N
> Sun

microsystems

UltraSPARC Architecture 2007

One Architecture
... Multiple Innovative Implementations

Draft D0.9.3b, 20 Oct 2009
Privilege Levels: ~ Privileged

and Nonprivileged
Distribution: Public

Part No: 950-5554-14
Revision: Draft D0.9.3b, 20 Oct 2009

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

ii UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Copyright 2002-2005 Sun Microsystems, Inc., 4150 Network Circle ® Santa Clara, CA 950540 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIXis a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, UltraSPARC, and VIS are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID

Copyright 2002-2005 Sun Microsystems, Inc., 4150 Network Circle ® Santa Clara, CA 950540 Etats-Unis. Tous droits réservés.

Des parties de ce document est protégé par un copyright 1994 SPARC International, Inc.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, UltraSPARC et VIS sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d"utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d"utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Comments and "bug reports” regarding this document are welcome; they should be submitted to email
address: UA-edi tor @un. com

iv UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Contents

g =3 - (< i
Document OVeIVIieW ..o vuttiiitit ittt ieetieeenneeneeeneeenseensenaeenns 1
1.1 Navigating UltraSPARC Architecture 2007, 1
1.2 Fonts and Notational Conventionsttt ninnnnnnn.. 2
1.2.1 Implementation Dependencies 3

1.2.2 Notation for Numbers. i, 3

1.2.3 Informational Notes 3

1.3 Reporting Errors in this Specification................ 4
I 23 84§) o = 5
Architecture OVeIVIeW. . oottt ittt it ittt tiiteeeeeeneenneenneennenns 13
3.1 The UltraSPARC Architecture 2007. ot 13
3.1.1 Features. i e 13

3.1.2 Attributes e 14

3.1.2.1 DesignGoals i 15

3.1.2.2 Register Windows 15

3.1.3 System Components 15

3.1.3.1 Binary Compatibility............................ 15

3.1.3.2 UltraSPARC Architecture 2007 MMU 15

3.1.33 Privileged Software................. 15

3.1.4 Architectural Definition 16

3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9 Architecture 16
3.1.6 Implementation Compliance with UltraSPARC Architecture 2007 16

3.2 Processor Architecture 16
3.21 Integer Unit IU) o i 16

322 Floating-Point Unit (FPU)., 17

33 Instructions........... 17
3.3.1 Memory ACCeSSot 17

33.1.1 Memory Alignment Restrictions 18

33.1.2 Addressing Conventions 18

33.13 AddressingRange 18

33.14 Load/Store Alternate 18

3.3.15 Separate Instruction and Data Memories........... 19

3.3.1.6 Input/Output I/O) L. 19

3.3.1.7 Memory Synchronization........................ 19

3.3.2 Integer Arithmetic / Logical / Shift Instructions 19

3.3.3 Control Transfer. i 20

3.34 State Register Access.............ooiiiiiiiiiiiii.. 20

33.4.1 Ancillary State Registers......................... 20

3.3.4.2 PR State Registers 20

3.3.5 Floating-Point Operate. 21

3.3.6 Conditional Move. i 21

337 Register Window Management. 21

3.3.8 SIMD . . 21

34 TraPS. .o 21
4 DataFormats....... ...ttt ittt ittt 23
41 Integer DataFormats 24
411 Signed Integer Data Types............................... 24

41.11 Signed Integer Byte, Halfword, and Word. 25

41.1.2 Signed Integer Doubleword (64 bits) 25

41.13 Signed Integer Extended-Word (64 bits) 25

412 Unsigned Integer Data Types 25

4121 Unsigned Integer Byte, Halfword, and Word 26

41.22 Unsigned Integer Doubleword (64 bits). 26

4123 Unsigned Extended Integer (64 bits) 26

413 Tagged Word (32 bits).t 26

4.2 Floating-Point Data Formats......................... 27
421 Floating Point, Single Precision (32 bits) 27

422 Floating Point, Double Precision (64 bits) 27

4.2.3 Floating Point, Quad Precision (128 bits). 28

424 Floating-Point Data Alignment in Memory and Registers 29

43 SIMDDataFormats 29
431 Uint8 SIMD Data Format............ 30

432 Intl6 SIMD Data Formats 30

433 Int32 SIMD Data Format 30

5 Registersiiiiiiiiiii i i i i i i i i i i i e e, 31
51 Reserved Register Fields 32
5.2 General-Purpose RRegisters.l 32
521 Global RRegisters.o i 33

522 Windowed R Registers. 34

523 Special RRegisters o L 37

5.3 Floating-Point Registers L. 38
53.1 Floating-Point Register Number Encoding 40

53.2 Double and Quad Floating-Point Operands 41

5.4 Floating-Point State Register (FSR) 42
54.1 Floating-Point Condition Codes (fccO, fccl, fcc2, fee3). 42

542 Rounding Direction (rd)................. 43

543 Trap Enable Mask (tem) 43

5.4.4 Nonstandard Floating-Point(ns) 43

5.4.5 FPU Version (VEI) . ..ottt e i e 43

54.6 Floating-Point Trap Type (ftt). 44

54.7 Accrued Exceptions (8€XC) i 46

5.4.8 Current Exception (Cexc) 46

5.4.9 Floating-Point Exception Fields 47

5.4.10 FSR Conformancec..oouuiiiiiiinininnninnn.. 48

5.5 Ancillary State Registers il 48
5.5.1 32-bit Multiply /Divide Register (Y) (ASR0) 50

5.5.2 Integer Condition Codes Register (CCR) (ASR2) 50

5.5.2.1 Condition Codes (CCR.xcc and CCR.icC)........... 50

5.5.3 Address Space Identifier (ASI) Register (ASR3)............. 51

5.5.4 Tick (TICK) Register (ASR4) 52

5.5.5 Program Counters (PC, NPC) (ASR5) 52

5.5.6 Floating-Point Registers State (FPRS) Register (ASR6) 53

5.5.7 General Status Register (GSR) (ASR19) 54

ii UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

6

55.8 SOFTINTP Register (ASRs 20,21,22) 54

5.5.8.1 SOFTINT_SETP Pseudo-Register (ASR20) 55

5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR21)......... 56

5.5.9 Tick Compare (TICK_CMPRP) Register (ASR23) 56

5.5.10 System Tick (STICK) Register (ASR24) 57

5.5.11 System Tick Compare (STICK_CM PRF) Register (ASR25) ... 57

5.6 Register-Window PR State Registers. 58
5.6.1 Current Window Pointer (CWPT) Register (PR9) 59

5.6.2 Savable Windows (CANSAVEY) Register (PR10) 59

5.6.3 Restorable Windows (CANRESTORED) Register (PR 11) 59

5.6.4 Clean Windows (CLEANWIND) Register (PR12) 59

5.6.5 Other Windows (OTHERWINT) Register (PR13) 60

5.6.6 Window State (WSTATEP) Register (PR14) 60

5.6.7 Register Window Management 60

5.6.7.1 Register Window State Definition................. 60

5.6.7.2 Register Window Traps.......................... 61

5.7 Non-Register-Window PR State Registers 61
5.7.1 Trap Program Counter (TPCP) Register (PRO) 61

5.7.2 Trap Next PC (TN PCP) Register (PR1) 62

5.7.3 Trap State (TSTATEP) Register (PR2) 63

574 Trap Type (TTY) Register (PR3)cc.virernenn... 64

5.7.5 Trap Base Address (TBAP) Register (PR5) 64

5.7.6 Processor State (PSTATEP) Register (PR6) 64

5.7.7 Trap Level Register (TLP) (PR7) o 68

5.7.8 Processor Interrupt Level (PILP) Register (PR8) 69

5.7.9 Global Level Register (GLY) (PR16) 69
Instruction Set OVerview.ottt ittt iiiiiinennes 71
6.1 Instruction Execution i 71
6.2 Instruction Formats. 72
6.3 Instruction Categories. i 72
6.3.1 Memory Access Instructions 73

6.3.1.1 Memory Alignment Restrictions ~ 73

6.3.1.2 Addressing Conventions 74

6.3.1.3 Address Space Identifiers (ASIs) 76

6.3.1.4 Separate Instruction Memory..................... 78

6.3.2 Memory Synchronization Instructions 78

6.3.3 Integer Arithmetic and Logical Instructions 79

6.3.3.1 Setting ConditionCodes...................... ... 79

6.3.3.2 Shift Instructions 79

6.3.3.3 Set High 22 Bits of Low Word 79

6.3.3.4 Integer Multiply/Divide. 79

6.3.3.5 Tagged Add/Subtract........................... 79

6.3.4 Control-Transfer Instructions (CTIs) 79

6.3.4.1 Conditional Branches 81

6.3.4.2 Unconditional Branches 81

6.3.4.3 CALL and JMPL Instructions. 81

6.3.4.4 RETURN Instruction........... 82

6.3.4.5 DONE and RETRY Instructions. 82

6.3.4.6 Trap Instruction (Tec). ... 82

6.3.4.7 DCTICouples. ... 82

6.3.5 Conditional Move Instructions 83

6.3.6 Register Window Management Instructions 83

6.3.6.1 SAVE Instruction oL 84

6.3.6.2 RESTORE Instructionc.covuiuinana.. 84

6.3.6.3 SAVED Instruction., 84

6.3.6.4 RESTORED Instruction. 85

* Contents iii

6.3.6.5 Flush Windows Instruction 85

6.3.7 Ancillary State Register (ASR) Access 85
6.3.8 Privileged Register Access., 85
6.3.9 Floating-Point Operate (FPop) Instructions 85
6.3.10 Implementation-Dependent Instructions. 86
6.3.11 Reserved Opcodes and Instruction Fields 86
7 INStructionS...... ..ottt i i i i i i i e 87
7.31.1 FMULS8X16 Instruction, 147
7.31.2 FMULS8X16AU Instruction, 147
7.31.3 FMULS8SX16AL Instruction 148
7314 FMULS8SUx16 Instructiono, 148
7.31.5 FMULSULX16 Instruction, 148
7.31.6 FMULDS8SUx16 Instructionc..oiiiin ... 149
7.31.7 FMULDSULX16 Instruction.ot 150
7.34.1 FPACKIOG . .o e 154
7.34.2 FPACKSB2 . .ot 155
7.34.3 FPACKEIX . .ottt e e 156
7.62.1 Memory Synchronization. 202
7.62.2 Synchronization of the Virtual Processor 203
7.62.3 TSO Ordering Rules affecting Use of MEMBAR. 203
7.73.1 Exceptions i 220
7.73.2 Weak versus Strong Prefetches 221
7.73.3 Prefetch Variants. i, 222
7.73.3.1 Prefetch for Several Reads (fcn =0, 20(1444)) 222
7.73.3.2 Prefetch for One Read (fcn =1, 21(15¢¢)) 222

7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(164¢))223
7.73.3.4 Prefetch for One Write (fcn =3, 23(1714)) 223
77335 PrefetchPage(fcn=4) 223

7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(114¢)) . . .223
7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24-31) 224

7.73.5 Additional Notes.t 224

8 IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007.......... 291
8.1 Traps Inhibiting Results........... L 291
8.2 Underflow Behavior. i 292
8.2.1 Trapped Underflow Definition (ufm=1).................. 293

8.2.2 Untrapped Underflow Definition (ufm=0)................ 293

8.3 Integer Overflow Definition 293
8.4 Floating-Point Nonstandard Mode. 293
8.5 ArithmeticResultTables i 294
8.5.1 Floating-Point Add (FADD) 295

8.5.2 Floating-Point Subtract (FSUB) 295

8.5.3 Floating-Point Multiply 296

8.5.4 Floating-Point Multiply-Add (FMADD................... 296

8.5.5 Floating-Point Negative Multiply-Add (FNMADD) 297

8.5.6 Floating-Point Multiply-Subtract (FMSUB)................ 298

8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB). 299

8.5.8 Floating-Point Divide (FDIV) 301

8.5.9 Floating-Point Square Root (FSQRT) 301

8.5.10 Floating-Point Compare (FCMP, FCMPE) 302

8.5.11 Floating-Point to Floating-Point Conversions (F<s|d | q>TO<s|d | q>) 302
8.5.12 Floating-Point to Integer Conversions (F<s|d | g>TO<ilx>) . 303
8.5.13 Integer to Floating-Point Conversions (F<ilx>TO<s|dIq>) . 304

I Y [1 11) o 305
9.1 Memory Location Identification....................... 305

iv UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

9.2 Memory Accesses and Cacheability 306

9.2.1 Coherence Domains. i 306
9.2.1.1 Cacheable Accesses 306
9.2.1.2 Noncacheable Accesses......................... 306
9213 Noncacheable Accesses with Side-Effect 307
9.3 Memory Addressing and Alternate Address Spaces 308
9.3.1 Memory Addressing Types. 308
9.3.2 Memory Address Spaces. 308
9.3.3 Address Space Identifiers............... ... 309
9.4 SPARCV9MemoryModel............. 310
9.4.1 SPARC V9 Program Execution Model..................... 310
9.4.2 Virtual Processor/Memory Interface Model 312
9.5 The UltraSPARC Architecture Memory Model —TSO 313
9.5.1 Memory Model Selection, 313
9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model 314
9.5.3 TSO Ordering Rules. 315
9.54 Hardware Primitives for Mutual Exclusion................ 316
9.5.4.1 Compare-and-Swap (CASA, CASXA)............. 316
9.5.42 Swap (SWAP) 316
9.5.43 Load Store Unsigned Byte (LDSTUB) 316
9.5.5 Memory Ordering and Synchronization................... 316
9.5.5.1 Ordering MEMBAR Instructions. 317
9.5.5.2 Sequencing MEMBAR Instructions............... 318
9.5.5.3 Synchronizing Instruction and Data Memory 318
9.6 NonfaultingLoad 319
9.7 Store Coalescing. ... 320
10 Address Space Identifiers (ASIS)coviiiiiiii i iiiiiiniinneenn. 321
10.1 Address Space Identifiers and Address Spaces................... 321
10.2 ASIValUues. ...t 321
10.3 ASIAssignments i 322
10.3.1 Supported ASIs 322
10.4 Special Memory Access ASIS i i 329
10.4.1 ASIs 1016, 1146, 1616, 1714 and 1814 (ASI _*AS_I F_USER_*, .. 329
10.4.2 ASIs 1816, 1916, 1E1¢, and 1F;4 ASI _*AS_| F_USER * _LI TTLE, 329
10.4.3 AST 1416 (ASI _REAL). ... 330
10.4.4 ASI1516 (ASI _REAL_1O) ..o 330
10.4.5 ASI1C1g (ASI _REAL_LITTLE) ..o 330
10.4.6 ASI 1Dy (ASI _REAL_IO LITTLE) ... 331
10.4.7 ASIs 2246, 2314, 2714, 2A14, 2B16, 2Fq6 (Privileged Load Integer Twin Extended Word)
331
10.4.8 ASIs 2646 and 2E4 (Privileged Load Integer Twin Extended Word, Real Addressing)
331
10.4.9 ASIs E24¢, E31¢, EAq¢, EByg
(Nonprivileged Load Integer Twin Extended Word) 332
10.4.10 Block Loadand Store ASIs........... 333
10.411 Partial Store ASIs........ i 333
10.4.12 Short Floating-Point Load and Store ASIs 333
10.5 ASI-Accessible Registers. i 333
10.5.1 Privileged Scratchpad Registers (ASI _SCRATCHPAD) 334
10.5.2 ASI Changes in the UltraSPARC Architecture.............. 334
11 Performance Instrumentation............... ... o i i, 337
11.1 High-Level Requirements. ittt .. 337
11.1.1 Usage SCenariosoouiiiiiiiiiiniiiiian.. 337
11.1.2 Metrics. . . oo 338

e Contents v

13

14

11.1.3 Accuracy Requirements............., 338

11.2 Performance Counters and Controls 339
11.2.1 Counter Overflow. 339

1 341
12.1 Virtual Processor Privilege Modes 342
12.2 Virtual Processor Statesand Traps it 343
12.2.0.1 Usageof TrapLevels 343

12.3 Trap Categories............ .. i 343
12.3.1 Precise Traps i 344

12.3.2 Deferred Traps ..., 344

12.3.3 Disrupting Traps i 345

12.3.3.1 Disrupting versus Precise and Deferred Traps 345

12.3.3.2 Causes of Disrupting Traps 346

12.3.3.3 Conditioning of Disrupting Traps................. 346

12.3.3.4 Trap Handler Actions for Disrupting Traps 347

12.3.4 Uses of the Trap Categories............................. 347

124 Trap Control 347
1241 PILControl................ 348

12.4.2 FSRtemControl.............., 348

12.5 Trap-Table Entry Addresses 348
12.5.1 Trap-Table Entry Address to Privileged Mode 348

12.5.2 Privileged Trap Table Organization 349

12.5.3 Trap Type (TT) oo 349

12.5.3.1 Trap Type for Spill/Fill Traps.................... 355

12.5.4 Trap Priorities 356

12.6 Trap Processing............ ... 356
12.6.1 Normal Trap Processing. 356

12.7 Exception and Interrupt Descriptions 358
12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007 362

12.8 Register Window Traps i 362
12.8.1 Window Spill and Fill Traps 363

12.8.2 clean_windowTrap......... ... i 363

12.8.3 Vectoring of Fill/Spill Traps 363

12.8.4 CWPonWindow Traps, 363

12.8.5 Window Trap Handlers 364
Interrupt Handlingooo i i i i 365
13.1 InterruptPackets.......... 365
13.2 Software Interrupt Register (SOFTINT)................ 366
13.2.1 Setting the Software Interrupt Register 366

13.2.2 Clearing the Software Interrupt Register.................. 366

13.3 Interrupt QUeUes.o 366
13.3.1 Interrupt Queue Registers 367

134 InterruptTrapso o 368
Memory Managementttt ittt 369
14.1 Virtual Address Translation. 369
142 ContextIDo 372
14.3 TSB Translation Table Entry (TTE)o ... 373
14.4 Translation Storage Buffer (TSB)............. 376
14.4.1 TSB Indexing Support 376

14.4.2 TSB Cacheability and Consistency 377

14.4.3 TSB Organization, 377

14.5 ASI Value, Context ID, and Endianness Selection for Translation 377

vi UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

14.6 SPARC V9 “MMU Attributes” i 379

14.6.1 Accessing MMU Registers 380

14.6.2 ContextID Registers 380
OPCode Maps. oo oottt ittt it i i i i et e 383
Implementation Dependenciesoo ittt 395
B.1 Definition of an Implementation Dependency........................ 395
B.2 Hardware Characteristics 396
B.3 Implementation Dependency Categories 396
B.4 List of Implementation Dependencies. 397
Assembly Language Syntaxoiiiiiiiiiiiiiiiiiiiiiiiiiiin., 409
C1 NotationUsed i 409
C11 Register Names............ 409

C12 Special Symbol Names.o, 410

C13 Values. 412

Cl4 Labels...... ..o 412

C15 Other Operand Syntax............. ..., 412

C.1l.6 Comments i 414

C2 SyntaxDesign......... ... 414
C.3 SyntheticInstructions i 414
.. Index1

« Contents vii

viii UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987. Shortly after, the
SPARC V8 architecture was announced and published in book form. The 64-bit SPARC V9
architecture was released in 1994. Now, the UltraSPARC Architecture specification provides the first
significant update in over 10 years to Sun’s SPARC processor architecture.

What’s New?

UltraSPARC Architecture 2007 pulls together in one document all parts of the architecture:
» the nonprivilged (Level 1) architecture from SPARC V9

» most of the privileged (Level 2) architecture from SPARC V9

» more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions (beyond SPARC V9), developed
through the processor generations of UltraSPARC III, IV, IV+, and T1:

» the VISO 1 and VIS 2 instruction set extensions and the associated GSR register

» multiple levels of global registers, controlled by the GL register

» Sun’s 64-bit MMU architecture

» privileged instructions ALLCLEAN, OTHERW, NORMALW, and INVALW

= access to the VER register is now hyperprivileged

» the SIR instruction is now hyperprivileged

UltraSPARC Architecture 2007 includes the following changes since :

» replacement of instruction_address_exception and data_acess_exception exceptions by multiple
IAE_* and DAE_* exceptions

» FSR.ftt = 3 (unimplemented_FPop) has been retired; all unimplemented FPops now generate the
illegal_instruction exception instead of fp_exception_other with FSR.ftt =3
(unimplemented_FPop).

In addition, architectural features are now tagged with Software Classes and Implementation
Classes!. Software Classes provide a new, high-level view of the expected architectural longevity and
portability of software that references those features. Implementation Classes give an indication of
how efficiently each feature is likely to be implemented across current and future UltraSPARC
Architecture processor implementations. This information provides guidance that should be

1 although most features in this specification are already tagged with Software Classes, the full description of those Classes does not
appear in this version of the specification. Please check back
(htt p: // openspar c. sunsour ce. net/ nonav/ openspar ct 1. ht m) for a later release of this document, which will include that
description

* Preface i

particularly helpful to programmers who write in assembly language or those who write tools that
generate SPARC instructions. It also provides the infrastructure for defining clear procedures for
adding and removing features from the architecture over time, with minimal software disruption.

Acknowledgements

This specification builds upon all previous SPARC specifications — SPARC V7, V8, and especially,
SPARC V9. It therefore owes a debt to all the pioneers who developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun Microsystems, with
special assistance from Professor David Patterson of University of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member companies of the
SPARC International Architecture Committee: Amdahl Corporation, Fujitsu Limited, ICL, LSI Logic,
Matsushita, Philips International, Ross Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee, with key
contributions from the individuals named in the Editor’s Notes section of The SPARC Architecture
Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC Architecture 2007
specification are the result of years of deliberation, review, and feedback from readers of earlier Sun-
internal revisions. I would particularly like to acknowledge the following people for their key
contributions:

s The UltraSPARC Architecture working group, who reviewed dozens of drafts of this specification
and strived for the highest standards of accuracy and completeness; its active members included:
Hendrik-Jan Agterkamp, Paul Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (JJ)
Johnson, Paul Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer, Seongbae
Park, Joel Storm, David Weaver, and Tom Webber.

» Robert (Bob) Maier, for expansion of exception descriptions in every page of the Instructions
chapter, major re-writes of several chapters and appendices (including Memory, Memory
Management, Performance Instrumentation, and Interrupt Handling), significant updates to 5 other
chapters, and tireless efforts to infuse commonality wherever possible across implementations.

= Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more typographical
errors and small inconsistencies than all other reviewers combined

» Jim Laudon (an UltraSPARC T1 architect and author of that processor’s implementation
specification), for numerous descriptions of new features which were merged into this
specicification

» The working group responsible for developing the system of Software Classes and Implementation
Classes, comprising: Steve Chessin, Yuan Chou, Peter Damron, Q. Jacobson, Nicolai Kosche, Bob
Maier, Ashley Saulsbury, Lawrence Spracklen, and David Weaver.

» Lawrence Spracklen, for his advice and numerous contributions regarding descriptions of VIS
instructions

» Tom Webber, for providing descriptions of several new features in UltraSPARC Architecture 2007

I hope you find the UltraSPARC Architecture 2007 specification more complete, accurate, and readable
than its predecessors.

— David Weaver
UltraSPARC Architecture Principal Engineer and specification editor

ii UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Corrections and other comments regarding this specification can be emailed to:
UA- edi t or @un. com

* Preface iii

iv UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 1

Document Overview

This chapter discusses:

» Navigating UltraSPARC Architecture 2007 on page 1.
» Fonts and Notational Conventions on page 2.
= Reporting Errors in this Specification on page 4.

1.1

Navigating UltraSPARC Architecture 2007

If you are new to the SPARC architecture, read Chapter 3, Architecture Overview, study the definitions
in Chapter 2, Definitions, then look into the subsequent sections and appendixes for more details in
areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture 2007, note that
UltraSPARC Architecture 2007 conforms to the SPARC V9 Level 1 architecture (and most of Level 2),
with numerous extensions — particularly with respect toVIS instructions.

This specfication is structured as follows:

» Chapter 2, Definitions, which defines key terms used throughout the specification

s Chapter 3, Architecture Overview, provides an overview of UltraSPARC Architecture 2007

» Chapter 4, Data Formats, describes the supported data formats

» Chapter 5, Registers, describes the register set

» Chapter 6, Instruction Set Overview, provides a high-level description of the UltraSPARC
Architecture 2007 instruction set

» Chapter 7, Instructions, describes the UltraSPARC Architecture 2007 instruction set in great detail

s Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007, describes the trap
model

s Chapter 9, Memory describes the supported memory model
s Chapter 10, Address Space Identifiers (ASIs), provides a complete list of supported ASIs

s Chapter 11, Performance Instrumentation describes the architecture for performance monitoring
hardware

s Chapter 12, Traps, describes the trap model
» Chapter 13, Interrupt Handling, describes how interrupts are handled
» Chapter 14, Memory Management, describes MMU operation

» Appendix A, Opcode Maps, provides the overall picture of how the instruction set is mapped into
opcodes

» Appendix B, Implementation Dependencies, describes all implementation dependencies

» Appendix C, Assembly Language Syntax, describes extensions to the SPARC assembly language
syntax; in particular, synthetic instructions are documented in this appendix

1.2 Fonts and Notational Conventions

Fonts are used as follows:
» Italic font is used for emphasis, book titles, and the first instance of a word that is defined.

» [talic font is also used for terms where substitution is expected, for example, “f ccn”, “virtual
processor n”, or “reg_plus_imm”.

» ltalic sans serif font is used for exception and trap names. For example, “The privileged_action
exception....”

= lowercase helvetica font is used for register field names (named bits) and instruction field names,
for example: “The rsl field contains....”

» UPPERCASE HELVETICA font is used for register names; for example, FSR.

» TYPEWRI TER (Courier) font is used for literal values, such as code (assembly language, C
language, ASI names) and for state names. For example: % 0, ASI _PRI MARY, execut e_st at e.

» When a register field is shown along with its containing register name, they are separated by a
period ('), for example, “FSR.cexc”.

» UPPERCASE words are acronyms or instruction names. Some common acronyms appear in the
glossary in Chapter 2, Definitions. Note: Names of some instructions contain both upper- and
lower-case letters.

» An underscore character joins words in register, register field, exception, and trap names. Note:
Such words may be split across lines at the underbar without an intervening hyphen. For example:
“This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

s The left arrow symbol (—) is the assignment operator. For example, “PC ~ PC + 1” means that
the Program Counter (PC) is incremented by 1.

» Square brackets ([]) are used in two different ways, distinguishable by the context in which they
are used:

= Square brackets indicate indexing into an array. For example, TT[TL] means the element of the
Trap Type (TT) array, as indexed by the contents of the Trap Level (TL) register.

= Square brackets are also used to indicate optional additions/extensions to symbol names. For
example, “ST[D | QJF” expands to all three of “STF”, “STDF”, and “STQF”. Similarly,
AS| _PRI MARY[_LI TTLE] indicates two related address space identifiers, ASI _PRI MARY and
AS| _PRI MARY_LI TTLE. (Contrast with the use of angle brackets, below)

» Angle brackets (< >) indicate mandatory additions/extensions to symbol names. For example,
“ST<D1Q>F" expands to mean “STDF” and “STQEF”. (Contrast with the second use of square
brackets, above)

» Curly braces ({}) indicate a bit field within a register or instruction. For example, CCR{4} refers to
bit 4 in the Condition Code Register.

» A consecutive set of values is indicated by specifying the upper and lower limit of the set separated
by a colon (:), for example, CCR{3:0} refers to the set of four least significant bits of register CCR.
(Contrast with the use of double periods, below)

2 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

1.2.1

1.2.2

1.2.3

» A double period (..) indicates any single intermediate value between two given end values is
possible. For example, NAMEJ[2..0] indicates four forms of NAME exist: NAME, NAME2, NAME]1,
and NAMEO; whereas NAME<2..0> indicates that three forms exist: NAME2, NAME], and
NAMEQ. (Contrast with the use of the colon, above)

» A vertical bar (|) separates mutually exclusive alternatives inside square brackets ([]), angle
brackets (< >), or curly braces ({}). For example, “"NAMEJA | B]” expands to “NAME, NAMEA,
NAMEB” and “NAME<A | B>" expands to "NAMEA, NAMEB".

s The asterisk (*) is used as a wild card, encompassing the full set of valid values. For example,
FCMP* refers to FCMP with all valid suffixes (in this case, FCMP<s|d |q> and FCMPE<s|d | g>).
An asterisk is typically used when the full list of valid values either is not worth listing (because it
has little or no relevance in the given context) or the valid values are too numerous to list in the
available space.

s The slash (/) is used to separate paired or complementary values in a list, for example, “the
LDBLOCKEF/STBLOCKEF instruction pair”

s The double colon (::) is an operator that indicates concatenation (typically, of bit vectors).
Concatenation strictly strings the specified component values into a single longer string, in the
order specified. The concatenation operator performs no arithmetic operation on any of the
component values.

Implementation Dependencies

Implementors of UltraSPARC Architecture 2007 processors are allowed to resolve some aspects of the
architecture in machine-dependent ways.

The definition of each implementation dependency is indicated by the notation “IMPL. DEP. #nn-XX:
Some descriptive text”. The number nn provides an index into the complete list of dependencies in
Appendix B, Implementation Dependencies.

A reference to (but not definition of) an implementation dependency is indicated by the notation
“(impl. dep. #nn)”.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Numbers in
other bases are followed by a numeric subscript indicating their base (for example, 1001,,

FFFF 000044). Long binary and hexadecimal numbers within the text have spaces inserted every four
characters to improve readability. Within C language or assembly language examples, numbers may
be preceded by “0x” to indicate base-16 (hexadecimal) notation (for example, OxFFFF0000).

Informational Notes

This guide provides several different types of information in notes, as follows:

Note | General notes contain incidental information relevant to the
paragraph preceding the note.

Programming | Programming notes contain incidental information about how
Note | software can use an architectural feature.

Implementation | An Implementation Note contains incidental information,
Note | describing how an UltraSPARC Architecture 2007 processor
might implement an architectural feature.

CHAPTER 1 * Document Overview 3

V9 Compatibility | Note containing information about possible differences between

Note | UltraSPARC Architecture 2007 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2007
implementations and might not apply to other SPARC V9
implementations.

Forward | Note containing information about how the UltraSPARC
Compatibility | Architecture is expected to evolve in the future. Such notes are
Note | not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.

1.3 Reporting Errors in this Specification

This specification has been reviewed for completeness and accuracy. Nonetheless, as with any
document this size, errors and omissions may occur, and reports of such are welcome. Please send
“bug reports” and other comments on this document to the email address: UA- edi t or @un. com

4 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of UltraSPARC
Architecture 2007.

address space

address space identifier
(ASI)

aliased

application program

ASI
ASR

big-endian

BLD
BST
byte
CCR

clean window

coherence

completed (memory
operation)

context

context ID

copyback

A range of 264 Jocations that can be addressed by instruction fetches and load, store, or load-store
instructions. See also address space identifier (ASI).

An 8-bit value that identifies a particular address space. An ASI is (implicitly or explicitly)
associated with every instruction access or data access. See also implicit ASI.

Said of each of two virtual or real addresses that refer to the same underlying memory location.

A program executed with the virtual processor in nonprivileged mode. Note: Statements made in
this specification regarding application programs may not be applicable to programs (for
example, debuggers) that have access to privileged virtual processor state (for example, as stored
in a memory-image dump).

Addpress space identifier.
Ancillary State register.

An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the most significant; a byte’s significance decreases as its address increases.

(Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKEF.
(Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKE.
Eight consecutive bits of data, aligned on an 8-bit boundary.

Abbreviation for Condition Codes Register.

A register window in which each of the registers contain 0, a valid address from the current
address space, or valid data from the current address space.

A set of protocols guaranteeing that all memory accesses are globally visible to all caches on a
shared-memory bus.

Said of a memory transaction when an idealized memory has executed the transaction with
respect to all processors. A load is considered completed when no subsequent memory
transaction can affect the value returned by the load. A store is considered completed when no
subsequent load can return the value that was overwritten by the store.

A set of translations that defines a particular address space. See also Memory Management Unit
(MMU).

A numeric value that uniquely identifies a particular context.

The process of sending a copy of the data from a cache line owned by a physical processor core,
in response to a snoop request from another device.

CPI
cross-call
CTI

current window

cycle

data access
(instruction)

DCTI
denormalized number

deprecated

doubleword

even parity

exception

explicit ASI

extended word

fcen
FGU

floating-point
exception

F register

floating-point operate
instructions

Cycles per instruction. The number of clock cycles it takes to execute an instruction.
An interprocessor call in a system containting multiple virtual processors.
Abbreviation for control-transfer instruction.

The block of 24 R registers that is presently in use. The Current Window Pointer (CWP) register
points to the current window.

The atomic unit of time in a physical implementation of a processor core. The duration of a cycle
is its period, and the inverse of the period is the physical processor core’s operating frequency
(typically measured in gigaHertz, in contemporary implementations). The physical processor
core divides the work of managing instructions and data and executing instructions into multiple
cycles. This division of processing steps into cycles is implementation-dependent. The operating
frequency is implementation-dependent and potentially varying in time for a given
implementation.

A load, store, load-store, or FLUSH instruction.
Delayed control transfer instruction.
Synonym for subnormal number.

The term applied to an architectural feature (such as an instruction or register) for which an
UltraSPARC Architecture implementation provides support only for compatibility with previous
versions of the architecture. Use of a deprecated feature must generate correct results but may
compromise software performance.

Deprecated features should not be used in new UltraSPARC Architecture software and may not
be supported in future versions of the architecture.

An 8-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

The mode of parity checking in which each combination of data bits plus a parity bit contains an
even number of ‘1’ bits.

A condition that makes it impossible for the processor to continue executing the current
instruction stream. Some exceptions may be masked (that is, trap generation disabled — for
example, floating-point exceptions masked by FSR.tem) so that the decision on whether or not to
apply special processing can be deferred and made by software at a later time. See also trap.

An ASI that that is provided by a load, store, or load-store alternate instruction (either from its
imm_asi field or from the ASI register).

An 8-byte datum, nominally containing integer data. Note: The definition of this term is
architecture dependent and may differ from that used in other processor architectures.

One of the floating-point condition code fields fccO, fccl, fcc2, or fee3.

Floating-point and Graphics Unit (which most implementations specify as a superset of FPU).

An exception that occurs during the execution of a floating-point operate (FPop) instruction. The
exceptions are unfinished_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

A floating-point register. The SPARC V9 architecture includes single-, double-, and quad-
precision F registers.

Instructions that perform floating-point calculations, as defined in Floating-Point Operate (FPop)
Instructions on page 85. FPop instructions do not include FBfcc instructions, loads and stores
between memory and the F registers, or non-floating-point operations that read or write F
registers.

6 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

floating-point trap
type

floating-point unit

FPop
FPRS
FPU

FSR

GL

GSR
halfword

hyperprivileged

IEEE 754

IEEE-754 exception

implementation

implementation
dependent

implicit ASI

initiated
instruction field
instruction group

instruction set
architecture

integer unit

interrupt request
inter-strand
intra-strand

invalid
(ASI or address)

The specific type of a floating-point exception, encoded in the FSRftt field.

A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

Abbreviation for floating-point operate (instructions).
Floating-Point Register State register.

Floating-Point Unit.

Floating-Point Status register.

Global Level register.

General Status register.

A 2-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

An adjective that describes:

(1) the state of the processor when theprocessor is in hyperprivileged mode;

(2) processor state that is only accessible to software while the processor is in
hyperprivileged mode

IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

A floating-point exception, as specified by IEEE Std 754-1985. Listed within this specification as
IEEE_754_exception.

Hardware or software that conforms to all of the specifications of an instruction set architecture
(ISA).

An aspect of the UltraSPARC Architecture that can legitimately vary among implementations. In
many cases, the permitted range of variation is specified. When a range is specified, compliant
implementations must not deviate from that range.

An address space identifier that is implicitly supplied by the virtual processor on all instruction
accesses and on data accesses that do not explicitly provide an ASI value (from either an imm_asi
instruction field or the ASI register).

Synonym for issued.
A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous execution.

A set that defines instructions, registers, instruction and data memory, the effect of executed
instructions on the registers and memory, and an algorithm for controlling instruction execution.
Does not define clock cycle times, cycles per instruction, data paths, etc. This specification defines
the UltraSPARC Architecture 2007 instruction set architecture.

A processing unit that performs integer and control-flow operations and contains general-
purpose integer registers and virtual processor state registers, as defined by this specification.

A request for service presented to a virtual processor by an external device.
Describes an operation that crosses virtual processor (strand) boundaries.

Describes an operation that occurs entirely within one virtual processor (strand).

Undefined, reserved, or illegal.

CHAPTER 2 + Definitions 7

ISA

issued

IU

little-endian

load

load-store

may

Memory Management
Unit

MMU
multiprocessor system

must

next program counter

NFO

nonfaulting load

nonprivileged

nonprivileged mode

nontranslating ASI

Instruction set architecture.

A memory transaction (load, store, or atomic load-store) is said to be “issued” when a virtual
processor has sent the transaction to the memory subsystem and the completion of the request is
out of the virtual processor’s control. Synonym for initiated.

Integer Unit.

An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the least significant; a byte’s significance increases as its address increases.

An instruction that reads (but does not write) memory or reads (but does not write) location(s) in
an alternate address space. Some examples of Load includes loads into integer or floating-point
registers, block loads, and alternate address space variants of those instructions. See also load-
store and store, the definitions of which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads and writes
location(s) in an alternate address space. Load-store includes instructions such as CASA, CASXA,
LDSTUB, and the deprecated SWAP instruction. See also load and store, the definitions of which
are mutually exclusive with load-store.

A keyword indicating flexibility of choice with no implied preference. Note: “may” indicates that
an action or operation is allowed; “can” indicates that it is possible.

The address translation hardware in an UltraSPARC Architecture implementation that translates
64-bit virtual address into underlying hardware addresses. The MMU is composed of the ASRs
and ASI registers used to manage address translation. See also context real address, and virtual
address.

Abbreviation for Memory Management Unit.
A system containing more than one processor.

A keyword indicating a mandatory requirement. Designers must implement all such mandatory
requirements to ensure interoperability with other UltraSPARC Architecture-compliant products.
Synonym for shall.

Conceptually, a register that contains the address of the instruction to be executed next if a trap
does not occur.

Nonfault access only.

A load operation that behaves identically to a normal load operation, except when supplied an
invalid effective address by software. In that case, a regular load triggers an exception whereas a
nonfaulting load appears to ignore the exception and loads its destination register with a value of
zero (on an UltraSPARC Architecture processor, hardware treats regular and nonfaulting loads
identically; the distinction is made in trap handler software). Contrast with speculative load.

An adjective that describes

(1) the state of the virtual processor when PSTATE.priv = 0, that is, when

it is in nonprivileged mode;

(2) virtual processor state information that is accessible to software regardless
of the current privilege mode; for example, nonprivileged registers,
nonprivileged ASRs, or, in general, nonprivileged state;

(3) an instruction that can be executed in any privilege mode (privileged
or nonprivileged).

The mode in which a virtual processor is operating when executing application software (at the
lowest privilege level). Nonprivileged mode is defined by PSTATE.priv = 0. See also privileged
and hyperprivileged.

An ASI that does not refer to memory (for example, refers to control/status register(s)) and for
which the MMU does not perform address translation.

8 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

NPC

npt

nucleus software
NUMA
N_REG_WINDOWS

octlet

odd parity

opcode
optional
PC

physical processor

PIL

pipeline

prefetchable

privileged

privileged mode

processor

processor core

processor module

program counter

quadword

R register

Next program counter.

Nonprivileged trap.

Privileged software running at a trap level greater than 0 (TL> 0).
Nonuniform memory access.

The number of register windows present in a particular implementation.

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been commonly used to
describe eight bits of data. In this document, the term byte, rather than octet, is used to describe
eight bits of data.

The mode of parity checking in which each combination of data bits plus a parity bit together
contain an odd number of ‘1’ bits.

A Dbit pattern that identifies a particular instruction.
A feature not required for UltraSPARC Architecture 2007 compliance.
Program counter.

Synonym for processor; used when an explicit contrast needs to be drawn between processor and
virtual processor. See also processor and virtual processor.

Processor Interrupt Level register.

Refers to an execution pipeline, the basic collection of hardware needed to execute instructions.
See also processor, strand, thread, and virtual processor.

(1) An attribute of a memory location that indicates to an MMU that PREFETCH operations to
that location may be applied.

(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to succeed.
Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause external events to
occur. For example, some I/O devices are designed with registers that clear on read; others have
registers that initiate operations when read. See also side effect.

An adjective that describes:

(1) the state of the virtual processor when PSTATE.priv = 1,
that is, when the virtual processor is in privileged mode;

(2) processor state that is only accessible to software while the virtual processor
is in privileged mode; for example, privileged registers,privileged ASRs,
or, in general, privileged state;

(3) an instruction that can be executed only when the virtual processor is in
privileged mode.

The mode in which a processor is operating when PSTATE.priv = 1. See also nonprivileged and
hyperprivileged.

The unit on which a shared interface is provided to control the configuration and execution of a
collection of strands; a physical module that plugs into a system. Synonym for processor module.
See also pipeline, strand, thread, and virtual processor.

Synonym for physical core.
Synonym for processor.
A register that contains the address of the instruction currently being executed.

A 16-byte datum. Note: The definition of this term is architecture dependent and may be different
from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.

CHAPTER 2 + Definitions 9

RA Real address.
RAS Reliability, Availability, and Serviceability
RAW Read After Write (hazard)
rd Rounding direction.

real address An address produced by a virtual processor that refers to a particular software-visible memory
location, as viewed from privileged mode. Virtual addresses are usually translated by a
combination of hardware and software to real addresses, which can be used to access real
memory. See also virtual address.

reserved Describing an instruction field, certain bit combinations within an instruction field, or a register
field that is reserved for definition by future versions of the architecture.

A reserved instruction field must read as 0, unless the implementation supports extended
instructions within the field. The behavior of an UltraSPARC Architecture 2007 virtual processor
when it encounters a nonzero value in a reserved instruction field is as defined in Reserved
Opcodes and Instruction Fields on page 86.

A reserved bit combination within an instruction field is defined in Chapter 7, Instructions. In all cases,
an UltraSPARC Architecture 2007 processor must decode and trap on such reserved bit
combinations.

A reserved field within a register reads as 0 in current implementations and, when written by
software, should always be written with values of that field previously read from that register or
with the value zero (as described in Reserved Register Fields on page 32).

Throughout this specification, figures and tables illustrating registers and instruction encodings
indicate reserved fields and reserved bit combinations with a wide (“em”) dash (—).

restricted Describes an address space identifier (ASI) that may be accessed only while the virtual processor
is operating in privileged mode.

retired An instruction is said to be “retired” when one of the following two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's address (the instruction
has not changed architectural state in this case).
(2) The instruction’s execution has progressed to a point at which architectural state affected by
the instruction has been updated such that all three of the following are true:

=« The PC has advanced beyond the instruction.
= Except for deferred trap handlers, no consumer in the same instruction stream can see the old
values and all consumers in the same instruction stream will see the new values.

= Stores are visible to all loads in the same instruction stream, including stores to noncacheable
locations.

RMO Abbreviation for Relaxed Memory Order (a memory model).

RTO Read to Own (a type of transaction, used to request ownership of a cache line).

RTS Read to Share (a type of transaction, used to request read-only access to a cache line).
shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly preferred implementation. Synonym
for it is recommended.

side effect The result of a memory location having additional actions beyond the reading or writing of data.
A side effect can occur when a memory operation on that location is allowed to succeed.
Locations with side effects include those that, when accessed, change state or cause external
events to occur. For example, some I/O devices contain registers that clear on read; others have
registers that initiate operations when read. See also prefetchable.

SIMD Single Instruction/Multiple Data; a class of instructions that perform identical operations on
multiple data contained (or “packed”) in each source operand.

10 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

speculative load

store

strand

subnormal number

superscalar

supervisor software

synchronization

system

taken

TBA
thread

TNPC
TPC

trap

TSB

TSO
TTE

UA-2007

unassigned

A load operation that is issued by a virtual processor speculatively, that is, before it is known
whether the load will be executed in the flow of the program. Speculative accesses are used by
hardware to speed program execution and are transparent to code. An implementation, through
a combination of hardware and system software, must nullify speculative loads on memory
locations that have side effects; otherwise, such accesses produce unpredictable results. Contrast
with nonfaulting load.

An instruction that writes (but does not explicitly read) memory or writes (but does not explicitly
read) location(s) in an alternate address space. Some examples of Store includes stores from either
integer or floating-point registers, block stores, Partial Store, and alternate address space variants
of those instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

The hardware state that must be maintained in order to execute a software thread. See also
pipeline, processor, thread, and virtual processor.

A nonzero floating-point number, the exponent of which has a value of zero. A more complete
definition is provided in IEEE Standard 754-1985.

An implementation that allows several instructions to be issued, executed, and committed in one
clock cycle.

Software that executes when the virtual processor is in privileged mode.

An operation that causes the processor to wait until the effects of all previous instructions are
completely visible before any subsequent instructions are executed.

A set of virtual processors that share a common hardware memory address space.

A control-transfer instruction (CTI) is taken when the CTI writes the target address value into
NPC.

A trap is taken when the control flow changes in response to an exception, reset, Tcc instruction,
or interrupt. An exception must be detected and recognized before it can cause a trap to be taken.

Trap base address.

A software entity that can be executed on hardware. See also pipeline, processor, strand, and
virtual processor.

Trap-saved next program counter.
Trap-saved program counter.

The action taken by a virtual processor when it changes the instruction flow in response to the
presence of an exception, reset, a Tcc instruction, or an interrupt. The action is a vectored transfer
of control to more-privileged software through a table, the address of which is specified by the
privileged Trap Base Address (TBA) register. See also exception.

Translation storage buffer. A table of the address translations that is maintained by software in
system memory and that serves as a cache of virtual-to-real address mappings.

Total Store Order (a memory model).

Translation Table Entry. Describes the virtual-to-real translation and page attributes for a specific
page in the page table. In some cases, this term is explicitly used to refer to entries in the TSB.

UltraSPARC Architecture 2007

A value (for example, an ASI number), the semantics of which are not architecturally mandated
and which may be determined independently by each implementation within any guidelines
given.

CHAPTER 2 + Definitions 11

undefined

unimplemented

unpredictable
uniprocessor system

unrestricted

user application
program

VA

virtual address

virtual core,
virtual processor core

virtual processor

VIS
A\

word

An aspect of the architecture that has deliberately been left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use of such a
feature can deliver unexpected results and may or may not cause a trap. An undefined feature
may vary among implementations, and may also vary over time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause security
holes (such as changing the privilege state or allowing circumvention of normal restrictions
imposed by the privilege state), put a virtual processor into a more-privileged mode, or put the
virtual processor into an unrecoverable state.

An architectural feature that is not directly executed in hardware because it is optional or is
emulated in software.

Synonym for undefined.
A system containing a single virtual processor.

Describes an address space identifier (ASI) that can be used in all privileged modes; that is,
regardless of the value of PSTATE.priv.

Synonym for application program.
Abbreviation for virtual address.

An address produced by a virtual processor that refers to a particular software-visible memory
location. Virtual addresses usually are translated by a combination of hardware and software to
real addresses, which can be used to access real memory. See also real address.

Synonyms for virtual processor.

The term virtual processor, or virtual processor core, is used to identify each strand in a processor.
At any given time, an operating system can have a different thread scheduled on each virtual
processor. See also pipeline, processor, strand, and thread.

Abbreviation for VIS™ Instruction Set.
Abbreviation for virtual processor.

A 4-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

12 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 3

Architecture Overview

The UltraSPARC Architecture supports 32-bit and 64-bit integer and 32-bit, 64-bit, and 128-bit
floating-point as its principal data types. The 32-bit and 64-bit floating-point types conform to IEEE
Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1992. The architecture
defines general-purpose integer, floating-point, and special state/status register instructions, all
encoded in 32-bit-wide instruction formats. The load/store instructions address a linear, 2®*-byte
virtual address space.

The UltraSPARC Architecture 2007 specification describes a processor architecture to which Sun
Microsystem’s SPARC processor implementations (beginning with UltraSPARC T1) comply. Future
implementations are expected to comply with either this document or a later revision of this
document.

The UltraSPARC Architecture 2007 is a descendant of the SPARC V9 architecture and complies fully
with the “Level 1”7 (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all SPARC V9 processors
should be written to adhere to The SPARC Architecture Manual-Version 9.

Material in this document specific to UltraSPARC Architecture 2007 processors may not apply to
SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are visible to an
assembly language programmer or to a compiler code generator. It does not include details of the
implementation that are not visible or easily observable by software, nor those that only affect timing
(performance).

3.1

3.1.1

The UltraSPARC Architecture 2007

This section briefly describes features, attributes, and components of the UltraSPARC Architecture
2007 and, further, describes correct implementation of the architecture specification and SPARC V9-
compliance levels.

Features

The UltraSPARC Architecture 2007, like its ancestor SPARC V9, includes the following principal
features:

» A linear 64-bit address space with 64-bit addressing.

» 32-bit wide instructions — These are aligned on 32-bit boundaries in memory. Only load and store
instructions access memory and perform I/0O.

13

Few addressing modes — A memory address is given as either “register + register” or “register +
immediate”.

Triadic register addresses — Most computational instructions operate on two register operands or
one register and a constant and place the result in a third register.

A large windowed register file — At any one instant, a program sees 8 global integer registers plus
a 24-register window of a larger register file. The windowed registers can be used as a cache of
procedure arguments, local values, and return addresses.

Floating point — The architecture provides an IEEE 754-compatible floating-point instruction set,
operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision
(64-bit), and 16 quad-precision (128-bit) overlayed registers.

Fast trap handlers — Traps are vectored through a table.

Multiprocessor synchronization instructions — Multiple variations of atomic load-store memory
operations are supported.

Predicted branches — The branch with prediction instructions allows the compiler or assembly
language programmer to give the hardware a hint about whether a branch will be taken.

Branch elimination instructions — Several instructions can be used to eliminate branches
altogether (for example, Move on Condition). Eliminating branches increases performance in
superscalar and superpipelined implementations.

Hardware trap stack — A hardware trap stack is provided to allow nested traps. It contains all of
the machine state necessary to return to the previous trap level. The trap stack makes the handling
of faults and error conditions simpler, faster, and safer.

In addition, UltraSPARC Architecture 2007 includes the following features that were not present in the
SPARC V9 specification:

Hyperprivileged mode, which simplifies porting of operating systems, supports far greater
portability of operating system (privileged) software, and supports the ability to run multiple
simultaneous guest operating systems. (hyperprivileged mode is described in detail in the
Hyperprivileged version of this specification)

Multiple levels of global registers — Instead of the two 8-register sets of global registers specified
in the SPARC V9 architecture, UltraSPARC Architecture 2007 provides multiple sets; typically, one
set is used at each trap level.

Extended instruction set — UltraSPARC Architecture 2007 provides many instruction set
extensions, including the VIS instruction set for "vector" (SIMD) data operations.

More detailed, specific instruction descriptions — UltraSPARC Architecture 2007 provides many
more details regarding what exceptions can be generated by each instruction and the specific
conditions under which those exceptions can occur. Also, detailed lists of valid ASIs are provided
for each load/store instruction from/to alternate space.

Detailed MMU architecture — UltraSPARC Architecture 2007 provides a blueprint for the
software view of the UltraSPARC MMU (TTEs and TSBs).

3.1.2 Attributes

UltraSPARC Architecture 2007 is a processor instruction set architecture (ISA) derived from SPARC V8
and SPARC V9, which in turn come from a reduced instruction set computer (RISC) lineage. As an
architecture, UltraSPARC Architecture 2007 allows for a spectrum of processor and system
implementations at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial applications.

14 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

3.1.3

3.1.2.1 Design Goals

The UltraSPARC Architecture 2007 architecture is designed to be a target for optimizing compilers
and high-performance hardware implementations. This specification documents the UltraSPARC
Architecture 2007 and provides a design spec against which an implementation can be verified, using
appropriate verification software.

3.1.2.2 Register Windows

The UltraSPARC Architecture 2007 architecture is derived from the SPARC architecture, which was
formulated at Sun Microsystems in 1984 through1987. The SPARC architecture is, in turn, based on
the RISC I and II designs engineered at the University of California at Berkeley from 1980 through
1982. The SPARC “register window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store instructions.

Note that privileged software, not user programs, manages the register windows. Privileged software
can save a minimum number of registers (approximately 24) during a context switch, thereby
optimizing context-switch latency.

System Components

The UltraSPARC Architecture 2007 allows for a spectrum of subarchitectures, such as cache system.

3.1.3.1 Binary Compatibility

The most important mandate for the UltraSPARC Architecture is compatibility across
implementations of the architecture for application (nonprivileged) software, down to the binary
level. Binaries executed in nonprivileged mode should behave identically on all UltraSPARC
Architecture systems when those systems are running an operating system known to provide a
standard execution environment. One example of such a standard environment is the SPARC V9
Application Binary Interface (ABI).

Although different UltraSPARC Architecture 2007 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the same memory
model. See Chapter 9, Memory, for more information.

Additionally, UltraSPARC Architecture 2007 is binary upward-compatible from SPARC V9 for
applications running in nonprivileged mode that conform to the SPARC V9 ABI and upward-
compatible from SPARC V8 for applications running in nonprivileged mode that conform to the
SPARC V8 ABL

3.1.3.2 UltraSPARC Architecture 2007 MMU

Although the SPARC V9 architecture allows its implementations freedom in their MMU designs,
UltraSPARC Architecture 2007 defines a common MMU architecture (see Chapter 14, Memory
Management) with some specifics left to implementations (see processor implementation documents).

3.1.3.3 Privileged Software

UltraSPARC Architecture 2007 does not assume that all implementations must execute identical
privileged software (operating systems). Thus, certain traits that are visible to privileged software
may be tailored to the requirements of the system.

CHAPTER 3 + Architecture Overview 15

3.1.4

3.1.5

3.1.6

Architectural Definition

The UltraSPARC Architecture 2007 is defined by the chapters and appendixes of this specification. A
correct implementation of the architecture interprets a program strictly according to the rules and
algorithms specified in the chapters and appendixes.

UltraSPARC Architecture 2007 defines a set of implementations that conform to the SPARC V9
architecture, Level 1.

UltraSPARC Architecture 2007 Compliance with SPARC V9
Architecture

UltraSPARC Architecture 2007 fully complies with SPARC V9 Level 1 (nonprivileged). It partially
complies with SPARC V9 Level 2 (privileged).

Implementation Compliance with UltraSPARC Architecture
2007

Compliant implementations must not add to or deviate from this standard except in aspects described
as implementation dependent. Appendix B, Implementation Dependencies lists all UltraSPARC
Architecture 2007, SPARC V9, and SPARC V8 implementation dependencies. Documents for specific
UltraSPARC Architecture 2007 processor implementations describe the manner in which
implementation dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

3.2

3.2.1

Processor Architecture

An UltraSPARC Architecture processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for implementations with concurrent
integer and floating-point instruction execution. Integer registers are 64 bits wide; floating-point
registers are 32, 64, or 128 bits wide. Instruction operands are single registers, register pairs, register
quadruples, or immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode, privileged mode, or in
mode(s) of greater privilege. In privileged mode, the processor can execute nonprivileged and
privileged instructions. In nonprivileged mode, the processor can only execute nonprivileged
instructions. In nonprivileged or privileged mode, an attempt to execute an instruction requiring
greater privilege than the current mode causes a trap.

Integer Unit (IU)

An UltraSPARC Architecture 2007 implementation’s integer unit contains the general-purpose
registers and controls the overall operation of the virtual processor. The IU executes the integer
arithmetic instructions and computes memory addresses for loads and stores. It also maintains the
program counters and controls instruction execution for the FPU.

16 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

3.2.2

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into MAXPGL + 1 sets of
global R registers plus a circular stack of N_REG_WINDOWS sets of 16 registers each, known as register
windows. The number of register windows present (N_REG_WINDOWS) is implementation dependent,
within the range of 3 to 32 (inclusive).

Floating-Point Unit (FPU)

An UltraSPARC Architecture 2007 implementation’s FPU has thirty-two 32-bit (single-precision)
floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-
bit (quad-precision) floating-point registers, some of which overlap.

If no FPU is present, then it appears to software as if the FPU is permanently disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction generates an
fp_disabled trap and the fp_disabled trap handler software must either

» Enable the FPU (if present) and reexecute the trapping instruction, or
» Emulate the trapping instruction in software.

3.3

3.3.1

Instructions

Instructions fall into the following basic categories:

= Memory access

» Integer arithmetic / logical / shift

» Control transfer

= State register access

» Floating-point operate

» Conditional move

» Register window management

» SIMD (single instruction, multiple data) instructions

These classes are discussed in the following subsections.

Memory Access

Load, store, load-store, and PREFETCH instructions are the only instructions that access memory.
They use two R registers or an R register and a signed 13-bit immediate value to calculate a 64-bit,
byte-aligned memory address. The Integer Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R registers or one, two,
or four F registers that supply the data for a store or that receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and extended-word
(64-bit) accesses. There are versions of integer load instructions that perform either sign-extension or
zero-extension on 8-bit, 16-bit, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword! memory
accesses.

1 No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates an exception and is
emulated in software running at a higher privilege level.

CHAPTER 3 + Architecture Overview 17

CASA, CASXA, and LDSTUB are special atomic memory access instructions that concurrent processes
use for synchronization and memory updates.

Note | The SWAP instruction is also specified, but it is deprecated and
should not be used in newly developed software.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that is important in
certain system software applications.

3.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be aligned on an
address boundary greater than or equal to the size of the datum being accessed. An improperly
aligned address in a load, store, or load-store in instruction may trigger an exception and cause a
subsequent trap. For details, see Memory Alignment Restrictions on page 73.

3.3.1.2 Addressing Conventions

The UltraSPARC Architecture uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing the address
means decreasing the significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order.

The UltraSPARC Architecture also supports little-endian byte order for data accesses only: the address
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the data unit being accessed.

Addressing conventions are illustrated in FIGURE 6-2 on page 75 and FIGURE 6-3 on page 77.

3.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a full 64-bit virtual
address space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for n-bit
virtual addresses, the valid address ranges are 0 to 271 _ 1 and 204 - 271 0 264 - 1.

3.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an arbitrary 8-bit
address space identifier for the load/store data access.

Access to alternate spaces 0014—2F is restricted to privileged software, access to alternate spaces
301¢—7F¢ is restricted to hyperprivileged software, and access to alternate spaces 8015—FF¢ is
unrestricted. Some of the ASIs are available for implementation-dependent uses. Privileged software
can use the implementation-dependent ASIs to access special protected registers, such as cache control
registers, virtual processor state registers, and other processor-dependent or system-dependent
values. See Address Space Identifiers (ASIs) on page 76 for more information.

Alternate space addressing is also provided for the atomic memory access instructions LDSTUBA,
CASA, and CASXA.

Note | The SWAPA instruction is also specified, but it is deprecated and
should not be used in newly developed software.

18 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

3.3.2

3.3.1.5 Separate Instruction and Data Memories

The interpretation of addresses can be unified, in which case the same translations and caching are
applied to both instructions and data. Alternatively, addresses can be “split”, in which case instruction
references use one caching and translation mechanism and data references use another, although the
same underlying main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write! into data memory
is not immediately reflected in instruction memory. For this reason, programs that modify their own
instruction stream (self-modifying code?) and that wish to be portable across all UltraSPARC
Architecture (and SPARC V9) processors must issue FLUSH instructions, or a system call with a
similar effect, to bring the instruction and data caches into a consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent instruction and data
caches. Even if an implementation does have coherent instruction and data caches, a FLUSH
instruction is required for self-modifying code — not for cache coherency, but to flush pipeline
instruction buffers that contain unmodified instructions which may have been subsequently modified.

3.3.1.6 Input/Output (I/0)

The UltraSPARC Architecture assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State Register
instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations is implementation
dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation dependent.

3.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMBAR. Their
operation is explained in Flush Instruction Memory on page 133 and Memory Barrier on page 201,
respectively.

Note | STBAR is also available, but it is deprecated and should not be

used in newly developed software.

Integer Arithmetic / Logical / Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and shift
operations. With one exception, these instructions compute a result that is a function of two source
operands; the result is either written into a destination register or discarded. The exception, SETHI,
can be used in combination with other arithmetic and/or logical instructions to create a constant in an
R register.

Shift instructions shift the contents of an R register left or right by a given number of bits (“shift
count”). The shift distance is specified by a constant in the instruction or by the contents of an R
register.

1 this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA)

2 this is practiced, for example, by software such as debuggers and dynamic linkers

CHAPTER 3 + Architecture Overview 19

3.3.3

3.3.4

Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indirect jumps,
and conditional traps. Most of the control-transfer instructions are delayed; that is, the instruction
immediately following a control-transfer instruction in logical sequence is dispatched before the
control transfer to the target address is completed. Note that the next instruction in logical sequence
may not be the instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruction. Setting
the annul bit in a conditional delayed control-transfer instruction causes the delay instruction to be
annulled (that is, to have no effect) if and only if the branch is not taken. Setting the annul bit in an
unconditional delayed control-transfer instruction (“branch always”) causes the delay instruction to
be always annulled.

Note | The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and return
(RETURN) instructions use a register-indirect target address. They compute their target addresses
either as the sum of two R registers or as the sum of an R register and a 13-bit signed immediate
value. The “branch on condition codes without prediction” instruction provides a displacement of +8
Mbytes; the “branch on condition codes with prediction” instruction provides a displacement of *1
Mbyte; the “branch on register contents” instruction provides a displacement of 128 Kbytes; and the
CALL instruction’s 30-bit word displacement allows a control transfer to any address within * 2
gigabytes (+ 23! bytes).

Note | The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.

State Register Access

3.3.41 Ancillary State Registers

The read and write ancillary state register instructions read and write the contents of ancillary state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS) and some registers
visible only to privileged software (SOFTINT, TICK_CMPR, and STICK_CMPR).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0-27 that are not defined in
UltraSPARC Architecture 2007 are reserved for future architectural use. ASRs in the range 28-31 are
available to be used for implementation-dependent purposes.

IMPL. DEP. #9-V8-Cs20: The privilege level required to execute each of the implementation-
dependent read/write ancillary state register instructions (for ASRs 28-31) is implementation
dependent.

3.3.4.2 PR State Registers

The read and write privileged register instructions (RDPR and WRPR) read and write the contents of
state registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL,
PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, and WSTATE).

20 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

3.3.5

3.3.6

3.3.7

3.3.8

Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are register-to-
register instructions that operate on the floating-point registers. FPops compute a result that is a
function of one , two, or three source operands. The groups of instructions that are considered FPops
are listed in Floating-Point Operate (FPop) Instructions on page 85.

Conditional Move

Conditional move instructions conditionally copy a value from a source register to a destination
register, depending on an integer or floating-point condition code or on the contents of an integer
register. These instructions can be used to reduce the number of branches in software.

Register Window Management

Register window instructions manage the register windows. SAVE and RESTORE are nonprivileged
and cause a register window to be pushed or popped. FLUSHW is nonprivileged and causes all of the
windows except the current one to be flushed to memory. SAVED and RESTORED are used by
privileged software to end a window spill or fill trap handler.

SIMD

UltraSPARC Architecture 2007 includes SIMD (single instruction, multiple data) instructions, also
known as "vector" instructions, which allow a single instruction to perform the same operation on
multiple data items, totalling 64 bits, such as eight 8-bit, four 16-bit, or two 32-bit data items. These
operations are part of the “VIS” extensions.

3.4

Traps

A trap is a vectored transfer of control to privileged software through a trap table that may contain the
first 8 instructions (32 for some frequently used traps) of each trap handler. The base address of the
table is established by software in a state register (the Trap Base Address register, TBA. The
displacement within the table is encoded in the type number of each trap and the level of the trap.
Part of the trap table is reserved for hardware traps, and part of it is reserved for software traps
generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers. It also causes the
CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TSTATE are entries in
a hardware trap stack, where the number of entries in the trap stack is equal to the number of
supported trap levels. A trap also sets bits in the PSTATE register and typically increments the GL
register. Normally, the CWP is not changed by a trap; on a window spill or fill trap, however, the
CWP is changed to point to the register window to be saved or restored.

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-induced
exception, or an interrupt request not directly related to a particular instruction. Before executing each
instruction, a virtual processor determines if there are any pending exceptions or interrupt requests. If
any are pending, the virtual processor selects the highest-priority exception or interrupt request and
causes a trap.

See Chapter 12, Traps, for a complete description of traps.

CHAPTER 3 + Architecture Overview 21

22 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 4

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:

» Signed integer: 8, 16, 32, and 64 bits

» Unsigned integer: 8, 16, 32, and 64 bits

= SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD (64 bits)
» Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

= Byte: 8 bits

« Halfword: 16 bits

» Word: 32 bits

» Tagged word: 32 bits (30-bit value plus 2-bit tag)
» Doubleword/Extended-word: 64 bits

= Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commensurate with
their range. Unsigned integer values, bit vectors, Boolean values, character strings, and other values

representable in binary form are stored as unsigned integers with a width commensurate with their

range. The floating-point formats conform to the IEEE Standard for Binary Floating-point Arithmetic,
IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the remaining 30
bits are treated as a signed integer.

Data formats are described in these sections:

= Integer Data Formats on page 24.
» Floating-Point Data Formats on page 27.
= SIMD Data Formats on page 29.

Names are assigned to individual subwords of the multiword data formats as described in these
sections:

» Signed Integer Doubleword (64 bits) on page 25.

» Unsigned Integer Doubleword (64 bits) on page 26.

» Floating Point, Double Precision (64 bits) on page 27.

» Floating Point, Quad Precision (128 bits) on page 28.

23

4.1 Integer Data Formats

TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer data formats.

TABLE 4-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Width
Data Type (bits) Range
Signed integer byte 8 -27t027 -1
Signed integer halfword 16 240215 -1
Signed integer word 32 23140231 -1
Signed integer doubleword/extended-word 64 -263 40203 -1
Unsigned integer byte 8 0to28 -1
Unsigned integer halfword 16 0to2'-1
Unsigned integer word 32 0to2% -1
Unsigned integer doubleword/extended-word 64 0to2% -1
Integer tagged word 32 0t02%0-1

TABLE 4-2 describes the memory and register alignment for multiword integer data. All registers in the
integer register file are 64 bits wide, but can be used to contain smaller (narrower) data sizes. Note
that there is no difference between integer extended-words and doublewords in memory; the only
difference is how they are represented in registers.

TABLE 4-2 Integer Doubleword /Extended-word Alignment

Memory Address Register Number

Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)! Alignment Number
SD-0 signed_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

SD-1 signed_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
SX signed_ext_integer{63:0} nmod 8 =0 n — r

UD-0 unsigned_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

UD-1 unsigned_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
UXx unsigned_ext_integer{63:0} nmod 8 =0 n — r

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

The data types are illustrated in the following subsections.

41.1 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

= Signed integer byte

» Signed integer halfword

» Signed integer word

» Signed integer doubleword

» Signed integer extended-word

24 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

41.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 4-1 illustrates the signed integer byte, halfword, and word data formats.

SB S
76 0
SH |S
1514 0
SW |S
3130 0

FIGURE 4-1 Signed Integer Byte, Halfword, and Word Data Formats

41.1.2 Signed Integer Doubleword (64 bits)

FIGURE 4-2 illustrates both components (SD-0 and SD-1) of the signed integer double data format.

SD-0 |s signed_int_doubleword{ 62:32}

3130

SD-1 signed_int_doubleword{31:0}

31

FIGURE 4-2 Signed Integer Double Data Format

4.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 4-3 illustrates the signed integer extended-word (SX) data format.

SX IS signed_int_extended

63 62

FIGURE 4-3 Signed Integer Extended-Word Data Format

4.1.2 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

Unsigned integer byte

Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword
Unsigned integer extended-word

CHAPTER 4 « Data Formats 25

4121 Unsigned Integer Byte, Halfword, and Word

FIGURE 4-4 illustrates the unsigned integer byte data format.

uB

UH

15 0

uw

31 0

FIGURE 4-4 Unsigned Integer Byte, Halfword, and Word Data Formats

4.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 4-5 illustrates both components (UD-0 and UD-1) of the unsigned integer double data format.

UbD-0 unsigned_int_doubleword{63:32}

31

ubD-1 unsigned_int_doubleword{31:0}

31

FIGURE 4-5 Unsigned Integer Double Data Format

4123 Unsigned Extended Integer (64 bits)

FIGURE 4-6 illustrates the unsigned extended integer (UX) data format.

ux unsigned_int_extended

63

FIGURE 4-6 Unsigned Extended Integer Data Format

4.1.3 Tagged Word (32 bits)

FIGURE 4-7 illustrates the tagged word data format.

TW

tag

31

FIGURE 4-7 Tagged Word Data Format

26 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

1 0

4.2

4.2.1

422

Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are described below.

Floating Point, Single Precision (32 bits)

FIGURE 4-8 illustrates the floating-point single-precision data format, and TABLE 4-3 describes the
formats.

FS |S| exp{7:0} fraction{ 22:0}

3130 2322 0

FIGURE 4-8 Floating-Point Single-Precision Data Format

TABLE4-3 Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u =undefined

Normalized value (0 < e < 255): (-1)8 x 27127 x 1 f
Subnormal value (e = 0): (-1)8 x 27126 x (.f
Zero (e =0,f =0) (-1)*x0
Signalling NaN s =u; e =255 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f =.luu--uu
- o (negative infinity) s =1; e =255 (max); f =.000--00
+ oo (positive infinity) s =0; e =255 (max); f =.000--00

Floating Point, Double Precision (64 bits)

FIGURE 4-9 illustrates both components (FD-0 and FD-1) of the floating-point double-precision data
format, and TABLE 4-4 describes the formats.

FD-0 |s| exp{10:0} fraction{51:32}

3130 2019 0
FD-1 fraction{31:0}

31 0

FIGURE 4-9 Floating-Point Double-Precision Data Format

CHAPTER 4 « Data Formats 27

TABLE 4-4 Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e = Dbiased exponent (11 bits)
f = fraction (52 bits)

1 = undefined

Normalized value (0 < e < 2047): (-1)8 x 2671023 5 1 f
Subnormal value (e =0): (-1)5 x 271022 x 0 f
Zero (e =0,f =0) (-1 %0
Signalling NaN s =u; e =2047 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =.luu--uu
- o (negative infinity) s =1; e =2047 (max); f =.000--00
+ o (positive infinity) s =0; e =2047 (max); f =.000--00

4.2.3 Floating Point, Quad Precision (128 bits)

FIGURE 4-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point quad-precision
data format, and TABLE 4-5 describes the formats.

FQ-0 S exp{14:0} fraction{111:96}

3130 1615 0
FO-1 fraction{95:64}

31 0
FQ-2 fraction{63:32}

31 0
FQ-3 fraction{ 31:0}

31 0

FIGURE 4-10 Floating-Point Quad-Precision Data Format

TABLE 4-5 Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e =biased exponent (15 bits)
f = fraction (112 bits)

1 = undefined

Normalized value (0 < e < 32767): (-1)% x 2e716383 1 ¢

Subnormal value (e = 0): (-1)° x 2716382 0 £

Zero (e =0,f =0) (-1)* x0

Signalling NaN s =u; e =32767 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)

28 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 4-5 Floating-Point Quad-Precision Format Definition (Continued)

s =sign (1 bit)

e = Dbiased exponent (15 bits)
f = fraction (112 bits)

1 = undefined

Quiet NaN s =u; e =32767 (max); f =.luu--uu
- o (negative infinity) s =1; e =32767 (max); f =.000--00
+ o (positive infinity) s =0; e =32767 (max); f =.000--00

424 Floating-Point Data Alignment in Memory and Registers

TABLE 4-6 describes the address and memory alignment for floating-point data.

TABLE 4-6 Floating-Point Doubleword and Quadword Alignment

Memory Address Register Number
Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)* |Alignment Number
FD-0 s:exp{10:0}:fraction{51:32} Omod4t n Omod2 f
FD-1 fraction{31:0} Omod4®™ n+4 Tmod2 f+1°
FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4% n 0 mod 4 f
FQ-1 fraction{95:64} Omod4t n+4 1mod4 f+1°
FQ-2 fraction{63:32} 0mod 4 ¥ n+8 2 mod 4 f+2
FQ-3 fraction{31:0} Omod4t n+12 3mod4 f+3°

*

The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

-+

Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

++

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is < 31).

<>

4.3 SIMD Data Formats

SIMD (single instruction/multiple data) instructions perform identical operations on multiple data
contained (“packed”) in each source operand. This section describes the data formats used by SIMD
instructions.

Conversion between the different SIMD data formats can be achieved through SIMD multiplication or
by the use of the SIMD data formatting instructions.

CHAPTER 4 « Data Formats 29

Programming | The SIMD data formats can be used in graphics calculations to
Note | represent intensity values for an image (e.g., a, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

» Band interleaved images, with the various color components
of a point in the image stored together, and

» Band sequential images, with all of the values for one color
component stored together.

4.3.1 Uint8 SIMD Data Format

The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-11).

Uint8 SIMD value, value; value, values

31 24 23 16 15 87

FIGURE 4-11 Uint8 SIMD Data Format

4.3.2 Int16 SIMD Data Formats

The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-bit word (see
FIGURE 4-12).

Int16
SIMD %0 valueg S1 value S value, S3 valuez

63 62 48 47 46 32 31 30 16 1514 0

FIGURE 4-12 Int16 SIMD Data Format

4.3.3 Int32 SIMD Data Format

The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-bit word (see
FIGURE 4-13).

Int32

SIMD | %0 valueg S value

63 62 32 31 30 0

FIGURE 4-13 Int32 SIMD Data Format

Programming | The integer SIMD data formats can be used to hold fixed-point
Note | data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.

30 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 5

Registers

The following registers are described in this chapter:

General-Purpose R Registers on page 32.

Floating-Point Registers on page 38.

Floating-Point State Register (FSR) on page 42.

Ancillary State Registers on page 48. The following registers are included in this category:
= 32-bit Multiply/Divide Register (y) (ASR 0) on page 50.

= Integer Condition Codes Register (ccr) (ASR 2) on page 50.

= Address Space Identifier (asi) Register (ASR 3) on page 51.

= Tick (tick) Register (ASR 4) on page 52.

= Program Counters (pc, npc) (ASR 5) on page 52.

= Floating-Point Registers State (fprs) Register (ASR 6) on page 53.

= General Status Register (gsr) (ASR 19) on page 54.

= softintP Register (ASRs 20, 21, 22) on page 54.

= softint_setP Pseudo-Register (ASR 20) on page 55.

= softint_clrP Pseudo-Register (ASR 21) on page 56.

= Tick Compare (tick_cmprP) Register (ASR 23) on page 56.

= System Tick (stick) Register (ASR 24) on page 57.

= System Tick Compare (stick_cmprP) Register (ASR 25) on page 57.

Register-Window PR State Registers on page 58. The following registers are included in this
subcategory:

= Current Window Pointer (cwpP) Register (PR 9) on page 59.

= Savable Windows (cansaveP) Register (PR 10) on page 59.

= Restorable Windows (canrestoreP) Register (PR 11) on page 59.

= Clean Windows (cleanwinP) Register (PR 12) on page 59.

= Other Windows (otherwinP) Register (PR 13) on page 60.

= Window State (wstateP) Register (PR 14) on page 60.

Non-Register-Window PR State Registers on page 61. The following registers are included in this
subcategory:

» Trap Program Counter (tpcP) Register (PR 0) on page 61.

= Trap Next PC (tnpcP) Register (PR 1) on page 62.

= Trap State (tstateP) Register (PR 2) on page 63.

= Trap Type (ttP) Register (PR 3) on page 64.

« Trap Base Address (tbaP) Register (PR 5) on page 64.

= Processor State (pstateP) Register (PR 6) on page 64.

« Trap Level Register (tIP) (PR 7) on page 68.

= Processor Interrupt Level (pilP) Register (PR 8) on page 69.
= Global Level Register (gIP) (PR 16) on page 69.

There are additional registers that may be accessed through ASIs; those registers are described in
Chapter 10, Address Space Identifiers (ASIs).

31

5.1

Reserved Register Fields

Some register bit fields in this specification are explicitly marked as "reserved". In addition, for
convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. Any bits not
illustrated are implicitly reserved and treated as if they were explicitly marked as reserved.

Reserved bits, whether explicitly or implicitly reserved, may be assigned meaning in future versions
of the architecture.

To ensure that existing software will continue to operate correctly, software must take into account
that reserved register bits may be used in the future. The following Programming and
Implementation Notes support that intent.

Programming | Software should ensure that when a reserved register field is
Notes | written, it is only written with (1) the value zero or (2) a value
previously read from that field.

If software writes a reserved register field to any value other
than (1) zero or (2) a value previously read from that field, it is
considered a software error. Such an error:

* may or may not be detected or reported (for example, by a trap) by
UltraSPARC Architecture 2007 processors (and software should not
expect that it will be)

* may cause a trap or cause other unintended behavior when executed
on future UltraSPARC Architecture processors

When a register is read, software should not assume that
register fields reserved in UltraSPARC Architecture 2007 will
read as 0 or any other particular value, either now or in the
future.

Implementation | When a register is read by software, an UltraSPARC
Notes | Architecture 2007 virtual processor should return a value of zero
for any bits reserved in UltraSPARC Architecture 2007

When software attempts to change the contents of a register
field that is reserved in UltraSPARC Architecture 200x by
writing a value to that field that differs from the current
contents of that field, an UltraSPARC Architecture 200x virtual
processor will either ignore the write to that field or cause an
exception. "Current contents” means the contents that software
would observe if it read that field (nominally zero).

5.2

General-Purpose R Registers

An UltraSPARC Architecture virtual processor contains an array of general-purpose 64-bit R registers.
The array is partitioned into MAXPGL + 1 sets of eight global registers, plus N_REG_WINDOWS groups of
16 registers each. The value of N_REG_WINDOWS in an UltraSPARC Architecture implementation falls
within the range 3 to 32 (inclusive).

32 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.2.1

One set of 8 global registers is always visible. At any given time, a group of 24 registers, known as a
register window, is also visible. A register window comprises the 16 registers from the current 16-
register group (referred to as 8 in registers and 8 local registers), plus half of the registers from the next
16-register group (referred to as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are visible to
software at any moment. Which 32 out of the full set of R registers are visible is described in the
following sections. The visible 32 R registers are named R[0] through R[31], illustrated in FIGURE 5-1.

R[31] i7

R[30] i6

R[29] i5

R[28] i4 .

R[27] i3 ns
R[26] i2

R[25] i1

R[24] i0

R[23] 7 | T T T
R[22] 16

R[21] 15

R[201 4 locals
R[19] 13

R[18] 12

R[17] 11

R[16] 10

R[15] o7 |
R[14] 06

R[13] 05

R[12] 04

R[11] p outs
R[10] 02

R[9] ol

R[] 00

R[7] 9 | T 7
R[6] 96

R[5] g5

R ot globals
R[3] 93

R[2] 92

R[] o1

R[0] 90

FIGURE 5-1 General-Purpose Registers (as Visible at Any Given Time)

Global R Registers &p

Registers R[0]-R[7] refer to a set of eight registers called the global registers (labelled g0 through g7).
At any time, one of MAXPGL +1 sets of eight registers is enabled and can be accessed as the current set
of global registers. The currently enabled set of global registers is selected by the GL register. See
Global Level Register (gIP) (PR 16) on page 69.

Global register zero (GO) always reads as zero; writes to it have no software-visible effect.

CHAPTER 5 « Registers 33

522 Windowed R Registers

A set of 24 R registers that is visible as R[8]-R[31] at any given time is called a “register window”.
The registers that become R[8]-R[15] in a register window are called the out registers of the window.
Note that the in registers of a register window become the out registers of an adjacent register
window. See TABLE 5-1 and FIGURE 5-2.

The names in, local, and out originate from the fact that the out registers are typically used to pass
parameters from (out of) a calling routine and that the called routine receives those parameters as its
in registers.

TABLES-1 Window Addressing

Windowed Register Address R Register Address
in[0] — in[7] R[24] - R[31]
local[0] — local[7] R[16] — R[23]
out[0] — out[7] R[8] - R[15]
global[0] — global[7] R[0] -R[7]

V9 Compatibility | In the SPARC V9 architecture, the number of 16-register
Note | windowed register sets, N_REG_WINDOWS, ranges from 3 to 32

(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXPGL, ranges from 2 to 15. The
number of implemented global register sets is MAXPGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS X 16) + ((MAXPGL + 1) x 8)
Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.

34 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

The current window in the windowed portion of R registers is indicated by the current window
pointer (CWP) register. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction.

Window (CWP — 1)

R[31]
. ins
R[24]
R[23]
. locals
RI16] Window (CWP)
R[15] R[31]
. outs : ins
R[8] R[24]
R[23]
: locals
RI16] Window (CWP + 1)
R[15] R[31]
: outs : ins
R €] R[24]
R[23]
: locals
RI16]
R[15]
. outs
R[8]
R[7]
) globals
R[1]
EEEE
63 0

FIGURE5-2 Three Overlapping Windows and Eight Global Registers

Overlapping Windows. Each window shares its ins with one adjacent window and its outs with
another. The outs of the CWP — 1 (modulo N_REG_WINDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1 (modulo
N_REG_WINDOWS) window. The locals are unique to each window.

Register address o, where 8 < 0 < 15, refers to exactly the same out register before the register window
is advanced by a SAVE instruction (CWP is incremented by 1 (modulo N_REG_WINDOWS)) as does
register address 0+16 after the register window is advanced. Likewise, register address i, where 24 < i
< 31, refers to exactly the same in register before the register window is restored by a RESTORE
instruction (CWP is decremented by 1 (modulo N_REG_WINDOWS)) as does register address i—16 after
the window is restored. See FIGURE 5-2 on page 35 and FIGURE 5-3 on page 37.

To application software, the virtual processor appears to provide an infinitely-deep stack of register
windows.

Programming | Since the procedure call instructions (CALL and JMPL) do not
Note | change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

CHAPTER 5 « Registers 35

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered implemented
window overlaps with window 0. The outs of window N_REG_WINDOWS — 1 are the ins of window 0.
Implemented windows are numbered contiguously from 0 through N_REG_WINDOWS —1.

Because the windows overlap, the number of windows available to software is 1 less than the number
of implemented windows; that is, N_REG_WINDOWS — 1. When the register file is full, the outs of the
newest window are the ins of the oldest window, which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is detected by the
CANRESTORE register, both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

When a new register window is made visible through use of a SAVE instruction, the local and out
registers are guaranteed to contain either zeroes or valid data from the current context. If software
executes a RESTORE and later executes a SAVE, then the contents of the resulting window’s local and
out registers are not guaranteed to be preserved between the RESTORE and the SAVE!. Those registers
may even have been written with “dirty” data, that is, data created by software running in a different
context. However, if the clean_window protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid data from that
context. See Clean Windows (cleanwinP) Register (PR 12) on page 59, Savable Windows (cansaveP) Register
(PR 10) on page 59, and Restorable Windows (canrestoreP) Register (PR 11) on page 59.

Implementation | An UltraSPARC Architecture virtual processor supports the
Note | guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.

Register Window Management Instructions on page 83 describes how the windowed integer registers are
managed.

1 For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE and the SAVE, or might
be altered during the RESTORE operation due to the way that register windows are implemented. After a RESTORE instruction
executes, software must assume that the values of the affected 16 registers from before the RESTORE are unrecoverable.

36 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CWP =0 1
(CURRENT WINDOW POINTER)

\

woO locals

CANSAVE =4

wO0 outs

SAVE RESTORE

i w6 locals
CANRESTORE =1
)

CANSAVE + CANRESTORE + OTHERWIN =N_REG_WINDOWS — 2

w4 outs

w5 locals

(Overlap)

w5 outs

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

FIGURE 5-3 Windowed R Registers for N_REG_WINDOWS = 8

In FIGURE 5-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated. CWP =0,

CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure using window w0 executes a
RESTORE, then window W7 becomes the current window. If the procedure using window w0 executes
a SAVE, then window w1 becomes the current window.

523 Special R Registers

The use of two of the R registers is fixed, in whole or in part, by the architecture:
» The value of R[0] is always zero; writes to it have no program-visible effect.

» The CALL instruction writes its own address into register R[15] (out register 7).

CHAPTER 5 « Registers 37

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access a pair of words
(“twin words”) in adjacent R registers and require even-odd register alignment. The least significant
bit of an R register number in these instructions is unused and must always be supplied as 0 by
software.

When the R[0]-R[1] register pair is used as a destination in LDTW or LDTWA, only R[1] is modified.
When the R[0]-R[1] register pair is used as a source in STTW or STTWA, 0 is read from R[0], so 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of R[1] are written to
the 32-bit word at the highest address.

An attempt to execute an LDTW, LDTWA, STTW, or STTWA instruction that refers to a misaligned
(odd) destination register number causes an illegal_instruction trap.

5.3

Floating-Point Registers

The floating-point register set consists of sixty-four 32-bit registers, which may be accessed as follows:
= Sixteen 128-bit quad-precision registers, referenced as Fg[0], Fg[4], ..., Fo[60]
» Thirty-two 64-bit double-precision registers, referenced as Fp[0], Fp[2], ..., Fp[62]

» Thirty-two 32-bit single-precision registers, referenced as Fg[0], Fg[1], ..., Fg[31] (only the lower
half of the floating-point register file can be accessed as single-precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are aliased. The layout
and numbering of the floating-point registers are shown in TABLE 5-2. Unlike the windowed R
registers, all of the floating-point registers are accessible at any time. The floating-point registers can
be read and written by floating-point operate (FPopl/FPop2 format) instructions, by load/store
single/double/quad floating-point instructions, by VIS™ instructions, and by block load and block
store instructions.

TABLE5-2 Floating-Point Registers, with Aliasing (1 of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fsl0] %0 63:32
Fpl0] %0 127:64
Fsl1] % 1 31:0
Folo] %0
Fgl2] %2 63:32
Fpl2] %2 63:0
Fsl3] %3 31:0
Fsl4] %4 63:32
Fpol4] %4 127:64
Fsl5] %5 31:0
Fol4]l 4
Fgl6] %6 63:32
Fpl6] %6 63:0
Fsl7] %7 31:0
Fsl8]] %8 63:32
Fpl8] %8 127:64
Fsl9] %9 31:0
Fol8] 8
Fg[10] 9% 10 63:32
Fpl10] %10 63:0
Fsl11] 9% 11 31:0

38 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE5-2 Floating-Point Registers, with Aliasing (2 of 3)
Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fsl12] 9% 12 63:32
Fpl12] %12 127:64
Fg[13] 9% 13 31:0
FQ[12] %12
Fgl14] 9% 14 63:32
Fpl14] %14 63:0
Fs[15] 9% 15 31:0
Fs[16] 9% 16 63:32
Fpll6] %16 127:64
Fs[17] 9% 17 31:0
FQ[16] %916
Fg[18] 9% 18 63:32
Fp[18] %18 63:0
Fs[19] 9% 19 31:0
Fs[20] 9% 20 63:32
Fpl20] %20 127:64
Fg[21] 9% 21 31:0
FQ[20] %920
Fgl22] 9% 22 63:32
Fpl22] %22 63:0
Fs[23] 9% 23 31:0
Fsl24] 9% 24 63:32
Fpl24] %24 127:64
Fs[25] 9% 25 31:0
FQ[24] %24
Fg[26] %26 [63:32
Fpl26] %26 63:0
Fsl27] 9% 27 31:0
Fs[28] 9% 28 63:32
Fpl28] %28 127:64
Fg[29] 9% 29 31:0
FQ[28] %928
Fs[30] 9% 30 63:32
Fp[30] %630 63:0
Fs[31] 9% 31 31:0
Fpl32] %32 127:64
FQ[32] %932
:32
Fp[34] %34 63:0
63:32
Fpl36] %36 127:64
FQ[36] %936
63:32
Fp[38] %38 63:0
63:32
Fpl40] %40 127:64
FQ[40] %940
63:32
Fpl42] %42 63:0
Fpl44] %44 127:64
- FQ[44] %44
——Fpl46] %46 [63:0

CHAPTER 5 « Registers

39

5.3.1

TABLE 5-3

TABLE 5-2

Floating-Point Registers, with Aliasing (3 of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
63:32
Fpl48] %48 127:64
Fol48] %48
63:32
Fpl50] %50 63:0
63:32
Fpl52] %52 127:64
Fol52] %52
63:32
Fpl54] %54 63:0
Fpl56] %56 127:64
= Fol56] %56
Fpl58] %58 63:0
63:32
Fpl60] %60 127:64
Fol60] %60
63:32
Fpl62] %62 63:0

Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit register
number field of a floating-point instruction. If the bits in a register number field are labelled b{4} ...
b{0} (where b{4} is the most significant bit of the register number), the encoding of floating-point
register numbers into 5-bit instruction fields is as given in TABLE 5-3.

Floating-Point Register Number Encoding

Register Operand Encoding in a 5-bit Register Field in an
Type Full 6-bit Register Number Instruction
Single 0 bi{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}
Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}
Quad b{5} bi{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}
SPARC V8 | In the SPARC V8 architecture, bit 0 of double and quad register
Compatibility | numbers encoded in instruction fields was required to be zero.

Note

Therefore, all SPARC V8 floating-point instructions can run

unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.

40 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.3.2 Double and Quad Floating-Point Operands

A single 32-bit F register can hold one single-precision operand; a double-precision operand requires
an aligned pair of F registers, and a quad-precision operand requires an aligned quadruple of F
registers. At a given time, the floating-point registers can hold a maximum of 32 single-precision, 16
double-precision, or 8 quad-precision values in the lower half of the floating-point register file, plus
an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtures of the
three sizes.

Programming | The upper 16 double-precision (upper 8 quad-precision)

Note | floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
= Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half.

Use an LDDF[A] or LDQF[A] instruction to perform the load
directly into the upper floating-point register, understanding
that use of these instructions on poorly aligned data can cause a
trap (LDDF_mem_not_aligned) on some implementations,
possibly slowing down program execution significantly.

Programming | If an UltraSPARC Architecture 2007 implementation does not
Note | implement a particular quad floating-point arithmetic operation

in hardware and an invalid quad register operand is specified,

the illegal_instruction trap occurs because it has higher priority.

Implementation | UltraSPARC Architecture 2011 implementations do not

Note | implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the illegal_instruction exception.

CHAPTER 5 « Registers 41

5.4

Floating-Point State Register (FSR)

The Floating-Point State register (FSR) fields, illustrated in FIGURE 5-4, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the (deprecated) STFSR and LDFSR
instructions, respectively. The 64-bit FSR register is read by the STXFSR instruction and written by
the LDXFSR instruction. The ver, ftt, gne, unimplemented (for example, ns), and reserved (“—")
fields of FSR are not modified by either LDFSR or LDXFSR.

RW RW RW

— fce3 | fec2 | fecl
63 38 37 36 35 34 33 32
FSR
RW RW RW R R R RW RW RW
rd — tem ns| — ver ftt — |—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 54 0
FIGURE 5-4 FSR Fields

54.1

Bits 63-38, 29-28, 21-20, and 12 of FSR are reserved. When read by an STXFSR instruction, these bits
always read as zero

Programming | For future compatibility, software should issue LDXFSR
Note | instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

The subsections on pages 42 through 48 describe the remaining fields in the FSR.

Floating-Point Condition Codes (fccO, fccl, fcc2, fcc3)

The four sets of floating-point condition code fields are labelled fccO, fccl, fcc2, and fcc3 (feen refers
to any of the floating-point condition code fields).

The fccO field consists of bits 11 and 10 of the FSR, fccl consists of bits 33 and 32, fcc2 consists of bits
35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point compare instruction
(FCMP or FCMPE) updates one of the fccn fields in the FSR, as selected by the compare instruction.
The fccn fields are read by STXFSR and written by LDXFSR. The fccO field can also be read and
written by STFSR and LDEFSR, respectively. FBfcc and FBPfcc instructions base their control transfers
on the content of these fields. The MOVcc and FMOVcc instructions can conditionally copy a register,
based on the contents of these fields.

In TABLE 5-4, f,5; and fis» correspond to the single, double, or quad values in the floating-point
registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The question mark (?)
indicates an unordered relation, which is true if either f; or f,5, is a signalling NaN or a quiet NaN.
If FCMP or FCMPE generates an fp_exception_ieee_754 exception, then fccn is unchanged.

TABLE5-4 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation F[rs1] = F[rs2] Flrsl1] < F[rs2] F[rs1] > F[rs2] Flrs1] ? F[rs2]
(FCMP*, FCMPE*) (unordered)

42 UltraSPARC Architecture 2007 + Draft D0.9.3b, 20 Oct 2009

54.2

5.4.3

544

5.4.5

Rounding Direction (rd)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std 754-1985.
TABLE 5-5 shows the encodings.

TABLES-5 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)
1 0

2 + 00

3 - o0

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1), then the value of
FSR.rd is ignored and floating-point results are instead rounded according to GSR.irnd. See General
Status Register (gsr) (ASR 19) on page 54 for further details.

Trap Enable Mask (tem)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions that can be
indicated in the current_exception field (cexc). See FIGURE 5-6 on page 47. If a floating-point
instruction generates one or more exceptions and the tem bit corresponding to any of the exceptions is
1, then this condition causes an fp_exception_ieee_754 trap. A tem bit value of 0 prevents the
corresponding IEEE 754 exception type from generating a trap.

Nonstandard Floating-Point (ns)

When FSR.ns =1, it causes a SPARC V9 virtual processor to produce implementation-defined results
that may or may not correspond to IEEE Std 754-1985 (impl. dep. #18-V8).

For an implementation in which no nonstandard floating-point mode exists, the ns bit of FSR should
always read as 0 and writes to it should be ignored.

For detailed requirements for the case when an UltraSPARC Architecture processor elects to
implement floating-point nonstandard mode, see Floating-Point Nonstandard Mode on page 293.

FPU Version (ver)

IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular implementations of the FPU
architecture.

For each SPARC V9 IU implementation, there may be one or more FPU implementations, or none.
FSR.ver identifies the particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate document for each
implementation for its setting of FSR.ver.

FSR.ver =7 is reserved to indicate that no hardware floating-point controller is present.

The ver field of FSR is read-only; it cannot be modified by the LDFSR or LDXFSR instructions.

CHAPTER 5 « Registers 43

5.4.6

Floating-Point Trap Type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point exception trap
occurs, FSRftt (FSR{16:14}) identifies the cause of the exception, the “floating-point trap type.” After
a floating-point exception occurs, FSR.ftt encodes the type of the floating-point exception until it is
cleared (set to 0) by execution of an STFSR, STXFSR, or FPop that does not cause a trap due to a
floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and LDXFSR instructions
do not affect FSR.ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR set FSR.ftt to zero after the store completes
without error. If the store generates an error and does not complete, FSR.fit remains unchanged.

Programming | Neither LDFSR nor LDXFSR can be used for the purpose of

Note | clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “f rovs % 0, % 0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the generation of an
fp_exception_other or fp_exception_ieee_754 exception. It is possible for more than one such
condition to occur simultaneously; in such a case, only the highest-priority condition will be encoded
in FSR.ftt. The conditions leading to fp_exception_other and fp_exception_ieee_754 exceptions, their
relative priorities, and the corresponding FSR.fit values are listed in TABLE 5-6. Note that the FSR.fit
values 4 and 5 were defined in the SPARC V9 architecture but are not currently in use, and that the
value 7 is reserved for future architectural use.

TABLE5-6 FSR Floating-Point Trap Type (ftt) Field

. Result

Relative
Condition Detected During Priority FSR.ftt Set
Execution of an FPop (1 = highest) to Value Exception Generated
invalid_fp_register 20 6 fp_exception_other
unfinished_FPop 30 2 fp_exception_other
IEEE_754_exception 40 1 fp_exception_ieee_754
Reserved — 3,4,5,7 —
(none detected) — 0 —

The IEEE_754_exception and unfinished_FPop conditions will likely arise occasionally in the normal
course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:
1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping exception is set in
cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.
4. The value of fcen is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is signalled, either
immediately from an fp_exception_ieee_754 exception or after recovery from an unfinished_FPop. In
either case, cexc as seen by the trap handler reflects the exception causing the trap.

44 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

In the cases of an fp_exception_other exception with a floating-point trap type of unfinished_FPop
that does not subsequently generate an IEEE trap, the recovery software should set cexc, aexc, and
the destination register or fccn, as appropriate.

ftt =1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type indicates the
occurrence of a floating-point exception conforming to IEEE Std 754-1985. The IEEE 754 exception
type (overflow, inexact, etc.) is set in the cexc field. The aexc and fccn fields and the destination F
register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates that the virtual
processor was unable to generate correct results or that exceptions as defined by IEEE Std 754-1985
have occurred. In cases where exceptions have occurred, the cexc field is unchanged.

Implementation | Implementations are encouraged to support standard IEEE 754
Note | floating-point arithmetic with reasonable performance (that is,
without generating fp_exception_other with
FSR ftt=unfinished_FPop) in all cases, even if some cases are
slower than others.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception with floating-
point trap type of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with FSR.ftt = unfinished_FPop under a different (but specified) set of
conditions.

ftt = 3 (Reserved).

SPARC V9 | In SPARC V9, FSR.ftt = 3 was defined to be
Compatibility | "unimplemented_FPop". All conditions which used to cause
Note | cause fp_exception_other with FSR.ftt = 3 now cause an
illegal_instruction exception, instead. FSR.ftt = 3 is now reserved
and available for other future uses.

ftt = 4 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
Compatibility | "sequence_error", for use with certain error conditions
Note | associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

ftt = 5 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 5 was defined to be

Compatibility | "hardware_error", for use with hardware error conditions
Note | associated with an external floating-point unit (FPU) operating

asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.

CHAPTER 5 « Registers 45

54.7

5438

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register operands of an
FPop are misaligned; that is, a quad-precision register number is not 0 mod 4. An implementation
generates an fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

Implementation | If an UltraSPARC Architecture 2007 processor does not
Note | implement a particular quad FPop in hardware, that FPop
generates an illegal_instruction exception instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Accrued Exceptions (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point exception
traps are disabled through the tem field. See FIGURE 5-7 on page 47.

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded together. If the result
is nonzero, aexc is left unchanged and an fp_exception_ieee_754 trap is generated; otherwise, the
new cexc field is ored into the aexc field and no trap is generated. Thus, while (and only while) traps
are masked, exceptions are accumulated in the aexc field.

FSR.aexc can be set to a specific value when an LDFSR or LDXFSR instruction is executed.

Current Exception (cexc)

FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception causes the
corresponding bit to be cleared (set to 0). See FIGURE 5-6 on page 47.

Programming | If the FPop traps and software emulate or finish the instruction,
Note | the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.

The cexc bits are set as described in Floating-Point Exception Fields on page 47, by the execution of an
FPop that either does not cause a trap or causes an fp_exception_ieee_754 exception with

FSR.fit = IEEE_754_exception. An IEEE 754 exception that traps shall cause exactly one bit in
FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
“inexact” condition. For overflow and underflow conditions, FSR.cexc bits are set and trapping
occurs as follows:

= If an IEEE 754 overflow condition occurs:

« if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits are both set to 1,
the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not occur.

« if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

« if FSR.tem.ofm =1, the FSR.cexc.ofc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

= If an IEEE 754 underflow condition occurs:

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc bits are both set
to 1, the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not
occur.

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

46 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

« if FSR.tem.ufm =1, the FSR.cexc.ufc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 5-7 (where “0” indicates “exception was detected” and
“x” indicates “don’t care”):

TABLE5-7 Setting of FSR.cexc Bits

Conditions Results
Exception(s) Current
Detected Trap Enable Exception
in F.p. Mask bits) bits (in
operation (in FSR.tem) fp_exception_ FSR.cexc)
ieee_754
of uf nx ofm ufm nxm | Trap Occurs? ofc ufc nxc
- - - X X X no 0 0 0
- - O X X 0 no 0 0 1
- ol ol «x 0 0 no 0o 1 1
02 - 0z o x 0 no 1 0 1
- - 0 X X 1 yes 0 0 1
- ol ol «x 0 1 yes 0 0 1
- a - X 1 X yes 0 1 0
- 0 0 X 1 X yes 0 1 0
02 - 02 1 X X yes 1 0 0
02 - 0z o0 X 1 yes 0 0 1

Notes: ! When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.
2 Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is left
unchanged.

5.4.9 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following definitions of
the floating-point exception conditions (per IEEE Std 754-1985):

RW RW RW RW _ RW
FSR.tem I nvm | ofm | ufm | dzm | nxm I
27 26 25 24 23

FIGURE 5-6 Trap Enable Mask (tem) Fields of FSR

RW _RW __RW __RW ___RW
FSR.aexc | nva | ofa | ufa | dza | nxa I
) 3 7 3 5

FIGURE 5-7 Accrued Exception Bits (aexc) Fields of FSR

RW _RW __RW ___RW __ RW
FSR.cexc I nve | ofc | ufc | dzc | nxc I
4 3 2 1 0

FIGURE 5-8 Current Exception Bits (aexc) Fields of FSR

CHAPTER 5 « Registers 47

5.4.10

Invalid (nvc, nva). An operand is improper for the operation to be performed. For example, 0.0 +
0.0 and 0 — o are invalid; 1 = invalid operand(s), 0 = valid operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were unbounded, would be
larger in magnitude than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in magnitude than the
smallest normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after rounding. However, in
all cases and regardless of the setting of FSR.tem.ufm, an UltraSPARC Architecture strand detects
tininess before rounding (impl. dep. #55-V8-Cs10). See Trapped Underflow Definition (ufin = 1) on page
293 and Untrapped Underflow Definition (ufm = 0) on page 293 for additional details.

Division by zero (dzc, dza). An infinite result is produced exactly from finite operands. For
example, X + 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely precise
unrounded result; 1 = inexact result, 0 = exact result.

FSR Conformance

An UltraSPARC Architecture implementation implements the tem, cexc, and aexc fields of FSR in
hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

Programming | Privileged software (or a combination of privileged and

Note | nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSRftt = unfinished_FPop) and IEEE_754_exception
floating-point trap types properly. Thus, a user application
program always sees an FSR that is fully compliant with IEEE
Std 754-1985.

5.5

Ancillary State Registers

The SPARC V9 architecture defines several optional ancillary state registers (ASRs) and allows for
additional ones. Access to a particular ASR may be privileged or nonprivileged.

An ASR is read and written with the Read State Register and Write State Register instructions,
respectively. These instructions are privileged if the accessed register is privileged.

The SPARC V9 architecture left ASRs numbered 16-31 available for implementation-dependent uses.
UltraSPARC Architecture virtual processors implement the ASRs summarized in TABLE 5-8 and
defined in the following subsections.

48 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Each virtual processor contains its own set of ASRs; ASRs are not shared among virtual processors.

TABLE 5-8 ASR Register Summary
Read by Written by
ASR number ASR name Register Instruction(s) Instruction(s)
0 & Y register (deprecated) RDYP WRYP
1 — Reserved — —
2 CCR Condition Codes register RDCCR WRCCR
3 ASI ASI register RDASI WRASI
4 TICKPnet TICK register RDTICK s, WRPRP (TICK)
RDPR? (TICK)
5 PC Program Counter (PC) RDPC (all instructions)
6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS
7-14 (7-0E15) — Reserved — —
15 (0Fq4) — Reserved — —
16-31 (1014-1F14) non-SPARC V9 ASRs — —
16-18 (1014- 121¢) — Implementation dependent (impl. dep. — —
#8-V8-Cs20, 9-V8-Cs20)

19 (134¢) GSR General Status register (GSR) RDGSR, WRGSR,
FALIGNDATA, BMASK, SIAM
many VIS and
floating-point
instructions

20 (1444) SOFTINT_SETP (pseudo-register, for "Write 1s Set"to ~ — WRSOFTINT_SET?

SOFTINT register, ASR 22)
21 (154¢) SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to — WRSOFTINT_CLRF
SOFTINT register, ASR 22)

22 (16y4) SOFTINTP per-virtual processor Soft Interrupt RDSOFTINT? WRSOFTINT?

register

23 (174¢) TICK_CMPRP Tick Compare register RDTICK_CMPR? WRTICK_CMPRP

24 (181¢) STICKPmwt System Tick register RDSTICK et —

25 (1944) STICK_CMPRP System Tick Compare register RDSTICK_CMPRF WRSTICK_CMPRF

26 (1A4¢) — Implementation dependent (impl. dep. — —

#8-V8-Cs20, 9-V8-Cs20)
27 (1Bqg) — Implementation dependent (impl. dep. — —

28-29 (1C;4-1Dy¢)

#8-V8-Cs20, 9-V8-Cs20)

Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

Reserved

Implementation dependent (impl. dep.
#38-V8-Cs20, 9-V8-Cs20)

CHAPTER 5 « Registers

49

5.5.1

5.5.2

32-bit Multiply /Divide Register (Y) (ASR 0)

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULce, MULScc, SDIV, SDIVee, UDIV, UDIVec,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see pages 246 and page 283; for
the multiply step instruction, see page 209; for division instructions, see pages
240 and 281; for the read instruction, see page 226; and for the write
instruction, see page 286.

The low-order 32 bits of the Y register, illustrated in FIGURE 5-9, contain the more significant word of
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer multiply (SMUL,
SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruction. The Y
register also holds the more significant word of the 64-bit dividend for a 32-bit integer divide (SDIV,
SDIVce, UDIV, UDIVcc) instruction.

R RW
Y 0 product{63:32} or dividend{63:32}
63 32 31 0

FIGURE 5-9 Y Register

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions, respectively.

Integer Condition Codes Register (CCR) (ASR 2)

The Condition Codes Register (CCR), shown in FIGURE 5-10, contains the integer condition codes. The
CCR register may be explicitly read and written by the RDCCR and WRCCR instructions,
respectively.

RW RW
CCR | Xcc icc |
7 73 0

FIGURE 5-10 Condition Codes Register

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc condition
codes indicate the result of an operation when viewed as a 64-bit operation. The icc condition codes
indicate the result of an operation when viewed as a 32-bit operation. For example, if an operation
results in the 64-bit value 0000 0000 FFFF FFFF¢, the 32-bit result is negative (icc.n is set to 1) but the
64-bit result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in FIGURE 5-11.

Lnfzlvi]el]
xcc: 7 6 5 4
ice.: 3 2 1 0

FIGURE 5-11 Integer Condition Codes (CCR.icc and CCR.xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last instruction
that modified the integer condition codes; 1 = negative, 0 = not negative.

50 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.5.3

The z bits indicate whether the ALU result was zero for the last instruction that modified the integer
condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in) 64-bit (xcc)
or 32-bit (icc) two’s complement notation for the last instruction that modified the integer condition
codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last instruction
that modified the integer condition codes. Carry is set on addition if there is a carry out of bit 63 (xcc)
or bit 31 (icc). Carry is set on subtraction if there is a borrow into bit 63 (xcc) or bit 31 (icc);

1 = borrow, 0 = no borrow (see TABLE 5-9).

TABLE 5-9 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} = R[rs2]{31:0} CCR.icc.c < 0
R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c « 1
R[rs1]{63:0} = R[rs2]{63:0} CCR.xcc.c « 0
R[rs1]{63:0} < R[rs2]{63:0} CCRu.xcc.c « 1

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions, the names of
which end with the letters “cc” (for example, ANDcc), and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the contents of
TSTATE.ccr. The behavior of the following instructions are conditioned by the contents of CCR.icc or
CCR.xcc:

s BPcc and Tcc instructions (conditional transfer of control)
» Bicc (conditional transfer of control, based on CCR.icc only)
» MOVcc instruction (conditionally move the contents of an integer register)

» FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the result considered
to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes, which indicate
the results of an integer operation, with both of the operands and the result considered to be 32 bits
wide.

Address Space Identifier (ASI) Register (ASR 3)

The Address Space Identifier register (FIGURE 5-12) specifies the address space identifier to be used for
load and store alternate instructions that use the “rs1 + simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI instructions,
respectively.

Software (executing in any privilege mode) may write any value into the ASI register. However,
values in the range 004 to 7F4 are “restricted” ASIs; an attempt to perform an access using an ASI in
that range is restricted to software executing in a mode with sufficient privileges for the ASI. When an
instruction executing in nonprivileged mode attempts an access using an ASI in the range 004 to 7Fq4
or an instruction executing in privileged mode attempts an access using an ASI the range 3044 to 7Fy,
a privileged_action exception is generated. See Chapter 10, Address Space Identifiers (ASIs) for details.

CHAPTER 5 « Registers 51

554

5.5.5

RW
ASI I I
7 0

FIGURE 5-12 Address Space Identifier Register

Tick (TICK) Register (ASR 4)

FIGURE 5-13 illustrates the TICK register.

R

R
TICKPnpt npt (D2) counter

63 62 0
FIGURE 5-13 TICK Register

The counter field of the TICK register is a 63-bit counter that counts strand clock cycles.

Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls access to the TICK
register by nonprivileged software.

Privileged software can always read the TICK register, with either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the WRPR instruction)
results in an illegal_instruction exception.

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled by hyperprivileged software. If nonprivileged access is
disabled, an attempt by nonprivileged software to read the TICK register using the RDTICK
instruction causes a privileged_action exception.

An attempt by nonprivileged software at any time to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

Nonprivileged software cannot write the TICK register. An attempt by nonprivileged software to
write the TICK register using the privileged WRPR instruction causes a privileged_opcode exception.

The difference between the values read from the TICK register on two reads is intended to reflect the
number of strand cycles executed between the reads.

Programming | If a single TICK register is shared among multiple virtual
Note | processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK is read, any
inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in TICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

Program Counters (PC, NPC) (ASR 5)

The PC contains the address of the instruction currently being executed. The least-significant two bits
of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly written by any
instruction (including Write State Register), but is implicitly written by control transfer instructions. A
WRasr to ASR 5 causes an illegal_instruction exception.

52 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.5.6

The Next Program Counter, NPC, is a pseudo-register that contains the address of the next instruction
to be executed if a trap does not occur. The least-significant two bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be read or written
explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL] and/or TNPC[TL]
and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

Floating-Point Registers State (FPRS) Register (ASR 6)

The Floating-Point Registers State (FPRS) register, shown in FIGURE 5-14, contains control information
for the floating-point register file; this information is readable and writable by nonprivileged software.

RW RW RW

rPRS [Tav [a_

2 1 0
FIGURE 5-14 Floating-Point Registers State Register

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS instructions,
respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set (FPRS.fef = 1) but the
PSTATE.pef bit is not set (PSTATE.pef = 0), then executing a floating-point instruction causes an
fp_disabled exception; that is, both FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point
operations.

Programming | FPRS.fef can be used by application software to notify system

Note | software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the floating-point registers;
that is, F[32]-F[62]. It is set to 1 whenever any of the upper floating-point registers is modified. The
du bit is cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.du pessimistically; that is, it may
be set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-510). Note that
if the FPop triggers fp_disabled, FPRS.du is not modified.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is,
F[0]-F[31]. It is set to 1 whenever any of the lower floating-point registers is modified. The dl bit is
cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.d| pessimistically; that is, it may be
set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-510). Note that
if the FPop triggers fp_disabled, FPRS.dI is not modified.

CHAPTER 5 « Registers 53

5.5.7

TABLE 5-10

5.5.8

GSRP

General Status Register (GSR) (ASR 19)

The General Status Register! (GSR) is a nonprivileged read /write register that is implicitly referenced
by many VIS instructions. The GSR can be read by the RDGSR instruction (see Read Ancillary State
Register on page 225) and written by the WRGSR instruction (see Write Ancillary State Register on page
285).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this register using an
otherwise-valid RDGSR or WRGSR instruction causes an fp_disabled trap.

The GSR is illustrated in FIGURE 5-15 and described in TABLE 5-10.

RW RW RW RW RW
mask — |im{irnd — scale |align
63 32 31 28 27 26 2524 87 32 0

FIGURE 5-15 General Status Register (GSR) (ASR 19)

GSR Bit Description

Bit Field Description
63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.
31:28 — Reserved.
27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.
26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:
irnd Round toward ...
0 Nearest (even, if tie)
1 0
2 + 00
3 - 00
24:8 — Reserved.
7:3 scale 5-bit shift count in the range 0-31, used by the FPACK instructions for formatting.
2:0 align Least three significant bits of the address computed by the last-executed

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

SOFTINTY Register (ASRs 20 @, 21 @, 22 &)

Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule interrupts (via
interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State Register on page
225) and written with a WRSOFTINT, WRSOFTINT_SET, or WRSOFTINT_CLR instruction (see Write
Ancillary State Register on page 285). An attempt to access to this register in nonprivileged mode
causes a privileged_opcode exception.

Programming | To atomically modify the set of pending software interrupts, use
Note | of the SOFTINT_SET and SOFTINT_CLR ASRs is

recommended.

The SOFTINT register is illustrated in FIGURE 5-16 and described in TABLE 5-11.

1 This register was (inaccurately) referred to as the "Graphics Status Register” in early UltraSPARC implementations

54 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 5-11

SOFTINTP — sm int_level tm

RW RW RW

63 17 16 15 10
FIGURE 5-16 SOFTINT Register (ASR 22)

SOFTINT Bit Description

Bit Field Description

16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (stick_cmprP) Register (ASR 25)
on page 57 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1 int_level When SOFTINT.int_level{n—1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

Notes: |A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1).

0 t When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (tick_cmprP) Register (ASR 23) on page
56 for details. SOFTINT.tm can also be directly written to 1 by software.

Setting any of SOFTINT.sm, SOFTINT.tm, or SOFTINT.int_level{13} (SOFTINT{14}) to 1 causes a
level-14 interrupt (interrupt_level_14). However, those three bits are independent; setting any one of
them does not affect the other two.

See Software Interrupt Register (softint) on page 366 for additional information regarding the SOFTINT
register.

5.5.8.1 SOFTINT_SETF Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets selected bits in the
privileged SOFTINT Register (ASR 22) (see page 54). That is, bits 16:0 of the write data are ored into
SOFTINT; any ‘1" bit in the write data causes the corresponding bit of SOFTINT to be set to 1. Bits
63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 20 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note [ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1" in the SOFTINT register, ASR 22.

FIGURE 5-17 illustrates the SOFTINT_SET pseudo-register.

CHAPTER 5 « Registers 55

5.5.9

SOFTINT_SETP — ASR 22 bits to be set

SOFTlNT_CLRP — ASR 22 bits to be cleared

Wi1s

63 17 16 0
FIGURE 5-17 SOFTINT_SET Pseudo-Register (ASR 20)

5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears selected bits in the
privileged SOFTINT register (ASR 22) (see page 54). That is, bits 16:0 of the write data are inverted
and anded into SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be
set to 0. Bits 63:17 of the write data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 21 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 21; it is just a programming interface to conveniently clear
(set to ‘0") selected bits in the SOFTINT register, ASR 22.

FIGURE 5-18 illustrates the SOFTINT_CLR pseudo-register.

Wi1c

63 17 16 0
FIGURE 5-18 SOFTINT_CLR Pseudo-Register (ASR 21))

Tick Compare (TICK_CMPRPY) Register (ASR 23)

The privileged TICK_CMPR register allows system software to cause a trap when the TICK register
reaches a specified value. Nonprivileged accesses to this register cause a privileged_opcode exception
(see Exception and Interrupt Descriptions on page 358).

The TICK_CMPR register is illustrated in FIGURE 5-19 and described in TABLE 5-12.

RW RW
TICK_CMPRP int_dis tick_cmpr
63 62 0

FIGURE 5-19 TICK_CMPR Register

TABLE5-12 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to determine
the source of the level-14 interrupt.

56 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.5.10

5.5.11

System Tick (STICK) Register (ASR 24)

The System Tick (STICK) register provides a counter that is synchronized across a system, useful for
timestamping. The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access to the STICK
register by nonprivileged software.

The STICK register is illustrated in FIGURE 5-20 and described below.

R R
STICKPnpt npt counter
63 62 0

FIGURE 5-20 STICK Register

Privileged software can always read the STICK register with the RDSTICK instruction.

Privileged software cannot write the STICK register; an attempt to execute the WRSTICK instruction
in privileged mode results in an illegal_instruction exception.

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled by hyperprivileged software. If nonprivileged access
is disabled, an attempt by nonprivileged software to read the STICK register causes a
privileged_action exception.

Nonprivileged software cannot write the STICK register; an attempt to execute the WRSTICK
instruction in nonprivileged mode results in an illegal_instruction exception.

IMPL. DEP. #442-S10: (a) If an accurate count cannot always be returned when STICK is read, any
inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in STICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

System Tick Compare (STICK_CMPRP) Register (ASR
25)

The privileged STICK_CMPR register allows system software to cause a trap when the STICK register
reaches a specified value. An attempt to accesses to this register while in nonprivileged mode causes
a privileged_opcode exception (see Exception and Interrupt Descriptions on page 358).

The System Tick Compare Register is illustrated in FIGURE 5-21 and described in TABLE 5-13.

RW RW
STICK_CMPRP] int_dis stick_cmpr
63 62 0

FIGURE 5-21 STICK_CMPR Register

CHAPTER 5 « Registers 57

TABLE 5-13 STICK_CMPR Register Description

Bit Field Description
63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.
62:0 stick_cmpr System Tick Compare Field. When this field exactly matches

STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

5.6

Register-Window PR State Registers

The state of the register windows is determined by the contents of a set of privileged registers. These
state registers can be read/written by privileged software using the RDPR/WRPR instructions. An
attempt by nonprivileged software to execute a RDPR or WRPR instruction causes a
privileged_opcode exception. In addition, these registers are modified by instructions related to
register windows and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0 to N_REG_WINDOWS — 1. An attempt to write a value greater
than N_REG_WINDOWS - 1 to any of these registers causes an implementation-dependent value
between 0 and N_REG_WINDOWS — 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS — 2 violates the register window state definition in
Register Window State Definition on page 60.

Although the width of each of these five registers is architecturally 5 bits, the width is implementation
dependent and shall be between dog,(N_REG_WINDOWS)Oand 5 bits, inclusive. If fewer than 5 bits are
implemented, the unimplemented upper bits shall read as 0 and writes to them shall have no effect.
All five registers should have the same width.

For UltraSPARC Architecture 2007 processors, N_REG_WINDOWS = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and CLEANWIN is 7, and the
maximum value for CANSAVE, CANRESTORE, and OTHERWIN is 6. When these registers are
written by the WRPR instruction, bits 63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window Management
Instructions on page 83.

Programming | CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must

Note [never be set to a value greater than N_REG_WINDOWS — 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS - 2 violates the register
window state definition in Register Window State Definition on
page 60. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

58 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.6.1

5.6.2

5.6.3

5.6.4

Current Window Pointer (CWPY) Register (PR 9)

The privileged CWP register, shown in FIGURE 5-22, is a counter that identifies the current window
into the array of integer registers. See Register Window Management Instructions on page 83 and
Chapter 12, Traps, for information on how hardware manipulates the CWP register.

RW RW
cwpP | | |
4 32 0

FIGURE 5-22 Current Window Pointer Register

Savable Windows (CANSAVE?Y) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 5-23, contains the number of register windows
following CWP that are not in use and are, hence, available to be allocated by a SAVE instruction
without generating a window spill exception.

RW RW
CANSAVEP | | |
4 32 0

FIGURE 5-23 CANSAVE Register, Figure 5-24, page 88

Restorable Windows (CANRESTOREY) Register (PR 11)

The privileged CANRESTORE register, shown in FIGURE 5-24, contains the number of register
windows preceding CWP that are in use by the current program and can be restored (by the
RESTORE instruction) without generating a window fill exception.

RW RW
CANRESTORE” | | |
4 32 0

FIGURE 5-24 CANRESTORE Register

Clean Windows (CLEANWINP) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 5-25, contains the number of windows that can
be used by the SAVE instruction without causing a clean_window exception.

RW RW
CLEANWINP | | |
4 32 0

FIGURE 5-25 CLEANWIN Register

The CLEANWIN register counts the number of register windows that are “clean” with respect to the
current program; that is, register windows that contain only zeroes, valid addresses, or valid data
from that program. Registers in these windows need not be cleaned before they can be used. The
count includes the register windows that can be restored (the value in the CANRESTORE register)
and the register windows following CWP that can be used without cleaning. When a clean window is
requested (by a SAVE instruction) and none is available, a clean_window exception occurs to cause the
next window to be cleaned.

CHAPTER 5 « Registers 59

5.6.5

5.6.6

5.6.7

Other Windows (OTHERWINT) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 5-26, contains the count of register windows that
will be spilled/filled by a separate set of trap vectors based on the contents of WSTATE.other. If
OTHERWIN is zero, register windows are spilled/filled by use of trap vectors based on the contents of
WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different address spaces
and handle spill/fill traps efficiently by use of separate spill/fill vectors.

RW RW
OTHERWINP | | |
4 32 0

FIGURE 5-26 OTHERWIN Register

Window State (WSTATE') Register (PR 14)

The privileged WSTATE register, shown in FIGURE 5-27, specifies bits that are inserted into TT[TL]{4:2}
on traps caused by window spill and fill exceptions. These bits are used to select one of eight different
window spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken because of a window spill
or window fill exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition, below, for details of
the semantics of OTHERWIN.

RW RW
WSTATEP I other | normal I
5 3 2 0

FIGURE 5-27 WSTATE Register

Register Window Management

The state of the register windows is determined by the contents of the set of privileged registers
described in Register-Window PR State Registers on page 58. Those registers are affected by the
instructions described in Register Window Management Instructions on page 83. Privileged software can
read /write these state registers directly by using RDPR/WRPR instructions.

5.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be true:
CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

FIGURE 5-3 on page 37 shows how the register windows are partitioned to obtain the above equation.
The partitions are as follows:

» The current window plus the window that must not be used because it overlaps two other valid
windows. In FIGURE 5-3, these are windows 0 and 5, respectively. They are always present and
account for the “2” subtracted from N_REG_WINDOWS in the right-hand side of the above equation.

» Windows that do not have valid contents and that can be used (through a SAVE instruction)
without causing a spill trap. These windows (windows 1-4 in FIGURE 5-3) are counted in CANSAVE.

» Windows that have valid contents for the current address space and that can be used (through the
RESTORE instruction) without causing a fill trap. These windows (window 7 in FIGURE 5-3) are
counted in CANRESTORE.

60 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

» Windows that have valid contents for an address space other than the current address space. An
attempt to use these windows through a SAVE (RESTORE) instruction results in a spill (fill) trap to
a separate set of trap vectors, as discussed in the following subsection. These windows (window 6
in FIGURE 5-3) are counted in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows following CWP.

For the window-management features of the architecture described in this section to be used, the state
of the register windows must be kept consistent at all times, except within the trap handlers for
window spilling, filling, and cleaning. While window traps are being handled, the state may be
inconsistent. Window spill/fill trap handlers should be written so that a nested trap can be taken
without destroying state.

Programming | System software is responsible for keeping the state of the
Note | register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS — 1.

5.6.7.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 362 for a detailed description of how fill, spill, and clean_window
traps support register windowing.

5.7

5.7.1

Non-Register-Window PR State Registers

The registers described in this section are visible only to software running in privileged mode (that is,
when PSTATE.priv = 1), and may be accessed with the WRPR and RDPR instructions. (An attempt to
execute a WRPR or RDPR instruction in nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.
Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

Trap Program Counter (TPCP) Register (PR 0)

The privileged Trap Program Counter register (TPC; FIGURE 5-28) contains the program counter (PC)
from the previous trap level. There are MAXPTL instances of the TPC, but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC[TL] register is
accessible. An attempt to read or write the TPC register when TL = 0 causes an illegal_instruction
exception.

During normal operation, the value of TPC[n], where n is greater than the current trap level (n > TL),
is undefined.

TABLE 5-14 lists the events that cause TPC to be read or written.

CHAPTER 5 « Registers 61

RW R

TPC,P pc_high62 (PC{63:2} from trap while TL = 0) 00
TPCZP pc_high62 (PC{63:2} from trap while TL = 1) 00
TPC,F pc_high62 (PC{63:2} from trap while TL =2) 00
TPCMAXPTLP pc_high62 (PC{ 63:2} from trap while TL = MAXPTL — 1) 00
63 210

FIGURE 5-28 Trap Program Counter Register Stack

TABLE 5-14 Events that involve TPC, when executing with TL = n.

Event Effect

Trap TPC[n +1] -~ PC
RETRY instruction PC ~ TPC[n]
RDPR (TPC) R[rd] — TPCI[n]
WRPR (TPC) TPC[n] « value

5.7.2 Trap Next PC (TN pch) Register (PR 1)

The privileged Trap Next Program Counter register (TNPC; FIGURE 5-28) is the next program counter
(NPC) from the previous trap level. There are MAXPTL instances of the TNPC, but only one is accessible
at any time. The current value in the TL register determines which instance of the TNPC register is
accessible. An attempt to read or write the TNPC register when TL = 0 causes an illegal_instruction

exception.
RW R
TNPC,* npc_high62 (NPC{63:2} from trap while TL = 0) 00
P
TNPC, npc_high62 (NPC{63:2} from trap while TL = 1) 00
TNPC,P npc_high62 (NPC{63:2} from trap while TL =2) 00
TNPCyaxpr | npc_high62 (NPC{ 63:2} from trap while TL = MAXPTL —1) 00
63 210

FIGURE 5-29 Trap Next Program Counter Register Stack
During normal operation, the value of TNPC[n], where n is greater than the current trap level (n > TL),
is undefined.

TABLE 5-15 lists the events that cause TNPC to be read or written.

TABLE 5-15 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n +1] - NPC

DONE instruction PC — TNPC[n]; NPC —~ TNPC[n] +4
RETRY instruction NPC ~ TNPC[n]

RDPR (TNPC) R[rd] — TNPC[#n]

WRPR (TNPC) TNPC[n] « value

62 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

5.7.3

Trap State (TSTATED) Register (PR 2)

The privileged Trap State register (TSTATE; FIGURE 5-30) contains the state from the previous trap
level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE registers from the previous
trap level. There are MAXPTL instances of the TSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of TSTATE is accessible. An attempt to read
or write the TSTATE register when TL = 0 causes an illegal_instruction exception.

RW RW RW R RW R RW

TSTATE1P gl ccr asi — pstate — cwp
(GL from TL = 0) [(CCR from TL = 0)[(ASI from TL = 0) (PSTATE from TL =0) (CWP from TL =0)

TSTATEZP gl ccr asi — pstate — cwp
(GL from TL = 1) [(CCR from TL = 1) (ASI fromTL=1 (PSTATE fromTL =1) (CWP fromTL=1)

TSTATE3P gl ccr asi — pstate — cwp
P (GL from TL = 2) [(CCR from TL = 2)| (ASI from TL =2 (PSTATE from TL =2) (CWP from TL = 2)

gl cer asi — pstate — cwp

TSTATE yaxer | (GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXPTL — 1)[TL = MAXPTL — 1)[TL = MAXPTL — 1 TL = MAXPTL - 1) TL = MAXPTL - 1)
77 740 39 32 3T 247232T 20 75 24

FIGURE 5-30 Trap State (TSTATE) Register Stack

During normal operation the value of TSTATE[n], when # is greater than the current trap level (1 >
TL), is undefined.

V9 Compatibility | Because there are more bits in the UltraSPARC Architecture’s
Note | PSTATE register than in a SPARC V9 PSTATE register, a 13-bit
PSTATE value is stored in TSTATE instead of the 10-bit value
specified in the SPARC V9 architecture.

TABLE 5-16 lists the events that cause TSTATE to be read or written.
TABLE 5-16 Events That Involve TSTATE, When Executing with TL =n

Event Effect

Trap TSTATE[n + 1] « (registers)
DONE instruction (registers) — TSTATE[n]
RETRY instruction (registers) — TSTATE[#n]
RDPR (TSTATE) R[rd] — TSTATE[n]

WRPR (TSTATE) TSTATE[n] « value

CHAPTER 5 « Registers 63

5.7.4

5.7.5

5.7.6

Trap Type (TTH) Register (PR 3)

The privileged Trap Type register (TT; see FIGURE 5-31) contains the trap type of the trap that caused
entry to the current trap level. There are MAXPTL instances of the TT register, but only one is accessible
at a time. The current value in the TL register determines which instance of the TT register is
accessible. An attempt to read or write the TT register when TL = 0 causes an illegal_instruction
exception.

RW
TT1P Trap type from trap while TL = 0
TT2P Trap type from trap while TL = 1
: P
TTMAXPTLP Trap type from trap while TL = MAXPTL - 1

FIGURE 5-31 Trap Type Register Stack

During normal operation, the value of TT[n], where n is greater than the current trap level (n > TL), is
undefined.

TABLE 5-17 lists the events that cause TT to be read or written.

TABLE 5-17 Events that involve TT, when executing with TL = n.

Event Effect

Trap TT[n +1] « (trap type)
RDPR (TT) R[rd] — TT[n]

WRPR (TT) TT[n] « value

Trap Base Address (TBAP) Register (PR 5)

The privileged Trap Base Address register (TBA), shown in FIGURE 5-32, provides the upper 49 bits
(bits 63:15) of the virtual address used to select the trap vector for a trap that is to be delivered to
privileged mode. The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

RW R
TBAP tba_high49 000 0000 0000 0000

63 15 14 0

FIGURE 5-32 Trap Base Address Register

Details on how the full address for a trap vector is generated, using TBA and other state, are provided
in Trap-Table Entry Address to Privileged Mode on page 348.

Processor State (PSTATEP) Register (PR 6)

The privileged Processor State register (PSTATE), shown in FIGURE 5-33, contains control fields for the
current state of the virtual processor. There is only one instance of the PSTATE register per virtual
processor.

RW RW RW RW RW RW RW RW
PSTATEP tct — cle tle mm — pef am priv ie —
12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 5-33 PSTATE Field

64 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is visible to the next
instruction executed. The privileged RDPR and WRPR instructions are used to read and write
PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Trap on Control Transfer (tct). PSTATE.tct enables the Trap-on-Control-Transfer feature.When
PSTATE.tct = 1, the virtual processor monitors each control transfer instruction (CTI) to determine
whether a control_transfer_instruction exception should be generated. If the virtual processor is
executing a CTI, PSTATE.tct = 1, and a successful control transfer is going to occur as a result of
execution of that CTI, the processor generates a control_transfer_instruction exception instead of
completing execution of the control transfer instruction.

When the trap is taken, the address of the CTI (the value of PC when the CTI began execution) is
saved in TPC[TL] and the value of NPC when the CTI began execution is saved in TNPC[TL].

During initial trap processing, before trap handler code is executed, the virtual processor sets
PSTATE.tct to O (so that control transfers within the trap handler don’t cause additional traps).

Programming | Trap handler software for a control_transfer_instruction trap

Note | should take care when returning to the software that caused the
trap. Execution of DONE or RETRY causes PSTATE.tct to be
restored from TSTATE, normally setting PSTATE.tct back to 1. If
trap handler software intends for control_transfer_instruction
exceptions to be reenabled, then it must emulate the trapped
control transfer instruction.

IMPL. DEP. #450-S20: Availability of the control_transfer_instruction exception feature is
implementation dependent. If not implemented, trap type 07444 is unused, PSTATE.tct always reads
as zero, and writes to PSTATE.tct are ignored.

For the purposes of the control_transfer_instruction exception, a discontinuity in instruction-fetch
addresses caused by a WRPR to PSTATE that changes the value of PSTATE.am (and thus, potentially
the more-significant 32 bits of the address of the next instruction; see page 67) is not considered a
control transfer. Only explicit CTIs can generate a control_transfer_instruction exception.

Current Little Endian (cle). This bit affects the endianness of data accesses performed using an
implicit ASI. When PSTATE.cle = 1, all data accesses using an implicit ASI are performed in little-
endian byte order. When PSTATE.cle = 0, all data accesses using an implicit ASI are performed in big-
endian byte order. Specific ASIs used are shown in TABLE 6-3 on page 76. Note that the endianness of
a data access may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-endian byte
order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is pushed onto the trap
stack. During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to have a different
implicit byte ordering than the current process. Thus, if PSTATE.tle is set to 1, data accesses using an
implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is restored from the
trap stack.

CHAPTER 5 « Registers 65

Memory Model (mm). This 2-bit field determines the memory model in use by the virtual
processor. The defined values for an UltraSPARC Architecture virtual processor are listed in
TABLE 5-18.

TABLE 5-18 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)
11 Implementation dependent (impl. dep. #113-V9-Ms10)

The current memory model is determined by the value of PSTATE.mm. Software should refrain from
writing the values 01,, 10,, or 11, to PSTATE.mm because they are implementation-dependent or
reserved for future extensions to the architecture, and in any case not currently portable across
implementations.

» Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are ordered with
respect to earlier loads and stores. Thus, loads can bypass earlier stores but cannot bypass earlier
loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by PSTATE.mm = 10, or 11, are
supported in an UltraSPARC Architecture processor is implementation dependent. If the 10, model
is supported, then when PSTATE.mm = 10, the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 11, model is
supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model designation into
PSTATE.mm is implementation dependent.

SPARC V9 | The PSO memory model described in SPARC V8 and SPARC V9
Compatibility | architecture specifications was never implemented in a SPARC
Notes | V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2007 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2007 implementation.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point unit. This allows
privileged software to manage the FPU. For the FPU to be usable, both PSTATE.pef and FPRS. fef
must be set to 1. Otherwise, any floating-point instruction that tries to reference the FPU causes an
fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as 0 and writes to it

are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC software to run
correctly on a 64-bit SPARC processor. When PSTATE.am = 1, bits 63:32 of virtual addresses are
masked out (treated as 0). PSTATE.am does not affect real addresses.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are preserved at all points in
the virtual processor.

When an MMU is disabled, PSTATE.am has no effect on (does not cause masking of) addresses.

66 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Programming
Note

It is the responsibility of privileged software to manage the
setting of the PSTATE.am bit, since hardware masks virtual
addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
nonprivileged software is executed.

Instances in which the more-significant 32 bits of a virtual address are masked when PSTATE.am =1
include:

Before any data virtual address is sent out of the virtual processor (notably, to the memory system,
which includes MMU, internal caches, and external caches).

Before any instruction virtual address is sent out of the virtual processor (notably, to the memory
system, which includes MMU, internal caches, and external caches)

When the value of PC is stored to a general-purpose register by a CALL, JMPL, or RDPC
instruction (closed impl.dep. #125-V9-Cs10)

When the values of PC and NPC are written to TPC[TL] and TNPCJ[TL] (respectively) during a trap

(closed impl.dep. #125-V9-Cs10)
Before any virtual address is sent to a watchpoint comparator

Programming | A 64-bit comparison is always used when performing a masked
Note [watchpoint address comparison with the Instruction or Data VA

watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly preserved and
not masked out in the following cases:

» When a target address is written to NPC by a control transfer instruction

Forward
Compatibility
Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

» When NPC is incremented to NPC + 4 during execution of an instruction that is not a taken control

transfer
Forward
Compatibility
Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

When a WRPR instruction writes to TPC[TL] or TNPC[TL]

Programming
Note

Since writes to PSTATE are nondelayed (see page 65), a change
to PSTATE.am can affect which instruction is executed
immediately after the write to PSTATE.am. Specifically, if a
WRPR to the PSTATE register changes the value of PSTATE.am
from ’0" to "1, and NPC{63:32} when the WRPR began execution
was nonzero, then the next instruction executed after the WRPR
will be from the address indicated in NPC{31:0} (with the more-
significant 32 address bits set to zero).

When a RDPR instruction reads from TPC[TL] or TNPC[TL]

CHAPTER 5 « Registers 67

5.7.7

If (1) TSTATE[TL].pstate.am =1 and (2) a DONE or RETRY instruction is executed!, it is
implementation dependent whether the DONE or RETRY instruction masks (zeroes) the more-
significant 32 bits of the values it places into PC and NPC (impl. dep. #417-510).

Programming | Because of implementation dependency #417-510, great care

Note [must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].

Programming | PSTATE.am affects the operation of the edge-handling
Note | instructions, EDGE<8 116 | 32>[L]*. See Edge Handling Instructions
on page 116 and Edge Handling Instructions (no CC) on page 118.

Privileged Mode (priv). When PSTATE.priv = 1, the virtual processor is operating in privileged
mode.

When PSTATE.priv = 0, the processor is operating in nonprivileged mode

PSTATE _interrupt_enable (ie). PSTATE.ie controls when the virtual processor can take traps due
to disrupting exceptions (such as interrupts or errors unrelated to instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only cause a trap when
the virtual processor is in nonprivileged or privileged mode and PSTATE.ie = 1. At all other times,
they are held pending. For more details, see Conditioning of Disrupting Traps on page 346.

SPARC V9 | Since the UltraSPARC Architecture provides a more general
Compatibility | “alternate globals” facility (through use of the GL register) than
Note | does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

Trap Level Register (TLP) (PR 7)

The privileged Trap Level register (TL; FIGURE 5-34) specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being processed.

RW

1 ——

2 0

FIGURE 5-34 Trap Level Register

The maximum valid value that the TL register may contain is MAXPTL, which is always equal to the
number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for each
implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state). In
a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-510). Architecturally, MAXPTL must be
22

In an UltraSPARC Architecture 2007 implementation, MAXPTL = 2. See Chapter 12, Traps, for more
details regarding the TL register.

1 which sets PSTATE.am to '1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am

68 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

The effect of writing to TL with a WRPR instruction is summarized in TABLE 5-19.

TABLES-19 Effect of WRPR of Value x to Register TL

Privilege Level when Executing WRPR

Value x Written with WRPR Nonprivileged Privileged
X < MAXPTL o TL - x
privileged_opcode
X > MAXPTL exception TL « MAXPTL
(no exception generated)

Writing the TL register with a WRPR instruction does not alter any other machine state; that is, it is not
equivalent to taking a trap or returning from a trap.

Programming | An UltraSPARC Architecture implementation only needs to
Note | implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation
whereMAXPTL < 3, bits 63:2 of data written to the TL register
using the WRPR instruction are ignored; only the least-
significant two bits (bits 1:0) of TL are actually written. For
example, if MAXPTL =2, writing a value of 054 to the TL register
causes a value of 1;4 to actually be stored in TL.

Implementation | MAXPTL =2 for all UltraSPARC Architecture 2007 processors.
Note | Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

Programming | Although it is possible for privileged software to set TL > 0 for

Note [nonprivileged software’, an UltraSPARC Architecture virtual
processor’s behavior when executing with TL > 0 in
nonprivileged mode is undefined.

t by executing a WRPR to TSTATE followed by DONE instruction or RETRY
instruction.

5.7.8 Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 5-35) specifies the interrupt level
above which the virtual processor will accept an interrupt_level_n interrupt. Interrupt priorities are
mapped so that interrupt level 2 has greater priority than interrupt level 1, and so on. See TABLE 12-4
on page 351 for a list of exception and interrupt priorities.

RW
PILP [pil |
3 0

FIGURE 5-35 Processor Interrupt Level Register

V9 Compatibility | On SPARC V8 processors, the level 15 interrupt is considered to
Note | be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

5.7.9 Global Level Register (G L") (PR 16)

The privileged Global Level (GL) register selects which set of global registers is visible at any given
time.

CHAPTER 5 « Registers 69

FIGURE 5-36 illustrates the Global Level register.

RW

GLP gl I

2 0

FIGURE 5-36 Global Level Register, GL

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set of global
registers (R[1] through R[7]) becomes visible. A DONE or RETRY instruction restores the value of GL
from TSTATE[TL].

The valid range of values that the GL register may contain is 0 to MAXPGL, where MAXPGL is one fewer
than the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each implementation; its
legal values are from 2 to 7 (supporting from 3 to 8 sets of global registers). In a typical
implementation, MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). Architecturally, MAXPGL must be = 2.

In all UltraSPARC Architecture 2007 implementations, MAXPGL = 2 (impl. dep. #401-510).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation may implement
any subset of those bits sufficient to encode the values from 0 to MAXPGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

GL operates similarly to TL, in that it increments during entry to a trap, but the values of GL and TL
are independent. That is, TL = n does not imply that GL = n, and GL =n does not imply that TL = n.
Furthermore, there may be a different total number of global levels (register sets) than there are trap
levels; that is, MAXPTL and MAXPGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as privileged register
number 16). Writing the GL register directly with WRPR will change the set of global registers visible
to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL register causes MAXPGL
to be written to GL.

The effect of writing to GL with a WRPR instruction is summarized in TABLE 5-20.

TABLES5-20 Effect of WRPR to Register GL
Privilege Level when WRPR Is Executed
Value x Written with WRPR Nonprivileged Privileged
X < MAXPGL GL « x
X > MAXPGL -
privileged_opcode
exception GL — MAXPGL

(no exception generated)
Since TSTATE itself is software-accessible, it is possible that when a DONE or RETRY is executed to
return from a trap handler, the value of GL restored from TSTATE[TL] will be different from that
which was saved into TSTATE[TL] when the trap occurred.

70 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed, annulled, or trapped.
Instructions are encoded in 4 major formats and partitioned into 11 general categories. Instructions are
described in the following sections:

» Instruction Execution on page 71.
» Instruction Formats on page 72.
= Instruction Categories on page 72.

6.1

Instruction Execution

The instruction at the memory location specified by the program counter is fetched and then executed.
Instruction execution may change program-visible virtual processor and/or memory state. As a side
effect of its execution, new values are assigned to the program counter (PC) and the next program
counter (NPC).

An instruction may generate an exception if it encounters some condition that makes it impossible to
complete normal execution. Such an exception may in turn generate a precise trap. Other events may
also cause traps: an exception caused by a previous instruction (a deferred trap), an interrupt or
asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs, control is
vectored into a trap table. See Chapter 12, Traps, for a detailed description of exception and trap
processing.

If a trap does not occur and the instruction is not a control transfer, the next program counter is
copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic overflow if any). There are
two types of control-transfer instructions (CTIs): delayed and immediate. For a delayed CTI, at the
end of the execution of the instruction, NPC is copied into the PC and the target address is copied into
NPC. For an immediate CTI, at the end of execution, the target is copied to PC and target + 4 is copied
to NPC. In the SPARC instruction set, many CTIs do not transfer control until after a delay of one
instruction, hence the term “delayed CT1” (DCTI). Thus, the two program counters provide for a
delayed-branch execution model.

For each instruction access and each normal data access, an 8-bit address space identifier (ASI) is
appended to the 64-bit memory address. Load/store alternate instructions (see Address Space Identifiers
(ASIs) on page 76) can provide an arbitrary ASI with their data addresses or can use the ASI value
currently contained in the ASI register.

71

6.2 Instruction Formats

Every instruction is encoded in a single 32-bit word. The most typical 32-bit formats are shown in
FIGURE 6-1. For detailed formats for specific instructions, see individual instruction descriptions in the
Instructions chapter.

op = 00,: SETHI, Branches, and ILLTRAP

00 rd op2 imm22
00 |a| cond op2 disp22
00 |a| cond op2 |cclccl| p disp19
00 |a|O| rcond op2 |di6hi| p rsl di6lo
31 302928 27 2524 22 2120 19 18 14 13 0
op =01,: CALL
01 disp30
31 3029 0

op = 10, or 11,: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

1x rd op3 rsl i=0| imm_asi rs2
1X rd op3 rsl i=1 simm13
31 3029 2524 19 18 14 13 12 5 4 0

FIGURE 6-1 Summary of Instruction Formats

6.3 Instruction Categories

UltraSPARC Architecture instructions can be grouped into the following categories:

= Memory access

= Memory synchronization

» Integer arithmetic

= Control transfer (CTI)

» Conditional moves

» Register window management
» State register access

» Privileged register access

» Floating-point operate

» Implementation dependent
» Reserved

These categories are described in the following subsections.

72 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

6.3.1

Memory Access Instructions

Load, store, load-store, and PREFETCH instructions are the only instructions that access memory. All
of the memory access instructions except CASA, CASXA, and Partial Store use either two R registers
or an R register and simm13 to calculate a 64-bit byte memory address. For example, Compare and
Swap uses a single R register to specify a 64-bit byte memory address. To this 64-bit address, an ASI
is appended that encodes address space information.

The destination field of a memory reference instruction specifies the R or F register(s) that supply the
data for a store or that receive the data from a load or LDSTUB. For SWAP, the destination register
identifies the R register to be exchanged atomically with the calculated memory location. For
Compare and Swap, an R register is specified, the value of which is compared with the value in
memory at the computed address. If the values are equal, then the destination field specifies the R
register that is to be exchanged atomically with the addressed memory location. If the values are
unequal, then the destination field specifies the R register that is to receive the value at the addressed
memory location; in this case, the addressed memory location remains unchanged. LDFSR/LDXFSR
and STFSR/STXFSR are special load and store instructions that load or store the floating-point status
register, FSR, instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of the prefetch.

Memory is byte (8-bit) addressable. Integer load and store instructions support byte, halfword (2
bytes), word (4 bytes), and doubleword/extended-word (8 bytes) accesses. Floating-point load and
store instructions support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords. The LDTXA
(load twin-extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads and
stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

Programming | For some instructions, by use of simm13, any location in the
Note | lowest or highest 4 Kbytes of an address space can be accessed
without the use of a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

A halfword access must be aligned on a 2-byte boundary, a word access (including an instruction
fetch) must be aligned on a 4-byte boundary, an extended-word (LDX, LDXA, STX, STXA) or integer
twin word (LDTW, LDTWA, STTW, STTWA) access must be aligned on an 8-byte boundary,an
integer twin-extended-word (LDTXA) access must be aligned on a 16-byte boundary, and a Block
Load (LDBLOCKEF) or Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be aligned on an 8-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point
doubleword access to an address that is 4-byte aligned but not 8-byte aligned may result in less
efficient and nonatomic access (causes a trap and is emulated in software (impl. dep. #109-V9-Cs10)),
so 8-byte alignment is recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned on a 16-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point quadword
access to an address that is 4-byte or 8-byte aligned but not 16-byte aligned may result in less efficient
and nonatomic access (causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-
byte alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

»« An LDDF or LDDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an LDDF_mem_address_not_aligned exception (impl. dep. #109-V9-Cs10).

= An STDF or STDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an STDF_mem_address_not_aligned exception (impl. dep. #110-V9-Cs10).

CHAPTER 6 ¢ Instruction Set Overview 73

» An LDQF or LDQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an LDQF_mem_address_not_aligned exception (impl. dep. #111-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2007 implementations do not currently generate it.

» An STQF or STQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an STQF_mem_address_not_aligned exception (impl. dep. #112-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2007 implementations do not currently generate it.

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all instruction accesses
and, by default, for data accesses. It is possible to access data in little-endian format by use of selected
ASIs. It is also possible to change the default byte order for implicit data accesses. See Processor State
(pstateP) Register (PR 6) on page 64 for more information.!

Big-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases. The big-endian
addressing conventions are described in TABLE 6-1 and illustrated in FIGURE 6-2.

TABLE6-1 Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15-8) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31-24) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 3.

doubleword or For a load/store extended or floating-point load/store double instruction,

extended word eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA', STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.
+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127-120) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 15.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On Holy Wars and a Plea for
Peace,” Computer 14:10 (October 1981), pp. 48-54.

74 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Byte

Halfword

Word

Doubleword / Address{ 2:0}
Extended word

Quadword

Address

7 0
Address{O} = 0 1

15 8|7 0
Address{ 1:0} = 00 01 10 11

31 24|23 16|15 8|7 0

= 000 001 010 011

63 56| 55 48|47 40(39 32
Address{zzo} = 100 101 110 111

31 24|23 16|15 8|7 0
Address{ 3.0} = 0000 0001 0010 0011

127 120|119 112{111 104|103 96
Address{ 3:0} = 0100 0101 0110 0111

95 88| 87 80|79 72|71 64
Address{ 3:0} = 1000 1001 1010 1011

63 56| 55 48|47 40|39 32
Address{ 3:0} = 1100 1101 1110 1111

31 24|23 16|15 8|7 0

FIGURE 6-2 Big-endian Addressing Conventions

CHAPTER 6 ¢ Instruction Set Overview 75

Little-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases. The little-endian
addressing conventions are defined in TABLE 6-2 and illustrated in FIGURE 6-3.

TABLE6-2 Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 15-8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 31-24) is accessed at the
address + 3.

doubleword or For a load/store extended or floating-point load/store double

extended word instruction, eight bytes are accessed. The least significant byte (bits 7-0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63-56) is accessed at the address + 7.

For the deprecated integer load/store twin word instructions (LDTW,
LDTWA*, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA's opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 127-120) is accessed at the
address + 15.

6.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use for their data
access; when i = 0, the explicit ASI is provided in the instruction’s imm_asi field, and when i =1, it is
provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value that depends on
the current trap level (TL) and the value of PSTATE.cle. Instruction fetches use an implicit ASI that
depends only on the current trap level. The cases are enumerated in TABLE 6-3.

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.cle ASI Used
Instruction Fetch =0 any AS| _PRI MARY
>0 any ASI _NUCLEUS*

76 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Byte

Address 7 0
Halfword 0 1
Address{0} = 7 ol 15 8
Word 00 01 10 11
Address{1:0} =
7 0|15 8| 23 16|31 24
Doubleword / Address{2:0} = 000 001 010 011
Extended word 7 0] 15 8[23 16|31 24
100 101 110 111
Address(2:0} = | 39 32| 47 40| 55 48|63 56
Quadword 0000 0001 0010 0011
Address{3:0} = ['7 ol1s5 8|23 16]31 24
0100 0101 0110 0111
Address{3:0} = [32| 47 40| 55 48|63 56
1000 1001 1010 1011
Address{3:0} = [z, 64| 79 72| 87 80| 95 88
1100 1101 1110 1111
Address(3:0 = 1143 96| 111 104| 119 112|127 120
FIGURE 6-3 Little-endian Addressing Conventions
TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches
Access Type TL PSTATE.cle ASI Used
Non-alternate-space =0 0 ASI _PRI MARY
Load, Store, or 1 AS| PRI MARY LI TTLE
Load-Store
>0 0 ASI _NUCLEUS*
1 ASI _NUCLEUS_LI TTLE**
Alternate-space Load, any any ASI explicitly specified in the instruction

Store, or Load-Store

(subject to privilege-level restrictions)

*On some early SPARC V9 implementations, ASI _PRI MARY may have been used for this case.
**On some early SPARC V9 implementations, ASI _PRI MARY_LI TTLE may have been used for this case.

CHAPTER 6 ¢ Instruction Set Overview 77

6.3.2

See also Memory Addressing and Alternate Address Spaces on page 308.

ASIs 0014-7Fq¢ are restricted; only software with sufficient privilege is allowed to access them. An
attempt to access a restricted ASI by insufficiently-privileged software results in a privileged_action
exception (impl. dep #103-V9-Ms10(6)). ASIs 8044 through FF;4 are unrestricted; software is allowed to
access them regardless of the virtual processor’s privilege mode, as summarized in TABLE 6-4.

TABLE 6-4 Allowed Accesses to ASIs

Processor Mode

Value Access Type (PSTATE.priv) Result of ASI Access
0016—7F1¢ Restricted Nonprivileged (0) privileged_action exception
Privileged (1) Valid access
8014-FF1¢ Unrestricted Nonprivileged (0) Valid access
Privileged (1) Valid access

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2007 ASIs are implementation dependent. See
TABLE 10-1 on page 323 for details.

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers (impl. dep. #30-V8-
Cu3).

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

6.3.14 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the same address
space and use hardware to keep data and instruction memory consistent at all times. It may also
choose to overload independent address spaces for data and instructions and allow them to become
inconsistent when data writes are made to addresses shared with the instruction space.

Programming | A SPARC V9 program containing self-modifying code should
Note [use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order and
completion of memory references. Ordering MEMBARs induce a partial ordering between sets of
loads and stores and future loads and stores. Sequencing MEMBARs exert explicit control over
completion of loads and stores (or other instructions). Both barrier forms are encoded in a single
instruction, with subfunctions bit-encoded in cmask and mmask fields.

78 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

6.3.3

6.3.4

Integer Arithmetic and Logical Instructions

The integer arithmetic and logical instructions generally compute a result that is a function of two
source operands and either write the result in a third (destination) register R[rd] or discard it. The first
source operand is R[rs1]. The second source operand depends on the i bit in the instruction; if i = 0,
then the second operand is R[rs2]; if i = 1, then the second operand is the constant Simm10, simm11,
or simm13 from the instruction itself, sign-extended to 64 bits.

Note | The value of R[0] always reads as zero, and writes to it are
ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes (icc and
xcc) as a side effect; the other does not affect the condition codes. A special comparison instruction for
integer values is not needed since it is easily synthesized with the “subtract and set condition codes”
(SUBcc) instruction. See Synthetic Instructions on page 414 for details.

6.3.3.2 Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount. None of the shift
instructions change the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-bit constant from
the instruction into bits 31 through 10 of the destination register. It clears the low-order 10 bits and
high-order 32 bits, and it does not affect the condition codes. Its primary use is to construct constants
in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer divide instructions
perform 64 + 64 — 64-bit operations. For compatibility with SPARC V8 processors, 32 x 32 - 64-bit
multiply instructions, 64 + 32 - 32-bit divide instructions, and the Multiply Step instruction are
provided. Division by zero causes a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the two low-
order bits of each operand. If either of the two operands has a nonzero tag or if 32-bit arithmetic
overflow occurs, tag overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the
CCRu.cc.v bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated. See Tagged Add
on page 274 and Tagged Subtract on page 279 for details.

Control-Transfer Instructions (CTIs)

The basic control-transfer instruction types are as follows:

= Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
= Unconditional branch

= Call and link (CALL)

» Jump and link JMPL, RETURN)

CHAPTER 6 ¢ Instruction Set Overview 79

» Return from trap (DONE, RETRY)
» Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter (NPC) or
by changing the value of both the program counter (PC) and the next program counter (NPC). When
only NPC is changed, the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-transfer instruction is
said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not execute, the instruction
in the delay slot, based on the setting of an annul bit in the instruction. The effect of the annul bit
depends upon whether the transfer is taken or not taken and whether the branch is conditional or
unconditional. Annulled delay instructions neither affect the program-visible state, nor can they
cause a trap.

Programming | The annul bit increases the likelihood that a compiler can find a

Note [useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 6-5 defines the value of the program counter and the value of the next program counter after
execution of each instruction. Conditional branches have two forms: branches that test a condition
(including branch-on-register), represented in the table by Bcc, and branches that are unconditional,
that is, always or never taken, represented in the table by BA and BN, respectively. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than by fetching and
annulling the instruction.

TABLE 6-5 Control-Transfer Characteristics (1 of 2)

Instruction Group Address Form Delayed? Taken? Annul Bit? New PC New NPC
Non-CTIs — — — — NPC NPC + 4
Bee PC-relative Yes Yes 0 NPC EA

Bec PC-relative Yes No 0 NPC NPC + 4
Bec PC-relative Yes Yes 1 NPC EA

Bee PC-relative Yes No 1 NPC + 4 NPC + 8
BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA +4
BN PC-relative Yes No 0 NPC NPC + 4
BN PC-relative Yes No 1 NPC + 4 NPC + 8
CALL PC-relative Yes — — NPC EA

80 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 6-5

Control-Transfer Characteristics (Continued) (2 of 2)

Instruction Group Address Form Delayed? Taken? Annul Bit? New PC New NPC
JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPCI[TL] TNPCI[TL] + 4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tec Trap vector No Yes — EA EA +4

Tec Trap vector No No — NPC NPC + 4

The effective address, “EA” in TABLE 6-5, specifies the target of the control-transfer instruction. The
effective address is computed in different ways, depending on the particular instruction.

s PC-relative effective address — A PC-relative effective address is computed by sign extending the
instruction’s immediate field to 64-bits, left-shifting the word displacement by 2 bits to create a
byte displacement, and adding the result to the contents of the PC.

» Register-indirect effective address — If i = 0, a register-indirect effective target address is R[rs1] +
R[rs2]. If i =1, a register-indirect effective target address is R[rs1] + sign_ext(simm13).

» Trap vector effective address — A trap vector effective address first computes the software trap
number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if i =0, or as the least significant 7 or 8
bits of R[rs1] + imm_trap# if i =1. Whether 7 or 8 bits are used depends on the privilege level —
7 bits are used in nonprivileged mode and 8 bits are used in privileged mode. The trap level, TL,
is incremented. The hardware trap type is computed as 256 + the software trap number and stored
in TT[TL]. The effective address is generated by combining the contents of the TBA register with
the trap type and other data; see Trap Processing on page 356 for details.

» Trap state effective address — A trap state effective address is not computed but is taken directly
from either TPC[TL] or TNPC[TL].

SPARC V8 | The SPARC V8 architecture specified that the delay instruction
Compatibility | was always fetched, even if annulled, and that an annulled
Note | instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul bit is 0, the
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the delay slot is
executed only when the conditional branch is taken.

Note | The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always”; it
never transfers control if its specified condition is “never.” If the annul bit is 0, then the instruction in
the delay slot is always executed. If the annul bit is 1, then the instruction in the delay slot is never
executed.

Note | The annul behavior of an unconditional branch is different from
that of a taken conditional branch.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction itself, into
R[15] (out register 7) and then causes a delayed transfer of control to a PC-relative effective address.
The value written into R[15] is visible to the instruction in the delay slot.

CHAPTER 6 ¢ Instruction Set Overview 81

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction itself, into
R[rd] and then causes a register-indirect delayed transfer of control to the address given by

“R[rs1] + R[rs2]” or “R[rs1] + a signed immediate value.” The value written into R[rd] is visible to
the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the CALL
instruction or to R[rd] by the JMPL instruction is zero.

6.3.44 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonprivileged mode.
RETURN combines the control-transfer characteristics of a JMPL instruction with R[0] specified as the
destination register and the register-window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. These
instructions restore the machine state to values saved in the TSTATE register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns to the
instruction pointed to by the value of NPC associated with the instruction that caused the trap, that is,
the next logical instruction in the program. DONE presumes that the trap handler did whatever was
requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tec instruction initiates a trap if the condition specified by its cond field matches the current state
of the condition code specified in its cc field; otherwise, it executes as a NOP. If the trap is taken, it
increments the TL register, computes a trap type that is stored in TT[TL], and transfers to a computed
address in a trap table pointed to by a trap base address register.

A Tec instruction can specify one of 256 software trap types (128 when in nonprivileged mode). When
a Tec is taken, 256 plus the 7 (in nonprivileged mode) or 8 (in privileged mode) least significant bits of
the Tec’s second source operand are written to TT[TL]. The only visible difference between a software
trap generated by a Tcc instruction and a hardware trap is the trap number in the TT register. See
Chapter 12, Traps, for more information.

Programming | Tcc can be used to implement breakpointing, tracing, and calls
Note | to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or

integer overflow checks.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is referred to as a
“DCTI couple”. The use of DCTI couples is deprecated in the UltraSPARC Architecture; no new
software should place a DCTI in the delay slot of another DCTI, because on future UltraSPARC
Architecture implementations DCTI couples may execute either slowly or differently than the
programmer assumes it will.

SPARC V8 and | The SPARC V8 architecture left behavior undefined for a DCTI
SPARC V9 | couple. The SPARC V9 architecture defined behavior in that
Compatibility | case, but as of UltraSPARC Architecture 2005, use of DCTI couples
Note | was deprecated.

82 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

6.3.5

6.3.6

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents of any integer or
floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the contents of
any integer or floating-point register to a destination integer or floating-point register if a condition is
satisfied. The condition to test is specified in the instruction and can be any of the conditions allowed
in conditional delayed control-transfer instructions. This condition is tested against one of the six sets
of condition codes (icc, xcc, fceO, fcel, fee2, and fee3), as specified by the instruction. For example:

f novdg 9% cc2, 9% 20, 9% 22
moves the contents of the double-precision floating-point register % 20 to register % 22 if floating-

point condition code number 2 (fcc2) indicates a greater-than relation (FSR.fcc2 = 2). If fcc2 does not
indicate a greater-than relation (FSR.fcc2 # 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs. In most
implementations, branches will be more expensive than the MOVcc or FMOVcc instructions. For
example, the C statement:

if (A>B) X =1; else X =0;

can be coded as

cnmp %0, %2 I (A>B)
or %90, 0, %3 ! set X =0
novg %cc, 1, %3 ! overwite Xwith 1if A>B

to eliminate the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the contents of any
integer or floating-point register to be moved to a destination integer or floating-point register if the
contents of a register satisfy a specified condition. The conditions to test are enumerated in TABLE 6-6.

TABLE6-6 MOVr and FMOVr Test Conditions

Condition Description

Nz Nonzero

Z Zero

GEZ Greater than or equal to zero
Lz Less than zero

LEZ Less than or equal to zero
GZ Greater than zero

Any of the integer registers (treated as a signed value) may be tested for one of the conditions, and the
result used to control the move. For example,

movr nz %2, %4, %6
moves integer register % 4 to integer register % 6 if integer register % 2 contains a nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate multiple
unsigned condition codes by using an integer register to hold the result of a comparison.

Register Window Management Instructions

This subsection describes the instructions that manage register windows in the UltraSPARC
Architecture. The privileged registers affected by these instructions are described in Register-Window
PR State Registers on page 58.

CHAPTER 6 ¢ Instruction Set Overview 83

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window by
incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill exception, that is, one of
the spill_n_<normal | other> exceptions.

If CANSAVE # 0 but the number of clean windows is zero, that is,
(CLEANWIN - CANRESTORE) =0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE, and
increments CANRESTORE. The source registers for the ADD operation are from the old window (the
one to which CWP pointed before the SAVE), while the result is written into a register in the new
window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill exception, that is, one
of the fill_n_<normal | other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CANRESTORE,
and increments CANSAVE. The source registers for the ADD are from the old window (the one to
which CWP pointed before the RESTORE), and the result is written into a register in the new window
(the one to which the decremented CWP points).

Programming | This note describes a common convention for use of register
Note | windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by execution of a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.

6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE and decrements either OTHERWIN or
CANRESTORE, depending on the conditions at the time SAVED is executed.

See SAVED on page 239 for details.

84 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

6.3.7

6.3.8

6.3.9

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE and decrements either OTHERWIN or CANSAVE,
depending on the conditions at the time RESTORED is executed. RESTORED also manipulates
CLEANWIN, which is used to ensure that no address space’s data become visible to another address
space through windowed registers.

See RESTORED on page 232 for details.

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current window, by
performing repetitive spill traps. The FLUSHW instruction causes a spill trap if any register window
(other than the current window) has valid contents. The number of windows with valid contents is
computed as:

N_REG_WINDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW has no
effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction continues
causing spill traps until all the register windows except the current window have been flushed.

Ancillary State Register (ASR) Access

The read /write state register instructions access program-visible state and status registers. These
instructions read /write the state registers into/from R registers. A read/write Ancillary State register
instruction is privileged only if the accessed register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State Registers on page 48.

Privileged Register Access

The read /write privileged register instructions access state and status registers that are visible only to
privileged software. These instructions read /write privileged registers into/from R registers. The
read/write privileged register instructions are privileged.

Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) compute a result that is a function of one , two, or three
source operands and place the result in one or more destination F registers, with one exception:
floating-point compare operations do not write to an F register but instead update one of the fccn
fields of the FSR.

The term “FPop” refers to instructions in the FPop1l, FMAf, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory and the F registers,
or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc instructions do for the
integer registers. See MOVcc and FMOVcc Instructions on page 83.

The FMOVr instructions function for the floating-point registers as the MOVr instructions do for the
integer registers. See MOVr and FMOVr Instructions on page 83.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any instruction,
including an FPop instruction, that attempts to access an FPU register generates an fp_disabled
exception.

CHAPTER 6 ¢ Instruction Set Overview 85

All FPop instructions clear the ftt field and set the cexc field unless they generate an exception.
Floating-point compare instructions also write one of the fccn fields. All FPop instructions that can
generate IEEE exceptions set the cexc and aexc fields unless they generate an exception.
FABS<s|dlqg> FMOV<s|d|q>, FMOVcc<s|d|q>, FMOVr<s|d|qg>, and FNEG<s|d | g> cannot
generate IEEE exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction did not produce
a correct IEEE Std 754-1985 result by generating an fp_exception_other exception with

FSR.ftt = unfinished_FPop. In this case, software running in a mode with greater privileges must
emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 45 to see which instructions can produce an fp_exception_other
exception (with FSR.ftt = unfinished_FPop).

6.3.10 Implementation-Dependent Instructions

The SPARC V9 architecture provided two instruction spaces that are entirely implementation
dependent: IMPDEP1 and IMPDEP2 .

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by many VIS instructions. The
remaining opcodes in IMPDEP1 and IMPDEP?2 are now marked as reserved opcodes.

6.3.11 Reserved Opcodes and Instruction Fields

If a conforming UltraSPARC Architecture 2007 implementation attempts to execute an instruction bit
pattern that is not specifically defined in this specification, it behaves as follows:

» If the instruction bit pattern encodes an implementation-specific extension to the instruction set,
that extension is executed.

» If the instruction does not encode an extension to the instruction set, then the instruction bit pattern
is invalid and causes an illegal_instruction exception.

See Appendix A, Opcode Maps, for an enumeration of the reserved instruction bit patterns (opcodes).

Programming | For software portability, software (such as assemblers, static
Note | compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—").

86 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CHAPTER 7

Instructions

UltraSPARC Architecture 2007 extends the standard SPARC V9 instruction set with additional classes
of instructions:

» Enhanced functionality:
= Instructions for alignment (Align Address on page 98)
« Array handling (Three-Dimensional Array Addressing on page 101)
» Byte-permutation instructions (Byte Mask and Shuffle on page 106)
» Edge handling (Edge Handling Instructions on pages 116 and 118)
= Logical operations on floating-point registers (f Register Logical Operate (1 operand) on page 163)
» Partitioned arithmetic (Fixed-point Partitioned Add on page 158Fixed-point Partitioned Subtract (64-
bit) on page 161)
= Pixel manipulation (FEXPAND on page 131, FPACK on page 153, and FPMERGE on page 160)

L]
» Efficient memory access

= Partial store (Store Partial Floating-Point on page 260)
= Short floating-point loads and stores (Store Short Floating-Point on page 263)
= Block load and store (Block Load on page 178 and Block Store on page 250)

» Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 243) and all instructions
that reference GSR.im

» Floating-point Multiply-Add and Multiply-Subtract (FMA) instructions (Floating-Point Multiply-Add
and Multiply-Subtract (fused) on page 137
TABLE 7-2 provides a quick index of instructions, alphabetically by architectural instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.

Within these tables and throughout the rest of this chapter, and in Appendix A, Opcode Maps, certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are defined in
TABLE 7-1.

TABLE7-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction (do not use in new software)

N Nonportable instruction

P Privileged instruction

Past Privileged action if bit 7 of the referenced ASI is 0

Pasr Privileged instruction if the referenced ASR register is privileged
Pt Privileged action if in nonprivileged mode (PSTATE.priv = 0) and

nonprivileged access is disabled

87

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (1 of 3)
Page Instruction
97 ADD (ADDcc) 151 FdMULq 161 FPSUB<16,32>[S]
97 ADDC (ADDCcc) 131 FEXPAND

132 FiTO<sldlg>
98 ALIGNADDRESS[_LITTLE] 151 FsMULd
99 ALLCLEAN 133 FLUSH 166 FSQRT<s!|d|q>
100 AND (ANDcc) 136 FLUSHW 164 FSRC<112>[s]
101 ARRAY<8116132> 137 EMADD(s,d) 170 FSUB<s|d|q>
104 Bicc
106 BMASK 139 FMOV<sldlg> 165 FXNOR[s]
107 BPcc 140 FMOV<sldlg>cc 165 FXOR[s]
109 BPr 144 FMOV<sldlg>R 171 FxTO<sld|q>
106 BSHUFFLE 137 FMSUB(s,d) 163 FZERO[s]
111 CALL 151 FMUL<s|dlq>
112 CASAPst 146 FMULS[SU I UL]x16 172 ILLTRAP
112 CASXAPast 146 FMULSx16 173 INVALW

146 FMULS8x16[AUI AL] 174 JMPL

146 FMULDS[SU | UL]x16

178 LDBLOCKF
114 DONEP 165 FNAND[s] 181 LDDF
116 EDGE<8116132>[L]cc 152 FNEG<sldlq> 183 LDDFAPast
118 EDGE<8116132>[L]N 181 LDF
168 F<sldlq>TO<s!|d|lqg> 137 FNMADD 183 LDFAPAst
167 F<sld|q>TOi 137 FNMSUB 186 LDFSRP
167 F<sld|gq>TOx 181 LDQF
119 FABS<s|dlg> 165 FNOR][s] 183 LDQFAPas
120 FADD<sl|dlg> 164 ENOT<112>[s] 175 LDSB
121 FALIGNDATA 176 LDSBAP»st
165 FANDNOT<1 |2>[s] 163 FONE[s] 175 LDSH
165 FANDJs] 165 FORNOT<12>[s] 176 ~ LDSHAPasi
122 FBfecP 165 FOR([s] 188 LDSHORTF
124 FBPfcc 153 FPACK<16132 | FIX> 190 LDSTUB
191 LDSTUBADPs

128 FCMP<sl|dlg> 158 FPADD<16,32>[S] 175 LDSW
126 FCMP*<16,32> 176 LDSWAPAst
128 FCMPE<s!|dlg> 160 FPMERGE 197 LDTXAN
130 FDIV<sldlqg>

88 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (2 of 3)
Page Instruction
192 LDTW” 258 STFSRY
194 LDTWAP: Past 225 RDPC 247 STH
190 LDUB 248 STHAPAst
176 LDUBAPss 260 STPARTIALF
175 LDUH 228 RDPRP 253 STQF
176 LDUHAPss 225 RDSOFTINT? 255 STQFAP»st
175 LDUW 225 RDSTICK_CMPRP 263 STSHORTF
176 LDUWAPst 225 RDSTICKFr 265 STTWP
175 LDX 225 RDTICK_CMPR? 267 STTWAD: Pasi
176 LDXAPast 225 RDTICKPnt 247 STW
232 RESTOREDP 248 STWAPast
199 LDXFSR 230 RESTOREP 247 STX
233 RETRYP 248 STXAPAst
2001 MEMBAR 235 RETURN 269 STXFSR
204 MOVce 239 SAVEDP 270 SUB (SUBcc)
237 SAVEF 270 SUBC (SUBCcc)
240 SDIVP (SDIVccP) 272 SWAPAD: Pasi
207 MOVr 211 SDIVX 271 SWAPP
209 MULSccP 242 SETHI 274 TADDcc
211 MULX 275 TADDccTVP
212 NOP 243 SIAM 276 Tec
213 NORMALW 279 TSUBce
214 OR (ORcc) 244 SLL 280 TSUBccTVP
214 ORN (ORNcc) 244 SLLX 281 UDIVP (UDIVccP)
215 OTHERW 246 SMULP (SMULccP) 211 UDIVX
244 SRA 283 UMULP (UMULccP)
216 PDIST 244 SRAX
244 SRL 285 WRASI
217 POPC 244 SRLX 285 WRasrlase
219 PREFETCH 247 STB 285 WRCCR
219 PREFETCHAPst 248 STBAPast 285 WRFPRS
285 WRGSR
225 RDASI 250 STBLOCKF
225 RDasrlas 253 STDF
225 RDCCR 255 STDFAPAs
225 RDFPRS 253 STF 288 WRPR"
225 RDGSR 255 STFAPast

CHAPTER 7 ¢ Instructions

89

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (3 of 3)

Page Instruction

285 WRSOFTINT_CLR" 285 WRSTICKY 290 XNOR (XNORcc)
285 WRSOFTINT_SET? 285 WRTICK_CMPRF 290 XOR (XORcc)
285 WRSOFTINT? 285 WRYP

285 WRSTICK_CMPRP

90 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 7-3 Instruction Set - by Functional Category (1 of 5)

Ext. to

Instruction Category and Function Page V9?
Data Movement Operations, Between R Registers
MOVce Move integer register if condition is satisfied 204
MOVr Move integer register on contents of integer register 207
Data Movement Operations, Between F Registers
FMOV<s!|d|q> Floating-point move 139
FMOV<s|dlg>cc Move floating-point register if condition is satisfied 140
FMOV<sIdIlg>R Move f-p reg. if integer reg. contents satisfy condition 144
FSRC<112>[s] Copy source 164 VIS 1
Data Conversion Instructions
FiTO<sld|g> Convert 32-bit integer to floating-point 132
F<sld|q>TOi Convert floating point to integer 167
F<s|d|q>TOx Convert floating point to 64-bit integer 167
F<sldIq>TO<sld|q> Convert between floating-point formats 168
FxTO<sld|g> Convert 64-bit integer to floating-point 171
Logical Operations on R Registers
AND (ANDcc) Logical and (and modify condition codes) 100
OR (ORcc) Inclusive-or (and modify condition codes) 214
ORN (ORNCcc) Inclusive-or not (and modify condition codes) 214
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 290
XOR (XORcc) Exclusive-or (and modify condition codes) 290
Logical Operations on F Registers
FAND]s] Logical and operation 165 VIS 1
FANDNOT<1|2>[s] Logical and operation with one inverted source 165 VIS 1
FNANDIs] Logical nand operation 165 VIS 1
FNOR([s] Logical nor operation 165 VIS 1
FNOT<112>[s] Copy negated source 164 VIS 1
FONE]s] One fill 163 VIS 1
FOR[s] Logical or operation 165 VIS 1
FORNOT<1 |2>[s] Logical or operation with one inverted source 165 VIS 1
FXNOR([s] Logical xnor operation 165 VIS 1
FXOR[s] Logical xor operation 165 VIS 1
FZERO(s] Zero fill 163 VIS 1
Shift Operations on R Registers
SLL Shift left logical 244
SLLX Shift left logical, extended 244
SRA Shift right arithmetic 244
SRAX Shift right arithmetic, extended 244
SRL Shift right logical 244
SRLX Shift right logical, extended 244
Special Addressing Operations
ALIGNADDRESS[_LITTLE] Calculate address for misaligned data 98 VIS 1
ARRAY<8116132> 3-D array addressing instructions 101 VIS 1
FALIGNDATA Perform data alignment for misaligned data 121 VIS 1
Control Transfers

Bicc Branch on integer condition codes 104
BPcc Branch on integer condition codes with prediction 107

CHAPTER 7 ¢ Instructions

TABLE 7-3 Instruction Set - by Functional Category (2 of 5)

Ext. to
Instruction Category and Function Page V9?
BPr Branch on contents of integer register with prediction 109
CALL Call and link 111
DONEP Return from trap 114
FBfccP Branch on floating-point condition codes 122
FBPfcc Branch on floating-point condition codes with prediction 124
ILLTRAP Illegal instruction 172
JMPL Jump and link 174
RETRY" Return from trap and retry 233
RETURN Return 235
Tec Trap on integer condition codes 276

Byte Permutation
BMASK Set the GSR.mask field 106 VIS 2
BSHUFFLE Permute bytes as specified by GSR.mask 106 VIS 2
Data Formatting Operations on F Registers
FEXPAND Pixel expansion 131 VIS 1
FPACK<16 132 | FIX> Pixel packing 153 VIs1
FPMERGE Pixel merge 160 VIS 1
Memory Operations to/from F Registers
LDBLOCKF Block loads 178 VIS 1
STBLOCKF Block stores 250 VIS
LDDF Load double floating-point 181
LDDFAPst Load double floating-point from alternate space 183
LDF Load floating-point 181
LDFAPast Load floating-point from alternate space 183
LDQF Load quad floating-point 181
LDQFAPs! Load quad floating-point from alternate space 183
LDSHORTF Short floating-point loads 188 VIS 1
STDF Store double floating-point 253
STDFAPs! Store double floating-point into alternate space 255
STF Store floating-point 253
STFAPast Store floating-point into alternate space 255
STPARTIALF Partial Store instructions 260 VIS
STQF Store quad floating point 253
STQFAPast Store quad floating-point into alternate space 255
STSHORTF Short floating-point stores 263 VIS 1
Memory Operations — Miscellaneous
LDFSRP Load floating-point state register (lower) 186
LDXFSR Load floating-point state register 199
MEMBAR Memory barrier 201
PREFETCH Prefetch data 219
PREFETCHAP»s! Prefetch data from alternate space 219
STFSRP Store floating-point state register (lower) 258
STXFSR Store floating-point state register 269
Atomic (Load-Store) Memory Operations to/from R Registers

CASAPs! Compare and swap word in alternate space 112
CASXAPast Compare and swap doubleword in alternate space 112

92 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 7-3 Instruction Set - by Functional Category (3 of 5)

Ext. to
Instruction Category and Function Page V9?
LDSTUB Load-store unsigned byte 190
LDSTUBAP»st Load-store unsigned byte in alternate space 191
SWAPP Swap integer register with memory 271
SWAPAD: Past Swap integer register with memory in alternate space 272
Memory Operations to/from R Registers
LDSB Load signed byte 175
LDSBAPs! Load signed byte from alternate space 176
LDSH Load signed halfword 175
LDSHAPs! Load signed halfword from alternate space 176
LDSW Load signed word 175
LDSWAPast Load signed word from alternate space 176
LDTXAN Load integer twin extended word from alternate space 197 VIS 2+
LDTWD: Past Load integer twin word 192
LDTWAPD: Past Load integer twin word from alternate space 194
LDUB Load unsigned byte 190
LDUBAPs! Load unsigned byte from alternate space 176
LDUH Load unsigned halfword 175
LDUHAPs! Load unsigned halfword from alternate space 176
LDUW Load unsigned word 175
LDUWAPast Load unsigned word from alternate space 176
LDX Load extended 175
LDXAPsst Load extended from alternate space 176
STB Store byte 247
STBAPast Store byte into alternate space 248
STTWP Store twin word 265
STTWAD: Past Store twin word into alternate space 267
STH Store halfword 247
STHAPast Store halfword into alternate space 248
STW Store word 247
STWADs! Store word into alternate space 248
STX Store extended 247
STXAPst Store extended into alternate space 248
Floating-Point Arithmetic Operations

FABS<sld|lq> Floating-point absolute value 119
FADD<s|d|g> Floating-point add 120
FDIV<s!|d|q> Floating-point divide 130
FdMULq Floating-point multiply double to quad 151
FMADD(s,d) Floating-point multiply-add single/double (fused) 137
FMSUB(s,d) Floating-point multiply-subtract single/double (fused) 137
FMUL<s|d | q> Floating-point multiply 151
FNMADD(s,d) Floating-point negative multiply-add single/double (fused) 137
FNEG<sldlg> Floating-point negate 152
FNMSUB(s,d) Floating-point negative multiply-subtract single/double (fused) 137
FsMULd Floating-point multiply single to double 151
FSQRT<s|dlg> Floating-point square root 166
FSUB<s|dlqg> Floating-point subtract 170

CHAPTER 7 ¢ Instructions 93

TABLE 7-3 Instruction Set - by Functional Category (4 of 5)
Ext. to
Instruction Category and Function Page V9?
Floating-Point Comparison Operations
FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 126 VIS 1
FCMP<s|dIg> Floating-point compare 128
FCMPE<s Id | q> Floating-point compare (exception if unordered) 128
Register-Window Control Operations
ALLCLEAN Mark all register window sets as “clean” 99
INVALW Mark all register window sets as “invalid” 173
FLUSHW Flush register windows 136
NORMALW “Other” register windows become “normal” register windows 213
OTHERW “Normal” register windows become “other” register windows 215
RESTORE Restore caller’s window 230
RESTORED” Window has been restored 232
SAVE Save caller’s window 237
SAVEDP Window has been saved 239
Miscellaneous Operations
FLUSH Flush instruction memory 133
NOP No operation 212
Integer SIMD Operations on F Registers
FPADD<16,32>[S] Fixed-point partitioned add 158 VIS 1
FPSUB<16,32>[S] Fixed-point partitioned subtract 161 VIS 1
Integer Arithmetic Operations on R Registers
ADD (ADDcc) Add (and modify condition codes) 97
ADDC (ADDCcc) Add with carry (and modify condition codes) 97
MULSccP Multiply step (and modify condition codes) 209
MULX Multiply 64-bit integers 211
SDIVP (SDIVccP) 32-bit signed integer divide (and modify condition codes) 240
SDIVX 64-bit signed integer divide 211
SMULP (SMULccP) Signed integer multiply (and modify condition codes) 246
SUB (SUBcc) Subtract (and modify condition codes) 270
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 270
TADDcc Tagged add and modify condition codes (trap on overflow) 274
TADDccTVP Tagged add and modify condition codes (trap on overflow) 275
TSUBcc Tagged subtract and modify condition codes (trap on overflow) 279
TSUBccTVP Tagged subtract and modify condition codes (trap on overflow) 280
UDIVP (UDIVCCD) Unsigned integer divide (and modify condition codes) 281
UDIVX 64-bit unsigned integer divide 211
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 283
Integer Arithmetic Operations on F Registers
FMULS8x16 8x16 partitioned product 146 VIS 1
FMULS8x16[AU | AL] 8x16 upper/lower a partitioned product 146 VIS 1
FMULS[SU | UL]x16 8x16 upper/lower partitioned product 146 VIS 1
FMULDS[SU | UL]x16 8x16 upper/lower partitioned product 146 Vis 1
Miscellaneous Operations on R Registers
POPC Population count 217
SETHI Set high 22 bits of low word of integer register 242

Miscellaneous Operations on F Registers

94 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

TABLE 7-3 Instruction Set - by Functional Category (5 of 5)

Ext. to
Instruction Category and Function Page V9?
EDGE<8116132>[L]cc Edge handling instructions (and modify condition codes) 116 VIS 1
EDGE<8 116 132>[L]N Edge handling instructions 118 VIS 2
PDIST Pixel component distance 216 VIS 1

Control and Status Register Access
RDASI Read ASI register 225
RDasrPsk Read ancillary state register 225
RDCCR Read Condition Codes register (CCR) 225
RDFPRS Read Floating-Point Registers State register (FPRS) 225
RDGSR Read General Status register (GSR) 225
RDPC Read Program Counter register (PC) 225
RDPRP Read privileged register 228
RDSOFTINT? Read per-virtual processor Soft Interrupt register (SOFTINT) 225
RDSTICKPret Read System Tick register (STICK) 225
RDSTICK_CMPR? Read System Tick Compare register (STICK_CMPR) 225
RDTICK et Read Tick register (TICK) 225
RDTICK_CMPR? Read Tick Compare register (TICK_CMPR) 225
SIAM Set interval arithmetic mode 243 VIS 2
WRASI Write ASI register 285
WRasr! AR Write ancillary state register 285
WRCCR Write Condition Codes register (CCR) 285
WRFPRS Write Floating-Point Registers State register (FPRS) 285
WRGSR Write General Status register (GSR) 285
WRPRF Write privileged register 288
WRSOFTINT? Write per-virtual processor Soft Interrupt register (SOFTINT) 285
WRSOFTINT_CLR” Clear bits of per-virtual processor Soft Interrupt register 285
(SOFTINT)
WRSOFTINT_SET Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 285
WRTICK_CMPR? Write Tick Compare register (TICK_CMPR) 285
WRSTICK? Write System Tick register (STICK) 285
WRSTICK_CMPR? Write System Tick Compare register (STICK_CMPR) 285
WRYP Write Y register 285
CHAPTER 7 « Instructions 95

In the remainder of this chapter, related instructions are grouped into subsections. Each subsection
consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection, including the
values of the field(s) that uniquely identify the instruction(s), assembly language syntax, and software
and implementation classifications for the instructions. (description of the Software Classes [letters] and
Implementation Classes [digits] will be provided in a later update to this specification)

Note | Instruction classes will be defined in a later draft of this document
and in the meantime are subject to change.

(2) Illustration of Instruction Format(s). These illustrations show how the instruction is encoded
in a 32-bit word in memory. In them, a dash (—) indicates that the field is reserved for future versions
of the architecture and must be 0 in any instance of the instruction. If a conforming UltraSPARC
Architecture implementation encounters nonzero values in these fields, its behavior is as defined in
Reserved Opcodes and Instruction Fields on page 86.

(3) Description. This subsection describes the operation of the instruction, its features, restrictions,
and exception-causing conditions.

(4) Exceptions. The exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an IAE_*, and interrupts are not listed because they can occur on any
instruction. An instruction not implemented in hardware generates an illegal_instruction exception
and therefore will not generate any of the other exceptions listed. Exceptions are listed in order of trap
priority (see Trap Priorities on page 356), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note | This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.

96 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

ADD

7.1 Add

Instruction op3 Operation Assembly Language Syntax Class
ADD 00 0000 Add add regrs1, reg_or_imm, regyy Al
ADDcc 01 0000 Add and modify cc’s addcc regysy, reg_or_imm, regqy Al
ADDC 00 1000 Add with 32-bit Carry addc regs1, reg_or_imm, regqy Al
ADDCcc 011000 Add with 32-bit Carry and modify cc’saddccc regysy, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ 1f i =0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext(simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit. That is, if
i =0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they compute
“R[rs1] + sign_ext(simm13) + icc.c”. In either case, the sum is written to R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Overflow occurs on
addition if both operands have the same sign and the sign of the sum is different from that of the
operands.

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCRucc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility
Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

CHAPTER 7 ¢ Instructions 97

ALIGNADDRESS

7.2

Align Address

Instruction opf Operation Assembly Language Syntax Class Added
ALIGNADDRESS 00001 1000 Calculate address for misaligned al i gnaddr regrs1, 7€8rs2, €8 Al UA 2005
data access
ALIGNADDRESS_ 000011010 Calculate address for misaligned al i gnaddr| regs1, regrsp, 7€8rg Al UA 2005
LITTLE data access, little-endian
10 rd | 110110 rsl opf rs2
3T 30 29 25 24 19 18 17 13 L 0
Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result (with the least
significant 3 bits forced to 0) in the integer register R[rd]. The least significant 3 bits of the result are
stored in the GSR.align field.
ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s complement of the
least significant 3 bits of the result is stored in GSR.align.
Note | ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.
A byte-aligned 64-bit load can be performed as shown below.
al i gnaddr Address, Offset, Address !set GSR. align
| dd [Address] , %0
| dd [Address + 8], %2
faligndata 9% l0, %2, %4 luse GSR. align to sel ect bytes
If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction causes an
fp_disabled exception.
Exceptions fp_disabled
See Also Align Data on page 121

98 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

ALLCLEAN

7.3 Mark All Register Window Sets “Clean”

Instruction Operation Assembly Language Syntax Class Added
ALLCLEAN" Mark all register window sets as “clean” al | cl ean Al UA 2005
10 | fcn =0 0010 11 0001 —
31 30 29 25 24 19 18 0

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it performs the
following operation:

CLEANWIN < (N_REG_WINDOWS — 1)

Programming | ALLCLEAN is used to indicate that all register windows are
Note | “clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

An attempt to execute an ALLCLEAN instruction when reserved instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute an ALLCLEAN instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions
illegal_instruction
privileged_opcode
See Also INVALW on page 173

NORMALW on page 213
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

CHAPTER 7 ¢ Instructions 99

AND, ANDN

7.4

AND Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
AND 00 0001 and and regrs1, reg_or_imm, regyy Al
ANDcc 01 0001 and and modify cc’s andcc reg.gy, reg_or_imm, tegyg Al
ANDN 00 0101 and not andn regrs1, reg_or_imm, regyg Al
ANDNCcc 010101 and not and modify cc’s andncc regsy, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description These instructions implement bitwise logical and operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].
ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the condition codes
as follows:
= icc.y, icc.c, xce.v, and xcc.c are set to 0
» icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= XccC.zZ is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ANDN and ANDNcc logically negate their second operand before applying the main (and) operation.
An attempt to execute an AND, ANDcc, ANDN or ANDNCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction

100 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

ARRAY<8|16|32>

7.5

Three-Dimensional Array Addressing

Instruction opf Operation Assembly Language Syntax Class Added
ARRAY8 000010000 Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2y regrq Bl UA 2005
ARRAY16 000010010 Convert 16-bit 3D address to blocked byte address arrayl6 regis1, regrs2y regrq Bl UA 2005
ARRAY32 000010100 Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2y regrq Bl UA 2005
10 rd 110110 rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description These instructions convert three-dimensional (3D) fixed-point addresses contained in R[rs1] to a

blocked-byte address; they store the result in R[rd]. Fixed-point addresses typically are used for
address interpolation for planar reformatting operations. Blocking is performed at the 64-byte level to
maximize external cache block reuse, and at the 64-Kbyte level to maximize TLB entry reuse,
regardless of the orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAYS), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for R[rs2] and their meanings are shown in TABLE 7-4. Illegal values produce
undefined results in the destination register, R[rd].

TABLE7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements

0 64

1 128
2 256
3 512
4 1024
5 2048

Implementation | Architecturally, an illegal R[rs2] value (>5) causes the array
Note | instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

The array instructions facilitate 3D texture mapping and volume rendering by computing a memory
address for data lookup based on fixed-point X, y, and z coordinates. The data are laid out in a
blocked fashion, so that points which are near one another have their data stored in nearby memory
locations.

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by the z = 1 plane,
etc.), then even small changes in z would result in references to distant pages in memory. The
resulting lack of locality would tend to result in TLB misses and poor performance. The three versions
of the array instruction, ARRAY8, ARRAY16, and ARRAY32, differ only in the scaling of the computed
memory offsets. ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is imposed. The N x N
x M volume, where N = 2" x 64, M = m % 32, 0 < n <5, 1 < m £ 16 should be composed of 64 x 64 x 32
smaller volumes, which in turn should be composed of 4 x 4 x 2 volumes. This data structure is
optimal for 16-bit data. For 16-bit data, the 4 x 4 x 2 volume has 64 bytes of data, which is ideal for
reducing cache-line misses; the 64 x 64 x 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized, where the origin

CHAPTER 7 ¢ Instructions 101

ARRAY<8|16|32>

(0,0,0) is assumed to be at the lower-left front corner and the x coordinate varies faster than y than z.
That is, when traversing the volume from the origin to the upper right back, you go from left to right,
front to back, bottom to top.

z

A i
l

M=m X 32 I
|
| Y
| b 4
Ve
|
N=2"x 64 e e e e e | - — — —
/
I /
16x2=32 Z _
T ——— 16X 4= 64
A —_
ey
X
0o 4 16 X 4= 64 N=2"x64 >

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as shown in FIGURE 7-2.

Z integer Z fraction Y integer Y fraction| X integer X fraction
63 55 54 44 43 33 32 22 21 11 10 0

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since (x,y,z) are all
contained in one 64-bit register, they can be incremented or decremented simultaneously with a single
add or subtract instruction (ADD or SUB).

So for a 512 x 512 x 32 or a 512 x 512 x 256 volume, the size value is 3. Note that the x and y size of
the volume must be the same. The z size of the volume is a multiple of 32, ranging between 32 and
512.

The array instructions generate an integer memory offset, that when added to the base address of the
volume, gives the address of the volume element (voxel) and can be used by a load instruction. The
offset is correct only if the data has been reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address formats as shown in
FIGURE 7-3 for ARRAY8, FIGURE 7-4 for ARRAY16, and FIGURE 7-5 for ARRAY32.

UPPER MIDDLE LOWER
z Y X Z Y X z Y X
20 17 17 17 13 9 5 4 2 0
+2n +2n +n

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAYS)

102 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

ARRAY<8|16|32>

UPPER MIDDLE LOWER
0
z Y X z Y X Zz Y X
21 18 18 18 14 10 6 5 3 1 0
+2n +2n +n
FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)
UPPER MIDDLE LOWER
00
Zz Y X z Y X Zz Y X
22 19 19 19 15 11 7 6 5 4 3 21 0
+2n +2n +n

FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits is determined by
the element size. An element size of 8 bits has no zeroes, an element size of 16 bits has one zero, and
an element size of 32 bits has two zeroes. Bits in X and Y above the size specified by R[rs2] are
ignored.

TABLE7-5 ARRAYS8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1.0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}
12:9 38:35 Y_integer{5:2}
16:13 59:56 Z_integer{4:1}
17+n-1:17 17+n-1:17 X_integer{6+1-1:6}
17+2n-1:17+n 39+n-1:39 Y_integer{6+7-1:6}
20+2n:17+2n 63:60 Z_integer{8:5}
63:20+2n+1 n/a 0

In the above description, if n = 0, there are 64 elements, so X_integer{6} and Y_integer{6} are not
defined. That is, result{20:17} equals Z_integer{8:5}.

Note | To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 x 32 x 64
block.

The code fragment below shows assembly of components along an interpolated line at the rate of one
component per clock.

add Addr, DeltaAddr, Addr
array8 Addr, %90, bAddr
| dda [bAddr] #ASI _FL8_PRI MARY, data
faligndata data, accum, accum
Exceptions None

CHAPTER 7 ¢ Instructions 103

7.6

Bicc

Branch on Integer Condition Codes (Bicc)

Assembly Language

Opcode cond Operation icc Test Syntax Class
BA 1000 Branch Always 1 ba{, a} label Al
BN 0000 Branch Never 0 bn{, a} label Al
BNE 1001 Branch on Not Equal not Z bne'{,a} label Al
BE 0001 Branch on Equal Z be¥{,a} label Al
BG 1010 Branch on Greater not (Z or (N xor V)) bg{, a} label Al
BLE 0010 Branch on Less or Equal Z or (N xor V) bl e{,a} label Al
BGE 1011 Branch on Greater or Equal not (N xor V) bge{, a} label Al
BL 0011 Branch on Less N xor V bl {, a} label Al
BGU 1100 Branch on Greater Unsigned not (C or Z) bou{, a} label Al
BLEU 0100 Branch on Less or Equal Unsigned CorZ bl eu{, a} label Al
BCC 1101 Branch on Carry Clear (Greater Than not C bc CO{ ,a} label Al
or Equal, Unsigned)
BCS 0101 Branch on Carry Set (Less Than, Unsigned) C besH{, a} label Al
BPOS 1110 Branch on Positive not N bpos{, a} label Al
BNEG 0110 Branch on Negative N bneg{, a} label Al
BVC 1111 Branch on Overflow Clear not V bvc{,a} label Al
BVS 0111 Branch on Overflow Set \Y bvs{, a} label Al
* synonym: bnz ¥ synonym: bz © synonym: bgeu U synonym: bl u
00 |a cond 010 disp22
3130 29 28 25 24 22 21 0

Programming | To set the annul (&) bit for Bicc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “bgu, a label”. In the
preceding table, braces signify that the “, a” is optional.

Unconditional branches and icc-conditional branches are described below:

= Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch Never) instruction is
treated as a NOP. If its annul bit is 1 (a = 1), the following (delay) instruction is annulled (not
executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp22))”. If the annul (a) bit of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul bit is 0 (a = 0), the delay instruction is executed.

» icc-conditional branches — Conditional Bicc instructions (all except BA and BN) evaluate the 32-
bit integer condition codes (icc), according to the cond field of the instruction, producing either a
TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 x sign_ext(disp22))”. If FALSE, the branch is not
taken.

104 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

Exceptions

Bicc

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul field. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
Bicc instruction will cause a transfer of control (BA or taken conditional branch), then Bicc generates a
control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Bicc instruction) is stored in TPC[TL]
and the value of NPC from before the Bicc was executed is stored in TNPC[TL].

Note that BN never causes a control_transfer_instruction exception.

control_transfer_instruction (impl. dep. #450-520)

CHAPTER 7 ¢ Instructions 105

BMASK / BSHUFFLE

7.7

Byte Mask and Shuffle

Instruction opf

Operation Assembly Language Syntax Class Added

BMASK 00001 1001 Set the GSR.mask field in preparation bmask regrs1s 1eSrs2, 1€Srd B1 UA 2007

for a subsequent BSHUFFLE instruction

BSHUFFLE 00100 1100 Permute 16 bytes as specified by GSR.mask bshuffle freg, fregso, fregg Bl UA 2007

rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the integer register
R[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.
BSHUFFLE concatenates the two 64-bit floating-point registers Fp[rs1] (more significant half) and
Fplrs2] (less significant half) to form a 128-bit (16-byte) value. Bytes in the concatenated value are
numbered from most significant to least significant, with the most significant byte being byte 0.
BSHUFFLE extracts 8 of those 16 bytes and stores the result in the 64-bit floating-point register Fp[rd].
Bytes in Fp[rd] are also numbered from most to least significant, with the most significant being byte
0. The following table indicates which source byte is extracted from the concatenated value to
generate each byte in the destination register, Fp[rd].
Destination Byte (in F[rd]) Source Byte
0 (most significant) (Fp[rs1] :: Fp[[rs2]) {GSR.mask{31:28}}
1 (Fpllrsi] : Fpllrs2]) {GSR.mask{27:24}}
2 (Fpllrs1] :: Fpllrs2]) {GSR.mask{23:20}}
3 (Fpllrs1] :: Fpllrs2]) {GSR.mask{19:16}}
4 (Fpllrs1] :: Fplrs2]) {GSR.mask{15:12}}
5 (Fpllrs1] :: Fp[[rs2]) {GSR.mask{11:8}}
6 (Fpllrs1] :: Fpllrs2]) {GSR.mask{7:4}}
7 (least significant) (Fp[[rs1] :: Fp[[rs2]) {GSR.mask{3:0}}
If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a BMASK or BSHUFFLE instruction causes an fp_disabled exception.
Exceptions fp_disabled

106 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

BPcc

7.8 Branch on Integer Condition Codes with
Prediction (BPcc)

Instructioncond Operation cc Test Assembly Language Syntax Class
BPA 1000 Branch Always 1 baf{, a}{, pt I, pn} i_or_x_cc, label Al
BPN 0000 Branch Never 0 bn{, a}{, pt I, pn} i_or_x_cc, label Al
BPNE 1001 Branch on Not Equal not Z bnet{, a}{, pt I, pn} i_or_x_cc, label Al
BPE 0001 Branch on Equal Z bet{, a}{, pt I, pn} ior_x_cc, label Al
BPG 1010 Branch on Greater not (Z or bg{, a}{, pt I, pn} ior_x cc, label Al
(N xor V))

BPLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a}{,pt!|,pn} ior_x_cc, label Al
BPGE 1011 Branch on Greater or Equal not (N xor V) bge{, a}{, pt I, pn} i_or_x_cc, label Al
BPL 0011 Branch on Less N xor V bl {, a}{, pt I, pn} i_or_x_cc, label Al
BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{, al{, pt |, pn} i_or_x_cc, label Al
BPLEU 0100 Branch on Less or Equal Unsigned C or Z bl eu{, a}{, pt I, pn} i_or_x_cc, label Al
BPCC 1101 Branch on Carry Clear not C bccdf, al{, pt |, pn} i_or_x_cc, label Al

(Greater than or Equal, Unsigned)
BPCS 0101 Branch on Carry Set C bcsOf, a}{, pt |, pn}i_or_x_cc, label Al

(Less than, Unsigned)
BPPOS 1110 Branch on Positive not N bpos{, a}{, pt |, pn} i_or_x_cc, label Al
BPNEG 0110 Branch on Negative N bneg{, a}{, pt |, pn} i_or_x_cc, label Al
BPVC 1111 Branch on Overflow Clear not V bvc{, al{, pt |, pn} i_or_x_cc, label Al
BPVS 0111 Branch on Overflow Set \% bvs{, al{, pt I, pn} i_or_x_cc, label Al
t synonym: bnz T synonym: bz ¢ synonym: bgeu O synonym: bl u
00 |a cond 001 |ccifccO| p disp19
3130 29 28 25 24 22 21 20 19 18
ccl cco Condition Code

0 0 icc

0 1 —

1 0 Xcc

1 1 —

Programming | To set the annul (a) bit for BPcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use bgu, a % cc, label. Braces in
the preceding table signify that the “, a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“, pt ” for predict taken or “, pn” for predict not taken. If neither
“, pt 7 nor “, pn” is specified, the assembler defaults to “,pt ”. To
select the appropriate integer condition code, include “% cc” or
“%cc” before the label.

Description Unconditional branches and conditional branches are described below.

CHAPTER 7 ¢ Instructions 107

Exceptions

See Also

BPcc

= Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction) instruction for this

branch type (0p2 = 1) may be used in the SPARC V9 architecture as an instruction prefetch; that is,
the effective address (PC + (4 x sign_ext(disp19))) specifies an address of an instruction that is
expected to be executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following (delay)
instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the following instruction is
executed. In no case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 x sign_ext(disp19))”. If the annul bit of the branch instruction is 1 (a =1),
then the delay instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the delay
instruction is executed.

Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate one of the
two integer condition codes (icc or xcc), as selected by ccO and ccl, according to the cond field of
the instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is expected to be
taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates that the branch
is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with ccO =1 (a reserved value) causes an illegal_instruction
exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
BPcc instruction will cause a transfer of control (BPA or taken conditional branch), then BPcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the BPcc) is stored in TPC[TL] and the
value of NPC from before the BPcc was executed is stored in TNPC[TL].

Note that BPN never causes a control_transfer_instruction exception.

illegal_instruction
control_transfer_instruction (impl. dep. #450-520)

Branch on Integer Register with Prediction (BPr) on page 109

108 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

BPr

7.9

BranchonInteger Register with Prediction (BPr)

Register
Contents
Instruction rcond Operation Test Assembly Language Syntax Class
— 000 Reserved — —
BRZ 001 Branch on Register Zero R[rs1]=0 brz {, a}{, pt |, pn} reggs, label Al
BRLEZ 010 Branch on Register Less Than or Equal R[rs1]<0 brlez {, a}{, pt |, pn} reg.s1, label Al
to Zero
BRLZ 011 Branch on Register Less Than Zero Rlrs1l] <0 brlz {, a}{,pt |, pn} reg.s1, label Al
— 100 Reserved — —
BRNZ 101 Branch on Register Not Zero Rlrs1]#0 brnz {, a}{, pt |, pn} reg.s1, label Al
BRGZ 110 Branch on Register Greater Than Zero R[rs1] >0 brgz {, a}{, pt |, pn} reg.s1, label Al
BRGEZ 111 Branch on Register Greater Than or R[rs1] 20 brgez {, a}{, pt |, pn} reg.s1, label Al
Equal to Zero
00 [a|0"| rcond 011 [d16hi|p rsl d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0
" Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, some early implementations
ignored the value of this bit and executed the opcode as a BPr instruction even if bit 28 = 1.
Programming | To set the annul (a) bit for BPr instructions, append “, a” to the
Note | opcode mnemonic. For example, use “brz, a % 3, label.” In the
preceding table, braces signify that the “, a” is optional. To set the
branch prediction bit p, append either “, pt ” for predict taken or
“, pn” for predict not taken to the opcode mnemonic. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “, pt ”.
Description These instructions branch based on the contents of R[rs1]. They treat the register contents as a signed

integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruction causes a
PC-relative, delayed control transfer to the address “PC + (4 x sign_ext(d16hi :: d16l0))”. If FALSE,
the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the annul (a)
bit. If the branch is not taken and the annul bit is 1 (a = 1), the delay instruction is annulled (not
executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. If
p =1, the branch is expected to be taken; p = 0 indicates that the branch is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a reserved value (000,
or 100,) causes an illegal_instruction exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
BPr instruction will cause a transfer of control (taken conditional branch), then BPr generates a
control_transfer_instruction exception instead of causing a control transfer.

CHAPTER 7 ¢ Instructions 109

BPr

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

Implementation | If this instruction is implemented by tagging each register value
Note [with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:
Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ NorZ
BRGZ not (N or Z)

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-520)

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 107

110 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

CALL

7.10

01

Call and Link

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link cal | label Al

disp30

3130 29 0

Description

Exceptions

See Also

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address

PC + (4 x sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits wide, the target
address lies within a range of —23! to +23! — 4 bytes. The PC-relative displacement is formed by sign-
extending the 30-bit word displacement field to 62 bits and appending two low-order zeroes to obtain
a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL, into R[15]
(out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system and in the address written into R[15]. (closed impl.
dep. #125-V9-Cs10)

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
CALL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the CALL instruction) is stored in TPC[TL]
and the value of NPC from before the CALL was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

control_transfer_instruction (impl. dep. #450-520)

JMPL on page 174

CHAPTER 7 ¢ Instructions 111

CASA / CASXA

7.11

Compare and Swap

Instruction op3 Operation Assembly Language Syntax Class
CASAPAs 111100 Compare and Swap Word from casa [regrs1] imm_asi, regrso, regq Al
Alternate Space casa [regrs1] Y@Si, regrso, regrq
CASXAPast 111110 Compare and Swap Extended from casxa [regsi] imm_asi, reg.ss, regrq Al
Alternate Space casxa | regisi] Y@Si, regisr, regg
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1 — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Description Concurrent processes use Compare-and-Swap instructions for synchronization and memory updates.

Uses of compare-and-swap include spin-lock operations, updates of shared counters, and updates of
linked-list pointers. The last two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword in memory
pointed to by the doubleword address in R[rs1].

» If the values are equal, the value in R[rd] is swapped with the doubleword pointed to by the
doubleword address in R[rs1].

» If the values are not equal, the contents of the doubleword pointed to by R[rs1] replaces the value
in R[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word in memory
pointed to by the word address in R[rs1].

» If the values are equal, then the low-order 32 bits of register R[rd] are swapped with the contents of
the memory word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0.

» If the values are not equal, the memory location remains unchanged, but the contents of the
memory word pointed to by R[rs1] replace the low-order 32 bits of R[rd] and the high-order 32 bits
of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and a swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recognized by the
virtual processor and no intervening update resulting from a compare-and-swap, swap, load, load-
store unsigned byte, or store instruction to the doubleword containing the addressed location, or any
portion of it, is performed by the memory system.

A compare-and-swap operation behaves as if it performs a store, either of a new value from R[rd] or
of the previous value in memory. The addressed location must be writable, even if the values in
memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1, the address
space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not properly aligned.

112 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

CASA / CASXA

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, CASXA and CASA cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3044 to
7F16, CASXA and CASA cause a privileged_action exception.

Compatibility | An implementation might cause an exception because of an
Note | error during the store memory access, even though there was no
error during the load memory access.

Programming | Compare and Swap (CAS) and Compare and Swap Extended

Note | (CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any other ASI with
these instructions causes a DAE_invalid_asi exception.

ASls valid for CASA and CASXA instructions
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS_| F_USER_PRI MARY ASI _AS_| F_USER_PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE

ASl _REAL ASI _REAL_LI TTLE
ASl _PRI MARY ASl _PRI MARY_LI TTLE
AS| _SECONDARY AS| _SECONDARY_ LI TTLE

illegal_instruction

mem_address_not_aligned

privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nc_page (attempted access to noncacheable page)
DAE_nfo_page (attempted access to non-faulting-only page)

CHAPTER 7 ¢ Instructions 113

DONE

7.12 DONE

Instruction op3 Operation Assembly Language Syntax Class
DONEF 111110 Return from Trap (skip trapped instruction) done Al
10 | fcn =0 0000 11 1110 —
31 30 29 25 24 19 18 0

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
sets PC and NPC, and decrements TL. DONE sets PC —« TNPC[TL] and NPC -~ TNPC[TL]+4
(normally, the value of NPC saved at the time of the original trap and address of the instruction
immediately after the one referenced by the NPC).

Programming | The DONE and RETRY instructions are used to return from
Notes | privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

If the saved TNPC[TL] was not altered by trap handler software, DONE causes execution to resume
immediately after the instruction that originally caused the trap (as if that instruction was “done”
executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction produces undefined
results.

If software writes invalid or inconsistent state to TSTATE before executing DONE, virtual processor
behavior during and after execution of the DONE instruction is undefined.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, execution of a
DONE instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the DONE
instruction, the value of PSTATE.tct is restored from TSTATE.

Programming | If control_transfer_instruction traps are to be re-enabled

Notes | (PSTATE.tct — 1, restored from TSTATE[TL].pstate.tct) when trap
handler software for the control_transfer_instruction trap returns,
the trap handler must
(1) emulate the trapped CTI, setting TPC[TL] and TNPC[TL]
appropriately, remembering to compensate for annul bits) and
(2) use a DONE (not RETRY) instruction to return.

If the CTI that caused the control_transfer_instruction trap was a
DONE (RETRY) instruction, the trap handler must carefully
emulate the trapped DONE (RETRY) (decrementing TL may
suffice) before the trap handler returns using its own DONE
(RETRY) instruction.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a DONE instruction is executed
(which sets PSTATE.am to ‘1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the DONE instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

114 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

DONE

Exceptions. In privileged mode (PSTATE.priv = 1), an attempt to execute DONE while TL = 0 causes
an illegal_instruction exception. An attempt to execute DONE (in any mode) with instruction bits 18:0
nonzero causes an illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0), an attempt to execute DONE causes a privileged_opcode
exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
DONE generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the DONE instruction) is stored in
TPC[TL] and the value of NPC from before the DONE was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-520)

RETRY on page 233

CHAPTER 7 ¢ Instructions 115

EDGE<8|16|32>{L}cc

7.13 Edge Handling Instructions

Instruction opf

Operation

Assembly Language Syntax T

Class

EDGES8cc 00000 0000
EDGES8Lcc 00000 0010

EDGEl6cc 00000 0100
EDGE16Lcc 00000 0110

EDGE32cc 00000 1000
EDGE32Lcc 00000 1010

Eight 8-bit edge boundary processing

Eight 8-bit edge boundary processing,

little-

endian

Four 16-bit edge boundary processing

Four 16-bit edge boundary processing,

little-

endian

Two 32-bit edge boundary processing

Two 32-bit edge boundary processing,

little-

endian

edge8cc
edge8l cc

edgel6ecce
edgel6l cc

edge32cc
edge32l cc

re8rs1s 1€8rs2s

T€8rs1s 1€8rs2s

T€8rs1s 1€8rs2s

Te8rs1s T€&8rs2s

Te8rs1s 1€8rs2s

regrs1, T€8rs2, T€grd

regrd
regrd

regrd
e8rd

re8rd

B1
Bl

B1
Bl

B1
B1

t The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-"cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5
Description These instructions handle the boundary conditions for parallel pixel scan line loops, where R[rs1] is

the address of the next pixel to render and R[rs2] is the address of the last pixel in the scan line.

EDGES8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc, EDGE16cc, and
EDGE32cc, respectively. They produce an edge mask that is bit-reversed from their big-endian
counterparts but are otherwise identical. This makes the mask consistent with the mask produced by

the Partial Store instruction (see Partial Store on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGES8cc) pixel mask is stored in the least significant
bits of R[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the right edge mask

is computed from the 3 least significant bits of R[rs2], according to TABLE 7-6.

2. If 32-bit address masking is disabled (PSTATE.am = 0) so 64-bit addressing is in use, and the most
significant 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is set to the right

edge mask anded with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.am = 1) so 32-bit addressing is in use, and bits 31:3 of
R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the same operands (see

Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

TABLE7-6 Edge Mask Specification
Edge R[rsn] Big Endian Little Endian
Size {2:0} Left Edge Right Edge Left Edge Right Edge
8 000 1111 1111 1000 0000 1111 1111 0000 0001
8 001 0111 1111 1100 0000 1111 1110 0000 0011
8 010 0011 1111 1110 0000 1111 1100 0000 0111
8 011 0001 1111 1111 0000 1111 1000 0000 1111

116 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

EDGE<8|16|32>{L}cc

TABLE 7-6 Edge Mask Specification (Continued)

Edge R[rsn] Big Endian Little Endian
Size {2:0} Left Edge Right Edge Left Edge Right Edge
8 100 0000 1111 1111 1000 1111 0000 0001 1111
8 101 0000 0111 1111 1100 1110 0000 0011 1111
8 110 0000 0011 1111 1110 1100 0000 0111 1111
8 111 0000 0001 1111 1111 1000 0000 1111 1111
16 00x 1111 1000 1111 0001
16 01x 0111 1100 1110 0011
16 10x 0011 1110 1100 0111
16 1l1x 0001 1111 1000 1111
32 Oxx 11 10 11 01
32 Ixx 01 11 10 1
Exceptions None
See Also EDGE<8116132>[L]N on page 118

CHAPTER 7 ¢ Instructions 117

EDGE<8|16|32>{L}N

7.14 Edge Handling Instructions (no CC)

Instruction opf Operation Assembly Language Syntax Class

EDGESN 000000001 Eight 8-bit edge boundary processing, no CC edge8n regs;, regrs2, tegyq Bl

EDGESLN 000000011 Eight 8-bit edge boundary processing, edge8l n reg.g1, 1€grsos 1€Srd B1
little-endian, no CC

EDGE16N 000000101 Four 16-bit edge boundary processing, no CC edgel6n regs1, 7egrs2: "€8rd B1

EDGE16LN 000000111 Four 16-bit edge boundary processing, edgel6l n regrs1, regrs2s 1€grd B1
little-endian, no CC

EDGE32N 000001001 Two 32-bit edge boundary processing, no CC edge32n reg,s1, reggso, regy Bl

EDGE32LN 000001011 Two 32-bit edge boundary processing, edge32l n reg.g;, regrsy, regyy Bl
little-endian, no CC

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description EDGES[LIN, EDGE16[LIN, and EDGE32[L]N operate identically to EDGE8[L]cc, EDGE16[L]cc, and
EDGE32[L]cc, respectively, but do not set the integer condition codes.

See Edge Handling Instructions on page 116 for details.
Exceptions None

See Also EDGE<8,16,32>[L]cc on page 116

118 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FABS

7.15

Floating-Point Absolute Value

Instruction op3

opf Operation Assembly Language Syntax Class

FABSs
FABSd
FABSq

11 0100
11 0100
11 0100

00000 1001
00000 1010
00000 1011

f abss
f absd
fabsq

Absolute Value Single
Absolute Value Double
Absolute Value Quad

fregrsa, fregrd Al
fregrsa, fregrd Al
fregrsa, fregrd C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FABS copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on double-precision
(64-bit) floating-point register pairs, and FABSq operates on quad-precision (128-bit) floating-point
register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FABS instruction causes an fp_disabled exception.

An attempt to execute an FABSq instruction when rs2{1} # 0 or rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FABSq only))

CHAPTER 7 ¢ Instructions 119

FADD

7.16 Floating-Point Add

Instruction op3 opf Operation Assembly Language Syntax Class
FADDs 11 0100 00100 0001 Add Single f adds fregest, fregrsos fregid Al
FADDd 110100 001000010 Add Double faddd fregs1, fregrszs fregi Al
FADDq 11 0100 00100 0011 Add Quad faddq fregest, fregrsos fregid C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 4 0
Description The floating-point add instructions add the floating-point register(s) specified by the rs1 field and the

floating-point register(s) specified by the rs2 field. The instructions then write the sum into the
floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FADD instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} # 0) or (rs2{1} # 0) or (rd{1:0} # 0) causes
an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Note | An fp_exception_other with FSR.fit = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FADDq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

See Also FMAf on page 137

120 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FALIGNDATA

7.17 Align Data

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 00100 1000 Perform data alignment for faligndata fregwsi, fregrsz, fregq Al
misaligned data

10 rd | 110110 | rsi opf rs2
31730 29 75727 15 18 7 13 57 0

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rsl and rs2 to form a
128-bit (16-byte) intermediate value. The contents of the first source operand form the more-
significant 8 bytes of the intermediate value, and the contents of the second source operand form the
less significant 8 bytes of the intermediate value. Bytes in the intermediate value are numbered from
most significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the intermediate
value and stored in the 64-bit floating-point destination register specified by rd. GSR.align specifies

the number of the most significant byte to extract (and, therefore, the least significant byte extracted is
numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

GSR.align

byte byte
Fplrsl] :: Fp[rs2] ol1|2|3|4a|5|6|7|8|9]|20[12|12]|23[24(15

rz Fplrsil > | Fplrs2] :

FD[I’d]
63 0

FIGURE 7-6 FALIGNDATA
A byte-aligned 64-bit load can be performed as shown below.

al i gnaddr Address, Offset, Address !set GSR. align

| dd [Address], %0

| dd [Address + 8], %2

faligndata %0, %2, %4 luse GSR align to sel ect bytes

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled
See Also Align Address on page 98

CHAPTER 7 ¢ Instructions 121

7.18

FBfcc

Branch on Floating-Point Condition Codes

(FBfcc)

Opcode cond Operation fcc Test Assembly Language Syntax Class
FBAP 1000 Branch Always 1 fba{,a} label Al
FBNP 0000 Branch Never 0 fon{,a} label Al
FBUP 0111 Branch on Unordered 8] fbu{, a} label Al
FBGP 0110 Branch on Greater G f bg{, a} label Al
FBUGP 0101 Branch on Unordered or Greater GorU fbug{, a} label Al
FBLP 0100 Branch on Less L fbl{,a} label Al
FBULP 0011 Branch on Unordered or Less LorU fbul {,a} label Al
FBLGP 0010 Branch on Less or Greater LorG fbl g{,a} label Al
FBNEP 0001 Branch on Not Equal LorGorU fbne®(, a} label Al
FBEP 1001 Branch on Equal E foel(,a} label Al
FBUEP 1010 Branch on Unordered or Equal EorU fbue{, a} label Al
FBGEP 1011 Branch on Greater or Equal EorG fbge{, a} label Al
FBUGEP 1100 Branch on Unordered or Greater or Equal EorGorU f bugef{, a} label Al
FBLEP 1101 Branch on Less or Equal EorL fble{,a}l label Al
FBULEP 1110 Branch on Unordered or Less or Equal EorLorU fbul ef, a} label Al
FBOP 1111 Branch on Ordered EorLorG f bo{, a} label Al
t synonym: f bnz ¥ synonym: f bz
00 |a cond 110 disp22
31 30 29 28 25 24 22 21 0
Programming | To set the annul (a) bit for FBfcc instructions, append “, a” to
Note | the opcode mnemonic. For example, use “f bl , a label”. In the
preceding table, braces around “, a” signify that “, a” is
optional.

Description ~ Unconditional and Fcc branches are described below:

122 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

= Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch Never) instruction
acts like a NOP. If its annul field is 1, the following (delay) instruction is annulled (not executed)
when the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext(disp22))” regardless of the value of the floating-point condition code bits. If
the annul field of the branch instruction is 1, the delay instruction is annulled (not executed). If the
annul (a) bit is 0, the delay instruction is executed.

» Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN) evaluate
floating-point condition code zero (fcc0) according to the cond field of the instruction. Such
evaluation produces either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp22))”. If FALSE, the branch is not taken.

Exceptions

FBfcc

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
FBfcc instruction will cause a transfer of control (FBA or taken conditional branch), then FBfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBfcc instruction) is stored in TPC[TL]
and the value of NPC from before the FBfcc was executed is stored in TNPC[TL]. Note that FBN never
causes a control_transfer_instruction exception.

fp_disabled
control_transfer_instruction (impl. dep. #450-520)

CHAPTER 7 ¢ Instructions 123

FBPfcc

7.19 Branch on Floating-Point Condition Codes with
Prediction (FBPfcc)

Instruction cond Operation fcc Test Assembly Language Syntax Class
FBPA 1000 Branch Always 1 fbaf, a}{, pt I, pn} % ccn, label Al
FBPN 0000 Branch Never 0 fbn{, a}{, pt I, pn} % ccn, label Al
FBPU 0111 Branch on Unordered 8] fbu{, a}{, pt I, pn} % ccn, label Al
FBPG 0110 Branch on Greater G fbg{, a}{, pt I, pn} % ccn, label Al
FBPUG 0101 Branch on Unordered or Greater G or U fbug{, a}{, pt I, pn} % ccn, label Al
FBPL 0100 Branch on Less L fbl {, a}{, pt I, pn} % ccn, label Al
FBPUL 0011 Branch on Unordered or Less LorU fbul {,a}{,pt I, pn} % ccn, label Al
FBPLG 0010 Branch on Less or Greater LorG fblg{,a}{, pt I, pn} % ccn, label Al
FBPNE 0001 Branch on Not Equal LorGorU fbne'(, a}{, pt |, pn} 9% ccn, label Al
FBPE 1001 Branch on Equal E f bel(, a){, pt |, pn} % ccn, label Al
FBPUE 1010 Branch on Unordered or Equal EorU fbuef, a}{, pt I, pn} % ccn, label Al
FBPGE 1011 Branch on Greater or Equal EorG fbge{, a}{, pt I, pn} % ccn, label Al
FBPUGE 1100 Branch on Unordered or Greater E or Gor U fbuge{, a}{, pt |, pn} % ccn, label Al
or Equal
FBPLE 1101 Branch on Less or Equal EorL fble{,al{, pt!l,pn} % ccn, label Al
FBPULE 1110 Branch on Unordered or Lessor EorLorU fbul e{, a}{, pt I, pn} % ccn, label Al
Equal
FBPO 1111 Branch on Ordered EorLorG fbof{ a}{, pt!, pn} % ccn, label Al

t synonym: f bnz 1 synonym: f bz

00 |a cond 101 ccliccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0
ccl cco Condition Code
0 0 fcco
0 1 fccl
1 0 fcc2
1 1 fcc3

Programming | To set the annul (a) bit for FBPfcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “f bl , a % cc3, label”. In

the preceding table, braces signify that the “, a” is optional. To set
the branch prediction bit, append either “, pt ” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
‘, pt ” nor “, pn” is specified, the assembler defaults to “, pt ”. To
select the appropriate floating-point condition code, include

“o cc0”, “% ccl”, “% cc2”, or “% cc3” before the label.

Description Unconditional branches and Fcc-conditional branches are described below.

124 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

FBPfcc

» Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-Point Branch
Never with Prediction) instruction acts like a NOP. If the Branch Never’s annul field is 0, the
following (delay) instruction is executed; if the annul (a) bit is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-relative, delayed
control transfer to the address “PC + (4 x sign_ext(disp19))”. If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

s Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one
of the four floating-point condition codes (f ccO, f cc1, f cc2, f cc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE, the
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of

the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than it
does on unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. A 1
in the p bit indicates that the branch is expected to be taken. A 0 indicates that the branch is
expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBPfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
FBPfcc instruction will cause a transfer of control (FBPA or taken conditional branch), then FBPfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBPfcc instruction) is stored in
TPCI[TL] and the value of NPC from before the FBPfcc was executed is stored in TNPC[TL]. Note that
FBPN never causes a control_transfer_instruction exception.

fp_disabled
control_transfer_instruction (impl. dep. #450-520)

CHAPTER 7 ¢ Instructions 125

FCMP*<16|32> (SIMD)

7.20 SIMD Signed Compare

Instruction opf Operation sl s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare; f64 fo4 164 fcnpl el6 fregis1, fregrsa, 1eSrd B1
set R[rd] if srcl < src2

FCMPNE16 0 0010 0010 Four 16-bit compare; f64 fo4 164 fcnpnel6 fregis1, fregrsa, teSrd B1
set R[rd] if srcl # src2

FCMPLE32 00010 0100 Two 32-bit compare; f64 fo4 164 fcnpl e32 fregis1, fregisa, tegrd B1
set R[rd] if srcl < src2

FCMPNE32 00010 0110 Two 32-bit compare; f64 fo4 164 fcnpne32 fregis1, fregrsa, tegrd B1
set R[rd] if srcl # src2

FCMPGT16 00010 1000 Four 16-bit compare; f64 fo4 164 fcnpgt 16 fregis1, fregrsa, teSrd B1
set R[rd] if src1 > src2

FCMPEQ16 00010 1010 Four 16-bit compare; f64 fo4 164 fcnpeql6 fregisi, fregrsa, teSrd B1
set R[rd] if src1 = src2

FCMPGT32 00010 1100 Two 32-bit compare; f64 fo4 164 fcnpgt 32 fregis1, fregrsa, tegrd B1

set R[rd] if src1 > src2

Two 32-bit compare; fo4 f64 i64
set R[rd] if src1 = src2

FCMPEQ32 0 0010 1110 fcnpeq32 fregs1, fregrsa, 1€8rd B1

10 rd | 110110 rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description Either four 16-bit signed values or two 32-bit signed values in Fp[rs1] and Fp[rs2] are compared. The

4-bit or 2-bit condition-code results are stored in the least significant bits of the integer register R[rd].
The least significant 16-bit or 32-bit compare result corresponds to bit zero of R[rd].

Note | Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

For FCMPGT({16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is
greater than the signed value in Fp[rs2]. Less-than comparisons are made by swapping the operands.

For FCMPLE({16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is less
than or equal to the signed value in Fp[rs2]. Greater-than-or-equal comparisons are made by
swapping the operands.

For FCMPEQ(16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is
equal to the signed value in Fp[rs2].

For FCMPNE(16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is not
equal to the signed value in Fp[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations, respectively.

126 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

Exception

See Also

FCMP*<16|32> (SIMD)

Fplrsi]
63 48 47 32 31 16 15 0
fcmplgt, le, eq, ne, It, ge]16
Fplrs2]
R[rd]

FIGURE 7-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

Fplrsi]
63 32 31 o
fcmplgt, le, eq, ne, It ge]32
Fplrs2]
R[rd]

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the result is set to 0.

Programming | The results of a SIMD signed compare operation can be used
Note | directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIMD signed compare instruction causes an fp_disabled exception.

fp_disabled

Floating-Point Compare on page 128
STPARTIALF on page 260

CHAPTER 7 ¢ Instructions 127

FCMP<s|d|g>/ FCMPE<s|d|g>

721 Floating-Point Compare

Instruction opf Operation Assembly Language Syntax Class
FCMPs 001010001 Compare Single fcps Y ccen, fregsr, fregrso Al
FCMPd 001010010 Compare Double fcpd % ccn, fregsy, fregso Al
FCMPq 001010011 Compare Quad fcpg Y ccen, fregsy, fregiso C3
FCMPEs 001010101 Compare Single and Exception if fcnpes %Y ccn, fregsy, fregrso Al
Unordered
FCMPEd 001010110 Compare Double and Exception if fcped % ccn, fregsy, fregrso Al
Unordered
FCMPEq 001010111 Compare Quad and Exception if fcnpeq % ccn, fregsy, fregrso C3
Unordered
10 — |ecleeQ 110101 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 0
ccl cco Condition Code
0 0 fcco
0 1 fccl
1 0 fcc2
1 1 fce3

Description These instructions compare F[rs1] with F[rs2] , and set the selected floating-point condition code

(f ccn) as follows

Relation Resulting fcc value
fregrs1 =fregrsn 0

fregrsa < fregrs2 1

fregrs1 > fregrs2 2

fregrsy ? fregrsp (unordered) 3

The “?” in the preceding table means that the compared values are unordered. The unordered
condition occurs when one or both of the operands to the comparison is a signalling or quiet NaN

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPE(q) instructions
cause an invalid (NV) exception if either operand is a NaN.

128 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

FCMP<s|d|g>/ FCMPE<s|d|g>

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

V8 Compatibility | Unlike the SPARC V8 architecture, SPARC V9 and the

Note | UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as f ccO and the FBfcc
instruction branches based on the value of f ccO.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero causes an
illegal_instruction exception.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates an illegal_instruction exception, which causes a trap,
allowing privileged software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FCMPq or FCMPE(q instruction when (rs1{1} # 0) or (rs2{1} # 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_ieee_754 (NV)

fp_exception_other (FSRftt = invalid_fp_register (FCMPq, FCMPEq only))

SIMD Signed Compare on page 126

CHAPTER 7 ¢ Instructions 129

FDIV<s|d|g>

7.22

Floating-Point Divide

Instruction op3

opf Operation Assembly Language Syntax Class

FDIVs
FDIVd
FDIVq

11 0100
11 0100
11 0100

00100 1101
00100 1110
00100 1111

Divide Single fdivs
Divide Double

Divide Quad

fregests fregrsos fregrg Al
fdivd fregs1, fregiso fregr Al
fdivg fregis1, fregiso, fregu c3

10

rd op3 rsl opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

The floating-point divide instructions divide the contents of the floating-point register(s) specified by
the rsl field by the contents of the floating-point register(s) specified by the rs2 field. The instructions
then write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute an FDIVq instruction
generates an illegal_instruction exception, allowing privileged
software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} # 0) or (rs2{1} # 0) causes an
fp_exception_other (FSR.fit = invalid_fp_register) exception.

Note | For FDIVs and FDIVd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSRftt = invalid_fp_register (FDIVq only)
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)

130 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FEXPAND

723 FEXPAND

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FEXPAND 001001101 Four 16-bit expands — 32 f64 fexpand fregso, fregyq B1

10 rd 110110 — opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FEXPAND takes four 8-bit unsigned integers from Fg[rs2], converts each integer to a 16-bit fixed-
point value, and stores the four resulting 16-bit values in a 64-bit floating-point register Fp[rd].
FIGURE 7-10 illustrates the operation.

Fs[rs2] | — /
/yq 23 % Sy 0
Folrdl | o000 <& 0000 | 0000 & 0000| 0000 A& 0000 | 0000 0000
63 60 59 52 51 48 47 44 43 36 35 32 31 28 27 20 19 16 15 12 11 43 0

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:
1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, Fp[rd].

Programming | FEXPAND performs the inverse of the FPACK16 operation.
Note

An attempt to execute an FEXPAND instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FEXPAND instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
See Also FPMERGE on page 160

FPACK on page 153

CHAPTER 7 ¢ Instructions 131

FiTO<s|d|g>

7.24

Convert 32-bit Integer to Floating Point

Instruction op3

Assembly Language

opf Operation sl s2 d Syntax Class

FiTOs
FiTOd

FiTOq

11 0100 01100 0100

11 0100 0 1100 1000

11 0100 01100 1100

32 £32

Convert 32-bit Integer to — fitos fregso, fregrg Al

Single
Convert 32-bit Integer to — {32 f64

Double

fitod fregrsp, fregrg Al

Convert 32-bit Integer to —
Quad

32 f128 fitoq fregisp, fregg C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point register Fg[rs2]
into a floating-point number in the destination format. All write their result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FiTO<s|d | g> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FiTO<s|d | g> instruction causes an fp_disabled exception.

An attempt to execute an FiTOq instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSRftt = invalid_fp_register (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

132 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FLUSH

7.25

Flush Instruction Memory

Instruction op3 Operation Assembly Language Syntaxt Class

FLUSH 111011 Flush Instruction Memory flush [address] Al

t The original assembly language syntax for a FLUSH instruction (“f | ush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

— op3 rsl i=0 — rs2
— op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

FLUSH ensures that the aligned doubleword specified by the effective address is consistent across any
local caches and, in a multiprocessor system, will eventually (impl. dep. #122-V9) become consistent
everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction
memory and data memory. When software writes! to a memory location that may be executed as an
instruction (self-modifying code?), a potential memory consistency problem arises, which is addressed
by the FLUSH instruction. Use of FLUSH after instruction memory has been modified ensures that
instruction and data memory are synchronized for the processor that issues the FLUSH instruction.

The virtual processor waits until all previous (cacheable) stores have completed before issuing a
FLUSH instruction. For the purpose of memory ordering, a FLUSH instruction behaves like a store
instruction.

In the following discussion Pgp sy refers to the virtual processor that executed the FLUSH
instruction.

FLUSH causes a synchronization within a virtual processor which ensures that instruction fetches
from the specified effective address by Py gy appear to execute after any loads, stores, and atomic
load-stores to that address issued by Pgpysy prior to the FLUSH. In a multiprocessor system, FLUSH
also ensures that these values will eventually become visible to the instruction fetches of all other
virtual processors in the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
is a store operation (see Memory Barrier on page 201).

Given any store Sp to address A, that precedes in memory order a FLUSH F, to address A, that in
turn precedes in memory order a store Sg to address B; if any instruction Ig fetched from address B
executes the instruction created by store Sg, then any instruction I, that fetched from address A and
that follows Ig in program order cannot execute any version of the instruction from address A that
existed prior to the store Sy.

The preceeding statement defines an ordering requirement to which UltraSPARC Architecture
processors comply. By using a FLUSH instruction between two stores that modify instructions,
atomicity between the two stores is guaranteed such that any virtual processor executing the
instruction modified by the later store will never fetch and/or execute the instruction before it was
modified by the earlier store.

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”; if i = 1, it is

“R[rs1] + sign_ext (simm13)”. The three least-significant bits of the effective address are ignored;

that is, the effective address always refers to an aligned doubleword.

1 this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA transfer)

2 practiced, for example, by software such as debuggers and dynamic linkers

CHAPTER 7 ¢ Instructions 133

FLUSH

See implementation-specific documentation for details on specific implementations of the FLUSH
instruction.

On an UltraSPARC Architecture processor:

» A FLUSH instruction causes a synchronization within the virtual processor on which the FLUSH is
executed, which flushes its instruction pipeline to ensure that no instruction already fetched has
subsequently been modified in memory. Any other virtual processors on the same physical
processor are unaffected by a FLUSH.

» Coherency between instruction and data memories may or may not be maintained by hardware.

IMPL. DEP. #409-S10: The implementation of the FLUSH instruction is implementation dependent. If
the implementation automatically maintains consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between instruction and data
memory, the FLUSH address is used to access the MMU and the FLUSH instruction can cause data
access exceptions.

Programming | For portability across all SPARC V9 implementations, software
Note | must always supply the target effective address in FLUSH
instructions.

» If the implementation contains instruction prefetch buffers:
= the instruction prefetch buffer(s) are invalidated

= instruction prefetching is suspended, but may resume starting with the instruction immediately
following the FLUSH

Programming | 1.Typically, FLUSH is used in self-modifying code.
Notes | The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.

134 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

FLUSH

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged mode will use the nucleus
context and will not necessarily affect instruction cache lines
containing data from a user (nonprivileged) context.

Implementation | In a multiprocessor configuration, FLUSH requires all processors
Note | that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility | The effect of a FLUSH instruction as observed from the virtual
Note | processor on which FLUSH executes is immediate. Other virtual

processors in a multiprocessor system eventually will see the

effect of the FLUSH, but the latency is implementation dependent.

An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero causes an
illegal_instruction exception.

An attempt to execute a FLUSH instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

illegal_instruction
DAE_nfo_page

CHAPTER 7 ¢ Instructions 135

FLUSHW

7.26

Flush Register Windows

Instruction op3 Operation Assembly Language Syntax Class
FLUSHW 101011 Flush Register Windows flushw Al
10 — op3 — i=0 —
31 30 29 25 24 19 18 14 13 12 0
Description FLUSHW causes all active register windows except the current window to be flushed to memory at

Exceptions

locations determined by privileged software. FLUSHW behaves as a NOP if there are no active
windows other than the current window. At the completion of the FLUSHW instruction, the only
active register window is the current one.

Programming | The FLUSHW instruction can be used by application software to
Note | flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS — 2. Otherwise, there is more than one
active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is based
on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the CWP set to
the window to be spilled (that is, (CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window
Management Instructions on page 83.

Programming | Typically, the spill handler saves a window on a memory stack
Note | and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or 12:0 are nonzero
causes an illegal_instruction exception.

illegal_instruction
spill_n_normal
spill_n_other

136 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

7.27

FMAf

Floating-Point Multiply-Add and Multiply-

Subtract (fused)

Instruction op5 Operation Assembly Language Syntax Class Added
FMADDs 0001 Multiply-Add Single fmadds fregis1, fregrso, fregrsa, fregrd C3 UA 2007
FMADDd 0010 Multiply-Add Double frmaddd fregis1, fregrso, fregrsas fregrd C3 UA 2007
FMSUBs 0101 Multiply-Subtract Single frrsubs fregis1, fregrsos fregisa, freSrd C3 UA 2007
FMSUBd 0110 Multiply-Subtract Double freubd fregis1, fregrso, fregrsa, fregrd C3 UA 2007
UA 2007
FNMSUBs 1001 Negative Multiply-Subtract Single fnmsubs fregis1, fregrso, fregrsa, fregrd C3 UA 2007
FNMSUBd 1010 Negative Multiply-Subtract Double fnmsubd freg.s1, fregrso, fregrsa, fregrg C3 UA 2007
FNMADDs 1101 Negative Multiply-Add Single fnmadds fregis1, fregrsa, fregrsa, fregrd C3 UA 2007
FNMADDd 1110 Negative Multiply-Add Double fnmaddd fregis1, fregrso, fregrsa, fregrd C3 UA 2007
10 rd 110111 rsi rs3 op5 rs2
31 30 29 25 24 19 18 14 13 98 54 0
Instruction Implementation
Multiply-Add (fused) F[rd] — (F[rs1] x F[rs2]) + F[rs3]
Multiply-Subtract (fused) F[rd] « (F[rs1] x F[rs2]) — F[rs3]
Negative Multiply-Add (fused) Flrd] « = ((F[rs1] x F[rs2]) + F[rs3])
Negative Multiply-Subtract (fused) F[rd] — - ((F[rs1] x F[rs2]) — F[rs3])
Description The fused floating-point multiply-add instructions, FMADD<s | d>, multiply the floating-point

register(s) specified by rs1 and the floating-point register(s) specified by rs2, add that product to the
register(s) specified by rs3, round the result, and write the result into the floating-point register(s)
specified by rd.

The fused floating-point multiply-subtract instructions, FMSUB<s | d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, subtract from that
product the register(s) specified by rs3, round the result, and write the result into the floating-point
register(s) specified by rd.

The fused floating-point negative multiply-add instructions, FNMADD<s | d>, multiply the floating-
point register(s) specified by rs1 and the floating-point register(s) specified by rs2, add to the product
the register(s) specified by rs3, negate the result, round the result, and write the result into the
floating-point register(s) specified by rd.

The fused floating-point negative multiply-subtract instructions, FNMSUB<s | d>, multiply the
floating-point register(s) specified by the rsl field and the floating-point register(s) specified by the
rs2 field, subtract from the product the register(s) specified by the rs3 field, negate the result, round
the result, and write the result into the floating-point register(s) specified by the rd field.

All of the above instructions are “fused” operations; no rounding is performed between the
multiplication operation and the subsequent addition (or subtraction). Therefore, at most one
rounding step occurs.

The negative fused multiply-add/subtract instructions (FNM?*) treat NaN values as follows:

» A source QNaN propagates with its sign bit unchanged
» A generated (default response) QNaN result has a sign bit of zero
» A source SNaN that is converted to a QNaN result retains the sign bit of the source SNaN

CHAPTER 7 ¢ Instructions 137

FMAf

Exceptions. If an FMAf instruction is not implemented in hardware, it generates an
illegal_instruction exception, so that privileged software can emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMAf instruction causes an fp_disabled exception.

Overflow, underflow, and inexact exception bits within FSR.cexc and FSR.aexc are updated based on
the final result of the operation and not on the intermediate result of the multiplication. The invalid
operation exception bits within FSR.cexc and FSR.aexc are updated as if the multiplication and the
addition/subtraction were performed using two individual instructions. An invalid operation
exception is detected when any of the following conditions are true:

» A source operand (F[rs1], F[rs2], or F[rs3]) is a SNaN
s 00 x 0
s 00 -0

If the instruction generates an IEEE-754 exception or exceptions for which the corresponding trap
enable mask (FSR.tem) bits are set, an fp_exception_ieee_754 exception and subsequent trap is
generated.

If either the multiply or the add/subtract operation detects an unfinished_FPop condition (for
example, due to a subnormal operand or final result), the Multiply-Add/Subtract instruction
generates an fp_exception_other exception with FSR.ftt = unfinished_FPop. An fp_exception_other
exception with FSR ftt = unfinished_FPop always takes precedence over an fp_exception_ieee_754
exception. That is, if an fp_exception_other exception occurs due to an unfinished_FPop condition,
the FSR.cexc and FSR.aexc fields remain unchanged even if a floating point IEEE 754 exception
occurs during the multiply operation (regardless whether traps are enabled, via FSR.tem, for the IEEE
exception) and the unfinished_FPop condition occurs during the subsequent add/subtract operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Semantic Definitions

Exceptions

See Also

FMADD: FNMADD:
(1) tmp « F[rs1l] x F[rs2] (1) tnp « F[rsl] x F[rs2]
(2) tmp « tnmp + F[rs3] (2) tnp « tnp + F[rs3]
(3) tnp — - tnp
(3) F[rd] < round(tnp) (4) F[rd] <« round(tnp)
FMSUB: FNMSUB:
(1) tmp « F[rsl] x F[rs2] (1) tmp « F[rsl] x F[rs2]
(2) tmp « tp — F[rs3] (2) tnp « tnp — F[rs3]
(3) tnp .~ - tmp
(3) F[rd] ~ round(tnp) (4) F[rd] ~ round(tnp)
fp_disabled

fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (FSR.ftt = unfinished_FPop)

FMUL on page 151
FADD on page 120
FSUB on page 161

138 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FMOV

7.28

Floating-Point Move

Instruction op3

opf Operation Assembly Language Syntax Class

FMOVs
FMOVd
FMOVq

11 0100
11 0100
11 0100

00000 0001
00000 0010
00000 0011

Al
Al
C3

Move (copy) Single f movs fregrso, fregrg
fregrsa, fregra

fregrsa, fregrd

Move (copy) Double f movd

Move (copy) Quad f movg

10

rd op3 opf rs2

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 5 4 0

FMOV copies the source floating-point register(s) to the destination floating-point register(s),
unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations, respectively.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOV(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOV instruction causes an fp_disabled exception.

An attempt to execute an FMOV(q instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction
fp_disabled fp_exception_other (FSRfit = invalid_fp_register (FMOVq only))

f Register Logical Operate (2 operand) on page 164

CHAPTER 7 ¢ Instructions 139

FMOVcc

7.29 Move Floating-Point Register on Condition
(FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 000001 Move Floating-Point Single, fmovsicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVDicc 000010 Move Floating-Point Double, fmovdicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVQicc 000011 Move Floating-Point Quad, fmovaicc % cc, fregrso, fregrg C3
based on 32-bit integer condition codes

FMOVSxcc 00 0001 Move Floating-Point Single, fnovsxce %xcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVDxcc 000010 Move Floating-Point Double, fmovdxce Xcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVQxcc 000011 Move Floating-Point Quad, fmovaxce Xcc, fregrso, fregrg C3
based on 64-bit integer condition codes

FMOVSfcc 000001 Move Floating-Point Single, frovsfcc % ccn, fregis, fregrg Al
based on floating-point condition codes

FMOVDfcc 000010 Move Floating-Point Double, fmovdfce % ccn, fregiso, fregrg Al
based on floating-point condition codes

FMOVQfcc 000011 Move Floating-Point Quad, fnovqfecc % ccn, fregso, fregg C3
based on floating-point condition codes

10 rd 110101 —| cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 1413 11 10 5 4 0

140 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FMOVcc

Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icC or Xcc)

icc/xcc name(s) in
Assembly Language

cond Operation icc / xcc Test Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
1001 Move if Not Equal not Z ne (or nz)
0001 Move if Equal zZ e (or z)
1010 Move if Greater not (Z or (N xor V)) g
0010 Move if Less or Equal Z or (N xor V) Il e
1011 Move if Greater or Equal not (N xor V) ge
0011 Move if Less N xor V |

1100 Move if Greater Unsigned not (C or Z) gu
0100 Move if Less or Equal Unsigned (CorZ) I eu
1101 Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)
0101 Move if Carry Set (Less than, Unsigned) C cs (orlu)
1110 Move if Positive not N pos
0110 Move if Negative N neg
1111 Move if Overflow Clear not V vec
0111 Move if Overflow Set A% Vs

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

feec name(s) in Assembly

cond Operation fcen Test Language Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
0111 Move if Unordered U u
0110 Move if Greater G g
0101 Move if Unordered or Greater GorU ug
0100 Move if Less L I

0011 Move if Unordered or Less LorU ul
0010 Move if Less or Greater LorG g
0001 Move if Not Equal LorGorU ne (or nz)
1001 Move if Equal E e (orz
1010 Move if Unordered or Equal EorU ue
1011 Move if Greater or Equal EorG ge
1100 Move if Unordered or Greater or Equal E or G or U uge
1101 Move if Less or Equal EorL le
1110 Move if Unordered or Less or Equal EorL orU ul e
1111 Move if Ordered EorL or G o}

CHAPTER 7 ¢ Instructions

141

FMOVcc

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Description

Condition Code
opf_cc Instruction to be Tested

100, FMOV<sldlg>icc icc
110, FMOV<s!|d|lg>xcc xcc
000, FMOV<sldlg>fcc fecO

001, fccl
010, fcc2
011, fce3

101, (illegal_instruction exception)
111,

The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the selected
floating-point condition code field in FSR. The condition code used is specified by the opf_cc field of
the instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or opf_cc = 101, or
111, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an fp_disabled exception.

An attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction when rs2{1} # 0 or
rd{1} # O causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

142 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FMOVcc

Programming | Branches cause the performance of most implementations to

Note | degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A B, X
if (A>B) then X = 1.03; else X = 0.0;

can be coded as

I assune Ais in %0; Bis in %2, %Xx points to
! constant area
| dd [%x+C_1.03],% 4 ' X =1.03
fcnpd % cc3,%0, %2 I A>B
fble,a % cc3,| abel
I following instructiononly executed if the
! precedi ng branch was taken
fsubd %4,%4,%4 I X =0.0
| abel : ...

This code takes four instructions including a branch.
With FMOVcg, this could be coded as

| dd [%x+C_1.03],% 4 ' X =1.03
fsubd 9% 4,%4,%6 ' X =0.0
fcmpd % cc3,%0,% 2 I A>B

frovdl e % cc3,% 6, % 4 ' X =0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FMOVQ instructions))

CHAPTER 7 ¢ Instructions 143

FMOVR

7.30 Move Floating-Point Register on Integer Register
Condition (FMOVR)

Instruction rcond opf_low Operation Test Class
— 000 00101 Reserved — —
FMOVRsZ 001 00101 Move Single if Register = 0 Rirs1]=0 A1l
FMOVRsLEZ 010 00101 Move Single if Register < 0 Rlrs1]<0 A1l
FMOVRsLZ 011 00101 Move Single if Register < 0 Rlrsl]<0 Al
— 100 00101 Reserved — —
FMOVRsNZ 101 00101 Move Single if Register # 0 R[rs1]#0 A1l
FMOVRsGZ 110 00101 Move Single if Register > 0 Rlrs1] >0 A1l
FMOVRsGEZ 111 00101 Move Single if Register = 0 Rrsl]z0 Al
— 000 00110 Reserved — —
FMOVRdZ 001 00110 Move Double if Register = 0 R[rsl]=0 Al
FMOVRALEZ 010 00110 Move Double if Register < 0 R[rs1l]<0 A1l
FMOVRALZ 011 00110 Move Double if Register < 0 R[rs1] <0 A1l
— 100 00110 Reserved — —
FMOVRdANZ 101 00110 Move Double if Register # 0 R[rs1]#0 A1l
FMOVRAGZ 110 00110 Move Double if Register > 0 R[rs1] >0 A1l
FMOVRAGEZ 111 00110 Move Double if Register = 0 R[rs1]=0 A1l
— 000 00111 Reserved — —

FMOVRqgZ 001 00111 Move Quad if Register = 0 R[rs1]=0 C3
FMOVRqLEZ 010 00111 Move Quad if Register < 0 R[rsl]<0 C3
FMOVRgLZ 011 00111 Move Quad if Register < 0 R[rsl]<0 C3

— 100 00111 Reserved — —
FMOVRgNZ 101 00111 Move Quad if Register # 0 R[rs1]#0 C3
FMOVRqGZ 110 00111 Move Quad if Register > 0 Rlrs1]>0 C3
FMOVRqGEZ 111 00111 Move Quad if Register = 0 R[rs1]=0 C3

10 rd 110101 rsl —| rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Assembly Language Syntax

frovri{s, d, qjz regs1, fregrso, fregrd (synonym: f movr {s, d, qle)
frovr (s, d, q}l ez regis1, fregrsz, fregrg

frovri{s, d, q}l z regis1, fregrsos fregrd

frovr{s, d, qlnz regs1, fregiso, fregrd (synonym: f movr {s, d, qjne)
regrs1, fregrsa, fregd

fovr {s, d, qlgez regis1. fregrso, fregrd

Inz
f novr {s, d, qlgz
}

144 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FMOVR

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these
instructions copy the contents of the floating-point register(s) specified by the rs2 field to the floating-
point register(s) specified by the rd field. If the contents of R[rs1] do not satisfy the condition, the
floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not modify any
condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or rcond = 000, or
100, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVR instruction causes an fp_disabled exception.

An attempt to execute an FMOVR(q instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | If this instruction is implemented by tagging each register value
Note [with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z

FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.fitt = invalid_fp_register (FMOVR(q instructions))

CHAPTER 7 ¢ Instructions 145

FMUL (partitioned)

7.31 Partitioned Multiply Instructions

Instruction opf Operation sl s2 d Assembly Language Syntax Class

FMULS8x16 00011 0001 Unsigned 8-bit by signed 16-bit 32 f64 f64 f mul 8x16 fregis1, fregrsz, fregrq Bl
partitioned product

FMULS8x16AU 00011 0011 Unsigned 8-bit by signed 16-bit 32 f32 f64 f mul 8x16au freg.s;, fregrsa, fregq Bl
upper a partitioned product

FMUL8XI6AL 00011 0101 Unsigned 8-bit by signed 16-bit £32 £32 f64 f nul 8x16al fregys1, fregrsps fregrg Bl
lower a partitioned product

FMUL8SUx16 000110110 Signed upper 8-bit by signed {64 f64 {64 f mul 8sux16 freg,s1. fregrss, fregrq Bl
16-bit partitioned product

FMUL8ULx16 00011 0111 Unsigned lower 8-bit by signed f64 f64 f64 f mul 8ul x16 freg,s1, fregrss, fregrq Bl
16-bit partitioned product

FMULD8SUx16 000111000 Signed upper 8-bit by signed {32 £32 {64 f mul d8sux16 freg,s1, fregrsz, fregq Bl
16-bit partitioned product

FMULDS8ULXx16 000111001 Unsigned lower 8-bit by signed {32 £32 {64 f mul d8ul x16 freg,s1, fregrsz, fregrq Bl
16-bit partitioned product

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Programming | When software emulates an 8-bit unsigned by 16-bit signed
Note | multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

Description The following sections describe the versions of partitioned multiplies.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an partitioned multiply instruction causes an fp_disabled exception.

Exceptions fp_disabled

146 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FMUL (partitioned)
7.31.1 FMULS8x16 Instruction

FMULS8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in the 32-bit
floating-point register Fg[rs1] by the corresponding (signed) 16-bit fixed-point integer in the 64-bit
floating-point register Fp[rs2]. It rounds the 24-bit product (assuming binary point between bits 7 and
8) and stores the most significant 16 bits of the result into the corresponding 16-bit field in the 64-bit
floating-point destination register Fp[rd]. FIGURE 7-10 illustrates the operation.

Note | This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

Flrs1] /

312/413 167787/0

Flrs2l | | |]
63 * /«8’ 47 * /2 31 * / 16 15 ** 0
XMs16b XMs16b XMs16b XMs16b
Flrd] ¢ ¢ ¢
63 28 a7 32 31 6 15 0

FIGURE 7-10 FMUL8x16 Operation

7.31.2 FMUL8Xx16AU Instruction

FMULB8x16AU is the same as FMULS8x16, except that one 16-bit fixed-point value is used as the
multiplier for all four multiplies. This multiplier is the most significant (“upper”) 16 bits of the 32-bit
register Fg[rs2] (typically an o pixel component value). FIGURE 7-11 illustrates the operation.

Fslrsi] /
31 %3 16/5 8 7 0
Felrsza 7 __ /T o 1!
Ry /o PA B
XMs16b XMs16b XMs16b XMs16b
Fplrd] ¢ ¢ ¢ ¢
63 48 47 32 31 16 15 0

FIGURE 7-11 FMUL8x16AU Operation

CHAPTER 7 ¢ Instructions 147

FMUL (partitioned)
7.31.3 FMUL8Xx16AL Instruction

FMULB8x16AL is the same as FMUL8x16AU, except that the least significant (“lower”) 16 bits of the
32-bit register Fg[rs2] register are used as a multiplier. FIGURE 7-12 illustrates the operation.

Fslrsi]

Fslrs2]

Fplrd]

63 48 47 32 31 16 15 0

FIGURE 7-12 FMULS8x16AL Operation

7.31.4 FMUL8SUx16 Instruction

FMULS8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in the 64-bit
floating-point register Fp[rs1] by the corresponding signed, 16-bit, fixed-point, signed integer in the
64-bit floating-point register Fp[rs2]. It rounds the 24-bit product toward the nearest representable
value and then stores the most significant 16 bits of the result into the corresponding 16-bit field of the
64-bit floating-point destination register Fp[rd]. If the product is exactly halfway between two
integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the operation.

Fplrs1] o o o I

- — - = - — - = - — - = R |

63 56 55 48 47 0 39 32 31 4 23 16 15 8 7 0

Folrs?] \ \ \ \
T T W T W T

FD[rd] ¢

63 48 47 32 31 16 15 0

FIGURE 7-13 FMUL8SUx16 Operation

7.31.5 FMUL8SULX16 Instruction

FMUL8SULXx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in the 64-
bit floating-point register Fp[rs1] by the corresponding fixed-point signed 16-bit integer in the 64-bit
floating-point register Fp[rs2]. Each 24-bit product is sign-extended to 32 bits. The most significant
(“upper”) 16 bits of the sign-extended value are rounded to nearest and then stored in the
corresponding 16-bit field of the 64-bit floating-point destination register Fp[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity. FIGURE 7-14 illustrates the
operation; CODE EXAMPLE 7-1 exemplifies the operation.

148 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

7.31.6

FMUL (partitioned)

sty L T L 1 1L 1 []

63 56 55/ 48 47 40 39/ 32 31 24 23/ 16 15 8 7 / 0
Folrs2] L/ L/ L/ L/

Tw T w T w tt w

X .
sign-extended, I sign-extended, X sign-extended, I sign-extended,

MS16b MS16b MS16b MS16b

FD[rd]

63 48 47 32 31 16 15 0

FIGURE 7-14 FMUL8ULXx16 Operation

CODE EXAMPLE 7-1 16-bit x 16-bit 16-bit Multiply

f mul 8sux16 %0, %1, %2
f mul 8ul x16 %0, %1, %3

f padd16 %2, %3, %4

FMULDS8SUx16 Instruction

FMULDS8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in F[rs1]
by the corresponding signed 16-bit fixed-point value in F[rs2]. Each 24-bit product is shifted left by 8
bits to generate a 32-bit result, which is then stored in the 64-bit floating-point register specified by rd.
FIGURE 7-15 illustrates the operation.

Fslrsi] \ T \ T -;
31 \24 23 16 15 \87___0
Fslrs2]
31 ** 16 15 ** 0
X X
Fplrd] 44— |00000000 e 00000000
63 20 39 32 31 8 7 0

FIGURE 7-15 FMULD8SUx16 Operation

CHAPTER 7 ¢ Instructions 149

FMUL (partitioned)
7.31.7 FMULDSULX16 Instruction

FMULDSULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in F[rs1]
by the corresponding 16-bit fixed-point signed integer in F[rs2]. Each 24-bit product is sign-extended
to 32 bits and stored in the corresponding half of the 64-bit floating-point register specified by rd.
FIGURE 7-16 illustrates the operation; CODE EXAMPLE 7-2 exemplifies the operation.

Flrs1] L o
| S — _——
31 24 23] 1615 87 0

]]
31 ** 16 15 ** 0
X sign-extended X sign-extended
Fplrd] - Y 2
63 32 31 0

FIGURE 7-16 FMULDSULXx16 Operation

CODE EXAMPLE 7-2 16-bit x 16-bit 32-bit Multiply
fnul d8sux16 %0, %1, %2
frul d8ul x16 %0, %1, %3
f padd32 %2, %3 %4

150 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FMUL<s|d|g>

7.32

Floating-Point Multiply

Instruction op3 opf Operation Assembly Language Syntax Class
FMULs 11 0100 001001001 Multiply Single frnul's fregs1, fregrso, fregig Al
FMULd 110100 001001010 Multiply Double fruld fregst, fregrsa fregr Al
FMULq 110100 001001011 Multiply Quad froulq fregs1, frersos fregig C3
FsMULd 11 0100 001101001 Multiply Single to Double fsrul d fregis1, fregrso, fregig Al
FAMULq 11 0100 001101110 ~ Multiply Double to Quad fdrmul q fregis1, fregrso, fregrg C3
rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by the rsl field by the contents of the floating-point register(s) specified by the rs2 field. The
instructions then write the product into the floating-point register(s) specified by the rd field.
The FsMULA instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FAMULq provides the exact
quad-precision product of two double-precision operands.
Rounding is performed as specified by FSR.rd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FAMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FMUL instruction causes an fp_disabled exception.
An attempt to execute an FMUL(q instruction when rs1{1} # 0 or rs2{1} # 0 or rd{1:0} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.
An attempt to execute an FAMULq instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FMULq and FAMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL<s|d|q> only: OF, UF, NX)
See Also FMAf on page 137

CHAPTER 7 ¢ Instructions 151

FNEG

7.33

Floating-Point Negate

Instruction op3

opf Operation Assembly Language Syntax Class

FNEGs
FNEGd
FNEGq

11 0100
11 0100
11 0100

00000 0101
00000 0110
00000 0111

Negate Single
Negate Double
Negate Quad

fnegs fregiso, fregud Al
fregisa, fregrd Al

fregrsa, freged c3

f negd
fnegq

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FNEG copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FNEG instruction causes an fp_disabled exception.

An attempt to execute an FNEGq instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FNEGq only))

152 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FPACK

7.34

FPACK

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPACK16 000111011 Four 16-bit packs into 8 — f64 32 fpackl6 fregisp, fregrg B1
unsigned bits
FPACK32 000111010 Two 32-bit packs into 8 fo4 fo4 fo4 fpack32 fregs1, fregsos fregrd B1
unsigned bits
FPACKFIX 000111101 Four 16-bit packs into 16 ~— f64 f32 fpackfix freg.so, fregyqg B1
signed bits
rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The FPACK instructions convert multiple values in a source register to a lower-precision fixed or pixel

Exceptions

See Also

format and stores the resulting values in the destination register. Input values are clipped to the
dynamic range of the output format. Packing applies a scale factor from GSR.scale to allow flexible
positioning of the binary point. See the subsections on following pages for more detailed descriptions
of the operations of these instructions.

An attempt to execute an FPACK16 or FPACKFIX instruction when rs1 # 0 causes an illegal_instruction
exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FPACK instruction causes an fp_disabled exception.
illegal_instruction fp_disabled

FEXPAND on page 131
FPMERGE on page 160

CHAPTER 7 ¢ Instructions 153

7.34.1

FPACK
FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register Fp[rs2], scales,
truncates, and clips them into four 8-bit unsigned integers, and stores the results in the 32-bit
destination register, Fg[rd]. FIGURE 7-17 illustrates the FPACK16 operation.

Folrs2] | | | | |

63 48 4 3‘1&\23 \6\15 7\ ©
0

0

000

0

Fs[rd] 1\ X

31

GSR.scale | x0100

4

Fo[rs2] (16 bits)

/I

L] |
4 ¢ 3

]

FIGURE 7-17 FPACK16 Operation

Note | FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

This operation is carried out as follows:

1. Left-shift the value from Fp[rs2] by the number of bits specified in GSR.scale while maintaining
clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of the
implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation converts the
scaled value into a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, its most significant bit is set), 0 is returned as the clipped value. If the value is
greater than 255, then 255 is delivered as the clipped value. Otherwise, the scaled value is returned
as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, Fg[rd].

For each 16-bit partition, the sequence of operations performed is shown in the following example
pseudo-code:

tnp « source_operand{15: 0} << GSR.scale;
/1 Pick off the bits frombit position 15+GSR.scale to
Il bit position 7 fromthe shifted result
trunc_signed_val ue « tmp{(15+GSR.scale): 7};
If (trunc_signed_value < 0)
unsi gned_8bit_result « O;
else if (trunc_signed_value > 255)
unsi gned_8bit_result ~ 255;
el se
unsi gned_8bit_result « trunc_signed_val ue{14: 7};

154 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

7.34.2

FPACK
FPACK32

FPACK32 takes two 32-bit fixed values from the second source operand (64-bit floating-point register
Fplrs2]) and scales, truncates, and clips them into two 8-bit unsigned integers. The two 8-bit integers
are merged at the corresponding least significant byte positions of each 32-bit word in the 64-bit
floating-point register Fp[rs1], left-shifted by 8 bits. The 64-bit result is stored in Fp[rd]. Thus,
successive FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit fixed
values. FIGURE 7-18 illustrates the FPACK32 operation.

Fplrs2]
Fplrs1]
Y))& T /&
63 56 55 48 47 40 39 32 31 24 23 16 15 87 0
GSR.scale (00110
4 0
Fplrs2] (32 bits)
000000
37 31 30 22 6 5 0
implicit binary point FD[I’d] (8 bits)

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1. Left-shift each 32-bit value in Fp[rs2] by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 23 and 22 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is negative (that is, the most significant bit is 1), then 0 is
returned as the clipped value. If the value is greater than 255, then 255 is delivered as the clipped
value. Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from Fp[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte positions
in the left-shifted Fp[rs2] value.

5. Store the result in the 64-bit destination register Fp[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:

tnp —~ source_operand2{31: 0} << GSR.scale;
/1 Pick off the bits frombit position 31+GSR.scale to
/] bit position 23 fromthe shifted result
trunc_signed_val ue « tnmp{(31+GSR.scale): 23};
if (trunc_signed_value < 0)

unsi gned_8bi t _val ue « 0;

CHAPTER 7 ¢ Instructions 155

7.34.3

FPACK

else if (trunc_signed_value > 255)
unsi gned_8bi t _val ue ~ 255;
el se
unsi gned_8bit _val ue « trunc_si gned_val ue{30: 23};
Fi nal _32bit_Result — (source_operandl{31:0} << 8) |
(unsi gned_8bit _val ue{7:0});

FPACKFIX

FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register Fp[rs2], scales,
truncates, and clips them into two 16-bit unsigned integers, and then stores the result in the 32-bit
destination register Fg[rd]. FIGURE 7-19 illustrates the FPACKFIX operation.

Fplrs2]
63 32 31 0
Fglrd] RN
31 16 15 0
GSR.scale {00110
4 0
Fplrs2] (32 bits)
r/ 000000
37 32 31 16415 6 5 0
implicit binary point
Fglrd] (16 bits)

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from Fp[rs2]) by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 16 and 15 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is less than -32768, then —32768 is returned as the clipped
value. If the value is greater than 32767, then 32767 is delivered as the clipped value. Otherwise,
the scaled value is returned as the result.

3. Store the result in the 32-bit destination register Fg[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:

tnp —~ source_operand{31: 0} << GSR.scale;
/1 Pick off the bits frombit position 31+GSR.scale to
/1 bit position 16 fromthe shifted result
trunc_signed_val ue « tnmp{(31+GSR.scale): 16};
if (trunc_signed_value < -32768)
signed_16bit _result ~ -32768;
else if (trunc_signed_val ue > 32767)
signed_16bit_result ~ 32767,

156 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FPACK

el se
signed_16bit_result — trunc_signed_val ue{31: 16};

CHAPTER 7 ¢ Instructions 157

FPADD

7.35

Fixed-point Partitioned Addvist]

Instruction opf Operation sl s2 d Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds fe4 f64 fe4 fpaddlé fregsy, fregrso, fregrg Al

FPADD16S 00101 0001 Two 16-bit adds 32 f32 32 fpaddl6s fregs:, fregrso, fregrg Al

FPADD32 00101 0010 Two 32-bit adds fe4 f64 fo4 fpadd32 fregsy, fregrso, fregrg Al

FPADD32S 00101 0011 One 32-bit add 32 £32 32 fpadd32s fregs1, fregrso, fregrg Al

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions between the

corresponding fixed-point values contained in the source operands (Fp[rsl1], Fplrs2]). The result is
placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two 16-bit or one 32-bit
partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic result is produced.

Fplrsi] \ \ \ \
63 \ 48 47 \ 32 31 \ 16 15 \ 0
Folrs2l \ | \ / \ / ;_/
63 V_ly 48 47 v+ 7 32 31 v+y 16 15 A 0
| | |
Fplrd] (sum) v v % v
63 48 47 32 31 16 15 0
FIGURE 7-20 FPADD16 Operation
FD[rsll \
|
63 \ 32 31 \ 0
+
Fplrs2l \ \
63 * % 32 31 * / 0
+ +
| |
Fplrd] (sum) v Y
63 32 31 0

FIGURE 7-21 FPADD32 Operation

158 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FPADD

Fglrsil \ l
31 \ 16 15 \ 0
Fglrs2] \ \
31 16 15 0
VT v
Fglrd] (sum) * *
31 16 15 0
FIGURE 7-22 FPADD16S Operation
Fglrsil
31 0
Fs[rSZ] \
31 0
7
|
Fglrd] (sum) v
31 0

FIGURE 7-23 FPADD32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled

CHAPTER 7 ¢ Instructions 159

FPMERGE

7.36

FPMERGE

Instruction opf

Operation sl s2 d Assembly Language Syntax Class

FPMERGE 001001011 Two 32-bit merges f32 32 fe4 fprerge fregs1, fregrsas fregrd Bl

rd 110110 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description

Exceptions

See Also

FPMERGE interleaves eight 8-bit unsigned values in Fg[rsl1] and Fg[rs2] to produce a 64-bit value in
the destination register Fp[rd]. This instruction converts from packed to planar representation when it
is applied twice in succession; for example, R1IG1B1A1,R3G3B3A3 - RIR3G1G3AlA3 -
RI1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession; for example,
R1R2R3R4,B1B2B3B4 - R1B1R2B2R3B3R4B4 - R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

Fs[rS].] /

Fglrs2] — |
/31 /2,3{ ;Xé /8 7 0
Fplrd] a1 XK » ‘

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

FIGURE 7-24 FPMERGE Operation

ﬁi } packed representation

=
3R

fprerge %0, %2, %4 ! A3, . .
fpmerge %1, %3, %6 ! A2 A4l intermediate

fprerge %4, %6, %0 ! @ 4 .
| B2 B3 B4 Al A2 A3 A4 planar representation
B3
A3

8
&
R
RE(Re
'S

fprerge %5, %7, %2

fpnrerge %0, %2, %4 B4 . .
fpmerge %1, %3, %6 G4 A4l intermediate

ﬁi } packed representation

=
E
«Q
@
X
a1
X
\‘
S
N
88
8
o]
w
5
R
QR
®

CODE EXAMPLE 7-3 FPMERGE

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

fp_disabled

FPACK on page 153
FEXPAND on page 131

160 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

FPSUB

7.37

Fixed-point Partitioned Subtract (64-bit)

Instruction Operation sl s2 d Assembly Language Syntax Class

FPSUB16 00101 0100 Four 16-bit subtracts f64 f64 {64 fpsubl6 freg.s1, fregrso, fregrqg Al

FPSUB16S 00101 0101 Two 16-bit subtracts 32 32 f32 fpsubl16s freg.s1, fregrso, fregg Al

FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32 freg.s1, fregrso, fregg Al

FPSUB32S 00101 0111 One 32-bit subtract 32 32 £32 fpsub32s freg.s1, fregrso, fregg Al

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions between the

corresponding fixed-point values contained in the source operands (Fp[rs1], Fp[rs2]). The values in
Fplrs2] are subtracted from those in Fp[rs1], and the result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-bit or one 32-bit
partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic result is produced.

Fplrsi] \ | |

63 \ 48 47 \ 32 31

FD[rSZ] \ / \
63 V v 48 47 v ¥ 32 31 r 16 15 0
| | |
Fplrd] %
(difference) v v

63 48 47 32 31 16 15 0

FIGURE 7-25 FPSUB16 Operation

Fplrsi] \ \
63 \ 32 31 \ 0

Fplrs2] \'» \
63 J y 32 31 *_ ’ 0
v V

Fplrd]
(difference)

63 32 31 0

FIGURE 7-26 FPSUB32 Operation

CHAPTER 7 ¢ Instructions 161

FPSUB

Fs[rS].] \

|
L
\ |
R L T
+

Fslrd] *

Fslrs2]

(difference)
31 16 15 0
FIGURE 7-27 FPSUB16S Operation
Fglrsi]
31 0
Fslrs2]
31 } 0
|
Fslrd] v
(difference)
31 0

FIGURE 7-28 FPSUB32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled

162 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

7.38

F Register 1-operand Logical Ops

F Register Logical Operate (1 operand)

Instruction opf Operation Assembly Language Syntax Class
FZEROd 00110 0000 Zero fill fzero fregrg Al
FZEROs 001100001 Zero fill, 32-bit fzeros fregrg Al
FONEd 001111110 One fill fone fregrq Al
FONEs 001111111 One fill, 32-bit f ones fregrg Al
10 rd 110110 — opf —
31 30 29 25 24 19 18 14 13 5 4 0
Description FZERO and FONE fill the 64-bit destination register, Fp[rd], with all ‘0" bits or all ‘1’ bits
(respectively).
FZEROs and FONE:s fill the 32-bit destination register, Fp[rd], with all ‘0’ bits or all “1” bits
(respectively.
An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or bits 4:0 are
nonzero causes an illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FZERO[s] or FONE[s] instruction causes an fp_disabled exception.
Exceptions illegal_instruction
fp_disabled
See Also F Register 2-operand Logical Operations on page 164

F Register 3-operand Logical Operations on page 165

CHAPTER 7 ¢ Instructions 163

F Register 2-operand Logical Ops

7.39

F Register Logical Operate (2 operand)

Instruction opf Operation Assembly Language Syntax Class
FSRC1d 00111 0100 Copy Fplrsi] to Fp[rd] fsrcl fregis1, fregrd Al
FSRCls 001110101 Copy Fglrs1] to Fg[rd], 32-bit fsrcls fregsr, fregeg Al
FSRC2d 001111000 Copy Fplrs2] to Fp[rd] fsrc2 fregrso, fregg Al
FSRC2s 001111001 Copy Fg[rs2] to Fg[rd], 32-bit fsrc2s fregisp, fregig Al
FNOT1d 001101010 Negate (1's complement) Fp[rs1] fnotl fregrs1, fregrg Al
FNOT1s 001101011 Negate (1's complement) Fg[rsl1], 32-bit fnotls freg.s1, fregrg Al
FNOT2d 00110 0110 Negate (1’s complement) Fp[rs2] fnot 2 fregrso, fregrg Al
IFNOTZS 00110 0111 Negate (1's complement) Fg[rs2], 32-bit fnot2s freg.so, fregrg Al |
10 rd 110110 rsl opf —
10 rd 110110 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The standard 64-bit versions of these instructions perform one of four 64-bit logical operations on the
data from the 64-bit floating-point source register Fp[rs1] (or Fp[rs2]) and store the result in the 64-bit
floating-point destination register Fp[rd].
The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations on Fg[rs1]
(or Fg[rs2]) and store the result in Fg[rd].
An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0 are nonzero
causes an illegal_instruction exception. An attempt to execute an FSRC2(s) or FNOT2(s) instruction
when instruction bits 18:14 are nonzero causes an illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes an fp_disabled exception.
Programming | FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
Note | that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 139). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.
Exceptions illegal_instruction
fp_disabled
See Also Floating-Point Move on page 139

F Register 1-operand Logical Operations on page 163
F Register 3-operand Logical Operations on page 165

164 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

F Register 3-operand Logical Ops

740 F Register Logical Operate (3 operand)

Instruction opf Operation Assembly Language Syntax Class
FORd 001111100 Logical or for fregis1, fregrso, fregrg Al
FORs 001111101 Logical or, 32-bit fors fregrs1, fregrsoy fregeg Al
FNORd 001100010 Logical nor fnor fregis1, fregrsos fregid Al
FNORs 00110 0011 Logical nor, 32-bit fnors fregs1, fregrsos freged Al
FANDd 00111 0000 Logical and fand fregs1, fregrsas fregeg Al
FANDs 00111 0001 Logical and, 32-bit fands fregrs1, fregrse, fregrg Al
FNANDd 001101110 Logical nand fnand fregrs1, fregrse, fregrg Al
FNANDs 001101111 Logical nand, 32-bit f nands fregrs1, fregrsa, fregrg Al
FXORd 001101100 Logical xor f xor fregrs1, fregrsa, fregrg Al
FXORs 001101101 Logical xor, 32-bit fxors fregrs1, fregrso, fregig Al
FXNORd 00111 0010 Logical xnor f xnor fregrs1, fregrso, fregrg Al
FXNORs 00111 0011 Logical xnor, 32-bit fxnors fregrs1, fregrso, fregig Al
FORNOT1d 001111010 (not Fp[rsl]) or Fp[rs2] fornotl fregis1, fregrso, fregrg Al
FORNOT1s 001111011 (not Fg[rs1]) or Fg[rs2], 32-bit fornotls fregis1, fregyss, fregrd Al
FORNOT2d 001110110 Fp[rsl] or (not Fp[rs2]) fornot2 fregis1, fregrso, freSid Al
FORNOT2s 001110111 Fg[rsl1] or (not Fg[rs2]), 32-bit fornot2s fregs1, fregrsz, fregrg Al
FANDNOT1d 001101000 (not Fp[rs1]) and Fp[rs2] fandnot1l fregis1, fregrs2y fregrd Al
FANDNOT1s 001101001 (not Fg[rs1]) and Fg[rs2], 32-bit fandnot 1s freg,s1, fregrsz, fregrg Al
FANDNOT2d 001100100 Fp[rs1] and (not Fp[rs2]) fandnot 2 fregis1, fregrsz, fregrg Al
IFANDNOTZS 00110 0101 Fg[rs1] and (not Fg[rs2]), 32-bit fandnot 2s freg,s1, fregrsz, fregrg Al |
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical operations between
the 64-bit floating-point registers Fp[rs1] and Fp[rs2]. The result is stored in the 64-bit floating-point
destination register Fp[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations between
Fslrsl] and Fg[rs2], storing the result in Fg[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any 3-operand F Register Logical Operate instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 163
F Register 2-operand Logical Operations on page 164

CHAPTER 7 ¢ Instructions 165

FSQRT<s|d|g> Instructions

7.41

Floating-Point Square Root

Instruction

op3 opf Operation Assembly Language Syntax Class

FSQRTs
FSQRTd
FSQRTq

11 0100 00010 1001 Square Root Single fsqrts fregisn, fregeg Al
11 0100 00010 1010 Square Root Double fsartd fregso, fregid Al
11 0100 000101011 Square Root Quad fsqrtq fregrso, fregrg C3

10 rd op3 — opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description

Exceptions

These SPARC V9 instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by the rs2 field and place the result in the destination floating-point
register(s) specified by the rd field. Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRT(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSQRT instruction causes an fp_disabled exception.

An attempt to execute an FSQRTq instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.fit = invalid_fp_register) exception.

An fp_exception_other (with FSR.ftt = unfinished_FPop) can occur if the operand to the square root is
positive and subnormal. See FSR_floating-point_trap_type (ftt) on page 55 for additional details.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSRftt = invalid_fp_register (FSQRTq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))

166 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

F<s|d|q>TOi

742 Convert Floating-Point to Integer

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FsTOx 010000001 Convert Single to 64-bit Integer — f32 fe4 fstox fregsn, fregyqg Al
FATOx 01000 0010 Convert Double to 64-bit Integer — f64 fe4 fdtox fregsn, fregyqg Al
FqTOx 010000011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrsr, fregu C3
FsTOi 01101 0001 Convert Single to 32-bit Integer — f32 32 fstoi fregsn, fregyg Al
FATOi 011010010 Convert Double to 32-bit Integer — f64 32 fdtoi fregsp, fregig Al
FqTOi 011010011 Convert Quad to 32-bit Integer — f128 f32 fqtoi fregsr, fregy C3
10 rd op3 =11 0100 — opf rs2
31 30 29 25 24 19 18 1413 5 4 0

Description FsTOx, FATOx, and FqTOx convert the floating-point operand in the floating-point register(s)
specified by rs2 to a 64-bit integer in the floating-point register Fp[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point register(s) specified
by rs2 to a 32-bit integer in the floating-point register Fg[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of the FSR register
is ignored.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

An attempt to execute an F<s|d | g>TO<i| x> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s1d | q>TO<ilx> instruction causes an fp_disabled exception.

An attempt to execute an FqTOi or FqTOx instruction when rs2{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

If the floating-point operand’s value is too large to be converted to an integer of the specified size or
is a NaN or infinity, then an fp_exception_ieee_754 “invalid” exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is as defined in Integer Overflow Definition on
page 293.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FqTOx and FqTOi only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV, NX)

CHAPTER 7 ¢ Instructions 167

F<s|d|g>TO<s|d|g>

743 Convert Between Floating-Point Formats

Instruction op3 opf Operation sl s2 d Assembly Language Syntax Class
FsTOd 110100 011001001 Convert Single to Double — 32 f64 fstod freg.so, fregq Al
FsTOq 110100 011001101 Convert Single to Quad — 32 128 fstoq freg.so, fregq C3
FdTOs 110100 011000110 Convert Double to Single — f64 32 fdtos freg.sp, fregq Al
FATOq 110100 011001110 Convert Double to Quad — f64 128 fdtoq fregsp, fregrg C3
FqTOs 110100 011000111 Convert Quad to Single — 128 32 fqtos freg.so, fregq C3
FqTOd 110100 011001011 Convert Quad to Double — 128 f64 fqtod freg.p, fregq C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert the floating-point operand in the floating-point register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

An attempt to execute an F<s|d|q>TO<s|d | q> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s1d | q>TO<s|d | q> instruction causes an fp_disabled exception.

An attempt to execute an FsTOq or FdTOq instruction when rd{1} # 0 causes an fp_exception_other
(FSR.fit = invalid_fp_register) exception. An attempt to execute an FqTOs orFqTOd instruction when
rs2{1} # O causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FATOq, FsTOq, and FsTOd (the “widening”
conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if the source
operand is a signalling NaN.

Note | For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FsTOq, FqTOs, FdTOq,
and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)

168 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

F<s|d|g>TO<s|d|g>

fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))

CHAPTER 7 ¢ Instructions 169

FSUB

7.44

Floating-Point Subtract

Instruction op3 opf Operation Assembly Language Syntax Class
FSUBs 11 0100 00100 0101 Subtract Single fsubs fregis1, fregrso, fregrg Al
FSUBd 110100 001000110 Subtract Double fsubd fregst, fregrsa fregi Al
FSUBq 11 0100 00100 0111 Subtract Quad fsubg fregis1, fregrso, fregrg C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The floating-point subtract instructions subtract the floating-point register(s) specified by the rs2 field
from the floating-point register(s) specified by the rs1 field. The instructions then write the difference
into the floating-point register(s) specified by the rd field.
Rounding is performed as specified by FSR.rd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUB(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSUB instruction causes an fp_disabled exception.
An attempt to execute an FSUBq instruction when (rs1{1} # 0) or (rs2{1} # 0) or (rd{1:0} # 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.
Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBd).
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSUBq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
See Also FMAf on page 137

170 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

FxTO(<s|d|g>

7.45

Convert 64-bit Integer to Floating Point

Assembly Language

Instruction op3 opf Operation sl s2 d Syntax Class
FxTOs 110100 010000100 Convert 64-bit Integer to — 164 32 fxtos fregs, fregyg Al
Single
FxTOd 11 0100 010001000 Convert 64-bit Integer to — 164 f64 fxtod fregso, frege Al
Double
FxTOq 110100 010001100 Convert 64-bit Integer to — 164 128 fxtoq fregso, fregyg C3
Quad
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point register
Fplrs2] into a floating-point number in the destination format.
All write their result into the floating-point register(s) specified by rd.
The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
An attempt to execute an FxTO<s | d | q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FxTO<s | d | g> instruction causes an fp_disabled exception.
An attempt to execute an FxTOq instruction when rd{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .
Exceptions illegal_instruction

fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FxTOq))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))

CHAPTER 7 ¢ Instructions 171

ILLTRAP

7.46 Illegal Instruction Trap

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 Al
00 — 000 const22

31 30 29 25 24 22 21 0

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value in the instruction
is ignored by the virtual processor; specifically, this field is not reserved by the architecture for any
future use.

V9 Compatibility | Except for its name, this instruction is identical to the SPARC V8
Note | UNIMP instruction.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25 are nonzero (also)
causes an illegal_instruction exception. However, software should not rely on this behavior, because a
future version of the architecture may use nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction

172 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

INVALW

7.47 Mark Register Window Sets as “Invalid”

Instruction Operation Assembly Language Syntax Class
INVALW? Mark all register window sets as “invalid” i nval w Al
10 | fen=00101 11 0001 —
31 30 29 25 24 19 18 0

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it atomically
performs the following operations:

CANSAVE < (N_REG_WINDOWS —2)
CANRESTORE ~ 0
OTHERWIN ~ 0

Programming | INVALW marks all windows as invalid; after executing INVALW,
Notes | N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap.

An attempt to execute an INVALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an INVALW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
NORMALW on page 213
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

CHAPTER 7 ¢ Instructions 173

JMPL

7.48

Jump and Link

Instruction op3 Operation Assembly Language Syntax Class
JMPL 11 1000 Jump and Link j mpl address, regq Al
rd op3 rsi i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The JMPL instruction causes a register-indirect delayed control transfer to the address given by

Exceptions

See Also

“R[rsl1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into register
R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_aligned
exception occurs.

Programming | A JMPL instruction with rd = 15 functions as a register-indirect
Notes | call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
JMPL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the JMPL instruction) is stored in TPC[TL]
and the value of NPC from before the JMPL was executed is stored in TNPC[TL].

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system or being written into R[rd] (oz, if a
control_transfer_instruction trap occurs, into TPC[TL]). (closed impl. dep. #125-V9-Cs10)

illegal_instruction
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-520)

CALL on page 111
Bicc on page 104
BPcC on page 109

174 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LD

7.49

Load Integer

Instruction op3 Operation Assembly Language Syntax Class
LDSB 00 1001 Load Signed Byte | dsb [address] , regq Al
LDSH 001010 Load Signed Halfword | dsh [address] , regyq Al
LDSW 00 1000 Load Signed Word I dsw [address] , regyq Al
LDUB 00 0001 Load Unsigned Byte I dub [address] , regyq Al
LDUH 00 0010 Load Unsigned Halfword | duh [address] , regyq Al
LDUW 00 0000 Load Unsigned Word I duwt [address] , regyq Al
LDX 00 1011 Load Extended Word | dx [address] , regyq Al

t synonym: | d

rd op3 rsl i=0 — rs2

rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

The load integer instructions copy a byte, a halfword, a word, or an extended word from memory. All
copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-justified in the
destination register R[rd]; it is either sign-extended or zero-filled on the left, depending on whether
the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 76). The effective address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(Simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or LDSH causes a
mem_address_not_aligned exception. If the effective address is not word-aligned, an attempt to
execute an LDUW or LDSW instruction causes a mem_address_not_aligned exception. If the effective
address is not doubleword-aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

V8 Compatibility | The SPARC V8 LD instruction was renamed LDUW in the SPARC
Note [V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load Integer Twin Word on
page 192 for details.

illegal_instruction

mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

CHAPTER 7 ¢ Instructions 175

LDA

7.50

Load Integer from Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSBAPAst 011001 Load Signed Byte from Alternate | dsba [regaddr] imm_asi, reg.q Al

Space I dsba [reg_plus_imm] %@sSi, regq
LDSHAPs 011010 Load Signed Halfword from Alternate | dsha [regaddr] imm_asi, regq Al

Space | dsha [reg_plus_imm] %@Si, regq
LDSWAPas1 011000 Load Signed Word from Alternate | dswa [regaddr] imm_asi, reg.q Al

Space | dswa [reg_plus_imm] %Y@Si, regq
LDUBAPs 010001 Load Unsigned Byte from Alternate | duba [regaddr] imm_asi, regq Al

Space I duba [reg_plus_imm] %@Si, regq
LDUHAP 010010 Load Unsigned Halfword from I duha [regaddr] imm_asi, reg.q Al

Alternate Space I duha [reg_plus_imm] Y@si, regyq
LDUWAPast 010000 Load Unsigned Word from Alternate | duwat [regaddr] imm_asi, regq Al

Space I duwa [reg plus_imm] Y@Si, regyq
LDXAFPast 011011 Load Extended Word from Alternate | dxa [regaddr] imm_asi, reg.q Al

Space | dxa [reg_plus_imm] Y@sSi, regyq

t synonym: | da
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer from alternate space instructions copy a byte, a halfword, a word, or an extended

word from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-
justified in the destination register R[rd]; it is either sign-extended or zero-filled on the left, depending
on whether the opcode specifies a signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI) to be used
for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is deprecated; see Load
Integer Twin Word from Alternate Space on page 194 for details.

If the effective address is not halfword-aligned, an attempt to execute an LDUHA or LDSHA
instruction causes a mem_address_not_aligned exception. If the effective address is not word-aligned,
an attempt to execute an LDUWA or LDSWA instruction causes a mem_address_not_aligned
exception. If the effective address is not doubleword-aligned, an attempt to execute an LDXA
instruction causes a mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 30¢4 to
7F1¢, these instructions cause a privileged_action exception.

176 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

LDA

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any of the following
ASlIs, subject to the privilege mode rules described for the privileged_action exception above. Use of
any other ASI with these instructions causes a DAE_invalid_asi exception.

ASiIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA
ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
ASl _AS_| F_USER PRIMARY ASI _AS_| F_USER PRI MARY LI TTLE
ASl _AS_| F_USER_SECONDARY ASI AS_| F_USER SECONDARY LI TTLE

ASl _REAL ASI _REAL_LI TTLE
ASI_REAL 1O ASI _REAL_1O LI TTLE

AS| _PRI MARY ASlI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY LI TTLE

AS| _PRI MARY_NO FAULT ASl _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO FAULT ASI _SECONDARY_NO FAULT LI TTLE

LDXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

ASls invalid for LDXA (cause DAE_invalid_asi exception)

2216 (ASI _TW NX_AIl UP) 2A16 (ASI _TW NX_Al UP_L)

2316 (ASI _TW NX_AI US) 2B (ASI _TW NX_AI US_L)

26,6 (ASI _TW NX_REAL) 2E; (ASI _TW NX_REAL_L)

2716 (ASI _TW NX_N) 2F;6 (ASI _TW NX_NL)

AS| _BLOCK_AS_| F_USER PRI MARY ASl _BLOCK_AS | F_USER PRI MARY_LI TTLE
AS| _BLOCK_AS | F_USER SECONDARY ASI BLOCK_AS | F_USER SECONDARY_ LI TTLE
AS| _PST8_PRI MARY AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY AS| _PST8_SECONDARY_LI TTLE
ASI _PST16_PRI MARY AS| _PST16_PRI MARY_LI TTLE
AS| _PST16_SECONDARY AS| _PST16_SECONDARY LI TTLE
ASI _PST32_PRI MARY AS| _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY AS| _PST32_SECONDARY_LI TTLE
ASI _FL8_PRI MARY ASl _FL8_PRI MARY_ LI TTLE

AS| _FL8_SECONDARY AS| _FL8_SECONDARY_LI TTLE
AS| _FL16_PRI MARY AS| _FL16_PRI MARY_LI TTLE

AS| _FL16_SECONDARY AS| _FL16_SECONDARY LI TTLE
AS| _BLOCK_COMM T_PRI MARY AS| _BLOCK_COMM T_SECONDARY
E216 (ASI _TW NX_P) EA;g (ASI _TW NX_PL)

E316 (ASI _TW NX_S) EB;g (ASI _TW NX_SL)

ASI _BLOCK_PRI MARY AS| _BLOCK_PRI MARY_LI TTLE
ASI _BLOCK_SECONDARY AS| _BLOCK_SECONDARY_LI TTLE

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page

See Also LD on page 175
STA on page 248

CHAPTER 7 ¢ Instructions 177

LDBLOCKF

7.51 Block Load

The LDBLOCKEF instructions are deprecated and should not be used in new
software. A sequence of LDX instructions should be used instead.

The LDBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is

executing.
ASI
Instruc-tion Value Operation Assembly Language Syntax Class
LDBLOCKFP 16,4 64-byte block load from primary address | dda [regaddr] #AS| _BLK_Al UP, freg,q D2
space, user privilege I dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP 17, 64-byte block load from secondary | dda [regaddr] #ASI _BLK_AI US, fregq D2
address space, user privilege | dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP 1E;4 64-byte block load from primary address | dda [regaddr] #AS|I _BLK_Al UPL, fregq D2
space, little-endian, user privilege | dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP 1F;4 64-byte block load from secondary | dda [regaddr] #ASI _BLK_AlI USL, freg,q D2
address space, little-endian, user privilegel dda [reg_plus_imm] %@Si, freqyq
LDBLOCKFP F0;4 64-byte block load from primary address | dda [regaddr] #AS _BLK_P, fregyq D2
space I dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP Fl;4 64-byte block load from secondary | dda [regaddr] #ASI _BLK_S, fregq D2
address space I dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP F8;4 64-byte block load from primary address | dda [regaddr] #AS _BLK_PL, fregrg D2
space, little-endian I dda [reg_plus_imm] Y@si, fregyq
LDBLOCKFP F9;4 64-byte block load from secondary | dda [regaddr] #ASI _BLK_SL, fregq D2
address space, little-endian I dda [reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl 1=0 imm_asi rs2
11 rd | 110011 rsi 1=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description A block load (LDBLOCKEF) instruction uses one of several special block-transfer ASIs. Block transfer
ASIs allow block loads to be performed accessing the same address space as normal loads. Little-
endian ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is
assumed to be big-endian. Byte swapping is performed separately for each of the eight 64-bit (double-
precision) F registers used by the instruction.

A block load instruction loads 64 bytes of data from a 64-byte aligned memory area into the eight
double-precision floating-point registers specified by rd. The lowest-addressed eight bytes in memory
are loaded into the lowest-numbered 64-bit (double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

178 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDBLOCKF

Programming | LDBLOCKTF is intended to be a processor-specific instruction

Note | (see the warning at the top of page 178). If LDBLOCKF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-510, described
below.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load (LDBLOCKEF) instructions

are implementation dependent:

» What memory ordering model is used by LDBLOCKF (LDBLOCKEF is not required to follow TSO
memory ordering)

= Whether LDBLOCKF follows memory ordering with respect to stores (including block stores),
including whether the virtual processor detects read-after-write and write-after-read hazards to
overlapping addresses

» Whether LDBLOCKEF appears to execute out of order, or follow LoadLoad ordering (with respect to
older loads, younger loads, and other LDBLOCKFs)

» Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load instructions

» Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a LDBLOCKF (the
recommended behavior), or only on the first eight bytes

» Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKEF accesses

Programming | If ordering with respect to earlier stores is important (for

Note [example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#St or eLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadSt or e instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

For further restrictions on the behavior of the block load instruction, see implementation-specific
processor documentation.

Implementation | In all UltraSPARC Architecture implementations, the MMU
Note | ignores the side-effect bit (TTE.e) for LDBLOCKEF accesses (impl.
dep. #410-510).

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point destination
registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKEF instruction are
nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1644, 1714, 1E14, and 1Fq¢),
LDBLOCKE causes a privileged_action exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep. #410-510).

An attempted access by an LDBLOCKEF instruction to noncacheable memory causes an a
DAE_nc_page exception.

CHAPTER 7 ¢ Instructions 179

LDBLOCKF

Implementation | LDBLOCKEF shares an opcode with LDDFA and LDSHORTF; it
Note | is distinguished by the ASI used.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #410-510)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page (attempted access to Non-Faulting-Only page of memory)

See Also STBLOCKEF on page 250

180 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDF / LDDF / LDQF

7.52 Load Floating-Point Register

Instruction op3 rd Operation Assembly Language Syntax Class
LDF 10 0000 0-31 Load Floating-Point Register I d [address], fregq Al
LDDF 10 0011 ¥ Load Double Floating-Point Register | dd [address], fregyq Al
LDQF 10 0010 ¥ Load Quad Floating-Point Register I dg [address], fregq C3

¥ Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The load single floating-point instruction (LDF) copies a word from memory into 32-bit floating-point
destination register Fg[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword from
memory into a 64-bit floating-point destination register, Fp[rd]. The unit of atomicity for LDDF is 4
bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from memory into
a 128-bit floating-point destination register, Fg[rd]. The unit of atomicity for LDQF is 4 bytes (one
word).

These load floating-point instructions access memory using the implicit ASI (see page 76).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an LDF, LDDEF, or LDQF instruction when i = 0 and instruction
bits 12:5 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDF, LDDE, or LDQF instruction causes an fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, an attempt to execute an LDDF instruction causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDDF instruction and return (impl. dep. #109-V9-Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, an attempt to execute an LDQF instruction causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDQF instruction and return (impl. dep. #111-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

CHAPTER 7 ¢ Instructions 181

LDF / LDDF / LDQF

An attempt to execute an LDQF instruction when rd{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 processors do not implement

Note |in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Destination Register(s) when Exception Occurs. If a load floating-point instruction generates an
exception that causes a precise trap, the destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(a)(1): If a load floating-point instruction generates an exception that causes
a non-precise trap, the contents of the destination floating-point register(s) remain unchanged or are
undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point from Alternate Space on page 183
Load Floating-Point State Register (Lower) on page 186
Store Floating-Point on page 253

182 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDFA / LDDFA / LDQFA

7.53 Load Floating-Point from Alternate Space

Instruction op3 rd Operation Assembly Language Syntax Class
LDFAPast 110000 0-31 Load Floating-Point Register | da [regaddr] imm_asi, freg.q Al
from Alternate Space lda [reg_plus_imm] Y@si, fregyq
LDDFAPas 110011 ¥ Load Double Floating-Point | dda [regaddr] imm_asi, fregq Al
Register from Alternate Space | dda [reg_plus_imm] Y@sSi , fregyq
LDQFAPast 110010 ¥ Load Quad Floating-Point | dga [regaddr] imm_asi, fregq C3

Register from Alternate Space | dqa [reg_plus_imm] Y@Si, fregyq

¥ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The load single floating-point from alternate space instruction (LDFA) copies a word from memory
into 32-bit floating-point destination register Fg[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, Fp[rd]. The unit of
atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
quadword from memory into a 128-bit floating-point destination register, Fg[rd]. The unit of
atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the load in the
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is

“R[rs1] + sign_ext(simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFA, LDDFA, or LDQFA instruction causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

V9 Compatibility | LDFA, LDDFA, and LDQFA cause a privileged_action exception if
Note | PSTATE.priv = 0 and bit 7 of the ASl is 0.

LDDFA requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, LDDFA causes an LDDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, LDQFA causes an LDQF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

CHAPTER 7 ¢ Instructions 183

LDFA / LDDFA / LDQFA

An attempt to execute an LDQFA instruction when rd{1} # 0 causes an fp_exception_other (with
FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 processors do not implement

Note |in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 30¢4 to
7F1¢, this instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASlIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

ASls valid for LDFA and LDQFA
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER_PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE

ASI _REAL ASI _REAL_LI TTLE

ASl _REAL_| O ASI _REAL_| O LI TTLE

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE

ASI _PRI MARY_NO_FAULT ASI _PRI MARY_NO FAULT LI TTLE

ASI _SECONDARY_NO FAULT ASI _SECONDARY_NO FAULT LI TTLE

LDDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the LDDFA instruction causes a
DAE_invalid_asi exception.

ASils valid for LDDFA

ASI _NUCLEUS ASI _NUCLEUS LI TTLE

AS| _AS | F_USER PRI MARY AS| _AS | F_USER PRI MARY_ LI TTLE
ASlI _AS | F_USER_SECONDARY ASI _AS | F_USER SECONDARY LI TTLE
AS| _REAL ASI _REAL_LI TTLE

ASI_REAL_|1O ASI_REAL_| O LI TTLE

AS| _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

ASl PRI MARY_NO FAULT ASI _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO FAULT AS|I _SECONDARY_NO FAULT LI TTLE

Behavior with Block-Store-with-Commit ASIs. ASIs E0;4 and E1y4 are only defined for use in
Block Store with Commit operations (see page 250). Neither ASI EO;¢ nor El;4 should be used with
LDDFA; however, if it is used, the LDDFA behaves as follows:

184 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

LDFA / LDDFA / LDQFA

1. If an LDDFA opcode is used with an ASI of E0;4 or El{4 and a destination register number rd is
specified which is not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture 2007 virtual
processor generates an illegal_instruction exception (impl. dep. #255-U3-Cs10).

2. IMPL. DEP. #256-U3: If an LDDFA opcode is used with an ASI of E0y4 or E1l{4 and a memory
address is specified with less than 64-byte alignment, the virtual processor generates an exception.
It is implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

3. If both rd and the memory address are correctly aligned, a DAE_invalid_asi exception occurs.

Behavior with Partial Store ASIs. ASIs C01,-C5;4 and C8,,—CD;¢ are only defined for use in
Partial Store operations (see page 260). None of them should be used with LDDFA; however, if any of
those ASIs is used with LDDFA, the LDDFA behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C0,¢—C5;4 or C8;,—CD;¢ (Partial
Store ASIs, which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates an exception. It is implementation
dependent whether the generated exception is a DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a DAE_invalid_asi.

Destination Register(s) when Exception Occurs. If a load floating-point alternate instruction
generates an exception that causes a precise trap, the destination floating-point register(s) remain
unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates an exception that
causes a non-precise trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

Implementation | LDDFA shares an opcode with the LDBLOCKF and LDSHORTEF
Note | instructions; it is distinguished by the ASI used.

illegal_instruction

fp_disabled

LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not generated in UltraSPARC Architecture 2007)
mem_address_not_aligned

fp_exception_other (FSR.fit = invalid_fp_register (LDQFA only))
privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nfo_page

DAE_side_effect_page

Load Floating-Point Register on page 181

Block Load on page 178

Store Short Floating-Point on page 263

Store Floating-Point into Alternate Space on page 255

CHAPTER 7 ¢ Instructions 185

LDFSR (Deprecated)

7.54

Load Floating-Point State Register (Lower)

The LDFSR instruction is deprecated and should not be used in new software.

The LDXFSR instruction should be used instead.

Opcode op3

rd Operation Assembly Language Syntax Class

LDFSRP 100001 0 Load Floating-Point State Register (Lower) |d [address], % sr D2
g g
100001 1-31 (see page 199)

11 rd op3 rsl i= — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The Load Floating-point State Register (Lower) instruction (LDFSR) waits for all FPop instructions

Exceptions

that have not finished execution to complete and then loads a word from memory into the less
significant 32 bits of the FSR. The more-significant 32 bits of FSR are unaffected by LDFSR. LDFSR
does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR (see
page 42).

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

LDFSR accesses memory using the implicit ASI (see page 76).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

V8 Compatibility | The SPARC V9 architecture supports two different instructions

Note | to load the FSR: the (deprecated) SPARC V8 LDFSR instruction
is defined to load only the less-significant 32 bits of the FSR,
whereas LDXFSR allows SPARC V9 programs to load all 64 bits
of the FSR.

Implementation | LDFSR shares an opcode with the LDXFSR instruction (and

Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value causes an illegal_instruction exception.

illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint

186 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDFSR (Deprecated)

DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point Register on page 181
Load Floating-Point State Register on page 199
Store Floating-Point on page 253

CHAPTER 7 ¢ Instructions 187

LDSHORTF

7.55

Short Floating-Point Load

ASI
Instruction Value Operation Assembly Language Syntax Class

LDSHORTF D04 8-bit load from primary address space | dda [regaddr] #ASI _FL8_P, freg,q B1
| dda [reg_plus_imm] Yasi, fregyq

LDSHORTF Dly4 8-bit load from secondary address | dda [regaddr] #AS| _FL8_S, freg.q B1
space | dda [reg_plus_imm] Y@asi, fregyq

LDSHORTF D8;¢ 8-bit load from primary address space, |dda [regaddr] #ASI _FL8_PL, fregy B1
little-endian | dda [reg_plus_imm] Yasi, fregyq

LDSHORTF D94 8-bitload from secondary address space, | dda [regaddr] #ASI _FL8_SL, fregq B1
little-endian | dda [reg_plus_imm] Y@si, fregyq

LDSHORTF D2;¢ 16-bit load from primary address space | dda [regaddr] #ASI _FL16_P, fregyq B1
| dda [reg_plus_imm] Y@si, fregy

LDSHORTF D3q¢ 16-bit load from secondary address | dda [regaddr] #AS| _FL16_S, fregq Bl
space | dda [reg_plus_imm] Y@si, fregyg

LDSHORTF DA, 16-bit load from primary address space, | dda [regaddr] #ASI _FL16_PL, fregqq Bl
little-endian | dda [reg_plus_imm] Y@si, fregy

LDSHORTF DBjg 16-bit load from secondary address | dda [regaddr] #AS| _FL16_SL, fregq Bl
space, little-endian | dda [reg_plus_imm] Yasi, fregy

rd 110011 rsl i=0 imm_asi rs2

rd 110011 rsl i=1 simm_13

31 30 29 25 24 19 18 14 13 5 4 0

Description

Exceptions

Short floating-point load instructions allow an 8- or 16-bit value to be loaded from memory into a 64-
bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of Fp[rd] and zeroes in the most-
significant three bytes of Fp[rd]. An 8-bit LDSHORTF can be performed from an arbitrary byte
address.

A 16-bit load places the loaded value in the least significant halfword of Fp[rd] and zeroes in the
more-significant halfword of Fp[rd]. A 16-bit LDSHORTF from an address that is not halfword-
aligned (an odd address) causes a mem_address_not_aligned exception.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be in big-endian byte order.

Programming | LDSHORTF is typically used with the FALIGNDATA instruction
Note | (see Align Address on page 98) to assemble or store 64 bits from
noncontiguous components.

Implementation | LDSHORTF shares an opcode with the LDBLOCKF and LDDFA
Note | instructions; it is distinguished by the ASI used.

fp_disabled
mem_address_not_aligned
VA_watchpoint

188 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

LDSHORTF

DAE_privilege_violation
DAE_nfo_page

CHAPTER 7 ¢ Instructions 189

LDSTUB

7.56 Load-Store Unsigned Byte

Instruction op3 Operation Assembly Language Syntax Class
LDSTUB 001101 Load-Store Unsigned Byte | dstub [address], reg.q Al
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then rewrites the
addressed byte in memory to all 1’s. The fetched byte is right-justified in the destination register R[rd]
and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 76). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(sSimm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and 1/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

190 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDSTUBA

7.57 Load-Store Unsigned Byte to Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSTUBAPAst 011101 Load-Store Unsigned Byte into | dstuba [regaddr] imm_asi, regyq Al
Alternate Space | dstuba [reg_plus_imm] %@si, regyq
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load-store unsigned byte into alternate space instruction copies a byte from memory into R[rd],

then rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in the
destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,

CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

If i =0, LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field. If i = 1, the ASI is found in the ASI register. In nonprivileged mode (PSTATE.priv = 0), if bit 7 of

the ASI is 0, this instruction causes a privileged_action exception. In privileged mode

(PSTATE.priv = 1), if the ASI is in the range 3074 to 7Fy4, this instruction causes a privileged_action

exception.

LDSTUBA can be used with any of the following ASlIs, subject to the privilege mode rules described

for the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

ASIs valid for LDSTUBA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
AS|I _AS_| F_USER_PRI MARY ASI _AS | F_USER PRI MARY_LI| TTLE
AS|I _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE
AS| _REAL ASI _REAL_LI TTLE
AS| _PRI MARY ASI _PRI MARY_LI| TTLE
AS| _SECONDARY ASI _SECONDARY_LI TTLE

Exceptions privileged_action

VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

CHAPTER 7 ¢ Instructions 191

LDTW (Deprecated)

7.58 Load Integer Twin Word

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax T Class

LDTWP 00 0011 Load Integer Twin Word I dtw [address] , regq D2

1 The original assembly language syntax for this instruction used an “I dd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “I dt w” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “I dd” mnemonic.

11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word instruction (LDTW) copies two words (with doubleword alignment) from
memory into a pair of R registers. The word at the effective memory address is copied into the least
significant 32 bits of the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register. The most significant
32 bits of both the even-numbered and odd-numbered R registers are zero-filled.

Note | Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Load integer twin word instructions access memory using the implicit ASI (see page 76). If i = 0, the
effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address is
“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises two 32-bit loads,
each of which is byte-swapped independently before being written into its respective destination
register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is implemented in hardware. If
not, an attempt to execute an LDTW instruction will cause an unimplemented_LDTW exception.

Programming | LDTW is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

SPARC V9 | LDTW was (inaccurately) named LDD in the SPARC V8 and
Compatibility | SPARC V9 specifications. It does not load a doubleword; it
Note | loads two words (into two registers), and has been renamed
accordingly.

The least significant bit of the rd field in an LDTW instruction is unused and should always be set to
0 by software. An attempt to execute an LDTW instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW instruction causes
a mem_address_not_aligned exception.

192 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDTW (Deprecated)

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also LDW/LDX on page 175
STTW on page 265

CHAPTER 7 ¢ Instructions 193

LDTWA (Deprecated)

7.59

Load Integer Twin Word from Alternate Space

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
LDTWAP PAst 010011 Load Integer Twin Word from Alternate | dt wa [regaddr] imm_asi, reg,q D2, Y3%
Space I dtwa [reg_plus_imm] Y@Si , reg.q

1 The original assembly language syntax for this instruction used an “I dda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “I dt wa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “I dda” mnemonic.

t Y3 for restricted ASIs (0014-7Fq4); D2 for unrestricted ASIs (8014-FFy¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load integer twin word from alternate space instruction (LDTWA) copies two 32-bit words from

memory (with doubleword memory alignment) into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R register. The word
at the effective memory address + 4 is copied into the least significant 32 bits of the following odd-
numbered R register. The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

Note | Execution of an LDTWA instruction with rd = 0 modifies only
RI[1].

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used for the load in its
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is

“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is composed of two 32-bit
loads, each of which is byte-swapped independently before being written into its respective
destination register.

IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is implemented in hardware.
If not, an attempt to execute an LDTWA instruction will cause an unimplemented_LDTW exception so
that it can be emulated.

Programming | LDTWA is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9 | LDTWA was (inaccurately) named LDDA in the SPARC V8 and
Compatibility | SPARC V9 specifications.
Note

194 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

LDTWA (Deprecated)

The least significant bit of the rd field in an LDTWA instruction is unused and should always be set to
0 by software. An attempt to execute an LDTWA instruction that refers to a misaligned (odd-
numbered) destination register causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA instruction
causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.
LDTWA causes a mem_address_not_aligned exception if the address is not doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 304 to
7F1¢, these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

ASIs valid for LDTWA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
ASI _AS_| F_USER PRI MARY ASl _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER SECONDARY ASl _AS_| F_USER _SECONDARY_ LI TTLE
ASI _REAL ASl _REAL_LI TTLE

ASI _REAL_ 10O ASI _REAL_1 O LI TTLE

22161 (ASI _TW NX_AI UP) 2A161 (ASI _TW NX_AI UP_L)

23161 (ASI _TW NX_AI US) 2B1st (ASI_TW NX_AI US_L)

26,61 (ASI_TW NX_REAL) 2E;6t (ASI _TW NX_REAL_L)

27161 (ASI _TW NX_N) 2F161 (ASI _TW NX_NL)

AS| _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

AS| PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO FAULT AS| _SECONDARY_NO FAULT LI TTLE
E2161 (ASI _TW NX_P) EAef (ASI _TW NX_PL)

E316} (ASI _TW NX_S) EB;g} (ASI _TW NX_SL)

t If this ASI is used with the opcode for LDTWA and i =0, the LDTXA
instruction is executed instead of LDTWA. For behavior of LDTXA,
see Load Integer Twin Extended Word from Alternate Space on page 197.
If this ASI is used with the opcode for LDTWA and i =1, a DAE_invalid_asi
exception occurs.

Programming | Nontranslating ASIs (see page 321) should only be accessed

Note | using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a DAE_invalid_asi exception (impl. dep. #300-
U4-Cs10).

Implementation | The deprecated instruction LDTWA shares an opcode with

Note | LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 197.

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint

CHAPTER 7 ¢ Instructions 195

LDTWA (Deprecated)

DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page

See Also LDWA/LDXA on page 176
LDTXA on page 197
STTWA on page 267

196 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

7.60

LDTXA

Load Integer Twin Extended Word from
Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all

UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries or in software created by a
runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

ASI
Instruction Value Operation Assembly Language Syntax t Class
LDTXAN 221 Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_Al UP, regq N-
as if user (nonprivileged), Primary
address space
231¢ Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_AI US, regq N-
as if user (nonprivileged), Secondary
address space
261 Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_REAL, regq N-
real address
2716 Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_N, regq N-
nucleus context
2A1¢ Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_Al UP_L, regyy N-
as if user (nonprivileged), Primary
address space, little endian
2B14 Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_AlI US_L, reg.q N-
as if user (nonprivileged), Secondary
address space, little endian
2E1¢ Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_REAL_L, regyy N-
real address, little endian
2F1¢ Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_NL, regq N-
nucleus context, little-endian
LDTXAN E2;, Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_P, regq N-
Primary address space
E31, Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_S, reg.y N-
Secondary address space
EAj¢ Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_PL, regq N-
Primary address space, little endian
EByg Load Integer Twin Extended Word, | dt xa [regaddr] #ASI _TW NX_SL, regq N-

Secondary address space, little-endian

t The original assembly language syntax for these instructions used the “I dda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “I dt xa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “I dda” mnemonic.

11

rd 01 0011

rsl

i=0 imm_asi

rs2

31 30 29 25 24

19 18

14 13 12 5

CHAPTER 7 ¢ Instructions 197

Description

Exceptions

See Also

LDTXA

ASIs 2614, 2E14, E214, E314, FO14, and F1;¢ are used with the LDTXA instruction to atomically read a
128-bit data item into a pair of 64-bit R registers (a “twin extended word”). The data are placed in an
even/odd pair of 64-bit registers. The lowest-address 64 bits are placed in the even-numbered register;
the highest-address 64 bits are placed in the odd-numbered register.

Note | Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

ASIs E244, E31¢, FO14, and F1;4 perform an access using a virtual address, while ASIs 2614 and 2E;4 use
a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises two 64-bit loads
(performed atomically), each of which is byte-swapped independently before being written into its
respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered destination
register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that is not aligned on
a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpointexceptions are
recognized on accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a DAE_nc_page
exception (impl. dep. #306-U4-Cs10).

Programming | A key use for this instruction is to read a full TTE entry (128 bits,
Note | tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

The virtual processor MMU does not provide virtual-to-real translation for ASIs 26,4 and 2E;4; the
effective address provided with either of those ASlIs is interpreted directly as a real address.

Compatibility | ASIs 2714, 2F 4, 2614, and 2E;¢4 are now standard ASIs that
Note | replace (respectively) ASIs 244, 2Cq4, 3414, and 3Cq4 that were
supported in some previous UltraSPARC implementations.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte boundary.

Implementation | LDTXA shares an opcode with the “i = 0” variant of the
Note | (deprecated) LDTWA instruction; they are differentiated by the
combination of the value of “i” and the ASI used in the
instruction. See Load Integer Twin Word from Alternate Space on
page 194.

illegal_instruction
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #413-510)
DAE_nc_page

DAE_nfo_page

LDTWA on page 194

198 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

LDTXA

7.61

Load Floating-Point State Register

Instruction op3 rd Operation Assembly Language Syntax Class
10 0001 0 (see page 186)
LDXFSR 100001 1 Load Floating-Point State Register | dx [address], 96 sr Al
— 10 0001 2-31 Reserved
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description A load floating-point state register instruction (LDXFSR) waits for all FPop instructions that have not

finished execution to complete and then loads a doubleword from memory into the FSR.

LDXFSR does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR
(see page 42).

Programming | For future compatibility, software should only issue an LDXFSR
Note | instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

LDXFSR accesses memory using the implicit ASI (see page 76).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an instruction encoded as op = 2 and 0p3 = 2115 when any of the
following conditions exist causes an illegal_instruction exception:

» i =0 and instruction bits 12:5 are nonzero

n (rd>1)

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDXFSR instruction
causes a mem_address_not_aligned exception.

Destination Register(s) when Exception Occurs. If a load floating-point state register instruction
generates an exception that causes a precise trap, the destination register (FSR) remains unchanged.

IMPL. DEP. #44-V8-Cs10(a)(2): If an LDXFSR instruction generates an exception that causes a non-
precise trap, it is implementation dependent whether the contents of the destination register (FSR) is
undefined or is guaranteed to remain unchanged.

Implementation | LDXFSR shares an opcode with the (deprecated) LDFSR
Note | instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 11,, op3 = 10 0001, opcode with
an invalid rd value causes an illegal_instruction exception.

CHAPTER 7 ¢ Instructions 199

LDTXA

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point Register on page 181
Load Floating-Point State Register (Lower) on page 186
Store Floating-Point State Register on page 269

200 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

MEMBAR

7.62

Memory Barrier

Instruction op3 Operation Assembly Language Syntax Class
MEMBAR 10 1000 Memory Barrier menmbar membar_mask Al
10 0 op3 01111 i=1 — cmask | mmask
31 30 29 25 24 19 18 14 13 12 7 6 4 3 0
Description ~ The memory barrier instruction, MEMBAR, has two complementary functions: to express order

constraints between memory references and to provide explicit control of memory-reference
completion. The membar_mask field in the suggested assembly language is the concatenation of the
cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing before the
MEMBAR and memory references following it in a program. The particular classes of memory
references are specified by the mmask field. Memory references are classified as loads (including load
instructions LDSTUB[A], SWAP[A], CASA, and CASX[A] and stores (including store instructions
LDSTUBI[A], SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of memory
references subject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing virtual processor, but it has no effect on memory references
by other virtual processors. When the cmask field is nonzero, completion as well as order constraints
are imposed, and the order imposed can be more stringent than that specifiable by the mmask field
alone.

A load has been performed when the value loaded has been transmitted from memory and cannot be
modified by another virtual processor. A store has been performed when the value stored has become
visible, that is, when the previous value can no longer be read by any virtual processor. In specifying
the effect of MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies the order
constraint that each bit of mmask (selected when set to 1) imposes on memory references appearing
before and after the MEMBAR. From zero to four mask bits may be selected in the mmask field.

TABLE 7-7 MEMBAR mmask Encodings

Assembly
Mask Bit Language Name Description

mmask{3} #St or eSt or e The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR.

mmask{2} #LoadSt ore Allloads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{l} #St or eLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

CHAPTER 7 ¢ Instructions 201

MEMBAR

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field, described in
TABLE 7-8, specify additional constraints on the order of memory references and the processing of
instructions. If cmask is zero, then MEMBAR enforces the partial ordering specified by the mmask
field; if cmask is nonzero, then completion and partial order constraints are applied.

TABLE7-8 MEMBAR cmask Encodings

Assembly
Mask Bit Function Language Name Description
cmask{2} Synchronization #Sync All operations (including nonmemory
barrier reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.
cmask{l} Memory issue #Menl ssue All memory reference operations appearing
barrier prior to the MEMBAR must have been

performed before any memory operation
after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #lLookasi de A store appearing prior to the MEMBAR
must complete before any load following the
MEMBAR referencing the same address can
be initiated.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on page 316 and
Programming with the Memory Models contained in the separate volume UltraSPARC Architecture
Application Notes. For additional information about the memory models themselves, see Chapter 9,
Memory.

The coherence and atomicity of memory operations between virtual processors and 1/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

V9 Compatibility | MEMBAR with mmask = 8,4, and cmask = 0;4 (MEMBAR
Note | #St or eSt or e) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero causes an
illegal_instruction exception.

Implementation | MEMBAR shares an opcode with RDasr; it is distinguished by
Note | rs1=15,rd =0, i=1, and bit 12 = 0.

7.62.1 Memory Synchronization

The UltraSPARC Architecture provides some level of software control over memory synchronization,
through use of the MEMBAR and FLUSH instructions for explicit control of memory ordering in
program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the operation of each
MEMBAR variant in any manner that provides the required semantics.

202 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

7.62.2

7.62.3

Exceptions

MEMBAR

Implementation | For an UltraSPARC Architecture virtual processor that only

Note | provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation
#StoreStore NOP

#LoadSt or e NOP

#St or eLoad #Sync

#LoadLoad NOP

#Sync #Sync

#Menl ssue #Sync

#Lookasi de #Sync

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

Synchronization of the Virtual Processor

Synchronization of a virtual processor forces all outstanding instructions to be completed and any
associated hardware errors to be detected and reported before any instruction after the synchronizing
instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR instruction
(MEMBAR #Sync) or by executing an LDXA /STXA /LDDFA/STDFA instruction with an ASI that
forces synchronization.

Programming | Completion of a MEMBAR #Sync instruction does not
Note | guarantee that data previously stored has been written all the
way out to external memory. Software cannot rely on that
behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory.

TSO Ordering Rules affecting Use of MEMBAR

For detailed rules on use of MEMBAR to enable software to adhere to the ordering rules on a virtual
processor running with the TSO memory model, refer to TSO Ordering Rules on page 315.

illegal_instruction

CHAPTER 7 ¢ Instructions 203

7.63

For Integer Condition Codes

MOVcc

Move Integer Register on Condition (MOVcc)

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class
MOVA 101100 1000 Move Always 1 nova i_or_x_cc, reg_or_immll, regyq Al
MOVN 101100 0000 Move Never 0 nmovn i_or_x_cc, reg_or_immll, regyq Al
MOVNE 101100 1001 Move if Not Equal not Z nmovne® i_or_x_cc, reg_or_immll, regyq Al
MOVE 101100 0001 Move if Equal zZ movet ior x_ce, reg or_immll, regyq Al
MOVG 101100 1010 Move if Greater not (Z or novg i_or_x_cc, reg_or_immll, reg.q Al
N xor V))
MOVLE 101100 0010 Move if Less or Zor (N xorV) novle ior_x_cc reg_or_immll, regyy Al
Equal
MOVGE 101100 1011 Move if Greater not (N xor V) novge i_or_x_cc, reg_or_immll, regyq Al
or Equal
MOVL 101100 0011 Move if Less N xor V novl i_or_x_cc, reg_or_immll, reggyq Al
MOVGU 101100 1100 Move if Greater, not (C or Z) novgu i_or_x_cc, reg_or_immll, regq Al
Unsigned
MOVLEU 101100 0100 Move if Less or (Cor2) novl eu i_or_x_cc, reg_or_immll, regq Al
Equal, Unsigned
MOVCC 101100 1101 Move if Carry not C movee? i_or_x_cc, reg_or_immll, reg.y Al
Clear (Greater or
Equal, Unsigned)
MOVCS 101100 0101 Move if Carry Set C nmoves® ior_x_cc, reg_or_immll, regyq Al
(Less than,
Unsigned)
MOVPOS 101100 1110 Move if Positive not N NoVpPOS i_or_x_cc, reg_or_immll, regq Al
MOVNEG 101100 0110 Move if Negative N novneg i_or_x_cc, reg_or_immll, reggyq Al
MOVVC 101100 1111 Move if Overflow notV novvc i_or_x_cc, reg_or_immll, regq Al
Clear
MOVVS 101100 0111 Move if Overflow V novvs i_or_x_cc, reg_or_immll, regq Al

Set

' synonym: movnz

¥ synonym: movz

© synonym: novgeu

U synonym: movl u

Programming | In assembly language, to select the appropriate condition code,
Note | include % cc or % cc before the reg_or_imm11 field.

204 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

MOVcc

For Floating-Point Condition Codes

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 101100 1000 Move Always 1 nmova % ccn, reg_or_immll, regyq Al

MOVEN 101100 0000 Move Never 0 movn 9% ccn, reg_or_immll, reg.y Al

MOVFU 101100 0111 Move if Unordered U nmovu % ccn, reg_or_immll, regyq Al

MOVFG 101100 0110 Move if Greater G novg % ccn, reg_or_immll, reg. Al

MOVFUG 101100 0101 Move if Unordered G or U movug 9% ccn, reg_or_immll, reg.y Al
or Greater

MOVFL 101100 0100 Move if Less L nmov| 9% ccn, reg_or_immll, reg.y Al

MOVFUL 101100 0011 Move if Unordered L orU movul % ccn, reg_or_immll, reg.y Al
or Less

MOVEFLG 101100 0010 Move if Less or LorG movl g 9% ccn, reg_or_immll, reg.y Al
Greater

MOVENE 101100 0001 Move if Not Equal L or G or U movne® 9% ccn, reg or_immil, reg.q Al

MOVFE 101100 1001 Move if Equal E movel % ccn, reg_or_imm1l, reg.q Al

MOVFUE 101100 1010 Move if Unordered E or U nmovue 9% ccn, reg_or_immll, reg.y Al
or Equal

MOVFGE 101100 1011 Move if Greater or E or G nmovge 9% ccn, reg_or_immll, reg.y Al
Equal

MOVFUGE 101100 1100 Move if Unordered E or G or U novuge % ccn, reg_or_immll, regyq Al
or Greater or Equal

MOVFLE 101100 1101 Move if Less or EorL novle 9% ccn, reg_or_immll, regyq Al
Equal

MOVFULE 101100 1110 Move if Unordered E orL or U nmovul e % ccn, reg_or_immll, regyy Al
or Less or Equal

MOVFO 101100 1111 Move if Ordered EorL orG novo % ccn, reg_or_immll, regyy Al

Y synonym: movnz synonym: movz

Programming | In assembly language, to select the appropriate condition code,
Note | include % ccO, % cc1, % cc2, or % cc3 before the reg_or_imm11

field.
10 rd op3 icc cond i=0fcc1lccO — rs2
10 rd op3 cc2l cond i=1|cc cco simm11
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0
cc2 ccl ccO Condition Code
0 0 0 fccO
0 0 1 fecl
0 1 0 fcc2
0 1 1 fcc3
1 0 0 icc
1 0 1 Reserved (illegal_instruction)
1 1 0 xcc
1 1 1 Reserved (illegal_instruction)

CHAPTER 7 ¢ Instructions 205

Description

Exceptions

MOVcc

These instructions test to see if cond is TRUE for the selected condition codes. If so, they copy the
value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd]. The condition code used is
specified by the cc2, ccl, and ccO fields of the instruction. If the condition is FALSE, then R[rd] is not
changed.

These instructions copy an integer register to another integer register if the condition is TRUE. The
condition code that is used to determine whether the move will occur can be either integer condition
code (icc or xcc) or any floating-point condition code (fccO, fccl, fec2, or fce3).

These instructions do not modify any condition codes.

Programming | Branches cause the performance of many implementations to
Note | degrade significantly. Frequently, the MOVcc and FMOVce
instructions can be used to avoid branches. For example, the C
language if-then-else statement
if (A>B) then X = 1; else X = 0;
can be coded as
cnmp % 0, % 2
bg,a %cc, | abel
or %90, 1, % 3! X
or %90, 0,% 3! X
| abel : . ..

1
0

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:
cnmp % 0, % 2

or %90, 1,% 3! assune X = 1

movl e 9cc,0,% 3! overwite with X =10
This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are nonzero or
(cc2 :: ccl = cc0) = 101, or 111, causes an illegal_instruction exception.

If cc2 = 0 (that is, a floating-point condition code is being referenced in the MOVcc instructions) and
either the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a MOVcc instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled

206 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

MOVr

7.64

Move Integer Register on Register Condition
(MOVr)

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 101111 000 Reserved (illegal_instruction) —
MOVRZ 101111 001 Move if Register Zero RIs11=0 novrzt regy, reg or_imml0, regq Al

MOVRLEZ 101111 010 Move if Register Less Rlrs1]<0 novrl ez reggy, reg_or_imml0, reggyq Al
Than or Equal to Zero

MOVRLZ 101111 011 Move if Register Less Rrs1]<0 nmovrlz reg.sp, reg_or_imml0, regyy Al
Than Zero

— 101111 100 Reserved (illegal_instruction) —
MOVRNZ 101111 101 Move if Register Not RIrs11#20 novr nzt regrs1, reg_or_imml0, regy Al

Zero
MOVRGZ 101111 110 Move if Register RIrsl]>0 novrgz regws1, reg_or_imml0, regyy Al
Greater Than Zero
MOVRGEZ 101111 111 Move if Register Rlrs1]=20 novrgez regygy, reg_or_imml0, regyq Al
Greater Than or Equal
to Zero
t synonym: movr e ¥ synonym: movr ne
10 rd op3 | rsl i=0| rcond — rs2
10 rd op3 rsl i=1| rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these

instructions copy their second operand (if i = 0, R[rs2]; if i = 1, sign_ext(simm10)) into R[rd]. If the
contents of R[rs1] do not satisfy the condition, then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not modify any
condition codes.

Programming | The MOVr instructions are “64-bit-only” instructions; there is no
Note | version of these instructions that operates on just the less-
significant 32 bits of their source operands.

Implementation | If this instruction is implemented by tagging each register value
Note | with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.
Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

An attempt to execute a MOVr instruction when either instruction bits 9:5 are nonzero or rcond = 000,
or 100, causes an illegal_instruction exception.

CHAPTER 7 ¢ Instructions 207

MOVr

Exceptions illegal_instruction

208 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

MULScc - Deprecated

7.65

Multiply Step

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
MULScc? 100100 Multiply Step and modify cc’s mul scc regygy, reg_or_imm, regyqy Y3
10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description ~ MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of the Y register as a

single 64-bit, right-shiftable doubleword register. The least significant bit of R[rs1] is treated as if it
were adjacent to bit 31 of the Y register. The MULScc instruction performs an addition operation,
based on the least significant bit of .

Multiplication assumes that the Y register initially contains the multiplier, R[rs1] contains the most
significant bits of the product, and R[rs2] contains the multiplicand. Upon completion of the
multiplication, the Y register contains the least significant bits of the product.

Note | In a standard MULScc instruction, rsl = rd.

MULScc operates as follows:
1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext(simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCRu.cc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for the previous
partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are added. If

the least significant bit of the Y =0, then 0 is added to the shifted value from step (2).

4. MULScc writes the following result values:

Register field Value written by MULScc

CCRucc updated according to the result of the addition in step (3)
above

R[rd]{63:33} 0

R[rd]{32} CCRuicc.c

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one

bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc.n 0
CCR.xcc.v 0
CCR.xcc.c 0
CCR.xcc.z if (R[rd]{63:0} = 0) then 1 else 0

CHAPTER 7 ¢ Instructions 209

MULScc - Deprecated

SPARC V9 | In SPARC V9, MULScc’s effect on R[rd]{63:32} and CCR.xcc
Compatibility | were explicitly left undefined.

Note
5. The Y register is shifted right by one bit, with the least significant bit of the unshifted R[rs1]
replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also RDY on page 225
SDIV, SDIVcc on page 240
SMUL, SMULcc on page 246
UDIV, UDIVcc on page 281
UMUL, UMULcc on page 283

210 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

MULX / SDIVX / UDIVX

7.66 Multiply and Divide (64-bit)

Instruction op3 Operation Assembly Language Class
MULX 00 1001 Multiply (signed or unsigned) mul x regrs1, reg_or_imm, regq Al
SDIVX 10 1101 Signed Divide sdi vx regys1, reg_or_imm, regyy Al
UDIVX 00 1101 Unsigned Divide udi vx regrs1, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ MULX computes “R[rs1] x R[rs2]” if i = 0 or “R[rs1] x sign_ext(simm13)” if i = 1, and writes the 64-
bit product into R[rd]. MULX can be used to calculate the 64-bit product for signed or unsigned
operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] + R[rs2]” if i = 0 or “R[rs1] + sign_ext(simm13)” if i = 1, and
write the 64-bit result into R[rd]. SDIVX operates on the operands as signed integers and produces a
corresponding signed result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by -1, the result should be the largest negative
number. That is:

8000 0000 0000 00001 ¢ + FFFF FFFF FFFF FFFF;4 = 8000 0000 0000 00004¢.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

CHAPTER 7 ¢ Instructions 211

NOP

7.67 No Operation

Instruction op2 Operation Assembly Language Syntax Class
NOP 100 No Operation nop Al
00 ([rd=00000 op2 imm22=0000000000000000000000
31 30 29 25 24 22 21

Description The NOP instruction changes no program-visible state (except that of the PC register).

NOP is a special case of the SETHI instruction, with imm22 =0 and rd = 0.

Programming | There are many other opcodes that may execute as NOPs;
Note | however, this dedicated NOP instruction is the only one
guaranteed to be implemented efficiently across all
implementations.

Exceptions None

212 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

NORMALW

7.68

NORMALW

Instruction

Operation Assembly Language Syntax Class

NORMALW?Y

“Other” register windows become “normal” register windows nor mal w Al

10 | fcn =0 0100 11 0001 —

31 30 29 25 24 19 18 0

Description

Exceptions

See Also

NORMALWY is a privileged instruction that copies the value of the OTHERWIN register to the
CANRESTORE register, then sets the OTHERWIN register to zero.

Programming | The NORMALW instruction is used when changing address
Notes | spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

An attempt to execute a NORMALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an NORMALW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

illegal_instruction
privileged_opcode

ALLCLEAN on page 99
INVALW on page 173
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

CHAPTER 7 ¢ Instructions 213

OR

7.69

OR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
OR 00 0010 Inclusive or or regrs1, reg_or_imm, regyq Al
ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regyq Al
ORN 000110 Inclusive or not orn regrs1, reg_or_imm, regyq Al
ORNCcc 01 0110 Inclusive or not and modify cc’s orncc reg.gp, reg_or_imm, reg.g Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description These instructions implement bitwise logical or operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].
ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:
» icc.y, icc.c, xcc.v, and xcc.c are set to 0
» icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= Xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ORN and ORNCcc logically negate their second operand before applying the main (or) operation.
An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.
Exceptions illegal_instruction

214 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

OTHERW

770 OTHERW

Instruction Operation Assembly Language Syntax Class

OTHERW? “Normal” register windows become “other” ot herw Al
register windows

10 | fen=00011 110001 —
31 30 29 25 24 19 18 0

Description OTHERW? is a privileged instruction that copies the value of the CANRESTORE register to the
OTHERWIN register, then sets the CANRESTORE register to zero.

Programming | The OTHERW instruction is used when changing address spaces.

Notes | OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

An attempt to execute an OTHERW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an OTHERW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
RESTORED on page 232
SAVED on page 239

CHAPTER 7 ¢ Instructions 215

PDIST

7.71 Pixel Component Distance
(with Accumulation)

Instruction opf Operation Assembly Language Syntax Class

PDIST 00011 1110 Distance between eight 8-bit components, pdi st fregs1, fregso, fregrg C2
with accumulation

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers Fp[rs1] and
Fplrs2]. The corresponding 8-bit values in the source registers are subtracted (that is, each byte in
Fplrs2] is subtracted from the corresponding byte in Fp[rs1]). The sum of the absolute value of each
difference is added to the integer in Fp[rd] and the resulting integer sum is stored in the destination
register, Fp[rd].
Programming | PDIST uses Fp[rd] as both a source and a destination register.

Notes Typically, PDIST is used for motion estimation in video

compression algorithms.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled

216 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

POPC

7.72 Population Count

Instruction op3 Operation Assembly Language Syntax Class
POPC 10 1110 Population Count popc reg_or_imm, regyq Cc2
10 rd op3 0 0000 i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ POPC counts the number of ‘1’ bits in R[rs2] if i = 0, or the number of ‘1’ bits in sign_ext(simm13) if
i =1, and stores the count in R[rd]. This instruction does not modify the condition codes.

V9 Compatibility | Instruction bits 18 through 14 must be zero for POPC. Other

Note | encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming | POPC can be used to “find first bit set” in a register.
Note | A ‘C’-language program illustrating how POPC can be used for

this purpose follows:

int ffs(in)/* finds first 1 bit, counting fromthe LSB */
unsi gned in;

{
return popc(in ~ (4-in)));/* for nonzero zz */
}
Inline assembly language code for f f s() is:
neg %N, YNEG_IN I —zz(2' s conpl enent)
xnor %N, 9UNEG_IN, 9WCEMP! ~ [0 —zz (exclusive nor)
popc YEMP, YRESULT ! result = popc(zz » O -zz)
novrz %N, %90, YRESULT ! 9RESULT should be 0 for % N=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:

IN = ...00101000 !1st ‘1" bit fromright is

-IN = ...11011000 '! bit 3 (4th bit)
~—IN=...00100111
IN~N ~—IN= . 00001111

popc IN ~ ~ —IN) 4

Programming | POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
Note | least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %N, YDEST

cnp %N, -1 ! Test for pattern of all 1's
nov -1, WEMP ! Constant -1 -> tenp register
sl x YdEMP, YDEST, YDEST ! (shift count of 64 sane as 0)
not YDEST !

novcc W%cc, -1, YDEST ' If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

Programming | POPC is a “64-bit-only” instruction; there is no version of this
Note | instruction that operates on just the less-significant 32 bits of its
source operand.

An attempt to execute a POPC instruction when either instruction bits 18:14 are nonzero, or i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

CHAPTER 7 ¢ Instructions 217

POPC

Exceptions illegal_instruction

218 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

PREFETCH

7.73

Prefetch

Instruction op3 Operation Assembly Language Syntax Class
PREFETCH 101101 Prefetch Data prefetch [address], prefetch_fcn Al
PREFETCHAP 111101 Prefetch Data from prefetcha [regaddr] imm_asi, prefetch_fcn Al
Alternate Space prefetcha [reg_plus_imm] Y@si, prefetch_fcn
PREFETCH
11 fcn op3 rsl i=0 — rs2
11 fen op3 rsl |i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
PREFETCHA
11 fcn op3 rsl i=0 imm_asi rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
TABLE 7-10 Prefetch Variants, by Function Code
fcn Prefetch Variant
0 (Weak) Prefetch for several reads
1 (Weak) Prefetch for one read
2 (Weak) Prefetch for several writes and possibly reads
3 (Weak) Prefetch for one write
4 Prefetch page
5-15 (0514—0F14) Reserved (illegal_instruction)
16 (1044) Implementation dependent (NOP if not implemented)
17 (114¢) Prefetch to nearest unified cache
18-19 (1214-1314) Implementation dependent (NOP if not implemented)
20 (1444) Strong Prefetch for several reads
21 (1514) Strong Prefetch for one read
22 (161¢) Strong Prefetch for several writes and possibly reads
23 (1714) Strong Prefetch for one write
24-31 (1814-1F1¢) Implementation dependent (NOP if not implemented)
Description A PREFETCHJ[A] instruction provides a hint to the virtual processor that software expects to access a

particular address in memory in the near future, so that the virtual processor may take action to
reduce the latency of accesses near that address. Typically, execution of a prefetch instruction initiates
movement of a block of data containing the addressed byte from memory toward the virtual
processor or creates an address mapping.

Implementation | A PREFETCHJA] instruction may be used by software to:

Note |, prefetch a cache line into a cache

e prefetch a valid address translation into a TLB
Ld

CHAPTER 7 ¢ Instructions 219

7.73.1

PREFETCH

If i = 0, the effective address operand for the PREFETCH instruction is “R[rs1] + R[rs2]”; if i =1, it is
“R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space (ASI _PRI MARY[_LI| TTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address space identifier (ASI)
to be used for the instruction is in the imm_asi field. If i = 1, the ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation, but with certain important
differences. In particular, a PREFETCH[A] instruction is non-blocking; subsequent instructions can
continue to execute while the prefetch is in progress.
Implementation | A PREFETCHJA] instruction is “released” by hardware after the
Note | TLB access, allowing subsequent instructions to continue to

execute while the virtual processor performs the hardware

tablewalk (in the case of a TLB miss for a Strong prefetch) or the

cache access in the background.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same observable effect as
a NOP. A prefetch instruction will not cause a trap if applied to an illegal or nonexistent memory
address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block prefetched is
implementation dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte
boundary.
Programming | Software may prefetch 64 bytes beginning at an arbitrary address
Note | address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fen

Variants of the prefetch instruction can be used to prepare the memory system for different types of
accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or all of the defined
PREFETCH[A] variants. It is implementation-dependent whether each variant is (1) not implemented
and executes as a NOP, (2) is implemented and supports the full semantics for that variant, or (3) is
implemented and only supports the simple common-case prefetching semantics for that variant.

Exceptions

Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the conditions detailed
in TABLE 7-11. Only the implementation-dependent prefetch variants (see TABLE 7-10) may generate an
exception under conditions not listed in this table; the predefined variants only generate the
exceptions listed here.

TABLE 7-11 Behavior of PREFETCHJA] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i =0 and instruction bits 12:5 are illegal_instruction
nonzero

any PREFETCHA reference to an ASI in the range executes as NOP

016-7F1¢, while in nonprivileged
mode (privileged_action condition)
any PREFETCHA reference to an ASI in range executes as NOP
301¢..7F1¢, while in privileged
mode (privileged_action condition)

0-3 PREFETCH[A] condition detected for MMU miss executes as NOP
(weak)
0-4 PREFETCH[A] variant unimplemented executes as NOP

220 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

7.73.2

PREFETCH

TABLE 7-11 Behavior of PREFETCHJA] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result
0-4 PREFETCHA reference to an invalid ASI executes as NOP
(ASI not listed in following table)
0-4,17, PREFETCHJ[A] condition detected for executes as NOP
20-23 DAE_invalid_asi (see following
table),

DAE_privilege_violation,
DAE_nc_page ((TTE.cp = 0) or
((fcn = 0) and TTE.cv = 0)),
DAE_nfo_page, or
DAE_side_effect_page (TTE.e = 1)

4,20-23 PREFETCH[A] prefetching the requested data executes as NOP

(strong) would be a very time-consuming
operation
5-15 PREFETCH[A] (always) illegal_instruction
(0516—0F¢)
16-31 PREFETCH[A] variant unimplemented executes as NOP

(1816-1F14)

ASiIs valid for PREFETCHA (all others are invalid)

ASI _NUCLEUS ASl _NUCLEUS_LI TTLE
AS| _AS_| F_USER PRI MARY ASl _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER SECONDARY AS| _AS_| F_USER_SECONDARY_ LI TTLE
AS| _PRI MARY AS| _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

AS| PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO_FAULT AS| _SECONDARY_NO FAULT LI TTLE
ASI _REAL ASl _REAL_LI TTLE

Weak versus Strong Prefetches

Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of certainty that the data
being prefetched will subsequently be accessed. That, in turn, affects the amount of effort (time) it’s
willing for the underlying hardware to invest to perform the prefetch. If the prefetch is speculative
(software believes the data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and behave like a NOP if
it turns out that performing the full prefetch will be time-consuming. If software has very high
confidence that data being prefetched will subsequently be accessed, then a Strong prefetch will
ensure that the prefetch operation will continue, even if the prefetch operation does become time-
consuming.

From the virtual processor’s perspective, the difference between a Weak and a Strong prefetch is
whether the prefetch is allowed to perform a time-consuming operation in order to complete. If a
time-consuming operation is required, a Weak prefetch will abandon the operation and behave like a

CHAPTER 7 ¢ Instructions 221

7.73.3

PREFETCH

NOP while a Strong prefetch will pay the cost of performing the time-consuming operation so it can
finish initiating the requested data movement. Behavioral differences among loads, strong prefetches,
and weak prefetches are compared in TABLE 7-12.

TABLE 7-12 Comparative Behavior of Load and Weak Prefetch Operations

Behavior

Condition Load Prefetch

Upon detection of privileged_action, DAE_* or VA_watchpoint Traps NOPt
exception...

If page table entry has cp =0, e = 1, and cv = 0 for Prefetch for Traps NOP%
Several Reads

If page table entry has nfo = 1 for a non-NoFault access... Traps NOPt

If page table entry has w = 0 for any prefetch for write access Traps NOPf
(fcn =2, 3, 22, or 23)...

Instruction blocks until cache line filled? Yes No

Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5-15 are reserved for
future extensions of the architecture, and PREFETCH fcn values of 16-19 and 24-31 are
implementation dependent in UltraSPARC Architecture 2007.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a “hint” to the
underlying virtual processor. This is different from other instructions (except BPN), all of which cause
specific actions to occur. An UltraSPARC Architecture implementation may implement a prefetch
variant by any technique, as long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are intended to provide
scalability for future improvements in both hardware and compilers. If a variant is implemented, it
should have the effects described below. In case some of the variants listed below are implemented
and some are not, a recommended overloading of the unimplemented variants is provided in the
SPARC V9 specification. An implementation must treat any unimplemented prefetch fcn values as
NOPs (impl. dep. #103-V9-Ms10).

7.73.3.1 Prefetch for Several Reads (fcn =0, 20(144¢))

The intent of these variants is to cause movement of data into the cache nearest the virtual processor.

There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and fcn = 20 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | The intended use of this variant is for streaming relatively small
Note | amounts of data into the primary data cache of the virtual
processor.

7.73.3.2 Prefetch for One Read (fcn =1, 21(15¢))

The data to be read from the given address are expected to be read once and not reused (read or
written) soon after that. Use of this PREFETCH variant indicates that, if possible, the data cache
should be minimally disturbed by the data read from the given address.

222 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

PREFETCH

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and fcn = 21 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | The intended use of this variant is in streaming medium amounts
Note | of data into the virtual processor without disturbing the data in
the primary data cache memory.

7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn =2,
22(164¢))

The intent of this variant is to cause movement of data in preparation for multiple writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and fcn = 22 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | An example use of this variant is to initialize a cache line, in
Note | preparation for a partial write.

Implementation | On a multiprocessor system, this variant indicates that exclusive

Note | ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.

7.73.3.4 Prefetch for One Write (fcn = 3, 23(17¢))

The intent of this variant is to initiate movement of data in preparation for a single write. This variant
indicates that, if possible, the data cache should be minimally disturbed by the data written to this
address, because those data are not expected to be reused (read or written) soon after they have been
written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and fcn = 23 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or privileged or
hyperprivileged software) to initiate asynchronous mapping of the referenced virtual address
(assuming that it is legal to do so).

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

In a non-virtual-memory system or if the addressed page is already mapped, this variant has no
effect.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(114g))

The intent of this variant is to cause movement of data into the nearest unified (combined instruction
and data) cache. At the successful completion of this variant, the selected line from memory will be in
the unified cache in the shared state, and in caches (if any) below it in the cache hierarchy.

Prefetch to Nearest Unified Cache is a Strong prefetch variant.

CHAPTER 7 ¢ Instructions 223

PREFETCH

7.734 Implementation-Dependent Prefetch Variants (fcn = 16, 18,
19, and 24-31)

IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-31 are
implemented are implementation dependent. If a variant is not implemented, it must execute as a
NOP.

7.73.5 Additional Notes

Programming | Prefetch instructions do have some “cost to execute”. As long as

Note | the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming | A compiler that generates PREFETCH instructions should

Note | generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation | Any effects of a data prefetch operation in privileged code should
Note | be reasonable (for example, no page prefetching is allowed within
code that handles page faults). The benefits of prefetching should

be available to most privileged code.

Implementation | A prefetch from a nonprefetchable location has no effect. It is up
Note | to memory management hardware to determine how locations
are identified as not prefetchable.

Exceptions illegal_instruction

224 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

7.74

RDasr

Read Ancillary State Register

Instruction rsl Operation Assembly Language Syntax Class
RDYP 0 Read Y register (deprecated) rd %, regq D2
— 1 Reserved
RDCCR 2 Read Condition Codes register (CCR) rd %cr, regyq Al
RDASI 3 Read ASI register rd 9@si, regyq Al
RDTICKPn»t 4 Read TICK register rd %ick, regy Al
RDPC 5 Read Program Counter (PC) rd %c, regyq A2
RDFPRS 6 Read Floating-Point Registers Status (FPRS) rd % prs, regy Al

register
— 7-14 Reserved

(7-0E16)
See text 15 (F14) MEMBAR or Reserved; see text
— 16-18 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)
(1016-1216)
RDGSR 19 (1314) Read General Status register (GSR) rd %gsr, regq Al
— 2021 Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)
(1416-1516)

RDSOFTINT? 22 (1616) Read per-virtual processor Soft Interrupt register rd %sof tint, regyq A2

(SOFTINT)
RDTICK_CMPR? 23 (17;4) Read Tick Compare register (TICK_CMPR) rd %ick_cnpr, regyqg N-
RDSTICK net 24 (1814) Read System Tick Register (STICK) rd 9%tickt, regyq A2
RDSTICK_CMPRP 25 (19;¢) Read System Tick Compare register rd 9tick_cnprt, regy A2

(STICK_CMPR)

26 (2014) Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)
27 (1Byg) Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)
28 (1Cq4) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

29 (1Dg) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

30 (1E14) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

31 (1F1¢) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

t The original assembly language names for %st i ck and %sti ck_cnpr were, respectively, %sys_ti ck and ¥%sys_ti ck_cnpr, which are
now deprecated. Over time, assemblers will support the new %t i ck and %t i ck_cnpr names for these registers (which are consistent with
% i ck and % i ck_cnpr). In the meantime, some existing assemblers may only recognize the original names.

10 rd

10 1000

rsl |i=0

31 30 29

25 24

19 18 1413 12

CHAPTER 7 ¢ Instructions 225

Description

RDasr

The Read Ancillary State Register (RDasr) instructions copy the contents of the state register specified
by rs1 into R[rd].

An RDasr instruction with rs1 = 0 is a (deprecated) RDY instruction (which should not be used in new
software).

The RDY instruction is deprecated. It is recommended that all instructions that

reference the Y register be avoided.

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full 64-bit address is
copied into R[rd]. If PSTATE.am =1, only a 32-bit address is saved; PC{31:0} is copied to R[rd]{31:0}
and R[rd]{63:32} is set to 0. (closed impl. dep. #125-V9-Cs10)

RDEFPRS waits for all pending FPops and loads of floating-point registers to complete before reading
the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7-14, 16-18, 20-21,
and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28-31 are available for
implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rsl in the
range 28-31, the following are implementation dependent:

» the interpretation of bits 13:0 and 29:25 in the instruction

= whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20), and

» whether an attempt to execute the instruction causes an illegal_instruction exception.

Implementation | See the section “Read/Write Ancillary State Registers (ASRs)” in

Note | Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note | Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8 | The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
Compatibility | exist in the UltraSPARC Architecture, since the PSR, WIM, and
Note | TBR registers do not exist.

See Ancillary State Registers on page 48 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a RDasr instruction when any of the following conditions are
true causes an illegal_instruction exception:

= rsl=15and rd # 0 (reserved for future versions of the architecture)
= sl = 1,7-14, 16-18, 20-21, or 26-27 (reserved for future versions of the architecture)
= instruction bits 13:0 are nonzero

An attempt to execute a RDTICK_CMPR, RDSTICK_CMPR, or RDSOFTINT instruction in
nonprivileged mode (PSTATE.priv = 0) causes a privileged_opcode exception (impl. dep. #250-U3-
Cs10).

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the TICK register using the RDTICK instruction causes a
privileged_action exception. See Tick (tick) Register (ASR 4) on page 52 for details.

226 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

RDasr

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action exception. See System
Tick (stick) Register (ASR 24) on page 57 for details.

Privileged software can read the STICK register with the RDSTICK instruction, but only when
privileged access to STICK is enabled by hyperprivileged software. An attempt by privileged
software to read the STICK register when privileged access is disabled causes a privileged_action
exception. See System Tick (stick) Register (ASR 24) on page 57 for details.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0), the following cause a privileged_action exception:

» execution of RDTICK when nonprivileged access to TICK is disabled

» execution of RDSTICK when nonprivileged access to STICK is disabled

Implementation | RDasr shares an opcode with MEMBAR; it is distinguished by
Note [rs1 =15 or rd =0 or (i = 0, and bit 12 = 0).

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDPR on page 228
WRasr on page 285

CHAPTER 7 ¢ Instructions 227

RDPR

7.75

Read Privileged Register

Instruction Operation rsl Assembly Language Syntax Class
RDPR" 101010 Read Privileged register A2?
TPC 0 rdpr % pc, regg A1?
TNPC 1 rdpr % npc, regyy
TSTATE 2 rdpr % st ate, regyq
TT 3 rdpr %t, regyq
TICK 4 rdpr %ick, regyg
TBA 5 rdpr % ba, regq
PSTATE 6 rdpr Ypst ate, regyq
TL 7 rdpr %1, regyq
PIL 8 rdpr Yoi |, regrq
CWP 9 r dpr Yewp, regrg
CANSAVE 10 rdpr Ycansave, regy
CANRESTORE 1 rdpr Ycanrestore, regy
CLEANWIN 12 rdpr Y%l eanwin, reggq
OTHERWIN 13 rdpr Y%t herwi n, regy
WSTATE 14 rdpr Y%wtate, regyq
Reserved 15
GL 16 rdpr Y%yl , regq
Reserved 17-31
10 | rd op3 rsl —
31 30 29 25 24 19 18 14 13 0
Description The rs1 field in the instruction determines the privileged register that is read. There are MAXPTL copies

of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers returns the value in
the register indexed by the current value in the trap level register (TL). A read of TPC, TNPC, TT, or
TSTATE when the trap level is zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions exist causes an

illegal_instruction exception:

= instruction bits 13:0 are nonzero

s rs1 =15, or 17 <rsl < 31 (reserved rsl values)

s 0<rsl< 3 (attempt to read TPC, TNPC, TSTATE, or TT register) while TL = 0 (current trap level is
zero) and the virtual processor is in privileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note [0 <rsl < 3 and TL =0 does not occur; the privileged_opcode
exception occurs instead.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

228 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Historical Note

Exceptions illegal_instruction
privileged_opcode

RDPR

On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rsl = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.

See Also RDasr on page 225
WRPR on page 288

CHAPTER 7 ¢ Instructions 229

RESTORE

7.76 RESTORE

Instruction op3 Operation Assembly Language Syntax Class
RESTORE 111101 Restore Caller’s Window restore reggy, reg_or_imm, regyqy Al
10 rd 11 1101 rsi i= — rs2
10 rd 11 1101 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The RESTORE instruction restores the register window saved by the last SAVE instruction executed
by the current process. The in registers of the old window become the out registers of the new
window. The in and local registers in the new window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a normal ADD
instruction, except that the source operands R[rs1] or R[rs2] are read from the o/d window (that is, the
window addressed by the original CWP) and the sum is written into R[rd] of the new window (that is,
the window addressed by the new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a RESTORE instruction traps, the fill trap handler

Notes | returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod N_REG_WINDOWS) to restore the
register window that was in use prior to the last SAVE instruction executed by the current process. It

also updates the state of the register windows by decrementing CANRESTORE and incrementing
CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE, as
described in Trap Type for Spi ll/Fill Traps on page 355. The fill trap handler is invoked with CWP set to
point to the window to be filled, that is, old CWP - 1.

Programming | The vectoring of fill traps can be controlled by setting the value of

Note | the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

230 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

RESTORE

illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)

SAVE on page 237

CHAPTER 7 ¢ Instructions 231

RESTORED

7.77 RESTORED

Instruction Operation Assembly Language Syntax Class
RESTORED” Window has been restored restored Al
10 | fcn =0 0001 11 0001 —
31 30 29 25 24 19 18 0

Description RESTORED adjusts the state of the register-windows control registers.
RESTORED increments CANRESTORE.
If CLEANWIN < (N_REG_WINDOWS—1), then RESTORED increments CLEANWIN.
If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN # 0, it decrements OTHERWIN.

Programming | Trap handler software for register window fills use the

Notes | RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = 0 or CANRESTORE 2 (N_REG_WINDOWS — 2) just prior to execution of a RESTORED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
RESTORED generate a register window state that is both valid (see Register Window State Definition on
page 60) and consistent with the state prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
OTHERW on page 215
SAVED on page 239

232 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

RETRY

7.78 RETRY

Instruction op3 Operation Assembly Language Syntax Class
RETRY’ 111110 Return from Trap (retry trapped instruction) retry Al
10 | fcn =0 0001 11 1110 —
31 30 29 25 24 19 18 0

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
sets PC and NPC, and decrements TL. RETRY sets PC — TPC[TL] and NPC — TNPC[TL](normally, the
values of PC and NPC saved at the time of the original trap).

Programming | The DONE and RETRY instructions are used to return from
Note | privileged trap handlers.

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software, RETRY causes
execution to resume at the instruction that originally caused the trap (“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction produces
undefined results.

If software writes invalid or inconsistent state to TSTATE before executing RETRY, virtual processor
behavior during and after execution of the RETRY instruction is undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a RETRY instruction is executed
(which sets PSTATE.am to "1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the RETRY instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when either of the following conditions is
true causes an illegal_instruction exception:

» instruction bits 18:0 are nonzero
» TL =0 and the virtual processor is in privileged mode (PSTATE.priv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
RETRY generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the RETRY instruction) is stored in
TPC[TL] and the value of NPC from before the RETRY was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, the execution of a
RETRY instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the RETRY
instruction, the value of PSTATE.tct is restored from TSTATE.

CHAPTER 7 ¢ Instructions 233

RETRY

Programming | RETRY should not normally be used to return from the trap
Note | handler for the control_transfer_instruction exception itself.

See the DONE instruction on page 114 and Trap on Control
Transfer (tct) on page 65.

Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-520)

See Also DONE on page 114

234 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

RETURN

7.79

RETURN

Instruction op3 Operation Assembly Language Syntax Class
RETURN 111001 Return return address Al
— op3 rsi |i=0| — rs2
— op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

The RETURN instruction causes a register-indirect delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the register window prior
to the last SAVE instruction. The target address is “R[rs1] + R[rs2]” if i =0, or

“R[rs1] + sign_ext(simm13)” if i = 1. Registers R[rs1] and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible prior to
execution of the delay slot instruction.

Programming | To reexecute the trapped instruction when returning from a user trap
Note | handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

j mpl % 6, Yg0 1 Trapped PC supplied to user trap handler
PP PP p

return %7 t Trapped NPC supplied to user trap handler
Programming | A routine that uses a register window may be structured either as:
Note save Usp, - framesize, %p
ret ! “r et ” is shorthand for “j npl % 7 + 8, %g0”
restore ! A useful instruction in the delay slot, such as

! “restore %02, % 2, %00”
or as:
save Yp, -framesize, %sp

return %7 +8
nop I Instead of “nop”, could do some useful work in the
! caller’s window, for example, “or %1, %2, %©0”

An attempt to execute a RETURN instruction when bits 29:25 are nonzero causes an illegal_instruction
exception.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system. However, if a control_transfer_instruction trap
occurs, the full 64-bit (nonmasked) address of the RETURN instruction is written into TPC[TL].

A RETURN instruction causes a mem_address_not_aligned exception if either of the two least-
significant bits of the target address is nonzero.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
RETURN generates a control_transfer_instruction exception instead of causing a control transfer.

CHAPTER 7 ¢ Instructions 235

RETURN

Exceptions illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-520)

236 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

SAVE

7.80 SAVE

Instruction op3 Operation Assembly Language Syntax Class
SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regyq Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The SAVE instruction provides the routine executing it with a new register window. The out registers
from the old window become the in registers of the new window. The contents of the out and the local
registers in the new window are zero or contain values from the executing process; that is, the process
sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal ADD instruction,
except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the window
addressed by the original CWP) and the sum is written into R[rd] of the new window (that is, the
window addressed by the new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a SAVE instruction traps, the spill trap handler returns

Notes | to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS) to provide a new
register window and updates the state of the register windows by decrementing CANSAVE and
incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The trap
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to point to the window to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

CHAPTER 7 ¢ Instructions 237

SAVE

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be cleaned. It causes
a clean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN —
CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP set to point to the
window to be cleaned (that is, old CWP +1).

Programming
Note

Exceptions illegal_instruction

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.

spill_n_normal (n = 0-7)
spill_n_other (n = 0-7)

clean_window

See Also RESTORE on page 230

238 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

SAVED

7.81 SAVED

Instruction Operation Assembly Language Syntax Class
SAVED? Window has been saved saved Al
10 | fcn =0 0000 11 0001 —
31 30 29 25 24 19 18 0

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE. If
OTHERWIN # 0, it decrements OTHERWIN.

Programming | Trap handler software for register window spills uses the SAVED

Notes | instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = (N_REG_WINDOWS — 2) or CANRESTORE = 0 just prior to execution of a SAVED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
SAVED generate a register window state that is both valid (see Register Window State Definition on
page 60) and consistent with the state prior to the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
OTHERW on page 215
RESTORED on page 232

CHAPTER 7 ¢ Instructions 239

SDIV, SDIVcc (Deprecated)

7.82

Signed Divide (64-bit + 32-bit)

The SDIV and SDIVcc instructions are deprecated and should not be used in new
software. The SDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SDIVP 001111 Signed Integer Divide sdiv regrs1, 1eg_or_imm, regq D2
SDIVccP 011111 Signed Integer Divide and modify cc’s sdivecce reggy, reg_or_imm, regyg D2
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The signed divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0, they

Signed Divide

compute “(Y :: R[rs1]{31:0}) + R[rs2]{31:0}". Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) + (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of R[rs2] or lower 32 bits
of sign_ext(simm13)) and computes a signed integer word quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, -7 + 4 equals the rational
quotient of —1.75, which rounds to -1 (not —2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register R[rd] under
certain conditions. When overflow occurs, the largest appropriate signed integer is returned as the
quotient in R[rd]. The conditions under which overflow occurs and the value returned in R[rd] under
those conditions are specified in TABLE 7-13.

TABLE 7-13 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 23! 231 -1 (0000 0000 7FFF FFFF;4)
Rational quotient < 231~ 1 -231 (FFFF FFFF 8000 00004 4)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into register R[rd].

240 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

Exceptions

See Also

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after

SDIV, SDIVcc (Deprecated)

it has been set to reflect overflow, if any.

Bit Effect on bit of SDIVcc instruction

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0
icc.c Setto 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

Xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

XCC.V Setto 0

Xcc.c Set to 0

An attempt to execute an SDIV or SDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero

causes an illegal_instruction exception.

illegal_instruction
division_by_zero

MULScc on page 209
RDY on page 225
UDIV]cc] on page 281

CHAPTER 7 ¢ Instructions 241

SETHI

7.83 SETHI

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100 Set High 22 Bits of Low Word sethi const22, reg.yq Al
sethi Wi (value), regyq

00 rd op2 imm22
31 30 29 25 24 22 21 0

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and replaces bits 31
through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:
« rd =0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

» rd =0 and imm22 # 0 may be used to trigger hardware performance counters in some UltraSPARC
Architecture implementations (for details, see implementation-specific documentation).

Programming | The most common form of 64-bit constant generation is creating
Note | stack offsets whose magnitude is less than 2%2. The code below can

be used to create the constant 0000 0000 ABCD 1234:

set hi %i (Oxabcd1234), %00

or %0, 0x234, %0
The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 12344:

set hi %i (0x5432edch), %00! not e 0x5432EDCB, not OxABCD1234
xor %0, Ox1e34, %0! part of imm overlaps upper bits

Exceptions None

242 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

SIAM

7.84 Set Interval Arithmetic Mode

Instruction opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR si am siam_mode Bl
| 10 — 110110 — opf — mode|
31 30 29 25 24 19 18 14 13 5 4 3 2 0

Description ~ The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:
GSR.im —~ mode{2}
GSR.irnd — mode{1:0}
Note | When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-

mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note | When GSR.im =1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3 are nonzero causes
an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

CHAPTER 7 ¢ Instructions 243

SLL /SRL / SRA

7.85 Shift

Instruction op3 X Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical — 32 bits sl regrs1, teg_or_shent, regpy Al

SRL 10 0110 0 Shift Right Logical — 32 bits srl regys1, reg_or_shcnt, regyy Al

SRA 10 0111 0 Shift Right Arithmetic— 32 bits sra regrs1, teg_or_shcnt, regpy Al

SLLX 10 0101 1 Shift Left Logical — 64 bits slIx regs1, reg_or_shent, regyy Al

SRLX 10 0110 1 Shift Right Logical — 64 bits srlx regsy, reg_or_shcnt, regyy Al

SRAX 10 0111 1 Shift Right Arithmetic — 64 bits srax regys1, reg_or_shcnt, regyy Al
10 rd op3 rsl i=0] x — rs2
10 rd op3 rsl i=1fx= — shcnt32
10 rd op3 rsl i=1jx= — shcnt64

31 30 29 25 24 19 18 14 13 12 11 6 5 4 0

Description ~ These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].

When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When i=1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction.

When i =1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction.

TABLE 7-14 shows the shift count encodings for all values of i and x.

TABLE 7-14 Shift Count Encodings

i X Shift Count
bits 4-0 of R[rs2]
bits 5-0 of R[rs2]

0 0
0 1
1 0 bits 4-0 of instruction
1 1

bits 5-0 of instruction

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits specified by the shift
count, replacing the vacated positions with zeroes, and write the shifted result to R[rd].

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count.
Zeroes are shifted into the vacated high-order bit positions, and the shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count and replaces the vacated positions with bit 31 of R[rs1]. The high-order 32 bits of the result are
all set with bit 31 of R[rs1], and the result is written to R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count
and replaces the vacated positions with bit 63 of R[rs1]. The shifted result is written to R[rd].

244 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

SLL /SRL / SRA

No shift occurs when the shift count is 0, but the high-order bits are affected by the 32-bit shifts as
noted above.

These instructions do not modify the condition codes.

Programming | “Arithmetic left shift by 1 (and calculate overflow)” can be
Notes | effected with the ADDcc instruction.

The instruction “sra reg,g1, 0, reg,q” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “sr |
regs1, 0, regrg” can be used to clear the upper 32 bits of R[rd].

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the following conditions
exist causes an illegal_instruction exception:

= i=0 or x =0 and instruction bits 11:5 are nonzero
= X =1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction

CHAPTER 7 ¢ Instructions 245

SMUL, SMULcc (Deprecated)

7.86

Signed Multiply (32-bit)

The SMUL and SMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SMULP 001011 Signed Integer Multiply smul regrs1, reg_or_immi, regyy D2
SMULccP 011011 Signed Integer Multiply and modify cc’s ~ smul cc regsy, reg_or_immi, regyq D2
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The signed multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.

Exceptions

See Also

They compute “R[rs1]{31:0} x R[rs2]{31:0}" if i = 0, or “R[rs1]{31:0} x sign_ext(simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Signed multiply instructions (SMUL, SMULcc) operate on signed integer word operands and compute
a signed integer doubleword product.

SMUL does not affect the condition code bits. SMULcc writes the integer condition code bits, icc and
Xcc, as shown below.

Bit Effect on bit by execution of SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0

icc.c Set to 0

xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
Xxcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
Xcc.v Set to 0

Xcc.c Set to 0

Note | 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming | 32-bit overflow after SMUL or SMULcc is indicated by
Notes | Y # (R[rd] >> 31), where “>>" indicates 32-bit arithmetic right-
shift.

An attempt to execute a SMUL or SMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

illegal_instruction

UMUL[cc] on page 283

246 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

STB/STH/STW /STX

7.87

Store Integer

Instruction op3 Operation Assembly Language Syntax Class
STB 00 0101 Store Byte stb® reg.q, [address] Al
STH 00 0110 Store Halfword sth regyq, [address] Al
STW 00 0100 Store Word stw’ regrq, [address) Al
STX 00 1110 Store Extended Word stX regyq, [address] Al
T synonyms: st ub, stsb ¥ synonyms: st uh, st sh © synonyms: st , st uw st sw
rd op3 rsl i= — rs2
rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer instructions (except store doubleword) copy the whole extended (64-bit) integer, the
less significant word, the least significant halfword, or the least significant byte of R[rd] into memory.
These instructions access memory using the implicit ASI (see page 76). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.
A successful store (notably, STX) integer instruction operates atomically.
An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.
STH causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STW causes a mem_address_not_aligned exception if the effective address is not word-aligned. STX
causes a mem_address_not_aligned exception if the effective address is not doubleword-aligned.
Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
See Also STTW on page 265

CHAPTER 7 ¢ Instructions 247

7.88

STBA / STHA / STWA / STXA

Store Integer into Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
STBAPs! 010101 Store Byte into Alternate Space stba® regq, [regaddr] imm_asi Al
stba regq, [reg_plus_imm] @si
STHAPAst 010110 Store Halfword into Alternate Space st hat reg,q, [regaddr] imm_asi Al
stha regq, [reg_plus_imm] Y@si
STWAPast 010100 Store Word into Alternate Space stwa® reg.y, [regaddr] imm_asi Al
stwa regq, [reg_plus_imm] Y@si
STXAPas 011110 Store Extended Word into Alternate stxa reg.qy, [regaddr] imm_asi Al
Space stxa reguq, [reg_plus_imm] Y@si
T synonyms: st uba, st sba ¥ synonyms: st uha, st sha © synonyms: st a, st uwa, st swa
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer into alternate space instructions copy the whole extended (64-bit) integer, the less

significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be used for
the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of
the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 304 to
7F1¢, these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STWA causes a mem_address_not_aligned exception if the effective address is not word-aligned.
STXA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

STBA, STHA, and STWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

ASls valid for STBA, STHA, and STWA

ASI _NUCLEUS

ASl _AS | F_USER PRI MARY
ASlI _AS | F_USER_SECONDARY

ASl _REAL
ASI_REAL 10O
ASl _PRI MARY

AS| _SECONDARY

248 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

ASI _NUCLEUS_LI TTLE

ASI _REAL_LI TTLE
ASI _REAL_1 O LI TTLE

ASI _PRI MARY_LI TTLE
ASI _SECONDARY_LI TTLE

ASl _AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER SECONDARY_ LI TTLE

Exceptions

See Also

STBA / STHA / STWA / STXA

STXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

ASls invalid for STXA
ASI _BLOCK_AS | F_USER_PRI MARY
ASI _BLOCK_AS | F_USER_SECONDARY

ASI _BLOCK_AS_| F_USER PRI MARY
ASI _BLOCK_AS_| F_USER_SECONDARY

AS| _PST8_PRI MARY

AS| _PST8_SECONDARY

AS| _PRI MARY_NO FAULT
AS| _SECONDARY_NO FAULT
AS| _PST16_PRI MARY

AS| _PST16_SECONDARY
AS| _PST32_PRI MARY

AS| _PST32_SECONDARY
AS| _FL8_PRI MARY

AS| _FL8_SECONDARY

AS| _FL16_PRI MARY

AS| _FL16_SECONDARY

AS| _BLOCK_COWM T_PRI MARY
AS| _BLOCK_PRI MARY

AS| _BLOCK_SECONDARY

(cause DAE_invalid_asi exception)
ASI _BLOCK_AS_| F_USER_PRI MARY_LI TTLE
ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE

ASI _BLOCK_AS_| F_USER PRI MARY_ LI TTLE
ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE

AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY_LI TTLE
ASI _PRI MARY_NO FAULT LI TTLE
AS|I _SECONDARY_NO FAULT LI TTLE
ASI _PST16_PRI MARY_LI TTLE
ASl _PST16_SECONDARY_ LI TTLE
AS| _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY_LI TTLE
AS| _FL8_PRI MARY_LI TTLE

AS| _FL8_SECONDARY_LI TTLE
AS| _FL16_PRI MARY_LI TTLE

AS| _FL16_SECONDARY_LI TTLE
AS| _BLOCK_COVM T_SECONDARY
AS| _BLOCK_PRI MARY_LI TTLE
AS|I _BLOCK_SECONDARY_ LI TTLE

V8 Compatibility | The SPARC V8 STA instruction was renamed STWA in the

Note | SPARC V9 architecture.

mem_address_not_aligned (all except STBA)
privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nfo_page

LDA on page 176
STTWA on page 267

CHAPTER 7 ¢ Instructions 249

STBLOCKF

7.89 Block Store

The STBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is

executing.
ASI
Instruction Value Operation Assembly Language Syntax Class
STBLOCKF 1614 64-byte block store to primary address stda fregy, [regaddr] #ASI _BLK_Al UP Al
space, user privilege stda fregy, [reg_plus_imm] %asi D2
STBLOCKF 171, 64-byte block store to secondary address stda fregy, [regaddr] #ASI _BLK_Al US Al
space, user privilege stda fregyy, [reg_plus_imm] %asi D2
STBLOCKF 1Eq4 64-byte block store to primary address stda fregy, [regaddr] #ASI _BLK_Al UPL Al
space, little-endian, user privilege stda fregy, [reg_plus_imm] Yasi D2
STBLOCKF 1F;4 64-byte block store to secondary address stda fregy, [regaddr] #ASI _BLK_Al USL Al
space, little-endian, user privilege stda freg,, [reg_plus_imm] Yasi D2
STBLOCKF F0,4 64-byte block store to primary address stda fregyy, [regaddr] #ASI _BLK_P Al
space stda fregy, [reg_plus_imm] %asi D2
STBLOCKF Fly4 64-byte block store to secondary address stda fregy, [regaddr] #ASI _BLK_S Al
space stda fregy, [reg_plus_imm] %asi D2
STBLOCKF F8y4 64-byte block store to primary address stda fregy, [regaddr] #ASI _BLK_PL Al
space, little-endian stda fregyy, [reg_plus_imm] Yasi D2
STBLOCKF F9;4 64-byte block store to secondary address stda fregy, [regaddr] #ASI _BLK_SL Al
space, little-endian stda fregyy, [reg_plus_imm] Yasi D2

STBLOCKF E0;4 64-byte block commit store to primary stda fregyy, [regaddr] #ASI _BLK COW T_P B1

address space stda freg.y, [req_plus_imm] Yasi D3
STBLOCKF El;4 64-byte block commit store to secondary stda fregyy, [regaddr] #ASI _BLK_COW T_S B1
address space stda freg.y, [req_plus_imm] Yasi D3
11 rd 110111 rsl 1=0 imm_asi rs2
11 rd 110111 rsi =1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description A block store instruction references one of several special block-transfer ASIs. Block-transfer ASIs
allow block stores to be performed accessing the same address space as normal stores. Little-endian
ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed to
be big-endian. Byte swapping is performed separately for each of the eight double-precision registers
accessed by the instruction.
Programming | The block store instruction, STBLOCKEF, and its companion,
Note | LDBLOCKEF, were originally defined to provide a fast
mechanism for block-copy operations.

250 UltraSPARC Architecture 2007 ¢ Draft D0.9.3b, 20 Oct 2009

STBLOCKF

STBLOCKEF stores data from the eight double-precision floating-point registers specified by rd to a 64-
byte-aligned memory area. The lowest-addressed eight bytes in memory are stored from the lowest-
numbered double-precision rd.

While a STBLOCKEF operation is in progress, any of the following values may be observed in a
destination doubleword memory locations: (1) the old data value, (2) zero, or (3) the new data value.
When the operation is complete, only the new data values will be seen.

Compatibility | Software written for older UltraSPARC implementations that

Note | reads data being written by STBLOCKF instructions may or

may not allow for case (2) above. Such software should be
checked to verify that either it always waits for STBLOCKEF to
complete before reading the values written, or that it will
operate correctly if an intermediate value of zero (not the
“old” or “new” data values) is observed while the STBLOCKF
operation is in progress.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes that it stores.

A Block Store with Commit forces the data to be written to memory and invalidates copies in all
caches present. As a result, a Block Store with Commit maintains coherency with the I-cachel. It does
not, however, flush instructions that have already been fetched into the pipeline before executing the
modified code. If a Block Store with Commit is used to write modified instructions, a FLUSH
instruction must still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 318 for more information.)

ASIs E0q4 and Ely4 are only used for block store-with-commit operations; they are not available for
use by block load operations. See Block Load and Store ASIs on page 333 for more information.

Software should assume the following (where “load operation” includes load, load-store, and
LDBLOCKEF instructions and “store operation” includes store, load-store, and STBLOCKF
instructions):

» A STBLOCKEF does not follow memory ordering with respect to earlier or later load operations. If
there is overlap between the addresses of destination memory locations of a STBLOCKF and the
source address of a later load operation, the load operation may receive incorrect data. Therefore, if
ordering with respect to later load operations is important, a MEMBAR #St or eLoad instruction
must be executed between the STBLOCKF and subsequent load operations.

» A STBLOCKEF does not follow memory ordering with respect to earlier or later store operations.
Those instructions’ data may commit to memory in a different order from the one in which those
instructions were issued. Therefore, if ordering with respect to later store operations is important, a
MEMBAR #St or eSt or e instruction must be executed between the STBLOCKF and subsequent
store operations.

» STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

Programming | STBLOCKEF is intended to be a processor-specific instruction (see
Note | the warning at the top of page 250). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-510, described below.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store (STBLOCKF)

instruction are implementation dependent:

» The memory ordering model that STBLOCKEF follows (other than as constrained by the rules
outlined above).

= Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of the STBLOCKEF (the
recommended behavior), or only on accesses to the first eight bytes.

1 Even if all data stores on a given implementation coherently update the instruction cache (see page 389), stores (other than Block Store
with Commit) on SPARC V9 implementations in general do 7ot maintain coherency between instruction and data caches.

CHAPTER 7 ¢ Instructions 251

Exceptions

See Also

STBLOCKF

» Whether STBLOCKEFs to non-cacheable (TTE.cp = 0) pages execute in strict program order or not. If

not, a STBLOCKEF to a non-cacheable page causes an illegal_instruction exception.
s Whether STBLOCKEF follows register dependency interlocks (as ordinary stores do).

= Whether a non-Commit STBLOCKEF forces the data to be written to memory and invalidates copies

in all caches present (as the Commit variants of STBLOCKF do).
= Any other restrictions on the behavior of STBLOCKEF, as described in implementation-specific
documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point registers are not
aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a STBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a mem_address_not_aligned
exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1614, 1714, 1E14, and 1Fq¢),
STBLOCKEF causes a privileged_action exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep. #411-510).

Implementation | STBLOCKEF shares an opcode with the STDFA, STPARTIALE,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction

fp_disabled
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #411-510)
DAE_privilege_violation
DAE_nfo_page

LDBLOCKEF on page 178

252 UltraSPARC Architecture 2007 « Draft D0.9.3b, 20 Oct 2009

STF/STDF / STQF

7.90

Store Floating-Point

Instruction op3 rd Operation Assembly Language Class
STF 10 0100 0-31 Store Floating-Point register st fregq, | address] Al
STDF 10 0111 t Store Double Floating-Point register st d fregeq, [address] Al
STQF 10 0110 ¥ Store Quad Floating-Point register ~ stq fregq, [address] C3

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i= — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store single floating-point instruction (STF) copies the contents of the 32-bit floating-point register

Fg[rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit floating-point register
Fplrd] into a word-aligned doubleword in memory. The unit of atomicity for STDF is 4 bytes (one
word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit floating-point register
Folrd] into a word-aligned quadword in memory. The unit of atomicity for STQF is 4 bytes (one
word).

These instruction access memory using the implicit ASI (see page 76). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STF or STDF instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STF or STDF instruction causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

STDF requires only word alignment in memory. However, if the effective address is word-aligned but
not doubleword-aligned, an attempt to execute an STDF instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDF instruction and return (impl. dep. #110-V9-Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-aligned but not
quadword-aligned, an attempt to execute an STQF instruction causes an
STQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

CHAPTER 7 ¢ Instructions 253

Exceptions

See Also

STF/STDF / STQF / STXFSR

An attempt to execute an STQF instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 p