Interrupt
(Col. 3)

DMA Read
Request
(Col. 4)

PIO Read
Completion
(Col. 5)

DMA Write (row A) No Yes Yes Yes

JBUS Mondo Intr (row B) No Yes Yes Yes

DMA Read Req (row C) Yes Yes Yes Yes

PIO Read Compl (row D) No Yes Yes No
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APPENDIX E

Glossary

This chapter defines concepts and terminology unique to the OpenSPARC T2
implementation. Definitions of terms common to all UltraSPARC Architecture
implementations may be found in the Definitions chapter of UltraSPARC Architecture
2007.

ALU Arithmetic Logical Unit

architectural state Software-visible registers and memory (including caches).

ARF Architectural register file.

ASI ring A daisy-chained bus connected in a loop fashion that goes through all of the
blocks that have structures with diagnostic path or control registers for ASI
access.

blocking ASI An ASI access that accesses its ASI register or array location once all older
instructions in that strand have retired, no instructions in the other strand can
issue, and the store queue, TSW, and LMB are all empty.

Additionally, the snoop pipeline is stalled before the ASI register/array
location is accessed.

branch outcome A reference as to whether or not a branch instruction will alter the flow of
execution from the sequential path. A taken branch outcome results in
execution proceeding with the instruction at the branch target; a not-taken
branch outcome results in execution proceeding with the instruction along the
sequential path after the branch.

branch resolution A branch is said to be resolved when the result (that is, the branch outcome
and branch target address) has been computed and is known for certain.
Branch resolution can take place late in the pipeline.

branch target address The address of the instruction to be executed if the branch is taken.

CAM Content addressable memory.

commit An instruction commits when it modifies architectural state.
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complex instruction A complex instruction is an instruction that requires the creation of secondary
“helper” instructions for normal operation, excluding trap conditions such as
spill/fill traps (which use helpers). Refer toInstruction Latency on page 456 for a
complete list of all complex instructions and their helper sequences.

consistency See coherence.

CPU Central Processing Unit. A synonym for virtual processor.

CSR Control Status register.

DFT Designed for test.

DTLB Data Cache Translation lookaside buffer.

ECC Error correction code.

EXU Execution Unit.

FP Floating point.

helper A helper instruction is generated by the IRU in response to a complex
instruction. Helper instructions are not visible to software. Refer to Instruction
Latency on page 456 [xref OK?] for a complete list of all complex instructions
and their helper sequences.

IFU Instruction Fetch Unit.

ITLB Instruction Cache Translation lookaside buffer.

L2C (or L2$) Level 2 cache.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

nonblocking ASI A nonblocking ASI access will access its ASI register/array location once all
older instructions in that strand have retired, and there are no instructions in
the other strand which can issue.

older instruction Refers to the relative fetch order of instructions. Instruction i is older than
instruction j if instruction i was fetched before instruction j. Data dependencies
flow from older instructions to younger instructions, and an instruction can
only be dependent upon older instructions.

one hot An n-bit binary signal is one hot if and only if n − 1 of the bits are each zero
and a single bit is a 1.

Page Table Entry
(PTE) Describes the virtual-to-physical translation and page attributes for a specific

page. A PTE generally means an entry in the page table or in the TLB, but it is
sometimes used as an entry in the TSB (translation storage buffer). In general,
a PTE contains fewer fields than does a TTE. See also TLB and TSB.

PIO Programmed I/O.
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PPN Physical Page Number

pr Processor reset.

PTE Page Table Entry.

quadlet

SFAR Synchronous Fault Address register.

SFSR Synchronous Fault Status register.

SIAM Set interval arithmetic mode instruction.

strand identifier
(SID) In a processor implementing 2n strands, the strand identifier is an n-bit value

used to uniquely identify each strand. The strand identifier in OpenSPARC T2
is six bits wide.

VPA Virtual page array.

VPN Virtual page number.

younger instruction See older instruction.

writeback The process of writing a dirty cache line back to memory before it is refilled.
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APPENDIX G

ECC Codes

G.1 ECC Summary
TABLE G-1 lists the arrays that are protected by ECC.

The L2 Writeback Buffer, L2 Fill Buffer, and L2 DMA Buffer contain data that is in
the processor being moved to or from the cache. The ECC generation and check
blocks were placed to include these buffers, but errors in these buffers are
indistinguishable from L2 cache errors.

TABLE G-1 Error Handling

Array ECC Size Instances Total

L2 Cache Data 32+7 SEC/DED 936 KB 4 3744 KB

L2 Writeback Buffer 32+7 SEC/DED 624 B 4 2496 B

L2 Fill Buffer 32+7 SEC/DED 624 B 4 2496 B

L2 DMA Input Buffer 32+7 SEC/DED 312 B 4 1248 B

L2 Cache Tag 22+6 SEC 42 KB 4 168 KB

FP Register File 32+7 SEC/DED 2560 B 8 20.8 KB

Integer Register File 64+8 SEC/DED 9 KB 8 72 KB

Trap Stack Array (TSA) 67+8 SEC/DED 320 B 16 5120 B

Tick Compare Array (TCA) 67+8 SEC/DED 288 B 8 2304 B

Scratchpad Array (SCA) 67+8 SEC/DED 288 B 16 4608 B

Store Buffer Data (SBD) 32+7 SEC/DED 640 B 8 5120 B
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G.2 IRF ECC Code

1 – Data bit is xored into calculation of that check bit.

0 – Data bit is not part of the check bit calculation.

The syndrome calculation is the inverse of the checkbit calculation, for synd{6:0}.
synd{7}, however, is simply the xor of data{63:0} and check{7:0}.

TABLE G-2 IRF Check Bit Generation

Data{31:0}

Check
{7:0}

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C2 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

C5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1

Data{63:32}

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

C0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

C2 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

C3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

C4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1
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ne — No error

C0–C7 — Single bit error on syndrome/check bit of that number.

0–63 — Single bit error on data bit of that number.

U — Uncorrectable double (or 2n) bit error.

M — Triple or worse (2n + 1) bit error.

TABLE G-3 Syndrome Table for IRF ECC Code

SYND
{7:4}
Value

SYND [3:0} Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ne U U U U U U U U U U U U U U U

1 U U U U U U U U U U U U U U U U

2 U U U U U U U U U U U U U U U U

3 U U U U U U U U U U U U U U U U

4 U U U U U U U U U U U U U U U U

5 U U U U U U U U U U U U U U U U

6 U U U U U U U U U U U U U U U U

7 U U U U U U U U U U U U U U U U

8 C
7

C
0

C
1

0 C
2

1 2 3 C
3

4 5 6 7 8 9 10

9 C
4

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A C
5

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

B 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

C C
6

57 58 59 60 61 62 63 M M M M M M M M

D M M M M M M M M M M M M M M M M

E M M M M M M M M M M M M M M M M

F M M M M M M M M M M M M M M M M
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G.3 FRF ECC CODE
The floating-point register files use the same 32+7 SEC/DED codes as the L2 Data,
except that the FRF is never intentionally marked with a poison indication, and
triple or worse (2n + 1) bit errors are reported as correctable errors (FRFC). Software
will need to examine the syndrome to determine if a FRFC is a triple or worse error.

G.4 TSA, TCA, and SCA ECC Code
Each of these arrays uses the same ECC code. The TCA and SCA wire the four most-
significant bits to 0 as they are only 64 data bits wide.

TABLE G-4 TSA, TCA, SCA 68/8 ECC Check Bit Generation

Data{31:0}

Check
{7:0}

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C2 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

C5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1
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Data{63:32}

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

C0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

C2 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

C3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

C4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1

Data[67:64}

Check
{7:0}

6
7

6
6

6
5

6
4

C0 0 0 1 0

C1 1 1 0 0

C2 0 0 0 0

C3 1 1 1 1

C4 0 0 0 0

C5 0 0 0 0

C6 1 1 1 1

C7 1 0 0 1

TABLE G-4 TSA, TCA, SCA 68/8 ECC Check Bit Generation

Data{31:0}

Check
{7:0}

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0
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ne — No error

C0–C6 — Single bit error on syndrome/check bit of that number.

0–67 — Single bit error on data bit of that number.

U — Uncorrectable double (or 2n) bit error.

M — Triple or worse (2n + 1) bit error

TABLE G-5 Syndrome Table for TSA, TCA, and SCA Data ECC Code

synd
{7:4}
Value

synd {3:0} Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ne U U U U U U U U U U U U U U U

1 U U U U U U U U U U U U U U U U

2 U U U U U U U U U U U U U U U U

3 U U U U U U U U U U U U U U U U

4 U U U U U U U U U U U U U U U U

5 U U U U U U U U U U U U U U U U

6 U U U U U U U U U U U U U U U U

7 U U U U U U U U U U U U U U U U

8 M C
0

C
1

0 C
2

1 2 3 C
3

4 5 6 7 8 9 10

9 C
4

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A C
5

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

B 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

C C
6

57 58 59 60 61 62 63 64 65 66 67 M M M M

D M M M M M M M M M M M M M M M M

E M M M M M M M M M M M M M M M M

F M M M M M M M M M M M M M M M M
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G.5 Store Buffer Data Array (SBD), L2 UA, L2
VD, and L2 Data ECC Code

1 – Data bit is xored into calculation of that check bit.

0 – Data bit is not part of the check bit calculation.

The syndrome calculation is the inverse of the checkbit calculation, for synd{5:0}.
synd{6}, however, is simply the xor of data{31:0} and check{6:0}.

TABLE G-6 L2 Data Check Bit Generation

data{31:0}

check
{6:0}

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C2 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

C5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1
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ne — No Error.

C0–C6 — Single bit error on syndrome/check bit of that number.

0–31 — Single bit error on data bit of that number.

N/M — NotData, or triple or worse (2n + 1) bit error.

U — Uncorrectable double (or 2n) bit error.

M — Triple or worse (2n + 1) bit error.

G.6 L2 Tag ECC Code
The syndrome is not captured on L2 Tag ECC errors (LTC), so we only document
checkbit calculation for L2 tag.

TABLE G-7 Syndrome Table for L2 Data ECC Code

synd
{6:4}
Value

synd {3:0} Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ne U U U U U U U U U U U U U U U

1 U U U U U U U U U U U U U U U U

2 U U U U U U U U U U U U U U U U

3 U U U U U U U U U U U U U U U U

4 C
6

C
0

C
1

0 C
2

1 2 3 C
3

4 5 6 7 8 9 10

5 C
4

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

6 C
5

26 27 28 29 30 31 M M M M M M M M M

7 M M M M M M M M M M M M M M M N/
M
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1 – Data bit is xored into calculation of that check bit.

0 – Data bit is not part of the check bit calculation.

G.7 Memory Extended ECC Support
OpenSPARC T2 supports Extended ECC error correction (QEC/OED) for main
memory, where we can correct any error contained within a single memory nibble (4
bits), and detect as uncorrectable any error that is contained within any two nibbles.
The ECC coding scheme uses 4-bit words (16 symbols), 128-bit data (16 words), and
a 16-bit syndrome (4 words), and uses Galois Field of (24) to implement Add/
Multiply Operation that is completely inclusive within its field (Definition of Galois
Field). It uses 3 × 4 bit correction code + 1 × 4 bit detection code (16 bits total) to
correct single-nibble errors and detect double-nibble errors. While the addition is a
trivial bitwise xor, the multiplication is not as straightforward and involves a
Modulo multiplication using its field Primitive Polynomial of value 10011. Also, the
syndrome or Parity generated is xored bitwise with the parity of the address
((xor_bit_vector(PA{39:9})) xor PA{6}) to that location.

G.7.1 Nomenclature and Nibble Order
The data nibbles and check/syndrome nibbles are numbered in a little-endian
fashion, so the order as seen by software is:

C3 C2 C1 C0 N31 N30 … N5 N4 N3 N2 N1 N0

so N0 is made up of data{3:0}, N1 is data{7:4}, etc.

TABLE G-8 L2 Tag Check Bit Generation

Tag{21:0}

Check
{5:0}

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1

C1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C2 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C4 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
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The data for the ECC code is referred to either as check nibbles or as syndrome
(nibbles), depending on where it is relative to the ECC generation calculation and to
the ECC check calculation. After the ECC generation calculation, it is called “check
nibbles,” and this is what is stored in physical DRAM. When memory is accessed,
the data nibbles and check nibbles are read out of DRAM and run through an ECC
check calculation, which produces the “syndrome nibbles,” synd{15:0}.

The check nibbles are not directly accessible by software.

G.7.1.1 External Hardware Bit Order

External to the chip, the data nibbles are numbered in a little-endian fashion, but the
check nibbles are numbered big-endian, so the order as seen by an external logic
analyzer is:

So N0 is made up of dq{3:0}, N1 is dq{7:4}, etc. However, the check nibbles are wired
in big-endian order by nibble, but little-endian within each check nibble, so c0{3:0} is
made up of cb{15:12}, c1{3:0} is cb{11:8}, c2{3:0} is cb{7:4}, and c3{3:0} is cb{3:0}.

G.7.2 Memory ECC Code Description
The calculation for the check nibbles is as follows:

Check Nibble0 (4 bits) ←
(N0 + 2 × N1 + 3 × N2 +  4 × N3 + 5 × N4 + 6 × N5 + 7 × N6 + 8 × N7 +
9 × N8 + A × N9 + B × N10 + C × N11 + D × N12 + E × N13 + F × N14 +
N15 + 2 × N16 + 3 × N17 + 4 × N18 + 5 × N19 + 6 × N20 + 7 × N21 + 8 × N22 +
9 × N23 + A × N24 + B × N25 + C × N26 + D × N27 + E × N28 + F × N29 + N31)
xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Check Nibble1 (4 bits) ←
(N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10 +
N11 + N12 + N13 + N14 + N30 + N31)
xor (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Check Nibble2 (4 bits) ←
(N15 + N16 + N17 + N18 + N19 + N20 + N21 + N22 + N23 + N24 +
N25 + N26 + N27 + N28 + N29 + N30 + N31)

TABLE 0-1

C0 C1 C2 C3 N3
1

N3
0

N2
9

N2
8

. . . . . . . . . N3 N2 N1 N0

← dramn_cb{15:0}
→

←————————— dramn_dq{127:0} —————————→
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xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Check Nibble3 (4 bits) ←
(N0 + 9 × N1+ E × N2 + D × N3 + B × N4 + 7 × N5 + 6 × *N6 + F × N7 + 2 × N8 +
C × N9 + 5 × N10+ A × N11 + 4 × N12 + 3 × N13 + 8 × N14 + N15 + 9 × N16 +
E × N17 + D × N18 + B × N19 + 7 × N20 + 6 × N21 + F × N22 + 2 × N23 + C × N24 +
5 × N25 + A × N26+ 4 × N27 + 3 × N28 + 8 × N29 + N30)
xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

The calculation for the syndrome nibbles is similar, but includes the corresponding
check nibble:

Syndrome Nibble0 (4 bits) ←
(C0 + N0 + 2 × N1 + 3 × N2 +  4 × N3 + 5 × N4 + 6 × N5 + 7 × N6 + 8 × N7 +
 9 × N8 + A × N9 + B × N10 + C × N11 + D × N12 + E × N13 + F × N14 +
N15 + 2 × N16 + 3 × N17 + 4 × N18 + 5 × N19 + 6 × N20 + 7 × N21 + 8 × N22 +
9 × N23 + A × N24 + B × N25 + C × N26 + D × N27 + E × N28 + F × N29 + N31)
xor (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Syndrome  Nibble1 (4 bits) ←
(C1 + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10 +
N11 + N12 + N13 + N14 + N30 + N31)
xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Syndrome  Nibble2 (4 bits) ←
(C2 + N15 + N16 + N17 + N18 + N19 + N20 + N21 + N22 + N23 + N24 +
N25 + N26 + N27 + N28 + N29 + N30 + N31)
xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Syndrome  Nibble3 (4 bits) ←
(C3 + N0 + 9 × N1+ E × N2 + D × N3 + B × N4 + 7 × N5 + 6 × N6 + F × N7 + 2 ×
N8 + C × N9 + 5 × N10+ A × N11 + 4 × N12 + 3 × N13 + 8 × N14 + N15 + 9 × N16 +
E × N17 + D × N18 + B × N19 + 7 × N20 + 6 × N21 + F × N22 + 2 × N23 + C × N24 +
5 × N25 + A × N26+ 4 × N27 + 3 × N28 + 8 × N29 + N30)
xor  (addr_parity ::  addr_parity ::  addr_parity ::  addr_parity)

Error correction is accomplished by following equations. If S0, S1, S2, and S3 are the
4 Syndrome nibbles,

Position 0 − 14 (nibble position) ( “/” indicates Galois field division, the inverse of Galois field multiplication
operation in TABLE G-9 on page 523)

if (S2 = 0 and (S1 ≠ 0) and (S0 ≠ 0))
then

nibble_to_correct ← ((S0 / S1) – 1);
corrected_data ← S1 + erred_nibble;

endif
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Position 15 − 29 (nibble position)
if (S1 = 0 and S0 ≠ 0 and S2 ≠ 0), then  {

nibble_to_correct ← ((S0 / S2) + 14);
corrected_data ← S2 + erred_nibble;

endif

Position 30 (nibble position)
if (S0 = 0 and S1 ≠ 0 and S2 ≠ 0 and S1 = S2)
then

nibble_to_correct ← N30
 corrected_data ← S1+ erred_nibble;

endif

Position 31 (nibble position)
If (S0 ≠ 0 and S1 ≠ 0 and S2 ≠ 0 and S0 = S1 = S2)
then

nibble_to_correct ← N31;
corrected_data ← S1+ erred_nibble;

endif

G.7.3 Memory Address Parity Protection
Note that address parity is added (xored) into all of the check bits. Any normal
address parity error will be detected as a multiple-nibble uncorrectable error, since
all four syndrome nibbles will be all 1’s (FFFF16) when the data is read back.

Address parity is defined as the xor of all the address bits that specify the bank-
specific line address, which is (xor_bit_vector(PA{39:9}) xor PA{6}) for a four-MCU
memory system, (xor_bit_vector(PA{39:8}) xor PA{6}) for a two-MCU memory
system, or (xorPA{39:6}) for a one-MCU memory system.

Notes Nibble S3 is not used in correction but only for multiple error
detection. Double errors are detected if (1) exactly two of the
check-nibbles are non-zero, or (2) all four of the check-nibbles
are non-zero, or (3) the nibble position as indicated by S0/S1 or
S0/S2 does not match the nibble position as indicated by S3/S1
or S3/S2, or (4) S1 and S2 are non-zero and the non-zero check-
nibbles are not all equal.

This memory ECC scheme assumes that memory is
implemented with x4 DRAMs. If x8 parts are used, this is
effectively a SEC/DED scheme, with some multibit correction,
but no Extended ECC survival capability.
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G.7.4 Galois Field Multiplication Table

G.7.5 DRAM Syndrome Interpretation
When examining an OpenSPARC T2 DRAM syndrome, first look at TABLE G-10, to
find that pattern of zeros and non-zero nibbles in the 16-bit syndrome. If the pattern
of the syndrome nibbles is “a0bc” or “ab0c” (only the second or third nibble is zero),
two more tables need to be checked to see which nibble is in error (TABLE G-11 or
TABLE G-13), and (2) whether there is a multi-nibble error (TABLE G-12 or TABLE G-14).

The other syndrome nibble patterns are fully described in TABLE G-10.

TABLE G-9 Galois Field Multiplication Table, Polynomial 10011

Multiplier

Multiplicand

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D

3 0 3 6 5 c F A 9 B 8 D E 7 4 1 2

4 0 4 8 c 3 7 B F 6 2 E A 5 1 D 9

5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6

6 0 6 C A B D 7 1 5 3 9 F E 8 2 4

7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B

8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1

9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E

A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C

B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3

C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8

D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7

E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5

F 0 F D 2 9 6 4 B 1 E C 3 8 7 5 A
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a, b, c — Non-zero values for syndrome nibbles, potentially different values, or may
be same.

d — Non-zero identical values in these three syndrome nibbles.

e — Non-zero value in a single syndrome nibble.

0 — Syndrome value is zero as part of this pattern.

TABLE G-10 Memory Syndrome Summary

S3 S2 S1 S0 Description

0 0 0 0 No error

a 0 b c Possible correctable error in N0-N14. See TABLE G-11 and TABLE G-12.

a b 0 c Possible correctable error in N15-N29. See TABLE G-13 on page 527 and TABLE G-14
on page 528.

0 d d 0 Correctable error in N30. Bits to correct are the value “d” in data nibble N30.

0 d d d Correctable error in N31. Bits to correct are the value “d” in data nibble N31.

0 0 0 e Error in check nibble C0. Bits to correct are the value “e” in check nibble C0.

0 0 e 0 Error in check nibble C1. Bits to correct are the value “e” in check nibble C1.

0 e 0 0 Error in check nibble C2. Bits to correct are the value “e” in check nibble C2.

e 0 0 0 Error in check nibble C3. Bits to correct are the value “e” in check nibble C3.

816 216 216 116 Poison Indication, or possibly uncorrectable multiple nibble error

F16 F16 F16 F16 Address Parity Error, or possibly uncorrectable multiple nibble error

Other Uncorrectable multiple nibble error
524 UltraSPARC T2 Supplement • Draft D1.4.3, 19 Sep 2007



* This table doesn’t apply. Look up on Table G-10 on page 524.

Ndd / h16 — Top identifies which nibble is in error (in decimal format, dd). Bottom
identifies error bits within nibble (in hexadecimal format, h).

TABLE G-11 Memory Syndrome, Case a0bc, Contents = Nibble in error, Bits in nibble to correct

synd{7:4}

synd{3:0}

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * N0
116

N1
116

N2
116

N3
116

N4
116

N5
116

N6
116

N7
116

N8
116

N9
116

N10
116

N11
116

N12
116

N13
116

N14
116

2 * N8
216

N0
216

N7
216

N1
216

N10
216

N2
216

N9
216

N3
216

N12
216

N4
216

N11
216

N5
216

N14
216

N6
216

N13
216

3 * N13
316

N14
316

N0
316

N12
316

N2
316

N1
316

N11
316

N8
316

N6
316

N5
316

N7
316

N3
316

N9
316

N10
316

N4
316

4 * N12
416

N8
416

N3
416

N0
416

N11
416

N7
416

N4
416

N1
416

N14
416

N10
416

N5
416

N2
416

N13
416

N9
416

N6
416

5 * N10
516

N4
516

N13
516

N9
516

N0
516

N14
516

N3
516

N6
516

N11
516

N1
516

N8
516

N12
516

N5
516

N7
516

N2
516

6 * N6
616

N13
616

N8
616

N14
616

N7
616

N0
616

N5
616

N12
616

N9
616

N2
616

N3
616

N1
616

N4
616

N11
616

N10
616

7 * N5
716

N11
716

N9
716

N10
716

N12
716

N6
716

N0
716

N4
716

N2
716

N8
716

N14
716

N13
716

N7
716

N1
716

N3
716

8 * N14
816

N12
816

N1
816

N8
816

N5
816

N3
816

N10
816

N0
816

N13
816

N11
816

N2
816

N7
816

N6
816

N4
816

N9
816

9 * N1
916

N3
916

N5
916

N7
916

N9
916

N11
916

N13
916

N2
916

N0
916

N6
916

N4
916

N10
916

N8
916

N14
916

N12
916

A * N11
A16

N10
A16

N6
A16

N4
A16

N8
A16

N13
A16

N1
A16

N9
A16

N5
A16

N0
A16

N12
A16

N14
A16

N2
A16

N3
A16

N7
A16

B * N4
B16

N9
B16

N14
B16

N6
B16

N1
B16

N12
B16

N7
B16

N13
B16

N10
B16

N3
B16

N0
B16

N8
B16

N11
B16

N2
B16

N5
B16

C * N9
C16

N6
C16

N12
C16

N13
C16

N3
C16

N8
C16

N2
C16

N14
C16

N4
C16

N7
C16

N1
C16

N0
C16

N10
C16

N5
C16

N11
C16

D * N3
D16

N7
D16

N11
D16

N2
D16

N6
D16

N10
D16

N14
D16

N5
D16

N1
D16

N13
D16

N9
D16

N4
D16

N0
D16

N12
D16

N8
D16

E * N2
E16

N5
E16

N4
E16

N11
E16

N14
E16

N9
E16

N8
E16

N10
E16

N7
E16

N12
E16

N13
E16

N6
E16

N3
E16

N0
E16

N1
E16

F * N7
F16

N2
F16

N10
F16

N5
F16

N13
F16

N4
F16

N12
F16

N11
F16

N3
F16

N14
F16

N6
F16

N9
F16

N1
F16

N8
F16

N0
F16
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* This table doesn’t apply. Look up on Table G-10 on page 524.

h16 — Specifies the value synd{15:12} must have in hexadecimal; otherwise, this is a
multi-nibble error.

TABLE G-12 Memory Syndrome, Case a0bc, Contents = synd{15:12} value

synd{7:4}

synd{3:0}

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * 116 916 E16 D16 B16 716 616 F16 216 C16 516 A16 416 316 816

2 * 416 216 D16 116 A16 F16 B16 916 816 516 716 E16 316 C16 616

3 * 516 B16 316 C16 116 816 D16 616 A16 916 216 416 716 F16 E16

4 * 316 816 116 416 E16 916 A16 216 616 716 F16 D16 C16 516 B16

5 * 216 116 F16 916 516 E16 C16 D16 416 B16 A16 716 816 616 316

6 * 716 A16 C16 516 416 616 116 B16 E16 216 816 316 F16 916 D16

7 * 616 316 216 816 F16 116 716 416 C16 E16 D16 916 B16 A16 516

8 * C16 616 416 316 D16 216 E16 816 B16 F16 916 116 516 716 A16

9 * D16 F16 A16 E16 616 516 816 716 916 316 C16 B16 116 416 216

A * 816 416 916 216 716 D16 516 116 316 A16 E16 F16 616 B16 C16

B * 916 D16 716 F16 C16 A16 316 E16 116 616 B16 516 216 816 416

C * F16 E16 516 716 316 B16 416 A16 D16 816 616 C16 916 216 116

D * E16 716 B16 A16 816 C16 216 516 F16 416 316 616 D16 116 916

E * B16 C16 816 616 916 416 F16 316 516 D16 116 216 A16 E16 716

F * A16 516 616 B16 216 316 916 C16 716 116 416 816 E16 D16 F16
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* This table doesn’t apply. Look up on Table G-10 on page 524.

TABLE G-13 Memory Syndrome, Case ab0c, Contents = Nibble in error, Bits in nibble to
correct

synd{11:8}

synd{3:0}

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * N15
116

N16
116

N17
116

N18
116

N19
116

N20
116

N21
116

N22
116

N23
116

N24
116

N25
116

N26
116

N27
116

N28
116

N29
116

2 * N23
216

N15
216

N22
216

N16
216

N25
216

N17
216

N24
216

N18
216

N27
216

N19
216

N26
216

N20
216

N29
216

N21
216

N28
216

3 * N28
316

N29
316

N15
316

N27
316

N17
316

N16
316

N26
316

N23
316

N21
316

N20
316

N22
316

N18
316

N24
316

N25
316

N19
316

4 * N27
416

N23
416

N18
416

N15
416

N26
416

N22
416

N19
416

N16
416

N29
416

N25
416

N20
416

N17
416

N28
416

N24
416

N21
416

5 * N25
516

N19
516

N28
516

N24
516

N15
516

N29
516

N18
516

N21
516

N26
516

N16
516

N23
516

N27
516

N20
516

N22
516

N17
516

6 * N21
616

N28
616

N23
616

N29
616

N22
616

N15
616

N20
616

N27
616

N24
616

N17
616

N18
616

N16
616

N19
616

N26
616

N25
616

7 * N20
716

N26
716

N24
716

N25
716

N27
716

N21
716

N15
716

N19
716

N17
716

N23
716

N29
716

N28
716

N22
716

N16
716

N18
716

8 * N29
816

N27
816

N16
816

N23
816

N20
816

N18
816

N25
816

N15
816

N28
816

N26
816

N17
816

N22
816

N21
816

N19
816

N24
816

9 * N16
916

N18
916

N20
916

N22
916

N24
916

N26
916

N28
916

N17
916

N15
916

N21
916

N19
916

N25
916

N23
916

N29
916

N27
916

A * N26
A16

N25
A16

N21
A16

N19
A16

N23
A16

N28
A16

N16
A16

N24
A16

N20
A16

N15
A16

N27
A16

N29
A16

N17
A16

N18
A16

N22
A16

B * N19
B16

N24
B16

N29
B16

N21
B16

N16
B16

N27
B16

N22
B16

N28
B16

N25
B16

N18
B16

N15
B16

N23
B16

N26
B16

N17
B16

N20
B16

C * N24
C16

N21
C16

N27
C16

N28
C16

N18
C16

N23
C16

N17
C16

N29
C16

N19
C16

N22
C16

N16
C16

N15
C16

N25
C16

N20
C16

N26
C16

D * N18
D16

N22
D16

N26
D16

N17
D16

N21
D16

N25
D16

N29
D16

N20
D16

N16
D16

N28
D16

N24
D16

N19
D16

N15
D16

N27
D16

N23
D16

E * N17
E16

N20
E16

N19
E16

N26
E16

N29
E16

N24
E16

N23
E16

N25
E16

N22
E16

N27
E16

N28
E16

N21
E16

N18
E16

N15
E16

N16
E16

F * N22
F16

N17
F16

N25
F16

N20
F16

N28
F16

N19
F16

N27
F16

N26
F16

N18
F16

N29
F16

N21
F16

N24
F16

N16
F16

N23
F16

N15
F16
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Ndd / h16 — Top identifies which nibble is in error (in decimal format, dd). Bottom
identifies error bits within nibble (in hexadecimal format, h).

* This table doesn’t apply. Look up on Table G-10 on page 524.

h16 — Specifies the value synd{15:12} must have in hexadecimal; otherwise, this is a
multi-nibble error.

G.8 Data Poisoning
Data poisoning is the practice of marking known corrupt data with bad ECC so that
any later access will get an ECC error. This is normally done when data is
transferred from one cache or memory to another, to keep track that the data is

TABLE G-14 Memory Syndrome, Case ab0c, Contents = synd{15:12} value

synd{11:8}

synd{3:0}

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * 116 916 E16 D16 B16 716 616 F16 216 C16 516 A16 416 316 816

2 * 416 216 D16 116 A16 F16 B16 916 816 516 716 E16 316 C16 616

3 * 516 B16 316 C16 116 816 D16 616 A16 916 216 416 716 F16 E16

4 * 316 816 116 416 E16 916 A16 216 616 716 F16 D16 C16 516 B16

5 * 216 116 F16 916 516 E16 C16 D16 416 B16 A16 716 816 616 316

6 * 716 A16 C16 516 416 616 116 B16 E16 216 816 316 F16 916 D16

7 * 616 316 216 816 F16 116 716 416 C16 E16 D16 916 B16 A16 516

8 * C16 616 416 316 D16 216 E16 816 B16 F16 916 116 516 716 A16

9 * D16 F16 A16 E16 616 516 816 716 916 316 C16 B16 116 416 216

A * 816 416 916 216 716 D16 516 116 316 A16 E16 F16 616 B16 C16

B * 916 D16 716 F16 C16 A16 316 E16 116 616 B16 516 216 816 416

C * F16 E16 516 716 316 B16 416 A16 D16 816 616 C16 916 216 116

D * E16 716 B16 A16 816 C16 216 516 F16 416 316 616 D16 116 916

E * B16 C16 816 616 916 416 F16 316 516 D16 116 216 A16 E16 716

F * A16 516 616 B16 216 316 916 C16 716 116 416 816 E16 D16 F16
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corrupted. If data is not marked with bad ECC, this will lead to silent data
corruption when an unsuspecting virtual processor or DMA accesses the old stale
copy of the data that still has “good” ECC.

G.8.1 ECC Conversion of UEs as Poison Source
Another source of poison is uncorrectable ECC errors that occur when data is being
transferred to a structure that has a different ECC (or parity) encoding. Thus,
whenever data is transferred between memory, L2, and the L1 caches, and the source
data has an uncorrectable error, the destination will be marked as poison, since the
ECC code cannot be transferred intact.

G.8.2 Poisoning L1
The L1 caches (I and D) have only parity protection, so poisoning is implemented by
marking the corrupt data (not tag) with a parity error (which is indistinguishable
from other parity errors, except that there is also an L2 error with the same address).
Since data is always transferred into the L1 in 16-byte chunks, poison in the L1 will
always be in aligned 16-byte chunks.

Even though the L1 caches never have dirty data, it is still necessary to receive the
corrupt data and install it into the cache, in order to maintain consistency between
the L1 tags and the L2 directory.

If the L1 just dropped the corrupt data without installing into the cache, there are
scenarios where the L1 tags and L2 directory get out of sync and lose coherency, thus
causing silent data corruption (because an invalidate didn’t work).

G.8.3 Poisoning L2
L2 poisoning is implemented by flipping "all" of the 7 checkbits foreach 32bit data
word that is corrupt, which means a syndrome of 7F16 is most likely a poison
indication.

L2 ECC (and thus poison) has a 4-byte granularity, so every 4-byte word of
uncorrectable data that is written into the cache will have a poison indication.
However, all transfers out of the cache are done in 16-byte chunks, so DMA reads,
L1 misses, and writebacks to memory will all increase poison/error indications to
16-byte granularity to the recipient, but the L2 is unmodified if it keeps the data.
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G.8.3.1 Partial Write Details

Subword writes are read-modify-write, with any ECC correction after the read. If the
word read has an uncorrectable error, however, the write is aborted, which leaves
the original uncorrectable error intact. Thus, subline writes will not convert
uncorrectable errors into poison.

G.8.4 Poisoning Memory
Memory poisoning is implemented by flipping four specific checkbits, specifically
C{15, 9, 5, 0} which means that a syndrome of 822116 is most likely a poison
indication. This syndrome was chosen because no single nibble error can convert a
poison syndrome into a correctable error. A side effect of this is that a minimum of a
triple nibble error is needed to “accidentally” generate a failing syndrome of 822116,
so the possibility that a syndrome of 822116 was generated by anything but poison is
infinitesimal.

Memory ECC (and thus poison) has a 16-byte granularity, so every 16-byte chunk of
uncorrectable data that is written to memory will have a poison indication.

G.8.5 Erasing Poison
Poison can be erased by overwriting it with good data, in such a way that no
subword L2 writes occur and no writebacks occur to main memory while the poison
is partially erased.

Alternatively, ASI_BLK_INIT_ST stores can be used to force poison to be
overwritten by causing the entire line to be zeroed out if the line was faulted back to
memory.
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APPENDIX H

JTAG (IEEE 1149.1) Scan Interface

H.1 System JTAG Commands
OpenSPARC T2 supports the following JTAG commands. Note that many of the
capabilities that are available through JTAG cannot be used in a running system (for
example, accessing normal scan registers).

TABLE H-1 Available System JTAG Commands (1 of 4)

Command Encoding Description

TAP_EXTEST 0016 Selects BOUNDARY_SCAN_REGISTER.

TAP_IDCODE 0116 Selects IDCODE DR.

TAP_SAMPLE_PRELOAD 0216 Selects BOUNDARY_SCAN_REGISTER.

TAP_HIGHZ 0316 Used for MIO I/O cells.

TAP_CLAMP 0416 Used for MIO I/O cells.

TAP_EXTEST_PULSE 0516 IEEE 1149.6 compliant.

TAP_EXTEST_TRAIN 0616 IEEE 1149.6 compliant.

TAP_CREG_ADDR 0816 Stores address to be used for system access to control register.

TAP_CREG_WDATA 0916 Stores data to be used for system access to control register.

TAP_CREG_RDATA 0A16 Captures data from system access.

TAP_NCU_WRITE 0C16 Initiates write to system control register.

TAP_NCU_READ 0D16 Initiates read from system control register.

TAP_NCU_WADDR 0E16 Combination of TAP_CREG_ADDR and TAP_NCU_WRITE.

TAP_NCU_WDATA 0F16 Combination of TAP_CREG_WDATA and TAP_NCU_WRITE.

TAP_NCU_RADDR 1016 Combination of TAP_CREG_ADDR and TAP_NCU_READ.

TAP_MBIST_CLKSTPEN 1316 Enables clock stop for MBIST via cycle counter.
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TAP_MBIST_BYPASS 1416 Selects engines to be excluded from MBIST operation via
mbist_bypass data register.

TAP_MBIST_MODE 1516 Specify serial/parallel, diagnostic mode, or bist/bisi modes via
mbist_mode data register.

TAP_MBIST_START 1616 Initiate MBIST.

TAP_MBIST_RESULT 1816 Query 2-bit done/fail register: and/or of all 48 JTAG visible MBIST
engines.

TAP_MBIST_DIAG 1916 Run MBIST on one array; MBIST engine and arrays are data register.

TAP_MBIST_GETDONE 1A16 Query 48-bit done data register, one bit per JTAG visible MBIST
engine.

TAP_MBIST_GETFAIL 1B16 Query 48-bit fail data register, one bit per JTAG visible MBIST
engine.

TAP_DMO_ACCESS 1C16 Set DMO mode; enables DMO logic and package pins.

TAP_DMO_CLEAR 1D16 Clears DMO mode.

TAP_DMO_CONFIG 1E16 Access 32-bit DMO configuration register.

TAP_MBIST_ABORT 1F16 Stop any MBIST activity and reset MBIST controls.

TAP_FUSE_READ 2816 Shift out 32 bits selected by ROW_ADDR; selects eFuse DR.

TAP_FUSE_BYPASS_DATA 2916 Provides user data directly to EFU; selects eFuse DR.

TAP_FUSE_BYPASS 2A16 Starts EFU control using bypass data provided by user.

TAP_FUSE_ROW_ADDR 2B16 Shift in 7-bit row address for EFU access; selects eFuse ROW
ADDRESS DR.

TAP_FUSE_COL_ADDR 2C16 Shift in 5-bit column address for EFU programming; selects eFuse
COLUMN ADDRESS DR.

TAP_FUSE_READ_MODE 2D16 Configures EFU with 3 bits for EFU access; selects eFuse READ
MODE DR.

TAP_FUSE_DEST_SAMPLE 2E16 Samples EFU destination redundancy value from the destination
specified.

TAP_FUSE_RVCLR 2F16 Access 6-bit redundancy value clear register.

TAP_SPCTHR0_SHSCAN 3016 Samples thread 0 for all available strands.

TAP_SPCTHR1_SHSCAN 3116 Samples thread 1 for all available strands.

TAP_SPCTHR2_SHSCAN 3216 Samples thread 2 for all available strands.

TAP_SPCTHR3_SHSCAN 3316 Samples thread 3 for all available strands

TAP_SPCTHR4_SHSCAN 3416 Samples thread 4 for all available strands.

TAP_SPCTHR5_SHSCAN 3516 Samples thread 5 for all available strands.

TABLE H-1 Available System JTAG Commands (2 of 4)

Command Encoding Description
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TAP_SPCTHR6_SHSCAN 3616 Samples thread 6 for all available strands.

TAP_SPCTHR7_SHSCAN 3716 Samples thread 7 for all available strands.

TAP_L2T_SHSCAN 3816 Samples specified error registers in the 8 L2 Tags.

TAP_CLOCK_SSTOP 4016 Soft stop of clocks; strands only.

TAP_CLOCK_HSTOP 4116 Hard stop of clocks.

TAP_CLOCK_START 4216 Start clocks.

TAP_CLOCK_DOMAIN 4316 Specify entry clock domain for stopping/starting clocks.

TAP_CLOCK_STATUS 4416 2-bit status indicating if clock stop/start routine finished.

TAP_CLOCK_DELAY 4516 7-bits specifying up to 128 cycle delay between successive clk_stop
signals.

TAP_CORE_SEL 4616 8-bit register to specify target SPC cores for clock operations.

TAP_DE_COUNT 4816 Access 32-bit debug event counter.

TAP_CYCLE_COUNT 4916 Access 64-bit reset/cycle counter.

TAP_TCU_DCR 4A16 Access 3-bit TCU Debug Control register.

TAP_CORE_RUN_STATUS 4C16 Access 64-bit CMP Strand Running Status register.

TAP_DOSS_ENABLE 4D16 Access 64-bit disable overlap or single step completion.

TAP_DOSS_MODE 4E16 Specify either disable overlap or single step mode; 1 = Enable,
0 = Single step if set to 1, disable overlap if set to 0.

TAP_SS_REQUEST 4F16 Pulse single-step request signal.

TAP_DOSS_STATUS 5016 1-bit status for disable overlap or single-step completion.

TAP_CS_MODE 5116 Specify cycle-step mode. 1-bit register set to 1 to enable, uses cycle
counter for cycle-step operation.

TAP_CS_STATUS 5216 Read 1-bit status indicating cycle stepping has completed.

TAP_L2_ADDR 5816 Load L2 address (to be written to or read from).

TAP_L2_WRDATA 5916 Load L2 write data.

TAP_L2_WR 5A16 Initiate write to L2; wrdata to addr.

TAP_L2_RD 5B16 Initiate read from L2 at addr and receive L2 data.

TAP_LBIST_START 6016 Initiate Logic BIST.

TAP_LBIST_BYPASS 6116 Bypass Logic BIST for specified strands; 1-bit per strand.

TAP_LBIST_MODE 6216 Control program mode: parallel/serial modes.

TAP_LBIST_ACCESS 6316 Place one Logic BIST controller between TDI-TDO.

TABLE H-1 Available System JTAG Commands (3 of 4)

Command Encoding Description
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The detailed description of these commands and the exact protocol of how to
communicate to the JTAG interface (TAP) plus all the other JTAG commands are
documented in the OpenSPARC T2 TCU Microarchitecture Specification.

H.2 JTAG CREG Interface
The CREG interface in the TAP allows access to much of the internal state of
OpenSPARC T2 with minimal invasiveness. At a high level, the JTAG CREG
interface, represented in TAP_CREG or TAP_NCU type JTAG instructions, allows
read and write access to any I/O-addressable location in OpenSPARC T2 except 8516
TCU registers. This includes 8016 NCU; 8316 CCU; 8416 MCU; 8616 DBG; 8816 DMU;
8916 RST; 9016 ASI; A016–BF16 L2; and FF16 SSI. All 8516 TCU registers can be
accessed from NCU via UCB. Note that SPC shscan and L2 accesses are done with
different JTAG instructions.

TAP_LBIST_GETDONE 6416 Determine if Logic BIST is done across all selected strands.

TAP_LBIST_ABORT 6516 Abort any Logic BIST currently in progress.

TAP_SERSCAN 8016 Access all or 31 internal scan chains (excluding SerDes scan chain);
selects internal scan flops as data register.

TAP_CHAINSEL 8116 Select all or one of the 32 chains for serial scan mode using CHAIN
SELECT DR.

TAP_MT_ACCESS 8216 Enables Macro Test mode for JTAG scan.

TAP_MT_CLEAR 8316 Clears Macro Test mode.

TAP_MT_SCAN 8416 Similar to TAP_SERSCAN but drive TCK onto clock tree for pulse
capture during RTI state.

TAP_STCI_ACCESS 9016 Enables STCI mode.

TAP_STCI_CLEAR 9116 Clears STCI mode.

TAP_JTPOR_ACCESS A016 Enables JTAG access window during POR sequence.

TAP_JTPOR_CLEAR A116 Clears JTAG access window during POR sequence.

TAP_JTPOR_STATUS A116 JTAG access window status. 12 if window is active.

TAP_SCKBYP_ACCESS A316 Enables bypass for SSI lock time counter in NCU for tester.

TAP_SCKBYP_CLEAR A416 Clears bypass for SSI lock time counter in NCU for system.

TAP_BYPASS FF16 Selects Bypass register.

TABLE H-1 Available System JTAG Commands (4 of 4)

Command Encoding Description
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H.2.1 I/O Mapped Register Accesses
The CREG interface can be used to read or write any I/O-addressable location in
OpenSPARC T2’s address space. All accesses are 8-byte accesses.

The Unit Control Bus interface is a protocol for transmission of packets via the NCU
between units. It is implemented inside the TCU and allows access via JTAG to I/O-
mapped registers. A register’s address and data in the case of writes are loaded via
JTAG into holding registers in the TCU. The TCU then uses its UCB interface to
communicate to the NCU, which puts the new transaction (packet) into the data
flow. The interface allows both reading and writing. On OpenSPARC T2, UCB access
through the crossbar to the l2 and strands is not available, so access to the L2 is done
via a separate interface between the TCU and the SIU.

For a write, a 40-bit address and 64 bits of data must be provided by JTAG to the
UCB. For a read, a 40-bit address is needed, with the data received from the NCU
captured into a register in the TCU. To implement a read, a sentinel bit is used since
the exact timing of the read return is not deterministic. The system is only allowed to
have one read outstanding at one time. There is no protection built in against this;
adherence is left to the user.

H.2.1.1 JTAG Instructions Used to Access the UCB

The following descriptions are excerpts from the OpenSPARC T1 DFT specification
and the OpenSPARC T1 DFT User’s Guide but have been ported to OpenSPARC T2.

TAP_CREG_ADDR

Load System Address: Causes a 40-bit address register to become accessible from
TDI. The target system address is loaded during shift-DR. On update-DR a transfer
occurs from the TCK domain to a 40-bit holding register in the IO CLK domain.In
shift-DR, LSB of CSR addr is shifted in first and MSB is shifted in last.

TAP_CREG_WDATA

Load System Write Data: Causes a 64-bit data register to become accessible from
TDI, into which the data for the specified system address is loaded during shift-DR.
On update-DR a transfer occurs from the TCK domain to a 64-bit holding register in
the I/O CLK domain. In shift-DR, LSB of write data is shifted in first and MSB is
shifted in last.

TAP_CREG_RDATA

Load System Read Data: Causes a 65-bit data register to become accessible from
TDO. The 65th bit is used as a sentinel to allow driver software to synchronize with
the read operation. While the read is outstanding, the sentinel bit remains zero. Once
the NCU has returned valid data, then the read is complete and the sentinel bit is set
to 1. To use this, the JTAG is kept in shift-DR and TCK is clocked until the TDO
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reads a 1; this indicates the sentinel bit has been set. When the sentinel bit becomes
1, the next 64 bits shifted out are the valid read data.In shift-DR, LSB of CSR data
(that is, CSR content) is shifted out first and MSB is shifted out last.

The TCU can only issue a single access at a given time to the NCU. The user is
responsible for ensuring that this is the case. Note too that the TCU does not report
erroneous reads made to the NCU. Therefore, the driver software should time out on
a read, assuming an error if this occurs.

TAP_NCU_WRITE

Initiate Write Transaction: Causes a write transaction to be initiated on update-IR.

TAP_NCU_READ

Initiate Read Transaction: Causes a read transaction to be initiated on update-IR.

TAP_NCU_WADDR

Load System Address and Initiate Write Transaction: Causes a 40-bit address register
to become accessible from TDI. The target system address is loaded during shift-DR.
On update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete, the contents of the
address register are forwarded to the UCB interface and a write transaction is
initiated. This instruction is a combination of TAP_CREG_ADDR and
TAP_NCU_WRITE.

TAP_NCU_WDATA

Load Write Data and Initiate Write Transaction: Causes a 64-bit data register to
become accessible from TDI, into which the data for the specified system address is
loaded during shift-DR. On update-DR a transfer occurs from the TCK domain to a
64-bit holding register in the IO_CLK domain. In the cycle after the transfer is
complete, the contents of the address register and data register are forwarded to the
UCB interface to initiate a write transaction. This instruction is a combination of
TAP_CREG_WDATA and TAP_NCU_WRITE.

TAP_NCU_RADDR

Load System Address and Initiate Read Transaction: Causes a 40-bit address register
to become accessible from TDI. The target system address is loaded during shift-DR.
On update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete, the contents of the
address register are forwarded to the UCB interface and a read transaction is
initiated. This instruction is a combination of TAP_CREG_ADDR and
TAP_NCU_READ.
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H.2.1.2 Expected Data and Address Format

The data to be written is 64 bits in length. A 40-bit address is also loaded into the
UCB address register.

H.2.1.3 Accesses to Unsupported I/O Addresses

It is possible to specify an illegal or unsupported I/O address in the CREG. Most
locations will silently drop writes to unsupported addresses and will return NACK
on reads to unsupported addresses, which is ignored by the TAP.

H.2.2 TAP Access to CPU ASI Registers
On OpenSPARC T2, JTAG UCB access to the ASI registers mapped to both CPU and
L2 are not available. However, access for all CMP data ASI registers mapped to NCU
is available via UCB (TAP_CREG_ and TAP_NCU_ instructions).

Threads in each strand are virtual processors; for those CMP registers specifying
physical cores, each physical core is assigned 8 bits in a 64-bit register; allowed
values are 1111 11112 and 0000 00002. The assigned 8 bits are 63:56 = strand 7;
55:48 = strand 6; 47:40 = strand 5; 39:32 = strand 4; 31:24 = strand 3; 23:16 = strand 2;
15:8 = strand 1; 7:0 = strand 0.

Refer to section of 24.4 of the PRM for the ASI registers mapped to NCU and the
algorithm for mapping ASI accesses to I/O accesses.

H.3 JTAG Access to Memory
On OpenSPARC T2, JTAG access to L2 is done differently from UCB access through
crossbar. Access to the L2 is done via a separate interface between the TCU and the
SIU, using TAP_L2 JTAG instructions.

H.3.1 JTAG L2 Access Registers
It is possible to write and read the L2 addresses while the chip is running using
JTAG. The L2_ADDR register is accessed via TAP_L2_ADDR; the L2_WRITE_DATA
register is accessed via TAP_L2_WRDATA; and the L2_READ_DATA register is
accessed via TAP_L2_RD as described below. The L2_WRITE_DATA and
L2_READ_DATA registers are the same physical register.
• 537



JTAG user should provide physical address that is 8 byte aligned. Irrespective of the
original content of bit 2, SIU will force bit 2 = 0.

H.3.1.1 Memory Write

To write the L2, an address and data must be loaded via JTAG using TAP_L2_ADDR
and TAP_L2_WRDATA, followed by TAP_L2_WR. When the TAP_L2_WR
instruction is active, the run-test-idle state (C16) of the TAP state machine is
used to transfer the address and data to the L2 and at least 128 TCK clocks must be
cycled while in RTI state for the transfer to complete.

H.3.1.2 Memory Read

A read is accomplished by loading an address using TAP_L2_ADDR followed by a
TAP_L2_RD. When the TAP_L2_RD instruction is active, only 64 TCK clocks need be
cycled while in RTI to transfer the address to the L2. Then, repeated passes through
capture-DR and shift-DR should be used to retrieve the data returned by the L2.
Valid data is indicated during TAP_L2_RD at TDO in the shift-DR state by the
presence of a leading 1 (bit 0 of the 65-bit L2_READ_DATA register); otherwise,
another pass through capture-DR should be implemented without intervening visits
to run-test-idle. Memory read is nondestructive and has no functional side
effect.

Further details on the Addr (Header) and Data (Payload) can be found in the SOC
RAS specification. Only one write or read may be outstanding at any time. Also,
since non-JTAG logic is used, the POR reset sequence should be performed before
using this feature (or at least the POR1 section of the reset sequence).

TABLE H-2 L2 Access Registers

Register JTAG Instruction Bits 64:1 Bit 0

L2_ADDR{64:0} TAP_L2_ADDR bit 64 =1: JTAG access
bits 63:57 = 000 0001 for read request
bits 63:57 = 000 0010 for write request
bits 56:41 = Unused
bits 40:1 = Physical address (8-byte
boundary)

Ignored

L2_WRITE_DATA{64:0} TAP_L2_WRDATA bits 64:1 = 8-bytes of data to write to L2. Ignored

L2_READ_DATA{64:0} TAP_L2_RD bits 64:1 = 8-bytes of data returned from L2. 1 = Data
Valid
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H.4 JTAG Private Instruction Accessible and
Software Accessible Registers
This section describes the JTAG private access registers that are also accessible by
software through the NCU. Only the minimal subset of the control registers required
for chip debug and testing is accessible by software through the NCU. For joint
access between JTAG private and software, JTAG private access will have priority.
These registers are local TCU CSRs that the NCU UCB can access.These registers
cannot be accessed using JTAG UCB protocol (like TAP_CREG or TAP_NCU type
JTAG instructions), but can be accessed using JTAG instructions TAP_DE_COUNT,
TAP_CYCLE_COUNT, TAP_TCU_DCR. Note that in PRM section 29.4.4, the
trigout_reg bit is set when DCR = 100, 101, 110, or 111, so there is not a separate
JTAG instruction to set this bit.

Note The TCU Debug Control register, TCU Cycle Counter register,
TCU Debug Event Counter register, and TCU Trigger Output
register also fall in this category of registers and are described in
section 29.4 of the PRM.

TABLE H-3 MBIST Mode Register (85 0000 000016)

Bit Field Initial Value R/W Description

63:4 — X RO Reserved

3 loop 0 RW 0 = No loop; 1 = Loop.

2 diagnostic 0 RW Diagnostic mode if set.

1 bisi 0(1 - See
Note

below)

RW BISI if 1; BIST if 0.

0 parallel 0 RW Parallel mode if 1.

TABLE H-4 MBIST Bypass Register (85 0000 000816

Bit Field Initial Value R/W Description

63:48 — X RO Reserved

47:0 bypass 016

(FFFFFFFF
FFFF16

- See Note
below)

RW MBIST bypass.
• 539



TABLE H-5 MBIST Start Register (85 0000 001016)

TABLE H-6 MBIST Abort Register (85 0000 001816)

TABLE H-7 MBIST Result Register (85 0000 002016)

TABLE H-8 MBIST Done Register (85 0000 002816)

TABLE H-9 MBIST Fail Register (85 0000 003016))

Note In the case of the Mbist Mode and Bypass Registers, the default
value is overwritten during the power on reset sequence.BISI
Enable bit of Mbist Mode Register is written as 12 by logic
during powere on reset sequence and this bit stays as 12 until it
is programmed otherwise.The value of the MBIST Bypass
register will depend on the core and bank available fuse values
after POR1; if there is no partial mode, then this register will be
all 1’s in bits 47:0

Bit Field Initial Value R/W Description

63:1 — X W Reserved

0 mbist_ start 0 W Starts MBIST sequence when written to 1.

Bit Field Initial Value R/W Description

63:1 — X W Reserved

0 mbist_abort 0 W Aborts MBIST sequence when written to 1.

Bit Field Initial Value R/W Description

63:2 — X RO Reserved

1 mbist_done 0 RO MBIST done.

0 mbist_fail 0 RO MBIST fail.

Bit Field Initial Value R/W Description

63:48 — X RO Reserved

47:0 mbist_done 016 RO MBIST Done bits.

Bit Field Initial Value R/W Description

63:48 — X RO Reserved

47:0 mbist_fail 016 RO MBIST Fail bits.
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TABLE H-10 MBIST Start WMR Register (85 0000 003816)

TABLE H-11 LBIST Mode Register (85 0000 004016)

TABLE H-12 LBIST Bypass Register (85 0000 004816)

TABLE H-13 LBIST Start Register (85 0000 005016)

TABLE H-14 LBIST Done Register (85 0000 005816)

TABLE H-15 CLKSTOP_DELAY Register (85 0000 012016)

Bit Field Initial Value R/W Description

63:1 — X W Reserved

0 wrm_start 016 W Starts MBIST sequence when written to 1, but delayed until after
the next warm reset occurs.

Bit Field Initial Value R/W Description

63:2 — X RO Reserved

1 program 0 RW Program mode if 1.

0 parallel 0 RW Parallel mode if 1.

Bit Field Initial Value R/W Description

63:8 — X RO Reserved

7:0 lbist_bypass 016 RW LBIST bypass.

Bit Field Initial Value R/W Description

63:1 — X RO Reserved

0 lbist_start 0 RW Starts LBIST sequence when written to 1.

Bit Field Initial Value R/W Description

63:8 — X RO Reserved

7:0 lbist_done 016 RW LBIST done status.

Bit Field Initial Value R/W Description

63:8 — X RO Reserved

7:0 clkstp_delay 016 RW Clock stop delay counter.
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H.5 Shadow Scan Chains
Shadow scan access is provided in OpenSPARC T2 on SPARC physical core and L2
Error registers. During a shadow-scan operation, JTAG is used to capture the desired
values into the shadow scan register. The contents are then scanned-out via TDO.
Both the core and L2 tag shadow scan registers can only be read; any value scanned
into them will be overwritten. Shadow scan is nondestructive and can happen even
when the chip is running in functional mode.

H.5.1 SPARC Shadow Scan
Shadow scan for the strands is controlled via JTAG. The contents to be captured in
the shadow scan are shown in TABLE H-1.

Each physical OpenSPARC T2 SPARC virtual processor supports the ability to
capture a subset of each strand’s state for inspection via a shadow scan facility. The
shadow scan is invoked by JTAG commands shown in TABLE H-1.

The TCU continually specifies a strand ID to each physical OpenSPARC T2 SPARC
core. In response, the physical core atomically captures the state as described in
TABLE 29-1 in a scan string. The TCU then accesses the scan string and captures it in
a JTAG-visible register for presentation over the JTAG interface.

VA, HPSTATE, PSTATE, and TL are updated dynamically. Thus, they correctly reflect
updates after a trap, a DONE, a RETRY, or a software write to %tl.

TPC, TT, and TL_FOR_TT, however, are updated only when the strand takes a trap.
They are not updated for DONE, RETRY, or software writes to %tl. For example, if
the processor traps from TL = 0 to TL = 1 to TL = 2 and then uses DONE and/or
RETRY to get back to TL = 0, shadow scan will still reflect TT[2], TPC[2], and
TL_FOR_TT will still be 2. Similarly, if the processor traps out to TL = 2 and then
software writes TL to 1 or 0, shadow scan will still show TT[2], TPC[2], and
TL_FOR_TT will still be 2.

On the JTAG bus, bit 117 appears first, followed by bit 116, sequentially down to and
including bit 0.

If multiple traps occur after the state was atomically captured into the shadow scan
string but while the shadow scan string is being scanned, only the state belonging to
the last trap remains to be (potentially) captured on the next capture point. Due to
the length of time to perform a shadow scan relative to the time between traps,
sampling via shadow scan can miss several traps.
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All eight strand shadow scans are scanned serially as one chain, with strand 0
closest to TDI and strand 7 closest to TDO. Any strand marked unavailable in the
CMP STRAND_AVAILABLE register will not be included when scanned via TDI to
TDO. The shadow scan chain for a given strand is placed in that strand’s second
scan chain during ATPG test mode; they are accessible otherwise only via JTAG
shadow scan instructions (that is, not during JTAG serial scan).

H.5.2 L2 Shadow Scan
Shadow scan for L2 Error registers is controlled via JTAG. The contents to be
captured in the shadow scan are listed in TABLE 20-9 on page 438.

All eight L2 shadow scan contents are captured at the same time and are available at
TDO with L2T0 first and L2T7 last (closest to TDO). JTAG instructions to support L2
tag shadow scan are shown in TABLE H-1 on page 531.

On the JTAG bus, bit 141 appears first, followed by bit 140, sequentially down to and
including bit 0.

H.6 JTAG Memory BIST
The memory BIST or MBIST engines for OpenSPARC T2 are based on the engine
used in OpenSPARC T1. In OpenSPARC T2 there are 80 MBIST engines: 3 per virtual
processor (24 total) and 56 distributed throughout the SOC logic. Each MBIST engine
will therefore test several arrays. However, these 80 MBIST engines are mapped to
48 JTAG-visible engines. Please refer to TCU Microarchitecture Specification for the
mapping.

The MBIST operation may be controlled by the TCU during reset sequencing via the
JTAG interface or as invoked via software. The MBIST engines can be operated in a
serial mode, a parallel mode, or a diagnostic mode for memory bit-fail mapping.
Both the serial and parallel modes run MBIST in a pass/fail mode, where the only
information available is whether MBIST passed all of its arrays or failed at least one
of them.

For more details on OpenSPARC T2’s memory BIST architecture and operation, refer
to the TCU Microarchitecture Specification.
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H.6.1 MBIST Modes

H.6.1.1 Serial Mode

JTAG will typically be used to run MBIST in the serial mode. When activated in
serial mode, the MBIST engines will be started sequentially in the order specified in
the TCU Microarchitecture Specification.

To enable the serial MBIST mode via JTAG, the instruction TAP_MBIST_BYPASS
must be used to specify which of the 48 JTAG Visible MBIST engines to bypass, if
any, via the MBIST_BYPASS register. Next, the TAP_MBIST_MODE is used to clear
the parallel mode bit in the MBIST_MODE register. The TAP_MBIST_START
instruction is then programmed into JTAG; when JTAG enters the run-test-idle
state, the MBIST operation will be started; it is not necessary to remain in the run-
test-idle state. It is up to the user to wait a predetermined number of cycles for
the MBIST operation for all arrays to finish. Status can be checked using the
TAP_MBIST_RESULT instruction and capturing the MBIST_RESULT register (2 bits)
in the capture-DR state and examining them; this can be done repeatedly for polling
(via capture-DR, without staying in run-test-idle). This allows early truncation
of the test (via the TAP_MBIST_ABORT instruction) if the fail bit becomes active
before the MBIST operation is done. The done bit must be set to validate a fail bit of
0 indicating a passing condition. A done bit set to 1 and a fail bit set to 0 indicates all
arrays for the selected MBIST engines passed MBIST.

The default operation is to run BISI instead of MBIST. To run BISI, the instruction
TAP_MBIST_DIAG may be used to program a given MBIST engine’s config bits.
Selection of BISI or MBIST is done by setting the corresponding bit in the MBIST
config register of the MBIST engines via the MBIST_BYPASS register or by setting
the bisi bit the TAP_MBIST_MODE register.

H.6.1.2 Parallel Mode

JTAG must be used to run MBIST in the parallel mode. When activated in parallel
mode, the MBIST engines will be started in parallel, whereas the arrays controlled
by each individual MBIST engine will test their arrays sequentially. Operation of
MBIST parallel mode via JTAG is similar to the serial mode, except that the parallel
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mode bit of the MBIST_MODE register must instead be set, using the
TAP_MBIST_MODE instruction. There is no non-JTAG default method of running
MBIST in parallel mode.

H.6.1.3 Diagnostic Mode

In one method to perform bit-fail mapping, the TAP_MBIST_DIAG instruction is
used to access the MBIST engine as the target JTAG data register. In this diagnostic
mode only one MBIST engine should be selected, by setting the appropriate bits in
the MBIST_BYPASS register via the TAP_MBIST_BYPASS instruction; it is up to the
user to bypass all but one MBIST engine. Only one array controlled by the selected
MBIST engine may be active; this is specified by scanning in (loading) the target
MBIST engine registers. After both the MBIST engine and array are specified, the
TAP_MBIST_START is programmed, and entering run-test-idle will start the
MBIST operation on the selected array. After an appropriate wait time, the test
should finish. Polling via TAP_MBIST_RESULT can be used to inspect the done/fail
JTAG data register, or the TAP_MBIST_GETDONE and TAP_MBIST_GETFAIL can
be used to determine the MBIST test results.

To get the detailed information on the target array, the TAP_MBIST_DIAG
instruction must be used. This allows the contents of the targeted MBIST engine to
be scanned as the MBIST_DIAG register via TDO.

H.6.1.4 Abort Mode

To abort any MBIST activity the TAP_MBIST_ABORT instruction should be used.
This will cause all MBIST start signals to be deasserted and any internal JTAG states
to be reset. A separate instruction is useful since the JTAG MBIST instructions have
memory. Use of TAP_MBIST_ABORT does not clear any of the JTAG data registers
used for or during MBIST—only the control states and signals—and does not clear
the MBIST engine flops; this allows the TAP_MBIST_DIAG to be used to get data on
the failing arrays. Entering test-logic-reset state will also stop MBIST.

Note When the serial or parallel MBIST is determined to be finished
(via polling/examination of the done/fail register or a timeout),
all that is known is that either all arrays passed or at least one of
them failed. To get information on which MBIST engine failed,
the TAP_MBIST_GETDONE instruction must be used. This
allows capture of all 48 JTAG visible done bits which may then
be observed at TDO; the TAP_MBIST_GETFAIL similarly
captures all 48 JTAG visible fail bits. If detailed information as to
which array failed within a given MBIST engine is needed, then
the TAP_MBIST_DIAG instruction must be used to retrieve the
contents of the specific MBIST engine that indicated a fail.
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H.6.2 JTAG MBIST Registers
In OpenSPARC T2, JTAG accessible registers for MBIST are as follows.

H.6.3 MBIST Clock Stop and Scan Dump
The cycle counter may be used in conjunction with MBIST to stop clocks and
perform a scan dump. The instruction TAP_MBIST_CLKSTPEN must be
programmed to enable the cycle counter for MBIST. If enabled, the cycle counter will
begin decrementing when the MBIST controller begins operation. When the cycle
counter reaches zero, a hard clock stop will be issued to the clock sequencer.

All relevant registers—clock domain, clock stop delay—will be recognized in this
mode to allow control of the clock stop sequence. The clock stop status may be
checked with TAP_CLOCK_STATUS, and when stopped the scan chains can be
dumped via TAP_SERSCAN.

Using this feature and repeatedly running MBIST with successively greater cycle
count values allows another method of bit-fail mapping arrays. This is sometimes
referred to as MBIST Plus. Since the start of MBIST and when the cycle counter
begins, decrementing is coordinated and synchronized to the same CMP clock cycle
the entire process should be repeatable and cycle accurate

TABLE H-16 JTAG MBIST Registers

Register JTAG Instruction Fields

RESULT{1:0} TAP_MBIST_RESULT Bit 1 – 1 when all 48 Jtag visible mbist engines are done.
Bit 0 – 1 if any of 48 Jtag visible mbist engines reports a fail.

BYPASS{47:0} TAP_MBIST_BYPASS One bit per JTAG visible mbist engine; to bypass an engine during
MBIST testing set its bit to 1.

DONE{47:0} TAP_MBIST_GETDONE One bit per JTAG visible mbist engine; a 1 indicates the
corresponding engine is done; same order as MBIST_BYPASS
register.

FAIL{47:0} TAP_MBIST_GETFAIL One bit per JTAG visible mbist engine; a 1 indicates the
corresponding engine failed MBIST for one of its arrays.

DIAG{k:0} TAP_MBIST_DIAG Includes targeted MBIST engines in a cluster; variable length.

MODE{2:0} TAP_MBIST_MODE Bit 2 – user mode if set.
Bit 1 – bisi mode if set, else bist mode.
Bit 0 – parallel mode if 1, serial mode if 0.

None TAP_MBIST_CLKSTPEN Enables mbist controller to begin cycle counter; reset with TLR or
TAP_CLOCK_START.
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H.6.4 MBIST DMO: Direct Memory Observe
For a complete description of DMO, refer to the OpenSPARC T2 DMO specification.
There are three JTAG instructions: TAP_DMO_ACCESS, TAP_DMO_CLEAR, and
TAP_DMO_CONFIG, as described in TABLE H-1 on page 531. The
TAP_DMO_ACCESS puts the chip in DMO mode, so data from BIST run on L2 Tags
or certain SPC arrays are observable at package pins. TAP_DMO_CLEAR clears this
mode. To access and program the DMO control logic inside TCU the
TAP_DMO_CONFIG instruction should be used to set the 32-bits as desired.

TABLE H-17 JTAG DMO Configuration Register

Register JTAG Instruction Bit Description

DMO_CONFIG
{31:0}

TAP_DMO_
CONFIG

31:16 16-bit shift register.

15 1 selects CMP clock domain, 0 selects I/O clock domain

14:13 00 selects DMO path to strands 4, 5, 1, or 0.
01 selects DMO path to strands 6, 7, 3, or 2;
10 selects DMO path to L2 tags 4, 5, 1, or 0;
11 selects DMO path to L2 tags 6, 7, 3, or 2.

12:11 (set to 00)

10:8 000 – rtx_txc_txe0_dmo_dout (default)
001 – rtx_txc_txe1_dmo_dout
010 – rtx_rxc_ipp0_mb3_dmo_dout
011 – rtx_rxc_ipp1_mb3_dmo_dout
100 – rtx_rxc_zcp0_mb7_dmo_dout
101 – rtx_rxc_zcp1_mb7_dmo_dout
110 – rtx_rxc_vlan_mb6_dmo_dout
111 – Not allowed.

7 Selects data cache.

6 Selects instruction cache.
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H.7 JTAG Logic BIST
The Logic BIST test function is only applied to the SPC cores in OpenSPARC T2, and
one engine is instantiated per core. The control of the Logic BIST engines comes from
the TCU via either software or JTAG.

The control logic allows the Logic BIST engines to be run in parallel or in series and
gathers the done signals for JTAG to query. There is no pass/fail indication that
comes from the Logic BIST engines, so the engine must be scanned to determine the
result.

H.7.1 JTAG Logic BIST Registers
In OpenSPARC T2, JTAG accessible registers for Logic BIST are listed in TABLE H-18.

14:13
5:3
2:0

14:13 5:3 2:0
00 xx0 xxx → CORE4
10 xx0 xxx → L2T4
00 x01 xxx → CORE5
10 x01 xxx → L2T5
00 011 xxx → CORE1
10 011 xxx → L2T1
00 111 xxx → CORE0
10 111 xxx → L2T0
01 xxx xx0 → CORE6
11 xxx xx0 → L2T6
01 xxx x01 → CORE7
11 xxx x01 → L2T7
01 xxx 011 → CORE3
11 xxx 011 → L2T3
01 xxx 111 → CORE2
11 xxx 111 → L2T2

TABLE H-18 JTAG Logic BIST Registers

Register Jtag Instruction Fields

BYPASS{7:0} TAP_LBIST_BYPASS One bit per Logic BIST engine; to bypass an engine during
testing, set its bit to 1.

MODE{1:0} TAP_LBIST_MODE Bit 1 – Program access mode selected.
Bit 0 – Parallel mode if 1, serial mode if 0.

TABLE H-17 JTAG DMO Configuration Register (Continued)

Register JTAG Instruction Bit Description
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H.7.2 Accessing Pass/Fail Signature
To determine if the Logic BIST engine passed or failed, the signature must be
scanned out via JTAG using TAP_LBIST_ACCESS. The signature must be compared
to a known-good value.

LBIST{k:0} TAP_LBIST_ACCESS Includes targeted Logic BIST engines across strands.

DONE{7:0} TAP_LBIST_GETDONE One bit per MBIST engine; a 1 indicates the corresponding engine
is done; same order as Logic BIST bypass register.

TABLE H-18 JTAG Logic BIST Registers

Register Jtag Instruction Fields
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Index
A
Accumulated Exception (aexc) field of FSR

register, 94
Address Mask (am)

field of PSTATE register, 65, 66, 91, 115, 117, 120
address parity, definition, 522
address space identifier (ASI)

identifying memory location, 59
advanced memory buffer, See AMB
AMB, 343

initializing, 348
registers, 382–388

ASI
restricted, 120
support for atomic instructions, 495
usage, 68–78

ASI, See address space identifier (ASI)
ASI_AS_IF_USER_PRIMARY, 119
ASI_AS_IF_USER_SECONDARY, 119
ASI_BLK_INIT_ST_PRIMARY, 34
ASI_BLK_INIT_ST_PRIMARY_LITTLE, 35
ASI_BLK_INIT_ST_SECONDARY, 35
ASI_BLK_INIT_ST_SECONDARY_LITTLE, 35
ASI_CMT_CORE_INTR_ID, 188
ASI_CMT_ERROR_STEERING, 184
ASI_CMT_STRAND_ID, 188
ASI_CMT_TICK_ENABLE, 183
ASI_CORE_AVAILABLE, 181, 183
ASI_CORE_ENABLE, 182, 183
ASI_CORE_ENABLE_STATUS, 181
ASI_CORE_RUNNING_RW, 184
ASI_CORE_RUNNING_STATUS, 185
ASI_CORE_RUNNING_W1C, 186

ASI_CORE_RUNNING_W1S, 186
ASI_DECR, 433
ASI_DTLB_TAG_READ_REG, 212
ASI_HYP_SCRATCHPAD, 79
ASI_INTR_RECEIVE, 47, 56
ASI_INTR_W, 57
ASI_ITLB_DATA_ACCESS_REG, 211
ASI_ITLB_TAG_READ_REG, 210
ASI_NUCLEUS, 119, 123
ASI_NUCLEUS_LITTLE, 123
ASI_PRIMARY, 123
ASI_PRIMARY_LITTLE, 123
ASI_PRIMARY_NO_FAULT, 102, 117, 119, 120
ASI_PRIMARY_NO_FAULT_LITTLE, 102, 117, 120
ASI_QUEUE registers, 54–56
ASI_REAL, 78
ASI_REAL_IO, 78
ASI_REAL_IO_LITTLE, 78
ASI_REAL_LITTLE, 78
ASI_SCRATCHPAD, 78, 79
ASI_SECONDARY_NO_FAULT, 102, 117, 119, 120
ASI_SECONDARY_NO_FAULT_LITTLE, 102, 117,

120
ASI_SPARC_PWR_MGMT, 389
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY, 34
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY_LIT

TLE, 34
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY, 3

4
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY_L

ITTLE, 34
ASI_ST_BLKINIT_NUCLEUS, 34
ASI_ST_BLKINIT_NUCLEUS_LITTLE, 34
ASI_STBI_AIUP, 34
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ASI_STBI_AIUPL, 34
ASI_STBI_AIUS, 34
ASI_STBI_AIUS_L, 34
ASI_STBI_N, 34
ASI_STBI_NL, 34
ASI_STBI_P, 34
ASI_STBI_PL, 35
ASI_STBI_S, 35
ASI_STBI_SL, 35
ASI_XIR_STEERING, 159, 183
atomic instructions, 495–496

B
Big MAC, See bMAC
BIST

logic test function, 548
bit lane, 343
block

load instructions, 31, 34
memory operations, 98
store instructions, 31

block-initializing ASIs, 35
Boot ROM accesses, 194
Boot ROM Range register, 194
branch instruction, 66
built-in self-test, See BIST

C
cache flushing, when required, 489
cacheable in indexed cache (cp, cv) fields of

TTE, 102
caching

TSB, 104
CALL instruction, 66
CANRESTORE register, 91
CANSAVE register, 91
CE, See corrected error (CE)
CERER register

fields
dcdp, 218
dctm, 217
dctp, 217
dcvp, 216
description, 228–230
dtdp, 213
dttm, 212
dttp, 212

frf, 220
hwtwmu, 211, 214
icdp, 216
ictm, 215
ictp, 215
icvp, 214
irf, 219, 405
itdp, 211
ittm, 209
ittp, 210
mrau, 227
sbapp, 223
sbdlc, 221
sbdlu, 222
sbdpc, 222
sbdpu_sbdiou, 223
scac, 224
scau, 224
tccp/tccd, 224
tccu/tcud, 224
tsac, 226, 411
tsau, 226

channel, 342
channel initialization, 346
checkpoint/replay mechanism, 449–453
Chip CPU Throttle Control register, 390
chip reset, 161
chipwide resets

debug reset, 165
generating, 163
power-on reset, 164
warm reset, 164

clean window, 91
clean_window exception, 92
CLEANWIN register, 91
clock domains, 153
clock frequency multiplication equations, 155
CMP error handling, 298–302
cmp_pll_clk, 155
compatibility with SPARC V9

terminology and concepts, 505
context

register, 122
context

field of TTE, 101
control_transfer_instruction, 398
Core Error Recording Enable register, See CERER

register
Core Local Error Status register, 242
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Core Local First Error Status register, 243
correctable error (CE)

interrupt in SOC, 313
PIO load, 306

correctable PIO load errors, recommended as not
fatal, 310

corrected error (CE)
description, 198

counter overflow, 86
CPU throttling, 390
CPU_THROTTLE_CTL pins, controlling, 390
CRC polynomial, 158
cross call, 98
Current Exception (cexc) field of FSR register, 94
CWP register, 89, 91
cyclic redundancy code (CRC), 343

D
DAE_invalid_ASI exception, 95, 132, 144, 495
DAE_invalid_asi exception, 57, 67
DAE_nc_page exception, 64, 495
DAE_privilege_violation exception, 103
DAE_so_page, 492
data cache associativity, disabling, 398
Data Management Unit, See DMU
data PA and VA watchpoints, controlling

address, 395
Data Synchronous Fault Address register, See DSFAR

register
Data Synchronous Fault Status register, See DSFSR

register
data watchpoint

byte mask, 394
read and write enable, 394
virtual address, 118

data_access_error exception, 63, 64, 355
data_access_MMU_miss exception, 95, 110, 111,

115, 116
data_access_protection exception, 103, 113, 117
Dcache

direct-mapped mode, 498
disabling, 498
displacement flush, 490
flushing, 490
registers, 402–404

DDR branch, 343
DDR channel, 343
DDR data channel, 343

debug port
function, 444
observability modes, 444–449

debug reset (DBR), 165
deferred

trap, 90
deferred errors

recording, 204, 241
Demap Context operation, 149
DESR register

error information, 236
errortype field, 240
f field, 238
format, 238
information capture, 238
me field, 239
s field, 238
semantics, 239–240

DFESR register
errot types recorded, 241
format, 241
privilege-level field, 242
simultaneous reads and updates, 242

DIMM, 342
Dirty Lower (dl) field of FPRS register, 94
Dirty Upper (du) field of FPRS register, 94
disrupting errors

recording, 204, 238
related to instruction stream, 202
unrelated to instruction stream, 202

DMA
completion notification, 502

D-MMU, 119, 122
DR clock output, 155
dr_pll_clk, 155
DRAM chip, 342
DRAM error registers, 199
DRAM performance counter select codes, 87
DRAM registers, 357–369, 391
DRAM Scrub Enable register, 354
DRAM syndrome descriptions, 523–528
DRAM_ERROR_ADDRESS_REG register, 291
DRAM_ERROR_COUNTER_REG register, 292
DRAM_ERROR_INJECT_REG register, 292
DRAM_ERROR_LOCATION_REG register, 293
DRAM_ERROR_RETRY_REG register, 293
DRAM_ERROR_STATUS_REG register

bit setting when error status bit already set, 290
format, 289
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DRAM_FBD_ERROR_SYND_REG register, 294
DRAM_FBD_INJ_ERROR_SRC_REG register, 295
DRAM_FBR_COUNT_REG register, 296
DSFAR register

error information, 236
errors recorded, 234
format, 235

DSFSR register, 235
errors recorded, 234

E
ECC

arrays protected by, 511
calculation for check nibbles, 520–522
causing error in trap stack array, 411
check bit generation

IRF, 512
L2 data, 517
L2 tag, 519
TSA, TCA, SCA, 514

check nibble, 520
ChipKill feature, 354
Extended, 275, 344, 354, 519
floating-poing register file, suppressing/reading

errors, 406
integer register file, suppressing/reading

errors, 405
marking corrupt data, 355, 528–530
memory scrubbing, 354
status logging, 355
synd table

L2 Data, 518
TSA, TCA, SCA data, 516

syndrome nibble, 520
Electronic Fuse, See eFuse
endianness, 102
enhanced security environment, 91
error checking and correction (ECC), See ECC
error logging, 199
error status bit, clearing, 290
error status bits, clearing, 269
error status registers (ESRs)

description, 199
error traps

hw_corrected_error, 198
store_error, 197
sw_recoverable_error, 198

error_state, 89

errors
See also individual error entries
CMP, description, 199
corrected (CE), description, 198
deferred, 197
fatal (FE), description, 197
MEMBAR #Sync as error barrier, 202
NotData (NDE), description, 197
uncorrected (UE), description, 197

Ethernet MAC, 153
EXT_INT_L pin, 51
extended

instructions, 98
Extended ECC, 275, 344, 354, 519
externally initiated reset, 165

F
fast_data_access_protection exception, 113
fatal error (FE)

description, 197
interrupt in SOC, 313
PIO load, 306
PIO store, 310
recommended for PIO load, 307–309

fatal thread error, 242
Fault Address field of SFAR, 136
FBD, 343

channel initialization by software, 346
registers, 369–370

FBD link error, 294
FE, See fatal error (FE)
Fire ASIC, 159, 160
floating point

deferred trap queue (fq), 94
exception handling, 93

Floating Point Registers State (FPRS) register, 94
floating-point register file, reading/writing data

portions, 405
FLUSH instruction, 95
frame, 343
frequency change, with warm reset, 154
fully buffered DIMM, See FBD

G
Galois field multiplication, 354, 519, 523
global level register, See GL register
Graphics Status register, See GSR
554 UltraSPARC T2 Processor Supplement • Draft D1.4.3, 19 Sep 2007



H
hard clock stop, 546
hardware error handling, 200
hardware interrupts, 98
Hardware Parser (FFLP), See FFLP
hardware_error floating-point trap type, 94
HPSTATE register

hpriv field, See also hyperprivileged (hpriv) field
of HPSTATE register

hw_corrected_error, 238, 240, 246, 313

I
IAE_privilege_violation exception, 103
Icache

data array, diagnostic access, 399
direct-mapped mode, 497
disabling, 497
flushing, 489
tags, diagnostic access, 401

IEEE Std 754-1985, 94
IEEE support

inexact exceptions, 473
infinity arithmetic, 466
NaN arithmetic, 472
normal operands/subnormal result, 481
one infinity operand arithmetic, 466
one/both subnormal operands, 478
subnormal support in hardware, 474
two infinity operand arithmetic, 469
zero arithmetic, 471

illegal_instruction exception, 89, 94, 96, 99
ILLTRAP instructions, 89
I-MMU, 122
implementation-dependent instructions, See

IMPDEP2A instructions
Incoming Vector register, 49, 58
instruction associativity, disabling, 398
instruction execution, disabling, 397
instruction fetching

from I/O address, 63
from L2CSR space, 64
from nonexistent memory or I/O, 63
near VA (RA) hole, 64

instruction latencies, 456–463
instruction MMU, See I-MMU
Instruction Synchronous Fault Status register, See I-

SFSR

instruction_access_error exception, 63, 355

instruction_access_exception exception, 65
instruction_access_MMU_error, 210
instruction_access_MMU_miss exception, 110, 111,

113, 114, 116, 135
instruction_address_range exception, 64
instruction_breakpoint, 397
instruction_real_range exception, 64
instruction-level parallelism

advantages, 2
history, 1

instruction-level parallelism, See ILP
INT_MAN register

field description, 52
and I/O interrupts, 47
vector field, 51

integer
division, 92
multiplication, 92
register file, 91

interrupt
causes, 48
CPU, handling, 56
device ID assignments, 51
dispatching, 48
handling, 49
hardware delivery mechanism, 47
I/O, initializing handling, 50
I/O, setting priority for, 50
lost, 49
packet, 98
servicing SSI errors, 50
types for I/O, 47

Interrupt Receive register, 48, 49
interrupt registers

MONDO_INT_BUSY, 54
MONDO_INT_DATA0/1, 53
MONDO_INT_VEC, 52

interrupt vector trap
and ASI_INTR_RECEIVE register, 47
servicing, 50

invalid_fp_register floating-point trap type, 94
invert endianness, (ie) field of TTE, 102
ISA, See instruction set architecture
ISFSR register

format, 232
hardware errors recorded, 232

I-SFSR register, See SFSR register
ITLB error priority, 209
ITLB tag parity, 210
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J
JMPL instruction, 66
JTAG

accessible registers for MBIST, 546
accessible registers for testing Logic BIST, 548
accessing CPU shared register, 67
commands, 531
CREG interface, 534–537
DMA (direct memory observe) configuration

register, 547
instructions for direct memory observation, 547
L2 access, 537–538
MBIST modes

parallel, 544
serial, 544

registers, 539–541
shadow scan control, 542–543

jump and link, See JMPL instruction

L
L2 cache

configuration, 5
correctable ECC error reported by DRAM, 282
correctable errors reported by DRAM, 278–282
data correctable ECC errors for access, 246–??
data correctable ECC errors for scrub, 251
data correctable ECC errors for writeback, 250–

251
debug registers, 437–439
diagnostic addressing, 429–430
directory coherence, 501
displacement flush, 490
error flow, 244, 246
errors sent from MCU, 276
flushing, 490
handling of DRAM detected errors for

loads, 275
instruction/data registers, 499–500
NotData errors for DMA access, 263
NotData errors for processor access, 260–??
NotData errors for writeback, 264
registers, 418–428
software-recoverable errors, 264
tag correctable ECC error, 252
uncorrectable data error for access, 254–??
uncorrectable data error for DMA read, 257
uncorrectable data error for DMA write

partial, 258

uncorrectable data error for scrub, 259
uncorrectable data error for writeback, 257
uncorrectable errors reported by DRAM, 282–

287
uncorrectable parity error, 260
uncorrectable Tag ECC error, 259
uncorrectable VUAD ECC error, 259
VUAD correctable ECC error, 253

L2 error registers, 199
L2 registers in NCU, 191
L2 VUAD diagnostic registers, 428–429
L2_ERROR_ADDRESS_REG register

bits captured for FE, UE, CE error types, 272
format, 272
unused bits in address field, 273

L2_ERROR_EN_REG register, 264
L2_ERROR_INJECT_REG register, 275
L2_ERROR_STATUS_REG register

bit description, 265
dsc field, 267
dsu field, 267
moda field, 266
multiple errors, 267
rw field, 266
synd field, 266
vcid field, 266

L2_NOTDATA_ERROR_REG register
format, 273
multiple error in same cycle, priority, 274

LDBLOCKF instruction, 31
LDD instruction, 96
LDDA instruction, 64
LDDF_mem_address_not_aligned exception, 96
LDQF instruction, 96
LDQFA instruction, 96
LDXA instruction, 68
Linear Feedback Shift register (LFSR), 343
link, 343
load

block, See block load instructions
short floating-point, See short floating-point load

instructions
store Unit (LSU), 118

Lock Time register, 162

M
Management interface, See MIF
MBIST
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abort mode, 545
diagnostic mode, 545
in UltraSPARC T2, 543
JTAG registers accessible, 546
parallel mode, 544
serial mode, 544

MCU
design requirements, 344
handling ECC errors, 355
and NBFIBPORTCTL_NBFIBPGCTL_REG pair, 386
sending CKE cmd to FBDIMMs, 376

mec (multiple correctable error) bit, 199
Media Access Controller, See MAC
mem_address_not_aligned exception, 118, 119, 132
mem_address_range exception, 66
mem_real_range exception, 66
MEMBAR #LoadLoad, 60
MEMBAR #Lookaside, 60, 61
MEMBAR #MemIssue, 61, 493
MEMBAR #StoreLoad, 32, 33, 60
MEMBAR #StoreStore, 95
MEMBAR #Sync, 131
MEMBAR #Sync, 201, 244, 493
memory

address distinguished from I/O address, 66
cacheable and noncacheable accesses, 491
location identification, 59
model, 33
noncacheable accesses, 491
order between references, 61
ordering in program execution, 493–495
out-of-bound address ranges for different

configurations, 355
refresh operations, 392

memory built-in self-test, See MBIST
Memory Control Unit, See MCU
memory controller

features, 341
memory models, 59
meu (multiple uncorrectable error) bit, 199
missing TLB entry, 106
MMU

demap, 148
demap context operation, 148, 150
demap operation format illustrated, 149
demap page operation, 148, 150
dTLB Tag Access register illustrated, 137, 138
generated traps, 112
iTLB Tag Access register illustrated, 137, 138

Physical Offset registers, 140
Real Range registers, 140
requirements, compliance with SPARC V9, 131
Synchronous Fault Address register (SFAR)

illustrated, 136
Tablewalk Pending Control register, 143

MMU register array, See MRA
MOND_INT_DATA0 register, aliased, 52
mondo interrupt

data registers, 53
I/O, 47
states, 49
tables, 49

MONDO_INT_ABUSY register
busy bit, 52

MONDO_INT_BUSY register
field description, 54

MRA
causing parity error, 415
internal organization, 416

multiple hit errors, 209
multiplication algorithm, 92
M-way set-associative TSB, 104

N
N_REG_WINDOWS, 91
NCU

accessing PCIE address space, 192
ASI PA map, 192
CMP and Interrupt registers, 192–194
error syndrome logging, 339
FBD recoverable error interrupts, 295
function, 6, 189
global address assignment, 189
INT_MAN table, 47
interrupt types handled, 51
L2 registers, 191
registers

eFuse Status, 191
Processor Serial Number, 190
Strand Available (CORE_AVAIL), 191

signal to MCU to inject error, 294
nested traps

in SPARC-V9, 90
No-Fault Only (nfo) field of TTE, 102, 120
noise cells (random number generation), 158
nominal frequency, setting, 158
Noncacheable Unit, See NCU
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nonfaulting loads, 496
speculative, 116

northbound (NB), 343
NotData

cases not protected, 198
indication, 201
usage, 198

Nucleus Context register, 134

O
OTHERWIN register, 91
out of range

violation, 137, 149
virtual address, 64, 65
virtual address, as target of JMPL or

RETURN, 66
virtual addresses, during STXA, 132

out-of-bound address ranges, 355

P
PA Watchpoint Address register, 132
page

size field of TTE, 103
size, encoding in TTE, 103

partial store
instruction, 98

Partial Store Order (PSO), 59
PB_RST_L pin, 176
PCI

clock domain, 153
ordering rules not supported by UltraSPARC

T2, 502
ordering rules supported by UltraSPARC

T2, 502
pcontext field, 133
PCR register

fields, 82
pending field of ASI_INTR_RECEIVE register, 57
performance instrumentation counter register, See

PIC register
physical core

components, 5
synchronizing all, 184
UltraSPARC T2 microarchitecture, 3

Physical Layer Device, See PHY
PIC register

field description, 86

overflow traps, 81
pic_overflow exception, 86
PLL

divider programming, 155
external clock, 153
programming for, 155

PLL_CHAR_OUT pins, 454
PLL_CTL register

changing pll_div_* values, 154
field description, 153

pll_sys_clk, 155
POR, See power_on_reset (POR)
power throttling, 357
power-down mode, 98
power-on reset, 164
power-on reset initialization sequence, 176
power-up reset sequence, 176
precise traps, 90
PREFETCHA instruction, 95
Primary Context register, 133
privileged

(p) field of TTE, 103
(priv) field of PSTATE register, 103, 114, 116, 118

privileged_action exception
and ASI_INTR_RECEIVE register, 57
and ASI_INTR_RECEIVED register, 57
attempting access to

ASI_LSU_CONTROL_REG, 393
attempting access with restricted ASI, 59, 118,

120
privileged_opcode exception, 81
processor

memory model, 33
processor cluster, See processor module
processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states, See error_state,

execute_state, and RED_state
processor test repeatability, 449
Program Input/Output interface, See PIO
Propagation Time (PROP_TIME) register, 162
protection violation, 117
PSTATE register fields

ie
masking disrupting trap, 41

pef
See also pef field of PSTATE register

PTE (page table entry), See translation table entry
(TTE)
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PWRON_RST_L pin, 164, 176

Q
quad speed MAC, See xMAC
quad-precision floating-point instructions, 93

R
RA hole, 64
ra_not_pa field of TSB Config register, 108, 141
random number generator

generating data, 158
noise cells, 158
RNG_CTL register, 157
RNG_DATA register, 158

rank, 342
RAS/CAS, 342
real page number (ra) field of TTE, 102
Receive Block Ring, See RBR
Receive Completion Ring, See RCR
Receive DMA Channel, See RDC
RED_state

CPU state, 166–175
entering, 37, 89, 166
trap offset values, 166
trap vector address, 90

refresh, 342
guaranteeing asynchronicity, 392
triggering, 359

register
SFSR, 118

Relaxed Memory Order (RMO), 59, 61
reserved

fields in opcodes, 89
instructions, 89

reset
classes, 163
directing to RAM, 435
trap vector address, See RSTVADDR

Reset Fatal Error Enable (RESET_FEE) register, 160
Reset Generation (RESET_GEN) register, 159
Reset Source (RESET_SOURCE) register, 160
Reset Status (RESET_STAT) register, 161
Reset, Error, and Debug state, See RED_state
resumable_error exception, 55
RETURN instruction, 66
RMO, See relaxed memory order (RMO) memory

model

RSTV base address, 166

S
SAVE instruction, 92
scontext field, 134
scrubbing, 354
SDRAM lines, adjusting impedance, 353
Secondary Context register, 134
secure environment, 91
self-modifying code, 95
SerDes

registers, 379–381
serializer/deserializer, See SerDes
SETER register

bit description, 231
de field, 223, 225, 231, 239
description, 230
dhcce field, 222, 231, 239
pscce field, 203, 219, 220, 222, 224, 225, 226, 230,

405
SFAR register, 65
SFSR register, 118
shadow scan

captured values, 542–??
state, 431

short floating point
load instruction, 98
store instruction, 98

side effect
field of TTE, 102

single-DIMM mode, 342
SIR instruction, 166
SIU

function, 6
sl0/sl1 field settings of PCR register, 83
slot, 343
SOC

debug control register, 435
event debug response type encoding, 435
operation types, 306

SOC error registers, 323
SOC_ERROR_INJECTION_REG, 337
SOC_ERROR_INTERRUPT_ENABLE_REG, 330
SOC_ERROR_LOG_ENABLE_REG, 327
SOC_ERROR_STATUS_REG, 324
SOC_ERRORSTEER_REG, 332
SOC_FATAL_ERROR_ENABLE_REG, 333
SOC_PENDING_ERROR_STATUS_REG, 335
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SOC_SII_ERROR_SYNDROME_REG, 339
SOC errors

detection, 305
DMA read/write request, 317
for interrupts, 313
MCU error count interrupts, 321

software
defined fields of TTE, 102
Initiated reset (SIR), 90
Translation Table, 95, 103

software initiated reset (SIR), 166
software-defined field (soft) of TTE, 102
southbound (SB), 343
SPARC V9

compliance with, 89
speculative load, 116
SSI

error handling, 303–304
function, 6
instruction fetching from I/O address, 63

SSI Clock Select register, 195
SSI ROM Interface, See SSI
STBLOCKF instruction, 31
STD instruction, 96
STDF_mem_address_not_aligned exception, 96
STDFA instruction, 64
store buffer

diagnostic access, 407
registers, 408

STQF instruction, 96
STQFA instruction, 96
Strand Error Trap Enable register, See SETER register
strand instructions

available-to-unavailable change
speculation enabled, 455
speculation not enabled, 456

STXA instruction, 68
Subsystem Reset Generation (SSYS_RESET)

register, 161
supervisor interrupt queues, 54
sw_recoverable_error, 238, 246, 313
Synchronous Fault Address register (SFAR), 135
sys_clk

divider ratios @ 166.67 MHz, 156
System ???, See SMX
System Interface Unit, See SIU
system-on-a-chip, See SOC

T
Tag Access register, 110, 111, 136, 144
TAP_MBIST_ABORT instruction, 545
TAP_MBIST_CLKSTPEN instruction, 546
TAP_MBIST_DIAG instruction, 545
TBA register, 65
TCU

debugging actions, 440–444
L2 bank BIST state, 430

terminology for SPARC V9, definition of, 505
Test Control Unit, See TCU
thread-level parallelism

advantages, 2
background, 2
differences from instruction-level parallelism, 2

thread-level parallelism, See TLP
Throughput Computing, 1
TL (trap level) register

MAXPTL = 2, 37
TLB

Data Access register, 144, 147
Data In register, 110, 144, 148
demap operation, 151
memory management, 95
miss, 103
miss handler, 106, 110
operations, 151
read operation, 151
Tag Read register, 148
translation operation, 151
write operation, 151

TNPC register, 65
Total Store Order (TSO), 59, 60
TPC register, 65
training sequence (TS), 343
transaction layer packet, See TLP
Translation Lookaside Buffer, See TLB
Translation Table Entry see TTE
Translation Table Entry, See TTE
trap

behavior, 38–41
mask behavior, 42–44
MMU generated, 112
stack, 90
state registers, 90
to hyperprivileged mode, 37

Trap Enable Mask (tem) field of FSR register, 94
trap level register, See TL register
trap next program counter register, See TNPC register
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trap program counter register, See TPC register
trap stack array, See TSA
trap state register, See TSTATE register
trap type register, See TT register
Trap-on-Event (toe) field of PCR register, 82
traps

See also exceptions and individual trap names
TSA

entry contents, 412
error correction, 411

TSAC error reporting, 226
TSB

caching, 104
Config registers, 141
index to smallest, 101
in-memory, 95
miss handler, 110
organization, 104
Pointer register, 142
Tag Target register, 110, 111, 134

tsb_base field of TSB Config register, 141
tsb_size field of TSB Config register, 142, 142
TSO, See total store order (TSO) memory model
tstate, See trap state (TSTATE) register
TTE, 101, 113

U
UE, See uncorrected error (UE)
UltraSPARC T1 vs. UltraSPARC T2

debug support, 488
error handling, 487
instruction set architecture, 484
mechanisms for CPU throttling, 488
microarchitecture, 483
MMUs, 485
performance events captured by the

hardware, 486
UltraSPARC T2

address space, 66
architecture, 3
background, 1
extended instructions, 98
internal registers, 120
load/store support, 64
memory branches, 5
memory model supported, 59
memory organizations supported, 345
minimum single-strand instruction

latencies, 456–463
operation undefined, 185, 187
power management features, 389

UltraSPARC T2}
internal I/O addresses, 64

uncorrectable error (UE)
interrupt in SOC, 313
PIO load, 306
PIO store, 310

uncorrectable PIO load errors, recommend not
fatal, 309

uncorrected error (UE)
description, 197
multiple traps, 198

unimplemented instructions, 89
unit interval (UI), 343

V
VA Data Watchpoint register, 118
VA hole, 64
VA watchpoints, controlling address of and

enabling, 396
VA_tag field of TTE, 101
Valid (v) field of TTE, 102
VCO clock, 155
virtual address

space illustrated, 65
virtual processor resets

externally initiated reset, 165
generated, 163
and RSET_STAT register, 165
software-initiated reset, 166
watchdog reset (WDR) and error_state, 165

Visual Instruction Set, See VIS instructions
VUAD ECC error, 253

W
warm reset

determining cause, 235
frequency change procedure, 154
initialization sequence, 178
L2 fatal error, 160
programmed, 162
Reset Generation register, 159
trap vector, 200
use, 163
what happens, 164
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watchdog reset (WDR), 89, 165
watchpoint trap, 118
WDR, See watchdog_reset (WDR)
Weighted Random Early Discard, See WRED
window fill exception, See also fill_n_normal

exception
window spill exception, See also spill_n_normal

exception
writable (w) field of TTE, 103

X
XIR, See externally_initiated_reset (XIR)
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