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Preface

Welcome to the UltraSPARC T1 Processor Supplement, D2.1. This document contains
information about the processor-specific aspects of the architecture and
programming of the UltraSPARC T1 processor, one of Sun Microsystems’ family of
processors compliant with UltraSPARC Architecture™. It is intended to supplement
the UltraSPARC Architecture 2005 with implementation-specific information.

Target Audience
This User’s Guide is mainly targeted for programmers who write software for the
UltraSPARC T1 processor. This manual contains a depository of information that is
useful to operating system programmers, application software programmers and
logic designers, who are trying to understand the architecture and operation of the
UltraSPARC T1 processor. This manual is both a guide and a reference manual for
programming of the processor.

Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

■ Italic font is also used for terms where substitution is expected, for example,
“fccn”, “virtual processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

■ lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”
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■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: %f0,
ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are
separated by a period (’.’), for example, FSR.cexc.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary. Note: Names of some instructions contain both upper- and
lower-case letters.

■ An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ The left arrow symbol ( ← ) is the assignment operator. For example, “PC ← PC +
1” means that the Program Counter (PC) is incremented by 1.

■ Square brackets ( [ ] ) are used in two different ways, distinguishable by the
context in which they are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,Q]F” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI_PRIMARY[_LITTLE] indicates two
related address space identifiers, ASI_PRIMARY and ASI_PRIMARY_LITTLE.
(Contrast with the use of angle brackets, below)

■ Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names.
For example, “ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

■ Curly braces ( { } ) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon ( : ), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

■ A double period ( .. ) indicates any single intermediate value between two given
end values is possible. For example, NAME[2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAME0; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAME0. (Contrast with the use of
the colon, above)
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■ A vertical bar ( | ) separates mutually exclusive alternatives inside square
brackets ( [ ] ), angle brackets ( < > ), or curly braces ( { } ). For example,
“NAME[A|B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A|B>”
expands to "NAMEA, NAMEB".

■ The asterisk ( * ) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|q> and FCMPE<s|d|q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.

■ The slash ( / ) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKF instruction pair ....”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.

Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 10012, FFFF 000016). In some cases, numbers may be
preceded by “0x” to indicate hexadecimal (base-16) notation (for example,
0xFFFF 0000). Long binary and hexadecimal numbers within the text may have
spaces inserted every four characters to improve readability.

An en dash ( – ) with no spaces indicates a range, for example, 000116–000016.

Also see the colon ( : ) and double period ( .. ) notation described in the previous
section.

Informational Notes
This manual provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.
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Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture processor might
implement an architectural feature.

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture and SPARC V9 implementations. Such
information may not pertain to other SPARC V9
implementations.
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CHAPTER 1

UltraSPARC T1 Basics

This chapter introduces the UltraSPARC T1 chip-level multithreaded (CMT)
processor.

1.1 Background
UltraSPARC T1 is the first chip multiprocessor that fully implements Sun’s
Throughput Computing initiative. Throughput Computing is a technique that takes
advantage of the thread-level parallelism that is present in most commercial
workloads. Unlike desktop workloads, which often have a small number of threads
concurrently running, most commercial workloads achieve their scalability by
employing large pools of concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these microprocessors by a combination of
extremely deep pipelines (over 20 stages in Pentium 4) and by executing multiple
instructions in parallel (referred to as instruction-level parallelism, or ILP). The basic
tenet behind Throughput Computing is that exploiting ILP and deep pipelining has
reached the point of diminishing returns and as a result, current microprocessors do
not utilize their underlying hardware very efficiently.

For many commercial workloads, the physical processor core will be idle most of the
time waiting on memory, and even when it is executing it will often be able to only
utilize a small fraction of its wide execution width. So rather than building a large
and complex ILP processor that sits idle most of the time, a number of small, single-
issue physical processor cores that employ multithreading are built in the same chip
area. Combining multiple physical processors cores on a single chip with multiple
hardware-supported threads (strands) per physical processor core, allows very high
performance for highly threaded commercial applications. This approach is called
thread-level parallelism (TLP). The difference between TLP and ILP is shown in
FIGURE 1-1.
1



FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same physical processor core, and multiple physical processor cores
run their strands in parallel. In the ideal case, shown in FIGURE 1-1, memory latency
can be completely overlapped with execution of other strands. In contrast,
instruction-level parallelism simply shortens the time to execute instructions, and
does not help much in overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP physical
processor cores of today are the evolutionary outgrowth from a time when the CPU
was the bottleneck in delivering good performance.

With physical processor cores capable of multiple-GHz clocking, the performance
bottleneck has shifted to the memory and I/O subsystems and TLP has an obvious
advantage over ILP for tolerating the large I/O and memory latency prevalent in
commercial applications. Of course, every architectural technique has its advantages
and disadvantages. The one disadvantage of employing TLP over ILP is that
execution of a single strand may be slower on a TLP processor than an ILP
processor. With physical processor cores running at frequencies well over one GHz,
a strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
non-issue for nearly all commercial applications.

1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this
overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

TLP

ILP

Strand 1

Strand 2

Strand 3

Strand 4

Single strand executing
2 instructions per cycle

Executing Stalled on Memory
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1.2 UltraSPARC T1 Overview
UltraSPARC T1 is a single-chip multiprocessor. UltraSPARC T1 contains eight
SPARC® physical processor cores. Each SPARC physical processor core has full
hardware support for four virtual processors (or “strands”). These four strands run
simultaneously, with the instructions from each of the four strands executed round-
robin by the single-issue pipeline. When a strand encounters a long-latency event,
such as a cache miss, it is marked unavailable and instructions will not be issued
from that strand until the long-latency event is resolved. Round-robin execution of
the remaining available strands will continue while the long-latency event of the
first strand is resolved.

Each SPARC physical core has a 16-Kbyte, 4-way associative instruction cache (32-
byte lines), 8K-byte, 4-way associative data cache (16-byte lines), 64-entry fully
associative instruction TLB, and 64-entry fully associative data TLB that are shared
by the four strands. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 3-Mbyte, 12-way associative L2 cache (with 64-byte
lines). The L2 cache is banked 4 ways to provide sufficient bandwidth for the eight
SPARC physical cores. The L2 cache connects to four on-chip DRAM controllers,
which directly interface to DDR2-SDRAM. In addition, an on-chip JBUS controller
and several on-chip I/O-mapped control registers are accessible to the SPARC
physical cores. Traffic from the JBUS coherently interacts with the L2 cache.
• 3



A block diagram of the UltraSPARC T1 chip is shown in FIGURE 1-2.

FIGURE 1-2 UltraSPARC T1 Chip Block Diagram

1.3 UltraSPARC T1 Components
This section describes each component in UltraSPARC T1:

■ SPARC physical core
■ Floating-point unit
■ L2 cache
■ DRAM controller
■ IOB
■ JBUS interface
■ SSI ROM interface

IOBBidge
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1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for four strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The four strands share
the instruction and data caches and TLBs. An auto-demap feature is included with
the TLBs to allow the multiple strands to update the TLB without locking.

The core pipeline consists of six stages: Fetch, Switch, Decode, Execute, Memory and
Writeback. As shown in FIGURE 1-3, the Switch stage contains a strand instruction
register for each strand. One of the strands is picked by the strand scheduler and the
current instruction for that strand is issued to the pipe. While this is done, the
hardware fetches the next instruction for that strand and updates the strand
instruction register.

The scheduled instruction proceeds down the rest of the stages of the pipe, similar to
instruction execution in a single-strand RISC machine. It is decoded in the Decode
stage. The register file access also happens at this time. In the Execute stage, all
arithmetic and logical operations take place. The memory address is calculated in
this stage. The data cache is accessed in the Memory stage and the instruction is
committed in the Writeback stage. All traps are signalled in this stage.

Instructions are classified as either short or long latency instructions. Upon
encountering a long latency instruction, or other stall condition, in a certain strand,
the strand scheduler stops scheduling that strand for further execution. Scheduling
commences again, when the long latency instruction completes or the stall condition
clears.

FIGURE 1-3 illustrates SPARC physical core.
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FIGURE 1-3 SPARC Core Block Diagram

1.3.2 Floating-Point Unit (FPU)
A single floating-point unit is shared by all eight SPARC physical cores. The shared
floating-point unit is sufficient for most commercial applications, in which fewer
than 1% of instructions typically involve floating-point operations.

1.3.3 L2 Cache
The L2 cache is banked four ways, with the bank selection based on physical address
bits 7:6. The cache is 3 Mbytes, 12-way set associative, and has a line size of 64 bytes.
Unloaded access time is 23 cycles for a L1 data cache miss and 22 cycles for a L1
instruction cache miss.

I-Cache

Strand

Instruction

Registers

Strand

Scheduler
Decode

ALU

D-Cache

External

Interface

Store Buffers

Register Files
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1.3.4 DRAM Controller
UltraSPARC T1’s DRAM Controller is banked four ways1, with each L2 bank
interacting with exactly one DRAM Controller bank. The DRAM Controller is
interleaved based on physical address bits 7:6, so each DRAM Controller bank must
have the same amount of memory installed and enabled.

UltraSPARC T1 uses DDR2 DIMMs, and can support one or two ranks of stacked or
unstacked DIMMs. Each DRAM bank/port is two DIMMs wide (128b +16b ECC).
All installed DIMMs on an individual bank/port must be identical, and the same
total amount of memory (# of bytes) must be installed on each DRAM Controller
port. The DRAM controller frequency is an exact ratio of the CMP core Frequency,
where the CMP core frequency must be at least 4X the DRAM controller frequency.
The DDR (Double Data Rate) data busses, of course, transfer data at twice the
frequency of the DRAM Controller frequency.

The DRAM Controller also supports a small memory configuration mode, using
only two DRAM ports. In this mode, L2 banks 0 and 2 are serviced by DRAM port 0,
and L2 banks 1 and 3 are serviced by DRAM port 1. The installed memory on each
of these ports is still two DIMMs wide.

1.3.5 IOB Unit
The IOB performs an address decode on IO-addressable transactions, and directs
them to the appropriate internal block or to the appropriate external interface (JBUS
or SSI). In addition, the IOB maintains the register status for external interrupts.

1.3.6 JBUS Interface (JBI)
JBUS is the interconnect between UltraSPARC T1 and the I/O subsystem. JBUS is a
200 MHz, 128-bit-wide, multiplexed address/data bus, used predominantly for
DMA traffic, plus the PIO traffic to control it.

The JBI is the block that interfaces to JBUS, receiving and responding to DMA
requests, routing them to the appropriate L2 banks, and also issuing PIO
transactions on behalf of the strands, and forwarding responses back.

1.3.7 SSI ROM Interface
UltraSPARC T1 has a 50 Mbit/sec serial interface (SSI) which connects to an external
FPGA which interfaces to the BOOT ROM. In addition, the SSI Interface supports
PIO accesses across the SSI, thus supporting optional CSRs or other interfaces within
the FPGA.
1. A two-bank option is available for cost-constrained minimal memory configurations.
• 7
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CHAPTER 2

Data Formats

The UltraSPARC T1 processor supports all UltraSPARC Architecture 2005 data
formats; see the Data Formats chapter of the UltraSPARC Architecture 2005 for
details.
9
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CHAPTER 3

Registers

This chapter discusses the specifics of UltraSPARC T1 registers, as they differ from
the register definitions in UltraSPARC Architecture 2005.

3.1 Ancillary State Registers (ASRs)

3.1.1 TICK Register
See the UltraSPARC Architecture 2005 for a general description of this register.

The TICK register contains two fields: npt and counter. On an UltraSPARC T1
processor, the npt field is replicated per strand, while the counter field is shared by
all four strands on a physical processor core. Hyperprivileged software on any
strand can write the TICK register. A write of the TICK register will update both the
shared counter as well as the writing strand’s npt field (the npt fields for other
strands will be unaffected). The counter increments each physical processor core
clock but, on an UltraSPARC T1 processor, the least significant 2 bits of the counter
field always read as 0.

3.1.2 General Status Register (GSR)
Each strand has a nonprivileged General Status register (GSR), as described in the
UltraSPARC Architecture 2005.

All UltraSPARC Architecture 2005 GSR fields are supported in the UltraSPARC T1
implementation. However, the mask and scale fields are not directly written by VIS
instructions; they are provided for use by software emulation.
11



3.1.3 Software Interrupt Register (SOFTINT)
Each strand has a privileged software interrupt register, as described in the
UltraSPARC Architecture 2005.

The software interrupt register contains three fields: sm, int_level, and tm. Setting
any of sm, tm, or SOFTINT{14} generates an interrupt_level_14 exception. However,
these bits are considered completely independent of each other. Thus, a Stick
Compare event will only set bit 16 and generate interrupt_level_14 exception, not
also set bit 14.

3.1.4 Tick Compare Register (TICK_CMPR)
Each strand has a privileged Tick Compare (TICK_CMPR) register, as described in
the UltraSPARC Architecture 2005.

3.1.5 System Tick Register (STICK)
On an UltraSPARC T1 processor, the STICK register is an alias for the TICK register.
Writes to STICK will be reflected in TICK, and vice versa. See the description of TICK
above for the behavior of this register.

UltraSPARC T1
Programming

Note

It is possible (but difficult) in UltraSPARC T1 for software to
clear a SOFTINT bit between the setting of that bit and the
generation of the interrupt from the bit being set because (there
is a three-cycle window between the setting of the bit and the
interrupt in UltraSPARC T1). If software were to do this, it
would see an interrupt_level_n interrupt, but would find no bit
set in the SOFTINT register. Note that normal software would
only clear a bit in response to taking the interrupt_level_n
exception, so this race condition should not occur in normal
operation.

UltraSPARC T1
Programming

Note

It is possible, but even more difficult than the above case, for software
to zero a SOFTINT bit as it is getting set to 1, while another core is
accessing its SOFTINT register, with timing such that hardware
decides to take a SOFTINT trap, but the SOFTINT register is clear by
the time it decides the trap number. In this case, hardware will take a
trap 4016. Since software should only clear a bit that is known to be
set, this should never happen in normal operation.
12 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



3.1.6 System Tick Compare Register (STICK_CMPR)
Each strand has a privileged System Tick Compare (STICK_CMPR) register, as
described in the UltraSPARC Architecture 2005.

3.1.7 PCR and PIC Registers

Notes:

1. Nonprivileged access with PCR.priv = 1 causes a privileged_action exception.

2. Nonprivileged access causes a privileged_opcode exception.

3.1.8 Strand Status Register
The Stand Status register (STRAND_STS_REG) is used to control CMT operation. It is
specific to the UltraSPARC T1 implementation.

3.2 PR State Registers

3.2.1 Trap State (TSTATE)
Each virtual processor (strand) has MAXTL(6) Trap State (TSTATE) registers, as
described in the UltraSPARC Architecture 2005.

TABLE 3-1 UltraSPARC T1-Specific Performance Instrumentation Registers

ASR
Number ASR Name Access priv

Replicated
by Strand Description

1016 PCR RW Y2 Y Performance counter control register

1116 PIC RW Y1 Y Performance Instrumentation Counter
register

TABLE 3-2 UltraSPARC T1-Specific Strand Status Register

ASR
Number ASR Name Access priv

Replicated
by Strand Description

1A16 STRAND_STS_REG RW Y2 Y Strand Status & Issue Control register
• 13



3.2.2 Processor State Register (PSTATE)
Each virtual processor (strand) has a Processor State register, as described in the
UltraSPARC Architecture 2005.

When not in hyperprivileged mode, disrupting traps destined for hyperprivilegd
mode ignore the PSTATE.ie bit.

3.2.3 Trap Level Register (TL)
Each virtual processor (strand) has a Trap Level register, as described in the
UltraSPARC Architecture 2005.

The maximum privileged trap level visible in privileged mode (MAXPTL) for
UltraSPARC T1 is 2.

The maximum trap level (MAXTL) for UltraSPARC T1 is 6.

3.2.4 Global Level Register (GL)
Each virtual processor (strand) has a Global Level register, as described in the
UltraSPARC Architecture 2005.

The maximum privileged global level visible in privileged mode (MAXPGL) for
UltraSPARC T1 is 2.

The maximum global level (MAXGL) for UltraSPARC T1 is 3.

3.3 Floating-Point State Register (FSR)
Each virtual processor (strand) has a Floating-Point State register, FSR, as described
in the UltraSPARC Architecture 2005.

UltraSPARC T1 does not provide a nonstandard floating-point mode, so the ns field
of FSR is always 0.

On UltraSPARC T1, FSR.ver always reads as 0.

FSR.qne always reads as 0, because UltraSPARC T1 neither needs nor supports a
floating-point queue (FQ).
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3.4 Hyperprivileged Registers
This section describes UltraSPARC T1’s hyperprivileged registers.

3.4.1 Hyperprivileged Processor State Register
(HPSTATE)
Each UltraSPARC T1 virtual processor has a Hyperprivileged Processor State
register (HPSTATE), as described in the UltraSPARC Architecture 2005.

Full documentation on the Hypervisor Processor State register can be found in the
UltraSPARC Architecture 2005.

Note that the tlz bit retains its current value when a trap is taken. This behavior is
different from that specified in the UltraSPARC Architecture 2005 which states that
HPSTATE.tlz is reset to 0 when certain traps are taken.

3.4.2 Hyperprivileged Trap State Register (HSTATE)
Each UltraSPARC T1 virtual processor has a set of Hyperprivileged Trap State
(HSTATE) registers, one per trap level. Full documentation on this register can be
found in the UA-2005 specification.

3.4.3 Hyperprivileged Interrupt Pending Register
(HINTP)
Each UltraSPARC T1 virtual processor has a Hyperprivileged Interrupt Pending
(HINTP) register. Full documentation on this register can be found the UA-2005
specification.

RW RW RW RW

HPSTATEH — i.d. ibe — red — hpriv — tlz

63 12 11 10 9 6 5 4 3 2 1 0

FIGURE 3-1 HPSTATE Fields

Programming
Note

On UltraSPARC T1, whenever the HPSTATE register is written,
care must be taken that the implementation-dependent bit
HPSTATE{11} is always set to the value ‘1’, to avoid unspecified
behavior.
• 15



3.4.4 Hyperprivileged Trap Base Address Register
(HTBA)
Each UltraSPARC T1 virtual processor has a Hyperprivileged Trap Base Address
(HTBA) register. Full documentation on this register can be found the UA-2005
specification. Note that UltraSPARC T1 only implements bits 47:14 of the tba field.
Bits 63:48 are always sign-extended from bit 47.

3.4.5 Hyperprivileged Version Register (HVER)
All virtual processors on an UltraSPARC T1 physical processor share a read-only
hyperprivileged Version (HVER) register. Writes to this register generate an
illegal_instruction trap.

3.4.6 Hyperprivileged System Tick Compare Register
(HSTICK)
Each UltraSPARC T1 virtual processor has a Hyperprivileged System Tick Compare
(HSTICK) register. The hyperprivileged system TICK compare register contains two
fields: int_dis and hstick_cmpr. A full 63-bit hstick_cmpr field is implemented in the
register, but the least significant two bits are ignored when comparing against the
STICK counter field. The int_dis bit controls whether a hstick_match trap is
generated, and the hsp bit is set in the HINTP register when hstick_cmpr bits 62:2
match the STICK counter field.

3.4.7 Strand Status Register
On an UltraSPARC T1 processor, each virtual processor (strand) has an (UltraSPARC
T1-specific) hyperprivileged Strand Status Register that contains control bits for
stranded operation, as well as strand status. Hyperprivileged software can read/
write the whole register. The format of this register is shown in TABLE 3-14.

TABLE 3-3 Strand Status Register – STRAND_STS_REG (ASR 1A16)

Bit(s) Field R/W Description

63:52 — R Reserved

51:48 wait_s R Wait mask on store buffer for strands 3:0.

47:44 wait_o R Wait mask on other conditions for strands 3:0.

43:40 wait_i R Wait mask on instruction miss for strands 3:0.

39:36 — R Reserved

35:31 sfsm_state0 R State of strand 0 fsm.
16 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



Speculative strand execution refers to whether the hardware speculates that most
loads (all loads except floating-point loads and LDD) will hit in the L1 Data cache.
When spec_en = 1, instructions from a strand following the load will be issued after
the load-use penalty is satisfied, but before hardware knows whether the load hit in
the L1 data cache. These speculative instructions are lower priority than
nonspeculative instructions from other strands, and will only be issued if no other
strand has nonspeculative instructions ready for issue.

TABLE 3-15 lists the encodings for the sfsm_state* fields.

30:26 sfsm_state1 R State of strand 1 fsm.

25:21 sfsm_state2 R State of strand 2 fsm.

20:16 sfsm_state3 R State of strand 3 fsm.

15:13 — R Reserved

12:10 strand_id R ID of the physical processor core within the UltraSPARC T1 chip.

9:8 strand_id R ID of the strand (virtual processor) within the physical processor core.

7:3 — R Reserved

2 spec_en RW Enables speculative strand execution following loads. This bit is shared
among all strands (that is, if one strand sets this bit to 1, all strands will
have speculative execution enabled).

1 rsvd4 R Reserved

0 active RW Controls whether strand is active; 1 = active, 0 = halted or idle.

TABLE 3-4 sfsm_state Encodings

Strand State Description

IDLE 00000

WAIT 00001

HALT 00010

RUN 00101

SPECULATIVE_RUN 00111

SPECULATIVE_READY 10011

READY 11001

TABLE 3-3 Strand Status Register – STRAND_STS_REG (ASR 1A16) (Continued)

Bit(s) Field R/W Description
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Implementation
Note

Privileged software access to the Strand Status register is
deprecated. However, on UltraSPARC T1, privileged software
does have limited access. An attempt to read or write the Strand
Status register while in privileged mode does not cause an
exception. A read returns only the active bit (all other bits read
as 0); a write affects only the active bit (writes to other bits are
ignored). Nonetheless, software should only access this register
in hyperprivileged mode.
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CHAPTER 4

Instruction Set Overview

The UltraSPARC T1 processor implements the instruction set described in the
UltraSPARC Architecture 2005. Additional UltraSPARC T1-specific details are
described in this chapter.

4.1 State Register Access
UltraSPARC T1 supports the standard ASRs described in the UltraSPARC
Architecture 2005.

In addition, UltraSPARC T1 provides the RDasr and WRasr instruction described in
TABLE 4-1

4.2 Floating-Point Operate (FPop)
Instructions
UltraSPARC T1 implements the floating-point instruction set described in the
UltraSPARC Architecture 2005.

UltraSPARC T1 generates the correct IEEE Std 754-1985 results (impl. dep. #3).

All floating-point quad-precision operations cause an fp_exception_other trap with
FSR.ftt = unimplemented_FPop, and system software must emulate those
operations.

TABLE 4-1 UltraSPARC T1-Specific RDasr and WRasr Instructions

ASR # ASR Name Description R, W? Priv?

26 strand_status Strand Status and Control register RW Yes
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4.3 Reserved Opcodes and Instruction
Fields
An attempt to execute an opcode to which no instruction is assigned causes a trap.
Specifically:

■ Attempting to execute a reserved FPop causes an fp_exception_other trap (with
FSR.ftt = unimplemented_FPop).

■ Attempting to execute any other reserved opcode causes an illegal_instruction
trap.

■ Attempting to execute a Tcc instruction with a nonzero value in the reserved field
(bits 10:8 and 6:5 when i = 0 or bits 10:7 when i = 1) causes an illegal_instruction
trap. See Trap on Integer Condition Codes (Tcc) on page 25.

See Appendix C, Opcode Maps, for a complete enumeration of the opcode
assignments.

4.4 Register Window Management
N_REG_WINDOWS = 8 on UltraSPARC T1 (impl. dep. #2-V8). The state of the eight
register windows is determined by the contents of the set of privileged registers
described in the UltraSPARC Architecture 2005.
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CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary
The UltraSPARC T1 CPU implements both the standard UltraSPARC Architecture
2005 instruction set and a number of implementation-dependent extended
instructions. Standard UltraSPARC Architecture 2005 instructions are documented in
the UltraSPARC Architecture 2005. UltraSPARC T1 extended instructions are
documented in VIS Instructions on page 25.

The superscripts and their meanings are defined in TABLE 5-1.

UltraSPARC T1 executes most UltraSPARC Architecture 2005 instructions in
hardware. Those that trap and are emulated in software are listed in TABLE 5-2.

TABLE 5-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction

H Hyperprivileged instruction

P Privileged instruction

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (1 of 3)

Instruction Description
Exception Caused by
Attempted Execution

ALLCLEAN Mark all windows as clean illegal_instruction

ARRAY{8,16,32} 3-D address to blocked byte address conversion illegal_instruction

BMASK Write the GSR.mask field illegal_instruction

BSHUFFLE Permute bytes as specified by the GSR.mask field illegal_instruction

EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code
altering}

illegal_instruction
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FABSq Floating-point absolute value quad fp_exception_other
[unimplemented_FPop]

FADDq Floating-point add quad fp_exception_other
[unimplemented_FPop]

FCMPq Floating-point compare quad fp_exception_other
[unimplemented_FPop]

FCMPEq Floating-point compare quad (exception if unordered) fp_exception_other
[unimplemented_FPop]

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2 illegal_instruction

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2 illegal_instruction

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2 illegal_instruction

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2 illegal_instruction

FDIVq Floating-point divide quad fp_exception_other
[unimplemented_FPop]

FdMULq Floating-point multiply double to quad fp_exception_other
[unimplemented_FPop]

FEXPAND Four 8-bit to 16-bit expand illegal_instruction

FiTOq Convert integer to quad floating-point fp_exception_other
[unimplemented_FPop]

FMOVq Floating-point move quad fp_exception_other
[unimplemented_FPop]

FMOVqcc Move quad floating-point register if condition is satisfied fp_exception_other
[unimplemented_FPop]

FMOVqr Move quad floating-point register if integer register contents
satisfy condition

fp_exception_other
[unimplemented_FPop]

FMULq Floating-point multiply quad fp_exception_other
[unimplemented_FPop]

FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding
components

illegal_instruction

FMUL8ULx16 Unsigned lower 8-bit x 16-bit partitioned product of
corresponding components

illegal_instruction

FMUL8x16 8- x 16-bit partitioned product of corresponding components illegal_instruction

FMUL8x16AL Signed lower 8-bit x 16-bit lower α partitioned product of four
components

illegal_instruction

FMUL8x16AU Signed upper 8-bit x 16-bit lower α partitioned product of four
components

illegal_instruction

FMULD8SUx16 Signed upper 8-bit x 16-bit multiply ← 32-bit partitioned product
of components

illegal_instruction

FMULD8ULx16 Unsigned lower 8-bit x 16-bit multiply ← 32-bit partitioned
product of components

illegal_instruction

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (2 of 3)

Instruction Description
Exception Caused by
Attempted Execution
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FNEGq Floating-point negate quad fp_exception_other
[unimplemented_FPop]

FPACKFIX Two 32-bit to 16-bit fixed pack illegal_instruction

FPACK{16,32} Four 16-bit/two 32-bit pixel pack illegal_instruction

FPMERGE Two 32-bit to 64-bit fixed merge illegal_instruction

FSQRT(s,d,q) Floating-point square root fp_exception_other
[unimplemented_FPop]

F(s,d,q)TO(q) Convert between floating-point formats to quad fp_exception_other
[unimplemented_FPop]

FqTOi Convert quad floating point to integer fp_exception_other
[unimplemented_FPop]

FqTOx Convert quad floating point to 64-bit integer fp_exception_other
[unimplemented_FPop]

FSUBq Floating-point subtract quad fp_exception_other
[unimplemented_FPop]

FxTOq Convert 64-bit integer to floating-point fp_exception_other
[unimplemented_FPop]

IMPDEP1 Implementation-dependent instruction illegal_instruction

IMPDEP2 Implementation-dependent instruction illegal_instruction

INVALWP Mark all windows as CANSAVE illegal_instruction

LDQF Load quad floating-point illegal_instruction

LDQFA Load quad floating-point into alternate space illegal_instruction

LDSHORTF Short FP load, zero-extend 8/16-bit load to a double-precision
floating-point register

data_access_exception

NORMALW Mark other windows as restorable illegal_instruction

OTHERW Mark restorable windows as other illegal_instruction

PDIST Distance between eight 8-bit components illegal_instruction

POPC Population count illegal_instruction

PST Eight 8-bit/four 16-bit/two 32-bit partial stores data_access_exception

SHUTDOWND,P Shut down illegal_instruction

STBLOCKF 64-byte block store with commit data_access_exception

STQF Store quad floating-point illegal_instruction

STQFA Store quad floating-point into alternate space illegal_instruction

STSHORTF Short FP store, 8-/16-bit store from a double-precision
floating-point register

data_access_exception

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (3 of 3)

Instruction Description
Exception Caused by
Attempted Execution
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5.2 Prefetch and Prefetch from Alternate
Space
PREFETCH and PREFETCHA with fcn codes of 0–3 and 16–23 (1016–1716) are
implemented; all map to the same operation that brings the cache line into the L2
cache. On an MMU miss or when the MMU is completely bypassed (PA{39:0} is set
to VA{39:0}), the prefetch is dropped (weak prefetching).

Prefetch fcn codes 516–F16 cause an illegal_instruction trap. These operations are all
“weak” prefetches; in some cases (on an MMU miss) the prefetch operation is
dropped.

5.3 Trap on Integer Condition Codes (Tcc)
See the UltraSPARC Architecture 2005 for a complete description of the Tcc
instruction.

5.4 VIS Instructions
UltraSPARC T1 supports in hardware the VIS 2 SIAM instruction and a subset of the
VIS 1 instructions.

All other VIS 1 and VIS 2 instructions (see TABLE 5-2 for a list) cause an
illegal_instruction exception on UltraSPARC T1 and are emulated in software.

Note Prefetches to I/O space (PA{39} = 1) are dropped by UltraSPARC
T1.

Note Since hypervisor accesses normally bypass the MMU, prefetches
in hypervisor mode are generally NOPs. It is possible to get a
hypervisor prefetch, by using PREFETCHA with ASI_REAL or
ASI_AS_IF_USER*, to force MMU non-bypass.

UltraSPARC T1
Implementation

Note

For the i = 0 variant of Tcc, UltraSPARC T1 does not check that
reserved instruction bit 7 is 0. If bit 7 is set to 1 with i = 0,
UltraSPARC T1 treats it as a valid Tcc instruction.
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5.5 Partitioned Add/Subtract Instructions
See the UltraSPARC Architecture 2005 for detailed descriptions of the FPADD and
FPSUB instructions.

5.6 Align Data
See the UltraSPARC Architecture 2005 for detailed descriptions of the FALIGNDATA
instruction.

5.7 F Register Logical Operate Instructions
See the UltraSPARC Architecture 2005 for a description of the F register logical
operate instructions (1-, 2-, and 3-operand).

UltraSPARC T1
Programming

Note

The use of VIS instructions on UltraSPARC T1 is strongly
discouraged; the performance of even the implemented VIS
instructions will often be below that of a comparable set of non-
VIS instructions. This includes the block load and block store
instructions. An UltraSPARC T1 physical processor core (four
virtual processors) can only have a single outstanding floating-
point operation (including block load, block store, and VIS
instructions) in progress at any given time.

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of a single
FPADD should not be used as part of a 64-bit graphics
instruction source operand in the next instruction group.

Similarly, the result of a standard FPADD should not be used as
a 32-bit graphics instruction source operand in the next
instruction group.

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of
FALIGNDATA should not be used as the source operand of a 32-
bit SIMD instruction in the next instruction group.
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5.8 Block Load and Store Instructions
For architectural descriptions of the LDBLOCKF and STBLOCKF instructions, see
the UltraSPARC Architecture 2005.

On UltraSPARC T1, to order an LDBLOCKF with respect to earlier stores, an
intervening MEMBAR #Sync must be executed.

Similarly on UltraSPARC T1, STBLOCKF source data registers are not interlocked
against completion of previous load instructions (even if a second LDBLOCKF has
been performed). The previous load data must be referenced by some other
intervening instruction, or an intervening MEMBAR #Sync must be performed. If
the programmer violates these rules, data from before or after the load may be used.
UltraSPARC T1 continues execution before all of the store data has been transferred.
If store data registers are overwritten before the next block store or MEMBAR #Sync

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of a single
logical operate instruction should not be used as part of the
source operand of a 64-bit SIMD instruction in the next
instruction group.

Similarly, the result of a standard logical operate instruction
should not be used as the source operand of a 32-bit SIMD
instruction source operand in the next instruction group.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a block load forces a miss in the primary
cache and will not allocate a line in the primary cache, but does
allocate in the L2 cache. On UltraSPARC T1, block loads and
stores from multiple virtual processors are not overlapped.

Compatibility
Note

These instructions were intended for use in transferring large
blocks of data (more than 256 bytes); for example, in BCOPY
and BFILL operations.

The use of block loads and stores on UltraSPARC T1 is
deprecated; they are provided primarily for compatibility with
existing software. UltraSPARC T1 provides a separate set of
ASIs for high performance BCOPY and BFILL, as described in
TABLE 9-3 on page 69. The performance of parallel BCOPY using
appropriate ASIs (from among 2216, 2316, E216, E316, EA16, and
EB16) will be 2.5 to 3.5 times that of a BCOPY using block loads
and stores. The performance of a single-threaded BCOPY using
these ASIs will be 15% to 50% better than that of a BCOPY using
block loads and stores.
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instruction, then the following rule must be observed. The first register can be
overwritten in the same instruction group as the STBLOCKF, the second register can
be overwritten in the instruction group following the block store and so on. If this
rule is violated, the store may store correct data or the overwritten data. Block stores
always operate under the relaxed memory order (RMO) memory model, regardless
of the PSTATE.mm setting, and require a subsequent MEMBAR #Sync to order them
with respect to following loads.

After an STBLOCKF instruction but before executing a DONE, RETRY, or WRPR to
PSTATE instruction, there must be an intervening MEMBAR #Sync or a trap. If this
is rule is violated, instructions after the DONE, RETRY, or WRPR to PSTATE may
not see the effects of the updated PSTATE.

On UltraSPARC T1, LDBLOCKF does not follow memory model ordering with
respect to stores. In particular, read-after-write and write-after-read hazards to
overlapping addresses are not detected. The side-effects bit associated with the
access is ignored (see Translation Table Entry (TTE) on page 182). If ordering with
respect to earlier stores is important (for example, a block load that overlaps
previous stores), then there must be an intervening MEMBAR #StoreLoad (or
stronger MEMBAR). If ordering with respect to later stores is important (for
example, a block load that overlaps a subsequent store), then there must be an
intervening MEMBAR #LoadStore or reference to the block load data. This
restriction does not apply when a trap is taken, so the trap handler need not
consider pending block loads. If the LDBLOCKF overlaps a previous or later store
and there is no intervening MEMBAR, trap, or data reference, the LDBLOCKF may
return data from before or after the store.

STBLOCKF does not follow memory model ordering with respect to loads, stores or
flushes. In particular, read-after-write, write-after-write, flush-after-write, and write-
after-read hazards to overlapping addresses are not detected. The side-effects bit
associated with the access is ignored. If ordering with respect to earlier or later loads
or stores is important, then there must be an intervening reference to the load data
(for earlier loads), or appropriate MEMBAR instruction. This restriction does not
apply when a trap is taken, so the trap handler does not have to worry about
pending block stores. If the STBLOCKF overlaps a previous load and there is no
intervening load data reference or MEMBAR #LoadStore instruction, the load may
return data from before or after the store and the contents of the block are
undefined. If the STBLOCKF overlaps a later load and there is no intervening trap or
MEMBAR #StoreLoad instruction, the contents of the block are undefined. If the
STBLOCKF overlaps a later store or flush and there is no intervening trap or
MEMBAR #StoreStore instruction, the contents of the block are undefined.

Compatibility
Note

Prior UltraSPARC machines may have written loaded data into the
first two registers at the same time. Software that depends on this
unsupported behavior must be modified for UltraSPARC T1.
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Block load and store operations do not obey the ordering restrictions of the currently
selected virtual processor memory model (always TSO in UltraSPARC T1); block
operations always execute under an RMO memory ordering model. Explicit
MEMBAR instructions are required to order block operations among themselves or
with respect to normal loads and stores. In addition, block operations do not
conform to dependence order on the issuing strand; that is, no read-after-write or
writer-after-read checking occurs between block loads and stores. Explicit
MEMBARs must be used to enforce dependence ordering between block operations
that reference the same address.

Typically, LDBLOCKF and STBLOCKF are used in loops where software can ensure
that there is no overlap between the data being loaded and the data being stored.
The loop must be preceded and followed by the appropriate MEMBARs to ensure
that there are no hazards with loads and stores outside the loops. CODE EXAMPLE 5-1
illustrates the inner loop of a byte-aligned block copy operation.

Note that the loop must be unrolled twice to achieve maximum performance. All FP
register references in this code example are to 64-bit registers. Eight versions of this
loop are needed to handle all the cases of double word misalignment between the
source and destination.
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CODE EXAMPLE 5-1 Byte-Aligned Block Copy Inner Loop

loop:
faligndata %f0, %f2, %f34
faligndata %f2, %f4, %f36
faligndata %f4, %f6, %f38
faligndata %f6, %f8, %f40
faligndata %f8, %f10, %f42
faligndata %f10, %f12, %f44
faligndata %f12, %f14, %f46
addcc %l0, -1, %l0
bg,pt l1
fmovd %f14, %f48
  end of loop handling

l1: ldda [regaddr] #ASI_BLK_P, %f0
stda %f32, [regaddr] #ASI_BLK_P
faligndata %f48, %f16, %f32
faligndata %f16, %f18, %f34
faligndata %f18, %f20, %f36
faligndata %f20, %f22, %f38
faligndata %f22, %f24, %f40
faligndata %f24, %f26, %f42
faligndata %f26, %f28, %f44
faligndata %f28, %f30, %f46
addcc %l0, -1, %l0
be,pnt done
fmovd %f30, %f48
ldda [regaddr] #ASI_BLK_P, %f16
stda %f32, [regaddr] #ASI_BLK_P
ba loop
faligndata %f48, %f0, %f32

done:  end of loop processing
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5.9 Block Initializing Store ASIs
The Block Initializing Store ASIs are specific to the UltraSPARC T1
implementation and are not guaranteed to be portable to other UltraSPARC
Architecture implementations. They should only appear in platform-specific
dynamically-linked libraries, hyperprivileged software, or in code generated at
runtime by software (for example, a just-in-time compiler) that is aware of the
specific implementation upon which it is executing.

Instruction imm_asi
ASI

Value Operation Assembly Language Syntax

ST{B,H,W,X,D}A ASI_STBI_AIUP 2216 64-byte block initialing store
to primary address space,
user privilege

st{b,h,w,x,d}a
st{b,h,w,x,d}a

regrd, [reg_addr] imm_asi
regrd, [reg_plus_imm] %asi

ST{B,H,W,X,D}A ASI_STBI_AIUS 2316 64-byte block initialing store
to secondary address space,
user privilege

ST{B,H,W,X,D}A ASI_STBI_N 2716 64-byte block initialing store
to nucleus address space

ST{B,H,W,X,D}A ASI_STBI_AIUPL_L 2A16 64-byte block initialing store
to primary address space,
user privilege, little-endian

ST{B,H,W,X,D}A ASI_STBI_AIUSL 2B16 64-byte block initialing store
to secondary address space,
user privilege, little-endian

ST{B,H,W,X,D}A ASI_STBI_NL 2F16 64-byte block initialing store
to nucleus address space,
little-endian

ST{B,H,W,X,D}A ASI_STBI_P E216 64-byte block initialing store
to primary address space

ST{B,H,W,X,D}A ASI_STBI_S E316 64-byte block initialing store
to secondary address space

ST{B,H,W,X,D}A ASI_STBI_PL EA16 64-byte block initialing store
to primary address space,
little-endian

ST{B,H,W,X,D}A ASI_STBI_SL EB16 64-byte block initialing store
to secondary address space,
little-endian
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Description The UltraSPARC T1-specific block initializing store instructions are selected by using
one of the block-initializing ASIs with integer store alternate instructions. These ASIs
allow block-initializing stores to be performed to the same address spaces as normal
stores. Little-endian ASIs access data in little-endian format; otherwise, the access is
assumed to be big-endian.

Integer stores of all sizes are allowed with these ASIs, and STDA behaves as a
standard store doubleword. All stores to these ASIs operate under relaxed memory
ordering (RMO), regardless of the value of PSTATE.mm. Software must follow a
sequence of these stores with a MEMBAR #Sync to ensure ordering with respect to
subsequent loads and stores.

A store to one of these ASIs where the least-significant 6 bits of the address are
nonzero (that is, not the first word in the cache line) behaves the same as a normal
store (with RMO ordering).

A store to one of these ASIs where the least-significant 6 bits of the address are zero
will load a cache line in the L2 cache with either all zeros or the existing memory
data, and then update the beginning of the cache line with the new store data. This
special store behavior ensures that the line maintains coherency when it is loaded
into the cache, but will not generally fetch the line from memory (instead,
initializing it with zeroes).

A store using one of these ASIs to a noncacheable location behaves the same as a
normal store.

Attempted use of any of these ASIs by a floating-point store alternate instruction
(STFA, STDFA) causes a data_access_exception exception.

Access to any of these ASIs by an instruction with misaligned address causes a
mem_address_not_aligned exception.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a noncacheable address is identified by
PA{39} = 1.

Programming
Note

These instructions are particularly useful in combination with
load twin extended word instructions for transferring large
blocks (more than 256 bytes) of data; for example, in
implementing bcopy() and bfill() operations.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, block initializing stores and load twin
doublewords from multiple strands are fully overlapped.
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Programming
Note

The following pseudocode shows how these ASIs can be used to
do a quadword-aligned (on both source and destination) copy of
N quadwords from A to B (where N > 3). Note that the final 64
bytes of the copy is performed using normal stores, to guarantee
that all initial zeros in a cache line are overwritten with copy
data.

%l0 ← [A]; %l1 ← [B]
prefetch [%l0]
for (i = 0;  i < N-4; i++) {
   if (!(i % 4)) { prefetch [%l0+64] }
   ldda [%l0] #ASI_BLK_INIT_ST_P, %l2
   add %l0, 16, %l0
   stxa %l2, [%l1] #ASI_BLK_INIT_ST_P
   add %11, 8, %11
   stxa %l3, [%l1+8] #ASI_BLK_INIT_ST_P
   add %l1, 8, %l1
}
for (i = 0;  i < 4; i++) {
   ldda [%l0] #ASI_BLK_INIT_ST_P, %l2
   add %l0, 16, %l0
   stx %l2, [%l1]
   stx %l3, [%l1+8]
   add %l1, 16, %l1
}
membar #Sync

An overlapped copy operation must avoid issuing a block-init
store to a line before all loads from that line have been issued.
Otherwise, one or more of the loads may see the interim "zero"
side-effect value. This typically means that abs(A−B) must be
64.
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Exceptions VA_watchpoint
mem_address_not_aligned
data_access_exception

UltraSPARC T1
Programming

Notes

(1) These ASIs are specific to UltraSPARC T1, to provide a high-
performance mechanism for BCOPY operations, as an
alternative to legacy block load and block store instructions
(which rely on the floating-point register file and thus are
limited by the single register file port). These ASIs are “Class
N”(nonportable) features, so are only allowed in platform-
specific dynamically linked libararies, in hyperprivileged code,
and in code generated at runtime by software (for example, a
just-in-time compiler) that is aware of the implementation upon
which it is executing.

(2) These ASIs provide a higher performance bcopy() or
bfill() than the block loads and stores described in
Section 5.8, due to their ability to overlap multiple loads and
stores between strands and to avoid the unnecessary fetch from
memory of the data that is overwritten by the store. The
performance of parallel bcopy() using these ASIs will be 2.5 to
3.5 times that of a bcopy() using block loads and stores. The
performance of a single-threaded bcopy() using these ASIs will
be 15% to 50% better than that of a bcopy() using block loads
and stores.
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5.10 Load Twin Extended Word Instructions
(nonprivileged)

Description Load Twin Extended Word instructions are new in the UltraSPARC Architecture
2005; they are used to atomically read a 128-bit data item into a pair of integer
registers.

See the UltraSPARC Architecture 2005 for details.

See the description of Block Initializing Stores on page 31 for an example of how
Load Twin Extended Word can be used in combination with those instructions.

The Load Twin Extended Word Instructions are not guaranteed to be portable to
other UltraSPARC Architecture implementations. They should only appear in
platform-specific dynamically-linked libraries, hyperprivileged software, or in
code generated at runtime by software (for example, a just-in-time compiler)
that is aware of the specific implementation upon which it is executing.

Programming
Note

These instructions are particularly useful in combination with
block-initializing stores for transferring large blocks of data
(more than 256 bytes); for example, in implementing bcopy()
and bfill() operations. See the description of Block Initializing
Stores for an example of how Load Twin Extended Word can be
used in combination with those instructions.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a load twin extended word forces a miss in
the primary cache and will not allocate a line in the primary
cache, but does allocate in L2. On UltraSPARC T1, block
initializing stores and load twin doublewords from multiple
strands are fully overlapped.
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See Also Block Initializing Store ASIs on page 31.

UltraSPARC T1
Programming

Notes

(1) These instructions, combined with store instructions using
the UltraSPARC T1-specific Block Initializing Store ASIs,
provide a high-performance mechanism for BCOPY operations,
as an alternative to legacy block load and store (which rely on
the floating-point register file and thus are limited by the single
register file port). These ASIs are “Class N” (nonportable)
features and are only allowed in platform-specific dynamically
linked libararies and in code generated at runtime by software
(for example, a just-in-time compiler) that is aware of the
implementation upon which it is executing.

(2) These ASIs provide a higher performance bcopy() or
bfill() than the block loads and stores described in
Section 5.8, due to their ability to overlap multiple loads and
stores between strands and to avoid the unnecessary fetch from
memory of the data that is overwritten by the store. The
performance of parallel bcopy() using these ASIs will be 2.5 to
3.5 times that of a bcopy() using block loads and stores. The
performance of a single-threaded bcopy() using these ASIs will
be 15% to 50% better than that of a bcopy() using block loads
and stores.
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5.11 Load Twin Extended Word Instructions
(privileged)

† ASI 2416 (deprecated) is aliased to ASI 2716 in UltraSPARC T1.
‡ ASI 2C16 (deprecated) is aliased to ASI 2F16 in UltraSPARC T1.

Description These instructions atomically read a 128-bit data item into two 64-bit integer
registers. They are intended to be used by the TLB miss handler to access TSB entries
without requiring locks. The data is placed in an even/odd pair of 64-bit integer
registers. The lowest address 64 bits is placed in the even-numbered register; the
highest address 64-bits is placed in the odd-numbered register.

The access will not allocate a line in the primary cache on a primary miss, regardless
of the setting of the cp bit in the TLB entry. ASI_LDTX_REAL{_L} bypasses the
virtual-to-real portion of the translation, setting RA{63:0} = VA{63:0}. When the
access to these ASIs bypasses the TLB, the physical address is set equal to the
truncated virtual address (that is, PA{39:0} = VA{39:0}). If PA{39} = 0, the physical
page attribute bit w is set to 1 and all other attribute bits are set to 0 for the bypass.
If PA{39} = 1, the physical page attributes e and w are set to 1 and all other attribute
bits are set to 0 for the bypass.

Instruction imm_asi
ASI

Value Operation Assembly Language Syntax

LDTX ASI_LDTX_N 2716
† 128-bit atomic load ldda

ldda
[reg_addr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

LDTX ASI_LDTX_REAL 2616 128-bit atomic load, real
addressing (RA{63:0} set to
VA{63:0})

LDTX ASI_LDTX_NL 2F16
‡ 128-bit atomic load, little

endian

LDTX ASI_LDTX_REAL_L 2E16 128-bit atomic load, real
addressing (RA{63:0} set to
VA{63:0}), little endian

Compatibility
Note

In previous UltraSPARC documents, these instructions were
(loosely) referred to as "Quad LDD"instructions.

11 01 0011 rs2rd rs1

4

imm_asi

5

i=0

11 01 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
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In addition to the usual exceptions for LDTX using a privileged ASI, a
data_access_exception trap occurs if these ASIs are used with any instruction other
than LDTX or LDDA (which share an opcode). A mem_address_not_aligned trap is
taken if the access is not aligned on a 128-bit boundary.

Exceptions VA_watchpoint
mem_address_not_aligned (Checked for opcode implied alignment if the opcode

is not LDDA)
data_access_exception
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CHAPTER 6

Traps

The UltraSPARC T1 processor implements the trap model described in the
UltraSPARC Architecture 2005.

Additional UltraSPARC T1-specific details are described in this chapter.

6.1 Trap Levels
Each UltraSPARC T1 virtual processor supports six trap levels (MAXTL = 6) Traps to
privileged mode while in privileged mode when TL = MAXPTL will trap instead to the
hyperprivileged mode using the watchdog_reset vector in the hyperprivileged trap
table, incrementing the TL, but will not enter RED_state, and the trap type will be
set to that of the trap that caused the error, not the watchdog trap type.

6.2 Traps to Hyperprivileged Mode
TABLE 6-1 lists the additional traps for support of hyperprivileged software. The
htrap_instruction trap is generated by execution of the HTrap on Integer Condition
Codes instruction, which is similar to the Trap on Integer Condition Codes
instruction, but with bit 7 of the software trap number set to 1. Execution of an
HTrap on Integer Condition Codes instruction by user code results in an
illegal_instruction trap.
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6.3 Implementation-Dependent Exceptions
TABLE 6-2 lists the UltraSPARC T1 implementation-dependent exceptions.

UltraSPARC T1 implements a modular_arithmetic_interrupt for its modular
arithmetic unit discussed in Chapter 16, Modular Arithmetic.

UltraSPARC T1 implements precise and disrupting traps to handle catastrophic error
exceptions on data accesses from/to memory (the SPARC V9 trap
data_access_error). To help software distinguish between the precise and disrupting
versions of the trap, a precise catastrophic memory error causes a data_access_error,
while a disrupting catastrophic memory error causes a priority 13 data_error trap.

TABLE 6-1 Additional Hypervisor Support Traps

TT # Hardware Trap Name Priority Description

7C16 cpu_mondo_trap 16 Disrupting

7D16 dev_mondo_trap 16 Disrupting

7E16 resumable_error 33 Disrupting

TABLE 6-2 UltraSPARC T1 Implementation-Dependent Exceptions

TT # Hardware Trap Name Priority Description

07416 modular_arithmetic_interrupt 16 Disrupting

06016 interrupt_vector 26.3 Disrupting

07816 data_error 13 Disrupting

Implementation
Note

UltraSPARC T1 implements the instruction_breakpoint trap,
which is documented in UltraSPARC Architecture. The trap is
priority 7 (with slightly greater priority than illegal_instruction),
and, when taken, clears the HPSTATE.ibe bit. The UltraSPARC
T1 implementation does not follow the UltraSPARC Architecture
specification in that HPSTATE.ibe is cleared only when an
instruction_breakpoint trap is taken, regardless of mode.
UltraSPARC Architecture specifies that HPSTATE.ibe is cleared
on any trap to hyperprivileged mode, while remaining
unchanged on traps to privileged mode.
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6.4 Trap Behavior
Traps on UltraSPARC T1 behave as specified in the UltraSPARC Architecture 2005.

6.5 Trap Masking
Traps are masked as specified in the UltraSPARC Architecture 2005.
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CHAPTER 7

Interrupt Handling

7.1 Overview
The chapter describes the hardware interrupt delivery mechanism for the
UltraSPARC T1 chip.

Software interrupts are delivered to each virtual processor using the
interrupt_level_n traps (4116–4F16) through the SOFTINT register (described in
Software Interrupt Register (SOFTINT) on page 13). Details on software interrupt
generation and servicing are available in the UltraSPARC Architecture specification.

I/O and CPU cross-call interrupts are delivered to each virtual processor using the
interrupt_vector trap (6016). interrupt_vector traps have a corresponding 64-bit
ASI_SWVR_INTR_RECEIVE register. I/O devices and CPU cross-call interrupts
contain a 6-bit identifier, which determines which interrupt vector (level) in the
ASI_SWVR_INTR_RECEIVE register the interrupt will target. Each strand’s
ASI_SWVR_INTR_RECEIVE register can queue up to 64 outstanding interrupts, one
for each interrupt vector. Interrupt vectors are implicitly prioritized with vector 63
having the highest priority and vector 0 being the lowest priority.

Each I/O interrupt source has a hardwired interrupt number, which is used to index
a table of interrupt vector information (INT_MAN) in the I/O bridge (IOB).
Generally, each I/O interrupt source will be assigned a unique virtual processor
target and vector level. This association is defined by software programming of the
interrupt vector and vc_id fields in the INT_MAN table in the IOB. Software must
maintain the association between interrupt vector and hardware interrupt number to
index the appropriate entry in the INT_MAN and INT_CTL tables.
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7.2 Interrupt Flow
This section covers the interrupt flow for I/O and CPU cross-call interrupts.

7.2.1 Initialization
The interrupt vector traps are initialized by writing 016 to Interrupt Receive Register
described in Section 7.4.1.

I/O interrupt handling is initialized as follows:

1. Specifying the virtual processor/vector pair to receive “internal” IO interrupts by
programming the INT_MAN table, described in Interrupt Management Registers.

2. Specifying the interrupt vector to receive external “mondo” interrupts by
programming the J_INT_VEC register, described in Interrupt Management
Registers.

3. Clearing the mask bits in the INT_CTL table, described in Interrupt Management
Registers.

4. Clearing the busy bits in the J_INT_BUSY table, described in Interrupt/Trap Vector
Dispatch Register on page 49.

7.2.2 Servicing
Interrupt vector traps are typically serviced by reading the Incoming Vector register
described in Section 7.4.3. When this register is read by software, the 6-bit vector
corresponding to the highest priority pending interrupt in the interrupt receive
register is returned. The pending interrupt bit for that vector is cleared.

If the incoming interrupt matches the vector for “mondo” interrupts, the handler
should then read the mondo source and data, from the J_INT_ADATA0/1 registers
(described in TABLE 7-4 on page 49) and J_INT_ABUSY registers (described in Mondo
Interrupt Busy Table). After reading these registers, it should enable receiving the next
mondo interrupt to this virtual processor by clearing the busy bit in the
J_INT_ABUSY register.

If the incoming interrupt matches the virtual processor and vector for internal error
interrupts (device ID = 1), the handler should read the JBUS and SSI error logs,
described in JBI Error Registers on page 173 and SSI Error Registers on page 187, plus
check the DRAM Error Counter register, described in DRAM Error Counter Register
on page 163, to determine the cause of the interrupt. It should service the interrupt
appropriately, then clear the mask bit in the corresponding INT_MAN register.
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If the incoming interrupt matches the virtual processor and vector for SSI interrupts
(device ID = 2), the handler should service the interrupt appropriately, then clear the
mask bit in the corresponding INT_MAN register.

7.2.3 Sources
CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Section 7.4.2. Dispatching CPU cross-call interrupts is described
in Dispatching on page 47.

TAP interrupts can be generated by writing the IOB Interrupt Vector/Trap Dispatch
register described in Section 7.3.2.

Internal error interrupts (device ID = 1) are caused by JBI- and SSI-detected errors, as
described in IOP Error Summary on page 187, plus DRAM Error Counter Underflow,
as described in DRAM Error Counter Register.

SSI interrupts (device ID = 2) are caused by an assertion (edge trigger) on the
EXT_INT_L pin.

JBUS mondo interrupts are caused by receiving an INT transaction on JBUS.

7.2.4 States
Each bit in the Interrupt Receive register can be in one of two states: set or cleared. If
an incoming interrupt attempts to set an already set bit, the additional incoming
interrupt will be lost (there is no overflow indication on the interrupt bits). Writes to
the Interrupt Receive register will clear any bit in which the corresponding write
data is 0, and reads to the Incoming Vector register will clear the bit of the highest-
priority pending interrupt as a side-effect. If another interrupt attempts to set a bit
on the same cycle as the bit is being cleared by an Interrupt Receive register write or
Incoming Vector register read, the additional interrupt will take precedence over the
clear and the bit will remain set.

JBUS interrupts have two states in the J_INT_BUSY table, namely, BUSY and IDLE
(not BUSY). When a mondo INT transaction is received, if the current state is IDLE,
the transaction is accepted (and acknowledged to the requestor by an ACK signal),
state is changed to BUSY, the mondo data is stored in the J_INT_DATA0/1 table, and
the bit specified by j_int_vec is set in the Interrupt Receive register of the virtual
processor specified in the INT transaction. While in the BUSY state, any INT

Programming
Note

The vectors used by interrupts are completely decided by
software convention. However, since there is no ability to detect
multiple simultaneous interrupts in the Interrupt Receive
register, it is recommended that each potential interrupt source
have a dedicated vector (bit) in the Interrupt Receive register.
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transactions to the same virtual processor will be rejected and a negative-
acknowledged (NACK) response sent back to the requestor, and the requestor is
responsible for preserving that interrupt in a pending state. When software has
adequately serviced the interrupt, it explicitly clears the busy bit in the J_INT_BUSY
register to return to the IDLE state.

“Internal” I/O interrupts have three states in the INT_CTL table, namely IDLE,
MASK, and PENDING. When an SSI or error interrupt is received, if the current state
is IDLE, the state is changed to BUSY, and the bit specified by INT_MAN is set in the
Interrupt Receive register of the virtual processor specified in INT_MAN. While in
the BUSY state, another interrupt of the same type will set the pend bit in the
INT_CTL table, going to the PENDING state. Further interrupts while in the PENDING
state will set the pend bit again, having no real effect. When software has adequately
serviced the interrupt, it explicitly clears the mask bit in the INT_CTL table, which
will return it from the MASK state to the IDLE state (or will enable a pending
interrupt to be taken so it would go to the MASK state from the PENDING state).

7.2.5 Prioritizing
Interrupt vector traps are implicitly prioritized by the Incoming Vector register
described in Section 7.4.3 from bit 63 (highest) to bit 0 (lowest).

The priority of I/O interrupts is done by specifying the vector value in the INT_MAN
table and in J_INT_VEC (see Section 7.3.1).

7.2.6 Dispatching
CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Interrupt Vector Dispatch Register on page 53. Interrupts are
always received by the destination and stores to this register will follow the TSO
memory model (no MEMBAR #Sync is required). The store data supplies the
destination virtual processor and vector. The bit corresponding to the specified
vector is set in the interrupt receive register of the destination virtual processor. CPU
cross-call interrupts can also be generated via the IOB Interrupt/Trap Vector
Dispatch register described in Section 7.3.2

7.3 IOB Interrupt Registers
The following registers are defined for interrupt and reset management. The base
address is defined below.
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RegisterBaseAddress 1 IOBMAN – 98 0000 000016. The IO Bridge handles two
types of interrupts: those generated on chip and those generated externally through
JBUS.

TABLE 7-1 lists the device ID assignment.

On chip interrupt hardware contains an Interrupt Management Table and an
Interrupt Control Table. Each internal “Device ID” in the I/O subsystem has an
entry in each.

Device ID 0 is used internally by hardware, but is architecturally reserved.

Device ID 1 is used to report fatal and uncorrectable errors, including the rollover
count of correctable ECC errors. Software will have to poll the detailed error states
of different devices to determine the error type.

Device ID 2 is the interrupt from EXT_INT_L pin, of the SSI interface, which is
intended for use as a console interrupt.

7.3.1 Interrupt Management Registers
The Interrupt Management registers specify the CPU ID to send the interrupt and
the interrupt vector associated with the interrupt issued by the IOB on behalf of the
device.

Each device will send its device ID to the I/O bridge. The device ID is used to index
into the Interrupt Management table. The Interrupt Control register enables software
to mask the interrupt individually. Software can write a 1 to the mask bit to block
incoming interrupts. If the mask bit is 0 when an interrupt occurs, hardware will set
the bit to 1 and block future interrupts. This will guarantee only a single interrupt
per device will be issued to the CPU. Note that when the mask bit is set, the specific
interrupt will not be issued, but rather the pending bit will be set. Software needs to
reset the mask bit to zero to enable interrupts again. Before changing the Interrupt

TABLE 7-1 Device ID Assignments

Device
ID

Range Comment

Reserved 0

Uncorrectable Error or correctable
Error Count Overflow Interrupt

1 Used by several devices for errors. Not
necessarily fatal in that the block will stop
working, but indicates that the error is
serious.

SSI Interrupt 2 SSI interrupt from EXT_INT_L pin.

Reserved 3
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Management register, software must set the device mask bit first. Note that the offset
address of the corresponding device can be calculated by multiplying the device ID
by 8 for INT_MAN, and add 40016 to 8 times the device ID for INT_CTL.

TABLE 7-2 shows the format of the Interrupt Management register.

TABLE 7-3 shows the format of the Interrupt Control register.

After setting the mask bit, software needs to issue a read on the INT_CTL register to
guarantee the masking write is completed. Before the read completes there may be
an interrupt in transit to the CPU.

Note that the clear field of INT_CTL is intended mainly for error cleanup, as clearing
the pending bit via the clear field will cause software to miss both the pending
interrupt and any possible additional interrupts that may arrive at the same time the
pending bit is cleared.

The following register, the format of which is shown in TABLE 7-4, specifies the
interrupt vector for JBUS Mondo interrupts and are shared among the 32 virtual
processors.

TABLE 7-2 30 Interrupt Management – INT_MAN Register (000016)

Bit Field
Initial
Value R/W Description

63:13 — 0 R Reserved

12:8 cpu X rW Virtual processor ID to manage the device.

7:6 — 0 R Reserved

5:0 vector X RW Interrupt Vector (encodes bit set in ASI_SWVR_INTR_RECEIVE).

TABLE 7-3 31 Interrupt Control – INT_CTL Register (040016)

Bit Field
Initial
Value R/W Description

63:3 — 0 R Reserved

2 mask 1 RW Set to 1 to mask the interrupt. If mask is zero when interrupt occurs, hardware
will set it to 1 to block future interrupts.

1 clear 0 W Write 1 to clear the pending bit, 0 to leave pending bit unchanged.

0 pend 0 R Set to 1 if there is a pending interrupt, reset to 0 if the clear bit is set or after
hardware issues the pending interrupt once the mask bit is cleared.
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J_INT_VEC performs the identical function for JBUS Mondo interrupts that
INT_MAN performs for other I/O interrupts, except that the virtual processor ID is
specified in the mondo interrupt transaction.

7.3.2 Interrupt/Trap Vector Dispatch Register
A strand may write to the following register to trigger an interrupt to another virtual
processor. In addition, any virtual processor may be placed in the idle state,
restarted from the halted or idle state, or sent a reset via this register.

TABLE 7-5 shows the format of the Interrupt Vector Dispatch register.

7.3.3 JBUS Mondo Data Tables
The following registers are used to manage the JBUS interrupts.

When the IO Bridge receives an interrupt, it sets the busy bit and acknowledges the
interrupt. When the busy bit is set, it means an interrupt is waiting to be serviced or
is being serviced. Software will reset the busy bit when it completes servicing the
interrupt. If the busy bit is already set when an interrupt is received, a negative-
acknowledged response (NACK) will be sent to the JBUS unit. The busy bit is set
after a reset and software has to clear it to begin receiving interrupts. This register
also indicates the source of the interrupt.

TABLE 7-4 JBUS Interrupt Vector Register – J_INT_VEC (000016–0A0016)

Bit Field
Initial
Value R/W Description

63:6 — 0 R Reserved

5:0 vector X RW Interrupt Vector for Mondo interrupts (encodes bit set in
ASI_SWVR_INTR_RECEIVE).

TABLE 7-5 32 Interrupt Vector Dispatch Register – INT_VEC_DIS (080016)

Bit Field
Initial
Value R/W Description

63:18 — X R Reserved

17:16 type X W 00 = interrupt, 01 = reset, 10 = idle, 11 = resume.

15:13 — X R Reserved

12:8 vc_id X W Destination virtual processor.

7:6 — X R Reserved

5:0 vector X W Interrupt Vector (encodes bit set in ASI_SWVR_INTR_RECEIVE) or Reset Trap
Type (TT #). This field is unused if type is “idle” or “resume”.
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The base address of the interrupt table registers is defined below.

RegisterBaseAddress IOBINT – 9F 0000 000016. There are two JBUS Interrupt
Mondo tables. The tables are read-only by software and the entries are updated by
JBUS interrupts provided that the interrupt is not busy. The IO Bridge will
acknowledge (ACK) the interrupt if it is not busy; otherwise, the IO Bridge will send
a negative-acknowledged (NACK) response it.

TABLE 7-6 shows the format of the JBUS Interrupt Mondo Data 0 Table.

TABLE 7-7 shows the format of the JBUS Interrupt Mondo Data 1 Table.

TABLE 7-8 shows the format of the JBUS Interrupt Alias Mondo Data 0 Table.

This register address is actually an alias for J_INT_DATA0[Current_Virtual Processor],
so each virtual processor can read its own interrupt payload, without having to do
an address calculation based on vc_id. This address should never be accessed by the
TAP (since it does not have a vc_id).

TABLE 7-9 shows the format of the JBUS Interrupt Alias Mondo Data 1 Table.

This register address is actually an alias for J_INT_DATA1[Current_Virtual Processor],
so each virtual processor can read its own interrupt payload, without having to do
an address calculation based on vc_id. This address should never be accessed by the
TAP (since it does not have a vc_id).

TABLE 7-6 JBUS Interrupt Mondo Data 0 – J_INT_DATA0 (000016–040016)

Bit Field
Initial
Value R/W Description

63:0 data_0 X R First 64 bits of JBUS interrupt mondo data.

TABLE 7-7 JBUS Interrupt Mondo Data 1 – J_INT_DATA1 (000016–050016)

Bit Field
Initial
Value R/W Description

63:0 data_1 X R Second 64 bits of JBUS interrupt mondo data.

TABLE 7-8 JBUS Interrupt Alias Mondo Data 0 – J_INT_DATA0 (000016–060016)

Bit Field
Initial
Value R/W Description

63:0 data_0 X R First 64 bits of JBUS interrupt mondo data.

TABLE 7-9 JBUS Interrupt Alias Mondo Data 1 – J_INT_ADATA1 (000016–070016)

Bit Field
Initial
Value R/W Description

63:0 data_1 X R Second 64 bits of JBUS interrupt mondo data.
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7.3.4 Mondo Interrupt Busy Table
TABLE 7-10 shows the format of the JBUS Interrupt Busy Table.

TABLE 7-11 shows the format of the JBUS Interrupt Busy Alias Table.

This register address is actually an alias for J_INT_BUSY[Current_Virtual Processor],
so each virtual processor can update its own mondo interrupt busy bit, without
having to do an address calculation based on vc_id. This address should never be
accessed by the TAP (since it does not have a vc_id).

7.4 CPU Interrupt Registers

7.4.1 Interrupt Receive Register
Each virtual processor (strand) has a hyperprivileged ASI_SWVR_INTR_RECEIVE
register at ASI 7216, VA{63:0} = 0. Each time an interrupt transaction arrives for that
strand, the bit corresponding to the interrupt vector will be set. Bit zero of the
register corresponds to interrupt vector number zero and so on. Interrupt vectors are
implicitly prioritized with vector number 63 being the highest priority and vector
number 0 being the lowest priority. Software writes to this register are anded with
the register contents to allow the software to selectively clear register bits, although

TABLE 7-10 JBUS Interrupt Busy –J_INT_BUSY (000016–090016) (

Bit Field
Initial
Value R/W Description

63:6 — 0 R Reserved

5 busy X RW Hardware sets busy to 1 when an interrupt is received.
Hardware nacks an incoming interrupt if busy is set.

4:0 source X R Hardware updates this when the interrupt is acknowledged.
It contains the source ID supplied by the JBUS.

TABLE 7-11 JBUS Interrupt Busy – J_INT_ABUSY (000016–0B0016)

Bit Field
Initial
Value R/W Description

63:6 — 0 R Reserved

5 busy X RW Hardware sets busy to 1 when an interrupt is received.
Hardware nacks an incoming interrupt if busy is set.

4:0 source X R Hardware updates this when the interrupt is acknowledged.
It contains the source ID supplied by the JBUS.
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normally the incoming vector register described in Section 7.4.3 will be used. When
an interrupt arrives at the same time as a register write, the interrupt will take
precedence over the write and the bit will be set. Software can read this register to
determine all pending interrupts, although normally the incoming vector register
will be used. Nonprivileged access to this register causes a privileged_action trap.
Privileged access to this register causes a data_access_exception trap.

TABLE 7-12 defines the format of the ASI_SWVR_INTR_RECEIVE register.

7.4.2 Interrupt Vector Dispatch Register
Each strand has a hyperprivileged write-only ASI_SWVR_UDB_INTR_W register at
ASI 7316, VA{63:0} = 0 that is used to send CPU cross-call interrupts to other virtual
processors. Interrupts are always received by the destination and stores to this
register will follow the TSO memory model (no MEMBAR #Sync is required).

The store data supplies an identifier for the destination virtual processor and vector.
The bit corresponding to the specified vector is set in the Interrupt Vector Receive
register of the destination virtual processor. The format of the register is shown in
TABLE 7-13.

Implementation
Note

There is no double-buffering of interrupt bits. If multiple
interrupt transactions arrive for the same interrupt vector, the
corresponding bit will stay set, and the fact that multiple
interrupts were received will be lost.

TABLE 7-12 Interrupt Receive Register – ASI_SWVR_INTR_RECEIVE (ASI 7216, VA 016)

Bit Position Field
Initial
Value R/W Description

63:0 pending X RW Pending interrupts

TABLE 7-13 Interrupt Vector Dispatch Register – ASI_SWVR_UDB_INTR_W (ASI 7316, VA 016)

Bit Field
Initial
Value R/W Description

63:18 — 0 R Reserved

17:16 type X W 00 = interrupt; 01–11 reserved (alias to interrupt in UltraSPARC T1).

15:13 — 0 R Reserved

12:8 vc_id X W Destination virtual processor.

7:6 — 0 R Reserved

5:0 vector X W Interrupt vector (encodes bit set in ASI_SWVR_INTR_RECEIVE).
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A read from this ASI causes a data_access_exception trap. Nonprivileged access to
this register causes a privileged_action trap. Privileged access causes a
data_access_exception trap.

7.4.3 Incoming Vector Register
Each strand has a hyperprivileged read-only ASI_SWVR_UDB_INTR_R register at
ASI = 7416, VA{63:0} = 016. When this register is read by software, the 6-bit vector
corresponding to the highest priority pending interrupt in the interrupt receive
register is returned. The pending interrupt bit for that vector is cleared. If no
interrupt bits are set, this register will read as all zeros. When an interrupt arrives at
the same time as the register is read, the interrupt will take precedence over the
write and the bit will remain set. A store to this register will result in a
data_access_exception trap.

TABLE 7-14 defines the format of the ASI_SWVR_UDB_INTR_R register.

7.4.4 Interrupt Queue Registers
Each strand has eight ASI_QUEUE registers at ASI 2516, VA{63:0} = 3C016–3F816 that
are used for communicating interrupts to the privileged mode operating system
from the hypervisor. These registers contain the head and tail pointers for four
supervisor interrupt queues: cpu_mondo, dev_mondo, resumable_error, and
nonresumable_error.

The tail registers are read-only in privileged mode, and read/write in
hyperprivileged mode. An attempted write to a tail register by privileged software
generate a data_access_exception trap. The head registers are read/write by both
privileged and hyperprivileged software.

Whenever the contents of the CPU_MONDO_HEAD and CPU_MONDO_TAIL
registers are unequal, a cpu_mondo trap is generated. Whenever the contents of the
DEV_MONDO_HEAD and DEV_MONDO_TAIL registers are unequal, a dev_mondo
trap is generated. Whenever the contents of the RESUMABLE_ERROR_HEAD and
RESUMABLE_ERROR_TAIL registers are unequal, a resumable_error trap is
generated.

Note If a write uses the reserved values of the type field, an interrupt
is still generated.

TABLE 7-14 Incoming Vector Register – ASI_SWVR_UDB_INTR_R (ASI 7416, VA 016)

Bit Field
Initial
Value R/W Description

63:6 — 0 R Reserved

5:0 vector X R Interrupt vector
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Unlike the other queue register pairs, the nonresumable_error trap is not
automatically generated by hardware whenever the contents of the
NONRESUMABLE_ERROR_HEAD and NONRESUMABLE_ERROR_TAIL registers
are unequal; instead, hyperprivileged software must make it appear to privileged
software as if a nonresumable_error trap has occured.

TABLE 7-15 through TABLE 7-22 define the format of the eight interrupt queue registers.

Warning There is a known “feature” in UltraSPARC T1 that affects
LDXA/STXA by supervisor code to these ASI registers. If an
immediately preceeding instruction is a store that takes a TLB-
related trap, an LDXA can corrupt an unrelated IRF (integer
register file) register, or a STXA may complete in spite of the
trap. To prevent this, it is required to have a non-store or NOP
instruction before any LDXA/STXA to these ASIs. If the
LDXA/STXA is at a branch target, there must be a non-store in
the delay slot. Nonprivileged software and hyperprivileged
software are not affected by this.

Programming
Note

These registers are intended to be used as head and tail pointers
into a queue in memory storing the mondo or error interrupt
data. When the hypervisor takes an interrupt that it needs to
pass on to the operating system, it stores the interrupt data into
the end of the appropriate queue. Then hyperprivileged
software updates the corresponding tail register to point beyond
the new data, which causes a trap to be generated to privileged
software (the operating system). Privileged software then
processes the interrupt data from the head of the queue,
updating the head register when the interrupt processing is
completed.

While the first interrupt is being serviced, more interrupts may
be placed on the queue by the hypervisor. The operating system
can read the tail pointer to service multiple interrupts at a time,
or it can simply update the head pointer after each interrupt has
been serviced and take a trap for each interrupt.

When all pending interrupts of the appropriate type have been
serviced, the head and tail pointers will be equal again, and no
further traps will be generated until the hypervisor places new
interrupt data on the queue.

TABLE 7-15 CPU Mondo Head Pointer – QUEUE_CPU_MONDO_HEAD (ASI 2516, VA 3C016)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 head X RW Head pointer for CPU Mondo Interrupt Queue.

5:0 — 0 R Reserved
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TABLE 7-16 CPU Mondo Tail Pointer – QUEUE_CPU_MONDO_TAIL (ASI 2516, VA 3C816)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 tail X RW Tail pointer for CPU Mondo Interrupt Queue.

5:0 — 0 R Reserved

TABLE 7-17 Device Mondo Head Pointer – QUEUE_DEV_MONDO_HEAD (ASI 2516, VA 3D016)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 head X RW Head pointer for Device Mondo Interrupt Queue.

5:0 — 0 R Reserved

TABLE 7-18 Device Mondo Tail Pointer – QUEUE_DEV_MONDO_TAIL (ASI 2516, VA 3D816)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 tail X RW Tail pointer for Device Mondo Interrupt Queue.

5:0 — 0 R Reserved

TABLE 7-19 Resumable Error Head Pointer – QUEUE_RESUMABLE_HEAD (ASI 2516,
VA 3E016)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 head X RW Head pointer for Resumable Error Queue.

5:0 — 0 R Reserved

TABLE 7-20 Resumable Error Tail Pointer – QUEUE_RESUMABLE_TAIL (ASI 2516,
VA 3E816)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 tail X RW Tail pointer for Resumable Error Queue.

5:0 — 0 R Reserved
• 55



TABLE 7-21 Nonresumable Error Head Pointer – QUEUE_NONRESUMABLE_HEAD (ASI 2516, VA 3F016)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 head X RW Head pointer for NonResumable Error Queue.

5:0 — 0 R Reserved

TABLE 7-22 Nonresumable Error Tail Pointer – QUEUE_NONRESUMABLE_TAIL (ASI 2516,
VA 3F816)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13:6 tail X RW Tail pointer for NonResumable Error Queue.

5:0 — 0 R Reserved
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CHAPTER 8

Memory Models

8.1 Overview
SPARC V9 defines the semantics of memory operations for three memory models.
From strongest to weakest, they are Total Store Order (TSO), Partial Store Order
(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the
freedom an implementation is allowed in order to obtain higher performance during
program execution. The purpose of the memory models is to specify any constraints
placed on the ordering of memory operations in uniprocessor and shared-memory
multiprocessor environments.

For a full description of the TSO memory model, see the UltraSPARC Architecture
2005.

UltraSPARC T1 supports only TSO, with the exception that accesses using certain
ASIs (notably, block loads and block stores) may operate under RMO (impl. dep.
#113-V9-Ms10).

Although a program written for a weaker memory model potentially benefits from
higher execution rates, it may require explicit memory synchronization instructions
to function correctly if data is shared. MEMBAR is a memory synchronization
primitive that enables a programmer to control explicitly the ordering in a sequence
of memory operations. Processor consistency is guaranteed in all memory models.

The current memory model is indicated in the PSTATE.mm field. Its value is always
0 on UltraSPARC T1. An UltraSPARC T1 virtual processor always operates under the
TSO memory model.

Memory is logically divided into real memory (cached) and I/O memory
(noncached, with and without side effects) spaces, based on bit 39 of the physical
address (0 = real memory, 1= I/O memory) (impl. dep. #118-V9). Real memory
spaces may be cached and can be accessed without side effects. For example, a read
57



(load) from real memory space returns the information most recently written. In
addition, an access to real memory space does not result in program-visible side
effects. In contrast, a read from I/O space may not return the most recently written
information and may result in program-visible side effects.

8.2 Supported Memory Models
The following sections contain brief descriptions of the two memory models
supported by UltraSPARC T1. These definitions are for general illustration. Detailed
definitions of these models can be found in UltraSPARC Architecture 2005. The
definitions in the following sections apply to system behavior as seen by the
programmer. A description of MEMBAR can be found in Section 8.3.2, “Memory
Synchronization: MEMBAR and FLUSH” on page 72.

8.2.1 Total Store Order
UltraSPARC T1 implements the following programmer-visible properties in Total
Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR
#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores
must check (snoop) the store buffer for the most recent store to that address. A
MEMBAR #Lookaside is not needed between a store and a subsequent load at
the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order is desired.

■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

Notes (1) Stores to UltraSPARC T1 Internal ASIs, block loads, and
block stores are outside the memory model; that is, they need
MEMBARs to control ordering. See Section 8.3.8, “Instruction
Prefetch to Side-Effect Locations” on page 79 and Section 13.5.3,
“Block Load and Store Instructions” on page 172.

(2) Atomic load-stores are treated as both a load and a store and
can only be applied to cacheable address spaces.
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■ Accesses with PA{39} set (that is, to I/O space) are all strongly ordered with
respect to each other.

■ An L2 cache update is delayed on a store hit until all outstanding stores reach
global visibility. For example, a cacheable store following a noncacheable store is
not globally visible until the noncacheable store has reached global visibility;
there is an implicit MEMBAR #MemIssue between them.

8.2.2 Relaxed Memory Order
UltraSPARC T1 implements the following programmer-visible properties for
accesses through special ASIs that operate under the Relaxed Memory Order (RMO)
model:

■ There is no implicit order between any two memory references, either cacheable
or noncacheable, except that noncacheable accesses with PA{39} set (that is, to I/O
space) are all strongly ordered with respect to each other.

■ A MEMBAR must be used between cacheable memory references if stronger
order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable
after non-cacheable accesses. A MEMBAR #StoreLoad should be used between
a store and a subsequent load at the same noncacheable address.

Compatibility
Note

Previous UltraSPARC machines strongly order accesses when
the TTE.e bit being set. The e bit is ignored by UltraSPARC T1
for the purposes of strong ordering; only PA{39} is used for
determining strong ordering.

Compatibility
Note

Previous UltraSPARC machines strongly order accesses based
on the e bit being set. The e bit is ignored by UltraSPARC T1 for
the purposes of strong ordering, only PA{39} is used for
determining strong ordering.
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CHAPTER 9

Address Spaces and ASIs

9.1 Physical Address Spaces
UltraSPARC T1 supports a 48-bit virtual address space and a 40-bit physical address
space. The 40-bit physical address space is further broken into two sections, based
on bit{39}. If bit{39} is a 0, the address maps to a memory location. If bit{39} is a 1,
the address maps to an I/O location.

9.1.1 Access to Nonexistent Memory or I/O
Physical address bits 38:37 are always set to 0 on CPU requests to memory, so while
no memory configuration will support memory this large, a request with these bits
set to a nonzero value will be treated the same as if the bits were 0.

Accesses to nonexistent memory or I/O locations are treated as follows:

■ A load access from a nonexistent memory or I/O location causes a
data_access_error exception

■ An instruction fetch from a nonexistent memory or I/O location causes an
instruction_access_error exception

■ A store access to a nonexistent memory or I/O location will be silently discarded
by the system

9.1.2 Instruction Fetching from IO
Instruction fetching from I/O addresses is only permitted from the boot ROM space
(FF 0000 000016 to FF FFFF FFFC16). Instruction fetches from IO addresses outside
the boot ROM space will take an instruction_access_error trap.
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9.1.3 Supported vs. Unsupported Access Sizes to I/O
All I/O addresses that are internal to UltraSPARC T1 are 64-bit locations and only
support 8-byte loads and stores; accesses in other sizes may cause traps or have
other unexpected results.

UltraSPARC T1 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores via the
SSI bus (Boot ROM port). 16-byte loads are undefined, but are expected to perform
an 8-byte read and duplicate the data. (UltraSPARC T1 cannot generate a 16-byte
store.)

UltraSPARC T1 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores, plus 16-
byte loads, via JBUS (for external JBUS locations). Block loads are broken down by
the LSU into four 16-byte loads, and are thus supported via JBUS.

Non-8-byte-aligned load accesses, except for JBUS and SSI locations, will result in
data_access_error trap. Non-8B-aligned store accesses, except JBUS and SSI
locations, will be silently discarded by the system.

Non-8-byte-aligned load accesses from internal JBUS or SSI locations are treated
internally as 8-byte loads, with potentially undefined results. Non-8B-aligned store
accesses to internal JBUS or SSI locations are treated internally as 8-byte stores, also
with potentially undefined results.

9.1.4 48-bit Virtual Address Space
UltraSPARC T1 supports a 48-bit subset of the full 64-bit virtual address space (see
FIGURE 9-1). Although the full 64 bits are generated and stored in integer registers,
legal addresses are restricted to two equal halves at the extreme lower and upper
portions of the full virtual address space. Virtual addresses between
0000 8000 0000 000016 and FFFF 7FFF FFFF FFFF16, inclusive, lie within a “VA Hole”,
are termed “out of range,” and are illegal.

Prior UltraSPARC implementations introduced the additional restriction on software
to not place instructions in memory pages within 4 Gbytes of the VA hole, to avoid
problems due to prefetching of instructions from the VA hole in memory.
UltraSPARC T1 assumes that this convention is followed, for similar reasons. Note
that there are no trap mechanisms to detect a violation of this convention.
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FIGURE 9-1 UltraSPARC T1’s 48-bit Virtual Address Space, With VA Hole

A number of state registers are affected by the reduced virtual address space. TBA,
TPC, TNPC, and DMMU SFAR registers are 48 bits wide, sign-extended to 64 bits
on read accesses. VA watchpointing is 48 bits, zero-extended to 64-bits on read
accesses. No checks are done when these registers are written by software. It is the
responsibility of privileged software to properly update these registers.

An out of range address during an instruction access causes an
instruction_access_exception trap if PSTATE.am = 0.

If the target address of a JMPL or RETURN instruction is an out-of-range address
and PSTATE.am is not set, a trap is generated with TPC[TL] set to the address of the
JMPL or RETURN instruction and the trap type in the I-MMU SFSR register. This
instruction_access_exception trap is lower priority than other traps on the JMPL or
RETURN (illegal_instruction due to nonzero reserved fields in the JMPL or RETURN,
mem_address_not_aligned trap, or window_fill trap), because it really applies to the
target. The trap handler can determine the out-of-range address by decoding the
JMPL instruction from the code.

When any other control transfer instruction traps, it sets TPC[TL] to the address of
the target instruction along with setting status in the I-MMU SFSR register. Because
the PC is sign-extended to 64 bits, the trap handler must adjust the PC value to
compute the faulting address by xoring ones into the most significant 16 bits. See

Note Throughout this document, when virtual address fields are
specified as 64-bit quantities, bits 63:48 are assumed to be sign-
extended from bit 47.

FFFF FFFF FFFF FFFF

FFFF 8000 0000 0000

0000 0000 0000 0000

0000 7FFF FFFF FFFF

Out-of-Range VA
(“VA Hole”)

FFFF 7FFF FFFF FFFF

0000 8000 0000 0000

FFFF 8001 0000 0000

0000 7FFE FFFF FFFF

See Note (1)

See Note (1)

Note (1): Prior implementations restricted use of this region to data only.
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also Section 13.9.6 “I-/D-MMU Synchronous Fault Status Registers (SFSR)” on
page 13-210 and Section 13.9.7 “I-/D-MMU Synchronous Fault Address Registers
(SFAR)” on page 13-212.

When a trap occurs on the delay slot of a taken branch or call whose target is out-of-
range or is the last instruction below the VA hole, UltraSPARC T1 records the fact
that NPC points to an out-of-range instruction in TNPC. If the trap handler executes
a DONE or RETRY without saving TNPC, the instruction_access_exception trap is
taken when the instruction at TNPC is executed. If TNPC is saved and subsequently
restored by the trap handler, the fact that TNPC points to an out-of-range instruction
is lost.

When a TLB data parity error occurs on a store that is followed by an instruction
with its PC in the VA hole, UltraSPARC T1 records the fact that the PC points to an
out-of-range instruction in TPC. If the trap handler executes a DONE or RETRY
without saving TPC, the instruction_access_exception trap is taken when the
instruction at TPC is executed. If TPC is saved and subsequently restored by the
trap handler, the fact that TPC points to an out-of-range instruction is lost.

To guarantee that all out of range instruction accesses cause traps, software should
not map addresses within 231 bytes of either side of the VA hole as executable.

An out-of-range address during a data access results in a data_access_exception trap
if PSTATE.am is not set. Because the D-MMU SFAR contains only 48 bits, the trap
handler must decode the load or store instruction if the full 64-bit virtual address is
needed. See also Section 13.9.6 “I-/D-MMU Synchronous Fault Status Registers
(SFSR)” on page 13-210 and Section 13.9.7 “I-/D-MMU Synchronous Fault Address
Registers (SFAR)” on page 13-212.

9.1.5 I/O Address Spaces
I/O addresses are distinguished from memory addresses via their high-order
physical address bit (bit 39). If bit 39 is 0, the address is a memory address. If bit 39
is a 1, the address is an I/O address.
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The main function of the I/O subsystem is to coordinate data transfers between
memory and different I/O devices. The architecture is shown in FIGURE 9-2. The I/O
Bridge is the interface to the Cache Crossbar and serves as the CPU-I/O
interfaces.The JBUS interface unit maintains coherency between external devices and
the memory system. Its datapath connects to the L2 controller unit.

FIGURE 9-2 I/O Subsystem Architecture

In the following, we discuss each of the functional blocks in detail. Each hardware
block has a base address and is defined by the ‘RegisterBaseAddress’ caption.

TABLE 9-1 summarizes the block base address assignment, which defines the eight
most significant bits of the physical address.

TABLE 9-1 Block Address Assignment

Address Range
(PA{39:32}) Block Name Comment

0016–7F16 DRAM

8016 JBUS1

8116–9516 — Reserved

9616 CLKU Clock Unit

9716 DRAMCSR Control registers

9816 IOBMAN Management Block

9916 TAP TAP Unit

9A16–9D16 RSVD4 Reserved

9E16 TAP2ASI TAP access to ASI space
(Use only from TAP, not from cores)

I/O Bridge

JBUS Interface L2/DRAM Interface

Cache Crossbar

SSI Block

JBUS

SSI /
Boot ROM

Clock and Test
        CTU

UCB Links
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9.1.6 I/O Bridge
The I/O Bridge is the center of the control register access network. It is connected to
the SPARC physical cores through the CPU crossbar and distributes the I/O requests
to different devices through their associated Unit Control Blocks (UCB). TABLE 9-2
summarizes the different UCBs that are connected to the IOB. All blocks have a
separate input bus from and a separate return bus to the IOB.

9F16 IOBINT Interrupt Table

A016–BF16 L2CSR Control registers and diagnostic access

C016–FE16 JBUS2

FF16 BOOT Boot ROM

TABLE 9-2 UCB List

UCB Name Comment

JBUS

DRAM CSR Two UCBs are implemented.

TAP

Clock Unit

Boot ROM / SSI

TABLE 9-1 Block Address Assignment (Continued)

Address Range
(PA{39:32}) Block Name Comment
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9.2 Alternate Address Spaces
TABLE 9-3 summarizes the ASI usage in UltraSPARC T1; any ASI not listed behaves
as described in the UltraSPARC Architecture 2005 specification. The Section column
lists where the operation of the ASI is explained. For several internal ASIs, a range of
legal VAs is listed. An access outside the legal VA range will be aliased to a legal VA
by ignoring the upper address bits.

Notes (1) All internal, nontranslating ASIs in UltraSPARC T1 can only
be accessed using LDXA and STXA. This is different than
UltraSPARC I/II, where LDDFA and STDFA can also be used to
access internal ASIs. Using LDDFA and STDFA to access an
internal ASI in UltraSPARC T1 results in a
data_access_exception trap.

(2) ASIs 8016–FF16 are unrestricted (nonprivileged, privileged,
and hyperprivileged software may access). ASIs 0016–2F16 are
restricted to privileged and hyperprivileged, while ASIs 3016–
7F16 are restricted to hyperprivileged software only.

TABLE 9-3 UltraSPARC T1 ASI Usage (1 of 9)

ASI ASI NAME R/W VA

Copy
per
strand Description Section

0016–
0316

Any — data_access_exception
(SFSR.ct =3 )

0516–
0B16

Any — data_access_exception
(SFSR.ct = 3)

0D16–
0F16

Any — data_access_exception
(SFSR.ct = 3)

1216–
1316

Any — data_access_exception
(SFSR.ct = 3)

1A16–
1B16

Any — data_access_exception
(SFSR.ct = 3)

1C16 ASI_REAL_LITTLE RW Any — Nonallocating in L1 cache, same
as ASI_REAL_IO_LITTLE for
I/O addresses

9.2.1

2016 ASI_SCRATCHPAD RW 016–
1816

Y Scratchpad registers 0–3 9.2.3

RW 2016–
2816

— data_access_exception
(SFSR.ct = 3)

9.2.3

RW 3016–
3816

Y Scratchpad registers 6–7 9.2.3
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2216 ASI_LDTX_AIUP,

ASI_STBI_AIUP

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUP is used for
Block-Initializing stores, As If
User, Primary Context

5.10

2316 ASI_LDTX_AIUS,

ASI_STBI_AIUS

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUS is used for
Block-Initializing stores, As If
User, Secondary Context

5.10

2416 ASI_TWINX (ASI_LDTX),
ASI_QUAD_LDDD†,
ASI_NUCLEUS_QUAD_LDDD†

R Any — 128-bit atomic Load Twin
Doubleword (deprecated;
superseded by ASI 2716)

2516 ASI_QUEUE RW 016–
3B816

— Load/store does NOP

RW 3C016
–3F816

Y (See UltraSPARC Architecture
2005)

2716 ASI_LDTX_N,

ASI_STBI_N

RW Any — (See UltraSPARC Architecture
2005)

ASI_STBI_N is used for Block-
Initializing stores, Nucleus
Context

5.10

2816–
2916

Any — data_access_exception
(SFSR.ct = 3)

2A16 ASI_LDTX_AIUP_L,

ASI_STBI_AIUP_L

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUP_L is used for
Block-Initializing stores, As If
User, Primary Context, Little
Endian

5.10

2B16 ASI_LDTX_AIUS_L,

ASI_STBI_AIUS_L

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUS_L is used for
Block-Initializing stores, As If
User, Seondary Context, Little
Endian

5.10

2C16 ASI_TWINX_LITTLE (ASI_LDTX_L),
ASI_QUAD_LDD_LITTLED†,
ASI_NUCLEUS_QUAD_LDD_LITTLED†

R Any — 128-bit atomic Load Twin
Doubleword, little endian
(deprecated; superseded by ASI
2F16)

2D16 Any — data_access_exception
(SFSR.CT=3)

TABLE 9-3 UltraSPARC T1 ASI Usage (2 of 9)

ASI ASI NAME R/W VA

Copy
per
strand Description Section
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2F16 ASI_LDTX_NL,

ASI_STBI_NL

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_NL is used for Block-
Initializing stores, Nucleus
context, Little-Endian

5.10

3016 Any — data_access_exception
(SFSR.ct = 3)

3116 ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0 RW 016 Y DMMU Context Zero TSB Base
PS0

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3216 ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1 RW 016 Y DMMU Context Zero TSB Base
PS1

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3316 ASI_DMMU_CTXT_ZERO_CONFIG RW 016 Y DMMU Context Zero Config
Register

13.9.4

RW 816–
F816

— Load/store does NOP 13.9.4

3416 Any — data_access_exception
(SFSR.ct = 3)

3516 ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0 RW 016 Y IMMU Context Zero TSB Base
PS0

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3616 ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1 RW 016 Y IMMU Context Zero TSB Base
PS1

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3716 ASI_IMMU_CTXT_ZERO_CONFIG RW 016 Y IMMU Context Zero Config
Register

13.9.4

RW 816–
F816

— Load/store does NOP 13.9.4

3816 Any — data_access_exception
(SFSR.ct = 3)

3916 ASI_DMMU_CTXT_NONZERO_TSB_
BASE_PS0

RW 016 Y DMMU Context Nonzero TSB
Base PS0

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

TABLE 9-3 UltraSPARC T1 ASI Usage (3 of 9)

ASI ASI NAME R/W VA

Copy
per
strand Description Section
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3A16 ASI_DMMU_CTXT_NONZERO_TSB_
BASE_PS1

RW 016 Y DMMU Context Nonzero TSB
Base PS1

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3B16 ASI_DMMU_CTXT_NONZERO_CONFIG RW 016 Y DMMU Context Nonzero Config
Register

13.9.4

RW 816–
F816

— Load/store does NOP 13.9.4

3C16 Any — data_access_exception
(SFSR.ct = 3)

3D16 ASI_IMMU_CTXT_NONZERO_TSB_
BASE_PS0

RW 016 Y IMMU Context Nonzero TSB
Base PS0

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3E16 ASI_IMMU_CTXT_NONZERO_USB_
BASE_PS1

RW 016 Y IMMU context nonzero TSB Base
PS1

13.9.3

RW 816–
F816

— Load/store does NOP 13.9.3

3F16 ASI_IMMU_CTXT_NONZERO_CONFIG RW 016 Y IMMU Context Nonzero Config
Register

13.9.4

RW 816–
F816

— Load/store does NOP 13.9.4

4016 ASI_STREAM_MA RW 016–
7816

— Load/store does NOP

RW 8016 N Modular Arithmetic Control
Register

16.1.1

RW 8816 N Modular Arithmetic Physical
Address register (MPA)

16.1.2

RW 9016 N Modular Arithmetic Memory
Address Register
(MA_ADDR)

16.1.3

RW 9816 N Modular Arithmetic NP Register16.1.4
RW A016 N Wait for async MA operation

to complete
16.1.5

RW A816–
F816

— Load/store does NOP

4116 Any — data_access_exception
(SFSR.ct = 3)

4216 ASI_SPARC_BIST_CONTROL RW 016 N SPARC BIST Control register ?
4216 ASI_INST_MASK_REG RW 816 N SPARC Instruction Mask register?
4216 ASI_LSU_DIAG_REG RW 1016 N Load/Store Unit Diagnostic

register
?

TABLE 9-3 UltraSPARC T1 ASI Usage (4 of 9)

ASI ASI NAME R/W VA

Copy
per
strand Description Section
70 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



4216 RW 1816–
F816

— Load/store does NOP

4416 ASI_STM_CTL_REG RW 016 N Self-timed Margin Control
register

?

4516 ASI_LSU_CONTROL_REG RW 016 Y Load/Store Unit Control
Register

?

RW 816–
F816

— Load/store does NOP

4616 ASI_DCACHE_DATA RW Any Y D-cache data array diagnostics
access

?

4716 ASI_DCACHE_TAG RW Any Y D-cache tag and valid bit
diagnostics access

?

4816–
4A16

Any — data_access_exception
(SFSR.ct = 3)

4B16 ASI_SPARC_ERROR_EN_REG RW 016 N SPARC Error Enable reg
(synchronous ecc/parity errors)

?

4C16 ASI_SPARC_ERROR_STATUS_REG RW 016 Y SPARC Error Status register ?

4D16 ASI_SPARC_ERROR_ADDRESS_REG RW 016 Y SPARC Error Address register ?

4E16 Any — data_access_exception
(SFSR.ct = 3)

4F16 ASI_HYP_SCRATCHPAD RW 016–
3816

Y Hyperprivileged Scratchpad 9.2.4

5016 ASI_ITSB_TAG_TARGET R 016 Y IMMU Tag Target register 13.9.5
5016 ASI_IMMU RW 816–

1016

— Load/store does NOP

RW 1816 Y IMMU Synchronous Fault Status
register

13.9.6

RW 2016 — Load/store does NOP
RW 2816 data_access_exception

(SFSR.ct = 3)
RW 3016 Y IMMU TLB Tag Access register 13.9.8
RW 3816–

F816

— Load/store does NOP

5116 ASI_IMMU_TSB_PS0_PTR_REG R 016 Y IMMU TSB PS0 Pointer register 13.9.1
0

R 816–
F816

— Load does NOP

TABLE 9-3 UltraSPARC T1 ASI Usage (5 of 9)

ASI ASI NAME R/W VA

Copy
per
strand Description Section
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5216 ASI_IMMU_TSB_PS1_PTR_REG R 016 Y IMMU TSB PS1 Pointer register 13.9.1
0

R 816–
F816

Load does NOP

5316 Any — data_access_exception
(SFSR.ct = 3)

5416 ASI_ITLB_DATA_IN_REG W 016–
7F816

Y IMMU Data In register 13.9.11

5516 ASI_ITLB_DATA_ACCESS_REG RW 016–
7F816

Y IMMU TLB Data Access register 13.9.11

5616 ASI_ITLB_TAG_READ_REG R 016–
1F816

Y IMMU TLB Tag Read register 13.9.11

5716 ASI_IMMU_DEMAP W Any Y IMMU TLB Demap 13.7
5816 ASI_DTSB_TAG_TARGET R 016 Y DMMU Tag Target register 13.9.5
5816 ASI_DMMU RW 816–

1016

— data_access_exception
(SFSR.ct = 3)

RW 1816 Y DMMU Synchronous Fault
Status register

13.9.6

R 2016 Y DMMU Synchronous Fault
Address register

13.9.7

RW 2816 — data_access_exception
(SFSR.ct = 3)

RW 3016 Y DMMU TLB Tag Access register 13.9.8
RW 3816 Y DMMU VA Data Watchpoint

register
?

RW 4016 — data_access_exception
(SFSR.ct = 3)

RW 4816–
7816

— Load/store does NOP

RW 8016 Y I/DMMU Partition ID 13.9.9
RW 8816–

F816

— Load/store does NOP

5916 ASI_DMMU_TSB_PS0_PTR_REG R 016 Y DMMU TSB PS0 Pointer register13.9.1
0

R 816–
F816

— Load does NOP

5A16 ASI_DMMU_TSB_PS1_PTR_REG R 016 Y DMMU TSB PS1 Pointer register13.9.1
0

R 816–
F816

— Load does NOP

TABLE 9-3 UltraSPARC T1 ASI Usage (6 of 9)
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5B16 ASI_DMMU_TSB_DIRECT_PTR_REG R 016 Y DMMU TSB Direct Pointer
register

13.9.1
0

R 816–
F816

— Load does NOP

5C16 ASI_DTLB_DATA_IN_REG W 016–
7F816

Y DMMU Data In register 13.9.11

5D16 ASI_DTLB_DATA_ACCESS_REG RW 016–
7F816

Y DMMU TLB Data Access
register

13.9.11

5E16 ASI_DTLB_TAG_READ_REG R 016–
1F816

Y DMMU TLB Tag Read register 13.9.11

5F16 ASI_DMMU_DEMAP W Any Y DMMU TLB Demap 13.7
6016 ASI_TLB_INVALIDATE_ALL W 016 Y IMMU TLB Invalidate register 13.7

W 816 Y DMMU TLB Invalidate register 13.7
W 1016–

F816

— Store does NOP

6116–
6516

Any — data_access_exception
(SFSR.ct = 3)

6616 ASI_ICACHE_INSTR RW Any Y I-cache data array diagnostics
access

?

6716 ASI_ICACHE_TAG RW Any YN I-cache tag and valid bit
diagnostics access

?

6816–
7116

Any — data_access_exception
(SFSR.ct = 3)

7216 ASI_SWVR_INTR_RECEIVE RW 016 Y Interrupt Receive register 7.4.1
7316 ASI_SWVR_UDB_INTR_W W 016 Y Interrupt Vector Dispatch

register
7.4.2

7416 ASI_SWVR_UDB_INTR_R R 016 Y Incoming Vector register 7.4.3
7516–
7F16

Any — data_access_exception
(SFSR.ct = 3)

8416–
8716

Any — data_access_exception
(SFSR.ct = 3)

8C16–
BF16

Any — data_access_exception
(SFSR.ct = 3)

C016 ASI_PST8_P Any — data_access_exception
(SFSR.ct = 0)1

C116 ASI_PST8_S Any — data_access_exception
(SFSR.ct = 1)1

C216 ASI_PST16_P Any — data_access_exception
(SFSR.ct = 0)1

C316 ASI_PST16_S Any — data_access_exception
(SFSR.ct = 1)1
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C416 ASI_PST32_P Any — data_access_exception
(SFSR.ct = 0)1

C516 ASI_PST32_S Any — data_access_exception
(SFSR.ct = 1)1

C616–
C716

Any — data_access_exception
(SFSR.ct = 3)

C816 ASI_PST8_PL Any — data_access_exception
(SFSR.ct = 0)1

C916 ASI_PST8_SL Any — data_access_exception
(SFSR.ct = 1)1

CA16 ASI_PST16_PL Any — data_access_exception
(SFSR.ct = 0)1

CB16 ASI_PST16_SL Any — data_access_exception
(SFSR.ct = 1)1

CC16 ASI_PST32_PL Any — data_access_exception
(SFSR.ct = 0)1

CD16 ASI_PST32_SL Any — data_access_exception
(SFSR.ct = 1)1

CE16–
CF16

Any — data_access_exception
(SFSR.ct = 3)

D016 ASI_FL8_P Any — data_access_exception
(SFSR.ct = 0)2

D116 ASI_FL8_S Any — data_access_exception
(SFSR.ct = 1)2

D216 ASI_FL16_P Any — data_access_exception
(SFSR.ct = 0)2

D316 ASI_FL16_S Any — data_access_exception
(SFSR.ct = 1)2

D416–
D716

Any — data_access_exception
(SFSR.ct = 3)

D816 ASI_FL8_PL Any — data_access_exception
(SFSR.ct = 0)2

D916 ASI_FL8_SL Any — data_access_exception
(SFSR.ct = 1)2

DA16 ASI_FL16_PL Any — data_access_exception
(SFSR.ct = 0)2

DB16 ASI_FL16_SL Any — data_access_exception
(SFSR.ct = 1)2

DC16–
DF16

Any — data_access_exception
(SFSR.ct = 3)

E016 ASI_BLK_COMMIT_P RW Any — data_access_exception
(SFSR.ct = 0)3

TABLE 9-3 UltraSPARC T1 ASI Usage (8 of 9)
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9.2.1 ASI_REAL and ASI_REAL_LITTLE

The ASI_REAL[_LITTLE] ASIs are used to bypass virtual-to-real address
translation. The real address is set equal to the virtual address (that is,
RA{63:0} ← VA{63:0}), the dTLB performs the real-to-physical translation, and the
attriubtes used are those present in the matching TTE.

This ASI is used to bypass the data MMU for memory addresses (PA{39} = 0). When
the access to this ASI bypasses the TLB, the physical address is set equal to the
truncated virtual address (that is, PA{39:0} = V A{39:0}). The physical page attribute
bit w is set to 1 and all other attribute bits are set to 0 for accesses to this ASI. Since
the cp page attribute bit is clear, load accesses using this ASI will always fetch their
data from the L2 cache. Using this ASI for an I/O address (PA{39} = VA{39} = 1) is
permitted, and will follow the same page attributes (w = 1, all other attributes 0).

E116 ASI_BLK_COMMIT_S RW Any — data_access_exception
(SFSR.ct = 1)3

E416–
E916

Any — data_access_exception
(SFSR.ct = 3)

EC16–
EF16

Any — data_access_exception
(SFSR.ct = 3)

F216–
F716

Any — data_access_exception
(SFSR.ct = 3)

FA16–
FF16

Any — data_access_exception
(SFSR.ct = 3)

 †  This ASI name has been changed, for consistency; although use of this name is deprecated and software should use the new name,
 the old name is listed here for compatibility.

1. ASIs C016–C516, C816–CD16, D016–D316, D816–DB16, and E016–E116 are checked for a VA watchpoint and will generate a VA_Watchpoint
trap if the watchpoint conditions are met. They are also checked for word-alignment and doubleword-alignment on STDFA, and will
generate a mem_address_not_aligned trap if the effective address (R[rs1] + R[rs2]; note that R[rs2] is not used as a mask) is not word-
aligned or a stdf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

2. ASIs D016–D316 and D816–DB16 are checked for a VA watchpoint and will generate a VA_Watchpoint trap if the watchpoint conditions
are met. They are also checked for word-alignment and doubleword-alignment on STDFA and LDDFA, and will generate a
mem_address_not_aligned trap if the address is not word-aligned or a stdf_mem_address_not_aligned/
lddf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

3. ASIs E016–E116 are checked for a VA watchpoint and will generate a VA_Watchpoint trap if the watchpoint conditions are met. They are
also checked for word-alignment and doubleword-alignment on STDFA, and will generate a mem_address_not_aligned trap if the ad-
dress is not word-aligned or a stdf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

Programming
Note

Although it is permitted to use ASI_REAL (or
ASI_REAL_LITTLE) for an I/O access (PA{39 = VA{39} = 1)
when bypassing the TLB, it is not recommended to do so
because the e bit is not set for the access. ASI_REAL_IO and
ASI_REAL_IO_LITTLE should be used instead.

TABLE 9-3 UltraSPARC T1 ASI Usage (9 of 9)
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9.2.2 ASI_REAL_IO and ASI_REAL_IO_LITTLE

This ASI is used to bypass the data MMU for I/O addresses (PA{39} = 1).When the
access to this ASI bypasses the TLB, the physical address is set equal to the truncated
virtual address (that is, PA{39:0} = VA{39:0}). The physical page attributes e and w
are set to 1 and all other attribute bits are set to 0 for accesses to this ASI. Using this
ASI for a memory address (PA{39} = VA{39} =0) is permitted, and will follow the
same page attributes (e = 1, w = 1, all other attributes 0). When the access to this ASI
requires an RA-to-PA translation, the real address is set equal to the virtual address
(that is, RA{63:0} = VA{63:0}), and the attributes used are those present in the
matching TTE.

9.2.3 ASI_SCRATCHPAD

Each strand has a set of six privileged ASI_SCRATCHPAD registers, accessed through
ASI 2016 with VA{63:0} = 016, 816, 1016, 1816, 3016, or 3816. These registers are for
scratchpad use by privileged software. VA 2016 and 2816 may be used to access two
additional scratchpad registers. However, access to those two scratchpad registers
will be much slower than to the other six (because accesses to them will cause a
data_access_exception trap and the access will be emulated by hyperprivileged
software).

TABLE 9-4 defines the format of these registers.

Implementation
Note

Accesses to this ASI that require a real-to-physical translation
but cause a trap such as data_access_exception that updates the
Synchronous Fault Status register will load the SFSR using the
attributes from the TLB. If there is no matching TLB entry, then
the attributes used will be all set to 0.

Note An atomic load-store operation is not permitted to these ASIs;
an attempt to execute one will result in a data_access_exception
exception.

Implementation
Note

Accesses to this ASI that require a real-to-physical translation
but cause a trap such as data_access_exception that updates the
Synchronous Fault Status register will load the SFSR using the
attributes from the TLB. If there is no matching TLB entry, then
the attributes used will be all set to 0
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9.2.4 ASI_HYP_SCRATCHPAD

Each strand has a set of eight hyperprivileged ASI_HYP_SCRATCHPAD registers at
ASI: 4F16, VA{63:0} = 016–3816. These registers are for scratchpad use by
hyperprivileged software and for aliased access to the privileged scratchpad
registers.

TABLE 9-5 defines the format of the ASI_HYP_SCRATCHPAD registers.

TABLE 9-4 Scratchpad – ASI_SCRATCHPAD (ASI 2016; VA 016, 816, 1016, 1816, 3016, or 3816)

Bit Field
Initial
Value R/W Description

63:0 scratchpad X RW Scratchpad.

Warning There is a known “feature” in UltraSPARC T1 that affects
LDXA/STXA by privileged code to these ASI registers. If an
immediately preceeding instruction is a store that takes a TLB-
related trap, an LDXA can corrupt an unrelated IRF (integer
register file) register, or a STXA may complete in spite of the
trap. To prevent this, it is required to have a non-store or NOP
instruction before any LDXA/STXA to this ASI. If the LDXA/
STXA is at a branch target, there must be a non-store in the
delay slot. Nonprivileged software and hypervisor software are
not affected by this.

TABLE 9-5 Hyperprivileged Scratchpad – ASI_HYP_SCRATCHPAD (ASI 4F16, VA 016–3816)

Bit Field
Initial
Value R/W Description

63:0 scratchpad X RW Scratchpad.

Note There is only a single set of eight scratchpad registers, six of
which are accessible via both ASI_SCRATCHPAD, and
ASI_HYP_SCRATCHPAD. ASI_SCRATCHPAD is intended to used
primarily by privileged code, and only has access to the first
four and last two registers of the eight entry scratchpad array.
ASI_HYP_SCRATCHPAD can only be accessed in hyperprivileged
mode, and has full access to all eight scratchpad registers. The
registers at VA 2016 and 2816 are accessible exclusively via
ASI_HYP_SCRATCHPAD.
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CHAPTER 10

Performance Instrumentation

10.1 Performance Control Register
Each virtual processor has a privileged Performance Control register (PCR).
Nonprivileged accesses to this register cause a privileged_opcode trap. The
performance control register contains six fields: ovfh, ovfl, sl, ut, st, and priv.

■ ovfh and ovfl are state bits associated with the PIC.h and PIC.l overflow traps and
are provided in this register to allow swapping out of a process that is in the state
between the counter overflowing and the overflow trap being generated.

■ sl controls which events are counted in PIC.l.

■ ut controls whether user-level (nonprivileged) events are counted.

■ st controls whether supervisor-level (privileged) events are counted.
Hyperprivileged events are never counted.

■ priv controls whether the PIC register can be read or written by nonprivileged
software.

The format of this register is shown in TABLE 10-1. Note that changing the fields in
PCR does not affect the PIC values. To change the events monitored, software needs
to disable counting via PCR, reset the PIC, and then enable the new event via the
PCR.

TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field Initial Value R/W Description

63:10 — 0 R Reserved

9 ovfh 0 RW If 1, PIC.h has overflowed, and the next count event will
cause a disrupting trap (pic_overflow) to hyperprivileged
software. The trap will appear to be precise to the
instruction following the event.

8 ovfl 0 RW If 1, PIC.l has overflowed

7 — 0 R Reserved
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TABLE 10-2 contains the settings for the sl field.

6:4 sl 0 RW Selects one of eight events to be counted for PIC.l, per
TABLE 10-2.

3 — 0 R Reserved

2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore
user mode events.

1 st 0 RW If st = 1, count events in supervisor mode; otherwise,
ignore supervisor mode events.

0 priv 0 RW If priv = 1, prevent access to PIC by user-level code. If
priv = 0, allow access to PIC by user-level code.

TABLE 10-2 sl Field Settings

Event Names Encoding PIC Description

Instr_cnt sl = XXX H Number of completed instructions. Annulled, mispredicted, or trapped
instructions are not counted.1

1. Tcc instructions that are cancelled due to encountering a higher-priority trap are still counted. The most likely traps to cause a Tcc to
be cancelled are data_error, pic_overflow, trap_level_zero, and hstick_match. These are all very low probability traps. Loads that en-
counter a data parity error in the DTLB are still counted. Again, this is a very low probability trap.

SB_full sl = 000 L Number of store buffer full cycles.2

2. SB_full increments every cycle a strand (virtual processor) is stalled due to a full store buffer, regardless of whether other strands are
able to keep the processor busy. The overflow trap for SB_full is not precise to the instruction following the event that occurs when ovfl
is set (the trap may occur on either the instruction following the event that occurs when ovfl is set, or on either of the next two instruc-
tions).

FP_instr_cnt sl = 001 L Number of completed floating-point instructions.3 Annulled or trapped
instructions are not counted.

3. Only floating point instructions which execute in the shared FPU are counted. The following instructions are executed in the shared
FPU: FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FDIVS, FDIVD, FSMULD, FSTOX, FDTOX, FXTOS, FXTOD, FITOS, FDTOS,
FITOD, FSTOD, FSTOI, FDTOI, FCMPS, FCMPD, FCMPES, FCMPED.

IC_miss sl = 010 L Number of instruction cache (L1) misses.

DC_miss sl = 011 L Number of data cache (L1) misses for loads (store misses are not included as
the cache is write-through, non-allocating).

ITLB_miss sl = 100 L Number of instruction TLB miss trap taken (includes real_translation
misses).

DTLB_miss sl = 101 L Number of data TLB miss trap taken (includes real_translation misses).

L2_imiss sl = 110 L Number of secondary cache (L2) misses due to instruction cache requests.

L2_dmiss_ld sl = 111 L Number of secondary cache (L2) misses due to data cache load requests.4

4. L2 misses due to stores cannot be counted by the performance instrumentation logic.

TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field Initial Value R/W Description
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10.2 SPARC Performance Instrumentation
Counter
Each strand (virtual processor) has a Performance Instrumentation Counter register
(PIC). Access privilege to PIC is controlled by the setting of PCR.priv. When
PCR.priv = 1, a nonprivileged access to this register causes a privileged_action trap.
The PIC counter contains two fields, h and l. The PIC.h field always counts the
number of completed instructions. The PIC.l field counts the event selected by
PCR.sl.

The ut and st fields for PCR control whether events from user (nonprivileged) mode,
supervisor (privileged) mode, both, or neither are counted. Hyperprivileged events
are never counted. Whenever PCR.ovfh is set (which normally occurs when the
PIC.h counter overflows, but may also be set via a write to the PCR), a pic_overflow
exception and subsequent disrupting trap is generated on the next event that
increments the counter. The trap is disrupting, but is delivered at very high priority
(only resets and trap_level_zero are higher priority). This trap will appear to be
precise to the instruction following the one that caused the event, as long as a
trap_level_zero trap does not occur on the same cycle as the instruction following
the one that caused the event and the pic_overflow trap is not masked
(PSTATE.ie = 1 and PIL < 15).

The counter overflow trap is signaled via bit 15 of the SOFTINT register. When this
condition occurs, bit 15 of the SOFTINT register is set to one, which will generate an
interrupt_level_15 trap to the appropriate strand, if PSTATE.ie = 1 and pil < 15. The
priority of this trap is higher than the normal interrupt_level_15 trap, at priority 2
(where it is higher priority than fast_instruction_MMU_miss but lower priority than
trap_level_zero).

Implementation
Note

For a DTLB miss, the trap may be taken for an instruction that
didn’t execute (the trap doesn't include the effect of other
higher-priority traps superseding the
fast_data_access_MMU_miss trap).

Programming
Note

A WRasr to PCR that modifies the ovfh or ovfl bit behaves as if
the ovfh or ovfl bit was modified before the WRasr is executed.

This implies that if all of the following conditions are true, a
performance counter overflow (pic_overflow) trap will be taken
(to hyperprivileged software) on the instruction following the
WRasr:

• a WRasr is executed in privileged mode that sets ovfh or ovfl to 1
• PCR.st = 1
• the WRasr generates the event being counted
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The format of the PIC register is shown in TABLE 10-3.

10.3 DRAM Performance Counter

RegisterBaseAddress DRAM CSR Registers – 97 0000 000016. Each DRAM
channel has a pair of performance counters, packed into a single register, plus a
register to control what is counted. TABLE 10-4 through TABLE 10-6 describe the
registers.

TABLE 10-3 Performance Instrumentation Counter Register – PIC (ASR 1116)

Bit Field Initial Value R/W Description

63:32 h 0 RW Instruction counter.

31:0 l 0 RW Programmable event counter, event controlled by PCR.sl.

TABLE 10-4 DRAM Performance Control Register – DRAM_PERF_CTL_REG (000000040016)

Bit Field Initial Value R/W Description

63:8 — X R Reserved

7:4 sel0 0 R Select code for performance counter 0.

3:0 sel1 0 R Select code for performance counter 1.

TABLE 10-5 DRAM Performance Counter Register – DRAM_PERF_COUNT_REG (000000040816)

Bit Field Initial Value R/W Description

63 sticky0 0 RW Sticky overflow for counter 0.

62:32 counter0 0 RW Performance counter 0

31 sticky1 0 RW Sticky overflow for counter 1.

30:0 counter1 0 RW Performance counter 1

TABLE 10-6 DRAM Performance Counter Select Codes

Event Name Select Description

mem_reads 0000 Read transactions.

mem_writes 0001 Write transactions.

mem_read_write 0010 Read + write transactions.

bank_busy_stalls 0011 Bank busy stalls; incremented by one each cycle there are requests in the queue,
but none can issue because of bank conflicts

rd_queue_latency 0100 Read queue latency; incremented by n each cycle, where n is the number of
read transactions in the queue.
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10.4 JBUS Performance Counters

RegisterBaseAddress 13 JBI – 80 0000 000016. JBI has a pair of performance
counters, packed in a single 64-byte register. Control of the counters is through a
separate CSR, which specifies what is counted in each counter. Turning counting on
and off is controlled by specifying to count something vs. counting nothing
(sel = 016). Counts are reinitialized by writing zero to the counters.

For the latency count events, the JBI keeps track of the number of outstanding
transactions of the particular type, then incrementing the count each cycle by the #
of outstanding transactions. If the other counter counts # of read transactions, you
can calculate average latency by dividing (Total Latency / # of Read transactions).

The most significant bit of each counter is a sticky overflow bit, which can only be
cleared by a CSR write.

Refer to TABLE 10-7 and TABLE 10-8.

wr_queue_latency 0101 Write queue latency; incremented by n each cycle, where n is the number of
write transactions in the queue

rw_queue_latency 0110 (Read + Write) queue latency; incremented by n each cycle, where n is the
number of transactions in the queue.

wr_buf_hits 0111 Writeback buffer hits; incremented by one each time a read transaction is
deferred because it conflicts with a queued write transaction.

1xxx Reserved.

Implementation
Note

There is a potential starvation case affecting JBUS or PCI PIO
read returns, if multiple strands keep a continuous stream of
reads to JBI internal registers. The only JBI internal registers
likely to be exposed to non-hyperprivileged access are the JBI
performance counters. Because of the potential starvation case,
access to these registers should not be given to potentially
malicious users.

TABLE 10-7 186 JBUS Performance Counter Control – JBI_PERF_CTL (000216-000016)

Bit Field Initial Value R/W Description

63:8 — X R Reserved

7:4 event_sel1 X RW Which event to count in counter1.

3:0 event_sel2 X RW Which event to count in counter2.

TABLE 10-6 DRAM Performance Counter Select Codes

Event Name Select Description
• 85



TABLE 10-8 JBUS Performance Counter Select Encodings

Event Name sel Value Description

016 Nothing; doesn’t count.

jbus_cycles 116 JBUS cycles (that is, Time)

dma_reads 216 DMA read transactions (inbound)

dma_read_latency 316 Total DMA read latency

dma_writes 416 DMA write transactions

dma_write8 516 DMA WR8 subtransactions

ordering_waits 616 Ordering Waits: # of JBI → L2 queues blocked each cycle

716

pio_reads 816 PIO read transactions (outbound)

pio_read_latency 916 Total PIO

A16

B16

aok_dok_off_cycles C16 AOK_OFF or DOK_OFF seen (cycles)

aok_off_cycles D16 AOK_OFF seen (cycles)

dok_off_cycles E16 DOK_OFF seen (cycles)

F16

TABLE 10-9 187 JBUS Performance Counters – JBI_PERF_COUNT (000216-000816)

Bit Field Initial Value R/W Description

63 sticky1 X RW Sticky overflow bit for counter 1.

62:32 count1 X RW Performance counter 1.

31 sticky2 X RW Sticky overflow bit for counter 2.

30:0 count2 X RW Performance counter 2.
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CHAPTER 11

Clocks, Reset, RED_state, and
Initialization

11.1 Clock Unit
The clock unit block contains the control registers for chipwide clocking.

RegisterBaseAddress 6 CLKU – 96 0000 000016. The following register, whose
format is shown in TABLE 11-1, contains the clock divisors for the PLL.

TABLE 11-1 Clock Divider – CLK_DIV (000016)

Bit Field Initial Value R/W Description

63:42 — X R Reserved

61:52 dmult 8 RW Common multiple. Number of DRAM clock cycles from coincident
rising edges on CMP_CLK, DRAM_CLK, and SSI_CLK (JBUS_CLK ÷ 4)
to another set of coincident rising edges. This will always be
cmult × (cdiv ÷ ddiv). However, it may never be less than 8 for correct
hardware operation. Reset only on POR.

51:42 jmult 8 RW Common multiple. Number of JBUS clock cycles from coincident rising
edges on CMP_CLK, DRAM_CLK, and SSI_CLK (JBUS_CLK ÷ 4) to
another set of coincident rising edges. This will always be
cmult × (cdiv ÷ jdiv). However, it may never be less than 8 for correct
hardware operation. Reset only on POR.

41:28 cmult 32 RW Common multiple. Number of CMP clock cycles from coincident rising
edges on CMP_CLK, DRAM_CLK, and SSI_CLK (JBUS_CLK ÷ 4) to
another set of coincident rising edges. Will usually be the least common
multiple (LCM) of cdiv, jdiv × 4, and ddiv after removing common factors.
However, it may never be less than 16 for correct hardware operation.
Reset only on POR.

27 — X R Reserved
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The clock frequencies of the CMP core and for DRAM are a function of the input
J_CLK and the ddiv, jdiv, and cdiv fields. CMP core frequency is (JBUS frequency ×
jdiv ÷ cdiv), and DRAM frequency is (JBUS frequency × jdiv ÷ddiv).

The recommended procedure for doing a frequency change with warm reset is listed
below:

1. Update the CLK_JSYNC register to the values needed for the new frequency
point.

2. Update the CLK_DSYNC register to the values needed for the new frequency
point.

3. Write the CLK_DIV register to the values needed for the new frequency point.
This write should have the change bit set to a 1 and must be a 64 bit write
(doubleword store).

4. Cause the warm reset to happen by writing a register in the bus controller or
signaling the system controller.

26 change 0 RW Software should set this bit to force a frequency change on the next
warm reset, if it changes any of the *div fields below. Hardware clears
this bit after the reset, either warm reset or POR.

25:21 — X R Reserved

20:16 ddiv 16 RW Dram clock divisor. Reset only on POR.

15:13 — X R Reserved

12:8 jdiv 16 RW JBUS clock divisor. Reset only on POR.

7:5 — X R Reserved

4:0 cdiv 4 RW CMP clock divisor. Reset only on POR. Only values of 2, 4, and 8 are
supported and tested.

Caution The values of mult, ddiv, jdiv, and cdiv in the CLK_DIV register
and all fields in the CLK_JSYNC and CLK_DSYNC register are
interdependent and must be changed together in a coherent
fashion. Illegal values exist that will prohibit correct functional
operation. In addition, valid values should not be reverse-
engineered by experimentation. Values exist that may work at
some process, voltage and temperature points, but do not allow
sufficient margin for correct electrical operation across PVT
combinations.

TABLE 11-1 Clock Divider – CLK_DIV (000016) (Continued)

Bit Field Initial Value R/W Description
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The Clock Control register, whose formats are shown in TABLE 11-4, contains the
cluster clock enables and clocking control.

TABLE 11-2 Clock Control – CLK_CTL (000816)

Bit Field Initial Value R/W Description

63 ossdis 1 RW If 1, and clkdis = 1, a debug trigger will stop clocks in all
clusters simultaneously. Otherwise, clocks are disabled at rate
specified by cken_delay field. Reset only on POR.

62 clkdis 0 RW If 1, disable clocks upon assertion of debug trigger. Reset only
on POR.

61 srarm 0 RW If 1, arm self-refresh of DRAM upon assertion of warm-reset.
Reset only on POR.

60:55 — X R Reserved

54:48 cken_delay 7F16 RW Number of CMP cycles between disabling individual cluster
clock enables, for turning clocks off, if ossdis = 0. Actual
value is clk_en_delay + 2, so if field is 7F16, interval is 129
CMP cycles between cken changes. Minimum legal value for
cken_delay is 0116. Reset only on POR.

47:35 — X R Reserved

34 misc 1 RW Clock enable for MISC block

33 dbg 1 RW Clock enable for DBG pad block

32 efc 1 RW Clock enable for EFC (EFuse).

31 iob 1 RW Clock enable for IOB

30 jbusr 1 RW Clock enable for JBUS_R IO pads

29 jbusl 1 RW Clock enable for JBUS_L IO pads

28 — X RW Reserved. (Was clock enable for BSC)

27 jbi 1 RW Clock enable for JBI

26:25 — X RW Reserved. (Was clock enable for Ethernet)

24 — 0 RO Reserved (would be CTU clock enables).

23:20 ddr F16 RW Clock enables for memory IO pads

19 fpu 1 RW Clock enable for the floating-point unit.

18 ccx 1 RW Clock enable for the crossbar.

17:16 dram 316 RW Clock enables for the memory controllers.

15:12 sctag F16 RW Clock enables for the four banks of L2 Tag.

11:8 scdata F16 RW Clock enables for the four banks of L2 Data.

7:0 sparcore FF16 RW Clock enables for the eight SPARC physical cores.

Note Note that the clock enables are reset on both POR and warm
resets. This means that software trying to disable clocks to
particular clusters must turn off the clock enable after the last
reset.
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The register shown in TABLE 11-5 controls the DLLs to the DRAMs.

The register shown in TABLE 11-7 controls generation of JBUS clock synchronization
pulses

TABLE 11-3 Clock DLL Control – CLK_DLL_CNTL (001816)

Bit Field Initial Value R/W Description

63:45 — X R Reserved

44:40 dbg_delay 016 RW Number of CMP cycles to delay stopping clocks, on a debug
trigger.

39 — X R Reserved

38 stretch_mode 016 RW Clock stretch mode. 0 = precise mode, 1 = multiple clock mode

37 — X R Reserved

36:32 stretch 0216 RW Clock stretch count

31:20 — X R Reserved

19 ddr3_dll_ovf X R DRAM3 deskew overflow

18 ddr3_dll_lock X R DRAM3 deskew lock

17:15 ddr3_dll_delay 316 RW DRAM3 deskew delay

14 ddr2_dll_ovf X R DRAM2 deskew overflow

13 ddr2_dll_lock X R DRAM2 deskew lock

12:10 ddr2_dll_delay 316 RW DRAM2 deskew delay

9 ddr1_dll_ovf X R DRAM1 deskew overflow

8 ddr1_dll_lock X R DRAM1 deskew lock

7:5 ddr1_dll_delay 316 RW DRAM1 deskew delay

4 ddr0_dll_ovf X R DRAM0 deskew overflow

3 ddr0_dll_lock X R DRAM0 deskew lock

2:0 ddr0_dll_delay 316 RW DRAM0 deskew delay

TABLE 11-4 Clock JBUS Sync – CLK_JSYNC (002816)

Bit Field Initial Value R/W Description

63:40 — X R Reserved

39:38 jsync_rcv2 1 RW Number of cycles after jsync_trn2 to generate a receive sync pulse.

37 — X R Reserved

36:32 jsync_trn2 0 RW Count value for which one transmit sync pulse will be generated.

31:30 jsync_rcv1 1 RW Number of cycles after jsync_trn1 to generate a receive sync pulse.

29 — X R Reserved

28:24 jsync_trn1 0 RW Count value for which one transmit sync pulse will be generated.

23:22 jsync_rcv0 1 RW Number of cycles after jsync_trn0 to generate a receive sync pulse.

21 — X R Reserved

20:16 jsync_trn0 0 RW Count value for which one transmit sync pulse will be generated.
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Please see note with CLK_DIV register about the proper sequence for updating the
CLK_JSYNC and CLK_DSYNC registers.

The register shown in TABLE 11-8 controls generation of DRAM clock synchronization
pulses.

15:13 — X R Reserved

12:8 jsync_init 2 RW Initial value for JBUS sync counter. The counter will be loaded
with this value once after each PLL lock.

7:5 — X R Reserved

4:0 jsync_period 3 RW Period for JBUS sync pulse generation. Defines new value for
decrementing counter when 0 (the terminal count) is reached.

TABLE 11-5 Clock DRAM Sync– CLK_DSYNC (003016)

Bit Field
Initial
Value R/W Description

63:40 — X R Reserved

39:38 dsync_rcv2 1 RW Number of cycles after dsync_trn2 to generate a receive sync pulse.

37 — X R Reserved

36:32 dsync_trn2 0 RW Count value for which one transmit sync pulse will be generated.

31:30 dsync_rcv1 1 RW Number of cycles after dsync_trn1 to generate a receive sync pulse.

29 — X R Reserved

28:24 dsync_trn1 0 RW Count value for which one transmit sync pulse will be generated.

23:22 dsync_rcv0 1 RW Number of cycles after dsync_trn0 to generate a receive sync pulse.

21 — X R Reserved

20:16 dsync_trn0 0 RW Count value for which one transmit sync pulse will be generated.

15:13 — X R Reserved

12:8 dsync_init 2 RW Initial value for JBUS sync counter. The counter will be loaded with
this value once after each PLL lock.

7:5 — X R Reserved

4:0 dsync_period 3 RW Period for JBUS sync pulse generation. Defines new value for
decrementing counter when 0 (the terminal count) is reached.

TABLE 11-4 Clock JBUS Sync – CLK_JSYNC (002816) (Continued)

Bit Field Initial Value R/W Description
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11.2 Reset Status Register

RegisterBaseAddress 1 IOBMAN – 98 0000 000016. The chip reset status, shown
in TABLE 11-9, is maintained for all chip-wide reset and power management
commands. The reset source bits in this register are writable to allow software to
clear them after the chip reset sequence is complete, in order for strand (virtual
processor) warm resets to be distinguished from chip resets. Hardware will copy the
current reset status into a shadow status whenever a reset occurs.

11.3 Reset Overview
A reset is anything that causes an entry to RED_state. Two classes of resets exist:
chipwide and strand. Chipwide resets affect all subsystems in a chip and are
generated from the power-on and warm reset signals sourced from the external
system. Strand resets are generated from writes to the INT_VEC_DIS register, as well
as software resets and error conditions. In addition to forcing entry to RED_state,
various resets cause different effects in initializing processor state, as discussed in
the following sections. Reset priorities (from highest to lowest), per the UltraSPARC
Architecture 2005, are POR, WMR, XIR, WDR, SIR. Resets are not maskable, that is,
resets ignore PSTATE.ie).

TABLE 11-6 Chip Reset Status Register – RSET_STAT (081016)

Bit Field Initial Value R/W Description

63:12 — X R Reserved

11 freq_s X R Shadow status of FREQ

10 por_s X R Shadow status of POR

9 wmr_s X R Shadow status of WMR

8:4 — X R Reserved

3 freq 0 RW Set to one if the reset is a warm reset that changed frequency.

2 POR 1 RW Set to one if the reset is from PWRON_RST pin.

1 WMR 0 RW Set to one if the reset is from the WRM_RST pin.

0 — X R Reserved
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11.4 Chipwide Resets and Power
Management
Chipwide resets affect all virtual processors in a chip, as well as all I/O, cache, and
DRAM subsystems. A chipwide reset is categorized as either a power-on or a warm
reset. Power-on reset is used when the chip power and clock inputs are outside of
their operating specifications. Warm reset is used when the power and clock inputs
are stable. Warm reset is typically used to modify clock frequencies or ratios, or to
reinitialize the chip after an unrecoverable hardware or software failure.

11.4.1 Power-on Reset (POR)
A power-on reset occurs when the PWRON_RST pin is asserted and then deasserted.
The PWRON_RST pin must be asserted until the CPU voltages and input clocks
reach their operating specifications. When the PWRON_RST pin is active, all other
resets and traps are ignored. Power-on reset has a trap type of 00116 at physical
address offset 2016.

Since POR and warm reset share the same trap type and trap vector, the RSET_STAT
register, described in Reset Status Register on page 96, has separate POR and warm
reset bits to allow software to distinguish between POR and warm resets.

During power-on reset, all pending transactions are canceled. Strand 0 of the first
available physical core begins executing at the RSTVADDR (reset trap vector address)
base plus POR offset, while the remaining strands start out inactive. BIST testing
may optionally be initiated by software as part of the chip initialization sequence.

After a power-on reset, software must initialize values specified as unknown in
Machine State after Reset and in RED_State on page 104. In particular, I-cache tags,
D-cache tags, and L2-cache tags must initialized before enabling the caches. The
iTLB and dTLB also must be initialized before enabling memory management.

Note Each register must be initialized before it is used. For example,
CWP must be initialized before accessing any windowed
registers, since the CWP register selects which register window
to access. Failure to initialize registers or states properly prior to
use may result in unpredicted or incorrect results.
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11.4.2 Warm Reset (WMR)
A warm reset occurs when the J_RST_P pin is asserted and then deasserted. When a
warm reset is received, all other resets and traps except POR are ignored. Warm reset
has the same trap type and vector as power-on reset: a trap type of 00116 at physical
address offset 2016. Software can distinguish between POR and the various sources
of warm reset by checking the RSET_STAT register. When a warm reset occurs, the
memory controller will place the DRAM in self-refresh state before resetting itself to
preserve the state of DRAM. Warm reset does not automatically do BIST testing, but
BIST testing can be initiated by software after the reset is completed. After warm
reset, strand 0 of the first available physical core begins executing at the
RED_state_trap_vector base plus POR offset, while the remaining strands start out
inactive.

After a warm reset, software must initialize values specified as unknown in Machine
State after Reset and in RED_State on page 104. If there was a clean shutdown, the
primary instruction, primary data, and L2 caches and main memory are still valid.
Otherwise, I-cache tags, D-cache tags, and L-cache tags should be initialized before
enabling the caches. The iTLB and dTLB also must be initialized before enabling
memory management.

Note that if a warm reset is received without software first placing the chip in a
quiescent state, the hardware will still maintain the state of the primary instruction,
primary data, L2 caches, main memory, and all error registers/logs. However, the
caches and main memory may no longer be completely coherent after the warm
reset as any transactions in flight when the warm reset was received will have been
lost. In particular, dirty lines in the process of being written back to main memory
may have been dropped.

11.5 Strand Resets
Strands receive resets via writes to the INT_VEC_DIS register. Strand resets do not
set any bits in the RSET_STAT register.

11.5.1 Warm Reset (WMR)
A strand (virtual processor) can be sent a warm reset (WMR) via the INT_VEC_DIS
register. The warm reset generates a POR, which has a trap type of 00116 at physical
address offset 2016. Software can distinguish a strand warm reset from a chipwide
warm reset by reading the RSET_STAT register. Since strand resets do not set any
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bits in this register and software will zero the chipwide reset bits after the reset
sequence has been completed, a RSET_STAT with all zero source bits will indicate to
the strand that it received a strand warm reset.

11.5.2 Externally Initiated Reset (XIR)
An externally initiated reset is sent to a virtual processor via a write to the
INT_VEC_DIS register; it causes an XIR, which has a trap type of 00316 at physical
address offset 6016. It has higher priority than all other resets except WMR. XIR is
used for system debug.

11.5.3 Watchdog Reset (WDR) and error_state

A SPARC V9 WDR can be generated from the virtual processor reset register,
INT_VEC_DIS, and traps to physical address offset 4016 and trap type 00216. In
addition, when a strand encounters a trap when TL = MAXTL, it enters error_state
and signals itself internally to take a WDR trap. CWP updates due to window traps
that cause watchdog traps are the same as the no watchdog trap case.

11.5.4 Software-Initiated Reset (SIR)
An SIR interrupt can be generated from the virtual processor reset register,
INT_VEC_DIS. A software-initiated reset is also invoked on a strand by issuing an
SIR instruction while operating in hyperprivileged mode. This strand reset has a
trap type of 00416 at physical address offset 8016.

11.6 Strand Suspension
UltraSPARC T1 uses a different set of primitives than UltraSPARC Architecture for
controlling strand activity.

An active strand can be placed in the inactive state via a pair of mechanisms,
referred to as “halt” and “idle.” A “resume” mechanism is provided which causes
halted or idle strands to resume execution. In addition, halted and idle strands both
respond to resets and halted strands respond to interrupts as well (an idle strand
ignores interrupts).

A strand may place itself in the halted state by executing a “halt” instruction. HALT
is a synthetic instruction that maps to a WRASR %asr26 with a data value that has
bit 0 clear. A halted strand does not execute any instructions beyond the halt. While
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in the halted state, the strand will respond to interrupts, resumes, and resets. Receipt
of an interrupt will take the strand to the active state, at which point if
PSTATE.ie = 1, it will take the interrupt. Once the interrupt is serviced the strand
will resume execution of the instruction following the halt (that is, the strand
remains active). If PSTATE.ie = 0, the interrupt will remain pending and the strand
will resume execution with the instruction following the halt. If the halted strand is
sent a resume, it will resume execution with the instruction following the halt.
Finally, if the halted strand is sent a reset, it will take a reset trap of the appropriate
reset type.

A strand may be placed in the idle state by receiving an idle message. The idle
message is generated via the INT_VEC_DIS register. An idle strand does not execute
any instructions beyond where it received the idle message. While in the idle state,
the strand will respond to resume or resets only. Interrupts will have no effect on
idle strands. If the idle strand is sent a resume, it will resume execution where it left
off. If the idle strand is sent a reset, it will take a reset trap of the appropriate reset
type.The following diagram shows the transitions between the halted, idle, and
active states. FIGURE 11-1 shows the transitions between the halted, idle, and active
states
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FIGURE 11-1 Transitions Between Halted, Idle, and Active States
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Notes (1) Placing a strand in the idle or halted state has no effect on
cache coherence. Caches will continue to maintain coherence
even if all strands that access that cache are placed in the idle or
halted states.

(2) Error logging will continue to take place even while a strand
is in the idle or halted state (for example, a modular arithmetic
error will update the SPARC Error Status register of an idle or
halted strand).

(3) Repeatedly sending a strand resume message (or idle/
resume message pairs) in a tight loop can prevent the receiving
strand from making forward progress. This is most likely to
occur when the receiving strand has its instruction cache
disabled or repeatedly takes a long-latency trap (such as an ITLB
miss). Spacing the resume messages by 10 microseconds or more
should be sufficient to allow the receiving strand to make
forward progress.

Programming
Notes

(1) UltraSPARC T1 does not provide a mechanism for
determining when a strand that has been sent an idle message
actually becomes idle or when a strand that executes a halt
instruction retires the halt instruction.

(2) If a strand desires to send an interrupt to itself to take it out
of the halted state, a race condition exists where the interrupt
could be received before the HALT instruction completes. To
avoid this race, the following sequence can be used:

set PSTATE.ie = 0
set up interrupt
HALT
set PSTATE.ie = 1

Having interrupts disabled while setting up the interrupt
guarantees that the interrupt will not be taken before the HALT
instruction. The halted state is exited when the interrupt is
received, even though PSTATE.ie = 0. Setting PSTATE.ie = 1 will
result in the interrupt being taken.

(3) The HALT instruction can be used as an interrupt barrier. If,
while expecting an interrupt, PSTATE.ie = 1 and a HALT
instruction is executed, UltraSPARC T1 guarantees that the
interrupt will be taken before any instructions following the
HALT are executed.
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11.7 RED_state
RED_state is an acronym for Reset, Error, and Debug State. It serves two mutually
exclusive purposes:

1. An indication, during trap processing, that there are no more available trap levels
—that is, if another nested trap is taken, the strand will enter error_state and
halt.

2. Provision of a restricted execution environment for all reset processing.

This state is entered under any of the occurrences:

■ Trap taken when TL = MAXTL – 1

■ Reset requests: POR, XIR, WDR

■ Reset request: SIR when TL < MAXTL (if TL = MAXTL, the strand enters
error_state)

■ Setting of HPSTATE.red by system software

RED_state is indicated by HPSTATE.red = 1, regardless of the value of TL.
Executing a DONE or RETRY instruction in RED_state restores the stacked copy of
the HPSTATE register, which zeroes the HPSTATE.red flag if it was zero in the
stacked copy. System software can also set or clear the HPSTATE.red flag with a
WRHPR instruction, which also forces the strand to enter or exit RED_state,
respectively. In this case, the WRHPR instruction should be placed in the delay slot
of a jump instruction, so that the PC can be changed in concert with the state
change.

A reset or trap that sets HPSTATE.red to 1 (including a trap in RED_state) clears
the LSU Control register, including the enable bits for the I-cache, D-cache, I-MMU,
D-MMU, and virtual and physical watchpoints.

The default access in RED_state is noncacheable, so the system must contain some
noncacheable scratch memory. The I-cache, D-cache, watchpoints, and D-MMU can
be enabled by software in RED_state, but any trap that occurs will disable them
again. The I-MMU is always disabled in RED_state (this overrides the enable bit in
the LSU Control register).

When HPSTATE.red is explicitly set to 1 by a software write, there are no side effects
other than disabling the I-MMU. Software may need to create the effects that are
normally created when resets or traps cause the entry to RED_state.

The caches continue to maintain coherence while in RED_state.

Note Setting TL = MAXTL using a WRHPR instruction neither sets
RED_state nor alters any other machine state. The values of
RED_state and TL are independent.
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11.8 RED_state Trap Vector
When a strand processes a reset or trap that enters RED_state, it takes a trap at an
offset relative to the RED_state_trap_vector base address (RSTVADDR). The trap
offset depends on the type of RED_state trap and takes the values:

■ POR or WMR: 2016
■ XIR: 6016
■ WDR: 4016
■ SIR: 8016
■ other: A016

In an UltraSPARC T1 virtual processor, the RSTV base address is RSTVADDR

FFFF FFFF F000 000016.

11.9 Machine State after Reset and in
RED_State
TABLE 11-10 and TABLE 11-11 show processor state created as a result of any reset, or
after entering RED_state.

TABLE 11-7 Architectural Processor State After Reset and When Entering RED_state

Name Fields POR WMR (strand) WDR XIR SIR RED_State

Integer registers Unknown Unchanged

Floating-Point registers Unknown Unchanged

RSTVADDR FFFF FFFF F000 000016

PSTATE ag 0 (Alternate globals not selected)

cle 0 (Current not little endian)

tle 0 (trap not little endian)

ig 0 (Interrupt globals not selected)

mg 0 (MMU globals not selected)

HPSTATE (bit 11) 0 (must be set to 1 by software)

red 1 (RED_state)

hpriv 1 (Hyperprivileged mode)

tlz 0 (tlz traps disabled)

TBA tba_high49 Unknown Unchanged
100 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



HTBA tba_high50 Unknown Unchanged

Y Unknown Unchanged

PIL Unknown Unchanged

CWP Unknown Unchanged except for register window traps

TPC[TL] Unknown PC

TNPC[TL] Unknown NPC

CCR Unknown Unchanged

ASI Unknown

TSTATE[TL] gl Unknown GL

ccr Unknown CCR

asi Unknown ASI

pstate Unknown PSTATE

cwp Unknown CWP

HTSTATE[TL] hpstate Unknown HPSTATE

TICK npt 1 Unchanged

counter Unknown Count

CANSAVE Unknown Unchanged

CANRESTORE Unknown Unchanged

OTHERWIN Unknown Unchanged

CLEANWIN Unknown Unchanged

WSTATE other Unknown Unchanged

normal Unknown Unchanged

HVER manuf 003E16

impl 002316

mask Mask dependent (4 bits major, 4 bits minor)

maxtl 6

maxgl 3

maxwin 7

GSR all 0 Unchanged

FSR all 0 Unchanged

FPRS all Unknown Unchanged

TICK_CMPR int_dis 1 (off) Unchanged

tick_cmpr Unknown Unchanged

TABLE 11-7 Architectural Processor State After Reset and When Entering RED_state (Continued)

Name Fields POR WMR (strand) WDR XIR SIR RED_State
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11.10 Boot Sequence

11.10.1 Overview of Software Initialization Sequence
Assumptions:

TABLE 11-8 UltraSPARC T1-Specific Processor State After Reset and When Entering RED_state

Name Fields POR WMR (strand) WDR XIR SIR RED_State

PCR all 0 (off) Unchanged

PIC 0 Unchanged

LSU Control
register

all 0 (off)

VA_WATCHPOINT Unknown Unchanged

I/D/L2 tags and
data

Unknown Unchanged

L2 directory All Invalid Unchanged

Store buffer Empty Empty Unchanged Empty

iTLB/dTLB Mappings Unknown Unchanged

Partition identifier 0 Unchanged

SPARC Error
Enable register

all 0 (trapping disabled) Unchanged

SPARC Error
Status register

all Unknown Unchanged

SPARC Error Address register Unknown Unchanged

L2 Error Enable
register

all 0 (reporting disabled) Unchanged

L2 Error Status
register

all Unknown Unchanged

L2 Error Address register Unknown Unchanged

DRAM Error
Status register

all Unknown Unchanged

DRAM Error Address register Unknown Unchanged

All I/O error registers Unknown Unchanged

Note On a chipwide warm reset (WMR), the WMR (strand column)
applies, except that the TPC[TL] and TNPC[TL] are both
unknown, and the FSR and GSR are both set to 0.
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■ L2 Tag, Data, and VUAD arrays, when written (BISTed) to zeros, are initialized to
empty with good parity and good ECC.

■ L2 Directory (of L1 tags) is marked invalid on reset.

■ L1 I-cache, L1 D-cache, when written (BISTed) to zeros, initialized to good parity.

■ L1 I-tags, L1 D-tags need to be explicitly ASI written to invalid, with good parity.

■ Integer Register File – Explicit SW init.

■ Other Register Files – Explicit SW init.

■ ITLB, DTLB – cleared in SW with ASI_*TLB_INVALIDATE_ALL.

■ Stream Unit (MA arrays) – Explicit SW init.

■ Main Memory – Fast ECC initialization with Block Init Store instructions.

Sequence:

1. Read RSET_STAT register, which indicates POR.

2. Initialize CLK_DIV register with desired ratios.

3. Clear error logs. (Alternatively, this could be moved to later.)

4. Initialize (JBUS) registers on I/O Bridge chip that need reset to take effect.

5. Write to I/O Bridge chip, to initiate warm reset.

6. Come out of warm reset, again at reset vector.

7. Read RSET_STAT register, which indicates warm reset, with clock change.

8. If at-speed BIST is desired, launch BIST on L2 cache and local core’s L1 caches;
otherwise, launch BISI to initialize the L2 cache and local core’s L1 caches.

9. Initialize local core’s L1 tags.

10. Wait for BIST_DONE indications.

11. Enable error detection on L2 cache and local L1 caches.

12. Enable L2 cache and local L1 caches.

13. Copy bootstrap code into L2 cache, using Block Init Store instructions.

14. Branch to bootstrap code (now executing from cache).

15. Copy/decode code segments from PROM space to cacheable space, using Block
Init Store instructions.

16. Initialize DRAM interface blocks.

17. Force refresh asynchronicity, by zeroing out the refresh counters on each DRAM
controller, at precise intervals (N/4 of the refresh interval).
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18. Initialize main memory, using Block Init Store instructions.

19. Initialize rest of blocks on the chips.

20. Send reset trap interrupts to strand 0 on other available cores

21. Strand 0 in each available physical core initializes physical core state (such as L1
BIST and enable L1$).

22. Strand 0 on each cores send reset trap interrupts to strands 1–3 on same core.

23. All virtual processors initialize strand-specific state.

24. Hand off to POST.

11.10.2 Overview of Warm Reset Software Initialization
Sequence
Assumptions:

■ Need to check whether error reset or SW-generated reset.

■ What needs to be reinitialized?

■ D-cache tags look like valid is cleared, so parity is undefined.

■ Directory is cleared, so L1-I and L1-D need to be invalidated.

Sequence:

1. Read RSET_STAT register, which indicates warm reset.

2. Check local error logs.

3. Check remote error logs (for example, in IO Bridge chip).

4. If errors, go to crash-dump handling.

5. If no errors, initialize/clear L1 caches.

6. Turn on caches.

7. Initialize strand-specific state.

8. Send reset trap interrupts to other available virtual processors.

9. All virtual processors initialize strand-specific state.

10. Strand 0 in each available physical core initializes physical core state (such as
clear and enable L1$).

11. Continue, as desired by SW.
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11.11 Reset and Halt/Idle/Resume Summary
TABLE 11-12 summarizes the actions taken for chipwide reset and power management
commands. In the table, BASE = FFFF FFFF F000 000016 (RSTVADDR).

TABLE 11-13 summarizes the actions taken for strand interrupt, reset, halt, idle, and
resume commands. In the table, BASE = FFFF FFFF F000 000016 (RSTVADDR).

TABLE 11-9 Chipwide Reset and Power Management Commands Actions

Event Chip State
Auto-
BIST

Virtual Processor

Boot Vector
Physical Core
0, Strand 0

All other
strands

Power-on reset pin asserted Awake No Active Idle BASE | 2016

Warm reset pin asserted Awake No Active Idle BASE | 2016

TABLE 11-10 Strand Interrupt, Reset, Halt, Idle, and Resume Commands Actions

Event Target Strand Boot Vector

INT_VEC_DIS or
ASI_SWVR_UDB_INTR_W
interrupt

Strand idle No effect

INT_VEC_DIS or
ASI_SWVR_UDB_INTR_W
interrupt

Strand active or
halted

Interrupt posted to
ASI_SWVR_INTR_RECEIVE

—

INT_VEC_DIS reset Active BASE | VECTOR

INT_VEC_DIS idle Idle —

Execution of halt instruction Halted —

INT_VEC_DIS resume Strand active No effect

INT_VEC_DIS resume Strand idle or halted Active Resumes from suspended PC

Note After a POR or being brought out of the sleep state, an idle
strand must be activated by a reset, not a resume.
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CHAPTER 12

Error Handling

This chapter describes the error detection, reporting, and handling for the
UltraSPARC T1 chip.

12.1 Error Classes
Errors on UltraSPARC T1 fall into three classes: fatal (FE), uncorrectable (UCE), and
correctable (CE).

Fatal errors are generated whenever the hardware detects a condition where an error
has occurred and the extent to which the error may have propagated is unbounded.
An example of a fatal error is a valid bit corruption in the L2 cache, which implies
that global cache coherence has been lost. Since a fatal error may have corrupted key
operating system or hypervisor data structures, fatal errors generate an immediate
warm reset to the UltraSPARC T1 chip.

Uncorrectable errors are errors for which the hardware is unable to take corrective
action, but the extent to which the error may have propagated is tightly bounded.
Examples of uncorrectable errors include a data parity error on the DTLB, and a
double-bit ECC error in the L2 cache. Note that the uncorrectable status for these
errors refers only to the UltraSPARC T1 hardware. Software may be able to correct a
hardware-uncorrectable error. For example, the data parity error in the DTLB may be
able to be corrected in software by forcing the TLB entry with the bad parity to be
invalid, which will then be reloaded over with a new TTE entry and good parity on
the subsequent TLB miss. Likewise, while a double-bit ECC error in the L2 cache
cannot be corrected by software, the extent to which the error could have
propagated is limited to the address space of any process that has access to that
memory location, and software may be able to keep the system running by killing all
processes that could be affected by the error and then scrubbing the bad memory
location. Uncorrectable errors are reported through several traps, including precise
and disrupting traps.
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Finally, correctable errors are errors that the UltraSPARC T1 hardware can correct
automatically. These errors do not corrupt any system or process state, although they
may have a performance impact on the process encountering them. Examples of
correctable errors are single-bit ECC errors in the L2 cache or a data parity error in
the instruction cache. Correctable errors generate a disrupting ECC_error trap. This
trap can be used by software to keep track of correctable error frequency and
location to aid in diagnosing failed and failing hardware components.

12.2 CMT Error Overview
Errors detected in the CMT and memory subsystem are reported in three sets of
error registers: SPARC, L2 cache, and DRAM. Errors are reported in the SPARC Error
register set in program order. Errors are reported in the L2 cache and DRAM error
sets in the order the errors occur. The L2 cache Error Enable register controls
whether errors associated with the L2 cache and DRAM are reported back to the
initiator. If the L2 cache error enable bit (ceen or nceen, depending on whether the
error is correctable or uncorrectable) is not set, error information is not reported back
to the initiator. For the uncorrectable case (nceen clear), this means that bad data
will be executed/used, and thus the nceen bit is only intended to be cleared during
heavily controlled phases of diagnostic operation. The per-strand SPARC Error
Enable registers control whether the strand takes a trap as a result of any reported
errors.

The SPARC, L2, and DRAM error registers have the ability to log detailed
information for a single error. The same error logs information for all three classes of
errors: fatal, uncorrectable, and correctable. Fatal and uncorrectable errors will
overwrite earlier correctable error information. The error registers have bits to
indicate if multiple errors have occurred. There are two bits for multiple errors: meu
(multiple uncorrectable errors) and mec (multiple correctable errors). TABLE 12-1 lists
the multiple error logging and overwrite behavior of the error registers (a CE for the
main logged error with the meu bit set is not possible due to FE and UCE being
higher priority than CE in logging).

TABLE 12-1 Multiple Error Logging and Overwrite Behavior of the Error Registers

Main Logged
Error

Additional
CE Status Bit
Logged? meu mec Description

FE or UCE No 0 0 Single FE or UCE encountered and logged.

FE or UCE Yes 0 0 Single FE or UCE encountered and logged. One or more
correctable errors encountered before the FE or UCE but details on
the correctable errors not logged.
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TABLE 12-2 lists a high-level summary of the CMT error handling.

FE or UCE No 0 1 Single FE or UCE encountered and logged. One or more
correctable errors encountered simultaneous to or after the FE or
UCE but details on the correctable errors not logged.

FE or UCE Yes 0 1 Single FE or UCE encountered and logged. One or more
correctable errors encountered before the FE or UCE but details on
the correctable errors not logged. One or more correctable errors
encountered simultaneous to or after the FE or UCE but details on
the correctable errors not logged.

FE or UCE No 1 0 Two or more FE or UCEs encountered, details on the highest
priority FE or UCE encountered on the earliest cycle with an error
logged (that is, a higher priority error encountered on a later cycle
does not overwrite the earlier error).

FE or UCE Yes 1 0 Two or more FE or UCEs encountered, details on the highest
priority FE or UCE encountered on the earliest cycle with an error
logged (that is, a higher priority error encountered on a later cycle
does not overwrite the earlier error). One or more correctable
errors encountered before the FE or UCE but details on the
correctable errors not logged.

FE or UCE No 1 1 Two or more FE or UCEs encountered, details on the highest
priority FE or UCE encountered on the earliest cycle with an error
logged (that is, a higher priority error encountered on a later cycle
does not overwrite the earlier error). One or more correctable
errors encountered simultaneous or later than the first FE or UCE
but details on the correctable errors not logged.

FE or UCE Yes 1 1 Two or more FE or UCEs encountered, details on the highest
priority FE or UCE encountered on the earliest cycle with an error
logged (that is, a higher priority error encountered on a later cycle
does not overwrite the earlier error). One or more correctable
errors encountered simultaneous or later than the first FE or UCE
but details on the correctable errors not logged. One or more
correctable errors encountered before the FE or UCE but details on
the correctable errors not logged.

CE No 0 0 Single CE encountered and logged.

CE No 0 1 Two or more CEs encountered, details on the highest priority CE
encountered on the earliest cycle with an error logged (that is, a
higher priority error encountered on a later cycle does not
overwrite the earlier error).

TABLE 12-1 Multiple Error Logging and Overwrite Behavior of the Error Registers (Continued)

Main Logged
Error

Additional
CE Status Bit
Logged? meu mec Description
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TABLE 12-2 CMT Error Handling Summary

Error and Abbreviation Severity Logs Notes

ITLB Data Parity (IMDU) Uncorrectable SPARC Error scrubbed by SW invalidate

ITLB CAM Parity (IMTU) Uncorrectable SPARC Only detectable by SW scrubber

DTLB Data Parity (DMSU for
stores; DMDU for loads and ASI
access)

Uncorrectable SPARC Error scrubbed by SW invalidate

DTLB CAM Parity (DMTU) Uncorrectable SPARC Only detectable by SW scrubber

I-cache Data Parity (IDC) Correctable SPARC Error scrubbed by HW miss fill

I-cache Tag Parity (ITC) Correctable SPARC Error scrubbed by HW invalidate of
all ways in the set and miss fill

D-cache Data Parity (DDC) Correctable SPARC Error scrubbed by HW miss fill

D-cache Tag Parity (DTC) Correctable SPARC Error scrubbed by HW invalidate of
all ways in the set and miss fill

Int RegFile ECC: transient single
(IRC)

Correctable SPARC Error scrubbed in HW

Int RegFile ECC: hard single,
multiple (IRU)

Uncorrectable SPARC

FP RegFile ECC: transient single
(FRC)

Correctable SPARC Error scrubbed in HW

FP RegFile ECC: hard single,
multiple (FRU)

Uncorrectable SPARC

Mod Arith Memory Parity (MAU) Uncorrectable SPARC Can be corrected via SW retry

PIO Read or Ifetch Error (NCU) Uncorrectable SPARC

L2 Data ECC: single (LDAC for
SPARC access; LDWC for
writeback: LDRC for dma; LDSC
for hardware scrubber)

Correctable L2 L2 may need SW scrub

L2 Data ECC: multiple (LDAU for
SPARC access; LDWU for
writeback; LDRU for dma; LDSU
for hardware scrubber)

Uncorrectable (SPARC), L2

L2 Tag ECC: single only (LTC) Correctable L2 L2 may need SW scrub

L2 Directory Parity (LRU) Fatal L2 Detected on scrub, causes warm reset

L2 VUAD Parity (LVU) Fatal L2 VAD errors only (no parity on U),
causes warm reset

DRAM ECC: single nibble (DAC
for access, DSC for hardware scrub)

Correctable L2, Mem Memory may need SW scrub

DRAM ECC: multiple nibble (DAU
for access, DSU for scrub)

Uncorrectable (SPARC), L2, Mem

DRAM address out of bounds
(DBU)

Uncorrectable (SPARC), L2, Mem Most likely the result of a software
error
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12.3 SPARC Error Descriptions

12.3.1 ITLB Data Parity Error (IMDU)
Each ITLB data entry is protected with parity. ITLB data parity is checked with each
instruction translation as well as with loads to ASI_ITLB_DATA_ACCESS_REG.
When a parity error is detected the error information is captured in the SPARC Error
Status and SPARC Error Address registers. For a load from
ASI_ITLB_DATA_ACCESS_REG, if the SPARC Error Enable nceen bit is set, a
precise data_access_error trap is generated to the requesting strand. For a
translation, if the SPARC Error Enable nceen bit is set, a precise
instruction_access_error trap is generated to the requesting strand.

12.3.2 ITLB Tag Parity Error (IMTU)
Each ITLB tag entry is protected with parity. The ITLB tag parity is only checked
when accessed via a load from ASI_ITLB_TAG_READ_REG, not during normal
instruction translations. This implies that the parity bit is present for software
scrubbing only. When reading an ITLB entry with parity error the error information
is captured in the SPARC Error Status and SPARC Error Address registers. In
addition, if the SPARC Error Enable nceen bit is set, a precise data_access_error
trap is generated to the requesting strand.

12.3.3 DTLB Data Parity Error on Load and Atomics
(DMDU)
Each DTLB data entry is protected with parity. The DTLB data parity is checked with
each atomic, load or store translation as well as with loads to
ASI_DTLB_DATA_ACCESS_REG. This section describes the error behavior for a load
or atomic translation or a load from the ASI_DTLB_DATA_ACCESS_REG. DTLB Data
Parity Error on Store (DMSU) on page 116 describes the error behavior for a store
translation. When a parity error is detected the error information is captured in the

Note If the SPARC Error Enable nceen bit is cleared, the ITLB data
entry with the parity error will be used for translation.
Depending on which bit was in error, this could lead to an
access to an unexpected address (for an address bit error), an
instruction_access_exception for user access to a p bit in error,
etc.
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SPARC Error Status and SPARC Error Address registers. In addition, if the SPARC
Error Enable nceen bit is set, a precise data_access_error trap is generated to the
requesting strand.

12.3.4 DTLB Data Parity Error on Store (DMSU)
Each DTLB data entry is protected with parity. The DTLB data parity is checked with
each atomic, load or store translation as well as with loads to
ASI_DTLB_DATA_ACCESS_REG. This section describes the error behavior for a store
translation. Section 12.3.3 describes the error behavior for a load or atomic
translation or a load from the ASI_DTLB_DATA_ACCESS_REG. When a parity error
is detected the error information is captured in the SPARC Error Status and SPARC
Error Address registers. In addition, if the SPARC Error Enable nceen bit is set, a
precise data_access_error is generated to the requesting strand.

Note If the SPARC Error Enable nceen bit is cleared, the DTLB data
entry with the parity error will be used for translation.
Depending on which bit was in error, this could lead to an
access to an unexpected address (for an address bit error), a
data_access_exception for user code access to a p bit in error,
etc.

Implementation
Note

If the SPARC Error Enable nceen bit is set, the DTLB data entry
with the parity error will still be checked for access privileges by
UltraSPARC T1. Since data_access_exception and
fast_data_access_protection are higher priority than
data_access_error, those traps may be taken instead of
data_access_error. DMDU examples that will generate a
data_access_exception instead are (a) the nfo bit is flipped from
0 to 1 and the access is non-nofault, (b) the priv bit is flipped
from 0 to 1 and the access is from user privilege, or (c) the e bit
is flipped from 0 to 1 and the access is no-fault.

Note If the SPARC Error Enable nceen bit is cleared, the DTLB data
entry with the parity error will be used for translation.
Depending on which bit was in error, this could lead to an
access to an unexpected address (for an address bit error), a
data_access_exception for user code access to a p bit in error,
etc.
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12.3.5 DTLB Data Parity Error on PREFETCH
If a DTLB parity error is detected during a prefetch, the parity error is ignored and
the prefetch continues, using the translated address. If the prefectch is from I/O
space, it is ignored. If it is not from I/O space, useless data may be prefetched into
the L2 cache or it may cause an out-of-bounds data access error (DAU/DBU) if the
error causes the translated address to point to non-existent memory.

12.3.6 DTLB Tag Parity Error (DTU)
Each DTLB tag entry is protected with parity. The DTLB tag parity is only checked
when accessed via a load from ASI_DTLB_TAG_READ_REG, not during normal
instruction translations. This implies that the parity bit is present for software
scrubbing only. When reading a DTLB entry with parity error the error information
is captured in the SPARC Error Status and SPARC Error Address registers. In
addition, if the SPARC Error Enable nceen bit is set, a precise data_access_error
trap is generated to the requesting strand.

12.3.7 I-cache Data Parity Error (IDC)
Each 32-bit instruction (plus a corresponding hardware-specific performance
acceleration bit called the “switch” bit) in the I-cache data array is protected with
parity. The I-cache data parity is checked with each instruction fetch. When a parity
error is detected the error information is captured in the SPARC Error Status register
(SESR) and SPARC Error Address registers. In addition, if the SPARC Error Enable
ceen bit is set, a disrupting ECC_error trap is generated to the requesting strand.
Hardware corrects the error by fetching the instruction line from the L2 cache and
replacing the erroneous data with the data from the L2 cache.

Implementation
Note

If the SPARC Error Enable nceen bit is set, the DTLB data entry
with the parity error will still be checked for access privileges by
UltraSPARC T1. Since data_access_exception and
fast_data_access_protection are higher priority than
data_access_error, those traps may be taken instead of
data_access_error. DMSU examples that will generate a
data_access_exception instead are (a) the nfo bit is flipped from
0 to 1 and the access is non-nofault or (b) the priv bit is flipped
from 0 to 1 and the access is from user privilege. A DMSU
example that will generate a fast_data_access_protection
instead is the w bit flipping from 1 to 0 for the store.
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12.3.8 I-cache Tag Parity Error (ITC)
The I-cache tag and valid bit are protected with parity. The I-cache tag parity is
checked with each instruction fetch. The parity is checked for each of the four
possible ways in the set. If a parity error is found in any of the ways, the error
information is captured in the SPARC Error Status and SPARC Error Address
registers. In addition, if the SPARC Error Enable ceen bit is set, a disrupting
ECC_error trap is generated to the requesting strand. All four ways in the set are
invalidated and a cache miss refill is forced.

12.3.9 D-cache Data Parity Error (DDC)
Each byte in the D-cache is protected with parity. The D-cache data parity is checked
with each data load. When a parity error is detected the error information is
captured in the SPARC Error Status and SPARC Error Address registers. In addition,
if the SPARC Error Enable ceen bit is set, a disrupting ECC_error trap is generated
to the requesting strand. Hardware corrects the error by fetching the data line from
the L2 cache and replacing the error data with the data from the L2 cache. Parity
errors are ignored on data stores, as new parity can be generated due to a parity bit
being kept for each byte in the cache.

12.3.10 D-cache Tag Parity Error (DTC)
The D-cache tag and valid bit are protected with parity. The D-cache tag parity is
checked with each data load. The parity is checked for each of the four possible
ways in the set. If a parity error is found in any of the ways, the error information is
captured in the SPARC Error Status and SPARC Error Address registers. In addition,

Implementation
Note

If an IDC is detected on an instruction that also detects an IRC,
the IDC should be logged and the IRC should set MEC. Instead,
the hardware logs both IDC and IRC in the SESR, with SEAR
containing IRF information. From a practical standpoint, the
chance of this occurring naturally is truly infinitesimal, so this
case is only of interest to validation code.

Implementation
Note

If an ITC is detected on an instruction that also detects an IRC,
the ITC should be logged and the IRC should set MEC. Instead,
the hardware logs both ITC and IRC in the SESR, with SEAR
containing IRF information. From a practical standpoint, the
chance of this occurring naturally is truly infinitesimal, so this
case is only of interest to validation code.
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if the SPARC Error Enable ceen bit is set, a disrupting ECC_error trap is generated
to the requesting strand. All four ways in the set are invalidated and a cache miss
refill is forced.

12.3.11 IRF Correctable ECC Error (IRC)
The integer register file (IRF) is protected by SECDED ECC. ECC is checked for each
register operand of an instruction. When a correctable ECC error is detected, the
error information is captured in the SPARC Error Status and SPARC Error Address
registers. In addition, if the SPARC Error Enable ceen bit is set, a disrupting
ECC_error trap is generated to the strand that encountered the error. Hardware
automatically corrects the register contents.

Notes (1) IRF single-bit errors are corrected by a microtrap mechanism
that attempts to retry the instruction up to three times. This
microtrap mechanism will succeed in correcting single-bit
transient errors, but will be unable to correct a single-bit
persistent error. Persistent single-bit errors are thus classified as
IRF uncorrectable ECC errors (IRU); in this case, if the SPARC
Error Enable ceen bit is cleared (or PSTATE.ie is cleared when
HPSTATE.hpriv is set), hardware will log an IRC error for the
retries and then take an IRU when the three retries have
completed unsuccessfully.

(2) Due to the microtrap retry mechanism for correcting IRF
single-bit errors, the ECC_error trap will be taken before the
instruction that encountered the single-bit error has completed
execution. This implies that a persistent single-bit error will
need to be detected in the ECC_error trap handler when SPARC
Error Enable ceen is set (and PSTATE.ie is set if HPSTATE.hpriv
is set), as the entry into the handler will occur before the three
retries can cause the IRU error.

(3) If multiple IRF correctable ECC errors are encountered for
the same instruction (for example, rs1 and rs2 both have
correctable ECC errors), this will be treated as a single IRC error
by the SPARC Error Status register, and the syndrome and
source register will be logged for the correctable error in priority
of rs1 > rs2 > rs3. rs3 is only checked for instructions that use it
as a source operand, which includes stores, CAS, and MOVcc (rd
is rewritten to itself for a MOV that doesn’t meet the condition).
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12.3.12 IRF Uncorrectable ECC Error (IRU)
The integer register file is protected by SECDED ECC. ECC is checked for each
register operand of an instruction. When an uncorrectable ECC error is detected the
error information is captured in the SPARC Error Status and SPARC Error Address
registers. In addition, if the SPARC Error Enable nceen bit is set, a precise
internal_processor_error trap is generated to the strand that encountered the error.

(4) If both uncorrectable and correctable IRF ECC errors are
encountered for the same instruction (for example, rs1 has a
correctable error, while rs2 has an uncorrectable error),
correction of the correctable error for use in the instruction will
be disabled (which does not matter since the other operand has
an uncorrectable error), and only the uncorrectable IRU error
will be indicated to the SPARC Error Status register. Hardware
will still correct the register contents for the correctable error.
Note that this overriding of a correctable error by an
uncorrectable error implies that if the SPARC Error Enable ceen
bit is set but the SPARC Error Enable nceen bit is cleared, no
trap will be generated for the correctable error.

(5) With the way register management works in UltraSPARC T1,
there can be unexpected behavior with IRF error propagation.
This affects %l, %o, %i, but not %g regs. The current register
window for a thread is in a particular high-speed register file.
Saves and restores (and wrpr %cwp) actually copy registers
between the high-speed file and a “backing store” that contains
the rest of the register windows. If there is an error in the
current register window, a “save” will copy/move the error to
the backing store, then allocate a new frame that still has the
error in it, thus replicating the error in another frame, effectively
in an uninitialized register in that frame. If that register is
initialized (written to) before getting dereferenced, the
replicated error will not be seen.

Implementation
Note

If an IRC is detected on an instruction that also detects either an
IDC or ITC, the IDC/ITC should be logged and the IRC should
set MEC. Instead, the hardware logs both IDC/ITC and IRC in
the SESR, with SEAR containing IRF information. From a
practical standpoint, the chance of this occurring naturally is
truly infinitesimal, so this case is only of interest to validation
code.
116 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



Notes (1) Software will need to initialize all integer registers in all
register windows after reset to prevent code which reads
uninitialized registers from causing internal_processor_error
traps.

(2) If multiple IRF uncorrectable ECC errors are encountered for
the same instruction (for example, rs1 and rs2 both have
uncorrectable ECC errors), this will be treated as a single IRU
error by the SPARC Error Status register, and the syndrome and
source register will be logged for the uncorrectable error in
priority of rs1 > rs2 > rs3. rs3 is only checked for instructions
that use it as a source operand, which includes stores, CAS, and
MOVcc (rd is rewritten to itself for a MOV that doesn’t meet the
condition).

(3) If both uncorrectable and correctable IRF ECC errors are
encountered for the same instruction (for example, rs1 has a
correctable error, while rs2 has an uncorrectable error),
correction of the correctable error for use in the instruction will
be disabled (which does not matter since the other operand has
an uncorrectable error), and only the uncorrectable IRU error
will be indicated to the SPARC Error Status register. Hardware
will still correct the register contents for the correctable error.
Note that this overriding of a correctable error by an
uncorrectable error implies that if the SPARC Error Enable ceen
bit is set but the SPARC Error Enable nceen bit is cleared, no
trap will be generated for the correctable error.

Implementation
Note

PREFETCHA instructions check for IRU on their address
generation.

However, PREFETCH instructions do not check for IRU on their
address generation.In the rare case where the prefetch has an
IRU on the address generation, no error will be reported, and
the prefetch may end up loading an unexpected cache line into
the L2 cache (or may end up as a NOP due to a TLB miss or
translation violation).
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The floating-point register file is protected by SECDED ECC. ECC is checked for
each register operand of an instruction. When a correctable ECC error is detected the
error information is captured in the SPARC Error Status and SPARC Error Address
registers. In addition, if the SPARC Error Enable ceen bit is set, a disrupting
ECC_error trap is generated to the strand that encountered the error. Hardware
automatically corrects the register contents.

Note With the way register management works in UltraSPARC T1,
there can be unexpected behavior with IRF error propagation.
This affects %l, %o, %i, but not %g regs. The current register
window for a thread is in a particular high-speed register file.
Saves and restores (and wrpr %cwp) actually copy registers
between the high-speed file and a “backing store” that contains
the rest of the register windows. If there is an error in the
current register window, a “save” will copy/move the error to
the backing store, then allocate a new frame that still has the
error in it, thus replicating the error in another frame, effectively
in an uninitialized register in that frame. If that register is
initialized (written to) before getting dereferenced, the
replicated error will not be seen.

Notes (1) FRF single-bit errors are corrected by a microtrap mechanism
that attempts to retry the instruction up to three times. This
microtrap mechanism will succeed in correcting single-bit
transient errors, but will be unable to correct a single-bit
persistent error. Persistent single-bit errors are thus classified as
FRF uncorrectable ECC errors (FRU); in this case, for an FP
store, if the SPARC Error Enable ceen bit is cleared (or
PSTATE.ie is cleared when HPSTATE.hpriv is set), hardware will
log an FRC error for the retries and then take an FRU when the
three retries have completed unsuccessfully. For other FP
operation, on a persistent single-bit error, hardware will log an
FRC error for the retries and then take an FRU when the three
retries have completed unsuccessfully.

(2) Due to the microtrap retry mechanism for correcting FRF
single-bit errors, the ECC_error trap will be taken before the
instruction that encountered the single-bit error has completed
execution for FP stores only. For other FP operations, the
ECC_error trap will be taken after the instruction has completed
execution. This implies that a persistent single-bit error for a FP
store source will need to be detected in the ECC_error trap
handler when SPARC Error Enable ceen is set (and
PSTATE.ie = 1 if HPSTATE.hpriv = 1), as the entry into the
handler will occur before the three retries can cause the FRU
error.
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12.3.13 FRF Uncorrectable ECC Error (FRU)
The floating-point register file is protected by SECDED ECC. ECC is checked for
each register operand of an instruction. When an uncorrectable ECC error is detected
the error information is captured in the SPARC Error Status and SPARC Error
Address registers. In addition, if the SPARC Error Enable nceen bit is set, a precise
internal_processor_error trap is generated to the strand that encountered the error.
Note that block store operations perform eight reads of the FRF.

See “Warning” below, regarding FRC/MEC.

(3) If multiple FRF correctable ECC errors are encountered for
the same instruction (for example, rs1 and rs2 both have
correctable ECC errors), this will be treated as a single FRC error
by the SPARC Error Status register, and the syndrome and
source register will be logged for the correctable error, with the
error in the rs1 operand given priority over the error in the rs2
operand.

(4) If both uncorrectable and correctable FRF ECC errors are
encountered for the same instruction (for example, rs1 has a
correctable error, while rs2 has an uncorrectable error), both an
FRC and FRU error will be indicated to the SPARC Error Status
register (and their corresponding traps will be taken if SPARC
Error Enable ceen and/or nceen bits, respectively, are set).

Notes (1) Software will need to initialize all floating-point registers
after reset to prevent code which reads uninitialized registers
from causing data_access_error traps.

(2) If multiple FRF uncorrectable ECC errors are encountered for
the same instruction (for example, rs1 and rs2 both have
uncorrectable ECC errors), this will be treated as a single FRU
error by the SPARC Error Status register, and the syndrome and
source register will be logged for the uncorrectable error, with
the error in the rs1 operand given priority over the error in the
rs2 operand.

(3) If both uncorrectable and correctable FRF ECC errors are
encountered for the same instruction (for example, rs1 has a
correctable error, while rs2 has an uncorrectable error), both a
FRC and FRU error will be indicated to the SPARC Error Status
register (and their corresponding traps will be taken if SPARC
Error Enable ceen and/or nceen bits, respectively, are set).
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12.3.14 Modular Arithmetic Memory (MAU)
The modular arithmetic memory is protected by parity. If a parity error is detected
on any MA memory access (either an MA operation or an MA memory store
operation), the MA unit immediately aborts its asynchronous operation and logs the
error in the SPARC Error Status register. Once the abort completes, if the SPARC
Error Enable nceen bit is set and the ASI_MA_CONTROL_REG int bit is set, a
disrupting data_error is generated to the strand specified in the
ASI_MA_CONTROL_REG as receiving the completion interrupt and the normal
modular_arithmetic_interrupt completion trap is not generated.

If the SPARC Error Enable nceen bit is set and the ASI_MA_CONTROL_REG int bit is
cleared, a precise data_access_error trap is generated to the strand that issues any
load from an ASI_MA_* register.

If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is set, a normal modular_arithmetic_interrupt is generated to the strand specified
in the ASI_MA_CONTROL_REG as receiving the completion interrupt.

If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is cleared, the load access to ASI_MA_SYNC_REG will complete normally without
generating an error trap.

12.3.15 I/O Load/Instruction Fetch (NCU)
Loads and instruction fetches to noncacheable I/O space (physical addresses
80 0000 000016–FF FFFF FFFF16) can encounter uncorrectable errors. When an
uncorrectable error is detected for an I/O load or instruction fetch the error
information is captured in the SPARC Error Status and SPARC Error Address
registers. Additional error logging may take place in the IOP as described in JBUS
Interface (JBI) on page 169. For an I/O load, if the SPARC Error Enable nceen bit is
set, a precise data_access_error trap is generated to the requesting strand. For an
instruction fetch, if the SPARC Error Enable nceen bit is set, a precise
instruction_access_error trap is generated to the requesting strand.

Warning There is a corner case where an FRC is detected, but the
hardware corrects the wrong FP register (of the same strand),
effectively corrupting that wrong register. This can be detected
in the error handler (conservatively) if (1) FRC and MEC are
both logged, or (2) FRC is logged, but the specified register is
still uncorrected. If either of these cases are detected, this should
be treated as an uncorrectable error.
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12.4 SPARC Error Registers

12.4.1 ASI_SPARC_ERROR_EN_REG

Each strand has a hyperprivileged ASI_SPARC_ERROR_EN_REG register at ASI 4B16,
VA{63:0} = 0. This register controls the generation of traps for errors that are reported
to the strand. The format of the ASI_SPARC_ERROR_EN_REG register is shown in
TABLE 12-3.

TABLE 12-3 SPARC Error Enable Register – ASI_SPARC_ERROR_EN_REG (ASI 4B16, VA 016)

Bit Field Initial Value R/W Description

63:2 — 0 R Reserved

1 nceen 0 RW If set to 1, trap on uncorrectable error

0 ceen 0 RW If set to 1, trap on correctable error

Notes (1) Errors are always logged in the
ASI_SPARC_ERROR_STATUS_REG and
ASI_SPARC_ERROR_ADDRESS_REG regardless of the setting of
the nceen and ceen bits in ASI_SPARC_ERROR_EN_REG.
ASI_SPARC_ERROR_EN_REG only controls whether or not a
trap is generated for the error.

(2) For a few of the multiple simultaneous error cases, proper
handling by UltraSPARC T1 requires the SPARC Error Enable
nceen bit to be set to 1, so the nceen bit should only be cleared
(set to 0) during carefully controlled situations. An example of
multiple simultaneous errors that are not handled properly
when the SPARC Error Enable nceen bit is zero occurs when an
instruction cache data error on the switch bit (special-case of
IDC) happens at the same time as a parity error (IMDU) on the
translation for the instruction that encounters the IDC error.
UltraSPARC T1 may hang for this case if the error in the TLB
entry corrupts a critical address bit. When the SPARC Error
Enable nceen bit is set, the trap taken for the IMDU error
prevents the hang case from arising.

Sun-Internal Note Running with nceen = 0 is intened for use only during bringup;
nceen should always be set to 1 in released software.
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If a thread is running with nceen = 0 and a load to a floating-point register occurs
that encounters an uncorrectable error, the issuing thread will hang until a warm
reset occors. The processor should not normally be run with nceen = 0; when it is,
floating-point loads and LDBLOCKF instructions should not be executed.

12.4.2 ASI_SPARC_ERROR_STATUS_REG

Each virtual processor (strand) has a hyperprivileged
ASI_SPARC_ERROR_STATUS_REG register at ASI 4C16, VA{63:0} = 0. Each status bit
in this register is cleared by writing a 1 to its bit position. The error register is not
cleared on reset, so software can examine its contents after an error-induced reset.

TABLE 12-4 defines the format of the ASI_SPARC_ERROR_STATUS_REG register.

Programming
Note

Since this register is not cleared on reset, after a power-on reset
the contents of this register are undefined and the bits could be
in an illegal state that could not possibly be generated by any
error combination (for example, multiple ue bits set with all
other bits cleared). Operation while in this illegal state leads to
undefined behavior for the register, so software should always clear
this register after a power-on reset.

Note meu, mec, and priv are not preserved across resets, which means
that those bits are also cleared after fatal error (which invokes a
warm reset.

TABLE 12-4 SPARC Error Status Register – ASI_SPARC_ERROR_STATUS_REG
(ASI 4C16, VA 016)

Bit Field Initial Value R/W Description

63:32 — 0 R Reserved

31 meu 0 RW1C Multiple uncorrected errors; one or more uncorrected errors were not
logged.

30 mec 0 RW1C Multiple corrected errors; one or more corrected errors were not
logged (due to either having both uncorrected and corrected errors,
or by having multiple corrected errors).

29 priv 0 RW1C Set to 1 if error occurred while in privileged or hyperprivileged
mode.

28 — 1 R Reserved

27:26 — 0 R Reserved

25 imdu Preserved RW1C Set to 1 if the error was an IMMU TLB data parity error.

24 imtu Preserved RW1C Set to 1 if the error was an IMMU TLB tag parity error.

23 dmdu Preserved RW1C Set to 1 if the error was a DMMU TLB data parity error on a load.

22 dmtu Preserved RW1C Set to 1 if the error was a DMMU TLB tag parity error.

21 idc Preserved RW1C Set to 1 if the error was an I-cache data parity error.
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If multiple errors occur in the same cycle, the meu and/or mec bit is set and only the
highest priority error is logged based on the following priority table (TABLE 12-5)
(errors with the same priority are mutually exclusive).

20 itc Preserved RW1C Set to 1 if the error was an I-cache tag parity error.

19 ddc Preserved RW1C Set to 1 if the error was a D-cache data parity error.

18 dtc Preserved RW1C Set to 1 if the error was a D-cache tag parity error.

17 irc Preserved RW1C Set to 1 if the error was an IRF ECC correctable error.

16 iru Preserved RW1C Set to 1 if the error was an IRF ECC uncorrectable error.

15 frc Preserved RW1C Set to 1 if the error was a FRF ECC correctable error.

14 fru Preserved RW1C Set to 1 if the error was a FRF ECC uncorrectable error.

13 ldau Preserved RW1C Set to 1 if the error was a L2/DRAM ECC uncorrectable error.

12 ncu Preserved RW1C Set to 1 if the error was an Ifetch/Load from I/O space uncorrectable
error.

11 dmsu Preserved RW1C Set to 1 if the error was a DMMU TLB data parity error on a store.

10 — 0 R Reserved

9 mau Preserved RW1C Set to 1 if the error was a Modular Arithmetic Memory parity error.

8:0 RSVD4 0 R Reserved

TABLE 12-5 Priority for Simultaneous Errors

Error Priority Bit Set if Higher Priority Error

DMSU 1

IMTU 2 meu

DMTU 3 meu

NCU 3 meu

IRU 3 meu

FRU 3 meu

LDAU 4 meu

IMDU 5 meu

DMDU 6 meu

MAU 7 meu

ITC 8 mec (see Note)

DTC 9 mec

IRC 10 mec

FRC 10 mec

IDC 11 mec (see Note)

DDC 12 mec

TABLE 12-4 SPARC Error Status Register – ASI_SPARC_ERROR_STATUS_REG
(ASI 4C16, VA 016) (Continued)

Bit Field Initial Value R/W Description
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The syndrome, priv, and address are captured for the highest priority error in that
cycle.

If errors occur in a cycle when an error status bit is already set (indicating a previous
error exists that hasn’t been cleared from the error status register), TABLE 12-6 applies.

Note If ITC and IDC are detected on the same instruction (will be
same cycle), only the IDC is logged. However, hardware still
cleans up both errors.

Implementation
Note

The determination of which errors (and nonerror traps) happen
on the same cycle is under control of the UltraSPARC T1
implementation. Operations that logically happen in sequence
may report their errors on the same cycle.

For example, while instruction translation is required to issue an
instruction fetch, both are considered to happen at the same
time in UltraSPARC T1 for the case where there is an error on
the instruction fetch, and an instruction fetch that encountered
both a privilege violation and an LDAU from the L2 cache
would take the instruction_access_error trap over the
instruction_access_exception trap, even though a sequential
sequence of operations would prevent the instruction from ever
being fetched due to the privileged violation on the translation.

TABLE 12-6 Errors Occurring in a Cycle With Error Status Bit Already Set

Existing Error Error

P
ri

o
ri

ty Bit Set if
Highest-
Priority
Error

Bit Set if
Higher-
Priority Error
In Same
Cycle

DMSU/IMTU/DMTU/NCU/LDAU/IRU/FRU/IMDU/DMDU/MAU DMSU 1 meu N/A

DMSU/IMTU/DMTU/NCU/LDAU/IRU/FRU/IMDU/DMDU/MAU IMTU 2 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/IRU/FRU/IMDU/DMDU/MAU DMTU 3 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU NCU 3 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU IRU 3 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU FRU 3 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU LDAU 4 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU IMDU 5 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU DMDU 6 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU MAU 7 meu meu

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU ITC 8 mec mec

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU DTC 9 mec mec

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU IRC 10 mec mec

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU FRC 10 mec mec
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For the cases above where the “Bit set” column contains a value besides mec and
meu, the syndrome, priv, and address for the highest-priority error in that cycle will
overwrite the existing syndrome, priv, and address.

Once set, error status bits are only cleared by software. Hardware will never clear a
set status bit. If a software write of the error register happens on the same cycle as an
error, the setting of bits by the error will be based on the register state before the
write. The setting of fields by the error will take precedence over the same field
being update by the write; however, fields that are not updated by the error will be
updated by the write

For example, if the register has the itc bit set and software does a write to clear that
bit on the same cycle as a integer register file uncorrectable error, the error register
would end up with the iru bit set, the itc bit cleared, the mec bit set, and the priv field
would contain the value for the IRU error.

As another example, if the irc bit was set, and software does a write to clear that bit
on the same cycle as an integer register file correctable error, the error register would
end up with the irc bit clear, the mec bit set, and the priv field would contain the
value for the first IRC error.

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU IDC 11 mec mec

DMSU/IMTU/DMTU/NCU/LDAU/ IRU/FRU/IMDU/DMDU/MAU DDC 12 mec mec

ITC/DTC/IRC/FRC/IDC/DDC DMSU 1 dmsu N/A

ITC/DTC/IRC/FRC/IDC/DDC IMTU 2 imtu meu

ITC/DTC/IRC/FRC/IDC/DDC DMTU 3 dmtu meu

ITC/DTC/IRC/FRC/IDC/DDC NCU 3 ncu meu

ITC/DTC/IRC/FRC/IDC/DDC IRU 3 iru meu

ITC/DTC/IRC/FRC/IDC/DDC FRU 3 fru meu

ITC/DTC/IRC/FRC/IDC/DDC LDAU 4 ldau meu

ITC/DTC/IRC/FRC/IDC/DDC IMDU 5 imdu meu

ITC/DTC/IRC/FRC/IDC/DDC DMDU 6 dmdu meu

ITC/DTC/IRC/FRC/IDC/DDC MAU 7 mau meu

ITC/DTC/IRC/FRC/IDC/DDC ITC 8 mec mec

ITC/DTC/IRC/FRC/IDC/DDC DTC 9 mec mec

ITC/DTC/IRC/FRC/IDC/DDC IRC 10 mec mec

ITC/DTC/IRC/FRC/IDC/DDC FRC 10 mec mec

ITC/DTC/IRC/FRC/IDC/DDC IDC 11 mec mec

ITC/DTC/IRC/FRC/IDC/DDC DDC 12 mec mec

TABLE 12-6 Errors Occurring in a Cycle With Error Status Bit Already Set (Continued)

Existing Error Error

P
ri

o
ri

ty Bit Set if
Highest-
Priority
Error

Bit Set if
Higher-
Priority Error
In Same
Cycle
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12.4.3 ASI_SPARC_ERROR_ADDRESS_REG

Each strand has a hyperprivileged ASI_SPARC_ERROR_ADDRESS_REG register at
ASI 4D16, VA{63:0} = 0. This register contains the information on the address source
of the error and syndrome to be used by software to correct and/or log the error.
The error register is not cleared on reset so software can examine its contents after an
error-induced reset.

TABLE 12-7 defines the format of the ASI_SPARC_ERROR_ADDRESS_REG register.

Programming
Note

To minimize the possibility of missing notification of an error,
software should clear any multiple error indication as soon as
possible, since UltraSPARC T1 provides no indication of the
number of multiple errors represented by the multiple error bit.

An example of clearing behavior for the case where an IRC error
is followed closely by an DMDU error would be to first log that
an IRC error was seen (which is indicated by the irc bit still
being set in the error status register), and then to do a write to
the error status register with bit 17 set to clear the irc bit. The
virtual address for the translation would then be read from the
error address register to memory or a register, and software
could do a write to the error status register with bits 29 and 23
set to clear the priv and dmdu bits and put the error status
register back in a state where it can capture full error
information. Software would then invoke the code to force out
the DTLB entry with bad parity and assuming that code was
successful, the process that encountered the error could be
restarted.

If another correctable error happened after the DMDU but
before the write that cleared the irc bit, that error would not be
logged. If another correctable error happened simultaneous to or
after the write that cleared the irc bit, but before or simultaneous
to the write that cleared the priv and dmdu bits, that error would
be captured by the mec bit being set after the priv/dmdu-
clearing write. If another uncorrectable error happened after the
dmdu, but before or simultaneous to the write that cleared the
priv and dmdu bits, that error would be captured by the meu bit
being set after the priv/dmdu-clearing write.
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TABLE 12-8 lists the bits captured for each of the error types.

TABLE 12-7 SPARC Error Address Register – ASI_SPARC_ERROR_ADDRESS_REG
(ASI 4D16, VA 016)

Bit Field Initial Value R/W Description

63:48 — 0 R Reserved

47:4 address X R Error address/syndrome.

3:0 — 0 R Reserved

TABLE 12-8 Bits Captured for Each Error Type

Error Address Bits Address Contents

IMTU 9:4 TLB entry index

DMTU 9:4 TLB entry index

NCU 39:4 Physical address

LDAU 39:4 Physical address

IRU 23:16 Syndrome

11:9 GL for globals, register window number otherwise

8:4 Register number

FRU1

1. For errors on single-precision operands, the syndrome will be captured in bits 30:24 for even registers (bit 4 is
0) or bits 22:16 for odd registers (bit 4 is 1). The other syndrome bits (for example, bits 22:16 for an even register)
will be all zeros.

30:24 Syndrome even half of register

22:16 Syndrome odd half of register

9:4 Register number

IMDU 47:4 Program counter presented for translation, TLB entry index in
bits 9:4 for ASI load

DMDU 47:4 Virtual address presented for translation, TLB entry index in bits
9:4 for ASI load

DMSU 47:4 Virtual address presented for translation

MAU Not valid

ITC ll:5 I_cache tag index

DTC 10:4 D-cache tag index

IDC 39:4 Physical address

DDC 39:4 Physical address

IRC 23:16 Syndrome

11:9 GL for globals, register window number otherwise

8:4 Register number

FRC 30:24 Syndrome even half of register

22:16 Syndrome odd half of register

9:4 Register number
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For a given error, the unused bits in the address field are not guaranteed to be zero,
and should be masked by software. The FRU/FRC register number contains the
floating-point register number (0-31 for single precision operations; 0, 2, 4, … 62 for
double-precision operations).

12.4.4 ASI_DMMU_SFSR_REG

Each strand has a hyperprivileged ASI_DMMU_SFSR_REG register at ASI 5816,
VA{63:0} = 1816. This register contains the synchronous fault status. The only
difference between the UltraSPARC T1 SFSR and the UltraSPARC II SFSR is that
UltraSPARC T1 does not support the pr bit.

TABLE 12-9 defines the format of the ASI_DMMU_SFSR_REG register.

12.5 L2 Cache Error Descriptions
The L2 Cache protects its tag with SEC ECC. Each 32 bit data subline is protected
with SECDED ECC. In the following L2 cache behavior descriptions, a partial store
refers to a store of less than 32 bits.

TABLE 12-9 1 DMMU Synchronous Fault Status Register – ASI_DMMU_SFSR (ASI 5816, VA 1816)

Bit Field Initial Value R/W Description

63:61 — 0 R Reserved

60:48 asi X RW ASI of faulting instruction

47:42 — 0 R Reserved

41:0 ft X RW Fault type for data_access_exception trap

6 e X RW Side-effect bit

5:4 ct X RW Context

3 — 0 R Reserved

2 w X RW Write

1 ow X RW Overwrite

0 fv 0 RW Valid
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12.5.1 L2 Cache Data Correctable ECC Error for Access
(LDAC)

12.5.1.1 Load Hit/Instruction Fetch Hit

When a correctable ECC error is detected, the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. In addition, if the L2
Cache Error Enable ceen and SPARC Error Enable ceen bits are set, a disrupting
ECC_error trap is generated to the requesting strand. Hardware corrects the error in
the data being returned from the L2 cache, but does not correct the L2 cache data
itself.

12.5.1.2 Prefetch Hit

When a correctable ECC error is detected, the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers and no trap is generated.
Hardware corrects the error in the data being returned from the L2 cache, but does
not correct the L2 cache data itself.

12.5.1.3 Partial Store/Atomic Hit

When a correctable ECC error is detected, the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. In addition, if the L2
Cache Error Enable ceen and SPARC Error Enable ceen bits are set, a disrupting
ECC_error trap is generated to the requesting strand. Hardware corrects the error in
the L2 cache and returns the corrected data.

12.5.1.4 Modular Arithmetic Load Hit

When a correctable ECC error is detected the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. Hardware corrects the
error on the data being returned from the L2 cache, but does not correct the L2 cache
data itself. In addition, if the L2 Cache Error Enable ceen bit is set, the corrected
error information is sent to the modular arithmetic unit.

Once the modular arithmetic unit completes, if it was sent an indication of a
corrected error, a disrupting ECC_error trap is generated to the strand specified in
the ASI_MA_CONTROL_REG as receiving the completion interrupt (if the
ASI_MA_CONTROL_REG int bit is set this interrupt is in addition to the
modular_arithmetic_interrupt completion trap). If the ASI_MA_CONTROL_REG int bit
is cleared, a disrupting ECC_error trap is generated to the strand that issues the
ASI_MA_SYNC. The ECC_error trap is generated only if the SPARC Error Enable
ceen bit is set.
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12.5.2 L2 Cache Data Correctable ECC Error for
Writeback (LDWC)
When a correctable ECC error is detected the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. Hardware corrects the
error on the data being written to memory. In addition, if the L2 Cache Error Enable
ceen bit is set, a disrupting ECC_error trap is generated to the strand specified in
L2_CSR_REG.errorsteer. The ECC_error trap is generated only if the SPARC Error
Enable ceen bit is set to 1 for the strand specified in L2_CSR_REG.errorsteer.

12.5.3 L2 Cache Data Correctable ECC Error for DMA
(LDRC)

12.5.3.1 DMA Read

When a correctable ECC error is detected, the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. Hardware corrects the
error on the data being returned from the L2 cache, but does not correct the L2 cache
data itself. In addition, if the L2 Cache Error Enable ceen and SPARC Error Enable
ceen bits are set to 1, a disrupting ECC_error trap is generated to the strand
specified in L2_CSR_REG.errorsteer.

12.5.3.2 DMA Write Partial

When a correctable ECC error is detected the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. Hardware corrects the
error in the L2 cache line. In addition, if the L2 Cache Error Enable ceen and SPARC
Error Enable ceen bits are set to 1, a disrupting ECC_error trap is generated to the
strand specified in L2_CSR_REG.errorsteer.

L2 Data ECC is only checked for partial DMA stores. Aligned 4B and 8B (and larger)
DMA writes overwrite previous contents, so never check data ECC.

12.5.4 L2 Cache Data Correctable ECC Error for Scrub
(LDSC)
When a correctable ECC error is detected the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. Hardware corrects the
error in the L2 cache line by writing back the corrected data and parity (this rewrite

Note All DMA read operations will read full 64-byte lines and treat
each 4-byte error as a separate error.
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will be unable to correct a permanently failed bit). In addition, if the L2 Cache Error
Enable ceen and SPARC Error Enable ceen bits are set, a disrupting ECC_error trap
is generated to the strand specified in L2_CSR_REG.errorsteer.

12.5.5 L2 Cache Data Uncorrectable ECC Error for
Access (LDAU)

12.5.5.1 Load Hit/Instruction Fetch Hit

When an uncorrectable ECC error is detected during a load operation or instruction
fetch, the error information is captured in the L2 Cache Error Status and L2 Cache
Error Address registers. If the L2 Error Enable nceen bit is set to 1, the error
information is also captured in the SPARC Error Status and SPARC Error Address
Registers. If the L2 Error Enable nceen bit is set to 1, the erroneous data is loaded in
the L1 cache with bad parity. In addition, if the L2 Error Enable nceen and SPARC
Error Enable nceen bits are set to 1, a precise data_access_error trap is generated to
the requesting strand for the load hit or a precise instruction_access_error trap is
generated to the requesting strand for the instruction fetch hit.

12.5.5.2 Prefetch Hit

When an uncorrectable ECC error is detected during a prefetch operation, the error
information is captured in the L2 Cache Error Status and L2 Cache Error Address
registers and no trap is generated.

12.5.5.3 Partial Store Hit

When an uncorrectable ECC error is detected during a partial store (STPARTIALF)
operation, the error information is captured in the L2 Cache Error Status and L2
Cache Error Address registers. In addition, if the L2 Cache Error Enable nceen and

Note If data loaded into the L1 cache with bad parity is accessed by
any strand before the cache can be cleaned, the IDC/DDC error
will be seen first, and then the hardware will try to refetch the
line from the L2 as described in I-cache Data Parity Error (IDC) on
page 117 and D-cache Data Parity Error (DDC) on page 118,
causing another LDAU error.
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SPARC Error Enable nceen bits are set, a disrupting data_error trap is generated to
the requesting strand. The partial store will not complete its update, leaving the
original data and the bad ECC unchanged.

12.5.5.4 Atomic Load-Store Hit

When an uncorrectable ECC error is detected during an atomic load-store operation,
the error information is captured in the L2 Cache Error Status and L2 Cache Error
Address registers. If the L2 Error Enable nceen bit is set, the error information is also
captured in the SPARC Error Status and SPARC Error Address Registers. In
addition, if the L2 Cache Error Enable nceen and SPARC Error Enable nceen bits are
set, a precise data_access_error trap is generated to the requesting strand. The
atomic operation will not complete its update, leaving the original data and the bad
ECC unchanged.

12.5.5.5 Modular Arithmetic Load

When an uncorrectable ECC error is detected during a modular arithmetic
operation, the error information is captured in the L2 Cache Error Status and L2
Cache Error Address registers. In addition, if the L2 Error Enable nceen bit is set, the
uncorrected error information is sent to the modular arithmetic unit, which
immediately aborts its asynchronous operation and logs the error in the SPARC
Error Status and SPARC Error Address registers.

Once the abort completes, if the SPARC Error Enable nceen bit is set and the
ASI_MA_CONTROL_REG int bit is set, a disrupting data_error is generated to the
strand specified in the ASI_MA_CONTROL_REG as receiving the completion interrupt
and the normal modular_arithmetic_interrupt completion trap is not generated. If the
SPARC Error Enable nceen bit is set and the ASI_MA_CONTROL_REG int bit is
cleared, a precise data_access_error trap is generated to the strand that issues any
load from an ASI_MA_* register.

Notes (1) While the partial store does not update the data, the cache
line is marked as Dirty (if not already marked as such) so that if
the line is replaced it will be written back to memory to mark
the memory data with bad ECC.

(2) It is possible, but rare, that a partial store hitting an
uncorrectable error will log both LDAU and meu. For this to
occur, an (unrelated) fill operation must enter the L2 pipeline
between the initial read and the subsequent write for the partial
store operation.

Note While the atomic load-store operation does not update the data,
the cache line is marked as Dirty (if not already marked as
such). Therefore, if the line is replaced, it will be written back to
memory to mark the memory data with bad ECC.
132 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is set, a normal modular_arithmetic_interrupt is generated to the strand specified
in the ASI_MA_CONTROL_REG as receiving the completion interrupt.

If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is cleared, the load access to ASI_MA_SYNC_REG will complete normally without
generating an error trap.

12.5.6 L2 Cache Data Uncorrectable ECC Error for
Writeback (LDWU)
When an uncorrectable ECC error is detected the error information is captured in the
L2 Cache Error Status and L2 Cache Error Address registers. Hardware indicates the
error on the data being written to memory, where the DRAM controller will write
back the data with poisoned ECC. In addition, if the L2 Cache Error Enable nceen
and SPARC Error Enable nceen bits are set, a disrupting data_error trap is generated
to the strand specified in L2_CSR_REG.errorsteer.

12.5.7 L2 Cache Data Uncorrectable ECC Error for DMA
(LDRU)

12.5.7.1 DMA Read

When an uncorrectable ECC error is detected the error information is captured in the
L2 Cache Error Status and L2 Cache Error Address registers. Hardware returns the
data with an error indicator back to the dma requestor. In addition, if the L2 Cache
Error Enable nceen and SPARC Error Enable nceen bits are set, a disrupting
data_error trap is generated to the strand specified in L2_CSR_REG.errorsteer.

12.5.7.2 DMA Write Partial

When an uncorrectable ECC error is detected the error information is captured in the
L2 Cache Error Status and L2 Cache Error Address registers. If the L2 Cache Error
Enable nceen and SPARC Error Enable nceen bits are set, a disrupting data_error
trap is generated to the strand specified in L2_CSR_REG.errorsteer. The DMA write
partial will not complete its update, leaving the original data and the bad ECC
unchanged.

Note All DMA read operations will read full 64-byte lines and treat
each 4-byte error as a separate error.
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12.5.8 L2 Cache Data Uncorrectable ECC Error for Scrub
(LDSU)
When an uncorrectable ECC error is detected the error information is captured in the
L2 Cache Error Status and L2 Cache Error Address registers. In addition, if the L2
Cache Error Enable nceen and SPARC Error Enable nceen bits are set, a disrupting
data_error trap is generated to the strand specified in L2_CSR_REG.errorsteer.

12.5.9 L2 Cache Tag Correctable ECC Error (LTC)
On every L2 access, ECC is checked for all 12 tags in the set. When a correctable ECC
error is detected the error information is captured in the L2 Cache Error Status and
L2 Cache Error Address registers. Note that the Syndrome is not captured for a L2
cache tag ECC error. In addition, if the L2 Cache Error Enable ceen and SPARC Error
Enable ceen bits set, a disrupting ECC_error trap is generated to the strand specified
in L2_CSR_REG.errorsteer.

Hardware will clear the error, if and only if there was not a good tag that had a hit.
If there is an error with a hit, the error will be logged and a trap will be generated,
but software needs to clear the error to prevent additional traps.

12.5.10 L2 Cache VAD Uncorrectable Parity Error (LVU)
On every L2 access, parity is checked for all 12 vad bits in the set (the “used” bit of
vuad is not covered by parity since it only affects performance, not correctness).
When an uncorrectable parity error is detected, the error information is captured in
the L2 Cache Error Status and L2 Cache Error Address registers. In addition, a fatal
error indication is issued across JBUS, to request a warm reset (WMR) trap to the
entire chip.

Note While the DMA write partial does not update the data, the cache
line is marked as Dirty (if not already marked as such) so that if
the line is replaced it will be written back to memory to mark
the memory data with bad ECC.

Implementation
Note

Hardware does not generate the error trap until the tag error has
been corrected. If the error is due to a hard failure in the tag,
hardware will not be able to complete the correction and no
further access will be able to be processed by the L2 (that is, the
L2 bank is hung).
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12.5.11 L2 Cache Directory Uncorrectable Directory Parity
(LRU)
During directory scrub, parity is checked for the directory entry. When an
uncorrectable parity error is detected, the error information is captured in the L2
Cache Error Status and L2 Cache Error Address registers. In addition, a fatal error
indication is issued across JBUS, to request a warm reset (WMR) trap to the entire
chip.

12.6 L2 Error Registers

RegisterBaseAddress L2CSR Registers – A0 0000 000016.

12.6.1 L2 Error Enable Register
Each L2 bank has an error enable register that controls the reporting of L2 errors for
that bank back to the initiator of an operation (or to the strand specified in
L2_CSR_REG.errorsteer if no initiator exists or can be readily identified). The L2
Error Enable register, the format of which is shown in TABLE 12-11, is available at
address offsets AA 0000 000016 or BA 0000 000016. Address bits 7:6 select the cache
bank and address bits 31:8 and 5:3 are ignored (that is, the register aliases across the
address range).

TABLE 12-10 Error Enable Register – L2_ERROR_EN_REG (A0000000016)

Bit Field Initial Value R/W Description

63:3 — X R Reserved

2 debug_trig_en 0 RW Trigger enable for the debug port.

1 nceen 0 RW If set to 1, report uncorrectable errors.

0 ceen 0 RW If set to 1, report correctable errors.

Note Errors are always logged in the L2_ERROR_STATUS_REG and
L2_ERROR_ADDRESS_REG regardless of the setting of the
nceen and ceen bits in L2_ERROR_EN_REG.
L2_ERROR_EN_REG only controls whether or not the error is
reported back to the appropriate strand (either the requestor, the
strand specified in L2_CSR_REG.errorsteer, or the strand
specified in ASI_MA_CONTROL_REG).
• 135



12.6.2 L2 Error Status Register
Each L2 bank has an error status register which contains status on L2 errors for that
bank. The status bits in this register are cleared by writing a 1 to the bit position. The
error register is not cleared on reset so software can examine its contents after an
error-induced reset. The L2 Error Status Register, the format of which is shown in
TABLE 12-12, is available at address offsets AB 0000 000016 or BB 0000 000016.

Address bits 7:6 select the cache bank, address bits 31:8 and 5:3 are ignored (that is,
the register aliases across the address range).

Programming
Note

This register can be used to get a debug trigger on a memory
UE, by setting L2_ERROR_EN[DEBUG_TRIG_EN], since
DRAM UEs tend to quickly cause L2 errors. This is the preferred
method since the DRAM block does not assert debug triggers
for UEs, only CEs.

Note Since this register is not cleared on reset, after a power-on reset
the contents of this register are undefined, and the bits could be
in an illegal state that could not possibly be generated by any
error combination (for example, meu bit set with all other bits
cleared). Operation while in this illegal state leads to undefined
behavior for the register, so software should always clear this
register after a power-on reset.

TABLE 12-11 L2 Error Status Register – L2_ERROR_STATUS_REG (0B 0000 000016)

Bit Field Initial Value R/W Description

63 meu Preserved RW1C Multiple uncorrected errors, one or more uncorrected errors were not
logged.

62 mec Preserved RW1C Multiple corrected errors, one or more corrected errors were not
logged.

61 rw Preserved RW Specifies whether the error access was a read or write. Set to 1 for a
write, 0 for a read.

60 — 0 R Reserved

59 moda Preserved RW Set to 1 if the error was the result of an modular arithmetic read
operation, 0 otherwise.

58:54 vcid Preserved RW ID of virtual processor that encountered error.

53 ldac Preserved RW1C Set to 1 if the error was a L2 cache data array access correctable error.

52 ldau Preserved RW1C Set to 1 if the error was a L2 cache data array access uncorrectable
error.

51 ldwc Preserved RW1C Set to 1 if the error was a L2 cache data array writeback correctable
error.
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The vec bit is set on all cycles where a correctable error (except DSC) is encountered.
The veu bit is set on all cycles where an uncorrectable error (except DSU) is
encountered.

The synd field is only valid for LDAC, LDAU, LDSU, LDSC, LDRU, LDRC, and LVU
errors.

The rw bit will be set to 1 for a partial store, DMA write, and atomic load/store
operation if they detect an error while performing the read part of the L2 read-
modify-write operation. For DAC and DAU errors, if an L2 fill happens before the
data is returned to the requestor, the DAC or DAU error will be reported to the
strand specified in L2_CSR_REG.errorsteer, and the rw bit will be 0.

The vcid field is valid only for LDAC, LDAU, DAC, and DAU errors where the error
is detected synchronously with the load or store operation. If the error is reported at
the time of the L2 cache fill operation, vcid will contain 0. For all other error types,

50 ldwu Preserved RW1C Set to 1 if the error was a L2 cache data array writeback uncorrectable
error.

49 ldrc Preserved RW1C Set to 1 if the error was a L2 cache data array dma access correctable
error.

48 ldru Preserved RW1C Set to 1 if the error was a L2 cache data array dma access uncorrectable
error.

47 ldsc Preserved RW1C Set to 1 if the error was a L2 cache data array scrub correctable error.

46 ldsu Preserved RW1C Set to 1 if the error was a L2 cache data array scrub uncorrectable error.

45 ltc Preserved RW1C Set to 1 if the error was a L2 cache tag array correctable error.

44 lru Preserved RW1C Set to 1 if the error was a L2 cache directory uncorrectable error.

43 lvu Preserved RW1C Set to 1 if the error was a L2 cache VUAD array uncorrectable error.

42 dac Preserved RW1C Set to 1 if the error was a DRAM access correctable error.

41 dau Preserved RW1C Set to 1 if the error was a DRAM access uncorrectable error or JBUS
uncorrectable error.

40 drc Preserved RW1C Set to 1 if the error was a DRAM dma access correctable error.

39 dru Preserved RW1C Set to 1 if the error was a DRAM dma access uncorrectable error.

38 dsc Preserved RW1C Set to 1 if the error was a DRAM scrub correctable error. Setting this bit
does not affect MEC nor VEC.

37 dsu Preserved RW1C Set to 1 if the error was a DRAM scrub uncorrectable error. Setting this
bit does not affect MEU nor VEU.

36 vec Preserved RW1C Set to 1 if the register contains a valid correctable error.

35 veu Preserved RW1C Set to 1 if the register contains a valid uncorrectable error.

34:32 — 0 R Reserved

31:0 synd Preserved RW Parity or ECC syndrome.

TABLE 12-11 L2 Error Status Register – L2_ERROR_STATUS_REG (0B 0000 000016) (Continued)

Bit Field Initial Value R/W Description
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this field is not valid. Note that the dau bit is used for both DRAM and JBUS
uncorrectable errors. A JBUS error can be distinguished from a DRAM error by
examining the state of the dau bit in the DRAM_ERROR_STATUS register.

TABLE 12-13 summarizes the rw, vcid, moda, and synd fields.

The dsc and dsu bits are logged in L2 Error Status register to notify software to
check the DRAM error registers, and are set regardless of the status of the other bits.
Setting dsc and/or dsu does not cause any logging of the error address or syndrome
in the L2 Error Address register.

With regard to the remaining bits, if multiple errors occur in the same cycle, the meu
and/or mec bit is set and only the highest-priority error is logged based on the
following priority shown in TABLE 12-14 (errors with the same priority are mutually
exclusive).

TABLE 12-12 rw, vcid, moda, and synd Fields Summary

Error rw vcid moda synd

During L2 fill for
DAC,DAU, DRC,
DRU

X L2_CSR_REG.
errorsteer

X X

LDAC, LDAU 1 for atomics and
partial stores, else 0

vcid 1 for modular
arithmetic load,
else 0

0000, synd_127_96{6:0},
synd_95_64{6:0}, synd_63_32{6:0},
synd_31_0{6:0}

LDWC, LDWU X X X X

LDRC, LDRU 1 for write, else 0 X X 0000, synd_127_96{6:0},
synd_95_64{6:0}, synd_63_32{6:0},
synd_31_0{6:0} for write, X for read

LDSC, LDSU X X X 0000, synd_127_96[6:0},
synd_95_64{6:0}, synd_63_32{6:0},
synd_31_0{6:0}

LTC X X X X

LRU X X X X

LVU X X X zeros{31:4}, par_valid, par_dirty,
par_used, par_alloc. Note that parity
is not checked on used.

DAC, DAU, DBU 1 for atomics and
partial stores, else 0

vcid 1 for modular
arithmetic load,
else 0

X

DRC, DRU 1 for write, else 0 X X X

DSC, DSU N.A. N.A. N.A. N.A.

Note The syndrome is also not logged on a L2 tag correctable error.
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The syndrome, rw, moda, vcid, and address are captured for the highest-priority
error in that cycle.

If errors occur in a cycle when an error status bit is already set (indicating a previous
error exists that hasn’t been cleared from the error status register), the information in
TABLE 12-15 applies.

TABLE 12-13 Priority for Simultaneous Errors

Error Priority Bit Set if Higher-Priority Error

LVU 1

LRU 2 meu

LDAU 3 meu

LDSU 3 meu

LDWU 4 meu

LDRU 5 meu

DAU 6 meu

DRU 6 meu

LTC 7 mec

LDAC 8 mec

LDSC 8 mec

LDWC 9 mec

LDRC 10 mec

DAC 11 mec

DRC 11 mec

DSC NA dsc

Dsu NA dsu

TABLE 12-14 Errors Occurring in a Cycle Where Error Status Bit Already Set

Existing Error Error Priority
Bit Set if Highest-
Priority Error

Bit Set if Higher-
Priority Error in
Same Cycle

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LVU 1 meu N/A

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LRU 2 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDAU 3 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDSU 3 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDWU 4 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDRU 5 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU DAU 6 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU DRU 6 meu meu

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LTC 7 mec mec
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For the cases above where the “Bit set” column contains a value besides mec and
meu, the syndrome, rw, moda, vcid, and address for the highest-priority error in that
cycle will overwrite the existing syndrome, rw, moda, vcid, and address.

Once set, error status bits are only cleared by software. Hardware will never clear a
set status bit. If a software write of the error register happens on the same cycle as an
error, the setting of bits by the error will be based on the register state before the
write, following the rules of TABLE 12-15. The setting of fields by the error will take
precedence over the same field being update by the write; however, fields that are
not changed by the error will be updated by the write.

For example, if the register has the vec and ltc bits set and software does a write to
clear those bit on the same cycle as a L2 cache data uncorrectable error, the error
register would end up with the veu and ldau bits set, the vec and ltc bits cleared, and
the rw, moda, vcid, and synd fields would contain the values for the LDAU error.

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDAC 8 mec mec

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDSC 8 mec mec

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDWC 9 mec mec

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU LDRC 10 mec mec

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU DRC 11 mec mec

LVU/LRU/LDAU/LDSU/LDWU/LDRU/DRU/DAU DAC 12 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LVU 1 lvu n/a

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LRU 2 lru meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDAU 3 ldau meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDSU 3 ldsu meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDWU 4 ldwu meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDRU 5 ldru meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DAU 6 dau meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DRU 6 dru meu

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LTC 7 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDAC 8 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDSC 8 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDWC 9 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC LDRC 10 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DRC 11 mec mec

LTC/LDAC/LDSC/LDWC/LDRC/DRC/DAC DAC 12 mec mec

Any DSC N.A. dsc dsc

Any Dsu N.A. dsu dsu

TABLE 12-14 Errors Occurring in a Cycle Where Error Status Bit Already Set (Continued)

Existing Error Error Priority
Bit Set if Highest-
Priority Error

Bit Set if Higher-
Priority Error in
Same Cycle
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The rw, moda, vcid, and synd fields are always considered to be set by an error, even
if the value they are being set to is undefined (that is, set to X in TABLE 12-13).

Notes (1) When writing the error status register on the same cycle that
another error occurs, the error status register state before the
register write is applied determines which bits will be updated
in the register. If the error occurring on the same cycle as the
write is lower priority than the error currently logged in the
register that is being cleared by the write, this will result in the
error status register having only either the vec and mec pair of
bits set (for a correctable error) or veu and meu pair of bits set
(for an uncorrectable error) after both the new error and the
write which clears the old error bits are applied.

(2) The error priority implementation for preexisting errors is
actually done by checking the values of the vec and veu bits,
rather than the “sum of the bits that set vec or veu,” as implied
by the preceding table. This means that if sofware clears vec/
veu, a new error will be logged, regardless of the state of the
other error status bits. In other words, it is a good idea to clear
the vec/veu bit(s) at the same time as the error status bit(s) that
caused vec/veu to be set.
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12.6.3 L2 Error Address Register
Each L2 bank has an error address register that contains the address for the L2 error
within that bank. The error register is not cleared on reset, so software can examine
its contents after an error-induced reset. The L2 Error Address register is available at
address offsets AC 0000 000016 or BC 0000 000016. Address bits 7:6 select the cache
bank, address bits 31:8 and 5:3 are ignored (that is, the register aliases across the
address range).

TABLE 12-16 shows the format of the L2 Error Address Register.

Programming
Note

To minimize the possibility of missing notification of an error,
software should clear any multiple error indication as soon as
possible, since UltraSPARC T1 provides no indication of the
number of multiple errors represented by the multiple error bit.

An example of clearing behavior for the case where an DAC
error is followed closely by an DAU error would be to first log
that an DAC error was seen (which is indicated by the dac bit
still being set in the error status register), and then to do a write
to the error status register with bits 42 and 36 set to clear the dac
and vec bits. The vcid, moda, rw, and synd fields of error status
would then be captured to memory or a register, the physical
address for the DAU would be read from the error address
register to memory or a register, and software could do a write
to the error status register with bits 41 and 35 set to clear the dau
and veu bits and put the error status register back in a state
where it can capture full error information. Software would then
invoke the code to shoot down all the TLB entries for the page
with the bad cache line, force the bad cache line from L2 to
memory, and kill all processes that had access to the bad cache
line.

If another correctable error happened after the DAU but before
the write that cleared the dac and vec bits, that error would not
be logged. If another correctable error happened simultaneous
to or after the write that cleared the dac and vec bits, but before
or simultaneous to the write that cleared the dau and veu bits,
that error would be captured by the mec and vec bits being set
after the dau/veu-clearing write. If another uncorrectable error
happened after the DAU, but before or simultaneous to the
write that cleared the dau and veu bits, that error would be
captured by the meu and veu bits being set after the dau/veu-
clearing write.
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TABLE 12-17 lists the bits captured for each of the error types.

For a given error, the unused bits in the address field are not guaranteed to be zero,
and should be masked by software.

TABLE 12-15 L2 Error Address Register – L2_ERROR_ADDRESS_REG (C 0000 000016)

Bit Field Initial Value R/W Description

39:4 address Preserved R/W Error address.

3:0 — 0 R Reserved

TABLE 12-16 Bits Captured for Each Error Type

Error
Address
Bits AddresS Contents

LDAC 39:6 Physical address of cache line

LDAU 39:6 Physical address of cache line

LDWC 39:6 Physical address of cache line

LDWU 39:6 Physical address of cache line

LDRC (RW = 0) 39:6 Physical address of cache line

LDRC (RW = 1) 39:4 Physical address of quadword accessed

LDRU (RW = 0) 39:6 Physical address of cache line

LDRU (RW = 1) 39:4 Physical address of quadword accessed

LDSC 19:6 Cache index (19:16 way, 15:6 set). Note that this is shifted two bits from “expected,”
that set{15:6} corresponds to PA{17:8}.

LDSU 19:6 Cache index (19:16 way, 15:6 set). Note that this is shifted two bits from “expected,”
that set{15:6} corresponds to PA{17:8}.

LTC 17:6 Cache index (17:8 set, 7:6 bank)

LRU 16:6 Directory index (16:12 panel, 11:9 coreID, 8:7 L1way, 6 IcacheDir). If IcacheDir = 1,
panel = address{10,9,8,5,11}, else panel = address{10,9,8,5,4}.

LVU 39:6 Physical address of cache line

DAC 39:6 Physical address of cache line

DAU 39:6 Physical address of cache line

DRC 39:6 Physical address of cache line

DRU 39:6 Physical address of cache line

Programming
Note

It is not guaranteed that the L2 and corresponding DRAM controller
will log errors in the same order. This means that on memory errors
(DAC, DRC, DAU, DRU), if multiple errors are in close temporal
proximity, the address in the LEAR and the syndrome in the DESR
could be for two different errors. In these cases, there is an MEC or
MEU logged in DRAM, since DRAM saw both errors.
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12.7 L2 Software Error Scrubbing Support
Some errors will leave the L2 cache with a correctable error, which then needs to be
scrubbed to prevent repetitive traps for effectively the same soft error. Flushing the
data out of the cache, back to memory, will cause the error to be corrected.

With a 12-way set associative cache, with pseudo-LRU replacement, and no explicit
flush instruction, flushing the error line is not entirely trivial. However, to make the
flush provably workable, the L2 has a “Direct Mapped Replacement Mode” which
forces the replacement algorithm to simulate a direct-mapped cache. This direct-
mapped mode is safe to spuriously enable in a running system, since lines inserted
in either mode can still be found (tag matched) normally.

In order to flush a line, software (hypervisor) would enable Direct-Mapped mode,
fault in 12 cache lines with the same index as the error line (but is not the error line),
then restore (disable?) the original state of the Direct-Mapped mode.

Scrubbing correctable main memory errors uses the same support. To scrub, fault the
line into the L2, dirty it without modifying it (CAS), then use Direct-Mapped mode
and 12 other fault-ins to force the error line out.

12.8 DRAM Error Descriptions
Each 128 bit data block in memory is protected by QEC/OEC (Quad Error Detect,
Octal Error Detect) ECC. This ECC code supports ChipKill for x4 DRAM chips,
where the complete failure of any aligned 4-bit block can be corrected, and any error
where exactly two 4-bit blocks are in error is recognized as an uncorrectable error.

12.8.1 DRAM Correctable ECC Error for Access (DAC)

12.8.1.1 Prefetch Miss

When a correctable ECC error is indicated in the DRAM reply during a prefetch
operation, the error information is captured in the DRAM Error Status, L2 Cache
Error Status, and L2 Cache Error Address registers. In addition, if the L2 Cache Error

Note If L2_CONTROL_REG.dis = 1 (the L2 cache is disabled), no
logging or trap generation is performed for DRAM correctable
ECC errors encountered on 32-bit and 64-bit stores.
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Enable ceen and SPARC Error Enable ceen bits are set and the error was not in the
block requested (what would be the 16B primary line), a disrupting ECC_error trap
is delivered to the strand specified in L2_CSR_REG.errorsteer. Otherwise, no trap is
generated to SPARC, but the error is still logged in L2 if L2 Cache Error Enable ceen
is set. Hardware corrects the error before the data is placed into the L2 cache.

12.8.1.2 Load Miss/Instruction Fetch Miss/Atomic Miss

When a correctable ECC error is indicated in the DRAM reply during a load, atomic
load-store, or instruction fetch operation, the error information is captured in the
DRAM Error Status, L2 Cache Error Status, and L2 Cache Error Address registers. In
addition, if the L2 Cache Error Enable ceen and SPARC Error Enable ceen bits are
set, a disrupting ECC_error trap is generated. If the error was in the block requested
(the 16-byte primary line for loads, 32-byte primary line for instruction fetches), and
the cache is not filled before the data is returned to the requestor, the trap is
delivered to the requesting strand. Otherwise the trap is delivered to the strand
specified in L2_CSR_REG.errorsteer. Hardware corrects the error before the data is
placed into the L1 or L2 cache.

12.8.1.3 Partial Store Miss

When a correctable ECC error is indicated in the DRAM reply during a partial store
(STPARTIALF) operation, the error information is captured in the DRAM Error
Status, L2 Cache Error Status, and L2 Cache Error Address registers. In addition, if
the L2 Cache Error Enable ceen and SPARC Error Enable ceen bits are set, a
disrupting ECC_error trap is generated to the strand specified in
L2_CSR_REG.errorsteer. Hardware corrects the error before the data is placed into
the L2 cache (the new store data will also be correct).

12.8.1.4 Store Miss/Modular Arithmetic Store Miss

When a correctable ECC error is indicated in the DRAM reply during a store or
modular arithmetic store operation, the error information is captured in the DRAM
Error Status register. If the L2 Control Register dis bit is cleared, the error

Note For a line from memory with correctable errors in both the block
requested and outside the block requested, if the cache is not
filled before the data is returned to the requestor, a ECC_error
trap will be generated to both the requesting virtual processor,
and to the virtual processor specified in
L2_CSR_REG.errorsteer (with one exception, if the requesting
virtual processor is the same as the one specified in
L2_CSR_REG.errorsteer, it is possible for either one or two
ECC_error traps to be generated to the requesting virtual
processor depending on hardware timing).
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information is also captured in the L2 Cache Error Status, and L2 Cache Error
Address registers. In addition, if the L2 Control Register dis bit is cleared and the L2
Cache Error Enable ceen and SPARC Error Enable ceen bits are set, a disrupting
ECC_error trap is generated to the strand specified in L2_CSR_REG.errorsteer.
Hardware corrects the error before the data is placed into the L2 cache (the new store
data will also be correct).

12.8.1.5 Modular Arithmetic Load

When a correctable ECC error is indicated in the DRAM reply during a modular
arithmetic load operation, the error information is captured in the DRAM Error
Status, L2 Cache Error Status, and L2 Cache Error Address registers. Hardware
corrects the error before the data is placed into the L2 cache and returned to the
modular arithmetic unit. In addition, if the L2 Cache Error Enable ceen bit is set, the
corrected error information is sent to the modular arithmetic unit. Once the modular
arithmetic unit completes, if it was sent an indication of a corrected error, a
disrupting ECC_error trap is generated to the strand specified in the
ASI_MA_CONTROL_REG as receiving the completion interrupt if the
ASI_MA_CONTROL_REG int bit is set (this interrupt is in addition to the
modular_arithmetic_interrupt completion interrupt). If the ASI_MA_CONTROL_REG
int bit is cleared, a disrupting ECC_error trap is generated to the strand that issues
the ASI_MA_SYNC. The ECC_error trap is generated only if the SPARC Error Enable
ceen bit is set.

12.8.1.6 DMA Read (DRC/DAC)

When a correctable ECC error is indicated in the DRAM reply during a DMA read
operation, the information is captured in the DRAM Error Status, L2 Cache Error
Status, and L2 Cache Error Address registers. Hardware corrects the error and
returns it to the DMA requestor. In addition, if the L2 Cache Error Enable ceen and
SPARC Error Enable ceen bits are set, a disrupting ECC_error trap is generated to
the strand specified in L2_CSR_REG.errorsteer.

L2 Error status will report DRC (DMA correctable) for this error, while memory will
report DAC.

12.8.1.7 DMA Write Partial (DRC/DAC)

When a correctable ECC error is indicated in the DRAM reply during a DMA write-
partial operation, the error information is captured in the DRAM Error Status, L2
Cache Error Status, and L2 Cache Error Address registers. Hardware corrects the
error in the L2 cache line. In addition, if the L2 Cache Error Enable ceen and SPARC
Error Enable ceen bits are set, a disrupting ECC_error trap is generated to the strand
specified in L2_CSR_REG.errorsteer.
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L2 Error status will report DRC (DMA correctable) for this error, while memory will
report DAC.

12.8.2 DRAM Correctable ECC Error for Scrub (DSC)
When a correctable ECC error is found during a scrub, the information is captured in
the DRAM Error Status and DRAM Error Address registers, and the dsc bit is set in
the L2 Cache Error Status register. Hardware corrects the error in memory by writing
back the corrected data and parity (this rewrite will be unable to correct a
permanently failed bit). In addition, if the L2 Cache Error Enable ceen and SPARC
Error Enable ceen bits are set, a disrupting ECC_error trap is generated to the strand
specified in L2_CSR_REG.errorsteer.

12.8.3 DRAM Uncorrectable ECC Error for Access
(DAU)

12.8.3.1 Load Miss/Instruction Fetch Miss/Atomic Miss

When an uncorrectable ECC error is indicated in the DRAM reply during an
instruction fetch, load, or atomic load-store operation, the error information is
captured in the DRAM Error Status, L2 Cache Error Status, and L2 Cache Error
Address registers. If the L2 Error Enable nceen bit is set, the error information is also
captured in the SPARC Error Status and SPARC Error Address registers. For each 32-
bit chunk with an error, the data is loaded into the L2 cache with poisoned ECC. For
an atomic, if the error was in the word to be updated, the atomic operation will not
complete its update, leaving the original data and the bad ECC unchanged.

In addition, if the L2 Error Enable nceen and SPARC Error Enable nceen bits are set,
a trap is generated. If the error was not in the block requested (the 16-byte primary
line for loads, 32-byte primary line for instruction fetches), a disrupting data_error is
generated to the strand specified in L2_CSR_REG.errorsteer. Otherwise, one of two
conditions will occur, depending on whether the cache is refilled before or after the
miss is reissued to the cache (either option is possible during normal operation). If
the miss is reissued to the cache before the fill, a precise data_access_error trap is
generated for the load or atomic hit or a precise instruction_access_error trap is
generated for the instruction fetch hit, and the data is loaded into the L1 cache with
bad parity. Otherwise, if the fill is issued first, a disrupting data_error is generated to
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the strand specified in L2_CSR_REG.errorsteer. The reissued miss will then
encounter a separate LDAU error (see Section 12.5.5 for details), and as a result the
L2 Cache Error Status will end up with the meu bit set.

12.8.3.2 Prefetch Miss

When an uncorrectable ECC error is indicated in the DRAM reply during a prefetch
operation, the error information is captured in the DRAM Error Status, L2 Cache
Error Status, and L2 Cache Error Address registers. For each 32-bit chunk with an
error, the data is loaded into the L2 cache with poisoned ECC. In addition, if the
error was not in the block requested (what would be the 16-byte primary line), and
the L2 Error Enable nceen and SPARC Error Enable nceen bits are set, a disrupting
data_error trap is generated to the strand specified in L2_CSR_REG.errorsteer.
Otherwise, no trap is generated, but if L2 Error Enable nceen is set, the error is still
logged in the L2.

12.8.3.3 Partial Store Miss/Store Miss/Modular Arithmetic
Store Miss

When an uncorrectable ECC error is indicated in the DRAM reply during a partial
store (STPARTIALF), store, or modular arithmetic store operation, the error
information is captured in the DRAM Error Status, L2 Cache Error Status, and L2
Cache Error Address registers. For each 32-bit chunk with an error, the data is
loaded into the L2 cache with poisoned ECC. In addition, if the L2 Cache Error
Enable nceen and SPARC Error Enable nceen bits are set, a disrupting data_error
trap is generated to the strand specified in L2_CSR_REG.errorsteer.

For a partial store, if there is an error in the block (16B) to be written, the partial
store will not complete its update, leaving the original data and the poisoned ECC
unchanged.

Note While an atomic load-store operation that encounters an
uncorrectable ECC error does not update the data, the cache line
is marked as Dirty so that if the line is replaced it will be written
back to memory to mark the memory data with bad ECC.

Notes (1) While the partial store does not update the data, the cache
line is marked as Dirty so that if the line is replaced it will be
written back to memory to mark the memory data with bad
ECC.

(2) If L2 caches are disabled, DAU errors on partial stores are
logged correctly, but do not generate a trap. From a practical
standpoint, L2 disabled mode is a bringup-only mode, intended
until the caches are known to be working, and not appropriate
for normal use.
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12.8.3.4 Modular Arithmetic Load

When an uncorrectable ECC error is indicated in the DRAM reply during a modular
arithmetic load operation, the error information is captured in the DRAM Error
Status, L2 Cache Error Status, and L2 Cache Error Address registers. For each 32-bit
chunk with an error, the data is loaded into the L2 cache with poisoned ECC. In
addition, if the L2 Error Enable nceen bit is set, the uncorrected error information is
sent to the modular arithmetic unit, which immediately aborts its asynchronous
operation and logs the error in the SPARC Error Status and SPARC Error Address
registers.

Once the abort completes, if the SPARC Error Enable nceen bit is set and the
ASI_MA_CONTROL_REG int bit is set, a disrupting data_error is generated to the
strand specified in the ASI_MA_CONTROL_REG as receiving the completion interrupt
and the normal modular_arithmetic_interrupt completion trap is not generated.

If the SPARC Error Enable nceen bit is set and the ASI_MA_CONTROL_REG int bit is
cleared, a precise data_access_error trap is generated to the strand that issues any
load from an ASI_MA_* register.

If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is set, a normal modular_arithmetic_interrupt is generated to the strand specified
in the ASI_MA_CONTROL_REG as receiving the completion interrupt.

If the SPARC Error Enable nceen bit is cleared and the ASI_MA_CONTROL_REG int
bit is cleared, the load access to ASI_MA_SYNC_REG will complete normally without
generating an error trap.

12.8.3.5 DMA Read (DRU/DAU)

When an uncorrectable ECC error is indicated in the DRAM reply during a DMA
read operation, the error information is captured in the DRAM Error Status, L2
Cache Error Status, and L2 Cache Error Address registers. Hardware returns the
data back to the DMA requestor, with an error indicator for each 128-bit chunk with
an error. In addition, if the L2 Cache Error Enable nceen and SPARC Error Enable
nceen bits are set, a disrupting data_error trap is generated to the strand specified in
L2_CSR_REG.errorsteer.

L2 Error status will report DRU (DMA uncorrectable) for this error, while memory
will report DAU.

12.8.3.6 DMA Write Partial (DRU/DAU)

When an uncorrectable ECC error is indicated in the DRAM reply during a DMA
write-partial operation, the error information is captured in the DRAM Error Status,
L2 Cache Error Status, and L2 Cache Error Address registers. For each 32-bit chunk
with an error, the data is loaded into the L2 cache with poisoned ECC. In addition, if
• 149



the L2 Cache Error Enable nceen and SPARC Error Enable nceen bits are set, a
disrupting data_error trap is generated to the strand specified in
L2_CSR_REG.errorsteer.

If there is an error in the block (16B) to be written, the DMA write partial will not
complete its update, leaving the original data and the poisoned ECC unchanged.

L2 Error status will report DRU (DMA uncorrectable) for this error, while memory
will report DAU.

12.8.4 DRAM Uncorrectable ECC Error for Scrub (DSU)
When an uncorrectable ECC error is found during a scrub, the information is
captured in the DRAM Error Status and DRAM Error Address registers, and the
DSU bit is set in the L2 Cache Error Status register. In addition, if the L2 Cache Error
Enable nceen and SPARC Error Enable nceen bits are set, a disrupting data_error
trap is generated to the strand specified in L2_CSR_REG.errorsteer.

12.8.5 DRAM Addressing Error (DBU)

12.8.5.1 Load Miss/Instruction Fetch Miss/Atomic Miss
(DAU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during an instruction
fetch, load, or atomic load-store operation, the error information is captured in the
L2 Cache Error Status and L2 Cache Error Address registers. If the L2 Error Enable
nceen bit is set, the error information is also captured in the SPARC Error Status and
SPARC Error Address Registers. An out-of-bounds error is signaled as a cache line
with all data marked with an uncorrectable error.

For each 32-bit chunk, the data is loaded into the L2 cache with poisoned ECC. For
an atomic, if the error was in the word to be updated, the atomic operation will not
complete its update, leaving the original data and the bad ECC unchanged. In
addition, if the L2 Error Enable nceen and SPARC Error Enable nceen bits are set, a
trap is generated. For this error, one of two conditions will occur, depending on
whether the cache is refilled before or after the miss is reissued to the cache (either
option is possible during normal operation). If the miss is reissued to the cache
before the fill, a precise data_access_error trap is generated for the load or atomic
hit or a precise instruction_access_error trap is generated for the instruction fetch

Note While the DMA write-partial operation that causes detection of
an uncorrectable ECC error does not update the data, the cache
line is marked as Dirty so that if the line is replaced it will be
written back to memory to mark the memory data with bad
ECC.
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hit, and the data is loaded into the L1 cache with bad parity. Otherwise, if the fill is
issued first, a disrupting data_error is generated to the strand specified in
L2_CSR_REG.errorsteer. The reissued miss will then encounter a separate LDAU
error (see Section 12.5.5 for details), and as a result the L2 Cache Error Status will
end up with the meu bit set.

L2 Error status will report DAU (Uncorrectable error on Access) for this error, while
memory will report DBU.

12.8.5.2 Prefetch Miss (DAU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during a prefetch
operation, the error information is captured in the L2 Cache Error Status and L2
Cache Error Address registers. An out-of-bounds error is signaled as a cache line
with all data marked with an uncorrectable error. For each 32-bit chunk, the data is
loaded into the L2 cache with poisoned ECC. In addition, if the L2 Error Enable
nceen and SPARC Error Enable nceen bits are set, a disrupting data_error trap is
generated to the strand specified in L2_CSR_REG.errorsteer.

L2 Error status will report DAU (Uncorrectable error on Access) for this error, while
memory will report DBU.

12.8.5.3 Partial Store Miss/Store Miss/Modular Arithmetic
Store Miss (DAU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during a partial store
(STPARTIALF), store, or modular arithmetic store operation, the error information is
captured in the L2 Cache Error Status and L2 Cache Error Address registers. An out-
of-bounds error is signaled as a cache line with all data marked with an
uncorrectable error. For each 32-bit chunk, the data is loaded into the L2 cache with
poisoned ECC. In addition, if the L2 Cache Error Enable nceen and SPARC Error
Enable nceen bits are set, a disrupting data_error trap is generated to the strand
specified in L2_CSR_REG.errorsteer. For a partial store, the partial store will not
complete its update, leaving the original data and the bad ECC unchanged.

L2 Error status will report DAU (Uncorrectable error on Access) for this error, while
memory will report DBU.

Note While an atomic load-store operation that causes an out-of-
bounds error does not update the data, the cache line is marked
as Dirty.

Note While a partial store that causes an out-of-bounds error does not
update the data, the cache line is marked as Dirty.
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12.8.5.4 Modular Arithmetic Load (DAU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during a modular
arithmetic load operation, the error information is captured in the L2 Cache Error
Status and L2 Cache Error Address registers. If the L2 Error Enable nceen bit is set,
the error information is also captured in the SPARC Error Status and SPARC Error
Address registers. An out-of-bounds error is signaled as a cache line with all data
marked with an uncorrectable error. For each 32 bit chunk, the data is loaded into
the L2 cache with poisoned ECC. In addition, if the L2 Error Enable nceen bit is set,
the uncorrected error information is sent to the modular arithmetic unit, which
immediately aborts its asynchronous operation and logs the error in the SPARC
Error Status and SPARC Error Address registers.

Once the abort completes, if the SPARC Error Enable nceen bit is set and the
ASI_MA_CONTROL_REG int bit is set, a disrupting data_error is generated to the
strand specified in the ASI_MA_CONTROL_REG as receiving the completion interrupt
and the normal modular_arithmetic_interrupt completion trap is not generated. If the
SPARC Error Enable nceen bit is set and the ASI_MA_CONTROL_REG int bit is
cleared, a precise data_access_error trap is generated to the strand that issues any
load from an ASI_MA_* register. If the SPARC Error Enable nceen bit is cleared and
the ASI_MA_CONTROL_REG int bit is set, a normal modular_arithmetic_interrupt is
generated to the strand specified in the ASI_MA_CONTROL_REG as receiving the
completion interrupt. If the SPARC Error Enable nceen bit is cleared and the
ASI_MA_CONTROL_REG int bit is cleared, the load access to ASI_MA_SYNC_REG will
complete normally without generating an error trap.

L2 Error status will report DAU (Uncorrectable error on Access) for this error, while
memory will report DBU.

12.8.5.5 DMA Read (DRU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during a DMA read
operation, the error information is captured in the L2 Cache Error Status and L2
Cache Error Address registers. If the L2 Error Enable nceen bit is set, the error
information is also captured in the SPARC Error Status and SPARC Error Address
registers. An out-of-bounds error is signaled as a cache line with all data marked
with an uncorrectable error. Hardware returns data with an error indicator back to
the dma requestor. In addition, if the L2 Cache Error Enable nceen and SPARC Error
Enable nceen bits are set, a disrupting data_error trap is generated to the strand
specified in L2_CSR_REG.errorsteer.

L2 Error status will report DRU (DMA Uncorrectable) for this error, while memory
will report DBU.

Note In general, DBU errors from DMA should be prevented by the
JBI_MEMSIZE register, and instead be detected as a JBUS
Nonexistent Memory error.
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12.8.5.6 DMA Write Partial (DRU/DBU)

When an out-of-bounds error is indicated in the DRAM reply during a DMA write-
partial operation, the error information is captured in the L2 Cache Error Status and
L2 Cache Error Address registers. If the L2 Error Enable nceen bit is set, the error
information is also captured in the SPARC Error Status and SPARC Error Address
registers. An out-of-bounds error is signaled as a cache line with all data marked
with an uncorrectable error. For each 32-bit chunk with an error, the data is loaded
into the L2 cache with poisoned ECC. In addition, if the L2 Cache Error Enable
nceen and SPARC Error Enable nceen bits are set, a disrupting data_error trap is
generated to the strand specified in L2_CSR_REG.errorsteer.

If there is an error in the 16-byte block to be written, the DMA write partial will not
complete its update, leaving the original data and the poisoned ECC unchanged.

L2 Error status will report DRU (DMA Uncorrectable) for this error, while memory
will report DBU.

12.9 DRAM Error Registers
This section describes the error control and log registers for the DRAM. Each DRAM
channel has its own set of error registers.

Notes (1) While the DMA write partial does not update the data, the
cache line is marked as Dirty.

(2) In general, DBU errors from DMA should be prevented by
the JBI_MEMSIZE register, and instead be detected as a JBUS
Nonexistent Memory error.
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RegisterBaseAddress DRAM CSR Registers – 97 0000 000016.

12.9.1 DRAM Error Status Register
This register contains status regarding DRAM errors. The status bits in this register
are cleared by writing a 1 to the bit position. The error register is not cleared on reset,
so that software can examine its contents after an error-induced reset.

TABLE 12-19 shows the format of the DRAM Error Status Register.

If both correctable and uncorrectable errors occur in the same cycle, the mec bit is set
and only the appropriate bit for the uncorrectable error is set. The syndrome is
captured for the highest-priority error in that cycle (DSU, DAU, are priority 1; DSC,
DAC are priority 2). The address is loaded if the highest-priority error in the cycle is
either a DSU or DSC.

If there are multiple errors, in different 16-byte chunks, in a single access, they are
treated as multiple errors, since there is only logging state to describe a single 16-
byte chunk error.

If errors occur in a cycle where an error status bit is already set, TABLE 12-20 applies.

Note Since this register is not cleared on reset, after a power-on reset
the contents of this register are undefined, and the bits could be
in an illegal state that could not possibly be generated by any
error combination (for example, meu bit set with all other bits
cleared). Operation while in this illegal state leads to undefined
behavior for the register, so software should always clear this
register after a power-on reset.

TABLE 12-17 DRAM Error Status Register – DRAM_ERROR_STATUS_REG (00 0000 028016)

Bit Field Initial Value R/W Description

63 meu Preserved RW1C Multiple uncorrected errors; one or more uncorrected errors were
not logged.

62 mec Preserved RW1C Multiple corrected errors; one or more corrected errors were not
logged.

61 dac Preserved RW1C Set to 1 if the error was a DRAM access correctable error.

60 dau Preserved RW1C Set to 1 if the error was a DRAM access uncorrectable error.

59 dsc Preserved RW1C Set to 1 if the error was a DRAM scrub correctable error.

58 dsu Preserved RW1C Set to 1 if the error was a DRAM scrub uncorrectable error.

57 dbu Preserved RW1C Set to 1 if the error was an access to a nonexistent DRAM address
(address out of bounds).

56:16 — 0 R Reserved

15:0 synd Preserved RW ECC syndrome.
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For the cases above where the “Bit set” column contains a value besides mec and
meu, the syndrome and address (for DSU/DSC) for the highest-priority error will
overwrite the existing syndrome and address.

Once set, error status bits are only cleared by software. Hardware will never clear a
set status bit. If a software write of the error register happens on the same cycle as an
error, the setting of bits by the error will be based on the register state before the
write. The setting of fields by the error will take precedence over the same field
being update by the write; however, fields that are not changed by the error will be
updated by the write (for example, if the register has the dac bit set and software
does a write to clear that bit on the same cycle as a DRAM scrub uncorrectable error,
the error register would end up with the dac bit cleared, the dsu bit set, and the rw
and synd fields would contain the values for the error).

12.9.2 DRAM Error Address Register
This register contains the physical address for the DRAM scrub error. DRAM load
access address for errors are expected to be logged by L2 controller. The error
register is not cleared on reset, so software can examine its contents after an error-
induced reset.

TABLE 12-21 shows the format of the DRAM Error Address Register.

TABLE 12-18 Priority When Error Status Bit Is Set

Existing Error Error Priority Bit Set

DSU/DAU DSU 1 meu

DSU/DAU DAU 1 meu

DSU/DAU DSC 2 mec

DSU/DAU DAC 2 mec

DSC/DAC DSU 1 dsu

DSC/DAC DAU 1 dau

DSC/DAC DSC 2 mec

DSC/DAC DAC 2 mec

TABLE 12-19 DRAM Error Address Register – DRAM_ERROR_ADDRESS_REG (00 0000 028816)

Bit Field Initial Value R/W Description

63:40 — 0 R Reserved

39:4 address Preserved RW Error address.

3:0 — 0 R Reserved
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12.9.3 DRAM Error Counter Register
Each DRAM channel has an error counter register for use in counting DRAM errors
and generating an interrupt when the counter decrements to 0 and both the enb and
valid bits are set. Each 16B chunk with an error will cause the count field to
decrement by one.

When the count reaches zero, and enb and valid are set, an error interrupt is issued
via INT_MAN[1] / INT_CTL[1]

TABLE 12-23 shows the format of the DRAM Error Counter Register.

12.9.4 DRAM Error Location Register
Each DRAM channel has an error location register for software to sample to locate a
bad memory part.

TABLE 12-24 shows the format of the DRAM Error Location register.

Programming
Note

This register is writable by software for register diagnostic
reasons and isn’t expected to be written during normal
operation. However, in the event it is written on the same cycle
that an error is reported, the update from the error will take
precedence over the write.

TABLE 12-20 DRAM Error Counter Register – DRAM_ERROR_COUNTER_REG (00 0000 029816)

Bit Field Initial Value R/W Description

63:18 — X R Reserved

17 enb Preserved RW Enables interrupt generation when the counter reaches 0.

16 valid Preserved RW Valid bit for counter value. This bit is reset when count
decrements to zero.

15:0 count Preserved RW Counter that decrements with each error when the valid bit
is set.

Note To use this reg to cause a debug trigger,
DRAM_DBG_TRG_EN_REG[EN] must be set, the
DRAM_ERROR_COUNTER_REG must be 116 (to trigger on next
CE detected), and CLK_CTL[CLKDIS] must be set to choose
whether the trigger causes a clock-stop or just an assertion on
J_ERR. Note that this register does not count UEs, and thus
cannot trigger or interrupt on UEs (but UEs still tend to cause
error traps).
156 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



12.10 Block Loads and Stores
UltraSPARC T1 supports 64-byte block load and store access to ASI_BLK_P,
ASI_BLK_S, ASI_BLK_PL, ASI_BLK_SL, ASI_BLK_AIUP, ASI_BLK_AIUS,
ASI_BLK_AIUPL, and ASI_BLK_AIUSL. Loads for these operations consist of four
16-byte “helper” loads, while stores are composed of eight 8-byte “helper” stores.

Errors encountered on any of the helper stores will be logged the same as if it was a
nonhelper store, and will not affect the issuing of subsequent helper stores. For the
helper loads, errors will be accumulated on all four helpers and reported (and
trapped if enabled) after the final helper completes. The error reported will be the
uncorrectable error associated with the earliest helper if one or more uncorrectable
error(s) were encountered. If no uncorrectable error was encountered, but one or
more correctable error(s) were encountered, the error reported will be the correctable
error associated with the earliest helper.

The block load is considered a single operation, and even if multiple uncorrectable
or correctable errors (or a combination of the two) is encountered, it is treated as a
single error of the appropriate type with respect to updating the SPARC Error Status
register (that is, the mec and/or meu bits will not be set by the errors in subsequent
helpers from the same block load). The floating-point register file will be updated
with load results up to the point of the earliest helper that encountered an
uncorrectable error. Loading of results into the floating-point register file will be
suppressed for the helper that encountered the uncorrectable error and any
subsequent helpers.

12.11 CMT Error Summary
TABLE 12-25 summarizes CMT error handling. Terms in the table are defined after the
table.

TABLE 12-21 DRAM Error Location Register – DRAM_ERROR_LOCATION_REG (00 000 02A016)

Bit Field Initial Value R/W Description

63:36 — 0 R Reserved

35:0 location Preserved RW DRAM ECC Error Location, contains the location of the
bad nibble. Loaded with each DRAM correctable error.
Bits 35:32 correspond to C3..C0, bit 31 corresponds to
data{127:124}, …, and bit 0 corresponds to data{3:0}.
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TABLE 12-22 CMT Error Handling Summary (1 of 3)

Error Type Error
SPARC
Status L2 Status

DRAM
Status PA Syn Trap priv

Trap
Type RW moda

I-TLB data Parity: Ifetch
translation

UE imdu S S p x I — —

I-TLB data Parity: LDXA to
Tag Read reg

UE imdu S S p 1 D — —

I-TLB cam Parity: LDXA to
Tag Read reg

UE imtu S S p 1 D — —

D-TLB data parity error:
atomic or load translation,
LDXA to Tag Read reg

UE dmdu S S p x D — —

D-TLB data parity error:
store translation

UE dmsu S S p x D — —

D-TLB cam Parity: LDXA to
Tag Read reg

UE dmtu S S p 1 D — —

I-Cache Data Parity: Ifetch CE idc S S di 0 C — —

I-cache Tag parity: Ifetch CE itc S S di 0 C — —

D-cache data parity:
cacheable LDs

CE ddc S S di 0 C — —

D-cache tag parity:
cacheable LDs

CE dtc S S di 0 C — —

Integer Reg File (IRF) ecc CE irc S S di 0 C — —

Integer Reg File (IRF) ecc UE iru S S p x P — —

FP Reg File (FRF) ecc CE frc S S di 0 C — —

FP Reg File (FRF) ecc UE fru S S p x P — —

MA memory parity UE mau p,di x D,E — —

MA memory parity UE mau p,di x D,E — —

I/O error from Load from
noncacheable address

UE ncu S S p x D — —

I/O error from Ifetch from
noncacheable address

UE ncu S S p x I — —

L2$ data ecc: LD_h, If_h,
ATOM_h

CE ldac L L di — C x 0

L2$ data ecc: PF_h CE ldac L L - — — x 0

L2$ data ecc: LD_h,
ATOM_h

UE ldau ldau LS L p x D x 0

L2$ data ecc: PF_h UE ldau L L - — — x 0

L2$ data ecc: If_h UE ldau ldau LS L p x I x 0

L2$ data ecc: MA_ld CE ldac L L di(MA) — C x 1

L2$ data ecc:
MA_ld_sync_chk

UE ldau ldau LS L p x D x 1
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L2$ data ecc:
MA_ld_interrupt

UE ldau ldau LS L di(MA) x E x 1

L2$ data ecc: PST_h CE ldac L L di — C x 0

L2$ data ecc: PST_h UE ldau L L di — E x 0

L2$ data ecc: PST_h_if UE ldau

meu

L L di — E x 0

L2$ data ecc: wb CE ldwc L L di(ES) — C — —

L2$ data ecc: wb UE ldwu L L di(ES) — E — —

L2$ data ecc:dma_read CE ldrc L L di(ES) — C x —

L2$ data ecc:dma_read UE ldru L L di(ES) — E x —

L2$ data
ecc:dma_write_partial

CE ldrc L L di(ES) — C x —

L2$ data
ecc:dma_write_partial

UE ldru L L di(ES) — E x —

L2$ data ecc: scrub CE ldsc L L di(ES) — C — —

L2$ data ecc: scrub UE ldsu L L di(ES) — E — —

L2$ tag ecc: all refs CE ltc L - di(ES) — C x —

L2$ dir parity: scrub FE lru L L di(ES) — r — —

L2$ vad parity: all refs FE lvu L L di(ES) — r x —

Dram ECC error: LD_m_cc,
If_m_c32B, ATOM_m_cc

CE dac dac L D di — C x 0

Dram ECC error: PF_m_cc CE dac dac L D — — - x 0

Dram ECC error:
LD_m_cc_mf,
ATOM_m_cc_mf

UE ldau dau dau LS D p x D x 0

Dram ECC error:
LD_m_cc_ff, ATOM_m_cc_ff

UE ldau dau, meu dau LS D p, di(ES) x D, E x 0

Dram ECC error: PF_m_cc UE dau dau L D — — - x 0

Dram ECC error:
If_m_c32B_mf

UE ldau dau dau LS D p x I x 0

Dram ECC error:
If_m_c32B_ff

UE ldau dau, meu dau LS D p, di(ES) x I, E x 0

Dram address out of
bounds: LD_m_mf,
ATOM_m_mf

UE ldau dau dbu LS D p x D x 0

Dram address out of
bounds: LD_m_ff,
ATOM_m_ff

UE ldau dau, meu dbu LS D p, d(ES) x D, E x 0

Dram address out of
bounds: PF_m

UE dau dbu L D di(ES) x E x 0

TABLE 12-22 CMT Error Handling Summary (2 of 3)

Error Type Error
SPARC
Status L2 Status

DRAM
Status PA Syn Trap priv

Trap
Type RW moda
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Abbreviations in the Error Type column in Table have the following meaning:

■ ATOM_h: Atomic operation hit
■ ATOM_m_cc_ff: Atomic operation miss critical 16B chunk, cache fill before miss

replay
■ ATOM_m_cc_mf: Atomic operation miss critical 16B chunk, miss replay before

cache fill

Dram address out of
bounds: If_m_mf

UE ldau dau dbu LS D p x I x 0

Dram address out of
bounds: If_m_ff

UE ldau dau, meu dbu LS D p, d(ES) x I x 0

Dram ECC error: MA_ld CE dac dac L D di(MA) — C x 1

Dram ECC error:
MA_ld_sync_chk

UE ldau dau dau LS D p x D x 1

Dram address out of
bounds: MA_ld_sync_chk

UE ldau dau dbu LS D p x D x 1

Dram ECC error:
MA_ld_interrupt

UE ldau dau dau LS D di(MA) x E x 1

Dram address out of
bounds: MA_ld_interrupt

UE ldau dau dbu LS D di(MA) x E x 1

Dram ECC error:
ST_m,PST_m, LD_m_ncc,
If_m_nc32B, ATOM_m_ncc,
MA_m_ncc, PF_m_ncc

CE dac dac L D di(ES) — C x —

Dram ECC error:
dma_read_req,
dma_write_partial

CE drc dac L D di(ES) — C x —

Dram ECC error:
ST_m,PST_m, LD_m_ncc,
If_m_nc32B, ATOM_m_ncc,
MA_m_ncc, PF_m_ncc

UE dau dau L D di(ES) — E — —

Dram ECC error:
dma_read_req,
dma_write_partial

UE dru dau L D di(ES) — E — —

Dram address out of
bounds: ST_m, PST_m,
MA_st_m

UE dau dbu L D di(ES) — E — —

Dram address out of
bounds: dma_read_req,

dma_write_partial

UE dru dbu L D di(ES) — E — —

Dram scrub error CE dsc dsc D D di(ES) — C — —

Dram scrub error UE dsu dsu D D di(ES) — E — —

TABLE 12-22 CMT Error Handling Summary (3 of 3)

Error Type Error
SPARC
Status L2 Status

DRAM
Status PA Syn Trap priv

Trap
Type RW moda
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■ ATOM_m_ncc: Atomic operation miss noncritical chunk
■ dma_read: DMA read any size
■ dma_write_partial: subline DMA write
■ If_h; I-fetch hit
■ If_m_c32B_ff: Ifetch miss critical 32B chunk, cache refill before miss replay
■ If_m_c32B_mf: Ifetch miss critical 32B chunk, miss replay before cache fill
■ If_m_nc32B: Ifetch miss noncritical 32B chunk
■ LD_h: Load hit
■ LD_m_cc_ff: Load miss critical 16B chunk, cache fill before miss replay
■ LD_m_cc_mf:- Load miss critical 16B chunk, miss replay before cache fill
■ LD_m_ncc: Load miss noncritical chunk
■ MA_ld: Modular arithmetic load
■ MA_ld_interrupt: Modular arithmetic load where MA_CTL.int = 1.
■ MA_ld_m_ncc: Modular arithmetic load miss noncritical chunk
■ MA_ld_sync_chk: Modular arithmetic load where MA_CTL.int = 0, trap is

delivered on load of any ASI_MA_* register (normally this would be a load of
ASI_MA_SYNC_REG)

■ MA_st_m: Modular arithmetic store miss
■ PF_h: Prefetch hit
■ PF_m_cc:Prefetch miss critical 16B chunk
■ PF_m_ncc: Prefetch miss noncritical chunk
■ PST_h: Partial Store hit
■ PST_h_if: Partial Store hit with intervening fill
■ PST_m: Partial Store miss
■ PF_m_ncc: Prefetch miss noncritical chunk
■ wb: writeback to memory

Terms under the other column headings are as follows:

■ Error: FE – fatal error; UE – uncorrected error; CE – corrected error.

■ SPARC status: entries in the column mark the bits that are set in the SPARC status
register when that error occurs

■ L2 Status: entries in the column mark the bits that are set in the L2 Status register
when that error occurs

■ DRAM Status: entries in the column mark the bits that are set in the DRAM Status
register when that error occurs

■ PA (logging): S – SPARC error address; L – L2 error address, D – DRAM error
address

■ SYN (logging): S – SPARC error status, L – L2 error status; D – DRAM error status

■ Trap: p – precise to requestor: di – disrupting to requestor; di(ES) – disrupting to
the strand specified in L2_CSR_REG.errorsteer: di(MA) – disrupting to the
strand specified in ASI_MA_CONTROL_REG

■ priv: x marks cases where priv bit will be set depending on whether strand is
executing in privileged mode; 1 marks where the privileged bit will be set to 1
due to the operation only being permitted when PSTATE.priv = 1.
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■ Trap Type: I – instruction_access_error; D – data_access_error;
P – internal_processor_error; E – data_error; C – ECC_error; R – power_on_reset.

■ RW: x marks cases where L2_ERROR_STATUS.rw bit is set depending on
whether access was a read or write, atomic operations are treated as writes; 1
marks where bit will be set to 1 since the operation is a read; 0 marks where the
bit will be set to 0 since the operation is a write.

■ moda: 1 and 0 mark cases where the moda bit will be set and cleared, respectively,
in L2_ERROR_STATUS.

12.12 JBUS Interface (JBI)
Each detectable JBUS error has individual “error detected” bits in each of two
registers, the JBI_ERROR_LOG and JBI_ERROR_OVF registers. The
JBI_ERROR_LOG logs the first worst error, and the JBI_ERROR_OVF logs any
error that cannot be logged in the JBI_ERROR_LOG (because there is already an
error logged of the same or higher severity). This leaves a reasonable trail in case a
single fault causes multiple error “events,” since it shows which was first, plus all
other errors that came after it.

In addition, each detectable error has individual mask bits in each of two CSRs,
jbi_log_enb and jbi_sig_enb. If an error’s log_enable bit is clear/off, the error is
completely ignored if it occurs. If an error’s log_enable bit is set/on, the error is
logged in either JBI_ERROR_LOG or JBI_ERROR_OVF, plus error information will
be saved in the appropriate error information register(s), if this is the first error or
the first fatal error. Also, if the error can cause a transactional error indication (that
is, error cycle, or error return, or poison data), the log_enable bit enables that
transactional error indication.

When an error occurs, and both its log_enable and signal_enable bits are set, the
error causes either an asynchronous interrupt or a fatal error indication (DOK_ONx4
on JBUS), dependent on the severity of the error.

TABLE 12-26 defines JBUS interface error handling. Errors in the Error column are
described in TABLE 12-27.
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* J_AD Group includes JBI_LOG_ADDR, JBI_LOG_DATA0, JBI_LOG_DATA1, JBI_LOG_CTRL, and JBI_LOG_PAR

** These fatal errors log J_AD Group if they are the first error, otherwise they overwrite the specified registers if they are the first fatal
error after an uncorrectable error.

*** Asserting the command “DOK_ON” four cycles in a row on JBUS is the defined JBUS protocol means to signal a fatal error.

TABLE 12-23 JBUS Interface Error Handling

Error Master Severity Logs log_enb sig_enb

JBUS Address Parity, [or J_ADP[3]
error on indeterminate cycles]

Any Fatal J_AD Group *, or
J_LOG_DATA0/1 &
J_LOG_CTRL **

Asynch Intr DOK_ONx4***

JBUS Control Parity N.A. Fatal J_AD Group *, or
J_LOG_PAR **

Asynch Intr DOK_ONx4***

Illegal adtype N.A. Fatal J_AD Group *, or
J_LOG_CTRL **

Asynch Intr DOK_ONx4***

L2 Interface Flow Control Timeout UltraSPA
RC T1

Fatal Just the bit Asynch Intr DOK_ONx4***

Arbitration Timeout UltraSPA
RC T1

Fatal JBI_LOG_ARB Asynch Intr DOK_ONx4***

Reported Fatal Error [5:4] N.A. Uncorr Just the bit; one bit
per JPACK

Asynch Intr

JBUS Data Parity – DMA Write or
INTR to us

Other Uncorr J_AD Group * Poison Data Asynch Intr

JBUS Data Parity – PIO Read return UltraSPA
RC T1

Uncorr J_AD Group * Error Return Asynch Intr

JBUS Data Parity – Other Any Uncorr J_AD Group * Asynch Intr

Reported UE Error – DMA Write Other Uncorr J_AD Group * Poison Data Asynch Intr

Illegal JBUS Command Other Uncorr J_AD Group * Asynch Intr

Unsupported JBUS Command Other Uncorr J_AD Group * Asynch Intr

Nonexistent Memory – DMA Write Other Uncorr J_AD Group * Asynch Intr

Nonexistent Memory – DMA Read Other Uncorr J_AD Group * Error Cycle -
Unmapped

Asynch Intr

Transaction Timeout – PIO Read Req UltraSPA
RC T1

Uncorr Just the bit; gets
precise trap

Error Return Asynch Intr

Unmapped Target – PIO Write Req UltraSPA
RC T1

Uncorr J_AD Group * Asynch Intr

Read Data Error Cycle – PIO Read UltraSPA
RC T1

Uncorr J_AD Group * Error Return Asynch Intr

Unexpected Data Return Other Uncorr J_AD Group * Asynch Intr

INTACK Timeout N.A. Uncorr jbi_log_nack Asynch Intr
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12.12.1 JBUS Error Descriptions
The JBUS errors listed in TABLE 12-26 are described in TABLE 12-27.

TABLE 12-24 JBUS Error (1 of 3)

JBUS Error Description

JBUS Address Parity Error Detected when J_ADP{3:0} does not match the calculated parity of
J_ADTYPE{7:0}/J_AD{127:0} for any address cycle, or J_ADP{3} does not
match the calculated parity of J_ADTYPE{7:0}/J_AD{127:96} for the first cycle
of any JBUS packet.

[The separate J_ADP{3} case is to detect when adtype{7:6} may be the bits in
error, converting an address cycle into what looks like a non-address cycle.]

JBUS Control Parity Error Detected when the current value on J_PAR does not match the calculated
parity of the JBUS control signals from 2 cycles ago.

Illegal ADTYPE Error Detected whenever adtype has an illegal state, usually by having a non-data
cycle when a data cycle is required.

L2 Interface Flow Control
Timeout

Detected when one of the JBI → L2 interfaces has flow control asserted for
longer than the time specified in the L2 Interface Timeout register. This should
only happen if something is horribly wrong. A counter counts whenever
UltraSPARC T1 has a transaction that it wants to issue, and the count is
initialized/reset whenever it successfully issues a transaction.

Arbitration Timeout Detected when UltraSPARC T1 is unable to issue a transaction (that it wants to
issue) for a duration specified by the Arb Timeout register. A counter counts
whenever UltraSPARC T1 has a transaction that it wants to issue, and the count
is initialized/reset whenever it successfully issues a transaction.

JBUS Reported Fatal Error Reported when JBI detects some module asserting DOK_ON for four
consecutive cycles, indicating that this other module has a fatal error

JBUS Write Data Parity Error Detected when J_ADP{3:0} does not match the calculated parity of J_AD{127:0}
for any write or INTR payload cycle, targeted to us.

JBUS Read Data Parity Error Detected when J_ADP{3:0} does not match the calculated parity of J_AD{127:0}
for any read return data cycle targeted to us.

JBUS Other Data Parity Error Detected when J_ADP{3:0} does not match the calculated parity of J_AD{127:0}
for any data cycle for which UltraSPARC T1 is not the intended recipient of the
data.

NOTE: This error is expected to be enabled only for HW bringup

JBUS Reported UE Error Reported when JBI receives a write data cycle with a UE (Uncorrected Error)
indication.

Illegal JBUS Command Detected when JBI detects an invalid (reserved) JBUS command.

If log_enb is zero, illegal JBUS commands are still dropped.
Unsupported JBUS Command Detected when JBI detects a valid JBUS command that is not supported by

UltraSPARC T1, where UltraSPARC T1 is an intended target, but was never
expected to be seen in an UltraSPARC T1 system.

If log_enb is zero, unsupported JBUS commands are still dropped.
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Nonexistent Memory Error –
Write

Detected when UltraSPARC T1 receives a write transaction that is out of the
range of installed memory, or to any of UltraSPARC T1's (nonaliased) NC
(noncoherent) spaces. In addition, this error will be logged if a coherent write is
directed to UltraSPARC T1’s aliased NC space, or if a noncoherent write is
directed to UltraSPARC T1’s coherent memory range.

If log_enb is zero, the above checks will not be performed, and such
transactions will be forwarded to the L2/memory to be handled there.

Nonexistent Memory Error –
Read

Detected when UltraSPARC T1 receives a read transaction that is out of the
range of installed memory, or to any of UltraSPARC T1’s (nonaliased) NC
spaces. In addition, this error will be logged if a coherent read is directed to
UltraSPARC T1’s aliased NC space, or if a non-coherent read is directed to
UltraSPARC T1’s coherent memory range. JBI will issue an Error Cycle –
Unmapped as a JBUS response, and will (if sig_enb) issue an Asynchronous
Error Interrupt to the processor.

NOTE: If a coherent read is issued to any of UltraSPARC T1’s 8MB NC spaces,
and log_enb is on, the NONEX_RD is logged, but no error cycle is issued. For
this case, the issuer should recover be timing out.

If log_enb is zero, the above checks will not be performed, and such
transactions will be forwarded to the L2/memory to be handled there.

Transaction Timeout Detected when an UltraSPARC T1-launched NCRD transaction is outstanding
while the free-running Transaction Timer “wraps” twice. This creates a timeout
between 1X and 2X the timer’s maximum value. The max/rollover value of the
transaction timer is specified in the software-programmable Transaction
Timeout Value register.

NOTE: Transaction timeout detection is completely disabled when
JBI_LOG_ENB.read_to = 0, which means that an NCRD transaction that
doesn’t get a response will patiently wait forever (and thus hang the requestor
strand). If JBI_ERR_CONFIG.erren = 0 and JBI_LOG_ENB.read_to = 1, an
NCRD transaction will time out based on JBI_TRANS_TIMEOUT.timeval,
generating a read_nack error return (and NCU error) to the requesting strand,
but no error will be logged in the JBI error logs.

Unmapped Target Error –
Write

Detected when UltraSPARC T1 tries to issue a NCWR transaction to a
nonexistent module on JBUS. JBI uses the port_pres field in the JBI_CONFIG
register, specifying which modules are mapped on a JPACK basis. The
transaction will actually be issued on JBUS before being checked, so that the
J_AD Group can be used to log the error.
• If port_pres[0] is set, transactions to module 016 are allowed.
• If port_pres[1] is set, transactions to module 116 are allowed.
• If port_pres[4] is set, transactions to modules 1C16 and 1D16 are allowed.
• If port_pres[5] is set, transactions to modules 1E16 and 1F16 are allowed.

TABLE 12-24 JBUS Error (2 of 3)

JBUS Error Description
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12.12.2 JBI Error Registers

12.12.2.1 Error Log Registers

Each detectable error has individual “error detected” bits in each of two registers,
the JBI_ERROR_LOG and JBI_ERROR_OVF registers. JBI_ERROR_LOG logs the
first worst error, and JBI_ERROR_OVF logs any error that cannot be logged in
JBI_ERROR_LOG (because there is already an error logged of the same or higher
severity). This leaves a reasonable trail in case a single fault causes multiple error
“events,” since it shows which was first, plus what other errors came after it.

Note that it is possible to have multiple errors logged in the JBI_ERROR_LOG,
either by having multiple errors of the same severity detected simultaneously, or by
detecting an Uncorrectable error followed by, or in the same cycle as, a fatal error.
Also, note that a second occurrence of the same error will always log in the
JBI_ERROR_OVF register. Third and fourth occurrences are also “logged” but
setting a bit that is already set doesn’t make a visible difference.

JBUS Read Data Error Cycle Detected when JBI receives a Read Data Error Return.

If log_eng is zero, any Read Data Error Return is dropped. This means that the
corresponding NCRD transaction will eventually time out (if enabled).

Unexpected Data Return Detected when UltraSPARC T1 sees a Data16 matching one of UltraSPARC T1’s
AIDs, but where the TransID doesn’t match an outstanding transaction, or
when UltraSPARC T1 sees a Data64 Return matching one of UltraSPARC T1’s
AIDs. The likely problem is that a TransID or ADTYPE got corrupted.

If log_enb is zero, unexpected data returns will not be recognized as
unexpected, and the data will be returned to some virtual processor, based on
the current contents of JBI’s Trans_ID translation tables.

INTACK Timeout Detected whenever an INTR has been sent, but not INTACKed, while the free-
running INTACK Timer “wraps” twice. Note that the timer gets reset only on
the first INTR, and not on later retries of the same INTR. This creates a timeout
between 1X and 2X the timer’s maximum value. The max/rollover value of the
INTACK timer is specified in the software-programmable INTACK Timeout
Value Register.

NOTE: This timeout mechanism is tracking up to 32 interrupts simultaneously,
with a single timer plus two bits per interrupt. A detected error indicates that
the OS interrupt mechanism is having a problem servicing interrupts in a
timely fashion, or that a strand has become non-communicative. With a 32-bit
counter, the max timeout is 20-40 seconds, which working software should be
able to guarantee. If not, this check can be disabled.

TABLE 12-24 JBUS Error (3 of 3)

JBUS Error Description
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12.12.2.2 Error Masking

Each detectable error has individual mask bits in each of two CSRs, JBI_LOG_ENB
and JBI_SIG_ENB.

If an error’s log_enable bit is clear/off, the error is completely ignored if it occurs.
No bit is set in JBI_ERROR_LOG or in JBI_ERROR_OVF, no error information is
saved in error information registers, and no error response nor indication is
generated. A bad transaction may still be dropped regardless of log_enable, as
indicated in the error descriptions, particularly if the error prevents a reasonable
handling of the transaction.

If an error’s log_enable bit is set/on, the error is logged in either JBI_ERROR_LOG
or JBI_ERROR_OVF, plus error information will be saved in the appropriate error
information register(s), if those registers are not already in use by a prior error of
equal or greater severity. Also, if the error can cause a transactional error indication
(that is, error cycle, or error return, or poison data), the LOG_ENABLE bit enables
that transactional error indication.

When an error occurs, and both its log_enable and signal_enable bits are set, the
error causes either an asynchronous interrupt or a fatal error indication
(DOK_ONx4), depending on the severity of the error. Of course, software is expected
to turn on a signal_enable bit only if the corresponding log_enable bit is also set
(but not vice versa).

12.12.2.3 Error Information Registers

In addition, JBI has other error registers, containing information pertinent to the
error, such as what was on JBUS when the error occurred (for example, J_AD,
J_ADP, J_ADTYPE). These registers get loaded with pertinent data of the first error.
In addition, if we get an unconditional error followed by a fatal error, the fatal error
will log information most pertinent to the fatal error, as described in TABLE 12-26 on
page 170, potentially overwriting a portion of the log from the uncorrectable error.

Most of the errors use the same error information registers, called the “J_AD
Group”, which consists of JBI_LOG_ADDR, JBI_LOG_DATA0, JBI_LOG_DATA1,
JBI_LOG_CTRL, and JBI_LOG_PAR. These registers contain what was on JBUS at
the time of the error (DATA0, DATA1, and CTRL) including who owned the bus to
put it there, the most recent address cycle before the error (JBI_LOG_ADDR), plus
the six previous cycles of adtype (also in JBI_LOG_CTRL)

Note JBI_ERR_CONFIG has a global enable bit, erren, that is anded
with each individual enable bit, and that erren is cleared (set to
0) on reset. This allows the state of the error enable bits to be
preserved through reset, but effectively turned off after an error
reset.
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Control Parity Error uses the J_AD Group, and JBI_LOG_PAR is in the J_AD Group,
to simplify the debugging should we need to debug a Control Parity Error during
bringup. By taking a snapshot of what was on J_AD (JBI_LOG_DATA*) at the time of
the Control Parity Error, and a snapshot of the previous address cycle
(JBI_LOG_ADDR), it will be much easier to find the cycle with the Control Parity
Error on the logic analyzer trace (assuming one was hooked up).

12.12.2.4 JBUS Error Configuration Register

RegisterBaseAddress 19 JBI – 80 0000 000016. TABLE 12-28 defines the format of
the JBUS Error Configuration register.

12.12.2.5 JBUS Error Log Registers

TABLE 12-29 defines the format of the JBUS Error Log register.

TABLE 12-25 JBUS Error Configuration – JBI_ERR_CONFIG (000116–000016)

Bit Field Initial Value R/W Description

63:5 — X R Reserved

4 fe_enb 0 RW Fatal error enable. This bit controls the assertion of DOK_ON*4 for
non-JBI fatal errors.

3 erren 0 RW Global error enable. This is logically anded with all of the individual
log_en bits, such that when 0, error detection and reaction is pretty
much off. Exception: see Transaction Timeout in TABLE 12-27, page 172.

2 — 0 RW Not for normal use. This bit should always be set to 0.

1:0 — X R Reserved

TABLE 12-26 JBUS Error Log Register – JBI_ERROR_LOG (000116-002016)

Bit Field Initial Value R/W Description

63:29 — 0 R Reserved

28 apar Preserved RW1C Address parity error

27 cpar Preserved RW1C Control parity error

26 adtype Preserved RW1C Illegal adtype

25 l2_to Preserved RW1C L2 interface flow control timeout

24 arb_to Preserved RW1C Arbitration timeout

23:18 — 0 R Reserved

17:16 fatal Preserved RW1C Reported fatal error – jpack5 and jpack4

15 dpar_wr Preserved RW1C Data parity error – write to JBI

14 dpar_rd Preserved RW1C Data parity error – read return

13 dpar_o Preserved RW1C Data parity error - other
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This register logs the first and worst error. If an error is detected, and its log_enb bit
is set, the corresponding error log bit is set, unless there is another bit of equal or
greater severity already logged in this register. More than one bit can be set in this
register if either (1) an uncorrectable error is detected first, followed by some fatal
error, or (2) two errors are detected on exactly the same cycle.

TABLE 12-30 defines the format of the JBUS Error Overflow register.

12 rep_ue Preserved RW1C Reported UE error - write

11 illegal Preserved RW1C Illegal JBUS command

10 unsupp Preserved RW1C Unsupported JBUS command

9 nonex_wr Preserved RW1C Nonexistent memory - write

8 nonex_rd Preserved RW1C Nonexistent memory - read

7:6 — 0 R Reserved

5 read_to Preserved RW1C Transaction timeout – CPU read

4 unmap_wr Preserved RW1C Unmapped target – CPU write

3 — 0 R Reserved

2 err_cycle Preserved RW1C Read data error cycle

1 unexp_dr Preserved RW1C Unexpected data return

0 intr_to Preserved RW1C INTACK timeout

TABLE 12-27 JBUS Error Overflow – JBI_ERROR_OVF (00016-002816)

Bit Field Initial Value R/W Description

63:29 — 0 R Reserved

28 apar Preserved RW1C Address parity error

27 cpar Preserved RW1C Control parity error

26 adtype Preserved RW1C Illegal adtype

25 l2_to Preserved RW1C L2 Interface flow control timeout

24 arb_to Preserved RW1C Arbitration timeout

23:18 — 0 R Reserved

17:16 fatal Preserved RW1C Reported fatal error – jpack5 and jpack4

15 dpar_wr Preserved RW1C Data parity error – write to JBI

14 dpar_rd Preserved RW1C Data parity error – read return

13 dpar_o Preserved RW1C Data parity error – other

12 rep_ue Preserved RW1C Reported UE error – write

11 illegal Preserved RW1C Illegal JBUS command

10 unsupp Preserved RW1C Unsupported JBUS command

9 nonex_wr Preserved RW1C Nonexistent memory – write

TABLE 12-26 JBUS Error Log Register – JBI_ERROR_LOG (000116-002016) (Continued)

Bit Field Initial Value R/W Description
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This register logs errors that occur after the first/worst error. If an error is detected,
and its log_enb bit is set, and there is already an error of equal or greater severity
logged in the JBI_ERROR_LOG register, the appropriate error overflow bit is set in
this register.

Note that this register is identical in format to JBI_ERROR_LOG, JBI_LOG_ENB,
and JBI_SIG_ENB.

12.12.2.6 JBUS Error Mask Registers

TABLE 12-31 defines the format of the JBUS Error Log Enable register.

8 nonex_rd Preserved RW1C Nonexistent memory – read

7:6 — 0 R Reserved

5 read_to Preserved RW1C Transaction timeout – CPU read

4 unmap_wr Preserved RW1C Unmapped target – CPU write

3 — 0 R Reserved

2 err_cycle Preserved RW1C Read data error cycle

1 unexp_dr Preserved RW1C Unexpected data return

0 intr_to Preserved RW1C INTACK timeout

TABLE 12-28 JBUS Error Log Enable – JBI_LOG_ENB (000116-003016)

Bit Field Initial Value R/W Description

63:29 — 0 R Reserved

28 apar Preserved RW Address parity error

27 cpar Preserved RW Control parity error

26 adtype Preserved RW Illegal adtype

25 l2_to Preserved RW L2 interface flow control timeout

24 arb_to Preserved RW Arbitration timeout

23:18 — 0 R Reserved

17:16 fatal Preserved RW Reported fatal error – jpack5 and jpack4

15 dpar_wr Preserved RW Data parity error – write to JBI

14 dpar_rd Preserved RW Data parity error – read return

13 dpar_o Preserved RW Data parity error – other

12 rep_ue Preserved RW Reported UE error – write

11 illegal Preserved RW Illegal JBUS command

10 unsupp Preserved RW Unsupported JBUS command

9 nonex_wr Preserved RW Nonexistent memory - write

TABLE 12-27 JBUS Error Overflow – JBI_ERROR_OVF (00016-002816) (Continued)

Bit Field Initial Value R/W Description
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This register controls which errors are detected and logged. If an error’s log_enb bit
is 0, the error detection circuit is disabled (except for illegal and unsupp, which still
drop the transaction), so errors have no effect. Note that the erren bit in the
JBI_ERR_CONFIG register is a single overriding disable, so that if erren is 0, it is as
though all log_enb bits are 0.

Note that this register is identical in format to JBI_ERROR_LOG, JBI_ERROR_OVF,
and JBI_SIG_ENB.

TABLE 12-32 defines the format of the JBUS Error Signal Enable register.

8 nonex_rd Preserved RW Nonexistent memory - read

7:6 — 0 R Reserved

5 read_to Preserved RW Transaction timeout – CPU read

4 unmap_wr Preserved RW Unmapped target – CPU write

3 — 0 R Reserved

2 err_cycle Preserved RW Read data error cycle

1 unexp_dr Preserved RW Unexpected data return

0 intr_to Preserved RW INTACK timeout

TABLE 12-29 JBUS Error Signal Enable – JBI_SIG_ENB (000116-003816)

Bit Field Initial Value R/W Description

63:29 — 0 R Reserved

28 apar Preserved RW Address parity error

27 cpar Preserved RW Control parity error

26 adtype Preserved RW Illegal adtype

25 l2_to Preserved RW L2 Interface flow control timeout

24 arb_to Preserved RW Arbitration timeout

23:18 — 0 R Reserved

17:16 fatal Preserved RW Reported fatal error – jpack5 and jpack4

15 dpar_wr Preserved RW Data parity error – write to JBI

14 dpar_rd Preserved RW Data parity error – read return

13 dpar_o Preserved RW Data parity error - other

12 rep_ue Preserved RW Reported UE error - write

11 illegal Preserved RW Illegal JBUS command

10 unsupp Preserved RW Unsupported JBUS command

9 nonex_wr Preserved RW Nonexistent memory - write

8 nonex_rd Preserved RW Nonexistent memory - read

TABLE 12-28 JBUS Error Log Enable – JBI_LOG_ENB (000116-003016) (Continued)

Bit Field Initial Value R/W Description
• 171



This register controls which errors are proactively reported. If an error’s log_enb bit
and sig_enb are both 1, the error will be reported as specified in the Error Handling
table.

Note that this register is identical in format to JBI_ERROR_LOG, JBI_ERROR_OVF,
and JBI_LOG_ENB.

12.12.2.7 JBUS Error Information Registers

TABLE 12-33 defines the format of the JBUS Error Log Address register.

This register contains transaction address information from the most recent address
cycle coincident with or before the detected error. This means that if a loggable error
is detected on an address cycle, and that error logs information into the J_AD Group
registers (which includes this one), the information logged in the JBI_LOG_ADDR
register will be the same as the corresponding fields in the JBI_LOG_DATA0,
JBI_LOG_DATA1, and JBI_LOG_CTRL registers.

The intent of this register is to capture the address cycle of a transaction, in case it
gets an error on a later data cycle, in which case we can see the address and the
transaction ID of the affected transaction.

TABLE 12-34 defines the format of the JBUS Error Log Data0 register.

7:6 — 0 R Reserved

5 read_to Preserved RW Transaction timeout – CPU read

4 unmap_wr Preserved RW Unmapped target – CPU write

3 — 0 R Reserved

2 err_cycle Preserved RW Read data error cycle

1 unexp_dr Preserved RW Unexpected data return

0 intr_to Preserved RW INTACK timeout

TABLE 12-30 JBUS Error Log Address – JBI_LOG_ADDR (000116-004016)

Bit Field Initial Value R/W Description

63:61 owner Preserved R Bus owner for most recent address cycle:

100 = UltraSPARC T1; 010 = REQ5; 001 = REQ4

60:56 — Reserved

55:48 adtype Preserved R adtype from most recent address cycle.

47:43 ttype Preserved R J_AD{47:43} from most recent address cycle.

42:0 addr Preserved R J_AD{42:0} from most recent address cycle.

TABLE 12-29 JBUS Error Signal Enable – JBI_SIG_ENB (000116-003816) (Continued)

Bit Field Initial Value R/W Description
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This register is part of the J_AD Group, and is always loaded simultaneously with
JBI_LOG_DATA0 and JBI_LOG_CTRL.

TABLE 12-35 defines the format of the JBUS Error Log Detail register.

This register is part of the J_AD Group, and is always loaded simultaneously with
JBI_LOG_DATA0 and JBI_LOG_CTRL.

TABLE 12-36 defines the format of the JBUS Error Log Control register.

This register is part of the J_AD Group, and logs the bus owner (as determined by
the arbitration state machine), the parity field for J_AD, and the current cycle and six
previous cycles of adtype. For data errors, saving the adtype history will give which
data cycle had the error, and the Transaction ID of the failed data return (by seeing
the adtype of the first data cycle of the return, and how many cycles ago it was). For
illegal adtype errors, since adtype is only illegal in the context of previous adtype
cycles, seven cycles of adtype is useful for understanding why the current cycle is
illegal.

TABLE 12-37 defines the format of the JBUS Error Log Parity register.

TABLE 12-31 JBUS Error Log Data0 – JBI_LOG_DATA0 (000116-005016)

Bit Field Initial Value R/W Description

63:0 addr Preserved R J_AD{127:64} from cycle with error.

TABLE 12-32 JBUS Error Log Data1 – JBI_LOG_DATA1 (000116-005816)

Bit Field Initial Value R/W Description

63:0 addr Preserved R J_AD{63:0} from cycle with error.

TABLE 12-33 JBUS Error Log Control – JBI_LOG_CTRL (000116-004816)

Bit Field Initial Value R/W Description

63:61 owner Preserved R Bus owner for cycle with error

100 = UltraSPARC T1; 010 = REQ5; 001 = REQ4.

60 — X R Reserved

59:56 parity Preserved R ADP{3:0} from cycle with error.

55:48 adtype0 Preserved R adtype from cycle with error.

47:40 adtype1 Preserved R adtype from 1st cycle before error.

39:32 adtype2 Preserved R adtype from 2nd cycle before error.

31:24 adtype3 Preserved R adtype from 3rd cycle before error.

23:16 adtype4 Preserved R adtype from 4th cycle before error.

15:8 adtype5 Preserved R adtype from 5th cycle before error.

7:0 adtype6 Preserved R adtype from 6th cycle before error.
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This register is part of the J_AD Group, and logs information pertaining to a JBUS
Control Parity Error. This register contains the bits that went into the JPAR parity
calculation.

TABLE 12-38 defines the format of the JBUS Error Log Interrupt Nack register.

This register logs INTACK Timeout Errors, with one bit per intr that timed out.
Unlike most logs, this one doesn’t freeze when it first logs a bug, but each
subsequent INTACK Timeout error sets another bit in this register.

TABLE 12-39 defines the format of the JBUS Error Log Arb register.

TABLE 12-34 JBUS Error Log Parity – JBI_LOG_PAR (000116-006016)

Bit Field Initial Value R/W Description

63:33 — X R Reserved

32 jpar Preserved R Received jpar that had parity error.

31:26 — X R Reserved

25:23 jpack5 Preserved R jpack5 bits used to calculate jpar.

22:20 jpack4 Preserved R jpack4 bits used to calculate jpar.

23:14 — X R Reserved

13:11 jpack1 Preserved R jpack1 bits used to calculate jpar.

10:8 jpack0 Preserved R jpack0 bits used to calculate jpar.

7 rsvd4 X R Reserved

6:0 jreq_l Preserved R j_req_l bits used to calculate jpar; only bits 5,4,0 are implemented.
Note that j_req_l is active low.

TABLE 12-35 JBUS Error Log Interrupt Nack – JBI_LOG_NACK (000116-007016)

Bit Field Initial Value R/W Description

63:0 — X R Reserved

31:0 intr Preserved RW1C Bit vector of which interrupt(s) time out on not getting an INTACK.

TABLE 12-36 JBUS Error Log Arb – JBI_LOG_ARB (000116-007816)

Bit Field Initial Value R/W Description

63:35 —

34:32 myreq Preserved R Queue of transaction JBI is trying to issue at arb timeout:

000 = None, or PioReqQ held off by ~AOK/DOK

001 = PioReqQ 010 = PioAckQ

011 = SCT0RdQ 100 = SCT1RdQ

101 = SCT2RdQ 110 = SCT3RdQ

111 = DbgQ

31:27 — X R Reserved
174 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



The register logs information relating to an Arbitration Timeout error, saving state
that may help explain why our arbitration is wedged.

12.12.2.8 JBUS Error Control Registers

Most of the nonlogging error CSRs are timeout value registers, to more accurately
specify a timeout hierarchy. To get best failure isolation, timeouts that are dependent
on other operations that can timeout, need to be longer than the dependent timeout.
In this design, the timeout hierarchy for JBI detected timeouts is as follows:

■ L2 Flow Control - Shortest
■ Arbitration
■ Transaction (PIO Read)
■ INTACK – Longest

TABLE 12-40 through TABLE 12-44 define the formats of the JBUS Error Control
registers.

26:24 reqtype Preserved R Type of PioReqQ transaction JBI is trying to issue at arb timeout:

000 = none 001 = NCRD
100 = NCWR to aid0 101 = NCWR to aid4
110 = NCWR to aid5 111 = NCWR to aid-other

23 — X R Reserved

22:16 aok Preserved R AOK states at Arb timeout; only bits 5,4,0 are implemented.

15 rsvd4 X R Reserved

14:8 dok Preserved R DOK states at Arb timeout; only bits 5,4,0 are implemented.

7 rsvd5 X R Reserved

6:0 jreq Preserved R State of J_REQ lines at Arb timeout; only bits 5,4,0 are implemented.

Note There is a “feature” in JBI_LOG_ARB, such that reqtype field
will be “none” if the timeout is caused by ~aok or ~dok, since
UltraSPARC T1 backs off requesting the bus. It would be more
useful logging whatever is at the front of the PIO_REQ queue,
but we only log that if we are actively arbitrating for it when the
timeout occurs.

TABLE 12-37 JBI L2 Interface Timeout Register – JBI_L2_TIMEOUT (000116-008016)

Bit Field Initial Value R/W Description

63:32 — X R Reserved

31:0 timeval Preserved RW Number of CPU cycles before a stalled JBI-to-L2 queue invokes a
timeout error.

TABLE 12-36 JBUS Error Log Arb – JBI_LOG_ARB (000116-007816) (Continued)

Bit Field Initial Value R/W Description
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The JBI Arb timeout counter (not software visible) counts when any JBI transaction
is in a queue, regardless of whether it is eligible to be sent to JBUS. The counter
clears (resets) when (1) all the queues are empty, or (2) PioQ transaction is sent to
JBUS, or (3) PioQ is empty and any (non-PioQ) transaction is sent to JBUS.

TABLE 12-38 JBI Arbitration Timeout Register – JBI_ARB_TIMEOUT (000116-008816)

Bit Field Initial Value R/W Description

63:32 — X R Reserved

31:0 timeval Preserved RW Number of JBUS cycles before an unsuccessful arb causes a timeout
error.

TABLE 12-39 JBI Transaction Timeout Register – JBI_TRANS_TIMEOUT (000116-009016)

Bit Field Initial Value R/W Description

63:32 — X R Reserved

31:0 timeval Preserved RW Minimum number of JBUS cycles before an unreceived read reply
causes a timeout error.

This register must be configured to a value that is large enough that it
is impossible(!) for a transaction to timeout unless there has been
some kind of hardware failure, or the address target is nonexistent.

TABLE 12-40 JBI INTACK Timeout Register – JBI_INTR_TIMEOUT (000116-009816)

Bit Field Initial Value R/W Description

63:32 — Reserved

31:0 timeval Preserved RW Minimum number of JBUS cycles before an unacknowledged INTR
causes a timeout error.

TABLE 12-41 JBI Memory Size Register – JBI_MEMSIZE (000116-00A016)

Bit Field Initial Value R/W Description

63:0 — X R Reserved

37:30 size Preserved RW Size of memory, in Gbytes. Used for detecting nonexistent memory
errors. The largest legal value for this field is 8016 (128), which
corresponds to the largest supported memory configuration.

29:0 — X R Reserved
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12.13 IOB Error
The only errors the IOB detects are accesses to nonexistent modules. For these, it
discards writes and NACK reads. The error has no other effect.

12.14 Boot ROM Interface (SSI)
TABLE 12-46 describes the SSI’s handling of errors. The error indication on read
returns is delivered regardless of the erren bit, where it is up to the strand to ignore
the error or receive it. Logging the error and sending an error interrupt are
controlled by the erren bit. Note that returning zeros on an I-fetch timeout will tend
to cause an illegal instruction trap.

12.14.1 SSI Parity Error
SSI has serial parity on all requests and responses. Odd parity on any response will
be treated as a parity error.

On reads, the SSI block will return the data, but marked with an error indication,
which will tend to cause an NCU error at the requesting SPARC. For both reads and
writes, the SSI block will issue an error interrupt via INT_MAN[1] ÷ INT_CTL[1] (if
erren).

12.14.2 SSI Timeout
SSI only supports a single transaction outstanding at any time, and write
transactions receive a positive acknowledgement to inform UltraSPARC T1 of their
completion. Whenever UltraSPARC T1 issues a transaction, it starts a timer to the

TABLE 12-42 SSI Error Handling

Error Type Severity Logs Returns erren

SSI Parity Error Read Uncorrectable Just the bit Data, with error indication Asynch Intr

SSI Parity Error Write Uncorrectable Just the bit N.A. Asynch Intr

SSI Timeout Read Uncorrectable Just the bit All zeros, with error indication Asynch Intr

SSI Timeout Write Uncorrectable Just the bit N.A. Asynch Intr
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value specified in SSI_TIMEOUT.timeval, which then decrements by one every JBUS
cycle. If the time underflows before the transaction completes, it is treated as a
timeout.

On reads, the SSI block will return zeros, but marked with an error indication, which
will tend to cause an NCU error at the requesting SPARC. For both reads and writes,
the SSI block will issue an error interrupt via INT_MAN[1] ÷ INT_CTL[1] (if erren).

12.14.3 SSI Error Registers

RegisterBaseAddress 14 BOOT – FF 0000 000016. The serial bus interface to the
Boot ROM is called SSI; hence the registers dealing with errors on this interface are
SSI registers.

TABLE 12-47 and TABLE 12-48 define the format of the SSI Timeout and Log registers,
respectively.

The default value for timeout is about 40 msec.

12.15 IOP Error Summary
TABLE 12-49 summarizes JBUS error handling. Column abbreviations are described
after the table.

TABLE 12-43 SSI Timeout Register– SSI_TIMEOUT (000116-008816)

Bit Field Initial Value R/W Description

63:25 — X R Reserved

24 erren 0 RW Enables error logging and error interrupt generation in the SSI.

23:0 timeval 80000016 RW Number of JBUS cycles before an unacknowledged request causes
a timeout error.

TABLE 12-44 SSI Log Register – SSI_LOG (000016-001816)

Bit Field Initial Value R/W Description

63:2 — X R Reserved

1 parity Preserved RW1C Parity error detected on response

0 tout Preserved RW1C No response before timeval
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TABLE 12-45 JBUS and SSI Error Handling Summary

Error Type Error JBI or SSI
Status

SPARC
Status L2 Status

DRAM
Status

PA Log/Syn Trap Trap
Type

JBUS address parity FE apar J J WMR

JBUS control parity FE cpar J WMR

Illegal ADTYPE FE adtype J WMR

L2 interface flow control
timeout

FE l2_to WMR

JBUS arbitration timeout FE arb_to J WMR

Reported fatal error UE fatal WMR

DRAM ECC: RDx CE DRC DAC L D di(ES) C

DRAM ECC: WRM CE DRC DAC L D di(ES) C

DRAM ECC: RDx UE DRU DAU L D di(ES),
int(IOB)

E

DRAM ECC: WRM UE DRU DAU L D di(ES) E

L2 tag ECC: any DMA CE LTC L di(ES) C

L2 data ECC: any DMA CE LDRC L L di(ES) C

L2 data ECC: RDx UE LDRU L L di(ES),
int(IOB)

E

L2 data ECC: WRM UE LDRU L L di(ES) E

Reported UE: WRIS to
UltraSPARC T1

UE rep_ue LDWU poisoned JL JL int(ERR)

Reported UE: WRM to
UltraSPARC T1

UE rep_ue poisoned J J int(ERR)

JBUS data parity: WRIS to
UltraSPARC T1

UE dpar_wr LDWU poisoned JL JL int(ERR)

JBUS data parity: WRM to
UltraSPARC T1

UE dpar_wr poisoned J J int(ERR)

JBUS data parity: INTR
payload to UltraSPARC T1

UE dpar_wr J J int(ERR)

JBUS data parity: NCRD
return to UltraSPARC T1

UE dpar_rd NCU S J p, int(ERR) D

Transaction timeout – PIO
Read

UE read_to NCU S p, int(ERR) D

JBUS error cycle – PIO
Read

UE err_cycle NCU S J p, int(ERR) D

JBUS data parity: other UE dpar_o J int(ERR)

Unsupported JBUS
command

UE unsupp J J int(ERR)

Illegal JBUS command UE illegal J J int(ERR)
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■ Error: FE – fatal error; UE – uncorrected error; CE – corrected error

■ PA (logging): J - JBUS error address; S – SPARC error address; L – L2 error
address; D – DRAM error address

■ LOG/SYN: J - JBUS error logs; S – SPARC error status; L – L2 error status; D –
DRAM error status

■ Trap: WMR - warm reset; p – precise; di – disrupting; di(ES) – disrupting to the
strand specified in L2_CSR_REG.errorsteer; int(ERR) - interrupt to strand and
vector specified in INT_MAN[1]; int(IOB) - interrupt to strand specified in external
IO-Bridge chip

■ Trap Type: D – data_access_error; E - data_error; C – ECC_error

Nonexistent memory –
DMA write

UE nonex-wr J J int(ERR)

Nonexistent memory –
DMA read

UE nonex_rd J J int(ERR),
int(IOB)

Unmapped target – PIO
write

UE unmap_wr J J int(ERR)

Unexpected JBUS data
return

UE unexp_dr J int(ERR)

JBUS INTACK timeout UE intr_to J int(ERR)

SSI parity – Ifetch UE parity NCU S p, int(ERR) I

SSI parity – Load UE parity NCU S p, int(ERR) D

SSI parity – Store UE parity S int(ERR)

SSI timeout – Ifetch UE tout NCU S p, int(ERR) I

SSI timeout – Load UE tout NCU S p, int(ERR) D

SSI timeout – Store UE tout S int(ERR)

TABLE 12-45 JBUS and SSI Error Handling Summary (Continued)

Error Type Error JBI or SSI
Status

SPARC
Status L2 Status

DRAM
Status

PA Log/Syn Trap Trap
Type
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CHAPTER 13

Memory Management Unit

This chapter provides detailed information about the UltraSPARC T1 Memory
Management Unit. It describes the internal architecture of the MMU and how to
program it.

13.1 Translation Table Entry (TTE)
The Translation Table Entry (TTE) holds information for a single page mapping. The
TTE is broken into two 64-bit words, representing the tag and data of the translation.
Just as in a hardware cache, the tag is used to determine whether there is a hit in the
TSB. If there is a hit, the data is fetched by software.

13.1.1 TTE Tag Format
UltraSPARC T1 supports both the UltraSPARC Architecture 2005 TTE tag format (as
described in the UltraSPARC Architecture 2005 specification; also known as the
"sun4v" TTE format) and the older sun4u TTE tag format.

Note that UltraSPARC T1 only supports 13-bit context IDs; therefore, the most
significant 3 bits of the (16-bit) context field are always zero.

UltraSPARC T1 supports 48-bit virtual addresses in hardware. When hardware
writes a 48-bit virtual address into a 64-bit register, it sign-extends (copies) the most
significant address bit (bit 47) into bits 63:48 of the register.

13.1.2 TTE Data Format
For the data portion of the TTE, both the sun4v and sun4u formats are supported by
UltraSPARC T1. The sun4v TTE data format is described in the UltraSPARC
Architecture 2005 specification.
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UltraSPARC Architecture 2005 specifies a 4-bit size field for TTE entries. Since
UltraSPARC T1 only supports a 3-bit size field, the most significant bit of TTE (bit 3)
is ignored when written to a TLB and always reads as zero when read from a TLB.

In the sun4u TTE virtual address tag, bits 63:22 are used. Bits 21 through 13 are not
maintained in the tag, since these bits are used to index the smallest direct-mapped TSB of
512 entries.

The sun4u TTE data format is shown in TABLE 13-1.

TABLE 13-2 provides UltraSPARC T1-specific information regarding sun4u TTE data
fields.

TABLE 13-1 Format 16 Sun4u TTE Data Format

Bit Field Description

63 v Valid

62:61 szl size{1:0}

60 nfo No-fault-only

59 ie Invert endianness

58:49 soft2 Soft2

48 szh size{2}

47:40 diag Diagnostic

39:13 pa PA{39:13}

12:8 soft Soft

7 — Reserved

6 l Locked

5 cp Cacheable in physically indexed cache

4 cv Cacheable in virtually indexed cache

3 e Side effect

2 p Privileged

1 w Writable

0 — Reserved

TABLE 13-2 TTE Field Description

Field Description

nfo No-Fault-Only. For the IMMU, the nfo bit in the TTE is written into the ITLB, but ignored
during ITLB operation. The value of the nfo bit written into the ITLB will be read out on
an ITLB Data Access read.
Note: If the nfo bit is set before loading the TTE into the ITLB, the ITLB miss handler
software should generate an error.
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ie Invert Endianness. See Context and Endianness Selection for Translation on page 196. For the
IMMU, the ie bit in the TTE is written into the ITLB, but ignored during ITLB operation.
The value of the ie bit written into the ITLB will be read out on an ITLB Data Access
read.

soft, soft2 Software-defined fields, provided for use by the operating system. Software fields are
not implemented in UltraSPARC T1 TLB hardware. soft and soft2 fields may be written
with any value; they read as zero.

diag Used by diagnosticsto access the redundant information held in the TLB structure.
diag{7} = Used bit. diag{6} = TTE data parity for a valid entry, undefined for an invalid
entry1. diag{5:3}: Mux selects based on page size: 111 – 256 Mbytes; 011 – 4 Mbytes; 001 –
64 Kbytes; 000 – 8 Kbytes. diag{7:3} are read-only. All other diag bits are reserved.

1 Parity is generated across PA{39:13}, Diag{5:3}, v, nfo, ie, l, cp, cv, e, p, and w only. Parity is calculated
when loading the TLB, but is not recalculated when demapping an entry. Thus, an invalid data entry
with no bit errors will have a correct parity bit if it was loaded via a write to the Data-In or Data-Access
register with v = 0, and will have an inverted parity bit if it was loaded via a write to the Data-In or
Data-Access register with v = 1 and then demapped.

pa The physical page number. Page offset bits for larger page sizes (PA{15:13}, PA{21:13},
and PA{27:13}for 64-Kbyte, 4-Mbyte, and 256-Mbyte pages, respectively) are stored in the
TLB and returned for a Data Access read, but ignored during normal translation.

l Lock. If this bit is set, the TTE entry will be “locked down” when it is loaded into the
TLB; that is, if this entry is valid, it will not be replaced by the automatic replacement
algorithm invoked by an ASI store to the Data In register. The lock bit has no meaning for
an invalid entry. Arbitrary entries may be locked down in the TLB. Software must ensure
that at least one entry is not locked when replacing a TLB entry, otherwise the last TLB
entry will be replaced.

w Writable. For the IMMU, the w bit in the TTE is written into the ITLB, but ignored during
ITLB operation. The value of the w bit written into the ITLB will be read out on an ITLB
Data Access read.

Note There is a corner case where entry 63 of the UltraSPARC T1 TLB
can be replaced, even when locked, when there are other entries
unlocked. When all the “used” bits are set, it takes several cycles
to clear all the unlocked used bits. During this period, an insert
will use entry 63, regardless of whether it is locked.

TABLE 13-2 TTE Field Description (Continued)

Field Description
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13.2 Translation Storage Buffer
A Translation Storage Buffer (TSB) is an array of TTEs managed entirely by software.
It serves as a cache of the Software Translation Table, used to quickly reload the TLB
in the event of a TLB miss. The discussion in this section assumes the use of
hardware support for TSB access, although the operating system is not required to
make use of this support hardware.

Inclusion of the TLB entries in a TSB is not required; that is, translation information
may exist in the TLB that is not present in the TSB.

A TSB is arranged as a direct-mapped cache of TTEs. The UltraSPARC T1 MMU
provides precomputed pointers into the TSB(s) for both zero and nonzero contexts
for two different page sizes: PS0 and PS1, as specified in the following registers:

■ ASI_IMMU_CONTEXT_ZERO_CONFIG_REG,
■ ASI_IMMU_CONTEXT_NONZERO_CONFIG_REG,
■ ASI_DMMU_CONTEXT_ZERO_CONFIG_REG, and
■ ASI_DMMU_CONTEXT_NONZERO_CONFIG_REG.

In each case, the n least significant bits of a virtual page number is used as the offset
from the respective TSB base address, where n equals log2 of the number of TTEs in
the TSB.

A bit in the TSB register allows the PS0 and PS1 pointers to be computed for the case
of separate or split PS0/PS1 TSB(s).

No hardware TSB indexing support is provided for TTEs of pages other than PS0
and PS1. Since the TSB is entirely software managed, however, the operating system
may choose to place these different page TTEs in the TSB by forming the appropriate
pointers. In addition, simple modifications to the PS0 and PS1 index pointers
provided by the hardware allow formation of an M-way set-associative TSB,
multiple TSBs per page size, and multiple TSBs per process.

The TSB exists as a normal data structure in memory, and therefore may be cached.
Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the
level-2 cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but the dynamic sharing of the level-2 cache
resource should provide a better overall solution than that provided by a fixed
partitioning.

FIGURE 13-1 shows both the common and shared TSB organization. The constant n is
determined by the size field in the TSB register; it may range from 512 entries to
16 M entries.
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FIGURE 13-1 TSB Organization

13.3 Hardware Support for Hypervisor
To support hypervisor, a number of additions to the MMU are included. First, a 3-bit
PID (partition ID) field is included in each TLB entry. This field is loaded with the
context of the Partition Identifier register when a TLB entry is loaded. In addition,
the PID entry of a TLB is compared against the Partition Identifier register to
determine if a TLB hit occurs.

A single r (real translation) bit is included in the TLB entry. This field is loaded with
bit 9 from the VA used by the store to data-in or data-access. The real bit
distinguishes between VA → PA translations (r = 0) and RA → PA translations
(r = 1). If the real bit is 1, the context ID is ignored when determining a TLB hit. Bit
10 of the VA is used on stores of data-in and data-access to select between the sun4u
format (VA{10} = 0) and sun4v format (VA{10} = 1). Only the sun4u format is
available for data-access loads.

TLB misses on real-to-physical translations generate a data_real_translation_miss or
instruction_real_translation_miss trap instead of the fast_data_access_MMU_miss
and fast_inst_access_MMU_miss traps, respectively. If the hpriv bit of HPSTATE is
0, all privileged ASIs that would normally bypass the TLB, as well as accesses
performed while the LSU_CONTROL_REG has the TLBs disabled, use the TLB and
need to match against an entry with the r bit set. The final support for hypervisor is
that if HPSTATE.hpriv = 1, the MMU is bypassed for all translating ASIs except
ASI_*REAL* and ASI_*AS_IF_USER*.

Tag1 (8 bytes) Data1 (8 bytes)

000016 000816
n Lines in Common TSB

Tag1 (8 bytes) Data1 (8 bytes)

2n Lines in Split TSB

Tagn (8 bytes)

Tagn (8 bytes) Datan (8 bytes)

Datan (8 bytes)
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When the MMU is bypassed (bypass occurs under certain LSU_CONTROL_REG
settings or in red mode), TABLE 13-3 specifies the physical page attribute bits. This
table does not apply to real ASIs; if a real ASI is used while the D-MMU is disabled,
the bypass operation behaves as it does when the D-MMU is enabled; that is, the
access is processed with the e and cp bits as specified by the real ASI.

When disabled, both the I-MMU and D-MMU correctly perform all LDXA and STXA
operations to internal registers, and traps based on the page attribute bits are
signaled just as if the MMU were enabled.

TABLE 13-3 summarizes the page attribute bits.

13.3.1 Hardware Support for TSB Access
The MMU hardware provides services to allow the TLB miss handler to efficiently
reload a missing TLB entry for a PS0 or PS1 page. These services include:

■ Formation of TSB Pointers based on the missing virtual address

■ Formation of the TTE Tag Target used for the TSB tag comparison

■ Efficient atomic write of a TLB entry with a single store ASI operation

A typical TLB miss and refill sequence is as follows:

1. A TLB miss causes either a fast_instruction_access_MMU_miss or a
fast_data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag Target
with loads from the MMU alternate space.

3. Using this information, the TLB miss handler checks to see if the desired TTE
exists in the TSB. If so, the TTE data is loaded into the TLB Data In register to
initiate an atomic write of the TLB entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, the TLB miss handler jumps to a more
sophisticated (and slower) TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the
Tag Access register, which holds the virtual address and context of the load or store
responsible for the MMU exception. See MMU Internal Registers and ASI Operations
on page 206 for details. (Note that there are no separate physical registers in

TABLE 13-3 Physical Page Attribute Bits

Address[39] Physical Page Attribute Bits

cp ie cv e p w nfo size

0 1 0 0 0 0 1 0 8 KB

1 0 0 0 1 0 1 0 8 KB
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UltraSPARC T1 hardware for the Pointer registers, but rather they are implemented
through a dynamic reordering of the data stored in the Tag Access and the TSB
registers.)

Pointers are provided by hardware for the most common cases of PS0 and PS1 page
miss processing. These pointers give the virtual addresses where the PS0 and PS1
TTEs would be stored if either is present in the TSB.

n is defined to be the tsb_size field of the appropriate zero/nonzero context and
PS0/PS1 BASE register; it ranges from 0 to 15. Note that when the TSB is split,
tsb_size refers to the size of each TSB. TSB_Base_PS0 refers to the tsb_base field of
the appropriate zero/nonzero context BASE register. tsb_base_ps1 refers to the
tsb_base field of the appropriate zero/nonzero context BASE register. PS0 refers to
the ps0 field of the Config register. PS1 refers to the ps1 field of the Config register.

Programming
Notes

(1) For the split TSB mode, tsb_base_ps0 and tsb_base_ps1
should be set to the same values, or the pair of TSB tables will
not be contiguous in virtual memory. Also, note that for a
“common” TSB, tsb_base_ps0 and tsb_base_ps1 should be set
to the same values with split set to 0. A nonsplit TSB mode can
be used with differing tsb_base_ps0 and tsb_base_ps1 values
to provide separate TSBs for PS0 and PS1, without requiring
them to be contiguous in virtual memory.

As this latter use of the TSB_BASE_PS{0,1}.split = 0 with
differing TSB base pointers can also generate a pair of
contiguous TSBs for PS0 and PS1 with the proper loading of the
base pointers, the setting of TSB_BASE_PS{0,1}.split to 1 is
deprecated.

For the “common” TSB or separate TSBs (BASE register split
field = 0):

PS0_POINTER = TSB_Base_PS0{YC63:13+N} ::
VA{21+N+3*PS0:13+3*PS0} :: 0000

PS1_POINTER = TSB_Base_PS1{63:13+N} ::
VA{ 21+N+3*PS1:13+3*PS1} :: 0000

For a split TSB (BASE register split field = 1):

PS0_POINTER = TSB_Base_PS0{63:14+N} :: 0 ::
VA{21+N+3*PS0:13+3*PS0} :: 0000

PS1_POINTER = TSB_Base_PS1{63:14+N} :: 1 ::
VA{21+N+3*PS1:13+3*PS1} :: 0000

(2) The TSB pointers assume that the TSB is aligned on a
boundary equal to its size. For example, with n = 12, the TSB is
assumed to be aligned to a 32-Mbyte boundary. Any bits in the
tsb_base field from appropriate BASE register that are below
the TSB-size boundary are ignored in the pointer calculation.
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The TSB Tag Target (described in MMU Internal Registers and ASI Operations on page
206) is formed by aligning the missing access VA (from the Tag Access register) and
the current context to positions found in the description of the TTE tag. This allows
use of an XOR instruction for TSB hit detection.

These items must be locked in the TSB (not necessarily the TLB) to avoid an error
condition: TSB-miss handler and data, interrupt-vector handler and data.

13.4 MMU-Related Faults and Traps
TABLE 13-4 lists the traps recorded by the MMU.

.
TABLE 13-4 MMU Traps

Trap Name Trap Cause
Registers Updated

(Stored State in MMU)

I-SFSR
I-Tag

Access
D-SFSR,

SFAR
D-Tag

Access

fast_instruction_access_MMU_miss iTLB miss
❘

instruction_real_translation_miss iTLB miss
x

instruction_access_exception Several (see below)
x x1

1. Contents undefined if instruction_access_exception is due to virtual address out of range.

fast_data_access_MMU_miss dTLB miss
x

data_real_translation_miss dTLB miss
x

data_access_exception Several (see below)
x x

fast_data_access_protection Protection violation
x x

privileged_action Use of privileged ASI
x

VA_watchpoint Watchpoint hit
x

mem_address_not_aligned Misaligned mem op
x
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MMU traps are described in TABLE 13-5.

Note (1) The fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and fast_data_access_protection traps
are generated instead of instruction_access_MMU_miss,
data_access_MMU_miss, and data_access_protection traps,
respectively.

Programming
Note

The Tag Access, SFSR, and SFAR registers can be updated if
one of the traps listed in TABLE 13-4 is generated by UltraSPARC
T1 on the same cycle as a trap_level_zero, pic_overflow, or
instruction_breakpoint trap (the trap in TABLE 13-4 is suppressed
in those cases by UltraSPARC T1, but the update of Tag Access,
SFSR, and SFAR is not). If UltraSPARC T1 is configured where
it can generate any of those three traps, software cannot assume
that Tag Access, SFSR, and SFAR will remain unchanged
between the traps listed in TABLE 13-4.

TABLE 13-5 MMU Trap Description

Trap Description

data_access_exception Occurs when one of the following events (the D-MMU does not prioritize
these and may set multiple bits) occurs:
• The D-MMU detects a privilege violation for a data access; that is, an

attempted access to a privileged page when PSTATE.priv = 0.
• A speculative (nonfaulting) load instruction issued to a page marked

with the side-effect (e) bit = 1.
• An atomic instruction issued to an I/O address (that is, VA{39} = 1).
• An invalid LDA/STA ASI value, invalid virtual address, read to write-

only register, or write to read-only register, but not for an attempted
user access to a restricted ASI (see the privileged_action trap described
below)

• An access with an ASI other than
ASI_<PRIMARY,SECONDARY>_NO_FAULT[_LITTLE] to a page marked
with the nfo (no-fault-only) bit.

• Virtual address out of range and PSTATE.am is not set. See 48-bit
Virtual Address Space on page 65 for details.

data_real_translation_miss Occurs when the MMU is unable to find a translation for a data access
that is using a real-to-physical translation; that is, when the appropriate
TTE is not present in the data TLB with the r bit set for a memory
operation.

fast_data_access_protection Occurs when the MMU detects a protection violation for a data access. A
protection violation is defined to be an attempted store to a page without
write permission.

fast_data_access_MMU_miss Occurs when the MMU is unable to find a translation for a data access
that is using a virtual-to-physical translation; that is, when the
appropriate TTE is not present in the data TLB with the r bit cleared for a
memory operation.
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13.5 MMU Operation Summary
TABLE 13-8 summarizes the behavior of the D-MMU; TABLE 13-10 summarizes the
behavior of the I-MMU for normal (non-UltraSPARC T1-internal) ASIs using
tabulated abbreviations. In each case, and for all conditions, the behavior of the
MMU is given by one of the abbreviations in TABLE 13-6. TABLE 13-7 lists abbreviations
for ASI types.

fast_instruction_access_MMU_miss Occurs when the I-MMU is unable to find a translation for an instruction
access that is executing using a virtual address; that is, when the
appropriate TTE is not present in the iTLB with the r bit cleared.

instruction_access_exception Occurs when the I-MMU is enabled and one of the following happens:
• The I-MMU detects a privilege violation for an instruction fetch; that is,

an attempted access to a privileged page when PSTATE.priv = 0.
• Virtual address out of range and PSTATE.am is not set. See 48-bit

Virtual Address Space on page 65. Note that the case of JMPL/RETURN
and branch-CALL-sequential are handled differently. The contents of
the I-Tag Access Register are undefined in this case, but are not needed
by software.

instruction_real_translation_miss Occurs when the I-MMU is unable to find a translation for an instruction
access that is executing using a real address; that is, when the appropriate
TTE is not present in the iTLB with the r bit set.

mem_address_not_aligned Occurs when a load, store, atomic, or JMPL/RETURN instruction with a
misaligned address is executed. The LSU signals this trap, but the D-
MMU records the fault information in the SFSR and SFAR.

privileged_action Occurs when an access is attempted using a restricted ASI while in
nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0).

VA_watchpoint Occurs when virtual watchpoints are enabled and the D-MMU detects a
load or store to the virtual address specified by the VA Data Watchpoint
register.

TABLE 13-6 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal Translation

dmiss fast_data_access_MMU_miss trap

dreal data_real_translation_miss trap

dexc data_access_exception trap

dprot fast_data_access_protection trap

TABLE 13-5 MMU Trap Description (Continued)

Trap Description
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Other abbreviations include w for the writable bit, e for the side-effect bit, and p for
the privileged bit.

The tables do not cover the following cases:

■ Invalid ASIs, ASIs that have no meaning for the opcodes listed, or nonexistent
ASIs; for example, ASI_PRIMARY_NO_FAULT for a store or atomic; also, access to
UltraSPARC T1 internal registers other than LDXA or STXA; the MMU signals a
data_access_exception trap (SFSR.ft = 0816) for this case.

■ Attempted access using a restricted ASI in nonprivileged mode; the MMU signals
a privileged_action exception for this case.

■ An atomic instruction issued to an IO address (PA[39] =1); the MMU signals a
data_access_exception trap (SFSR.ft = 0416) for this case.

imiss fast_instruction_access_MMU_miss trap

ireal instruction_real_translation_miss trap

iexc instruction_access_exception trap

pact privileged_action trap

TABLE 13-7 Abbreviations for ASI Types

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT and
*AS_IF_USER*

SEC Any ASI with SECONDARY translation, except *NO_FAULT and
*AS_IF_USER*

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_*_AS_IF_USER_PRIMARY*

U_SEC ASI_*_AS_IF_USER_SECONDARY*

REAL ASI_*_REAL_* and also other ASIs that require the MMU to perform a
bypass operation

Note The “*_LITTLE” versions of the ASIs behave the same as the
big-endian versions with regard to the MMU table of operations.

TABLE 13-6 Abbreviations for MMU Behavior

Abbreviation Meaning
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■ A data access with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the
nfo (no-fault-only) bit; the MMU signals a data_access_exception trap
(SFSR.ft = 1016) for this case.

■ Virtual address out of range and PSTATE.am is not set; the MMU signals a
data_access_exception trap (SFSR.ft = 2016) for this case.

TABLE 13-8 D-MMU Operations for Normal ASIs

Condition Behavior

Instruction Privilege Mode ASI W TLB Miss
e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1

Load

nonprivileged PRIM, SEC — dmiss ok dexc ok dexc

PRIM_NF, SEC_NF — dmiss ok dexc dexc dexc

REAL — pact pact pact pact pact

privileged PRIM, SEC, NUC — dmiss ok ok ok ok

PRIM_NF, SEC_NF — dmiss ok ok dexc dexc

U_PRIM, U_SEC — dmiss ok dexc ok dexc

REAL — dreal ok ok ok ok

hyperprivileged PRIM, SEC, NUC 1 — ok — ok —

PRIM_NF, SEC_NF 1 — ok — dexc —

U_PRIM, U_SEC — dmiss ok dexc ok dexc

REAL — dreal ok ok ok ok

FLUSH

nonprivileged — ok ok ok ok ok

privileged — ok ok ok ok ok

hyperprivileged — ok ok ok ok ok

Store or
Atomic

nonprivileged PRIM, SEC 0 dmiss dprot dexc dprot dexc

1 dmiss ok dexc ok dexc

REAL — pact pact pact pact pact

privileged PRIM, SEC, NUC 0 dmiss dprot dprot dprot dprot

1 dmiss ok ok ok ok

U_PRIM, U_SEC 0 dmiss dprot dexc dprot dexc

1 dmiss ok dexc ok dexc

REAL 0 dreal dprot dprot dprot dprot

1 dreal ok ok ok ok

hyperprivileged PRIM, SEC, NUC 1 — ok — ok —

U_PRIM, U_SEC 0 dmiss dprot dexc dprot dexc

1 dmiss ok dexc ok dexc

REAL 0 dreal dprot dprot dprot dprot

1 dreal ok ok ok ok
192 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



13.6 Context and Endianness Selection for
Translation
This information is described in the Memory Management chapter of the
UltraSPARC Architecture 2005 specification.

13.7 Translation
The translation operation of MMU is determined by the LSU_CONTROL_REG and
the HPSTATE registers. TABLE 13-12 describes the operation of the I-MMU.

TABLE 13-9 I-MMU Operations for Normal ASIs

Condition Behavior

Privilege Mode TLB Miss p = 0 p = 1

user imiss ok iexc

privileged imiss ok

hyperprivileged — ok —

TABLE 13-10 IMMU Translation

Control State

IMMU TranslationLSU.im HPSTATE.hpriv HPSTATE.red

Don’t care Don’t care 1 Bypass1

1. VA{39:0} passed directly to PA{39:0}

Don’t care 1 0 Bypass1

0 0 0 RA → PA2

2. VA{63:0} passed directly to RA{63:0}, RA{63:0} translated via the IMMU.

1 0 0 VA → PA3
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TABLE 13-14 describes the operation of the D-MMU.

In TABLE 13-16, which describes DMMU address translation behavior, the following
abbreviations are used:

TABLE 13-11 DMMU Translation

Control State

DMMU TranslationLSU.dm HPSTATE.hpriv

0 0 RA → PA

0 1 Follows TABLE 13-16

1 See TABLE 13-16 Follows TABLE 13-16

Abbreviation Meaning

DAE data_access_exception exception is triggered

priv_action privileged_action exception is triggered

— "nontranslating" (as defined in UltraSPARC Architecture 2005)

TABLE 13-12 DMMU Translation when (LSU_CONTROL_REG.dm = 1
or HPSTATE.hpriv = 1) (1 of 5)

ASI
Value

ASI NAME Translation

Nonprivileged Privileged Hyperprivileged

Mandatory SPARC V9 ASIs

0416 ASI_NUCLEUS priv_action VA →PA bypass

0C16 ASI NUCLEUS_LITTLE priv_action VA →PA bypass

1016 ASI_AS_IF_USER_PRIMARY priv_action VA →PA VA →PA

1116 ASI_AS_IF_USER_SECONDARY priv_action VA →PA VA →PA

18 ASI_AS_IF_USER_PRIMARY_LITTLE priv_action VA → PA VA → PA

1916 ASI_AS_IF_USER_SECONDARY_LITTLE priv_action VA → PA VA → PA

8016 ASI_PRIMARY VA → PA VA → PA bypass

8116 ASI_SECONDARY VA → PA VA → PA bypass

8216 ASI_PRIMARY_NO_FAULT VA → PA VA → PA bypass

8316 ASI_SECONDARY_NO_FAULT VA → PA VA → PA bypass

8816 ASI_PRIMARY_LITTLE VA → PA VA → PA bypass

8916 ASI_SECONDARY_LITTLE VA → PA VA → PA bypass

8A16 ASI_PRIMARY_NO_FAULT_LITTLE VA → PA VA → PA bypass

8B16 ASI_SECONDARY_NO_FAULT_LITTLE VA → PA VA → PA bypass
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Additional ASIs

1416 ASI_REAL priv_action RA → PA RA → PA

1516 ASI_REAL_IO priv_action RA → PA RA → PA

1616 ASI_BLOCK_AS_IF_USER_PRIMARY priv_action VA → PA VA → PA

1716 ASI_BLOCK_AS_IF_USER_SECONDARY priv_action VA → PA VA → PA

1C16 ASI_REAL_LITTLE priv_action RA → PA RA → PA

1D16 ASI_REAL_IO_LITTLE priv_action RA → PA RA → PA

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE priv_action VA → PA VA → PA

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE priv_action VA → PA VA → PA

2016 ASI_SCRATCHPAD priv_action — —

2116 ASI_MMU priv_action — —

2216 ASI_TWINX_AS_IF_USER_PRIMARY (ASI_LDTX_AIUP)
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY
(ASI_STBI_AIUP)

priv_action VA → PA VA → PA

2316 ASI_TWINX_AS_IF_USER_SECONDARY
(ASI_LDTX_AIUS)
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY
(ASI_STBI_AIUS)

priv_action VA → PA VA → PA

2416 ASI_QUAD_LDD priv_action VA → PA bypass

2516 ASI_QUEUE priv_action — —

2616 ASI_QUAD_LDD_REAL priv_action RA → PA RA → PA

2716 ASI_TWINX_NUCLEUS
(ASI_LDTX_N)
ASI_ST_BLKINIT_NUCLEUS
(ASI_STBI_N)

priv_action VA → PA bypass

2A16 ASI_TWINX_AS_IF_USER_PRIMARY_LITTLE
(ASI_LDTX_AIUP_L)
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY_LITTLE
(ASI_STBI_AIUP_L)

priv_action VA → PA VA → PA

2B16 ASI_TWINX_AS_IF_USER_SECONDARY_LITTLE
(ASI_LDTX_AIUS_L)
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY_LITTLE
(ASI_STBI_AIUS_L)

priv_action VA → PA VA → PA

2C16 ASI_TWINX_LITTLE (ASI_LDTX_L),
ASI_QUAD_LDD_LITTLED,
ASI_NUCLEUS_QUAD_LDD_LITTLED

priv_action VA → PA bypass

2E16 ASI_TWINX_REAL_LITTLE (ASI_LDTX_REAL_L)
ASI_QUAD_LDD_REAL_LITTLED

priv_action RA → PA RA → PA

TABLE 13-12 DMMU Translation when (LSU_CONTROL_REG.dm = 1
or HPSTATE.hpriv = 1) (2 of 5)

ASI
Value

ASI NAME Translation

Nonprivileged Privileged Hyperprivileged
• 195



2F16 ASI_TWINX_NUCLEUS_LITTLE (ASI_LDTX_NL)
ASI_ST_BLKINIT_NUCLEUS_LITTLE
(ASI_STBI_NL)

priv_action VA → PA bypass

3116 ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0 priv_action DAE —

3216 ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1 priv_action DAE —

3316 ASI_DMMU_CTXT_ZERO_CONFIG priv_action DAE —

3516 ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0 priv_action DAE —

3616 ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1 priv_action DAE —

3716 ASI_IMMU_CTXT_ZERO_CONFIG priv_action DAE —

3916 ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS0 priv_action DAE —

3A16 ASI_DMMU_CTXT_NONZERO_USB_BASE_PS1 priv_action DAE —

3B16 ASI_DMMU_CTXT_NONZERO_CONFIG priv_action DAE —

3D16 ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS0 priv_action DAE —

3E16 ASI_IMMU_CTXT_NONZERO_USB_BASE_PS1 priv_action DAE —

3F16 ASI_IMMU_CTXT_NONZERO_CONFIG priv_action DAE —

4016 ASI_STREAM_MA priv_action DAE —

4216 ASI_SPARC_BIST_CONTROL priv_action DAE —

4216 ASI_INST_MASK_REG priv_action DAE —

4216 ASI_LSU_DIAG_REG priv_action DAE —

4416 ASI_STM_CTL_REG priv_action DAE —

4516 ASI_LSU_CONTROL_REG priv_action DAE —

4616 ASI_DCACHE_DATA priv_action DAE —

4716 ASI_DCACHE_TAG priv_action DAE —

4816 ASI_INTR_DISPATCH STATUS priv_action DAE DAE

4916 ASI_INTR_RECEIVE priv_action DAE DAE

4A16 ASI_UPA_CONFIG_REGISTER priv_action DAE DAE

4B16 ASI_SPARC_ERROR_EN_REG priv_action DAE —

4C16 ASI_SPARC_ERROR_STATUS_REG priv_action DAE —

4D16 ASI_SPARC_ERROR_ADDRESS_REG priv_action DAE —

4E16 ASI_ECACHE_TAG_DATA priv_action DAE DAE

4F16 ASI_HYP_SCRATCHPAD priv_action DAE —

5016 ASI_IMMU priv_action DAE —

5116 ASI_IMMU_TSB_PS0_PTR_REG priv_action DAE —

5216 ASI_IMMU_TSB_PS1_PTR_REG priv_action DAE —

5416 ASI_ITLB_DATA_IN_REG priv_action DAE —

5516 ASI_ITLB_DATA_ACCESS_REG priv_action DAE —

TABLE 13-12 DMMU Translation when (LSU_CONTROL_REG.dm = 1
or HPSTATE.hpriv = 1) (3 of 5)

ASI
Value

ASI NAME Translation

Nonprivileged Privileged Hyperprivileged
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5616 ASI_ITLB_TAG_READ_REG priv_action DAE —

5716 ASI_IMMU_DEMAP priv_action DAE —

5816 ASI_DMMU priv_action DAE —

5916 ASI_DMMU_TSB_PS0_PTR_REG priv_action DAE —

5A16 ASI_DMMU_TSB_PS1_PTR_REG priv_action DAE —

5B16 ASI_DMMU_TSB_DIRECT_PTR_REG priv_action DAE —

5C16 ASI_DTLB_DATA_IN_REG priv_action DAE —

5D16 ASI_DTLB_DATA_ACCESS_REG priv_action DAE —

5E16 ASI_DTLB_TAG_READ_REG priv_action DAE —

5F16 ASI_DMMU_DEMAP priv_action DAE —

6016 ASI_TLB_INVALIDATE_ALL priv_action DAE —

6616 ASI_ICACHE_INSTR priv_action DAE —

6716 ASI_ICACHE_TAG priv_action DAE —

7216 ASI_SWVR_INTR_RECEIVE priv_action DAE —

7316 ASI_SWVR_UDB_INTR_W priv_action DAE —

7416 ASI_SWVR_UDB_INTR_R priv_action DAE —

7616 ASI_ECACHE_W priv_action DAE DAE

7716 ASI_UDB_INTR_W priv_action DAE DAE

7E16 ASI_ECACHE_R priv_action DAE DAE

7F16 ASI_UDB_INTR_R priv_action DAE DAE

C016–
C516

ASI_PST* DAE DAE DAE

C816–
CD16

ASI_PST* DAE DAE DAE

D016–
D316

ASI_FL* DAE DAE DAE

D816,
D916

ASI_FL* DAE DAE DAE

DA16,
DB16

ASI_FL* DAE DAE DAE

E016 ASI_BLK_COMMIT_P DAE DAE DAE

E116 ASI_BLK_COMMIT_S DAE DAE DAE

E216 ASI_TWINX_PRIMARY (ASI_LDTX_P)
ASI_ST_BLKINIT_PRIMARY (ASI_STBI_P)

VA → PA VA → PA bypass

E316 ASI_TWINX_SECONDARY (ASI_LDTX_S)
ASI_ST_BLKINIT_SECONDARY (ASI_STBI_S)

VA → PA VA → PA bypass

TABLE 13-12 DMMU Translation when (LSU_CONTROL_REG.dm = 1
or HPSTATE.hpriv = 1) (4 of 5)

ASI
Value

ASI NAME Translation

Nonprivileged Privileged Hyperprivileged
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13.8 MMU Behavior During Reset and Upon
Entering RED_state
During global reset of the UltraSPARC T1 CPU, the following actions occur:

■ No change occurs in any block of the D-MMU.
■ No change occurs in the data path or TLB blocks of the I-MMU.
■ The I-MMU resets its internal state machine to normal (nonsuspended) operation.
■ The I-MMU and D-MMU Enable bits in the LSU Control Register (see

ASI_LSU_CONTROL_REG Register on page 236) are set to zero.

On entering RED_state, the I-MMU and D-MMU Enable bits in the LSU Control
register are set to zero.

See the Memory Management chapter in the UltraSPARC Architecture 2005 for more
information regarding MMU behavior during resets and transitions to RED_state.

EA16 ASI_TWINX_PRIMARY_LITTLE (ASI_LDTX_PL)
ASI_ST_BLKINIT_PRIMARY_LITTLE (ASI_STBI_PL)

VA → PA VA → PA bypass

EB16 ASI_TWINX_SECONDARY_LITTLE (ASI_LDTX_SL)
ASI_ST_BLKINIT_SECONDARY_LITTLE (ASI_STBI_SL)

VA → PA VA → PA bypass

F016 ASI_BLK_P VA → PA VA → PA bypass

F116 ASI_BLK_S VA → PA VA → PA bypass

F816 ASI_BLK_PL VA → PA VA → PA bypass

F916 ASI_BLK_SL VA → PA VA → PA bypass

Note No reset of the MMU is performed by a chip reset or by entering
RED_state. Before the MMUs are enabled, the operating system
software must explicitly write to the
ASI_TLB_INVALIDATE_ALL. The operation of the I-MMU or
D-MMU in enabled mode is undefined if the TLB valid bits have
not been set explicitly beforehand.

TABLE 13-12 DMMU Translation when (LSU_CONTROL_REG.dm = 1
or HPSTATE.hpriv = 1) (5 of 5)

ASI
Value

ASI NAME Translation

Nonprivileged Privileged Hyperprivileged
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13.9 MMU Internal Registers and ASI
Operations
This section describes aspects of access to MMU internal registers that are specific to
the UltraSPARC T1 processor. For general information on this topic, consult the
UltraSPARC Architecture 2005

13.9.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the CPU through
UltraSPARC T1-defined ASIs. Several of the registers have been assigned their own
ASI because these registers are crucial to the speed of the TLB miss handler. Use of
%g0 for the address when accessing an internal ASI register reduces the number of
instructions needed to perform the access to the alternate space (by eliminating
address formation).

If the three least-significant bits of the virtual address are nonzero (VA{2:0} = 0) in an
LDXA or STXA instruction to or from these registers, a mem_address_not_aligned trap
occurs. Writes to read-only, reads to write-only, illegal ASI values, or illegal VA for a
given ASI may cause a data_access_exception trap (SFSR.ft = 0816). (UltraSPARC T1
hardware detects VA violations in only an unspecified lower portion of the virtual
address (impl. dep. #414-S10.))

Writes to the TSB register, Tag Access register, and VA Watchpoint Address registers
are not checked for out-of-range virtual addresses. No matter what is written to any
of those register, VA{63:48} will always be identical to VA{47} on a read.

TABLE 13-17 describes the internal registers and ASI operations specific to
UltraSPARC T1.

Programming
Note

UltraSPARC T1 does not check for out-of-range virtual
addresses during an STXA to any internal register; it simply
sign-extends the virtual address based on VA{47}. Software must
guarantee that the VA is within range.

TABLE 13-13 UltraSPARC T1 MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI VA{63:0}

Access
(R/W) Replication Level Register or Operation Name

— 2116 816 RW Strand (UA-2005) Primary Context Register

— 2116 1016 RW Strand (UA-2005) Secondary Context Register

3516 3116 016 RW Strand I-/D-Context Zero TSB Base PS0

3616 3216 016 RW Strand I-/D-Context Zero TSB Base PS1
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13.9.2 Context ID Registers
The Primary and Secondary context registers are shared by the I- and D-MMUs, and
the Nucleus Context register is hardwired to a zero value, as defined in the
UltraSPARC Architecture 2005 specification.

On UltraSPARC T1, the context ID fields (pcontextid and scontextid) are
implemented as 13-bit fields (bits 12:0) in the context registers (impl. dep. #415-S10).

13.9.3 I-/D- TSB Base Registers
The following UltraSPARC T1-specific TSB registers provide information for the
hardware formation of TSB pointers and tag target, to assist software in handling
TLB misses quickly:

■ I/DMMU_CONTEXT_ZERO_TSB_BASE_PS0
■ I/DMMU_CONTEXT_ZERO_TSB_BASE_PS1
■ I/DMMU_CONTEXT_NONZERO_TSB_BASE_PS0
■ I/DMMU_CONTEXT_NONZERO_TSB_BASE_PS1

3716 3316 016 RW Strand I-/D-Context Zero Config

3D16 3916 016 RW Strand I-/D-Context Nonzero TSB Base PS0

3E16 3A16 016 RW Strand I-/D-Context Nonzero TSB Base PS1

3F16 3B16 016 RW Strand I-/D-Context Nonzero Config

5016 5816 016 R Strand (UA-2005) I-/D-TSB Tag Target registers

5016 5816 1816 RW Strand I-/D-TLB Synchronous Fault Status register

— 5816 2016 R Strand (UA-2005) D-TLB Synchronous Fault Address register

5016 5816 3016 RW Strand (UA-2005) I-/D-TLB Tag Access registers

— 5816 3816 RW Strand Virtual Watchpoint Address

— 5816 8016 RW Strand (UA-2005) Partition Identifier

5116 5916 016 R Strand I-/D-TSB PS0 Pointer registers

5216 5A16 016 R Strand I-/D-TSB PS1 Pointer registers

— 5B16 016 R Strand D-TSB Direct Pointer register

5416 5C16 016 W Physical Core (UA-2005) I-/D-TLB Data In registers

5516 5D16 016..1F816 RW Physical Core (UA-2005) I-/D-TLB Data Access registers

5616 5E16 016..1F816 R Physical Core (UA-2005) I-/D-TLB Tag Read register

5716 5F16 See 13.10 W Strand (UA-2005) I-/D-MMU Demap Operation

6016 — 016 W Physical Core I-TLB Invalidate All

— 6016 816 W Physical Core D-TLB Invalidate All

TABLE 13-13 UltraSPARC T1 MMU Internal Registers and ASI Operations (Continued)

I-MMU
ASI

D-MMU
ASI VA{63:0}

Access
(R/W) Replication Level Register or Operation Name
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If the TSB concept is not employed in the software memory management strategy
and therefore the pointer and tag access registers are not used, then the TSB registers
need not contain valid data. Separate pointers exist for the I-MMU and D-MMU, as
well as for two page sizes (PS0 and PS1, specified by the
I-/D-TSB Control Registers), and for zero (nucleus) and nonzero contexts.

FIGURE 13-2 illustrates the TSB register. The fields are described in TABLE 13-18.

FIGURE 13-2 I-/D-TSB Register Format

TABLE 13-14 Bit Description of TSB Register Fields

Bit Field Description

63:13 tsb_base Provides the base virtual address of the Translation Storage Buffer. Software must ensure
that the TSB Base is aligned on a boundary equal to the size of the TSB, or both TSBs in the
case of a split TSB.
Caution: Stores to the TSB registers are not checked for out-of-range violations. Reads from
these registers are sign-extended based on tsb_base{47}.

12 split When split = 1, the TSB PS1 Pointer address is calculated assuming separate (but abutting
and equally sized) TSB regions for the PS0 and the PS1 TTEs. In this case, tsb_size refers to
the size of each TSB.
Programming Note: When split = 1, TSB_BASE_PS0 and TSB_BASE_PS1 must be
identical to get the pair of TSB regions to be abutting and equally sized. Since UltraSPARC
T1 provides separate TSB base pointers for PS0 and PS1, the use of split = 1 is deprecated.
When split = 0, the TSB PS0 and PS1 Pointer addresses are calculated based on their base
pointer. By setting the TSB_BASE_PS0 and TSB_BASE_PS1 pointers to different values,
separate TSB can be used for PS0 and PS1, without the requirement that they be abutting
and equally sized. By setting TSB_BASE_PS0 equal to TSB_BASE_PS1, a “common TSB”
configuration can be created that assumes that the same lines in the TSB are shared by PS0
and PS1 TTEs.
Programming Note: In the “common TSB” configuration (TSB.split = 0 with
TSB_BASE_PS0 and TSB_BASE_PS1 identical), PS0 and PS1 page TTEs can conflict,
unless the TLB miss handler explicitly checks the TTE for page size. Therefore, do not use
the “common TSB” configuration in an optimized handler (for example, by setting the TSB
Base pointers for PS0 and PS1 to differing non-overlapping locations in memory).

For example, suppose an PS0 = 8-Kbyte page at VA = 200016 and a PS1 = 64-Kbyte page
at VA = 1000016 both exist, which is a legal situation. These both want to exist at the second
TSB line (line 1), and have the same VA tag of 0. Therefore, there is no way for the miss
handler to distinguish these TTEs based on the TTE tag alone, and unless it reads the TTE
data, it may load an incorrect TTE.

tsb_base{63:13} (virtual)

63 4 3 0

tsb_size

13 12

split —

11
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13.9.4 I-/D- TSB Config Registers
The TSB config registers (I/DMMU_CONTEXT_ZERO_CONFIG, I/
DMMU_CONTEXT_NONZERO_CONFIG) provide the values for PS1 and PS0 for the
TSB Registers.

FIGURE 13-6 illustrates the TSB Config register; the fields are described below.

13.9.5 I-/D-TSB Tag Target Registers
The UltraSPARC T1 I- and D-TSB Tag Target registers are bit-shifted versions of the
data stored in the I- and D-Tag Access registers. See APpendix E of the UltraSPARC
Architecture 2005 for a description of these registers.

3:0 tsb_size Provides the size of the TSB according to the following:
• Number of entries in the TSB (or each TSB if split) = 512 × 2TSB_Size.
• Number of entries in the TSB ranges from 512 entries at tsb_size = 0 (8-Kbyte common/

separate TSB, 16-Kbyte split TSB), to 16-Mbyte entries at tsb_size = 15 (256 Mbyte
common/separate TSB, 512 MB; split TSB).

Note: When the page size for a tsb_base is set to 5 (256-Mbyte pages), setting tsb_size to a
value greater than 11 is larger than the 48-bit VA range and is a programming error.
Note: Any update to the TSB register immediately affects the data that is returned from
later reads of the TSB Pointer registers.

Bit Field Description

10:8 ps1 Page size for matching *TSB_BASE_PS1.

2:0 ps0 Page size for matching TSB_BASE_PS0.

Programming
Note

If a write is performed that attempts to write an unsupported
page size into ps1 (and/or ps0), the value of 516 (256 Mbyte
page size) will instead be loaded into ps1 (and/or ps0), and no
error trap will be generated by the hardware.

TABLE 13-14 Bit Description of TSB Register Fields (Continued)

Bit Field Description

63 3 2 0

— ps0

11 10

ps1 —

78
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13.9.6 I-/D-MMU Synchronous Fault Status Registers
(SFSR)
The UltraSPARC T1 I- and D-MMU maintain their own SFSR register, as illustrated
in FIGURE 13-3 and defined in TABLE 13-19.

FIGURE 13-3 I- and D-MMU Synchronous Fault Status Register Format

TABLE 13-15 SFSR Bit Description

Bit Field Description

63:24 — Reserved

23:16 asi ASI. Records the 8-bit ASI associated with the faulting instruction. This field is valid for both
D-MMU and I-MMU SFSRs and for all traps in which the fv bit is set. For the D-SFSR, a
trapping nonalternate load or store sets the default ASI, namely, ASI_PRIMARY or
ASI_PRIMARY_LITTLE when SFSR.tl = 0 or ASI_NUCLEUS or ASI_NUCLEUS_LITTLE
when SFSR.tl > 0. JMPL and RETURN mem_address_not_aligned traps ignore SFSR.tl and
always set ASI_PRIMARY (for PSTATE.cle = 0) or ASI_PRIMARY_LITTLE (for
PSTATE.cle = 1).

15:14 — Reserved

13:7 ft Fault type. Indicates the exact condition that caused the recorded fault, according to
TABLE 13-20, following this table. In the D-MMU the Fault Type field is valid only for
data_access_exception traps; there is no ambiguity in all other MMU trap cases. Note that
the hardware does not priority-encode the bits set in the fault type register; that is, multiple
bits may be set. The ft field in the D-MMU SFSR reads zero for traps other than
data_access_exception. The ft field in the I-MMU SFSR always reads zero for
fast_instruction_access_MMU_miss, and either 0116, 2016, or 4016 for
instruction_access_exception, as all other fault types do not apply.

6 e Side effect. Reports the side-effect bit (e) associated with the faulting data access; set by
translating ASI accesses (see Translation on page 196) mapped by the TLB with the e bit set,
translating ASI accesses with PA{39} set when translation is bypassed (when translation is
bypassed the default attributes of TABLE 13-3 on page 187 apply) and accesses to the
ASI_REAL_IO{_LITTLE} ASIs (1516 and 1D16). Other cases that update the SFSR (that is,
internal ASI accesses) set the e bit to 0. It always reads as 0 in the I-MMU.

63 2324 15 1316 14 7 5 3 16 4 2 0

— asi — ft e w ow fvct —
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The SFSR and the Tag Access registers both maintain state concerning a previous
translation causing an exception. The update policy for the SFSR and the Tag Access
registers is shown in TABLE 13-4 on page 190.

5:4 ct Context register selection, as described in the following table. the context is set to 112 when
the access does not have a translating ASI (see Section 13.7).

Implementation Note: JMPL and RETURN mem_address_not_aligned traps set ct to either
Primary or Nucleus, but in a nondeterministic way (that is, the context value set in the SFSR
does not reflect the context value used by the JMPL/RETURN).

3 — Reserved

2 w Write. Set if the faulting access indicated a data write operation (a store or atomic load/store
instruction); always reads as 0 in the I-MMU SFSR.

1 ow Overwrite. Set to one when the MMU detects a fault, if the Fault Valid bit has not been
cleared from a previous fault; otherwise, it is set to zero.

0 fv Fault Valid. Set when the MMU detects a fault; cleared only on an explicit ASI write of 0 to
the SFSR register; when fv is not set, the values of the remaining fields in the SFSR and
SFAR are undefined

TABLE 13-16 MMU Synchronous Fault Status Register ft (Fault Type) Field

ft{6:0} Fault Type

0116 Privilege violation.

0216 Speculative load from page marked with e bit. This bit is zero for internal ASI
accesses.

0416 Atomic to I/O address (PA{39} = 1).

0816 Illegal LDA/STA ASI value, VA, RW, or size. Excludes cases where 0216 and 0416 are
set.

1016 Access other than nonfaulting load to page marked nfo. This bit is zero for internal
ASI accesses.

2016 VA out of range (D-MMU and I-MMU branch, CALL, sequential).

4016 VA out of range (I-MMU JMPL or RETURN).

Note A fast_{instruction,data}_access_MMU_miss or
real_{instruction,data}_translation_miss trap does not cause the
SFSR or SFAR to be written. In this case the D-SFAR
information can be obtained from the D Tag Access register.

TABLE 13-15 SFSR Bit Description (Continued)

Bit Field Description

Context ID I-MMU Context D-MMU Context

00 Primary Primary

01 Reserved Secondary

10 Nucleus Nucleus

11 Reserved Reserved
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13.9.7 I-/D-MMU Synchronous Fault Address Registers
(SFAR)

13.9.7.1 I-MMU Fault Address

There is no I-MMU Synchronous Fault Address register. Instead, software must read
the TPC register appropriately as described here.

For fast_instruction_access_MMU_miss traps, TPC contains the virtual address that was
not found in the I-MMU TLB.

For instruction_access_exception traps, “privilege violation” fault type, TPC contains
the virtual address of the instruction in the privileged page that caused the
exception.

For instruction_access_exception traps, “VA out of range” fault types, note that the
TPC in these cases contains only a 48-bit virtual address, which is sign-extended
based on bit va{47} for read. Therefore, use the following methods to compute the
virtual address that was out of range:

■ For the branch, CALL, and sequential exception case, the TPC contains the least-
significant 48 bits of the virtual address that is out of range. Because the hardware
sign-extends a read of the TPC register based on VA{47}, the contents of the TPC
register xored with FFFF 0000 0000 000016 will give the full 64-bit out-of-range
virtual address.

■ For the JMPL or RETURN exception case, the TPC contains the virtual address of
the JMPL or RETURN instruction itself. Software must disassemble the
instruction to compute the out-of-range virtual address of the target.

13.9.7.2 D-MMU Synchronous Fault Address

The Data Synchronous Fault Address register contains the virtual memory address
associated with the fault recorded in the D-MMU Synchronous Fault Status register.
See Appendix E of the UltraSPARC Architecture 2005 for a full description of this
register.

Implementation
Note

For all UltraSPARC T1 implementations, the I-SFSR is set on
instruction_access_error in addition to
instruction_access_exception traps.
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13.9.8 I-/D-TLB Tag Access Registers
In each UltraSPARC T1 MMU the Tag Access register is used as a temporary buffer
for writing the TLB Entry tag information. The Tag Access register may be updated
during either of the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection. The MMU
hardware automatically writes the missing VA and the appropriate context into
the Tag Access register to facilitate formation of the TSB Tag Target register. See
TABLE 13-4 on page 190 for the SFSR and Tag Access register update policy.

2. An ASI write to the Tag Access register. Before an ASI store to the TLB Data
Access registers, the operating system must set the Tag Access register to the
values desired in the TLB Entry. Note that an ASI store to the TLB Data In register
for automatic replacement also uses the Tag Access register, but typically the
value written into the Tag Access register by the MMU hardware is appropriate.

The UltraSPARC T1 TLB Tag Access Registers are defined in FIGURE 13-4; the fields
are defined below the table.

FIGURE 13-4 I/D MMU TLB Tag Access Registers

Caution – Stores to the Tag Access registers are not checked for out-of-range
violations. Reads from these registers are sign-extended based on VA{47}.

Note Any update to the Tag Access registers immediately affects the
data that is returned from subsequent reads of the Tag Target
and TSB Pointer registers.

Note When PSTATE.am = 1, the most significant 32 bits of the VA
captured in this register will be zero.

Bit Field Descriptions

63:13 va The 51-bit virtual page number (VA{63:13}. Note that writes to
this field are not checked for out-of-range violation, but sign-
extended based on va{47}.

12:0 context_id The 13-bit context identifier. This field reads as zero when
there is no associated context with the access.

63 013 12

va context_id
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13.9.9 Partition Identifier
A partition identifier register is provided to allow multiple operating systems to
share the same TLB. See the UltraSPARC Architecture 2005 for details.

13.9.10 I-/D-TSB PS0/PS1 Pointer and Direct Pointer
Registers
These UltraSPARC T1 registers are provided to help the software determine the
location of the missing or trapping TTE in the software-maintained TSB. The TSB
PS0 and PS1 Pointer registers provide the possible locations of the PS0 and PS1 TTE,
respectively, where PS0 and PS1 are selected from the appropriate configuration
register based on zero/non-zero context (zero context uses I/
DMMU_CONTEXT_ZERO_CONFIG; non-zero context uses I/
DMMU_CONTEXT_NONZERO_CONFIG).

The Direct Pointer register is mapped by hardware to either the PS0 or PS1 Pointer
register in the case of a fast_data_access_protection exception according to the known
size of the trapping TTE, based on the PS1 value of the appropriate configuration
register based on nucleus/non-nucleus context (nucleus context uses I/
DMMU_CONTEXT_ZERO_CONFIG; non-nucleus context uses I/
DMMU_CONTEXT_NONZERO_CONFIG). In the case of a PS1 page-sized miss, the
Direct Pointer register returns the pointer as if the miss were from the PS1 page size;
otherwise, it returns the pointer as if the miss were from the PS0 page size.

The TSB Pointer registers are implemented as a re-order of the current data stored in
the Tag Access register and the TSB register. If the Tag Access register or TSB register
is updated through a direct software write (via an STXA instruction), then the
Pointer registers values will be updated as well.

The bit that controls selection of PS0 or PS1 address formation for the Direct Pointer
register is a state bit in the D-MMU that is updated during a
fast_data_access_protection exception. It records whether the page that hit in the TLB
was an PS1 page or a non-PS1 page, in which case PS0 is assumed.
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The I-/D-TSB PS0/PS1 Pointer registers are defined in FIGURE 13-5, where va is the
full virtual address of the TTE in the TSB ({63:0}, as determined by the MMU
hardware. Described in Hardware Support for TSB Access on page 187. Note that this
field is sign-extended based on VA{47}.

FIGURE 13-5 I-/D-MMU TSB PS0/PS1 Pointer and D-MMU Direct Pointer Register

13.9.11 I-/D-TLB Data-In/Data-Access/Tag-Read
Registers
See the UltraSPARC Architecture 2005 for general information regarding the TLB Tag
Access, Data In, Data Access, and Tag Read registers.

The Data In and Data Access registers are the means of reading and writing the TLB
for all operations. The TLB Data In register is used for TLB-miss and TSB-miss
handler automatic replacement writes; the TLB Data Access register is used for
operating system and diagnostic directed writes (writes to a specific TLB entry).
Both registers can be written in either sun4u or sun4v TTE format, under control of
bit 10 of the VA. Reads of the Data Access register are always done in sun4u format.
Refer to the description of the TTE data in Translation Table Entry (TTE) on page 182
for a complete description of the sun4u and TTE formats. The real bit of the TLB is
under the control of bit 9 of the VA. If this bit is 1, the real bit of the TLB entry is set
to 1; otherwise, the real bit of the TLB entry is set to 0.

The hardware supports an autodemap function to handle the case where two strands
sharing a TLB try to enter the same translation into the TLB (for example, due to
near-simultaneous TLB misses on the same page). A TLB replacement that attempts

Note When UltraSPARC T1 sets the direct pointer state bit, it does not
select the PS1 value to compare against the trapping TTE size
based on whether the context value of the access is zero or
nonzero. Instead, it selects the PS1 value to compare against the
trapping TTE size based on whether the access is from a nucleus
or non-nucleus ASI. If the access is from a nucleus ASI, the PS1
value from ASI_DMMU_CONTEXT_ZERO_CONFIG_REG will be
used. If the access is from a primary or secondary context ASI,
the PS1 value from
ASI_DMMU_CONTEXT_NONZERO_CONFIG_REG will be used,
even if the primary or secondary context contains a value of
zero. If it is possible that software has set the primary or
secondary context to a value of zero, the direct pointer register
should not be used.

63 0

va
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to add an already existing translation will cause the existing translation to be
removed from the TLB. Note that this autodemapping of existing translations does
not require that the pages be the same size. For example, an insertion of a 8-Kbyte
page that sits inside the virtual address range of a 64-Kbyte page will cause the 64-
Kbyte page to be autodemapped. Likewise, an insertion of a 4-Mbyte page that
overlaps the virtual address of one or more 64-Kbyte pages will cause the
overlapping 64-Kbyte pages to be autodemapped. Note that the PIDs and real bits
on the pages must match for autodemap to take place. If the real bit is 0, the context
IDs must match as well.

The format of the TLB Data In register virtual address is shown in FIGURE 13-6.

FIGURE 13-6 MMU TLB Data In Virtual Address Format

The format of the TLB Data Access register virtual address is shown in FIGURE 13-7.

FIGURE 13-7 MMU TLB Data Access Virtual Address Format

Notes (1) Autodemap will demap locked pages. It is up to software to
make sure that a locked TLB entry does not get autodemapped
(or only gets autodemapped by an identical locked TLB entry).

(2) If a TLB replacement is attempted using a reserved page size
value, a data_access_exception trap will be taken.

(3) If a TLB replacement is attempted with the valid bit (v) equal
to 0, the MMU will treat that the same as if the valid bit was 1
for purposes of allocating and overwriting a TLB entry and
autodemapping matching pages, and the entry will be written
into the TLB with the v bit set to 0.

(4) If a TLB Data-In replacement is attempted with all TLB
entries locked and valid, the last TLB entry (entry 63) is
replaced.

Bit Field Description

10 sun4v The TTE being written is in sun4v format if 1, sun4u format if 0.

9 real Written to the real bit of the TLB entry

63 0

000

9 8 3 2

—— realsun4v

1011

63 0

000

9 8 3 2

TLB_entry— realsun4v

1011
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The write data format for TLB Data In and TLB Data Access Registers is shown in
Appendix E of the UltraSPARC Architecture 2005 specification.

The format of the Tag Read register virtual address is shown in FIGURE 13-8, where
TLB Entry is the number to be accessed, in the range 0..63.

FIGURE 13-8 MMU Tag Read Virtual Address Format

The format for the Tag Read register is shown in FIGURE 13-9; the bits are described in
TABLE 13-21.

FIGURE 13-9 I-/D-MMU TLB Tag Read Registers

Bit Field Description

10 sun4v The TTE being written is in sun4v format if 1, sun4u format if 0.

9 real Written to the real bit of the TLB entry

8:3 tlb_entry The TLB Entry number to be accessed, in the range 0..63.

Programming
Note

The sun4u write data format, also supported by UltraSPARC
T1UltraSPARC T1, is shown in TABLE 13-1 on page 183 and
TABLE 13-2 on page 184.. Reads of the TLB Data Access Register
always return data in the sun4u format.

TABLE 13-17 Tag Read Register Bit Description

BIt Field Description

63:61 pid The 3-bit partition identifier.

60 real If set, identifies an RA-to-PA translation instead of a VA-to-PA.

59 parity Parity for the tag entry. Parity is generated across pid, real, mux,
va{47:13}, context, and a copy of the l (locked) bit from the data entry.

58:56 mux Multiplexor encodings of size: 0002 for 256-Mbyte page, 100 for 4-
Mbyte page, 110 for 64-Kbyte page, and 111 for 8-Kbyte page.

56:13 va The least significant 43 bits of the 51-bit virtual page number
(va{63:13}). Page offset bits for larger page sizes are stored in the TLB
and returned for a Tag Read register read, but ignored during normal
translation; that is, va{15:13}, va{21:13}, and va{27:13} for 64-Kbyte, 4-
Mbyte and 256-Mbyte pages, respectively.
Note: va{55:48} are sign-extended based on va{47}.

12:0 context_id The 13-bit context identifier

63 0

000

9 8 3 2

TLB Entry—

context_id

63 013 12

pid real

61 5960

parity mux

58 56

va

55
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An ASI store to the TLB Data Access register initiates an internal atomic write to the
specified TLB Entry. The TLB entry data is obtained from the store data, and the TLB
entry tag is obtained from the current contents of the TLB Tag Access register.

An ASI store to the TLB Data In register initiates an automatic atomic replacement of
the TLB Entry pointed to by the current contents of the TLB Replacement register
“Replace” field. The TLB data and tag are formed as in the case of an ASI store to the
TLB Data Access register described above.

An ASI load from the TLB Data Access register initiates an internal read of the data
portion of the specified TLB entry.

An ASI load from the TLB Tag Read register initiates an internal read of the tag
portion of the specified TLB entry.

ASI loads from the TLB Data In register are not supported and generate a
data_access_exception trap.

13.10 I/D-MMU Demap
The UltraSPARC Architecture 2005 MMU chapter provides a general description of
the Demap operation. This section provides details on the Demap implementation in
UltraSPARC T1.

UltraSPARC T1 provides three types of Demap operation: Demap Page, Demap
Context, and Demap All. All demap operations only demap pages whose PID
matches the PID specified in the Partition Identifier register.

Demap is initiated by a STXA instruction with ASI = 5716 for I-MMU demap or 5F16
for D-MMU demap. It removes TLB entries from an on-chip TLB. FIGURE 13-10 shows
the Demap format; TABLE 13-22 defines the fields.

Programming
Note

Stores to the Data In register are not guaranteed to replace the
previous TLB entry causing a fault.

Compatibility
Note

UltraSPARC T1 has an autodemap feature which will demap all
matching entries before placing an entry in the TLB. This allows
software to change an entry’s attribute bits by simply storing the
new entry into the TLB (although the new entry will not
necessarily be placed in the same TLB entry as the old entry). In
prior UltraSPARC systems, software needed to explicitly demap
the old entry before writing the new entry; otherwise, a multiple
match error condition could result.
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FIGURE 13-10 MMU Demap Operation Format

TABLE 13-18 MMU Demap Operation Bits

Bit Field Description

63:13 page_no The virtual page number (VA{63:12}) of the TTE to be removed from
the TLB. This field is not used by the MMU for the Demap Context
or Demap All operations.
Note: The virtual address for demap is not checked for out-of-range
violations; instead, VA{63:48} is ignored.

9 r Valid for Demap Page only. Selects between demapping a real
translation (r = 1) or virtual translation (r = 0).

7:6 type The type of demap operation, as described below.

Use of type = 112 in a Demap operation will cause undefined
behavior.

5:4 context Context register selection, as described below. Use of context = 112
causes the demap to be ignored for Demap Page and Demap
Context, but is a valid value for a Demap All operation.

For an IMMU Demap Context operation, context = 012
(referencing the Secondary Context 0 register) is not
supported; using context = 012 in that situation causes the
demap operation to be ignored.
Address bits 12:10 and 8 are ignored by hardware.

0000context

012
Address

Data

3463 13 7 56

type

063

—

8910

—— rpage_no

type Field Demap Operation

002 Demap Page

012 Demap Context

102 Demap All

112 Reserved

context Context Used in Demap

002 Primary

012 Secondary

102 Nucleus

112 Reserved
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A demap operation does not invalidate the TSB in memory. It is the responsibility of
the software to modify the appropriate TTEs in the TSB before initiating any demap
operation.

The demap operation only affects TLB contents; it does not modify any other virtual
processor registers.

13.10.1 I-/D-Demap Page (Type = 0)
Demap Page removes the TTE (from the specified TLB) matching the specified
virtual page number, “real” bit (r), partition identifier register, and context register.

Virtual page offset bits 15:13, 21:13, and 27:13, for 64-Kbyte, 4-Mbyte, and 256-Mbyte
page TLB entries, respectively, are stored in the TLB, but do not participate in the
match for that entry. This is the same condition as for a translation match.

13.10.2 I-/D-Demap Context (Type = 1)
Demap Context removes all TTEs having the specified context, r = 0, a real bit of 0,
and matching the partition identifier register from the specified TLB.

13.10.3 I-/D-Demap All (Type = 2)
Demap Context removes all TTEs with their locked bit clear and matching the
partition identifier register from the specified TLB.

If a real page is being demapped, the context identifier is ignored when determining
a match.

13.11 I-/D-TLB Invalidate All
I-/DTLB Invalidate All are write-only registers that invalidate the entire I or D TLB
(regardless of any TLB state like lock bits). The data written to these registers is
ignored. Reads of these registers return a data_access_exception trap.
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13.12 TLB Hardware

13.12.1 TLB Operations
The TLB supports exactly one of the following operations per clock cycle:

■ Normal translation. The TLB receives a virtual address and a context identifier as
input and produces a physical address and page attributes as output.

■ Bypass. The TLB receives a virtual address as input and produces a physical
address equal to the truncated virtual address page attributes as output.

■ Demap operation. The TLB receives a virtual address and a context identifier as
input and sets the Valid bit to zero for any entry matching the demap page or
demap context criteria. This operation produces no output.

■ Read operation. The TLB reads either the CAM or RAM portion of the specified
entry. (Since the TLB entry is greater than 64 bits, the CAM and RAM portions
must be returned in separate reads. See I-/D-TLB Data-In/Data-Access/Tag-Read
Registers on page 215.)

■ Write operation. The TLB simultaneously writes the CAM and RAM portion of
the specified entry, or the entry given by the replacement policy described in TLB
Replacement Policy, below.

■ No operation. The TLB performs no operation.

13.12.2 TLB Replacement Policy
UltraSPARC T1 uses a 1-bit LRU scheme. Each TLB entry has an associated valid,
used, and lock bit. Used bits are set on each TLB translation and also on the initial
TLB write of an entry. When setting the used bit for a translation or TLB write would
result in all used bits being set, the used bits for all TLB entries that are unlocked are
cleared instead.

On an automatic write to the TLB initiated through an ASI store to the TLB Data In
register, the TLB replaces the first invalid or unused entry. Arbitrary entries may
have their lock bit set; however, if all entries have their lock bit set, a Data In
replacement will replace the final TLB entry (63).

Implementation
Note

The used bits are updated on all TLB translations, including
translations for PREFETCH instructions.
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CHAPTER 14

Implementation Dependencies

14.1 SPARC V9 General Information

14.1.1 Level-2 Compliance (Impl. Dep. #1)
UltraSPARC T1 is designed to meet Level-2 SPARC V9 compliance. It does the
following:

■ Correctly interprets all nonprivileged operations, and

■ Correctly interprets all privileged elements of the architecture.

14.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
SPARC V9 unimplemented instructions, reserved instructions, ILLTRAP opcodes, and
instructions with invalid values in reserved fields (other than reserved FPops and the
reserved field in the Tcc instruction) encountered during execution cause an
illegal_instruction trap. Reserved FPops cause an fp_exception_other (with
FSR.ftt = unimplemented_FPop) trap. Unimplemented and reserved ASI values cause
a data_access_exception trap.

Note System emulation routines (for example, for quad-precision
floating-point operations) shipped with UltraSPARC T1 also
must be Level-2 compliant.
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14.1.3 Trap Levels (Imp. Dep. #37, 38, 39, 40, 101, 114,
115)
UltraSPARC T1 supports privileged and six total trap levels; that is, MAXPTL = 2 and
MAXTL = 6. Normal execution is at TL = 0. Traps at MAXTL – 1 cause the CPU to enter
red_state. If a trap is generated while the CPU is operating at TL = MAXTL, the
CPU will enter error_state and generate a watchdog reset (WDR). CWP updates
for window traps that cause entry to error_state are the same as when
error_state is not entered.

A strand normally executes at trap level 0 (execute_state, TL = 0). In SPARC V9,
a trap makes the CPU enter the next higher trap level, which is a fast and efficient
process because there is one set of trap state registers for each trap level. After
saving the most important machine states (PC, NPC, PSTATE) on the trap stack at
this level, the trap (or error) condition is processed.

For a complete description of traps and RED_state handling, see Machine State after
Reset and in RED_State on page 104.

14.1.4 Trap Handling (Imp. Dep. #16, 32, 33, 35, 36, 44)
UltraSPARC T1 supports precise trap handling for all operations except for
disrupting traps from hardware failures and interrupts. UltraSPARC T1 implements
precise traps, interrupts, and exceptions for all instructions, including long latency
floating-point operations. Six traps levels are supported (MAXTL = 6), which allows
graceful recovery from faults. The first three trap levels (0 through 2) are provided
for application and operating system use. The remaining three levels (3 through 5)
are provided for hyperprivileged and RED_state use.

UltraSPARC T1 can efficiently execute kernel code even in the event of multiple
nested traps, promoting processor efficiency while dramatically reducing the system
overhead needed for trap handling. Four sets of global registers are provided
(MAXPGL = 2 and MAXGL = 3), for use at TL = 0, TL = 1 TL = 2, and TL = 3-5.

This further increases OS performance, providing fast trap execution by avoiding the
need to save and restore registers while processing exceptions.

All traps supported in UltraSPARC T1 are listed in the “Traps” chapter of this
document.

Note The RED_state trap vector address (RSTVADDR) is 256 Mbytes
below the top of the virtual address space; that is, at virtual
address FFFF FFFF F000 000016, which is passed through to
physical address FF F000 000016 in RED_state.
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14.1.5 SIR Support (Impl. Dep. #116)
UltraSPARC T1 initiates a software-initiated reset (SIR) by executing a SIR
instruction while in privileged or hyperprivileged mode. When in nonprivileged
mode, SIR behaves as a NOP. See also Watchdog Reset (WDR) and error_state on
page 99.

14.1.6 Population Count Instruction (POPC)
The population count instruction, POPC, generates an illegal_instruction exception
and is emulated in software rather that being executed in hardware.

14.1.7 Secure Software
To establish an enhanced security environment, it may be necessary to initialize
certain strand states between contexts. Examples of such states are the contents of
integer and floating-point register files, condition codes, and state registers. See also
Clean Window Handling (Impl. Dep. #102).

14.1.8 Address Masking (Impl. Dep. #125)
When PSTATE.am = 1, the CALL, JMPL, and RDPC instructions and all traps
transmit zero in the high-order 32-bits of the PC to their specified destination
registers. Traps also transmit zero in the high-order 32-bits of the NPC to the TNPC.
Branch target addresses sent to the NPC and the updating of NPC with NPC+4 for a
non-control-transferring instruction do not zero the high-order 32-bits. Restoration
of PC and NPC from TPC and TNPC on a DONE or RETRY instruction do not mask
the high-order 32-bits.

Note When PSTATE.am = 1, address masking applies to all VAs, even
those that immediately do a VA-to-RA bypass or a VA-to-PA
bypass. This implies that with PSTATE.am = 1, RA{63:32} will
be zeros after a VA-to-RA bypass, and PA{39:32> will be zeros
after a VA-to-PA bypass.
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14.2 SPARC V9 Integer Operations

14.2.1 Integer Register File and Window Control
Registers (Impl. Dep. #2)
UltraSPARC T1 implements an eight-window 64-bit integer register file; that is,
N_REG_WINDOWS = 8. UltraSPARC T1 truncates values stored in the CWP,
CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits.
This includes implicit updates to these registers by SAVE(D) and RESTORE(D)
instructions. The most-significant two bits of these registers read as zero.

14.2.2 SAVE Instruction
Upon a SAVE instruction, UltraSPARC T1 initializes the values of the local registers
in the new window to the same values as the local registers in the old window and
initializes the values of the out registers in the new window to the same values as the
in registers in the old window (that is, the new window matches the old window
with the ins and outs swapped). Since this implies that they contain values from the
executing process, V9 compliance is maintained. In this sense, the behavior of the
SAVE instruction on UltraSPARC T1 differs from most other SPARC V9
implementations.1

14.2.3 Clean Window Handling (Impl. Dep. #102)
SPARC V9 introduced the concept of “clean window” to enhance security and
integrity during program execution. A clean window is defined to be a register
window that contains either all zeroes or addresses and data that belong to the
current context. The CLEANWIN register records the number of available clean
windows.

When a SAVE instruction requests a window and there are no more clean windows,
a clean_window trap is generated. Note that the behavior on a clean_window trap for
UltraSPARC T1 is the same as for a SAVE instruction, namely, the local registers for
the new window remain the same as the local registers from the old window, while
the out registers in the new window contain the contents of the in registers from the
old window. Thus, while UltraSPARC T1 generates a clean_window trap, the new
window is automatically cleaned by hardware. System software only needs to
increment CLEANWIN before returning to the requesting context.
1. Most SPARC V9 processors do not initialize the local and out registers on a save instruction; instead, the values

in the local and out registers are those left there from the last time the window was used.
224 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



14.2.4 Integer Multiply and Divide
Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},
UDIV{cc}, UDIVX) are executed directly in hardware.

14.2.5 MULScc
SPARC V9 does not define the value of xcc and R[rd]{63:32} for MULScc.
UltraSPARC T1 sets xcc and rd based on the results of adding either (32 copies of
R[rs1]{63}:: CCR.icc.n xor CCR.icc.v, R[rs1]{31:1}) or 0 (depending on Y{0}) to either
R[rs2]{63:0} or the immediate operand.

14.2.6 Hyperprivileged Version Register (Impl. Dep. #2,
13, 101, 104)
Consult the product data sheet for the contents of the Version register for a specific
UltraSPARC T1 implementation. The format of the Hyperprivileged Version register
is described in Hyperprivileged Version Register (HVER) on page 22.

14.3 SPARC V9 Floating-Point Operations

14.3.1 Subnormal Operands and Results: Nonstandard
Operation
UltraSPARC T1 handles all cases of subnormal operands or results directly in
hardware.

Because there is no trapping on subnormal operands, UltraSPARC T1 does not
support the nonstandard result option of the SPARC V9 architecture, and the FSR.ns
bit ignores any value written to it and always returns zero on a read.
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14.3.2 Overflow, Underflow, and Inexact Traps (Impl.
Dep. #3, 55)
UltraSPARC T1 implements precise floating-point exception handling. Underflow is
detected before rounding.

14.3.3 Quad-Precision Floating-Point Operations (Impl.
Dep. #3)
All quad-precision floating-point instructions, listed in TABLE 14-1, cause an
fp_exception_other (with FSR.ftt = 3, unimplemented_FPop) trap. These operations are
emulated in system software.

Note Major performance degradation may be observed while running
with the inexact exception enabled.

TABLE 14-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F{s,d}TOq Convert single-/double- to quad-precision floating-point

F{i,x}TOq Convert 32-/64-bit integer to quad-precision floating-point

FqTO{s,d} Convert quad- to single-/double-precision floating-point

FqTO{i,x} Convert quad-precision floating-point to 32-/64-bit integer

FCMP{E}q Quad-precision floating-point compares

FMOVq Quad-precision floating-point move

FMOVqcc Quad-precision floating-point move, if condition is satisfied

FMOVqr Quad-precision floating-point move if register match condition

FABSq Quad-precision floating-point absolute value

FADDq Quad-precision floating-point addition

FDIVq Quad-precision floating-point division

FdMULq Double- to quad-precision floating-point multiply

FMULq Quad-precision floating-point multiply

FNEGq Quad-precision floating-point negation

FSQRTq Quad-precision floating-point square root

FSUBq Quad-precision floating-point subtraction
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14.3.4 Floating-Point Square Root
The three floating-point square root instructions: FSQRTS, FSQRTD, FSQRTQ are
unimplemented. Execution of any of these instructions results in an
fp_exception_other exception, with FSR.ftt= unimplemented_FPop.

14.3.5 Floating-Point Upper and Lower Dirty Bits in
FPRS Register
The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point
Registers State (FPRS) register are set when an instruction that modifies the
corresponding upper and lower half of the floating-point register file is issued.
Floating-point register file modifying instructions include floating-point operate,
graphics, floating-point loads, and block load instructions.

The FPRS.du and FPRS.dl may be set pessimistically, even though the instruction
that modified the floating-point register file is nullified due to a trap. This includes
the case where the floating-point instruction itself takes a fp_disabled trap.

14.3.6 Floating-Point State Register (FSR) (Impl. Dep.
#13, 19, 22, 23, 24)
UltraSPARC T1 supports precise-traps and implements all three exception fields
(tem, cexc, and aexc) conforming to IEEE Standard 754-1985. The state of the FSR
after reset is documented in TABLE 11-11 on page 106. TABLE 14-2 defines the register
bits.

TABLE 14-2 Floating-Point Status Register Format

Bits Field RW Description

63:38 — R Reserved

37:36 fcc3 RW Floating-point condition code (set 3). One of four sets of 2-bit floating-point
condition codes, which are modified by the FCMP{E} (and LD{X}FSR)
instructions. The FBfcc, FMOVcc, and MOVcc instructions use one of these
condition code sets to determine conditional control transfers and conditional
register moves.

35:34 fcc2 RW Floating-point condition code (set 2). See fcc3.

33:32 fcc1 RW Floating-point condition code (set 1). See fcc3.
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31:30 rd RW IEEE Std. 754-1985 rounding direction. Rounding modes are shown
below.

29:28 — R Reserved

27:23 tem RW 5-bit trap enable mask for the IEEE-754 floating-point exceptions. If a floating-
point operate instruction produces one or more exceptions, the corresponding
cexc/aexc bits are set and an fp_exception_ieee_754 (with FSR.ftt = 1,
IEEE_754_exception) exception is generated.

22 ns R Nonstandard floating-point results. Always 0: UltraSPARC T1 produces IEEE-
754 compatible results.

21:20 — R Reserved

19:17 ver R FPU version number. Identifies a particular implementation of the UltraSPARC
T1 FPU architecture.

16:14 ftt R Floating-point trap type. The 3-bit floating point trap type field is set whenever
an floating-point instruction causes the fp_exception_ieee_754 or
fp_exception_other traps. Trap types are listed in TABLE 14-4, below.

13: qne R Floating-point deferred-trap queue (FQ) not empty. Not used, because
UltraSPARC T1 implements precise floating-point exceptions.

12 — R Reserved

11:10 fcc0 RW Floating-point condition code (set 0). See fcc3.
Note: fcc0 is the same as fcc in SPARC V8.

9:5 aexc RW 5-bit accrued exception field. Accumulates IEEE 754 exceptions while floating-
point exception traps are disabled (that is, FSR.tem = 0).

4:0 cexc RW 5-bit current exception field indicates the most recently generated IEEE 754
exceptions.

Note fcc0 is the same as the fcc in SPARC V8.

TABLE 14-3 Floating-Point Rounding Modes

rd Round Toward

0 Nearest (even if tie)

TABLE 14-2 Floating-Point Status Register Format (Continued)

Bits Field RW Description

rd Round Toward

0 Nearest (even if tie)

1 0

2 +∞
3 –∞
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14.4 SPARC V9 Memory-Related Operations

14.4.1 Load/Store Alternate Address Space (Impl. Dep.
#5, 29, 30)
Supported ASI accesses are listed in Alternate Address Spaces on page 69.

1 0

2 +∞

3 –∞

TABLE 14-4 Floating-Point Trap Type Values

ftt Floating-Point Trap Type Trap Signaled

0 None —

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop —

3 unimplemented_FPop fp_exception_other

4 sequence_error —

5 hardware_error —

6 invalid_fp_register —

7 reserved —

Notes (1) UltraSPARC T1 neither detects nor generates the
unfinished_FPop, sequence_error, hardware_error or
invalid_fp_register trap types directly in hardware.

(2) UltraSPARC T1 does not contain an FQ. An attempt to read
the FQ with a RDPR instruction causes an illegal_instruction trap.

TABLE 14-3 Floating-Point Rounding Modes

rd Round Toward
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14.4.2 Read/Write ASR (Impl. Dep. #6, 7, 8, 9, 47, 48)
Supported ASRs are discussed in Ancillary State Registers (ASRs) on page 12.

14.4.3 MMU Implementation (Impl. Dep. #41)
UltraSPARC T1 memory management is based on software-managed instruction and
data Translation Lookaside Buffers (TLBs) and in-memory Translation Storage
Buffers (TSBs) backed by a Software Translation Table. See Chapter 13, Memory
Management Unit for more details.

14.4.4 FLUSH and Self-Modifying Code (Impl. Dep.
#122)
FLUSH is needed to synchronize code and data spaces after code space is modified
during program execution. FLUSH is described in Supported Memory Models on page
58. On UltraSPARC T1, the FLUSH effective address is ignored, and as a result,
FLUSH can not cause a data_access_exception or a fast_data_access_MMU_miss trap.

14.4.5 PREFETCH{A} (Impl. Dep. #103, 117)
For UltraSPARC T1, PREFETCH{A} instructions follow TABLE 14-5 based on the fcn
value. All prefetches in UltraSPARC T1 are weak (on an MMU miss or when the
MMU is bypassed the prefetch is dropped). The only trap that a prefetch can
generate on UltraSPARC T1 is illegal_instruction (for fcn = 516–F16).

Note SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing strand. In other words, a store to instruction
space prior to the FLUSH instruction is visible immediately after
the completion of FLUSH. MEMBAR #StoreStore is required
to ensure proper ordering in multiprocessing system when the
memory model is not TSO. When a MEMBAR #StoreStore,
FLUSH sequence is performed, UltraSPARC T1 guarantees that
earlier code modifications will be visible across the whole
system.

TABLE 14-5 PREFETCH{A} Variants

fcn Prefetch Function Action

016 Weak prefetch for several reads Weak prefetch into Level 2 cache

116 Weak prefetch for one read

216 Weak prefetch for several writes

316 Weak prefetch for one write
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PREFETCHA is legal for all implemented ASIs in UltraSPARC T1 and will prefetch
into the Level 2 cache from memory using the context listed in TABLE 14-6.
Prefetching is done regardless of privilege level (for example, user mode can use ASI
1016 to prefetch into the L2 cache), as long as the virtual address presented has a
valid TLB entry.

14.4.6 Instruction Prefetch
UltraSPARC T1 does not implement an instruction prefetch. No prefetching is
performed from the effective address of the BPN instruction.

416 Prefetch Page No operation

516–F16 - Illegal_instruction trap.

1016 Invalidate read-once prefetch Weak prefetch into Level 2 cache

1116 Prefetch for read to nearest unified
cache

Weak prefetch into Level 2 cache

1216–1316 Strong prefetches Weak prefetch into Level 2 cache

1416 Strong prefetch for several reads Weak prefetch into Level 2 cache

1516 Strong prefetch for one read

1616 Strong prefetch for several writes

1716 Strong prefetch for one write

1816-1F16 — No operation

TABLE 14-6 PREFETCH{A} ASIs

Context ASIs (hexadecimal)

Primary 10, 16, 18, 1E, 22, 2A, 80, 82, 88, 8A, C0, C2, C4, C8, CA, CC, D0, D2,
D8, DA, E0, E2, EA, F0, F8

Secondary 11, 17, 19, 1F, 23, 2B, 81, 83, 89, 8B, C1, C3, C5, C9, CB, CD, D1, D3,
D9, DB, E1, E3, EB, F1, F9

Nucleus 04, 0C, 14, 15, 1C, 1D, 20, 21, 24, 25, 26, 27, 2C, 2E, 2F, 31, 32, 33, 35,
36, 37, 39, 3A, 3B, 3D, 3E, 3F, 40, 42, 43, 44, 45, 46, 47, 4B, 4C, 4D, 4F,
50, 51, 52, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 60, 66, 67, 72,
73, 74

Implementation
Note

Although it would have been desirable to treat PREFETCHA to
restricted ASIs by underprivileged code as NOPs, PREFETCH
only moves data between main memory and the L2 cache, so
UltraSPARC T1’s implementation causes no security issues.

TABLE 14-5 PREFETCH{A} Variants

fcn Prefetch Function Action
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14.4.7 Nonfaulting Load and MMU Disable (Impl. Dep.
#117)
When the data MMU is disabled, accesses are assumed to be noncacheable
(TTE.cp = 0) and with side effect (TTE.e = 1). Nonfaulting loads encountered when
the MMU is disabled cause a data_access_exception trap with SFSR.ft = 2 (speculative
load to page with side-effect attribute).

14.4.8 LDTW/STTW Handling (Impl. Dep. #107, 108)
LDTW and STTW instructions are directly executed in hardware.

14.4.9 Floating-Point mem_address_not_aligned (Impl.
Dep. #109, 110, 111, 112)
LDDF{A}/STDF{A} cause an LDDF/STDF mem_address_not_aligned trap if the
effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an
illegal_instruction trap.

14.4.10 Supported Memory Models (Impl. Dep. #113, 121)
UltraSPARC T1 supports only the TSO memory model, although certain specific
operations such as block loads and stores operate under the RMO memory model.
See Supported Memory Models on page 58.

14.4.11 I/O Operations (Impl. Dep. #118, 123)
I/O spaces and their accesses are specified in Physical Address Spaces on page 64.

Note LDTW/STTW were deprecated in SPARC V9. In UltraSPARC
T1, it is more efficient to use LDX/STX for accessing 64-bit data.
LDTW/STTW take longer to execute than two 32-/64-bit loads/
stores.
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14.4.12 Implicit ASI when TL > 0 (Impl. Dep. #124)
UltraSPARC T1 matches all UltraSPARC Architecture implementations, and makes
the implicit ASI for instruction fetching ASI_NUCLEUS when TL > 0, while the
implicit ASI for loads and stores when TL > 0 is ASI_NUCLEUS if PSTATE.cle = 0 or
ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

14.5 Non-SPARC V9 Extensions

14.5.1 Cache Subsystem
UltraSPARC T1 contains one or more levels of cache. The cache subsystem
architecture is described in Appendix F, Caches and Cache Coherency.

14.5.2 Memory Management Unit
UltraSPARC T1 implements a multilevel memory management scheme. The MMU
architecture is described in Chapter 13, Memory Management Unit.

14.5.3 Error Handling
UltraSPARC T1 implements a set of programmer-visible error and exception
registers. These registers and their usage are described in Chapter 12, Error Handling.

Compatibility
Note

With an implicit ASI for instruction fetching of ASI_NUCLEUS, if
software was to set the strand in a state where PSTATE.priv = 0
but TL > 0, an instruction fetch will generate an
instruction_access_exception, because user-level code is
accessing ASI_NUCLEUS. UltraSPARC I/II overrides this
instruction_access_exception and allows instruction fetching
when PSTATE.priv = 0 and TL > 0. UltraSPARC T1 is compatible
with UltraSPARC I/II and does the same override of
instruction_access_exception when PSTATE.priv = 0 and TL > 0.
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14.5.4 Block Memory Operations
UltraSPARC T1 supports 64-byte block memory operations utilizing a block of eight
double-precision floating point registers as a temporary buffer. See Block Load and
Store Instructions on page 27.

14.5.5 Partial Stores
UltraSPARC T1 does not support 8-/16-/32-bit partial stores to memory.

14.5.6 Short Floating-Point Loads and Stores
UltraSPARC T1 does not supports 8-/16-bit loads and stores to the floating-point
registers.

14.5.7 Interrupt Vector Handling
CPUs and I/O devices can interrupt a selected CPU by assembling and sending an
interrupt packet. This allows hardware interrupts and cross calls to have the same
hardware mechanism and to share a common software interface for processing.
Interrupt vectors are described in Chapter 7, Interrupt Handling.

14.5.8 Power-Down Support
UltraSPARC T1 supports the ability to power down virtual processors and I/O
devices to reduce power requirements during idle periods.

14.5.9 UltraSPARC T1 Instruction Set Extensions (Impl.
Dep. #106)
The UltraSPARC T1 CPU supports a subset of the VIS 1.0 and 2.0 instructions; see
UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware on page 22.

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution
cause an illegal_instruction trap.
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14.5.10 Performance Instrumentation
UltraSPARC T1 performance instrumentation is described in Performance Control
Register on page 81 and SPARC Performance Instrumentation Counter on page 83.
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CHAPTER 15

Configuration and Diagnostics
Support

15.1 ASI_LSU_CONTROL_REG Register
Each hardware strand has a hyperprivileged ASI_LSU_CONTROL_REG register at
ASI 4516, VA{63:0} = 0 which contains fields that control several memory-related
hardware functions. The format of the register is shown in TABLE 15-1.

TABLE 15-1 LSU Control Register – ASI_LSU_CONTROL_REG (ASI 4516, VA 016)

Bit Field
Initial
Value R/W Description

63:41 — 0 R Reserved

40:33 pm 0 R Reserved (Normally Physical Address Data Watchpoint Byte Mask.)

32:25 vm 0 R/W Virtual Address Data Watchpoint Byte Mask. The
ASI_DMMU_VA_WATCHPOINT register described on page 239 contains
the virtual address of a 64-bit word to be watched. The 8-bit vm
controls which byte(s) within the 64-bit word should be watched. If
all 8 bits are cleared, the virtual watchpoint is disabled. If the
watchpoint is enabled and a data reference overlaps any of the
watched bytes in the watchpoint mask, a VA_watchpoint trap is
generated. Examples are shown below.

24 pr 0 R Reserved (Physical Address Data Watchpoint Read Enable.)

23 pw 0 R Reserved (Physical Address Data Watchpoint Write Enable.)

Watchpoint Mask
Address of Bytes Watched

7654 3210

0016 Watchpoint disabled

0116 0000 0001

3216 0011 0010

FF16 1111 1111
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Nonprivileged access to this register causes a privileged_action trap. Supervisor
access causes a data_access_exception trap.

15.1.1 Watchpoint Support
UltraSPARC T1 includes support for generating an instruction_breakpoint trap for an
instruction or class of instructions, as described in ASI_INST_MASK_REG Register.
UltraSPARC T1 also supports VA watchpoints, but does not support PA
watchpoints. The VA watchpoint support is discussed in
ASI_DMMU_VA_WATCHPOINT Register. Also see the ASI_LSU_CONTROL_REG
definition in ASI_LSU_CONTROL_REG Register, which also includes controls for the
VA watchpoint support.

15.1.2 ASI_INST_MASK_REG Register
Each physical processor core has a hyperprivileged ASI_INST_MASK_REG register
at ASI 4216, VA{63:0} = 816. This register is used to disable execution of a particular
instruction or class of instructions for diagnostic or debug purposes, under the
control of HPSTATE.ibe. If HPSTATE.ibe = 1 and any of the enable fields are set to 1,

22 vr 0 R/W Virtual Address Data Watchpoint Read/Write Enable. If vr/vw is set,
a read/write that matches the address in
ASI_DMMU_VA_WATCHPOINT and the vm byte masks causes a
VA_watchpoint trap. Both vr and vw may be set to place a watchpoint
for either a read or write access. Atomic operations are considered
both a read and a write, and watchpoints for atomics are enabled if
either vr or vw or both are set.

21 vw 0 R/W

20:4 — 0 R Reserved

3 dm 0 R/W DMMU Enable. If cleared, the DMMU is either bypassed, always
does a Virtual-to-Real bypass (when HPSTATE.hpriv = 0), or behaves
normally (when HPSTATE.hpriv = 1). See Translation on page 196 for
more details.

2 im 0 R/W IMMU Enable. If cleared, the IMMU does a Virtual-to-Real bypass.
See Translation on page 196 for more details.

1 dc 0 R/W D-cache Enable. If cleared, the primary data cache does not allocate a
line on a miss. See Note.

0 ic 0 R/W I-cache Enable. If cleared, the primary instruction cache does not
allocate a line on a miss. See Note.

Note: The D-cache and I-cache are still kept coherent by UltraSPARC T1 when the dc
and ic bits are set to 0. This includes updating the D-cache when stores from a strand
hit in the D-cache.

TABLE 15-1 LSU Control Register – ASI_LSU_CONTROL_REG (ASI 4516, VA 016) (Continued)

Bit Field
Initial
Value R/W Description
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execution of any instruction which matches all the enabled bits in the inst field of
this register results in an instruction_breakpoint trap. Nonprivileged access to this
register causes a privileged_action trap. Supervisor access causes a
data_access_exception trap.

TABLE 15-2 defines the format of the ASI_INST_MASK_REG register.

15.1.3 ASI_DMMU_VA_WATCHPOINT Register
Each strand has a hyperprivileged ASI_DMMU_VA_WATCHPOINT register at ASI 5816
VA{63:0} = 3816 that is used for controlling the address (or address range if bytes are
masked) for a VA data watchpoint. The format of the register is shown in TABLE 15-3.

TABLE 15-2 SPARC Instruction Mask Register – ASI_INST_MASK_REG (ASI 4216, VA 816)

Bit Field Initial Value R/W Description

63:39 — 0 R Reserved

38 enb31_30 0 R/W Enable matching on inst 31:30

37 enb29_25 0 R/W Enable matching on inst 29:25

36 enb24_19 0 R/W Enable matching on inst 24:19

35 enb18_14 0 R/W Enable matching on inst 18:14

34 enb13 0 R/W Enable matching on inst 13

33 enb12_5 0 R/W Enable matching on inst 12:5

32 enb4_0 0 R/W Enable matching on inst 4:0

31:0 inst 0 R/W Instruction pattern to be trapped

Programming
Note

While there is a single instruction mask register per physical
processor core, each strand is under the control of its own
HPSTATE.ibe bit. All HPSTATE.ibe bits for the strands in a
physical processor core must be set to have the physical
processor core fully trap on the instruction pattern.

TABLE 15-3 DMMU Watchpoint – ASI_DMMU_VA_WATCHPOINT (ASI 5816, VA 3816)

Bit Field
Initial
Value R/W Description

63:48 — 0 R Reserved

47:3 va X R/W VA watchpoint address

2:0 — 0 R Bits 2:0 of the VA watchpoint address are all zeros; watchpointing is done for
8-byte memory locations.
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Nonprivileged access to this register causes a privileged_action trap. Supervisor
access causes a data_access_exception trap.

15.2 L1 I-Cache Diagnostic Access

15.2.1 ASI_ICACHE_INSTR Register
The strands share a hyperprivileged ASI_ICACHE_INSTR register at ASI: 6616,
VA{63:0} = 016–3FF816 that is used for diagnostic access to the L1 instruction cache
data array. Diagnostic access is done through 64-bit read/writes that access a 32 bit
data subblock along with the corresponding parity bit and switch bit (the switch bit
is a pre-decode of the instruction). Parity is calculated over the 32-bit instruction
plus the switch bit, and even parity is used (the parity bit is 1 if the number of ones

Notes (1) VA_watchpoint traps are generated for ASIs 0416, 0C16, 1016,
1116, 1616–1916, 1E16–1F16, 2216–2416, 2716, 2A16–2C16, 2F16, 8016–
8316, 8816–8B16, C016–C516, C816–CD16, D160–D316, D816–DB16,
E016–E316, EA16, EB16, F016, F116, F816, and F916.

(2) The VA_watchpoint trap is never generated while executing
in hyperprivileged mode. This implies that the AS_IF_USER
ASIs will not generate a VA_watchpoint trap when accessed in
hyperprivileged mode, even though a VA_watchpoint trap might
be generated when accessed in user mode.

(3) For quadword accesses, VA watchpoint checking is only
done on the lower 8 bytes of the access. This implies that a
VA_watchpoint trap will only be generated for a quadword load
if PA{3} is set to zero.

(4) No VA_watchpoint trap is generated by UltraSPARC T1 for
real-to-physical translations (RA → PA in TABLE 13-12 and
TABLE 13-14 in Translation on page 196).

(5)When PSTATE.am = 1, only bits 31:3 of the VA and the
watchpoint address (in ASI_DMMU_VA_WATCHPOINT) are
compared; bits 47:32 of both are ignored.

Implementation
Note

The VA watchpoint comparison is performed only on VA{47:3},
and does not mask ASI_DMMU_VA_WATCHPOINT{47:32}
when PSTATE.am = 1. This implies that out of range accesses
to the VA hole will generate a VA_watchpoint trap if bits {47:3}
and the byte mask match.
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in the data word is odd, making the total number of ones in the codeword even).
Note that I-cache coherence is lost if a diagnostic store is done to this ASI, so after
doing one or more stores software must ensure that the entire cache is flushed.

The format for addressing the entire L1 instruction cache is shown in TABLE 15-4.
Nonprivileged access to this ASI causes a privileged_action trap. Supervisor access
causes a data_access_exception trap. Access with loads or stores that do not request
64 bits causes a data_access_exception trap. Loads from this ASI do not receive an
error if the parity in the data is bad.

The data format is shown in TABLE 15-5. On a write, the value written to the switch
bit is ignored (the switch bit is computed by the hardware), and the parity bit is used
as a parity error enable. If the parity bit is set to 1, the computed parity for the
instruction is inverted.

Programming
Note

The reserved fields in the address are ignored and may contain
any value.

TABLE 15-4 Format for L1 Instruction Cache Data Diagnostic Addressing

Bit Field Description

63:14 — Reserved

17:16 way Selects way in cache set.

15:13 — Reserved

12:6 set Selects cache set. Corresponds to PA{11:5}.

5:3 word Selects 32-bit word in 32-byte cache line. Corresponds to PA{4:2}.

2:0 — All zero for 64-bit access.

Programming
Note

Since 32-bit data quantities are accessed using 64-bit access, the
physical address bits that would normally index the set and
word cannot be used directly to compute the
ASI_ICACHE_INSTR virtual address (that is, instead of using
PA{11:5} to index the set and PA{4:2} to index the word,
ASI_ICACHE_INSTR uses VA{12:6} to index the set and VA{5:3}
to index the word.

TABLE 15-5 L1 Instruction Cache Diagnostic Data – ASI_ICACHE_INSTR (ASI 6616, VA 016– 3FFF816)

Bit Field Initial Value R/W Description

63:34 — X R Reserved

33 switch X R Switch bit for instruction.

32 parity X RW Parity for instruction on read, parity error enable on write.

31:0 instr X RW Instruction.
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Note that anytime software does an ASI write to either the I-cache instruction array
or I-cache tag/valid bit array, UltraSPARC T1 loses coherency. Even if after all the
diagnostic accesses are done, software invalidate all the lines of the I-cache,
UltraSPARC T1 still cannot guarantee coherency, because the directory will be out of
sync with the actual cache. Even if the I-cache is turned off before a diagnostic
access, we may lose coherency when it is turned back on after the accesses are
complete.

The way to restore coherency after a diagnostic access is to (a) perform a power-on
reset, (b) insert a parity error to all the modified lines of the I-cache, forcing a refetch
and a resync with the directory, or (c) displacement-flush the entire L2 cache, which
through inclusion forces a flush of the I-cache and directory.

15.2.2 ASI_ICACHE_TAG Register
The strands share a hyperprivileged ASI_ICACHE_TAG register at ASI 6716,
VA{63:0} = 016– 3FC016 that is used for diagnostic access to the L1 instruction cache
tag array. Diagnostic access to the L1 instruction cache tag array is done through 64-
bit read/writes that access a 28-bit tag along with the corresponding parity bit and
valid bit. Note that even parity is used (the parity bit is 1 if the number of ones in
the data word is odd, making the total number of ones in the codeword even), and
parity is across the tag only (does not include the valid bit). Note that I-cache
coherence is lost if a diagnostic store is done to this ASI, so after doing one or more
stores software must ensure that the entire cache is flushed. The format for
addressing the entire L1 instruction cache is shown in TABLE 15-6.

Nonprivileged access to this ASI causes a privileged_action trap. Supervisor access
causes a data_access_exception trap. Access with loads or stores that do not request
64 bits causes a data_access_exception trap. Loads from this ASI do not receive an
error if the parity in the tag is bad.

Programming
Note

The reserved fields in the address are ignored and can contain
any value.

TABLE 15-6 Format for L1 Instruction Cache Tag Diagnostic Addressing

Bit Field Description

63:18 — Reserved

17:16 way Selects way in cache set.

15:13 — Reserved

12:6 set Selects cache set. Corresponds to PA{11:5}.

5:3 — Reserved
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The data format for Instruction diagnostic tag access is shown in TABLE 15-7. On a
write, the parity bit is used as a parity error enable. If the parity bit is set to 1, the
computed parity for the instruction is inverted.

Notes (1) The I-cache Tag includes physical address bit 39, even though
in normal system operation bit 39 will always be 0 for any
cacheable access.

(2) On a write, the value written to reserved bits 31:28 is
included in the tag parity calculation, so these bits should
always be zero for a ASI_ICACHE_TAG write.

TABLE 15-7 L1 Instruction Diagnostic Tag – ASI_ICACHE_TAG (ASI 6716, VA 016– 3FFF816)

Bit Field
Initial
Value R/W Description

63:35 — 0 R Reserved

34 valid X RW Valid bit for tag

33 — 0 R Reserved

32 parity X RW On read, parity bit for tag. On writes, a parity error enable. If 0, parity is
computed over bits 31:28 and tag. If 1, parity is computed over bits
31:28 and tag, and then inverted.

31:28 — 0 R Reserved. Read as 0. These bits are included in the parity calculation
and should be all 0 when writing.

27:0 tag X RW Cache line tag (PA{39:12})

Programming
Notes

(1) Anytime software does an ASI write to either the I-cache
instruction array or I-cache tag/valid bit array, UltraSPARC T1
loses coherency. Even if after all the diagnostic accesses are
done, software invalidate all the lines of the I-cache,
UltraSPARC T1 still cannot guarantee coherency, because the
directory will be out of sync with the actual cache. Even if the I-
cache is turned off before a diagnostic access, we may lose
coherency when it is turned back on after the accesses are
complete.

The way to restore coherency after a diagnostic access is to (a)
perform a power-on reset, (b) insert a parity error to all the
modified lines of the icache, forcing a refetch and a resync with
the directory, or (c) displacement-flush the entire L2 cache,
which (through inclusion) forces a flush of the I-cache and
directory.
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15.3 L1 D-Cache Diagnostic Access

15.3.1 ASI_LSU_DIAG_REG Register
Each physical processor core has a hyperprivileged ASI_LSU_DIAG_REG register at
ASI 4216, VA{63:0} = 1016. This register is used to disable associativity in the primary
instruction and/or data caches for diagnostic or debug purposes.

Nonprivileged access to this register causes a privileged_action trap. Supervisor
access causes a data_access_exception trap.

TABLE 15-8 defines the format of the ASI_LSU_DIAG_REG register.

15.3.2 ASI_DCACHE_DATA Register
The strands share a hyperprivileged ASI_DCACHE_DATA register at ASI 4616,
VA{63:0} = 016–7FFFF FFFF816 that is used for diagnostic access to the L1 data cache
data array. Diagnostic store access to the L1 data cache data array is done through
64-bit writes that update 64 bits of data and can optionally invert one to all of the
data parity bits. Note that even parity is used (the parity bit is 1 if the number of
ones in the data word is odd, making the total number of ones in the codeword
even).

Diagnostic load access to the L1 data cache is done through 64-bit reads that must hit
in the cache (that is, the virtual address is treated as physical and must match a tag
in the cache). If a diagnostic access is done using a load address that doesn’t match a
tag in the cache, the result of the operation is undefined. Note that D-cache
coherence is lost if a diagnostic store is done to this ASI, so after doing one or more
stores software must ensure that the entire cache is flushed. The format for
addressing the entire L1 Data cache is shown in TABLE 15-9.

TABLE 15-8 LSU Diagnostic Register – ASI_LSU_DIAG_REG (ASI 4216, VA 1016)

Bit Field
Initial
Value R/W Description

63:2 — 0 R Reserved

1 dassocdis 0 R/W If 1, changes the replacement algorithm in the data cache to use bits
12:11 of the physical address to select the way to place data into the
cache instead of the random replacement bits.

0 iassocdis 0 R/W If 1, disables all ways except one (way three) in the instruction cache.
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Nonprivileged access to this register causes a privileged_action trap. Supervisor
access causes a data_access_exception trap. Access with loads or stores that do not
request 64 bits causes a data_access_exception trap. Loads from this ASI do not
receive an error if the parity in the data is bad.

TABLE 15-10 shows the format for addressing L1 data cache for loads.

The data format is shown in TABLE 15-11.

TABLE 15-9 Format 1 L1 Data Cache Data Diagnostic Addressing for Stores

Bit Field Description

63:21 — Reserved

20:13 perrmask Mask for parity error (if 1, corresponding computed parity bit is
inverted).

12:11 way Selects way in cache set.

10:4 set Selects cache set.

3 word Selects 64-bit word in 16-byte cache line.

2:0 — All zero for 64-bit access.

TABLE 15-10 Format 2 L1 Data Cache Data Diagnostic Addressing for Loads

Bit Field Description

63:39 — Reserved

38:11 tag Must match a valid tag in the cache.

10:4 set Selects cache set.

3 word Selects 64-bit word in 16-byte cache line.

2:0 — All zero for 64-bit access.

TABLE 15-11 L1 Data Cache Diagnostic Data – ASI_DCACHE_DATA (ASI 4616,
VA 016–7FFFFFFFF816)

Bit Field Initial Value R/W Description

63:0 data 0 RW Cache data
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The following sequence can be used by software to test the D-cache Data Array.

15.3.3 ASI_DCACHE_TAG Register
The strands share a hyperprivileged ASI_DCACHE_TAG register at ASI 4716,
VA{63:0} = 016–3FF016 that is used for diagnostic access to the L1 data cache tag
array. Diagnostic access to the L1 data cache tag array is done through 64-bit
accesses that load/store the tag and valid bit and can optionally invert the tag parity
bits on stores. Note that even parity is used (the parity bit is 1 if the number of ones
in the data word is odd, making the total number of ones in the codeword even),
and parity is across the tag only (does not include the valid bit).

Note that D-cache coherence is lost if a diagnostic store is done to this ASI, so after
doing one or more stores, software must ensure that the entire cache is flushed. The
format for addressing the entire L1 Data cache is shown in TABLE 15-12.

// Init Dcache Tag Array with unique tags

foreach set (0 to 127)

foreach way (0 to 3)

store TAGfield = $way to ASI_DCACHE_TAG($way, $set)

// Test Dcache Data Array

Write Test Data

foreach set (0 to 127)

foreach way (0 to 3)

foreach word (0 to 1)

store unique testdata to ASI_DCACHE_DATA($way, $set, $word)

// Read Test Data

foreach set (0 to 127)

foreach way (0 to 3)

foreach word (0 to 1)

set tag = $way, this guarantees store address matches load address

load treg with ASI_DCACHE_DATA($tag, $set, $word)

compare treg with expected testdata
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Nonprivileged access to this register causes a privileged_action trap. Supervisor
access causes a data_access_exception trap. Access with loads or stores that do not
request 64 bits causes a data_access_exception trap. Loads from this ASI do not
receive an error if the parity in the tag is bad.

The data format is shown in TABLE 15-13.

15.4 L2 Cache Registers
This section discusses L2 registers.

RegisterBaseAddress L2CSR Registers – A0 0000 000016.

15.4.1 L2 Control Register
Each cache bank has a control register. To enable the L2 cache, the dis bit must be set
to 0 for all banks. The L2 cache can be disabled by setting the dis bit for all banks to
1. Operation when the dis bit of the L2 banks are not all the same is undefined. Note
that while the L2 cache can be disabled during normal operation, it must be
completely flushed of dirty cache lines before being disabled because once disabled
it will no longer participate in the coherence protocol (that is, when disabled, the L2
cache is treated as if all its contents are invalid). Likewise, reenabling the L2 cache
requires that the L2 cache be completely invalidated before clearing the dis bit since

TABLE 15-12 Format 3 L1 Data Cache Tag Diagnostic Addressing

Bit Field Description

63:13 — Reserved

13 perren Parity error enable. If ’1’ on a store, the computed parity for the tag is
inverted. This address bit is ignored on loads.

12:11 way Selects way in cache set.

10:4 set Selects cache set.

3:0 — Reserved

TABLE 15-13 L1 Data Cache Diagnostic Tag – ASI_DCACHE_TAG (ASI 4716, VA 016–3FF016)

Bit Field Initial Value R/W Description

63:31 — 0 R Reserved

30 parity X R Ignored on writes (see PERREN above), returns parity bit on read.

29:1 tag X RW Cache tag (PA{39:11}).

0 valid 0 RW Valid bit for tag.
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the data in the L2 cache can be stale. In addition, before disabling the L2 cache, the
L1 instruction and data caches must be disabled in all strands’
ASI_LSU_CONTROL_REG registers, as the L1 caches cannot operate properly when
the L2 cache is disabled. The L2 Control Register is available at offsets
A9 0000 000016 or B9 0000 000016. Address bits 7:6 select the cache bank, address bits
31:8 and 5:3 are ignored (that is, the register aliases across the address range).

The L2 Control Register format is shown in TABLE 15-14.

Each time the scrubber is invoked, it scrubs all lines at the same index. At the
minimum setting of scrubinterval, the scrubber will scrub the cache slightly faster
than once per second.

15.4.2 Other L2 Registers
L2 Cache registers are defined in other chapters; in particular, the error control and
status registers are in Chapter 12, Error Handling.

15.5 L2 Cache Diagnostic Access
This section describes the control registers and diagnostic access for the L2 cache.

TABLE 15-14 L2 Control Register – L2_CONTROL_REG (9 0000 000016)

Bit Field Initial Value R/W Description

63:22 — X R Reserved

21 dirclear 0 RW If 0 and set to 1, the L2 directory is initialized to be all cleared.
Only a 0→1 transition has any effect, so if it already has a
value of 1, software must first clear this bit before setting it to
1, in order to clear the L2 directory.

20 dbgen Preserved RW Mux select for the debug bus that goes to the IOB.

19:15 errorsteer 0 RW Specifies the physical core (bits 19:17) and strand (bits 16:15)
that receives all the L2 errors whose cause can’t be linked to a
specific strand.

14:3 scrubinterval 0 RW Interval between scrubbing of adjacent sets in L2 in CMP core
clocks. In units of 1M cycles.

2 scrubenable 0 RW If set to 1, enable hardware scrub.

1 dmmode 0 RW If set to 1, address bits 21 to 18 indicate the replacement way
(with values C16–F16 aliasing to 416–716). If set to 0, all L2 ways
are enabled under pseudo-LRU control.

0 dis 1 RW If set to 1, disable the L2 cache. If set to 0, enable the L2 cache.
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Diagnostic accesses will functionally work in the midst of other operations, but the
results of L2 diagnostic accesses are inherently somewhat indeterminate because the
state of the L2 cache is a moving target. Of course, diagnostic writes can put
UltraSPARC T1 into an inconsistent or illegal state.

RegisterBaseAddress L2CSR Registers – A0 0000 000016. TABLE 15-15 shows the
breakdown of the L2 address range.

15.5.1 L2 Data Diagnostic Access
Diagnostic access to the L2 data array is done through 64 bit read/writes that access
a 32-bit data subblock along with the corresponding 7-bit ECC. The format for
addressing the entire L2 cache is shown in TABLE 15-16.

Diagnostic loads of the L2 data do not check the ECC, and thus cannot generate an
ECC error.

TABLE 15-15 RegisterBaseAddress L2 CSR Registers – A0 0000 000016

Address Range (8 MSBs of the
40-bit Address) Assigned to: Comment

A016–A316/B016–B316 L2 Data Diagnostic access to the L2 data array

A416–A516/B416–B5 L2 Tag Diagnostic access to the L2 tag array.

A616–A716/B616–B716 L2 Tag VUAD Diagnostic access to the L2 VUAD array.

A816–AF16/B816–B16F L2 Registers Error, control, and status registers.

TABLE 15-16 Format 6 L2 Data Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be one of A016, A116, A216, A316, B016, B116, B216, or B316 to select
L2 data diagnostic access. Can be any of the listed values (that is, the
data diagnostic access is aliased throughout the A0– 3/B0–B3 address
range)

31:23 — Reserved, can be any value (that is, the data diagnostic access is aliased
throughout the A0– A3/B0–B3 address range)

22 oddeven Selects 32 bit word from 64-bit word selected by the word field.

21:18 way Selects way in cache set. (Must be 016–B16; C16–F16 are undefined.)

17:8 set Selects cache set in bank.

7:6 bank Selects cache bank.

5:3 word Selects 64-bit word in 64-byte cache line.

2:0 — All zero for 64-bit access
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The data format is shown in TABLE 15-17.

15.5.2 L2 Tag Diagnostic Access
Diagnostic access to the L2 tag array is done through 64-bit read/writes that access
the tag along with the corresponding 6-bit ECC. The format for addressing the entire
L2 cache is shown in TABLE 15-18.

Diagnostic loads of the L2 tag do not check the ECC, and thus cannot generate an
ECC error.

Programming
Note

Address bits 17:6 in the diagnostic access match the same
address bits used by the hardware to select a set and bank in the
cache. In addition, bits 21:18 match the same address bits used
by the hardware to select a way in the L2 cache when in direct-
mapped mode (L2_CONTROL_REG.dmmode = 1).

TABLE 15-17 Register 64 23 L2 Diagnostic Data – L2_DIAG_DATA (016)

Bit Field Initial Value R/W Description

63:39 — X R Reserved

38:7 data X RW Data

6:0 ecc X RW ECC checkbits for data. See Table G-4 on page 326.

Note The — field ignores any value written to it, but unlike most
reserved fields, it is not guaranteed to return all zeros on a read.

TABLE 15-18 Format 7 L2 Tag Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be one of A416, A516, B416, or B516 to select L2 tag diagnostic
access. Can be any of the listed values (that is, the tag diagnostic access
is aliased throughout the A416–A516/B416–B516 address range)

31:22 — Reserved, can be any value (that is, the tag diagnostic access is aliased
throughout the A416–A516/B416–B516 address range)

21:18 way Selects way in cache set. (Must be 016–B16; C16–F16 are undefined).

17:8 set Selects cache set in bank.

7:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 — All zero for 64 bit access
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The data format is shown in TABLE 15-19.

15.5.3 L2 VUAD Diagnostic Access
The valid, used, allocate, and dirty (VUAD) array contains the state bits for the L2
entries. TABLE 15-20 lists the conditions that cause a transition in VUAD bits.

Diagnostic access to the L2 VUAD array is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the parity for
each of those bits across the set via 64-bit read/writes. The format for addressing the
entire L2 cache is shown in TABLE 15-21.

Programming
Note

Address bits 17:6 in the diagnostic access match the same
address bits used by the hardware to select a set and bank in the
cache. In addition, bits 21:18 match the same address bits used
by the hardware to select a way in the L2 cache when in direct-
mapped mode (L2_CONTROL_REG.dmmode = 1).

TABLE 15-19 Register 64 24 L2 Diagnostic Tag – L2_DIAG_TAG (4 0000 000016)

Bit Field Initial Value R/W Description

63:30 — X R Reserved

27:6 tag X RW Tag, corresponds to addr{39:18}

5:0 ecc X RW ECC checkbits for tag. See Table G-6 on page 327.

Note Values written to bits 63:30 of this register are ignored, but
unlike most reserved fields, this field is not guaranteed to return
all zeros when read.

TABLE 15-20 VUAD Bit Transitions

Bit 0 → 1 Transition 1 → 0 Transition

Valid Line fill Line eviction or DMA 64-byte write hit

Used (individual) Line fill or hit where an unused and
unallocated way is present in the set

Line eviction or DMA 64-byte write hit

Used (all) NA Hit where no unused and unallocated way
present in the set

Allocated Allocated way on an eviction Fill with new line

Hit way on a partial store, DMA 8B write, or
atomic first pass through L2

Partial store, DMA 8-byte write, or atomic final
pass through L2

Dirty Store hit to line Line eviction or DMA 64-byte write hit
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Diagnostic loads of the VUAD do not check parity, and thus cannot generate a parity
error.

The data format is shown in TABLE 15-22.

The second range accesses the UA bits for an entire set via 64 bit read/writes. The
format for addressing the entire L2 cache is shown in TABLE 15-23.

TABLE 15-21 Format 8 L2 VD Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be one of A616, A716, B616, or B716 to select L2 VD diagnostic access. Can be any of
the listed values (that is, the VD diagnostic access is aliased throughout the A616–A716/
B616– B716 address range where bit 22 is 1).

31:23 — Reserved, can be any value. (that is, the VD diagnostic access is aliased throughout the
A616–A716/B616–B716 address range where bit 22 is 1).

22 vdsel Must be set to 1.

21:18 — Reserved, can be any value. (that is, the VD diagnostic access is aliased throughout the
A616–A716/B616–B716 address range where bit 22 is 1).

17:8 set Selects cache set in bank.

7:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 rsvd4 All zero for 64 bit access.

Programming
Note

Address bits 17:6 in the diagnostic access match the same
address bits used by the hardware to select a set and bank in the
cache.

TABLE 15-22 L2 Diagnostic VD – L2_DIAG_VD (6 0040 000016)

Bit Field Initial Value R/W Description

63:26 — X R Reserved

25 vparity X RW Parity for all valid bits.

24 dparity X RW Parity for all dirty bits.

23:12 valid X RW Valid bits for way 11 down to way 0.

11:0 dirty X RW Dirty bits for way 11 down to way 0.

Note The — field ignores any value written to it, but unlike most
reserved fields, it is not guaranteed to return all zeros on a read.
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The data format is shown in TABLE 15-24.

The used bits are not parity protected, since their value is noncritical. Any error in
the used bits will cause potentially different replacement order, but still functionally
correct operation.

TABLE 15-23 Format 9 L2 UA Diagnostic Addressing

Bit Field Description

63:40 — Reserved

39:32 select Must be one of A616 or A716 to select L2 UA diagnostic access. Can be
any of the listed values (that is, the UA diagnostic access is aliased
throughout the A616–A716/B616–B716 address range where bit 22 is 0).

31:23 — Reserved, can be any value. (that is, the UA diagnostic access is aliased
throughout the A616–A716 address range where bit 22 is 0).

22 vdsel Must be set to 0.

21:18 — Reserved, can be any value. (that is, the UA diagnostic access is aliased
throughout the A616–A716 address range where bit 22 is 0).

17:8 set Selects cache set in bank.

7:6 bank Selects cache bank.

5:3 — Reserved, can be any value.

2:0 rsvd4 All zero for 64-bit access.

Programming
Note

Address bits 17:6 in the diagnostic access match the same
address bits used by the hardware to select a set and bank in the
cache.

TABLE 15-24 L2 Diagnostic UA – L2_DIAG_UA (6 0000 000016)

Bit Field Initial Value R/W Description

63:26 — X R Reserved

25 — X R Reserved; was U parity.

24 aparity X RW Parity for all allocated bits.

23:12 used X RW Used bits for way 11 down to way 0.

11:0 alloc X RW Allocated bits for way 11 down to way 0.

Note The reserved fields ignore any value written to them, but unlike
most reserved fields, they are not guaranteed to return all zeros
when read.
• 251



15.5.4 Software Error Scrubbing Support
Some errors will leave the L2 cache with a correctable error, which then needs to be
scrubbed to prevent repetitive traps for effectively the same soft error. Flushing the
data out of the cache back to memory will correct the error.

With a 12-way set associative cache, with pseudo-LRU replacement and no explicit
flush instruction, flushing the error line is not entirely trivial. However, to make the
flush provably workable, the L2 has a “Direct Mapped Replacement Mode” which
forces the replacement algorithm to simulate a direct-mapped cache. This direct-
mapped mode is safe to spuriously enable in a running system, since lines inserted
in either mode can still be found (tag matched) normally.

To flush a line, software (hypervisor) would enable Direct-Mapped mode, fault in 12
cache lines with the same index as the error line (but is not the error line), then
restore (disable?) the original state of the Direct-Mapped mode.

Scrubbing correctable main memory errors uses the same support. To scrub, fault the
line into the L2, dirty it without modifying it (CAS), then use Direct-Mapped mode
and 12 other fault-ins to force the error line out.

15.6 EFUSE Registers
The EFUSE block contains permanent programmed information that is burned in as
part of the manufacturing process. The following registers give software access to
the portion that is pertinent to software.

RegisterBaseAddress 1 IOBMAN – 98 0000 000016. The following Processor
Serial Number register contains a unique serial number. The format is shown in
TABLE 15-27.

TABLE 15-25 Processor Serial Number Register – PROC_SER_NUM (082016)

Bit Field Initial Value R/W Description

63:44 salt X R Extra bits.

43:42 ti X R TI Tracking bits.

41 r X R Unit has EFUSE array repair

40:35 row X R Wafer row ID.

34:29 col X R Wafer column ID.

28:24 waf X R Wafer ID.

23:22 fab X R Fab number.

21:0 lot X R Fab lot number.
252 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



The CORE_AVAIL register, shown in TABLE 15-28, indicates which virtual processor/
strand is available. Defective virtual processors are marked unavailable during
manufacturing by means of fuses. The IOB does not implement any protection
against access to unavailable virtual processors. For example, software may try to
send a RESUME to an unavailable strand by writing to int_vec_dis, or the TAP may
read/write to ASIs of an unavailable strand. The resultant behavior is undefined.
The IO Bridge wakes up the first available strand after a reset.

The register defined in TABLE 15-29 contains the parity results of all of the EFUSE
entries. This should be checked at boot, and if any entry is 1, the configuration of the
chip is suspect.

TABLE 15-26 Strand Available – CORE_AVAIL (000016–083016)

Bit Field Initial Value R/W Description

63:32 — 0 R Reserved

31:0 avail FFFF FFFF16 R 1 means the strand is available. Initial value is that all strands
are available, until loaded from EFUSE array.

Note The granularity of availability in UltraSPARC T1 is a physical
core. Thus, each nibble of the CORE_AVAIL register will either
be all ones or all zeros.

TABLE 15-27 Fuse Status Register – IOB_FUSE (000016–084016)

Bit Field Initial Value R/W Description

63:0 status 0 R 1 means an EFUSE entry had a parity error and is suspect.
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CHAPTER 16

Modular Arithmetic

Processor streaming extensions are provided to accelerate network stack processing.
The extensions support modular multiplication and exponentiation for SSL.

Modular arithmetic operations operate on data stored in the Modular Arithmetic
memory. Once initiated, these operations operate in parallel with normal SPARC
instruction execution. The SPARC system can synchronize with the completion of
the operation using a load from the Modular Arithmetic Sync register or with
interrupts. The modular arithmetic state is maintained per physical processor core
and is accessed through load and store alternate instructions with the
hyperprivileged ASI_MA (4016). The state accesses must be 8-byte aligned, or a
mem_address_not_aligned trap is taken.

16.1 Modular Arithmetic State
The modular arithmetic state consists of the elements shown in TABLE 16-1.

16.1.1 ASI_MA_CONTROL_REG Register
Each physical processor core has a hyperprivileged read-write
ASI_MA_CONTROL_REG register at ASI 4016, VA{63:0} = 8016 that is used to control
modular arithmetic operations. The format of the register is shown in TABLE 16-2.

TABLE 16-1 Modular Arithmetic State

Name Address Size Function

MPA 8 bytes Modular physical address

MA_ADDR 8 bytes Modular arithmetic memory addresses

NP 8 bytes Modular arithmetic N Prime value

MA_CTL 8 bytes Control parameters
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TABLE 16-2 Modular Arithmetic Control Register – ASI_MA_CONTROL_REG
(ASI 4016, VA 8016) (1 of 2)

Bit Field
Initial
Value R/W Description

63:14 — 0 R Reserved

13 perrinj 0 RW If 1, each operation that writes to the MA memory will invert the parity bit
generated.

12:11 strand X RW Specifies the strand that will receive the disrupting trap on the completion of
the modular arithmetic operation (if the int bit is set). Also sets the strand that
will receive the disrupting corrected_ECC_error trap if a correctable ECC error
in memory is encountered on an MA load. The corrected_ECC_error trap is
sent to the strand regardless of the value of the int bit. Software can load
balance interrupt service across strands by changing this field.

10 busy 0 R If set, a modular arithmetic operation is in progress. If clear, no modular
arithmetic operation is in progress.
Note: When the operation completes and the int bit is set, the busy bit is
cleared regardless of whether the completion interrupt has been delivered.
Therefore, seeing the busy bit cleared does not guarantee that the completion
interrupt has been delivered. However, the completion interrupt will never be
delivered before the busy bit is cleared, so seeing the busy bit set implies that
the completion interrupt has not been delivered.
Note: If the control register is written while an operation is in progress (the
busy bit is set), the operation in progress will continue to a stable point (that is,
all posted stores are acknowledged) before starting the new operation. The
busy bit may go low after the aborted operation reaches this stable point, but
will be reset to high once the second operation starts.

9 int X RW If set, the streaming operation will generate a disrupting trap to the current
strand on the completion of the modular arithmetic operation. The trap will
use the implementation_dependent_exception_20
(modular_arithmetic_interrupt) vector at priority level 16. If not set, then
software can synchronize with the completion the streaming operation using
the MASync instruction.
Note: If the control register is written while an operation is in progress (the
busy bit is set) and the interrupt bit is set, no completion interrupt will be
generated.
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Storing into the MA_CTL register will trigger the start of a modular arithmetic
operation. Other state registers should be updated before loading the MA_CTL
register.

All fields must be set to a valid, nonreserved value on the store of the
ASI_MA_CONTROL_REG, or an illegal_instruction trap will be taken.

8:6 op X RW Specifies the type of modular arithmetic operation as shown below. Details of
the operations are described in subsequent sections.

5:0 length X RW Specifies one less than the length of the modular arithmetic operation in
words.
Note: Due to size limits on the MA memory (1280 bytes), the maximum value
that should be specified for length is 31. With length at 31, the full MA memory
will be used for a modular multiply or exponentiation loop
(5 operands * (31+1) words * 8 bytes / word = 1280 bytes).
Implementation Note: On a Store MA memory operation, the value of the
length field is decremented as the words are stored to memory. For all other
operations, the value of the length field will remain the value written on the
previous MA_CTL store.

Implementation
Note

Not all revisions of UltraSPARC T1 implement the
illegal_instruction trap for invalid values being stored to
ASI_MA_CONTROL_REG. Operation of an UltraSPARC T1 chip
is undefined when an invalid value is stored to
ASI_MA_CONTROL_REG.

Note that only hyperprivileged code is affected by this. Any
attempted access by user or privileged code to
ASI_MA_CONTROL_REG will cause a data_access_exception
trap.

TABLE 16-2 Modular Arithmetic Control Register – ASI_MA_CONTROL_REG
(ASI 4016, VA 8016) (2 of 2)

Bit Field
Initial
Value R/W Description

Value Operations

0 Load MA memory

1 Store MA memory

2 Modular multiply

3 Modular reduction

4 Modular
exponentiation loop

5-7 Reserved
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16.1.2 ASI_MA_MPA_REG Register
Each physical processor core has a hyperprivileged read-write ASI_MA_MPA_REG
register at ASI 4016, VA{63:0} = 8816 that is used to specify the physical address of the
bytes to be loaded or stored into the MA memory. Since this address must be aligned
to 8 bytes, the lower 3 bits of the address are forced to all zeros. MA load and store
operations are not permitted to I/O addresses, and bit 39 of the address is forced to
zero as well. Nonprivileged access to this register causes a privileged_action trap.
Supervisor access causes a data_access_exception trap.

TABLE 16-3 defines the format of the ASI_MA_MPA_REG register.

The number of words to be loaded or stored is specified by the length field in the
ASI_MA_CONTROL_REG register plus one and should be less than or equal to 64.
MA memory loads and stores will produce undefined results if the length plus one
plus offset is greater than 160. Multiword operands are normally stored in little
endian order across words (least significant word at the lowest address), but big
endian order within a 64-bit word (most significant byte at the lowest address). The
exponent operand for modular exponentiation is stored in big endian order across
words as well as within a 64-bit word.

Note There is an UltraSPARC T1 “feature” where it is possible for
nonprivileged or privileged code can silently abort SPU ops, by issuing
illegal SPU opcodes (which trap, but still have the aborting side-effect
on hyperprivileged use). To avoid this, all STXAs to the
ASI_MA_CONTROL_REG should be preceeded by a “MEMBAR
#Sync”, to ensure that no stores in the store buffer delay execution of
this STXA. In addition, do not cause an abort by issuing a new
operation (where you care about the results). Instead, aborts can be
caused by issuing an effective SPU NOP.

TABLE 16-3 Modular Arithmetic Address Register – ASI_MA_MPA_REG (ASI 4016, VA 8816)

Bit Field
Initial
Value R/W Description

63:40 — 0 R Reserved

39 address39 0 R Most significant bit of physical address of bytes to be loaded or stored into
MA memory, always forced to 0 to prevent loads and stores to IO space.

38:3 address X RW Physical address of bytes to be loaded or stored into MA memory.

2:0 — 0 R Reserved
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16.1.3 ASI_MA_ADDR_REG Register
Each physical processor core has a hyperprivileged read-write ASI_MA_ADDR_REG
register at ASI 4016, VA{63:0} = 9016 that is used to specify the initial word offsets
into the MA memory for the modular operations. The format of the register is shown
in TABLE 16-4.

16.1.4 ASI_MA_NP_REG Register
Each physical processor core has a hyperprivileged read-write ASI_MA_NP_REG
register at ASI 4016, VA{63:0} = 9816 that is used to specify the modular arithmetic N
prime value. Nonprivileged access to this register causes a privileged_action trap.
Supervisor access causes a data_access_exception trap.

TABLE 16-5 defines the format of the ASI_MA_NP_REG register.

TABLE 16-4 Modular Arithmetic MA Offset Register – ASI_MA_ADDR_REG
(ASI 4016, VA 9016)

Bit Field
Initial
Value R/W Description

63:48 — 0 R Reserved

47:40 addr5 X RW Specifies the size − 1 of the exponent in bytes for exponentiation. Not used for
modular reduction or multiplication.

39:32 addr4 X RW Specifies the offset of the least significant word of the result (X) for
multiplication, the exponent (E) for exponentiation. Not used for modular
reduction.

31:24 addr3 X RW Specifies the offset of the least significant word of the temporary (M) for
multiplication, the result (X) for exponentiation. Not used for modular
reduction.

23:16 addr2 X RW Specifies the offset of the least significant word of the result (R) for modular
reduction, the modulus (N) for multiplication, the modulus (N) for
exponentiation.

15:8 addr1 X RW Specifies the offset of the least significant word of the modulus (N) for
modular reduction, the multiplicand (B) for multiplication, the temporary (M)
for exponentiation.

7:0 addr0 X RW Specifies the offset of the least significant word of the source (A) for modular
reduction, the multiplier (A) for multiplication, the base (A) for
exponentiation. Also specifies the offset of the initial word for a MA memory
load or store.

TABLE 16-5 Modular Arithmetic N Prime Register – ASI_MA_NP_REG (ASI 4016, VA 9816)

Bit Field Initial Value R/W Description

63:0 n_prime X R/W Modular arithmetic N prime value.
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16.1.5 ASI_MA_SYNC_REG Register
Each physical processor core has a hyperprivileged ASI_MA_SYNC register at ASI
4016, VA{63:0} = A016.

TABLE 16-6 defines the format of the ASI_MA_SYNC register.

A load from this register is used to synchronize a strand with the completion of
asynchronous modular arithmetic operations. If the strand doing the load is the
strand specified in the strand field of the Modular Arithmetic Control Register,
completion of this load operation will ensure that subsequent stores are ordered
after any modular arithmetic operation stores. The result of the Modular Arithmetic
Sync load for this case will be zero if the MA operation was not aborted. If the MA
operation was aborted, the load will complete once the operation aborts, and the
destination register of the load will not be updated.

If the strand doing the load is not the strand specified in the strand field of the
Modular Arithmetic Control register, the load will complete immediately, regardless
of the current state of the MA operation, and the destination register of the load will
not be updated. A store to this register will result in a data_access_exception trap.

TABLE 16-6 Modular Arithmetic Sync Register – ASI_MA_SYNC (ASI 4016, VA A016)

Bit Field Initial Value R/W Description

63:0 — 0 R Always loads as 0, has side effect of generating a modular
arithmetic sync.

Note If software desires to know whether the Modular Arithmetic
Sync load actually did a synchronization following a successful
completion of the modular arithmetic operation, it can set the
destination register to a nonzero value before doing the load. If
the load did a successful synchronization, the destination
register will be zero; otherwise, it will remain at the initial non-
zero value.

Programming
Notes

(1) Because the Modular Arithmetic Sync load does not finish
execution for the strand until the modular arithmetic operation
is completed, loads from this register should only be used for
short MA operations. A long MA operation, such as a 2048-bit
Modular Exponentiation, which could take nearly 3 million
cycles in the worst case, should only use the
modular_arithmetic_interrupt for completion notification or
alternatively perform the MA_SYNC load only when software
knows the long operation is nearly complete.
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16.2 Aborting an MA Operation
A modular arithmetic operation can be aborted at any time by overwriting the
Modular Arithmetic Control register with a new valid operation. When the Modular
Arithmetic Control register is written while an operation is in progress (the busy bit
is set), the operation in progress will continue to a stable point (that is, all posted
stores are acknowledged) before starting the new operation. If the int bit of the
Modular Arithmetic Control register was set for the aborted operation, no
completion interrupt will be generated to the strand specified in the strand field of
the aborted operation. If the strand specified in the strand field of the aborted

(2) It is possible for a strand to hang on a Modular Arithmetic
Sync load. This situation arises because when MA_CTL.int = 1,
the modular arithmetic hardware does not consider the
operation to have reached a stable point during an abort (see
Section 16.2) until the completion interrupt is taken by the
strand. So if the MA_CTL.int bit is 1, and PSTATE.ie is 0 at the
time that the completion interrupt would be generated, and
software does an abort operation from another strand followed
by a Modular Arithmetic Sync load, that load will hang until
either (a) the first strand sets PSTATE.ie to 1 and takes the
completion interrupt or (b) that second operation is aborted by
another strand (and then that new strand could also hang itself
by doing a Modular Arithmetic Sync). This implies that a strand
that starts a modular arithmetic operation with MA_CTL.int = 1
and then never sets PSTATE.ie to 1 will make the Modular
Arithmetic unit unusable by the other strands on the physical
processor core.

(3) It is possible for a strand doing a legal Modular Arithmetic
Sync load to get the wrong result if that load is followed by an
access from another strand to the Modular Arithmetic ASI
(4016), but to a virtual address that does not address a MA
register (VA 016–7816 or A816–F8)16. The strand doing the
subsequent access to the VA that does not address a MA register
will hang. This is the result of a hardware erratum in
UltraSPARC T1 where the result for the second strand’s access is
delivered to the first strand, and no result is ever delivered to
the second strand. To avoid generating this hang, software
should never generate accesses to the MA ASI using virtual
addresses other than 8016, 8816, 9016, 9816, or A016.
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operation had already issued a Modular Arithmetic Sync load before the operation
was aborted, the Modular Arithmetic Sync load will immediately complete without
updating its destination register.

See the Note on page 262 regarding abortion of SPU ops.

16.3 MA Memory
1280 bytes of local MA memory is used to supply operands to modular arithmetic
operations. Each physical processor core has one copy of the streaming MA memory
state. Refer to TABLE 16-7.

Load MA memory is used to load bytes into the MA memory of the current physical
processor core. Store MA memory is used to store bytes from the local MA memory
of the current physical processor core. The main memory physical address of the
bytes is specified by the MPA register. This address must be aligned to 8 bytes. The
lower 8 bits of the MA_ADDR register specify the initial word offset into the MA
memory where the first byte is loaded or stored. The number of words to be loaded
or stored is specified by the length field in the CTL register plus one and should be
less than or equal to 64. MA memory loads and stores will produce undefined
results if the length plus one plus offset is greater than 160. Multiword operands are
normally stored in little endian order across words (least significant word at the
lowest address), but big endian order within a 64-bit word (most significant byte at
the lowest address). The exponent operand for modular exponentiation is stored in
big endian order across words as well as within a 64-bit word.

The MA memory is protected by parity. Modular Arithmetic Memory (MAU) on page
124 describes the behavior when a parity error is detected on any MA memory
access (either an MA operation or an MA memory store operation).

TABLE 16-7 MA Memory State

Name Size Function

MAMEM 1280 bytes Modular arithmetic memory array
266 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



16.4 Modular Reduction
Modular reduction performs a modular reduction of one operand and a modulus
stored in the MA memory array. The result is stored in the MA memory array. The
length field plus one specifies the number of 64-bit words in each of the operands.
Bits 7:0 of the MA_ADDR register specify the offset of the least significant word of
the source (A operand). Bits 15:8 of the MA_ADDR register specify the offset of the
least significant word of the modulus (N operand). Bits 23:16 of the MA_ADDR
register specify the offset of the least significant word of the result operand (R
operand).

If the source operand is less than the modulus, then the source operand is stored in
the destination operand; otherwise, the source operand minus the modulus is stored
in the destination operand. The source operand should not overlap with the
destination operand.

Processing should start from the most significant source, modulus and output word.
When the source word and the corresponding modulus word are equal, store a zero
to the corresponding output word and proceed to the next word. Otherwise, a
comparison of these two words will determine whether the input operand is greater
than the modulus. If the input operand is less than the modulus, then the remaining
input operands can be copied to the corresponding output words. Otherwise, the
modulus needs to be subtracted from remaining input words. This multi-precision
subtract should be done by starting with the least significant input word and
proceeding up to and including the first nonequal input word. The algorithm below
lists the modular reduction behavior.

Programming
Note

For a modular arithmetic memory store operation, the
completion interrupt (or ASI_MA_SYNC completion) is
generated only when all the stores have been acknowledged. For
stores to data space (memory that has never been executed and
thus will not be present in any instruction cache), all stores are
guaranteed to be globally visible after receiving the MA
completion interrupt (or completing the ASI_MA_SYNC load).
For stores to instruction space (memory that has been executed
and thus may be present in an instruction cache), all stores are
guaranteed to be globally visible only after a FLUSH instruction
is executed following the MA completion interrupt (or the
ASI_MA_SYNC load completion).

Implementation
Note

Modular reduction should be performed at 4 clocks per output
word.
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16.5 Modular Multiplication
Modular multiplication performs a Montgomery reduction modular multiplication
of two operands and a modulus stored in the MA memory array. The result is stored
in the MA memory array.

The length field plus one specifies the number of 64-bit words in each of the
operands. Bits 7:0 of the MA_ADDR register specify the offset of the least significant
word of the multiplier (A operand). Bits 15:8 of the MA_ADDR register specify the
offset of the least significant word of the multiplicand (B operand). Bits 23:16 of the
MA_ADDR register specify the offset of the least significant word of the modulus (N
operand). Bits 31:24 of the MA_ADDR register specify the offset of the least
significant word of the temporary operand (M operand). Bits 39:32 of the MA_ADDR
register specify the offset of the least significant word of the result operand (X
operand).

The NP register contains the inverse modulus operand (N’). The source operands
should not overlap with the destination operand.

if ACCUM != 0 {
    for I=0 to Length {   // Length = number of words - 1
        X[I] = A[I] - N[I]  // Subtraction with borrow
    }
} else {
    I = Length
    while (I>=0) && (A[I]==N[I]) {
        I = I-1
    }
    if (I>=0) && (A[I]<N[I]) {
        for I=0 to Length {
            X[I] = A[I]
        }
    } else {
        if (I>=0) && (A[I]>N[I]) {
            for I=0 to Length {
                X[I] = A[I] - N[I] // Subtraction with borrow
            }
        } else {
            for I=0 to Length {
                X[I]=0
            }
        }
    }
}
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The modular multiplication algorithm operates on operands A, B, N, M and stores
the result in X. The operands are stored at various offsets in the streaming memory
specified by the MA_ADDR register as described above. The algorithm uses an
unsigned 64*64 multiply operation, which produces a 128-bit result. The multiplier
result is accumulated into a 136-bit accumulator (ACCUM). The algorithm proceeds
as follows.

Implementation
Note

Modular multiplication should be performed at 2 clocks per
multiply (memory limited speed).

ACCUM = 0
For I=0 to Length { // Length is one less than the number of words

For j=0 to I-1 { // skipped on first I=0 iteration
ACCUM += A[j]*B[I-j]
ACCUM += M[j]*N[I-j]

ACCUM += A[I]*B[0]
M[I] = ACCUM * N’ //64 LSB of accum, store 64 LSB of product
ACCUM += M[I]*N[0]
ACCUM >>= 64

}
}
For I=Length+1 to (2*Length)+1  {

For j=I-Length to Length  {//skipped last I=(2*Length)+1 iteration
ACCUM += A[j]*B[I-j]
ACCUM += M[j]*N[I-j]

}
M[I-length-1] = ACCUM //64 LSB of accum
ACCUM >>= 64

}
X := ModReduction(ACCUM|M, N) //LSB of ACCUM is prepended to M
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When A = B (same offset in streaming memory), the algorithm is modified to reduce
the number of multiplies as shown below:

16.6 Modular Exponentiation Loop
Modular exponentiation performs the inner loop of modular exponentiation of a
base, exponent and modulus operands stored in the MA memory array. The result is
stored in the MA memory array.

The length field plus one specifies the number of 64-bit words in the base, temporary
and modulus operands. Bits 7:0 of the MA_ADDR register specify the offset of the
least significant word of the base (A operand). Bits 15:8 of the MA_ADDR register
specify the offset of the least significant word of the temporary (M operand). Bits
23:16 of the MA_ADDR register specify the offset of the least significant word of the
modulus (N operand). Bits 31:24 of the MA_ADDR register specify the offset of the
least significant word of the result operand (X operand). Bits 39:32 of the MA_ADDR
register specify the offset of the least significant word of the exponent operand (E
operand). Bits 47:40 specify the size of the exponent in bytes minus one (ES).

ACCUM = 0
For I=0 to Length { // Length is one less than the number of words

For j=0 to (I-1)>>1  // skipped on first I=0 iteration
ACCUM += 2*A[j]* A[I-j]

If I is even
ACCUM += A[I/2]^2

For j=0 to I-1  // skipped on first I=0 iteration
ACCUM += M[j]*N[I-j]

M[I] = ACCUM * N’ //64 LSB of accum, store 64 LSB of product
ACCUM += M[I]*N[0]
ACCUM >>= 64

For I=Length+1 to (2*Length)+1
For j=I-Length to (I-1)>>1 //skipped last two I iterations

ACCUM += 2*A[j]* A[I-j]
If I is even

ACCUM += A[I/2]^2
For j=I-Length to Length //skipped last I=2*Length+1 iteration

ACCUM += M[j]*N[I-j]
M[I-length-1] = ACCUM //64 LSB of accum

ACCUM >>= 64
X := ModReduction(ACCUM|M, N) //LSB of ACCUM is prepended to M

}

270 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



The NP register contains the inverse modulus operand (N’). A, M, and N operands
are stored in little endian order across words (least significant word at the lowest
address), but big endian order within a 64-bit word (most significant byte at the
lowest address).

E is split into bytes, and these bytes are packed into 64-bit registers using a big-
endian ordering across words and across bytes within a word. There is no bit
reversal, that is, in a MA_MEM register holding bits from E, bit significance increases
with bit number. Since E is an arbitrary number of bytes, the last word could contain
less then 8 bytes and these are similarly packed from the most significant byte in the
register downwards.

TABLE 16-8 contains an example for E containing 20 bytes (E{19} is MSB down to E{0}
for LSB) and stored at MA_MEM{10}.

The modular exponentiation loop operates on operands A, E, X, N, M and stores the
result in X. The operands are stored at various offsets in the streaming memory
specified by the SRC register as described above. The modular exponentiation loop
is based on the modular multiply (ModMultiply) and modular reduction
(ModReduction) operations described above. X needs to be initialized to X = r mod
N, where r = 2^n for n-bit Montgomery modular exponentiation, for example,
r = 2^1024 for 1024-bit exponentiation. The algorithm proceeds as follows:

TABLE 16-8 Example for E Containing 20 Bytes Stored at MA_MEM{10}

Word Bits 63:56 Bits 55:48 Bits 47:40 Bits 39:32 Bits 31:24 Bits 23:16 Bits 15:8 Bits 7:0

MA_MEM{10} E{19} E{18} E{17} E{16} E{15} E{14} E{13} E{12}

MA_MEM{11} E{11} E{10} E{9} E{8} E{7} E{6} E{5} E{4}

MA_MEM{12} E{3} E{2} E{1} E{0} — — — —

Notes (1) E is stored in the opposite word-order than all other
MA_MEM operands.

(2) If (ES + 1) is not a multiple of 8, then the packing of E into
registers leaves a hole in the last register after the least
significant byte and software needs to take care of this.

for i = 0 to 8*(ES+1) - 1
X := ModMultiply(X, X, N, M)

if E[i] = 1 then // Check if bit i of the exponent is set (bit 0 is the MSB)
X := ModMultiply (X, A, N, M)
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16.7 Error Behavior
Error behavior for streaming and modular arithmetic operations is described in
Chapter 12, Error Handling.
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APPENDIX A

Assembly Language Syntax

The assembly language syntax used in this document follows that described in the
"Assembly Language Syntax" appendix of the UltraSPARC Architecture 2005
specification.
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APPENDIX B

Programming Guidelines

B.1 Multithreading
In UltraSPARC T1, execution is switched in round-robin fashion every cycle among
the strands that are ready to issue another instruction. Context switching is built into
the UltraSPARC T1 pipeline and takes place during the SWITCH stage, thus contexts
are switched each cycle with no pipeline stall penalty.

The following instructions change a strand from a ready-to-issue state to a not-
ready-to-issue state, until hardware determines that their input/execution
requirements can be satisfied:

■ All branches (including CALL, JMPL, etc.)
■ All VIS instructions
■ All floating point (FPops)
■ All WRPR, WR, WRHPR
■ All RDPR, RD, RDHPR
■ SAVE(D), RESTORE(D), RETURN, FLUSHW (all register management)
■ All MUL and DIV
■ MULSCC
■ MEMBAR #Sync, MEMBAR #StoreLoad, MEMBAR #MemIssue
■ FLUSH
■ All loads
■ All floating-point memory operations
■ All memory operations to alternate space
■ All atomics load-store operations
■ Prefetch
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B.2 Pipeline Strand Flush
The front end of the UltraSPARC T1 pipeline prevents instructions from being issued
to the rest of the pipeline unless there is a high probability (for most instructions, a
probability of 1.0) of the instruction having all its input dependencies satisfied. For
certain instructions, the input dependencies cannot be determined by the front end,
and the instruction (and any subsequent instructions issued from that strand) need
to be flushed from the pipeline and replayed. TABLE B-1 lists instructions that may
end up causing a strand flush.

B.3 Instruction Latencies
TABLE B-2 lists the single-strand instruction latencies for UltraSPARC T1. When
multiple strands are executing, much of the additional latency for multicycle
instructions will be overlapped with execution of the additional strands.

In this table, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in TABLE 5-1 on page 22.

TABLE B-1 Pipeline Strand Flush Events

Event Strand Flush Description

Loads The strand will be flushed if the load encounters a cache miss while executing with
STRAND_STS_REG.spec_en = 1.

multiply/divide/
floating-point operate

Resource contention can cause a strand flush.

store buffer full The strand will be flushed until space is available in the store buffer.

trap Instruction and any subsequent instructions in the pipeline from that strand are
flushed, and fetching restarts at the trap vector.

Idle/Resume interrupts Instruction and any subsequent in the pipeline from that strand are flushed.

I-cache parity errors The strand will be flushed and the instruction refetched from the L2 cache.

IRF or FRF ECC errors Instruction and any subsequent in the pipeline from that strand are flushed.
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TABLE B-2 Instruction Latencies (1 of 14)

Instruction Latency Comments

ADD 1

ADDc 1

ADDCC 1

ADDNcc 1

AND 1

ANDcc 1

ANDN 1

ANDNcc 1

BA 3?

BA_A 4

BA_A_PN 4?

BA_PN 3

BA_XCC 3

BA_XCC_A 4?

BA_XCC_A_PN 4

BA_XCC_PN 3?

BCC 3

BCC_A 3

BCC_A_PN 4

BCC_PN 3

BCC_XCC 3

BCC_XCC_A 3

BCC_XCC_A_PN 4

BCC_XCC_PN 3?

BCS 3

BCS_A 4

BCS_A_PN 4?

BCS_PN 3

BCS_XCC 3

BCS_XCC_A 4
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BCS_XCC_A_PN 4

BCS_XCC_PN 4?

BE 3

BE_A 4?

BE_A_PN 4

BE_PN 3

BE_XCC 3

BE_XCC_A 4

BE_XCC_A_PN 4

BE_XCC_PN 3

BG 3

BG_A 3

BG_A_PN 4

BG_PN 3

BG_XCC 3

BG_XCC_A 3

BG_XCC_A_PN 3?

BG_XCC_PN 3

BGE 3

BGE_A 3

BGE_A_PN 4?

BGE_PN 3

BGE_XCC 3

BGE_XCC_A 4

BGE_XCC_A_PN 4?

BGE_XCC_PN 3

BGU 3

BGU_A 3

BGU_A_PN 3?

BGU_PN 3

TABLE B-2 Instruction Latencies (2 of 14)

Instruction Latency Comments
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BGU_XCC 3

BGU_XCC_A 4

BGU_XCC_A_PN 4

BGU_XCC_PN 3

BL 3

BL_A 3

BL_A_PN 3?

BL_PN 3

BL_XCC 3

BL_XCC_A 4?

BL_XCC_A_PN 4

BL_XCC_PN 3

BLE 3

BLE_A 3

BLE_A_PN 3?

BLE_PN 3

BLE_XCC 3

BLE_XCC_A 4

BLE_XCC_A_PN 4?

B LE_XCC_PN 3

BLEU 3

BLEU_A 4?

BLEU_A_PN 4

BLEU_PN 3?

BLEU_XCC 3

BLEU_XCC_A 4

BLEU_XCC_A_PN 4

BLEU_XCC_PN 3

BN 3

BN_A 4

TABLE B-2 Instruction Latencies (3 of 14)

Instruction Latency Comments
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BN_A_PN 4

BN_PN 3

BN_XCC 3

BN_XCC_A 4?

BN_XCC_A_PN 4

BN_XCC_PN 3

BNE 3

BNE_A 3

BNE_A_PN 3?

BNE_PN 3

BNE_XCC 3?

BNE_XCC_A 4

BNE_XCC_A_PN 4

BNE_XCC_PN 3?

BNEG 3

BNEG_A 4

BNEG_A_PN 4

BNEG_PN 3

BNEG_XCC 3

BNEG_XCC_A 4

BNEG_XCC_A_PN 4

BNEG_XCC_PN 3

BPOS 3

BPOS_A 4?

BPOS_A_PN 4

BPOS_PN 3

BPOS_XCC 3

BPOS_XCC_A 4?

BPOS_XCC_A_PN 4

BPOS_XCC_PN 3

TABLE B-2 Instruction Latencies (4 of 14)

Instruction Latency Comments
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BRGEZ 3

BRGEZ_A 4?

BRGEZ_A_PN 4

BRGEZ_PN 3

BRGZ 3

BRGZ_A 4?

BRGZ_A_PN 4

BRGZ_PN 3

BRLEZ 3

BRLEZ_A 4

BRLEZ_A_PN 4

BRLEZ_PN 3

BRLZ 3

BRLZ_A 3

BRLZ_A_PN 3?

BRLZ_PN 3

BRNZ 3

BRNZ_A 4

BRNZ_A_PN 4

BRNZ_PN 3

BRZ 3

BRZ_A 4

BRZ_A_PN 4

BRZ_PN 3

BVC 3

BVC_A 4?

BVC_A_PN 4

BVC_PN 3

BVC_XCC 3

BVC_XCC_A 4

TABLE B-2 Instruction Latencies (5 of 14)

Instruction Latency Comments
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BVC_XCC_A_PN 4?

BVC_XCC_PN 3

BVS 3

BVS_A 4

BVS_A_PN 4

BVS_PN 3

BVS_XCC 3

BVS_XCC_A 4

BVS_XCC_A_PN 4

BVS_XCC_PN 3

CASAPASI 39 performed in L2

CASXAPASI 39 performed in L2

FABSd 8

FABSs 21

FADDd 26

FADDs 26

FBA 3

FBA_A 4?

FBA_A_PN 4

FBA_PN 3

FBE 3

FBE_A 4

FBE_A_PN 4

FBE_PN 3

FBG 3

FBG_A 4

FBG_A_PN 4?

FBG_PN 3

FBGE 3

FBGE_A 4

TABLE B-2 Instruction Latencies (6 of 14)

Instruction Latency Comments
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FBGE_A_PN 4

FBGE_PN 3

FBL 3

FBL_A 4?

FBL_A_PN 4

FBL_PN 3

FBLE 3

FBLE_A 4

FBLE_A_PN 4

FBLE_PN 3

FBLG 3

FBLG_A 4

FBLG_A_PN 4

FBLG_PN 3

FBN 3?

FBN_A 4

FBN_A_PN 4

FBN_PN 3

FBNE 3

FBNE_A 4

FBNE_A_PN 4?

FBNE_PN 3

FBUE 3

FBUE_A 4

FBUE_A_PN 4

FBUE_PN 3

FBUG 3

FBUG_A 4

FBUG_A_PN 4

FBUG_PN 3

TABLE B-2 Instruction Latencies (7 of 14)

Instruction Latency Comments
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FBUGE 3

FBUGE_A 4

FBUGE_A_PN 4

FBUGE_PN 3

FBUL 3

FBUL_A 4

FBUL_A_PN 4

FBUL_PN 3

FBULE 3

FBULE_A 4

FBULE_A_PN 4

FBULE_PN 3

FDIVd 83

FDIVs 54

FdTOi 25

FdTOs 25

FdTOx 25

FiTOd 25

FiTOs 26

FMOVd 8

FMOVDA

FMOVDE 8

FMOVDG 8

FMOVDGE 8

FMOVDL 8

FMOVDLE 8

FMOVDLG 8

FMOVDN 8

FMOVDNE 8

FMOVDO 8

TABLE B-2 Instruction Latencies (8 of 14)

Instruction Latency Comments
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FMOVDU 8

FMOVDUE 8

FMOVDUG 8

FMOVDUGE 8

FMOVDUL 8

FMOVDULE 8

FMOVs 8

FMOVSA 8

FMOVSE 8?

FMOVSG 8?

FMOVSGE 8?

FMOVSL 8?

FMOVSLE 8?

FMOVSLG 8?

FMOVSN 8

FMOVSNE 8

FMOVSO 8?

FMOVSU 8

FMOVSUE 8

FMOVSUG 8

FMOVSUGE 8

FMOVSUL 8

FMOVSULE 8

FMULd 29

FMULs 29

FNEGd 8

FNEGs 8

FsMULd 29

FsTOd 25

FsTOi 25

TABLE B-2 Instruction Latencies (9 of 14)

Instruction Latency Comments
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FsTOx 25

FSUBd 26

FSUBs 26

FxTOd 26

FxTOs 26

LD_FP 9

LDFSR 9

LDD_FP 9?

LDD_FPD 9

LDDFAPASI 9

LDSB 22 performed in L2

LDSBA 21 performed in L2

LDSH 3

LDSHAPASI 3

LDSTUB 37 performed in L2

LDSTUBAPASI 37 performed in L2

LDSW 3

LDSWA 3

LDUB 3

LDUBA 3

LDUH 3

LDUHAPASI 3

LDUW 3

LDUWAPASI 3

LDX 3

LDX_FSR 27

LDXAPASI 3

MOVA 1

MOVA_FCC 1

MOVCC 1

TABLE B-2 Instruction Latencies (10 of 14)

Instruction Latency Comments
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MOVCS 1

MOVE 1

MOVE_FCC 1

MOVG 1?

MOVG_FCC 1

MOVGE 1

MOVGE_FCC 1

MOVGU 1?

MOVL 1

MOVL_FCC 1

MOVLE 1

MOVLE_FCC 1

MOVLEU 1

MOVLG_FCC 1

MOVN 1

MOVN_FCC 1

MOVNE 1

MOVNE_FCC 1

MOVNEG 1?

MOVO_FCC 1

MOVPOS 1

MOVRE 1

MOVRGEZ 1

MOVRGZ 1

MOVRLEZ 1

MOVRLZ 1

MOVRNE 1

MOVU_FCC 1

MOVUE_FCC 1

MOVUG_FCC 1

TABLE B-2 Instruction Latencies (11 of 14)

Instruction Latency Comments
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MOVUGE_FCC 1

MOVUL_FCC 1

MOVULE_FCC 1

MOVVC 1

MOVVS 1

MULSCC 7

MULX 11

OR 1

ORcc 1

ORN 1

ORNcc 1

RD_CCR 4

RDASI 4

RD_FPRS 4

RD_Y 4

SDIVD 72

SDIVccD 72

SDIVX 72

SETHI 1

SLL 1

SLLX 1

SMULD 11

SMULccD 11

SRA 1?

SRAX 1

SRL 1

SRLX 1

STFAPASI 8

ST_FSR 8

STFAPASI 8

TABLE B-2 Instruction Latencies (12 of 14)

Instruction Latency Comments
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STB 1

STBA 4

STDF 8

STDA_FP 8?

STDA_FP_ASI 8

STH 1

STHA 4

STW 1?

STWA 1?

STX 1

STX_FSR 8

STXA 1-? (4-?)? varies, depending on ASI

SUB 1

SUBC 1

SUBcc 1

SUBCcc 1

SWAPD 49 performed in L2

SWAPAD, PASI 37 performed in L2

TADDcc 1?

TADDccTVD 1

TSUBcc 1

TSUBccTVD 1

UDIVD 72

UDIVccD 72?

UDIVX 72

UMULD 11

UMULccD 11

WR_CCR 9

WRASI 9

WR_FPRS 9

TABLE B-2 Instruction Latencies (13 of 14)

Instruction Latency Comments
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B.4 Grouping Rules
Each physical cores in UltraSPARC T1 are single-issue, so there are no grouping
rules for UltraSPARC T1.

B.5 Floating-Point Operations
UltraSPARC T1 supports hardware floating-point operations, but since one floating-
point unit (FPU) is shared among 8 physical cores (32 strands), there are limitations
on dispatch of floating-point instructions to the FPU. Each physical processor core
(four strands) can have a single floating-point instruction outstanding at any given
time. For the purpose of this restriction, floating-point instructions include floating-
point operations, VIS floating-point operations, floating-point loads and stores, and
block loads and stores.

B.6 Hyperprivileged Execution
In UltraSPARC T1, the target of a branch will be fetched, even if it is annulled by a
second branch or a trap in the delay slot. When operating in hypervisor mode with
translation disabled, this means the target of every branch should be a valid physical
address unless translation is being reenabled by the delay slot.

There should be five 32-bit words of padding past the last valid instruction executed
with instruction address translation disabled. This ensures that instruction
prefetching will use valid physical addresses.

XNOR 1

XNORcc 1

XOR 1

XORcc 1

TABLE B-2 Instruction Latencies (14 of 14)

Instruction Latency Comments
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B.7 Synchronization
UltraSPARC T1 has two varieties of instructions for synchronization: memory
barriers and flush. The following memory barrier instructions ensure that any load,
store, or atomic memory operation issued after it take effect after all memory
operations issued before it:

■ MEMBAR with mmask{1} = 1 (MEMBAR #StoreLoad)

■ MEMBAR with cmask{1} = 1 (MEMBAR #MemIssue)

■ MEMBAR with cmask{2} = 1 MEMBAR #Sync)

All other types of membar instructions are treated as NOPs, since they are implied
by the TSO memory ordering protocol followed by UltraSPARC T1.

However, the memory barriers do not guarantee that the instruction caches on
UltraSPARC T1 have become consistent with the preceding memory operations. A
FLUSH instruction guarantees that in addition to the preceding memory operations
taking effect in the global memory system, all the instruction caches on UltraSPARC
T1 are consistent with these operations. It also ensures that the instruction fetch
buffer for the strand issuing the flush has become consistent with the preceding
memory operations.

Thus, when one strand is modifying the instructions of another, the “producer”
strand should

1. Complete all necessary modifications

2. Issue a FLUSH

3. Signal completion to the “consumer” strand

Completion may be signalled by a store/atomic instruction which modifies a
predetermined location, or by issuing an interrupt to the consumer strand.

The consumer strand at this point should make sure that its instruction fetch buffer
(of size 2 entries) becomes consistent with the global memory system. This can be
done by either

1. Issuing a branch to the modified location; or

2. Issuing a flush instruction; or

3. Waiting for a two-instruction gap, to allow the two instructions in the fetch buffer
to drain.

In the case of a branch, the delay slot is not guaranteed to be consistent with global
memory. The branch is a better option than flush for high performance.
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Note that the HALT instruction is not meant to be a synchronization instruction and
should not be used as such. For example, the following code, which uses halt to
make sure func_A executes before func_B, may cause T0 to hang:

T0

st X

halt

do_func_B

T1

ld X

do_func_A

intr T0
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APPENDIX C

Opcode Maps

This appendix contains the UltraSPARC T1 instruction opcode maps.

Opcodes marked with a dash (—) are reserved; an attempt to execute a reserved
opcode causes a trap unless the opcode is an implementation-specific extension to
the instruction set.

In this appendix, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in TABLE 5-1 on page 22.

In the tables in this appendix, reserved (—) and shaded entries indicate opcodes that
are not implemented in the UltraSPARC T1 processor.

†rd = 0, imm22 = 0

The ILLTRAP and reserved (—) encodings generate an illegal_instruction trap.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.
An attempt to execute opcode will cause an fp_exception_other exception with
FSR.ftt = 3 (unimplemented_FPop).

TABLE C-1 op{1:0}

op {1:0}

0 1 2 3

Branches and SETHI
See TABLE C-2.

CALL Arithmetic and Miscellaneous
See TABLE C-3

Loads/Stores
See TABLE C-4

TABLE C-2 op2{2:0} (op = 0)

op2 {2:0}

0 1 2 3 4 5 6 7

ILLTRAP BPcc – See
TABLE C-7

BiccD– See
TABLE C-7

BPr – See
TABLE C-8

SETHI
NOP†

FBPfcc – See
TABLE C-7

FBfccD– See
TABLE C-7

—

293



TABLE C-3 op3{5:0} (op = 2) (1 of 3)

op3 {5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd= 1)
WRCCR (rd = 2)
WRASI (rd = 3)
— (rd = 4, 5)
SIRH (rd = 5, rd = 0, rd = 1)
WRFPRS (rd = 6)
— (rd = 7–14)
— (rd = 15 and (rs1 > 0 or i = 0))
WRPCRP (rd = 16, rd = 0)
— (rd =16, rd = 1)
WRPIC (rd = 17, rd = 0)
— (rd = 17, rd = 1)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 0)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICKH (rd = 24)
WRSTICK_CMPR (rd = 25)
WR %asr26 (rd = 26, rd = 1)
— (rd = 26, rd = 0)
— (rd=27–31))

1 AND ANDcc TSUBcc SAVEDP (fcn = 0),
RESTOREDP (fcn = 1)
— (fcn > 1)

2 OR ORcc TADDccTVD WRPRP

— (rd = 15, 17–31)

3 XOR XORcc TSUBccTVD WRHPRH

— (rs1 = 2, 4, 7–30)

4 SUB SUBcc MULSccD FPop1 – See TABLE C-5

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 – See TABLE C-6

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) – See TABLE C-12

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2
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op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0))
— (rs1 = 0, i = 1)
— (rs1= 1)
RDCCR (rs1= 2, i = 0))
— (rs1 = 2, i = 1)
RDASI (rs1= 3, i = 0)
— (rs1 = 3, i = 1)
RDTICKPnpt (rs1 = 4, i = 0)
— (rs1 = 4, i = 1)
RDPC (rs1 = 5, i = 0)
— (rs1 = 5, i = 1)
RDFPRS (rs1 = 6, i = 0)
— (rs1 = 6, i = 1)
— (rs1 = 7–14)
MEMBAR (rs1 = 15, rd=0, i = 1)
STBARD (rs1 = 15, rd=0, i = 0)
— (rs1 = 15, rd > 0)
RDPCRP (rs1= 16)
RDPIC (rs1= 17)
— (rs1 = 18)
RDGSR (rs1= 19, i = 0)
— (rs1 = 19, i = 1)
— (rs1=20, 21)
RDSOFTINTP (rs1= 22, i = 0)
— (rs1 = 22, i = 1)
RDTICK_CMPRP (rs1= 23, i = 0)
— (rs1 = 23, i = 1)
RDSTICKP (rs1= 24, i = 0)
— (rs1 = 24, i = 1)
RDSTICK_CMPRP (rs1= 25, i = 0)
— (rs1 = 25, i = 1)
rd %asr26 (rs1= 26)
— (rs1= 27 - 31)

JMPL

TABLE C-3 op3{5:0} (op = 2) (2 of 3)

op3 {5:4}

0 1 2 3
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Shaded and the reserved (—) opcodes cause an illegal_instruction trap.

op3
{3:0}

9 MULX — RDHPRH

— (rs1 = 2, 4, 7 - 30)
RETURN

A UMULD UMULccD RDPRP

— (rs1 = 15, 17 - 30)
Tcc {(i = 0 and inst{10:5} = 0) or
i = 1 and inst{10:8} = 0)}–See
TABLE C-7 and TABLE C-11.
— {((i = 0 and inst{10:5} > 0) or
i = 1 and inst{10:8} > 0)}

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc See TABLE C-9 SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)
— (rs1 > 0)

DONEP (fcn = 0)
RETRYP (fcn = 1)
— (fcn > 1)

F SDIVD SDIVccD MOVr See TABLE C-8 —

TABLE C-3 op3{5:0} (op = 2) (3 of 3)

op3 {5:4}

0 1 2 3
296 UltraSPARC T1 Supplement • Draft D2.1, 14 May 2007



LDQF, LDQFA, STQF, STQFA, and the reserved (—) opcodes cause an
illegal_instruction trap.

TABLE C-4 op3{5:0} (op = 3)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR
— (rd > 1)

—

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD

— (rd odd)
LDDAD, PASI

— (rd odd)
LDDF LDDFAPASI

See 8.6.4 XREF

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR
— (rd > 1)

—

6 STH STHAPASI STQF STQFAPASI

7 STDD

— (rd odd)
STDAPASI

— (rd odd)
STDF STDFAPASI

See 8.6.4 XREF

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH
— (fcn = 5–15)

PREFETCHAPASI

— (fcn = 5–15)

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —
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Shaded and reserved (—) opcodes cause an fp_exception_other trap with FSR.ftt = 3
(unimplemented_FPop).

TABLE C-5 opf{8:0} (op = 2,op3 = 3416 = FPop1)

opf{2:0}

opf{8:3} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — FABSs FABSd FABSq — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — — — — — — — —

0516 — FSQRTs FSQRTd FSQRTq — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0916 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — — — — —

0D16 — FsMULd — — — — FdMULq —

0E16 — — — — — — — —

0F16 — — — — — — — —

1016 — FsTOx FdTOx FqTOx FxTOs — — —

1116 FxTOd — — — FxTOq — — —

1216 — — — — — — — —

1316 — — — — — — — —

1416 — — — — — — — —

1516 — — — — — — — —

1616 — — — — — — — —

1716 — — — — — — — —

1816 — — — — FiTOs — FdTOs FqTOs

1916 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

1A16 — FsTOi FdTOi FqTOi — — — —

1B16–3F16 — — — — — — — —
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† Reserved variation of FMOVr

Shaded and reserved (—) opcodes cause an fp_exception_other trap with FSR.ftt = 3
(unimplemented_FPop).

TABLE C-6 opf{8:0} (op = 2, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

00 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

01 — — — — — — — — —

02 — — — — — FMOVsZ FMOVdZ FMOVqZ —

03 — — — — — — — — —

04 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVsLEZ FMOVdLEZ FMOVqLEZ —

05 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

06 — — — — — FMOVsLZ FMOVdLZ FMOVqLZ —

07 — — — — — — — — —

08 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

09 — — — — — — — — —

0A — — — — — FMOVsNZ FMOVdNZ FMOVqNZ —

0B — — — — — — — — —

0C — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVsGZ FMOVdGZ FMOVqGZ —

0D — — — — — — — — —

0E — — — — — FMOVsGEZ FMOVdGEZ FMOVqGEZ —

0F — — — — — — — — —

10 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

11–17 — — — — — — — — —

18 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

19–1F — — — — — — — — —
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TABLE C-7 cond{3:0}

BPcc BiccD FBPfcc FBfccD Tcc

op = 0
op2 = 1

op = 0
op2 = 2

op = 0
op2 = 5

op = 0
op2 = 6

op = 2
op3 = 3a16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE C-8 Encoding of rcond{2:0} Instruction Field

BPr MOVr FMOVr

op = 0
op2 = 3

op = 2
op3 = 2f16

op = 2
op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVRZ

2 BRLEZ MOVRLEZ FMOVRLEZ

3 BRLZ MOVRLZ FMOVRLZ

4 — — —

5 BRNZ MOVRNZ FMOVRNZ

6 BRGZ MOVRGZ FMOVRGZ

7 BRGEZ MOVRGEZ FMOVRGEZ
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TABLE C-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc

Condition Code Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE C-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0 Condition Code Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE C-11 cc Fields (BPcc and Tcc)

cc1 cc0 Condition Code Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —
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TABLE C-12 VIS Opcodes op = 2, op3 = 3616 = IMPDEP1

opf {3:0}

0 1 2 3 4 5 6 7

opf
{8:4}

00 EDGE8 EDGE8N EDGE8L EDGE8LN EDGE16 EDGE16N EDGE16L EDGE16LN

01 ARRAY8 ARRAY16 ARRAY32

02 FCMPLE16 FCMPNE16 FCMPLE32 FCMPNE32

03 FMUL8X16 FMUL8X16AU FMUL8X16AL FMUL8SUX16 FMUL8ULX16

04

05 FPADD16 FPADD16S FPADD32 FPADD32S FPSUB16 FPSUB16S FPSUB32 FPSUB32S

06 FZERO FZEROS FNOR FNORS FANDNOT2 FANDNOT2S FNOT2 FNOT2S

07 FAND FANDS FXNOR FXNORS FSRC1 FSRC1S FORNOT2 FORNOT2S

08 SHUTDOWN SIAM

09..
1F

opf {3:0}

8 9 A B C D E F

opf
{8:4}

00 EDGE32 EDGE32N EDGE32L EDGE32LN

01
ALIGN
ADDRESS

BMASK ALIGNADDR
ESS_LITTLE

02 FCMPGT16 FCMPEQ16 FCMPGT32 FCMPEQ32

03
FMULD8SUX16 FMULD8ULX1

6
FPACK32 FPACK16 FPACKFIX PDIST

04 FALIGNDATA FPMERGE BSHUFFLE FEXPAND

05

06 FANDNOT1 FANDNOT1S FNOT1 FNOT1S FXOR FXORS FNAND FNANDS

07 FSRC2 FSRC2S FORNOT1 FORNOT1S FOR FORS FONE FONES

08

09..
1F

Note An illegal_instruction exception is generated if the undefined or
shaded opcodes in the IMPDEP1 space are used.
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APPENDIX D

Instructions and Exceptions

The instructions supported by UltraSPARC T1 and the exceptions they generate are
listed in the UltraSPARC Architecture 2005 specification.
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APPENDIX E

IEEE 754 Floating Point Support

UltraSPARC T1 conforms to the SPARC V9 Appendix B (IEEE Std 754-1985
Requirements for SPARC-V9) recommendations.

E.1 Special Operand Handling
The UltraSPARC T1 FPU provides full hardware support for subnormal operands
and results. Unlike UltraSPARC I/II and UltraSPARC III, UltraSPARC T1 will never
generate an unfinished_FPop trap type. Also, unlike UltraSPARC I/II and
UltraSPARC III, UltraSPARC T1 does not implement a nonstandard floating-point
mode. The ns bit of the FSR is always read as 0, and writes to it are ignored.

The FPU generates +inf, −inf, +largest number, −largest number (depending on
round mode) for overflow cases for multiply, divide, and add operations.

For higher-to-lower precision conversion instructions {FDTOS}:

■ overflow, underflow, and inexact exceptions can be raised.

■ overflow is treated the same way as an unrounded add result; depending on
the round mode, we will either generate the properly signed infinity or largest
number.

■ underflow will produce a signed zero, smallest number, or subnormal result.

For conversion to integer instructions {F(s,d)TOi, F(s,d)TOx}: UltraSPARC T1 follows
SPARC V9 appendix B.5, pg 246.

For NaN’s: UltraSPARC T1 Follows SPARC V9 appendix B.2 (particularly Table 27)
and B.5, pg 244-246.

■ Please note that Appendix B applies to those instructions listed in IEEE 754
section 5: “All conforming implementations of this standard shall provide
operations to add, subtract, multiply, divide, extract the sqrt, find the remainder,
round to integer in fp format, convert between different fp formats, convert

Note UltraSPARC T1 detects tininess before rounding.
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between fp and integer formats, convert binary<->decimal, and compare.
Whether copying without change of format is considered an operation is an
implementation option.”

■ The instructions involving copying/moving of fp data (FMOV, FABS, and FNEG)
will follow earlier UltraSPARC implementations by doing the appropriate sign bit
transformation but will not cause an invalid exception nor do a rs2 = SNaN to
rd = QNaN transformation.

■ Following UltraSPARC I/II implementations, all Fpops as defined in V9 will
update cexc. All other instructions will leave cexc unchanged.

■ Following SPARC V9 Manual 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10
Overflow Result is defined as:

If the appropriate trap enable masks are not set (FSR.ofm = 0 and
FSR.nxm = 0), then set aexc and cexc overflow and inexact flags:
FSR.ofa = 1, FSR.nxa = 1, FSR.ofc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ofm = 1 or
FSR.nxm = 1), then only an IEEE overflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/II to follow
the SPARC V9 section 5.1.7.9 errata:

If FSR.ofm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ofm = 1, independent of FSR.nxm, then FSR.ofc = 1 and
FSR.nxc = 0.

■ Following SPARC V9 Manual 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10
Underflow Result is defined as:

If the appropriate trap enable masks are not set (FSR.ufm = 0 and
FSR.nxm = 0), then set aexc and cexc underflow and inexact flags:
FSR.ufa = 1, FSR.nxa = 1, FSR.ufc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ufm = 1 or
FSR.nxm = 1), then only an IEEE underflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/II to follow
the SPARC V9 section 5.1.7.9 errata:

If FSR.ufm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ufm = 1, independent of FSR.nxm, then FSR.ufc = 1 and
FSR.nxc = 0.

The remainder of this section gives examples of special cases to be aware of that
could generate various exceptions.

E.1.1 Infinity Arithmetic
Let “num” be defined as unsigned in the following tables.
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E.1.1.1 One Infinity Operand Arithmetic
■ Do not generate exceptions

TABLE E-1 One Infinity Operations That Do Not Generate Exceptions

Cases

+inf plus +num = +inf
+inf plus -num = +inf
-inf plus +num = -inf
-inf plus -num = -inf

+inf minus +num = +inf
+inf minus -num = +inf
-inf minus +num = -inf
-inf minus -num = -inf

+inf multiplied by +num = +inf
+inf multiplied by -num = -inf
-inf multiplied by +num = -inf
-inf multiplied by -num = +inf

+inf divided by +num = +inf
+inf divided by -num = -inf
-inf divided by +num = -inf
-inf divided by -num = +inf

+num divided by +inf = +0
+num divided by -inf = -0
-num divided by +inf = -0
-num divided by -inf = +0

fstod, fdtos (+inf) = +inf
fstod, fdtos (-inf) = -inF

+inf divided by +0 = +inf
+inf divided by -0 = -inf
-inf divided by +0 = -inf
-inf divided by -0 = +inf
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■ Could generate exceptions

Any arithmetic operation involving infinity as 1 operand and a QNaN as the other operand:
SPARC V9 B.2.2 Table 27
(+/- inf) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (+/- inf) = QNaN1

Compares when other operand is not a NaN treat infinity just like a regular number:
+inf = +inf, +inf > anything else;
-inf = -inf, -inf < anything else.

Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be +/- inf):
* FCMPE
* FCMP

Compares when other operand is a QNaN, SPARC V9 A.13, B.2.1; fcc value = unordered =
2’b11
fcmp(s/d) (+/- inf) with (QNaN2) - no invalid exception
fcmp(s/d) (QNaN1) with (+/- inf) - no invalid exception

TABLE E-2 One Infinity Operations That Could Generate Exceptions

Cases Possible Exception
Result (in addition to accrued
exception) iF tem is cleared

SPARC V9 Appendix B.51

F{s,d}TOi (+inf) = invalid
F{s,d}TOx (+inf) = invalid

F{s,d}TOi (-inf) = invalid
F{s,d}TOx (-inf) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

231-1
263-1

-231

-263

SPARC V9 B.2.2

+inf multiplied by +0 = invalid
+inf multiplied by -0 = invalid
-inf multiplied by +0 = invalid
-inf multiplied by -0 = invalid

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)

QNaN
QNaN
QNaN
QNaN

TABLE E-1 One Infinity Operations That Do Not Generate Exceptions (Continued)

Cases
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1. Similar invalid exceptions also included in SPARC V9 B.5 are generated when the source operand is a NaN(QNaN or SNaN) or a re-
sulting number that cannot fit in 32b[64b] integer format: (large positive argument >= 231[263] or large negative argument <= -(231 +
1)[-(263+1)]

2. Note that in the IEEE 754 standard, infinity is an exact number; so this exception could also applies to non-infinity operands as well.
Also note that the invalid exception and SNaN to QNaN transformation does not apply to copying/moving fpops (fmov,fabs,fneg).

SPARC V9 B.2.2 Table 272

Any arithmetic operation involving infinity
as 1 operand and a SNaN as the other
operand except copying/moving data
(+/- inf) OPERATOR (SNaN2)
(SNaN1) OPERATOR (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

SPARC V9 A.13, B.2.12

Any compare operation involving infinity as
1 operand and a SNaN as the other operand:
FCMP(s/d) (+/- inf) with (SNaN2)
FCMP(s/d) (SNaN1) with (+/- inf)

FCMPE(s/d) (+/- inf) with (SNaN2)
FCMPE(s/d) (SNaN1) with (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

SPARC V9 A.132

Any compare & generate exception operation
involving infinity as 1 operand and a QNaN
as the other operand:

FCMPE(s/d) (+/- inf) with (QNaN2)
FCMPE(s/d) (QNaN1) with (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

TABLE E-2 One Infinity Operations That Could Generate Exceptions (Continued)

Cases Possible Exception
Result (in addition to accrued
exception) iF tem is cleared
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E.1.1.2 Two Infinity Operand Arithmetic
■ Do not generate exceptions

■ Could generate exceptions

TABLE E-3 Two Infinity Operations That Do Not Generate Exceptions

Cases

+inf plus +inf = +inf
-inf plus -inf = -inf

+inf minus -inf = +inf
-inf minus +inf = -inf

+inf multiplied by +inf = +inf
+inf multiplied by -inf = -inf
-inf multiplied by +inf = -inf
-inf multiplied by -inf = +inf

Compares treat infinity just like a regular number:
+inf = +inf, +inf > anything else;
-inf = -inf, -inf < anything else.

Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be +/- inf):
* FCMPE
* FCMP

TABLE E-4 Two Infinity Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 B.2.2
+inf plus -inf = invalid
-inf plus +inf = invalid

+inf minus +inf = invalid
-inf minus -inf = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN

QNaN
QNaN

SPARC V9 B.2.2
+inf divided by +inf = invalid
+inf divided by -inf = invalid
-inf divided by +inf = invalid
-inf divided by -inf = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN
QNaN
QNaN
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E.1.2 Zero Arithmetic

1.In this context, 0 is again another exact number; so this exception could also applies to non-zero operands as well. Also note that the
invalid exception and SNaN to QNaN transformation does not apply to copying/moving data instructions (FMOV, FABS, FNEG)

TABLE E-5 Zero Arithmetic Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 B.2.2 & 5.1.7.10.4
+0 divided by +0 = invalid
+0 divided by -0 = invalid
-0 divided by +0 = invalid
-0 divided by -0 = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand
result)
QNaN
QNaN
QNaN
QNaN

SPARC V9 5.1.7.10.4
+num divided by +0 = divide by zero
+num divided by -0 = divide by zero
-num divided by +0 = divide by zero
-num divided by -0 = divide by zero

IEEE_754 7.2
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero

+inf
-inf
-inf
+inf

SPARC V9 B.2.2 Table 271

Any arithmetic operation involving
zero as 1 operand and a SNaN as the
other operand except copying/moving
data
(+/- 0) OPERATOR (SNaN2)
(SNaN1) OPERATOR (+/- 0)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

TABLE E-6 Interesting Zero Arithmetic Sign Result Case

Cases

+0 plus -0 = +0 for all round modes except round to -infinity where the
result is -0.
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E.1.3 NaN Arithmetic
■ Do not generate exceptions

TABLE E-7 NaN Arithmetic Operations that do not generate exceptions

Cases

SPARC V9 B.2.1: Fp convert to wider NaN transformation
FsTOd (QNaN2) = QNaN2 widened

FsTOd(0x7fd10000) = 0x7ffa2000 8’h0
FsTOd(0xffd10000) = 0xfffa2000 8’h0

SPARC V9 B.2.1: Fp convert to narrower NaN transformation
FdTOs (QNaN2) = QNaN2 narrowed

FdTOs(0x7ffa2000 8’h0) = 0x7fd1000
FdTOs(0xfffa2000 8’h0) = 0xffd1000

SPARC V9 B.2.2 Table 27
Any non-compare arithmetic operations --result takes sign of QNaN pass through operand.

(+/- num) OPERATOR (QNaN2) = QNaN2

(QNaN1) OPERATOR (+/- num) = QNaN1

(QNaN1) OPERATOR (QNaN2) = QNaN2
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■ Could generate exceptions

E.1.4 Special Inexact Exceptions
UltraSPARC T1 Follows SPARC V9 5.1.7.10.5 (IEEE_754 Section 7.5) and sets
FSR_inexact whenever the rounded result of an operation differs from the infinitely
precise unrounded result.

TABLE E-8 NaN Arithmetic Operations That Could Generate Exceptions

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared

SPARC V9 B.2.1: Fp convert to wider NaN transformation
FsTOd (SNaN2) = QSNaN2 widened

FsTOd(0x7f910000) = 0x7ffa2000 8’h0
FsTOd(0xff910000) = 0xfffa2000 8’h0

IEEE_754 7.1

IEEE_754 invalid QSNaN2
widened

SPARC V9 B.2.1: Fp convert to narrower NaN transformation
FdTos (SNaN2) = QSNaN2 narrowed

FdTos(0x7ff22000 8’h0) = 0x7fd1000
FdTos(0xfff22000 8’h0) = 0xffd1000

IEEE_754 7.1

IEEE_754 invalid QSNaN2
narrowed

SPARC V9 B.2.2 Table 27
Any non-compare arithmetic operations except copying/
moving (fmov, fabs, fneg)
(+/- num) OPERATOR (SNaN2)

(SNaN1) OPERATOR (+/- num)

(SNaN1) OPERATOR (SNaN2)

(QNaN1) OPERATOR (SNaN2)

(SNaN1) OPERATOR (QNaN2)

IEEE_754 7.1

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

QSNaN2

QSNaN1

QSNaN2

QSNaN2

QSNaN1

SPARC V9 Appendix B.5
F{s,d}TOi (+QNaN) = invalid
F{s,d}TOi (+SNaN) = invalid
F{s,d}TOx (+QNaN) = invalid
F{s,d}TOx (+SNaN) = invalid

F{s,d}TOi (-QNaN) = invalid
F{s,d}TOi (-SNaN) = invalid
F{s,d}TOx (-QNaN) = invalid
F{s,d}TOx (-SNaN) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

231-1
231-1
263-1
263-1

-231

-231

-263

-263
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Additionally, there are a few special cases to be aware of:

E.2 Subnormal Handling
The UltraSPARC T1 FPU provides full hardware support for subnormal operands
and results. Unlike UltraSPARC I/II and UltraSPARC III, UltraSPARC T1 will never
generate an unfinished_FPop trap type.

TABLE E-9 Fp <-> Int Conversions With Inexact Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 A.14: Fp convert to 32b integer when source operand
lies between -(231-1) and 231, but is not exactly an integer
FsTOi, FdTOi

IEEE_754 7.5

IEEE_754 inexact An integer number

SPARC V9 A.14: Fp convert to 64b integer when source operand
lies between -(263-1) and 263, but is not exactly an integer
FsTOx, FdTOx

IEEE_754 7.5

IEEE_754 inexact An integer number

SPARC V9 A.15: Convert integer to fp format when 32b integer
source operand magnitude is not exactly representable in single
precision (23b mantissa). Note, even if the operand is > 224-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FiTOs

IEEE_754 7.5

IEEE_754 inexact A SP number

SPARC V9 A.15: Convert integer to fp format when 64b integer
source operand magnitude is not exactly representable in single
precision (23b mantissa). Note, even if the operand is > 224-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOs

IEEE_754 7.5

IEEE_754 inexact A SP number

SPARC V9 A.15: Convert integer to fp format when 64b integer
source operand magnitude is not exactly representable in double
precision (52b mantissa). Note, even if the operand is > 253-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOd

IEEE_754 7.5

IEEE_754 inexact A DP number
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APPENDIX F

Caches and Cache Coherency

This appendix describes various interactions between the caches and memory, and
the management processes that an operating system must perform to maintain data
integrity in these cases. In particular, it discusses the following subjects:

■ Invalidation of one or more cache entries – when and how to do it
■ Differences between cacheable and noncacheable accesses
■ Ordering and synchronization of memory accesses
■ Accesses to addresses that cause side effects (I/O accesses)
■ Nonfaulting loads
■ Cache sizes, associativity, replacement policy, etc.

F.1 Cache Flushing
Data in the level-1 (read-only or write-through) caches can be flushed by
invalidating the entry in the cache. Modified data in the level-2 (writeback) cache
must be written back to memory when flushed.

Cache flushing is required in the following cases:

Chapter Revision History
Date By Comment

28 Aug 03 Bill Bryg Started outline of appendix.

22 Sep 03 Bill Croxton Copied and reformatted Chapter 8, Cache and Memory Interactions,
from USIIi User Manual.

25 Nov 03 J. Laudon Initial changes for UltraSPARC T1

4 Jun 04 J. Laudon More information on unit of coherence.

2 Aug 04 J. Laudon Add cache index information.

20 Dec 04 J. Laudon Better documentation of how to flush L2.

11 Feb 05 M. L. Nohr Converted to UltraSPARC Architecture format
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■ I-cache: Flush is needed before executing code that is modified by a local store
instruction other than block commit store, see Section 3.1.1.1, “Instruction Cache
(I-cache).” This is done with the FLUSH instruction or by using ASI accesses.
When ASI accesses are used, software must ensure that the flush is done on the
same virtual core as the stores that modified the code space.

■ D-cache: Flush is needed when a physical page is changed from (virtually)
cacheable to (virtually) noncacheable. This is done with a displacement flush
(Displacement Flushing on page 316).

■ L2 cache: Flush is needed for stable storage. Examples of stable storage include
battery-backed memory and transaction logs. This is done with a displacement
flush (see Displacement Flushing on page 316). Flushing the L2 cache flushes the
corresponding blocks from the I- and D-caches because UltraSPARC T1 maintains
inclusion between the L2 and L1 caches.

F.1.1 Displacement Flushing
Cache flushing can be accomplished by a displacement flush. This is done by placing
the cache in direct-map mode, and reading a range of read-only addresses that map
to the corresponding cache line being flushed, forcing out modified entries in the
local cache. Care must be taken to ensure that the range of read-only addresses is
mapped in the MMU before starting a displacement flush; otherwise, the TLB miss
handler may put new data into the caches. In addition, the range of addresses used
to force lines out of the cache must not be present in the cache when starting the
displacement flush (if any of the displacing lines are present before starting the
displacement flush, fetching the already present line will not cause the proper way in
the direct-mapped mode L2 to be loaded, instead the already present line will stay at
its current location in the cache.)

F.1.2 Memory Accesses and Cacheability

Note Diagnostic ASI accesses to the L2 cache can be used to invalidate
a line, but they are generally not an alternative to displacement
flushing. Modified data in the L2 cache will not be written back
to memory using these ASI accesses.

Note Atomic load-store instructions are treated as both a load and a
store; they can be performed only in cacheable address spaces.
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F.1.3 Coherence Domains
Two types of memory operations are supported in UltraSPARC T1: cacheable and
noncacheable accesses, as indicated by the page translation. Cacheable accesses are
inside the coherence domain; noncacheable accesses are outside the coherence
domain.

SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses. In TSO mode, UltraSPARC T1 maintains TSO ordering, regardless of the
cacheability of the accesses. For SPARC V9 compatibility while in PSO or RMO
mode, a MEMBAR #Lookaside should be used between a store and a subsequent
load to the same noncacheable address. See the SPARC Architecture Manual, Version 9
for more information about the SPARC V9 memory models.

On UltraSPARC T1, a MEMBAR #Lookaside executes more efficiently than a
MEMBAR #StoreLoad.

F.1.3.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses. They
are implemented in UltraSPARC T1 with the following properties:

■ Data resides in real memory locations.

■ They observe supported cache coherence protocol.

■ The unit of coherence is 64 bytes at the system level (coherence between the
virtual processors and I/O), enforced by the L2 cache.

■ The unit of coherence for the primary caches (coherence between multiple virtual
processors) is the primary cache line size (16 bytes for the data cache, 32 bytes for
the instruction cache), enforced by the L2 cache directories.

F.1.3.2 Noncacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.
Accesses of some of these memory (or memory mapped) locations may result in side
effects. Noncacheable accesses are implemented in UltraSPARC T1 with the
following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side effects; for example, memory-
mapped I/O control registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.
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Noncacheable accesses with the e bit set (that is, those having side-effects) are all
strongly ordered with respect to other noncacheable accesses with the e bit set.
Speculative loads with the e bit set cause a data_access_exception trap (with
SFSR.ft = 2, speculative load to page marked with e bit).

F.1.3.3 Global Visibility and Memory Ordering

To ensure the correct ordering between the cacheable and noncacheable domains,
explicit memory synchronization is needed in the form of MEMBARs or atomic
instructions. CODE EXAMPLE F-1 illustrates the issues involved in mixing cacheable
and noncacheable accesses.

Note The side-effect attribute does not imply noncacheability.
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Due to load and store buffers implemented in UltraSPARC T1, CODE EXAMPLE F-1
may not work in PSO and RMO modes without the MEMBARs shown in the
program segment.

In TSO mode, loads and stores (except block stores) cannot pass earlier loads, and
stores cannot pass earlier stores; therefore, no MEMBAR is needed.

CODE EXAMPLE F-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.
Process A:
While (1)
{

Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag
While F1 is set (spin on flag)
Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D2
}

Process B:
While (1)
{

  While F1 is cleared (spin on flag)

      Load F1
2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D1

  Store D2
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag
}

Note A MEMBAR #MemIssue or MEMBAR #Sync is needed if
ordering of cacheable accesses following noncacheable accesses must
be maintained in PSO or RMO.
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In PSO mode, loads are completed in program order, but stores are allowed to pass
earlier stores; therefore, only the MEMBAR at #1 is needed between updating data
and the flag.

In RMO mode, there is no implicit ordering between memory accesses; therefore, the
MEMBARs at both #1 and #2 are needed.

F.1.4 Memory Synchronization: MEMBAR and FLUSH
The MEMBAR (STBAR in SPARC V8) and FLUSH instructions are provide for
explicit control of memory ordering in program execution. MEMBAR has several
variations; their implementations in UltraSPARC T1 are described below.

■ MEMBAR #LoadLoad — Forces all loads after the MEMBAR to wait until all
loads before the MEMBAR have reached global visibility.

■ MEMBAR #StoreLoad — Forces all loads after the MEMBAR to wait until all
stores before the MEMBAR have reached global visibility.

■ MEMBAR #LoadStore — Forces all stores after the MEMBAR to wait until all
loads before the MEMBAR have reached global visibility.

■ MEMBAR #StoreStore and STBAR — Forces all stores after the MEMBAR to
wait until all stores before the MEMBAR have reached global visibility.

■ MEMBAR #Lookaside — SPARC V9 provides this variation for
implementations having virtually tagged store buffers that do not contain
information for snooping.

■ MEMBAR #MemIssue — Forces all outstanding memory accesses to be completed
before any memory access instruction after the MEMBAR is issued. It must be
used to guarantee ordering of cacheable accesses following noncacheable
accesses. For example, I/O accesses must be followed by a MEMBAR #MemIssue
before subsequent cacheable stores; this ensures that the I/O accesses reach global
visibility before the cacheable stores after the MEMBAR.

MEMBAR #MemIssue is different from the combination of MEMBAR
#LoadLoad | #LoadStore | #StoreLoad | #StoreStore. MEMBAR
#MemIssue orders cacheable and noncacheable domains; it prevents memory
accesses after it from issuing until it completes.

Notes (1) STBAR has the same semantics as MEMBAR #StoreStore; it
is included for SPARC V8 compatibility.

(2) The above four MEMBARs do not guarantee ordering between
cacheable accesses after noncacheable accesses.

Note For SPARC V9 compatibility, this variation should be used before
issuing a load to an address space that cannot be snooped.
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■ MEMBAR #Sync (Issue Barrier) — Forces all outstanding instructions and all
deferred errors to be completed before any instructions after the MEMBAR are
issued.

See the references to “Memory Barrier,” “The MEMBAR Instruction,” and
“Programming With the Memory Models,” in The SPARC Architecture Manual,
Version 9 for more information.

F.1.4.1 Self-Modifying Code (FLUSH)

The SPARC V9 instruction set architecture does not guarantee consistency between
code and data spaces. A problem arises when code space is dynamically modified by
a program writing to memory locations containing instructions. LISP programs and
dynamic linking require this behavior. SPARC V9 provides the FLUSH instruction to
synchronize instruction and data memory after code space has been modified.

In UltraSPARC T1, a FLUSH behaves like a store instruction for the purpose of
memory ordering. In addition, all instruction fetch (or prefetch) buffers are
invalidated. The issue of the FLUSH instruction is delayed until previous (cacheable)
stores are completed. Instruction fetch (or prefetch) resumes at the instruction
immediately after the FLUSH.

F.1.5 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion. These
instructions behave like both a load and a store but the operations are carried out
indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_action trap. An atomic access with a noncacheable address
causes a data_access_exception trap (with SFSR.ft = 4, atomic to page marked
noncacheable). An atomic access with an unsupported ASI causes a
data_access_exception trap (with SFSR.ft = 8, illegal ASI value or virtual address).
TABLE F-1 lists the ASIs that support atomic accesses.

Note MEMBAR #Sync is a costly instruction; unnecessary usage may
result in substantial performance degradation.

TABLE F-1 ASIs that Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS{_LITTLE} Restricted

ASI_AS_IF_USER_PRIMARY{_LITTLE} Restricted

ASI_AS_IF_USER_SECONDARY{_LITTLE} Restricted
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F.1.5.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent
loads interlock on earlier SWAPs. A cache miss allocates the corresponding line.

F.1.5.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer
register and atomically writes all ones (FF16) into the addressed byte.

F.1.5.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic
instruction. It compares the value in an integer register to a value in memory; if they
are equal, the value in memory is swapped with the contents of a second integer
register. All of these operations are carried out atomically; in other words, no other
memory operation may be applied to the addressed memory location until the entire
compare-and-swap sequence is completed.

F.1.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, except as follows:

■ It does not allow side-effect access. An access with the e bit set causes a
data_access_exception trap (with SFSR.ft = 2, speculative load to page marked e
bit).

■ It can be applied to a page with the nfo bit set; other types of accesses will cause
a data_access_exception trap (with SFSR.ft = 1016).

ASI_PRIMARY{_LITTLE} Unrestricted

ASI_SECONDARY{_LITTLE} Unrestricted

ASI_REAL{_LITTLE} Unrestricted

Note Atomic accesses with nonfaulting ASIs are not allowed, because these
ASIs have the load-only attribute.

Note If a page is marked as virtually noncacheable but physically
cacheable, allocation is done to the L2 cache only.

TABLE F-1 ASIs that Support SWAP, LDSTUB, and CAS (Continued)

ASI Name Access
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APPENDIX G

ECC Codes

G.1 ECC Summary
The following arrays are protected by ECC:

Chapter Revision History
Date Name Comments

August 8, 2003 Bill Bryg Moved text from RAS Review doc.

August 26, 2003 Bill Bryg Added ECC tables.

Sept 10, 2003 Bill Bryg Added Poison descriptions.

Sept 19, 2003 Bill Bryg Fixed ECC syndrome tables for L2 data and FRF. Deleted syndrome table for
L2 tag (not sw visible).

Oct 16, 2003 Bill Bryg Fixed typo in specifying L2 poison syndrome.

Oct 23, 2003 Bill Bryg Removed A.7.1.3, since RMW to a line with error will not cause poison.

Nov 19, 2003 Bill Bryg Modified source of poison description, describing case where sub-word DMA
write corrupts both halves of 8B double-word.

Dec 1, 2003 Bill Bryg Added description of memory external nibble order, because the check
nibbles are scrambled (externally) relative to their software visible ordering.

Aug 20, 2004 Bill Bryg Fixed L2 tag checkbit table, to correspond with only 22 bits of tag.

Aug 23, 2004 Bill Bryg Fixed L2 tag checkbit table, changing order from C[5:0] to C[4:0,5], then
relabeling back to C[5:0]..

11 Feb 2005 M. L. Nohr Converted to UltraSPARC Architecture format

4 Jan 2006 D. Weaver Added Tables back in. Cleanup of code formatting in G.6.2 on page 329

13 Feb 2006 D.Weaver Corrections, per Jim Laudon’s review

TABLE G-1 Table 6 Error Handling

Array ECC Size Instances Total

L2 Cache Data 32+7 SEC/DED 936 KB 4 3744 KB

L2 Writeback Buffer 32+7 SEC/DED 624 B 4 2496 B

L2 Fill Buffer 32+7 SEC/DED 624 B 4 2496 B
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The L2 Writeback Buffer, L2 Fill Buffer, and L2 DMA Buffer contain data that is in
the processed of being moved to or from the cache. The ECC generation and check
blocks were placed to include these buffers, but errors in these buffers are
indistinguishable from L2 cache errors.

G.2 IRF ECC Code

L2 DMA Input Buffer 32+7 SEC/DED 312 B 4 1248 B

L2 Cache Tag 22+6 SEC 42 KB 4 168 KB

FP Register File 32+7 SEC/DED 1280 B 8 10 KB

Integer Register File 64+8 SEC/DED 9 KB 8 72 KB

TABLE G-2 IRF Check Bit Generation

Data[31:0]

Check
[6:0]

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C2 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

C5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1

Data[63:32]

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

C0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

C2 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

TABLE G-1 Table 6 Error Handling

Array ECC Size Instances Total
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1 — Data bit is xored into calculation of that check bit.

0 — Data bit is not part of the check bit calculation.

The syndrome calculation is the inverse of the check bit calculation, for synd{6:0}.
synd{7}, however, is simply the xor of data{63:0} and check{7:0}.

C3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

C4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1

TABLE G-3 Syndrome Table for IRF ECC Code

SYND
[7:4]
Value

SYND [3:0] Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ne U U U U U U U U U U U U U U U

1 U U U U U U U U U U U U U U U U

2 U U U U U U U U U U U U U U U U

3 U U U U U U U U U U U U U U U U

4 U U U U U U U U U U U U U U U U

5 U U U U U U U U U U U U U U U U

6 U U U U U U U U U U U U U U U U

7 U U U U U U U U U U U U U U U U

8 C7 C0 C1 0 C2 1 2 3 C3 4 5 6 7 8 9 10

9 C4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A C5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

B 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

C C6 57 58 59 60 61 62 63 M M M M M M M M

D M M M M M M M M M M M M M M M M

E M M M M M M M M M M M M M M M M

F M M M M M M M M M M M M M M M M

TABLE G-2 IRF Check Bit Generation

Data[31:0]

Check
[6:0]

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0
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ne — No error

C0–C7 — Single-bit error on syndrome/check bit of that number.

0–63 — Single-bit error on data bit of that number.

U — Uncorrectable double (or 2N) bit error.

M — Triple or worse (2N + 1) bit error.

G.3 FRF ECC Code
The floating-point register files use the same 32+7 SEC/DED codes as the L2 Data,
except that the FRF is never intentionally marked with a poison indication.

G.4 L2 Data ECC Code

1 — Data bit is xored into calculation of that check bit.

0 — Data bit is not part of the check bit calculation.

The syndrome calculation is the inverse of the check bit calculation, for synd{5:0}.
synd{6}, however, is simply the xor of data{31:0} and check{6:0}.

TABLE G-4 L2 Data Check Bit Generation

Data[31:0]

Check
[6:0]

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1

C2 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

C5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1
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ne — No error

C0–C6 — Single-bit error on syndrome/check bit of that number.

0–31 — Single-bit error on data bit of that number.

P/U — Poison, or uncorrectable double (or 2N) bit error

U — Uncorrectable double (or 2N) bit error.

M — Triple or worse (2N + 1) bit error

G.5 L2 Tag ECC Code
The syndrome is not captured on L2 Tag ECC errors (LTC), so we only document
check bit calculation for L2 tag.

TABLE G-5 Syndrome Table for L2 Data ECC Code

SYND
[6:4]
Value

SYND [3:0] Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ne U U P/U U U U U U U U U U U U U

1 U U U U U U U U U U U U U U U U

2 U U U U U U U U U U U U U U U U

3 U U U U U U U U U U U U U U U U

4 C6 C0 C1 0 C2 1 2 3 C3 4 5 6 7 8 9 10

5 C4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

6 C5 26 27 28 29 30 31 M M M M M M M M M

7 M M M M M M M M M M M M M M M M

TABLE G-6 L2 Tag Check Bit Generation

Tag[21:0]

Check
[6:0]

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1

C1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1

C2 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1
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1 — Data bit is xored into calculation of that check bit.

0 — Data bit is not part of the check bit calculation.

G.6 Memory Extended ECC Support
UltraSPARC T1 supports Extended ECC error correction (QEC/OED) for main
memory, where we can correct any error contained within a single memory nibble
(4b) and detect as uncorrectable any error that is contained within any two nibbles.
The ECC coding scheme uses 4-bit word (16 symbol), 128-bit data (16 words), and
16-bit syndrome (4 words) and uses Galois Field of (2^4) to implement Add/
Multiply Operation that is completely inclusive within its field (Definition of Galois
Field). We use 3 × 4 bit correction code + 1 × 4 bit code (16 bits total) to correct 4-bit
errors and detect 8-bit errors. While the addition is a trivial bitwise xor, the
multiplication is not as straightforward and involves a Modulo multiplication, using
its field Primitive Polynomial of value 10011. Also, the syndrome or Parity generated
is xored bitwise with the parity of the address ( ^(PA{39:8}) to that location.

G.6.1 Nomenclature and Nibble Order
The data nibbles and check/syndrome nibbles are numbered in a little-endian
fashion, so the order as seen by software is—

C3 C2 C1 C0 N31 N30 ... N5 N4 N3 N2 N1 N0

—so N0 is made up of data{3:0}, N1 is data{7:4}, etc.

The data for the ECC code is referred to either as check nibbles or as syndrome
(nibbles), depending on where it is relative to the ECC generation calculation and to
the ECC check calculation. After the ECC generation calculation, it is called “check
nibbles”, and this is what is stored in physical DRAM. When memory is accessed,
the data nibbles and check nibbles are read out of DRAM and run through an ECC
check calculation, which produces the “syndrome nibbles”, synd{15:0}.

C3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

C4 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

C5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

TABLE G-6 L2 Tag Check Bit Generation

Tag[21:0]

Check
[6:0]

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0
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The check nibbles are not directly accessible by software.

G.6.1.1 External Hardware Bit Order

External to the chip, the data nibbles are numbered in a little-endian fashion, but the
check nibbles are numbered big-endian, so the order as seen by an external logic
analyzer is:

C0 C1 C2 C3 N31 N30 ... N5 N4 N3 N2 N1 N0

← DRAMn_CB{15:0} → ← DRAMn_DQ{127:0} →

so N0 is made up of DQ{3:0}, N1 is DQ{7:4}, etc. However, the check nibbles are
wired in big-endian order by nibble, but little-endian within each check nibble, so
C0{3:0} is made up of CB{15:12}, C1{3:0} is CB{11:8}, C2{3:0} is CB{7:4}, and C3{3:0} is
CB{3:0}.

G.6.2 Memory ECC Code Description
The calculation for the check nibbles is as follows:

Check Nibble0 (4 bits) = (N0 + 2*N1 + 3*N2 +  4*N3 + 5*N4 + 6*N5 +
7*N6 + 8*N7 +
9*N8 + A*N9 + B*N10 + C*N11 + D*N12 + E*N13 + F*N14 +
N15 + 2*N16 + 3*N17 + 4*N18 + 5*N19 + 6*N20 + 7*N21 + 8*N22 +
9*N23 + A*N24 + B*N25 + C*N26 + D*N27 + E*N28 + F*N29 + N31)

^ {4{addr_parity}}

Check Nibble1 (4 bits) = (N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 +
N8 + N9 + N10 +
N11 + N12 + N13 + N14 + N30 + N31) ^ {4{addr_parity}}

Check Nibble2 (4 bits) = (N15 + N16 + N17 + N18 + N19 + N20 + N21 +
N22 + N23 + N24 +
N25 + N26 + N27 + N28 + N29 + N30 + N31) ^ {4{addr_parity}}

Check Nibble3 (4 bits) = (N0 + 9*N1+ E*N2 + D*N3 + B*N4 + 7*N5 +
6*N6 + F*N7 + 2*N8 +
C*N9 + 5*N10+ A*N11 + 4*N12 + 3*N13 + 8*N14 + N15 + 9*N16 +
E*N17 + D*N18 + B*N19 + 7*N20 + 6*N21 + F*N22 + 2*N23 + C*N24 +
5*N25 + A*N26+ 4*N27 + 3*N28 + 8*N29 + N30) ^ {4{addr_parity}}

The calculation for the syndrome nibbles is similar, but includes the corresponding
check nibble:
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Syndrome Nibble0 (4 bits) = (C0 + N0 + 2*N1 + 3*N2 +  4*N3 + 5*N4 +
6*N5 + 7*N6 + 8*N7 +
9*N8 + A*N9 + B*N10 + C*N11 + D*N12 + E*N13 + F*N14 +
N15 + 2*N16 + 3*N17 + 4*N18 + 5*N19 + 6*N20 + 7*N21 + 8*N22 +
9*N23 + A*N24 + B*N25 + C*N26 + D*N27 + E*N28 + F*N29 + N31)

^ {4{addr_parity}}

Syndrome  Nibble1 (4 bits) = (C1 + N0 + N1 + N2 + N3 + N4 + N5 +
N6 + N7 + N8 + N9 + N10 +
N11 + N12 + N13 + N14 + N30 + N31) ^ {4{addr_parity}}

Syndrome  Nibble2 (4 bits) = (C2 + N15 + N16 + N17 + N18 + N19 +
N20 + N21 + N22 + N23 + N24 +
N25 + N26 + N27 + N28 + N29 + N30 + N31) ^ {4{addr_parity}}

Syndrome  Nibble3 (4 bits) = (C3 + N0 + 9*N1+ E*N2 + D*N3 + B*N4 +
7*N5 + 6*N6 + F*N7 + 2*N8 +
C*N9 + 5*N10+ A*N11 + 4*N12 + 3*N13 + 8*N14 + N15 + 9*N16 +
E*N17 + D*N18 + B*N19 + 7*N20 + 6*N21 + F*N22 + 2*N23 + C*N24 +
5*N25 + A*N26+ 4*N27 + 3*N28 + 8*N29 + N30) ^ {4{addr_parity}}

Error correction is accomplished by following equations. If S0, S1, S2 and S3 are the
4 Syndrome nibbles,

Position 0->14 (nibble position)
if (S2 == 0 && S1 != 0 && S0 != 0), then {

nibble_to_correct = (S0/S1 – 1);
corrected_data = S1 + erred_nibble;

}

Position 15->29 (nibble position)
if (S1 == 0 && S0 != 0 && S2 != 0), then  {

nibble_to_correct = (S0/S2 + 14);
corrected_data = S2 + erred_nibble;

}

Position 30 (nibble position)
if (S0 == 0 && S1 != 0 && S2 != 0 && S1 == S2), then  {

nibble_to_correct = N30
corrected_data = S1+ erred_nibble;

}

Position 31 (nibble position)
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If ((S0 != 0) && (S1 != 0) && (S2 != 0) &&
 (S0 == S1 == S2)), then  {

nibble_to_correct = N31;
corrected_data = S1+ erred_nibble;

}

G.6.3 Memory Address Parity Protection
Note that address parity is added (xored) into all of the check bits. Any normal
address parity error will be detected as a multi-nibble uncorrectable error, since all
four syndrome nibbles will be all-ones (FFFF16) when the data is read back.

Address parity is defined as the xor of all the address bits that specify the bank-
specific line address, which is ( ^(PA{39:8}) for a four-bank memory system, or
( ^(PA{39:7}) for a two-bank memory system.

G.6.4 Galois Multiplication Table

Notes (1) Nibble S3 is not used in correction but only used for multiple
error detection. Double errors are detected if (a) exactly two of
the check-nibbles are non-zero, or (b) all four of the check-
nibbles are non-zero, or (c) the nibble position as indicated by
S0/S1or S0/S2 does not match the nibble position as indicated
by S3/S1 or S3/S2, or (d) S1 and S2 are non-zero, and the non-
zero check-nibbles are not all equal.

(2) This memory ECC scheme assumes that memory is
implemented with x4 DRAMs. If x8 parts are used, this is
effectively a SEC/DED scheme, with some multibit correction,
but no Extended ECC survival capability.

TABLE G-7 Galois Field Multiplication Table, Polynomial 10011

Multipli
er

Multiplicand

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 a b c d e f

2 0 2 4 6 8 a c e 3 1 7 5 b 9 f d

3 0 3 6 5 c f a 9 b 8 d e 7 4 1 2

4 0 4 8 c 3 7 b f 6 2 e a 5 1 d 9

5 0 5 a f 7 2 d 8 e b 4 1 9 c 3 6
• 331



G.6.5 DRAM Syndrome Interpretation
When examining an UltraSPARC T1 DRAM syndrome, first look at TABLE G-8, to find
that pattern of zeros and nonzero nibbles in the 16-bit syndrome. If the pattern of the
syndrome nibbles is “a0bc” or “ab0c” (only the second or third nibble is zero), two
more tables need to be checked to see which nibble is in error (TABLE G-9 or G), and
(2) whether there is a multi-nibble error (TABLE G-10 or TABLE G-12).

The other syndrome nibble patterns are fully described in TABLE G-8.

TABLE G-8 Memory Syndrome Summary

6 0 6 c a b d 7 1 5 3 9 f e 8 2 4

7 0 7 e 9 f 8 1 6 d a 3 4 2 5 c b

8 0 8 3 b 6 e 5 d c 4 f 7 a 2 9 1

9 0 9 1 8 2 b 3 a 4 d 5 c 6 f 7 e

A 0 a 7 d e 4 9 3 f 5 8 2 1 b 6 c

B 0 b 5 e a 1 f 4 7 c 2 9 d 6 8 3

C 0 c b 7 5 9 e 2 a 6 1 d f 3 4 8

D 0 d 9 4 1 c 8 5 2 f b 6 3 e a 7

E 0 e f 1 d 3 2 c 9 7 6 8 4 a b 5

F 0 f d 2 9 6 4 b 1 e c 3 8 7 5 a

S3 S2 S1 S0 Description

0 0 0 0 No error

a 0 b c Possible correctable error in N0-N14. See Table G-9 on
page 334 and Table G-10 on page 335.

a b 0 c Possible correctable error in N15-N19. See Table G on
page 323 and Table G-12 on page 337.

d d d 0 Correctable error in N30. Bits to correct are the value
“d” in data nibble N30.

0 d d d Correctable error in N31. Bits to correct are the value
“d” in data nibble N31.

TABLE G-7 Galois Field Multiplication Table, Polynomial 10011

Multipli
er

Multiplicand

0 1 2 3 4 5 6 7 8 9 A B C D E F
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a,b,c — Nonzero values for syndrome nibbles, potentially different values, or may
be same

d — Nonzero identical values in these three syndrome nibbles.

e — Nonzero value in a single syndrome nibble.

0 — Syndrome value is zero as part of this pattern.

0 0 0 e Error in check nibble C0. Bits to correct are the value
“e” in check nibble C0.

0 0 e 0 Error in check nibble C1. Bits to correct are the value
“e” in check nibble C1.

0 e 0 0 Error in check nibble C2. Bits to correct are the value
“e” in check nibble C2.

e 0 0 0 Error in check nibble C3. Bits to correct are the value
“e” in check nibble C3.

0x1 0x1 0x1 0x8 Poison Indication, or possibly uncorrectable multiple
nibble error

0xF 0xF 0xF 0xF Address Parity Error, or possibly uncorrectable multiple
nibble error

other Uncorrectable multiple nibble error

S3 S2 S1 S0 Description
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* — This table doesn’t apply. Re-lookup on Table G-8 on page 332

N?? / 0x?? - Top identifies which nibble is in error. Bottom identifies error bits
within nibble

TABLE G-9 Memory Syndrome, Case a0bc, Contents = Nibble in error, Bits in nibble to correct

SYND
[7:4]

SYND [3:0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * N0
0x1

N1
0x1

N2
0x1

N3
0x1

N4
0x1

N5
0x1

N6
0x1

N7
0x1

N8
0x1

N9
0x1

N10
0x1

N11
0x1

N12
0x1

N13
0x1

N14
0x1

2 * N8
0x2

N0
0x2

N7
0x2

N1
0x2

N10
0x2

N2
0x2

N9
0x2

N3
0x2

N12
0x2

N4
0x2

N11
0x2

N5
0x2

N14
0x2

N6
0x2

N13
0x2

3 * N13
0x3

N14
0x3

N0
0x3

N12
0x3

N2
0x3

N1
0x3

N11
0x3

N8
0x3

N6
0x3

N5
0x3

N7
0x3

N3
0x3

N9
0x3

N10
0x3

N4
0x3

4 * N12
0x4

N8
0x4

N3
0x4

N0
0x4

N11
0x4

N7
0x4

N4
0x4

N1
0x4

N14
0x4

N10
0x4

N5
0x4

N2
0x4

N13
0x4

N9
0x4

N6
0x4

5 * N10
0x5

N4
0x5

N13
0x5

N9
0x5

N0
0x5

N14
0x5

N3
0x5

N6
0x5

N11
0x5

N1
0x5

N8
0x5

N12
0x5

N5
0x5

N7
0x5

N2
0x5

6 * N6
0x6

N13
0x6

N8
0x6

N14
0x6

N7
0x6

N0
0x6

N5
0x6

N12
0x6

N9
0x6

N2
0x6

N3
0x6

N1
0x6

N4
0x6

N11
0x6

N10
0x6

7 * N5
0x7

N11
0x7

N9
0x7

N10
0x7

N12
0x7

N6
0x7

N0
0x7

N4
0x7

N2
0x7

N8
0x7

N14
0x7

N13
0x7

N7
0x7

N1
0x7

N3
0x7

8 * N14
0x8

N12
0x8

N1
0x8

N8
0x8

N5
0x8

N3
0x8

N10
0x8

N0
0x8

N13
0x8

N11
0x8

N2
0x8

N7
0x8

N6
0x8

N4
0x8

N9
0x8

9 * N1
0x9

N3
0x9

N5
0x9

N7
0x9

N9
0x9

N11
0x9

N13
0x9

N2
0x9

N0
0x9

N6
0x9

N4
0x9

N10
0x9

N8
0x9

N14
0x9

N12
0x9

A * N11
0xa

N10
0xa

N6
0xa

N4
0xa

N8
0xa

N13
0xa

N1
0xa

N9
0xa

N5
0xa

N0
0xa

N12
0xa

N14
0xa

N2
0xa

N3
0xa

N7
0xa

B * N4
0xb

N9
0xb

N14
0xb

N6
0xb

N1
0xb

N12
0xb

N7
0xb

N13
0xb

N10
0xb

N3
0xb

N0
0xb

N8
0xb

N11
0xb

N2
0xb

N5
0xb

C * N9
0xc

N6
0xc

N12
0xc

N13
0xc

N3
0xc

N8
0xc

N2
0xc

N14
0xc

N4
0xc

N7
0xc

N1
0xc

N0
0xc

N10
0xc

N5
0xc

N11
0xc

D * N3
0xd

N7
0xd

N11
0xd

N2
0xd

N6
0xd

N10
0xd

N14
0xd

N5
0xd

N1
0xd

N13
0xd

N9
0xd

N4
0xd

N0
0xd

N12
0xd

N8
0xd

E * N2
0xe

N5
0xe

N4
0xe

N11
0xe

N14
0xe

N9
0xe

N8
0xe

N10
0xe

N7
0xe

N12
0xe

N13
0xe

N6
0xe

N3
0xe

N0
0xe

N1
0xe

F * N7
0xf

N2
0xf

N10
0xf

N5
0xf

N13
0xf

N4
0xf

N12
0xf

N11
0xf

N3
0xf

N14
0xf

N6
0xf

N9
0xf

N1
0xf

N8
0xf

N0
0xf
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* — This table doesn’t apply. Re-lookup on Table G-8 on page 332

0x?? - Specifies the value synd{15:12} must have; otherwise, this is a multi-nibble
error.

TABLE G-10 Memory Syndrome, Case a0bc, Contents = SYND[15:12] value

SYND
[7:4]

SYND [3:0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * 0x1 0x9 0xe 0xd 0xb 0x7 0x6 0xf 0x2 0xc 0x5 0xa 0x4 0x3 0x8

2 * 0x4 0x2 0xd 0x1 0xa 0xf 0xb 0x9 0x8 0x5 0x7 0xe 0x3 0xc 0x6

3 * 0x5 0xb 0x3 0xc 0x1 0x8 0xd 0x6 0xa 0x9 0x2 0x4 0x7 0xf 0xe

4 * 0x3 0x8 0x1 0x4 0xe 0x9 0xa 0x2 0x6 0x7 0xf 0xd 0xc 0x5 0xb

5 * 0x2 0x1 0xf 0x9 0x5 0xe 0xc 0xd 0x4 0xb 0xa 0x7 0x8 0x6 0x3

6 * 0x7 0xa 0xc 0x5 0x4 0x6 0x1 0xb 0xe 0x2 0x8 0x3 0xf 0x9 0xd

7 * 0x6 0x3 0x2 0x8 0xf 0x1 0x7 0x4 0xc 0xe 0xd 0x9 0xb 0xa 0x5

8 * 0xc 0x6 0x4 0x3 0xd 0x2 0xe 0x8 0xb 0xf 0x9 0x1 0x5 0x7 0xa

9 * 0xd 0xf 0xa 0xe 0x6 0x5 0x8 0x7 0x9 0x3 0xc 0xb 0x1 0x4 0x2

A * 0x8 0x4 0x9 0x2 0x7 0xd 0x5 0x1 0x3 0xa 0xe 0xf 0x6 0xb 0xc

B * 0x9 0xd 0x7 0xf 0xc 0xa 0x3 0xe 0x1 0x6 0xb 0x5 0x2 0x8 0x4

C * 0xf 0xe 0x5 0x7 0x3 0xb 0x4 0xa 0xd 0x8 0x6 0xc 0x9 0x2 0x1

D * 0xe 0x7 0xb 0xa 0x8 0xc 0x2 0x5 0xf 0x4 0x3 0x6 0xd 0x1 0x9

E * 0xb 0xc 0x8 0x6 0x9 0x4 0xf 0x3 0x5 0xd 0x1 0x2 0xa 0xe 0x7

F * 0xa 0x5 0x6 0xb 0x2 0x3 0x9 0xc 0x7 0x1 0x4 0x8 0xe 0xd 0xf
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* — This table doesn’t apply. Re-lookup on Table G-8 on page 332

N?? / 0x?? - Top identifies which nibble is in error. Bottom identifies error bits
within nibble

TABLE G-11 Memory Syndrome, Case a0bc, Contents = Nibble in error, Bits in nibble to correct

SYND
[7:4]

SYND [3:0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * N0
0x1

N1
0x1

N2
0x1

N3
0x1

N4
0x1

N5
0x1

N6
0x1

N7
0x1

N8
0x1

N9
0x1

N10
0x1

N11
0x1

N12
0x1

N13
0x1

N14
0x1

2 * N8
0x2

N0
0x2

N7
0x2

N1
0x2

N10
0x2

N2
0x2

N9
0x2

N3
0x2

N12
0x2

N4
0x2

N11
0x2

N5
0x2

N14
0x2

N6
0x2

N13
0x2

3 * N13
0x3

N14
0x3

N0
0x3

N12
0x3

N2
0x3

N1
0x3

N11
0x3

N8
0x3

N6
0x3

N5
0x3

N7
0x3

N3
0x3

N9
0x3

N10
0x3

N4
0x3

4 * N12
0x4

N8
0x4

N3
0x4

N0
0x4

N11
0x4

N7
0x4

N4
0x4

N1
0x4

N14
0x4

N10
0x4

N5
0x4

N2
0x4

N13
0x4

N9
0x4

N6
0x4

5 * N10
0x5

N4
0x5

N13
0x5

N9
0x5

N0
0x5

N14
0x5

N3
0x5

N6
0x5

N11
0x5

N1
0x5

N8
0x5

N12
0x5

N5
0x5

N7
0x5

N2
0x5

6 * N6
0x6

N13
0x6

N8
0x6

N14
0x6

N7
0x6

N0
0x6

N5
0x6

N12
0x6

N9
0x6

N2
0x6

N3
0x6

N1
0x6

N4
0x6

N11
0x6

N10
0x6

7 * N5
0x7

N11
0x7

N9
0x7

N10
0x7

N12
0x7

N6
0x7

N0
0x7

N4
0x7

N2
0x7

N8
0x7

N14
0x7

N13
0x7

N7
0x7

N1
0x7

N3
0x7

8 * N14
0x8

N12
0x8

N1
0x8

N8
0x8

N5
0x8

N3
0x8

N10
0x8

N0
0x8

N13
0x8

N11
0x8

N2
0x8

N7
0x8

N6
0x8

N4
0x8

N9
0x8

9 * N1
0x9

N3
0x9

N5
0x9

N7
0x9

N9
0x9

N11
0x9

N13
0x9

N2
0x9

N0
0x9

N6
0x9

N4
0x9

N10
0x9

N8
0x9

N14
0x9

N12
0x9

A * N11
0xa

N10
0xa

N6
0xa

N4
0xa

N8
0xa

N13
0xa

N1
0xa

N9
0xa

N5
0xa

N0
0xa

N12
0xa

N14
0xa

N2
0xa

N3
0xa

N7
0xa

B * N4
0xb

N9
0xb

N14
0xb

N6
0xb

N1
0xb

N12
0xb

N7
0xb

N13
0xb

N10
0xb

N3
0xb

N0
0xb

N8
0xb

N11
0xb

N2
0xb

N5
0xb

C * N9
0xc

N6
0xc

N12
0xc

N13
0xc

N3
0xc

N8
0xc

N2
0xc

N14
0xc

N4
0xc

N7
0xc

N1
0xc

N0
0xc

N10
0xc

N5
0xc

N11
0xc

D * N3
0xd

N7
0xd

N11
0xd

N2
0xd

N6
0xd

N10
0xd

N14
0xd

N5
0xd

N1
0xd

N13
0xd

N9
0xd

N4
0xd

N0
0xd

N12
0xd

N8
0xd

E * N2
0xe

N5
0xe

N4
0xe

N11
0xe

N14
0xe

N9
0xe

N8
0xe

N10
0xe

N7
0xe

N12
0xe

N13
0xe

N6
0xe

N3
0xe

N0
0xe

N1
0xe

F * N7
0xf

N2
0xf

N10
0xf

N5
0xf

N13
0xf

N4
0xf

N12
0xf

N11
0xf

N3
0xf

N14
0xf

N6
0xf

N9
0xf

N1
0xf

N8
0xf

N0
0xf
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* — This table doesn’t apply. Re-lookup on Table G-8 on page 332

0x?? - Specifies the value synd{15:12} must have; otherwise, this is a multi-nibble
error.

G.7 Data Poisoning
Data poisoning is the practice of marking known corrupt data with bad ECC, so that
any later access will get an ECC error. This is normally done when data is
transferred from one cache or memory to another, to keep track that the data is
corrupted.

TABLE G-12 Memory Syndrome, Case ab0c, Contents = SYND[15:12] value

SYND
[11:8]

SYND [3:0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 * * * * * * * * * * * * * * * *

1 * 0x1 0x9 0xe 0xd 0xb 0x7 0x6 0xf 0x2 0xc 0x5 0xa 0x4 0x3 0x8

2 * 0x4 0x2 0xd 0x1 0xa 0xf 0xb 0x9 0x8 0x5 0x7 0xe 0x3 0xc 0x6

3 * 0x5 0xb 0x3 0xc 0x1 0x8 0xd 0x6 0xa 0x9 0x2 0x4 0x7 0xf 0xe

4 * 0x3 0x8 0x1 0x4 0xe 0x9 0xa 0x2 0x6 0x7 0xf 0xd 0xc 0x5 0xb

5 * 0x2 0x1 0xf 0x9 0x5 0xe 0xc 0xd 0x4 0xb 0xa 0x7 0x8 0x6 0x3

6 * 0x7 0xa 0xc 0x5 0x4 0x6 0x1 0xb 0xe 0x2 0x8 0x3 0xf 0x9 0xd

7 * 0x6 0x3 0x2 0x8 0xf 0x1 0x7 0x4 0xc 0xe 0xd 0x9 0xb 0xa 0x5

8 * 0xc 0x6 0x4 0x3 0xd 0x2 0xe 0x8 0xb 0xf 0x9 0x1 0x5 0x7 0xa

9 * 0xd 0xf 0xa 0xe 0x6 0x5 0x8 0x7 0x9 0x3 0xc 0xb 0x1 0x4 0x2

A * 0x8 0x4 0x9 0x2 0x7 0xd 0x5 0x1 0x3 0xa 0xe 0xf 0x6 0xb 0xc

B * 0x9 0xd 0x7 0xf 0xc 0xa 0x3 0xe 0x1 0x6 0xb 0x5 0x2 0x8 0x4

C * 0xf 0xe 0x5 0x7 0x3 0xb 0x4 0xa 0xd 0x8 0x6 0xc 0x9 0x2 0x1

D * 0xe 0x7 0xb 0xa 0x8 0xc 0x2 0x5 0xf 0x4 0x3 0x6 0xd 0x1 0x9

E * 0xb 0xc 0x8 0x6 0x9 0x4 0xf 0x3 0x5 0xd 0x1 0x2 0xa 0xe 0x7

F * 0xa 0x5 0x6 0xb 0x2 0x3 0x9 0xc 0x7 0x1 0x4 0x8 0xe 0xd 0xf
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G.7.1 Sources of Poison

G.7.1.1 JBUS Errors

If UltraSPARC T1 receives a DMA write with an error, the write will be completed
but marked with a poison indication. An error on a DMA write can either be a JBUS
Data Parity Error, or a Reported UE Error (which means the master of the
transaction already had detected the error).

The destination of the DMA write will either be the L2 cache (if it is a subline write)
or main memory (if it is a full line write), and hence that is what will be poisoned.
JBUS errors occur with a 16-byte granularity, so poison will tend to be in 16-byte
chunks on 16-byte boundaries.

The only exception to this (for JBUS-originating poison) is for subline writes that
have finer than 16-byte granularity. If the subline write is made up of some number
of 4-byte writes on 4-byte boundaries, only those 4-byte words into which corrupted
data is written will be marked as poisoned. For any 8-byte doubleword that gets a
corrupted subword (less and 4 bytes) write, both halves of the 8-byte doubleword
will be marked as poisoned.

G.7.1.2 ECC Conversion of UEs

Another source of poison is uncorrectable ECC errors, when data is being
transferred to a structure that has a different ECC (or parity) encoding. Thus,
whenever data is transferred between memory, L2, and the L1 caches, and the source
data has an uncorrectable error, the destination will be marked as poison, since the
ECC code cannot be transferred intact.

G.7.2 Poisoning L1
The L1 caches (I and D) have only parity protection, so poisoning is implemented by
marking the corrupt data (not tag) with a parity error (which is indistinguishable
from other parity errors, except that there is also an L2 error with the same address).
Since data is always transferred into the L1 in 16-byte chunks, poison in the L1 will
always be in aligned 16-byte chunks.

Even though the L1 caches never have dirty data, it is still necessary to receive the
corrupt data and install it into the cache, in order to maintain consistency between
the L1 tags and the L2 directory.

If the L1 just dropped the corrupt data without installing into the cache, there are
scenarios in which the L1 tags and L2 directory get out of sync and lose coherency,
thus causing silent data corruption (because an invalidate didn’t work).
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G.7.3 Poisoning L2
L2 poisoning is implemented by flipping the two LSB check bits, c{1:0}, for each data
word (4-byte) that is corrupt, which means that a syndrome of 0316 is probably a
poison syndrome.

L2 ECC (and thus poison) has a 4-byte granularity, so every 4-byte word of
uncorrectable data that is written into the cache will have a poison indication.
However, all transfers out of the cache are done in 16-byte chunks, so DMA reads,
L1 misses, and writebacks to memory will all increase poison/error indications to
16-byte granularity to the recipient, but the L2 is unmodified if it keeps the data.

G.7.3.1 Partial Write details

Subword writes are Read-Modify-Write, with any ECC correction after the read. If
the word read has an uncorrectable error, however, the write is aborted, which
leaves the original uncorrectable error intact. Thus, subline writes will not convert
uncorrectable errors into poison.

G.7.4 Poisoning Memory
Memory poisoning is implemented by flipping four specific check bits, specifically
c{15,9,5,0} which means that a syndrome of 822116 is most likely a poison indication.
This syndrome was chosen because no single nibble error can convert a poison
syndrome into a correctable error. A side effect of this is that a minimum of a triple
nibble error is needed to “accidentally” generate a failing syndrome of 822116, so the
possibility that a syndrome of 822116 was generated by anything but poison is
infinitesimal.

Memory ECC (and thus poison) has a 16-byte granularity, so every 16-byte chunk of
uncorrectable data that is written to memory will have a poison indication.

G.7.5 Erasing Poison
Poison can be erased by overwriting it with good data, in such a way that no
subword L2 writes occur, and no writebacks occur to main memory while the poison
is partially erased.

Alternately, ASI_BLK_INIT_ST stores can be used to force poison to be overwritten,
by causing the entire line to be zeroed out if the line was faulted back to memory. In
this scheme, issues 4-byte or 8-byte stores to the poisoned area, followed by an
ASI_BLK_INIT_ST to the first word of the line containing the poison.
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APPENDIX H

Glossary

This chapter defines concepts and terminology common to all implementations of
SPARC V9. It also includes terms that are unique to the UltraSPARC T1
implementation.

AFAR Asynchronous Fault Address Register.

AFSR Asynchronous Fault Status Register.

aliased Said of each of two virtual addresses that referó to the same physical address.

ALU Arithmetic Logical Unit

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data

access, the integer unit appends an ASI to the address. See also implicit ASI.

application program A program executed with the processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

architectural state Software-visible registers and memory (including caches).

ARF Architectural Register File.

ASI Address Space Identifier.

ASI Ring A daisy-chained bus connected in a loop fashion that goes through all of the
blocks that have structures with diagnostic path or control registers for ASI
access.

ASR Ancillary State Register.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKF.
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blocking ASI An ASI that will access its ASI register/array location once all older
instructions in that strand have retired, there are no instructions in the other
strand which can issue, and the store queue, TSW, and LMB are all empty.
Additionally, the snoop pipeline is stalled before accessing the ASI register/
array location. See nonblocking ASI.

branch outcome Refers to whether or not a branch instruction will alter the flow of execution
from the sequential path. A taken branch outcome results in execution
proceeding with the instruction at the branch target; a not-taken branch
outcome results in execution proceeding with the instruction along the
sequential path after the branch.

branch resolution A branch is said to be resolved when the result (that is, the branch outcome
and branch target address) has been computed and is known for certain.
Branch resolution can take place late in the pipeline.

branch target address The address of the instruction to be executed if the branch is taken.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.

bypass ASI An ASI that refers to memory and for which the MMU does not perform
virtual-to-real address translation (that is, memory is accessed using a direct
real address).

byte Eight consecutive bits of data.

CAM Content Addressable Memory

CCR Condition Codes register

clean window A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

CMP Chip multiprocessor. A single chip processor that contains more than one
virtual processor. See also processor and virtual processor.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to
all caches in a shared-memory system.

commit An instruction commits when it modifies architectural state.

completed A memory transaction is said to be completed when an idealized memory has
executed the transaction with respect to all processors. A load is considered
completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent
load can return the value that was overwritten by the store.

complex instruction An instruction that requires the creation of secondary “helper” instructions for
normal operation, excluding trap conditions such as spill/fill traps (which use
helpers). Refer to Instruction Latencies on page 277 for a complete list of all
complex instructions and their helper sequences.

consistency See coherence.
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context A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

CWP Current Window Pointer

CPI Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

CPU Central Processing Unit. A synonym for virtual processor.

cross-call An interprocessor call in a multiprocessor system.

CSR Control Status Register.

CTI Control transfer instruction

current window The block of 24 R registers that is currently in use. The Current Window
Pointer (CWP) register points to the current window.

DCTI Delayed control transfer instruction.

DDR Double Data Rate.

demap To invalidate a mapping in the MMU.

deprecated The term applied to an architectural feature (such as an instruction or register)
for which a SPARC V9 implementation provides support only for compatibility
with previous versions of the architecture. Use of a deprecated feature must
generate correct results but may compromise software performance.
Deprecated features should not be used in new SPARC V9 software and may
not be supported in future versions of the architecture.

DFT Designed for test.

doublet Two bytes (16 bits) of data.

doubleword An aligned octlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

DTLB Data Cache Translation lookaside buffer.

ECC Error Correction Code.

even parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of set bits.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention. See also trap.

extended word An aligned octlet, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

EXU Execution Unit
• 343



F register A floating-point register. SPARC V9 includes single-, double-, and quad-
precision F registers.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FGU Floating-point and Graphics Unit.

floating-point
exception An exception that occurs during the execution of an FPop instruction as

defined by the Fpop1, Fpop2, IMPDEP1, and IMPDEP2 opcodes. The
exceptions are unfinished_FPop, unimplemented_FPop, sequence_error,
hardware_error, invalid_fp_register, or IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within

this specification as IEEE_754_exception.

floating-point operate
(FPop) instructions Instructions that perform floating-point and graphics calculations, as defined

by the FPop1, FPop2,and IMPDEP1 opcodes. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the floating-point
unit, or instructions defined by the IMPDEP2 opcodes.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

FP Floating Point

FPRS Floating Point Register State (register).

FRF Floating-point register file.

FSR Floating-Point Status register.

GL Global-Level register.

GSR General Status register.

halfword An aligned doublet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

helper An instruction generated by the IRU in response to a complex instruction.
Helper instructions are not visible to software. Refer to Instruction Latencies on
page 277 for a complete list of all complex instructions and their helper
sequences.

hexlet Sixteen bytes (128 bits) of data.
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hyperprivileged An adjective that describes
(1) the state of the processor when it is executing in hyperprivileged mode
(HPSTATE.hpriv = 1);
(2) processor state that is only accessible to software while the processor is in
hyperprivileged mode; for example, hyperprivileged registers, hyperprivileged
ASRs, hyperprivileged ASIs, or, in general, hyperprivileged state;
(3) an instruction that can be executed only when the processor is in
hyperprivileged mode.

IFU Instruction Fetch Unit.

implementation Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

implementation
dependent An aspect of the architecture that can legitimately vary among

implementations. In many cases, the permitted range of variation is specified
in the SPARC V9 standard. When a range is specified, compliant
implementations must not deviate from that range.

implicit ASI The address space identifier that is supplied by the hardware on all instruction
accesses and on data accesses that do not contain an explicit ASI or a reference
to the contents of the ASI register.

informative appendix An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also
normative appendix.

initiated Synonym: issued.

instruction field A bit field within an instruction word.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. The bulk of the ISA implemented by
UltraSPARC T1 is defined in the UltraSPARC Architecture 2005; a few
extensions are described in this document.

integer unit (IU) A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and processor state registers, as
defined by this specification.

interrupt request A request for service presented to the processor by an external device.

IRF Integer register file.

IRU

ISA Instruction set architecture.
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issue Used to describe the act of conveying an instruction from the instruction fetch
unit for execution on the pipeline.

ITLB Instruction Cache Translation lookaside buffer.

L2C Level 2 Cache.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

load An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Load includes loads into integer
or floating-point registers, block loads, Load Quadword Atomic, and alternate
address space variants of those instructions. See also load-store and store, the
definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, LDSTUBA and the deprecated
SWAP and SWAPA instructions. See also load and store, the definitions of
which are mutually exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

Memory Management
Unit (MMU) The address translation hardware that translates 64-bit virtual address into

physical addresses. The MMU is composed of the TLBs, ASRs, and registers
accessed through ASIs and is used to manage address translation. See also
context, physical address, and virtual address.

must Synonym: shall.

next program counter
(NPC) A register that contains the address of the instruction to be executed next if a

trap does not occur.

NFO Nonfault access only.

nonblocking ASI An ASI that will access its ASI register/array location once all older
instructions in that strand have retired and there are no instructions in the
other strand which can issue. See blocking ASI.

nonfaulting load A load operation that, in the absence of faults or in the presence of a
recoverable fault, completes correctly, and in the presence of a nonrecoverable
fault returns (with the assistance of system software) a known data value
(nominally zero). See speculative load.
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nonprivileged An adjective that describes:
(1) the state of the processor when PSTATE.priv = 0, that is, nonprivileged
mode;
(2) processor state information that is accessible to software while the
processor is in either privileged mode or nonprivileged mode; for example,
nonprivileged registers, nonprivileged ASRs, or, in general, nonprivileged
state;
(3) an instruction that can be executed when the processor is in either
privileged mode or nonprivileged mode.

nonprivileged mode The mode in which a processor is operating when PSTATE.priv = 0. See also
privileged.

normative appendix An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

NPC Next program counter.

npt Nonprivileged trap.

N_REG_WINDOWS The number of register windows present in a particular implementation.

OBP OpenBoot PROM.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.

odd parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an odd number of set bits.

older instruction Refers to the relative fetch order of instructions. Instruction i is older than
instruction j if instruction i was fetched before instruction j. Data dependencies
flow from older instructions to younger instructions, and an instruction can
only be dependent upon older instructions. See younger instruction.

one-hot An n-bit binary signal is one-hot if, and only if, n − 1 of the bits are each 0 and
a single bit is 1.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for compliance to an architecture specification (such as
UltraSPARC Architecture 2005 or SPARC V9).

PA Physical address.
• 347



Page Table Entry
(PTE) Describes the virtual-to-physical translation and page attributes for a specific

page. A PTE generally means an entry in the page table or in the TLB, but it is
sometimes used as an entry in the TSB (translation storage buffer). In general,
a PTE contains fewer fields than does a TTE. See also TLB and TSB.

PC Program counter.

PCR Performance Control Register.

physical address An address that maps real physical memory or I/O device space. See also
virtual address and real address.

physical core The term physical processor core, or just physical core, includes an execution
pipeline and associated structures, such as caches, that are required for
performing the execution of instructions from one or more software threads. A
physical core contains one or more strands. The physical core provides the
necessary resources for the threads on each strand to make forward progress at
a reasonable rate. A multi-stranded physical core can execute multiple
software threads either by time multiplexing or partitioning resources (or any
combination thereof). In UltraSPARC T1, a physical core consists of four
strands sharing the register files, execution pipeline, modular arithmetic unit,
MMUs, and caches. See also strand, thread, and virtual processor.

PIC Performance Instrumentation Counter.

PIL Processor Interrupt Level.

PIO Programmed I/O.

PIPT Physically indexed, physically tagged.

POR Power-on reset.

PPN Physical Page Number

prefetchable (1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.
(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

privileged An adjective that describes
(1) the state of the processor when it is executing in privileged mode (
PSTATE.priv = 1 and HPSTATE.hpriv = 0);
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, privileged
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ASIs, or in general, privileged state;
(3) an instruction that can be executed only when the processor is in privileged
mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1. See also
nonprivileged.

processor The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.

Therefore, a simple processor, like an UltraSPARC I processor, that can only
execute one thread at a time would be a processor with a single physical core
that is single-stranded. A processor that follows the academic model of
simultaneous multithreading (SMT) would be a processor with a single
physical core, where that physical core supports multiple strands in order to
execute multiple threads at the same time (multi-stranded physical core). A
processor that follows the academic model of a CMP would be a processor
with multiple physical cores, each only supporting a single strand.

One can also have multiple physical cores where each physical core is multi-
stranded. UltraSPARC T1 is an example of the latter, where each UltraSPARC
T1 processor contains eight physical cores, each of which contains four strands.

program counter
(PC) A register that contains the address of the instruction currently being executed

by the IU.

PR Processor reset.

PSO Partial store order.

PTE Page Table Entry.

quadlet Four bytes (32 bits) of data.

quadword Aligned hexlet. Note: The definition of this term is architecture dependent and
may be different from that used in other processor architectures.

RA Real address.

RAS Return Address Stack;
also Reliability, Availability and Serviceability.

RAW Read After Write

R register An integer register. Also called a general-purpose register or working register.

rd Rounding direction.

RDPR Read Privileged Register instruction
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real address An address used by privileged mode code to describe the underlying physical
memory. Real address are usually translated by a combination of
hyperprivileged hardware and software to physical addresses which can be
used to access real physical memory or I/O device space.

RED_state Reset, Error, and Debug state. The processor state when HPSTATE.red = 1. A
restricted execution environment used to process resets and traps that occur
when TL = MAXTL – 1.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

Reserved instruction fields shall read as 0, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors
when they encounter nonzero values in reserved instruction fields is
undefined.

Reserved bit combinations within instruction fields are defined in Chapter 5,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap
on these reserved combinations.

Reserved register fields should always be written by software with values of
those fields previously read from that register or with zeroes; they should read
as zero in hardware. Software intended to run on future versions of SPARC V9
should not assume that these fields will read as 0 or any other particular value.
Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entry into RED_state.

restricted Describing an address space identifier (ASI) that may be accessed only while
the processor is operating in privileged mode.

rs1, rs2, rd The integer or floating-point register operands of an instruction. rs1 and rs2
are the source registers; rd is the destination register.

RMO Relaxed memory order.

RTO Read to own (cache line state).

RTS Read to share (cache line state).

SFAR Synchronous Fault Address register.

SFSR Synchronous Fault Status register.

shall A keyword indicating a mandatory requirement. Designers shall implement all
such mandatory requirements to ensure interoperability with other SPARC V9-
compliant products. Synonym: must.
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should A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

SIAM Set interval arithmetic mode instruction.

side effect The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

SIMD Single instruction stream, multiple data stream.

SIR Software-initiated reset.

store An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Store
includes stores from either integer or floating-point registers, block stores,
partial store, and alternate address space variants of those instructions. See also
load and load-store, the definitions of which are mutually exclusive with store.

strand A term for thread-specific hardware support that identifies the hardware state
used to hold a software thread in order to execute it. Strand is specifically the
software visible architected state (PC, NPC, general-purpose registers, floating-
point registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. “Strand”
replaces the ambiguous term “hardware thread”. The number of strands in a
processor defines the number of threads that the operating system can
schedule on that processor at any given time. See also physical core, thread, and
virtual processor.

strand identifier
(SID) An n-bit value, in a processor implementing 2n strands, that uniquely identifies

each strand. The strand identifier in UltraSPARC T1 is five bits wide.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

supervisor software Software that executes when the processor is in privileged mode.

TBA Trap base address.

thread An executing process or lightweight process (LWP). Historically, the term
thread is overused and ambiguous. Software and hardware have historically
used it differently. From software’s (operating system) perspective, the term
thread refers to an entity that can be run on hardware, it is something that is
scheduled and may or may not be actively running on hardware at any given
time, and may migrate around the hardware of a system. From hardware’s
perspective, the term multithreaded processor refers to a processor that run
multiple software threads simultaneously. To avoid confusion the term thread
is used exclusively in the manner in which it is used by software and,
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specifically, the operating system. A thread can be viewed in a practical sense
as a Solaris™ process or lightweight process (LWP). See also physical core,
strand, and virtual processor.

TICK Hardware clock—TICK counter register.

TL Trap Level

TLB Translation lookaside buffer.

TLB hit The desired translation is present in the on-chip TLB.

TLB miss The desired translation is not present in the on-chip TLB.

TPC Trap-saved PC.

Translation Lookaside
Buffer (TLB) A cache within an MMU that contains recent partial translations. TLBs speed

up closely following translations by often eliminating the need to reread Page
Table Entries from memory.

trap The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt. The
action is a vectored transfer of control to privileged or hyperprivileged
software through a table, the address of which is specified by the privileged
Trap Base Address (TBA) register or the Hyperprivileged Trap Base Address
(HTBA) register. See also exception.

TSB Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

TSO Total store order.

TTE Translation table entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the Page Table. In some cases, the term is
explicitly used for the entries in the TSB.

unassigned A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, or make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as allowing user software to access privileged
state), put the processor into supervisor mode, or put the processor into an
unrecoverable state.
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unimplemented An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

unpredictable Synonym: undefined.

unrestricted Describing an address space identifier (ASI) that can be used regardless of the
processor mode; that is, regardless of the values of PSTATE.priv and
HPSTATE.hpriv.

user application
program Synonym: application program.

VA Virtual address.

virtual address An address produced by a processor that maps all systemwide, program-
visible memory. Virtual addresses usually are translated by a combination of
hardware and software to real addresses. Real address are usually translated
by a combination of hardware and software to physical addresses which can be
used to access physical memory and I/O device spaces.

virtual processor The term virtual processor, is used to identify each strand in a processor. Each
virtual processor corresponds to a specific strand on a specific physical core
where there may be multiple physical cores each with multiple strands. In
most respects, a virtual processor appears to the system, and to the operating
system software, as a processing unit equivalent to a traditional single-
stranded microprocessor (as in UltraSPARC I). Each virtual processor has its
own interrupt ID and the operating system can schedule independent threads
on each virtual processor. How multiple virtual processors are achieved within
a processor is an implementation issue, and as much as possible the software
interface is independent of how multiple virtual processors are implemented.
The term virtual processor is used in place of strand because of the common
association of the term strand with multi-stranded physical cores. See also
physical core, strand, and thread.

VIS™ Visual instruction set.

VPA Virtual Page Array

VPN Virtual Page Number

WDR Watchdog reset.

word An aligned quadlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

younger instruction See older instruction.

writeback The process of writing a dirty cache line back to memory before it is refilled.

WRPR Write Privileged Register.

XIR Externally initiated reset.
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Index
A
Accumulated Exception (aexc) field of FSR

register, 227
Address Mask (am), 223

field of PSTATE register, 192
Address Mask (am)

field of PSTATE register, 63, 64, 189
address space identifier (ASI)

bypass, 342
definition, 341
nontranslating, 347

application program, 341
ASI

restricted, 191
ASI_AS_IF_USER_PRIMARY, 191
ASI_AS_IF_USER_SECONDARY, 191
ASI_DMMU_SFSR_REG register, 128
ASI_NUCLEUS, 191
ASI_PHYS_BYPASS_EC_WITH_EBIT, 203
ASI_PRIMARY, 203
ASI_PRIMARY_LITTLE, 203
ASI_PRIMARY_NO_FAULT, 189, 191, 192
ASI_PRIMARY_NO_FAULT_LITTLE, 189, 192
ASI_SECONDARY_NO_FAULT, 189, 191, 192
ASI_SECONDARY_NO_FAULT_LITTLE, 189, 192
ASI_SPARC_ERROR_ADDRESS_REG register, 126
ASI_SPARC_ERROR_EN_REG register, 121
ASI_SPARC_ERROR_STATUS_REG register, 122
atomic quad load instructions (deprecated), 36

B
BA instruction, 299

BCC instruction, 299
BCS instruction, 299
BE instruction, 299
BG instruction, 299
BGE instruction, 299
BGU instruction, 299
Bicc instructions, 299
BL instruction, 299
BLE instruction, 299
BLEU instruction, 299
block

copy, inner loop pseudo-code, 29
load instructions, 30
memory operations, 233

block-transfer ASIs, 31
BN instruction, 299
BNE instruction, 299
BNEG instruction, 299
BPA instruction, 300
BPCC instruction, 300
BPCS instruction, 300
bpe instruction, 300
BPG instruction, 300
BPGE instruction, 300
BPGU instruction, 300
BPL instruction, 300
BPLE instruction, 300
BPLEU instruction, 300
BPN instruction, 300
BPNE instruction, 300
BPNEG instruction, 300
BPOS instruction, 299
BPPOS instruction, 300
BPr instructions, 300
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BPVC instruction, 300
BPVS instruction, 300
BVC instruction, 299
BVS instruction, 299
bypass ASI, 342

C
Cacheable in Physically Indexed Cache (PC) field of

TTE, 231
caching

TSB, 184
canrestore Register, 224
cansave Register, 224
clean window, 224
clean_window trap, 224
cleanwin Register, 224
CLEANWIN register, 224
compatibility with SPARC V9

terminology and concepts, 341
conventions

font, xv
notational, xvi

cross call, 234
Current Exception (cexc) field of FSR register, 227
Current Little Endian (cle) field of PSTATE

register, 203
current window pointer (CWP) register

definition, 343
cwp Register, 222, 224

D
D superscript on instruction name, 21
data watchpoint

virtual address, 190
data_access_exception trap, 33, 37, 64, 189, 191,

192, 199, 203, 221, 230, 231
data_access_MMU_miss trap, 186, 189, 230
data_access_protection trap, 189
deferred

trap, 222
Demap Context operation, 212
Diagnostic (diag) field of TTE, 183
Direct Pointer register, 207
Dirty Lower (dl) field of FPRS register, 227
Dirty Upper (du) field of FPRS register, 227
disabled MMU, 231
D-MMU, 189, 190

enable bit, 198
doublet, 343
doubleword

definition, 343
DRAM_ERROR_ADDRESS_REG register, 155
DRAM_ERROR_COUNTER_REG register, 156
DRAM_ERROR_LOCATION_REG register, 157
DRAM_ERROR_STATUS_REG register, 154

E
enable

bit, D-MMU, I-MMU, 198
enhanced security environment, 223
error_state, 222
exceptions

fp_exception_other, 20
illegal_instruction, 20

extended
instructions, 234

F
FABSd instruction, 298, 299
FABSq instruction, 298, 299
fast_data_access_MMU_miss trap, 189, 204
fast_data_access_protection trap, 189, 207
fast_instruction_access_MMU_miss trap, 189, 204
Fault Type (ft) field of SFSR register, 231
FBA instruction, 299
FBE instruction, 299
FBfcc instructions, 299
FBG instruction, 299
FBGE instruction, 299
FBL instruction, 299
FBLE instruction, 299
FBLG instruction, 299
FBN instruction, 299
FBNE instruction, 299
FBO instruction, 299
FBPA instruction, 300
FBPE instruction, 300
FBPfcc instructions, 299
FBPG instruction, 300
FBPGE instruction, 300
FBPL instruction, 300
FBPLE instruction, 300
FBPLG instruction, 300
FBPN instruction, 300
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FBPNE instruction, 300
FBPO instruction, 300
FBPU instruction, 300
FBPUE instruction, 300
FBPUG instruction, 300
FBPUGE instruction, 300
FBPUL instruction, 300
FBPULE instruction, 300
FBU instruction, 299
FBUE instruction, 299
FBUG instruction, 299
FBUGE instruction, 299
FBUL instruction, 299
FBULE instruction, 299
FCMPd instruction, 299
FCMPEd instruction, 299
FCMPEq instruction, 299
FCMPEs instruction, 299
FCMPq instruction, 299
FCMPs instruction, 299
FdTOx instruction, 298, 299
floating point

deferred trap queue (fq), 229
exception handling, 226

Floating Point Condition Code (fcc)
0 (fcc0) field of FSR register, 228
field of FSR register in SPARC-V8, 228

Floating Point Registers State (FPRS) Register, 227
floating-point trap type (ftt) field of FSR register, 20
floating-point trap types

unimplemented_FPop, 20
FLUSH instruction, 230
FMOVcc instructions, 300
FMOVccd instruction, 299
FMOVccq instruction, 299
FMOVccs instruction, 299
FMOVd instruction, 298, 299
FMOVq instruction, 298, 299
FNEGd instruction, 298, 299
FNEGq instruction, 298, 299
fp_exception_ieee_754 trap, 228
fp_exception_other exception, 20
fp_exception_other trap, 221, 226, 228
fq, see floating-point deferred trap queue (fq)
FqTOx instruction, 298, 299
FRF, 344
FsTOx instruction, 298, 299
FxTOd instruction, 298, 299
FxTOq instruction, 298, 299

FxTOs instruction, 298, 299

H
H superscript on instruction name, 21
hardware

interrupts, 234
hardware_error floating-point trap type, 229
HINTP register, 15
HSTATE register, 15
HSTICK, 16

I
IEEE Std 754-1985, 227, 344
IEEE support

inexact exceptions, 313
infinity arithmetic, 306
NaN arithmetic, 312
one infinity operand arithmetic, 307
two infinity operand arithmetic, 310
zero arithmetic, 311

IEEE_754_exception floating-point trap type, 228
IEEE_754_exception floating-point trap type, 344
illegal_instruction exception, 20
illegal_instruction trap, 63, 221, 229, 232, 234
ILLTRAP instructions, 221
I-MMU

Enable bit, 198
implementation note, xviii
initiated, 345
instruction fields

definition, 345
instruction set architecture (ISA), 345
instruction_access_exception trap, 63, 64, 190, 203
instruction_access_MMU_miss trap, 186, 189, 190,

203, 205
instructions

reserved, 20
integer

division, 225
multiplication, 225
register file, 224

interrupt
packet, 234
request, 345

invalid_fp_register floating-point trap type, 229
Invert Endianness

(ie) field of TTE, 183
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IRF, 345
I-Tag Access Register, 190
iTLB miss handler, 182

J
JBI_ERR_CONFIG register, 168
JBI_ERROR_LOG register, 166, 168
JBI_ERROR_OVF register, 166, 169
JBI_LOG_ENB register, 167, 170
JBI_SIG_ENB register, 167

L
L2_ERROR_EN_REG register, 135
L2_ERROR_STATUS_REG register, 136
LDD instruction, 231
LDDF_mem_address_not_aligned trap, 232
LDQF instruction, 232
LDQFA instruction, 232
little-endian

byte ordering, 346
load

store Unit (LSU), 190
load instructions, 346
load twin extended word instructions, 34
load twin extended word instructions

(deprecated), 36
load-store instructions

definition, 346
Lock (l) field of TTE, 183
LSU_Control_Register, 198

M
may (keyword), 346
mem_address_not_aligned trap, 33, 37, 63, 190,

199, 203, 204
MEMBAR

#LoadStore, 27
#StoreLoad, 27
#StoreStore, 27, 230
#Sync, 26, 27

memory
model, 28

miss handler
iTLB, 182

missing TLB entry, 186
MMU

behavior during RED_state, 198
behavior during reset, 198
demap, 211, 213
demap context operation, 211, 213
demap operation format illustrated, 212
demap page operation, 211, 213
disabled, 231
dTLB Tag Access Register illustrated, 206
D-TSB Register illustrated, 201
generated traps, 188
iTLB Tag Access Register illustrated, 206
I-TSB Register illustrated, 201

MOVcc instructions, 300
multiplication algorithm, 225
must (keyword), 346
M-way set-associative TSB, 184

N
N_REG_WINDOWS, 224
nested traps

in SPARC-V9, 222
No-Fault Only (NFO) field of TTE, 192
No-Fault Only (nfo) field of TTE, 182
nonfaulting load, 189, 231
nonfaulting loads

definition of, 346
nonprivileged

mode, 341
nontranslating ASI, 347
note

implementation, xviii
programming, xviii

NPC register, 64

O
opcode

definition, 347
otherwin Register, 224
out of range

violation, 201, 206, 212
virtual address, 62
virtual address, as target of JMPL or

RETURN, 63
virtual addresses, during STXA, 199
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P
P superscript on instruction name, 21
PA Watchpoint Address Register, 199
partial store

instruction, 233
physical address (pa)

field of TTE, 183
population count (POPC) instruction, 223
power down mode, 234
precise traps, 222
PREFETCHA instruction, 230
privilege violation, 205
privileged

(priv) field of PSTATE register, 189, 190
privileged_action trap, 190, 191
programming note, xviii
protection violation, 189
pstate, 27
PSTATE

priv field, 347, 348

Q
quad-precision floating-point instructions, 226
quadword

definition, 349

R
RED_state, 198, 222

MMU behavior, 198
register

SFAR, 190
SFSR, 190

reserved
fields in opcodes, 221
instructions, 20, 221

RSTV_ADDR, 93

S
SAVE instruction, 224
secure environment, 223
self-modifying code, 230
sequence_error floating-point trap type, 228
SFAR register, 190
SFSR register, 190
shall (keyword), 350
short floating point

load instruction, 233
store instruction, 233

should (keyword), 351
side effect

attribute, 231
field of TTE, 231

signal monitor (SIGM) instruction, 223
in non-privileged mode, 223

software
defined (soft) field of TTE, 183
defined (soft2) field of TTE, 183
Initiated Reset (SIR), 223
Translation Table, 184, 229

SPARC
V9 compliance, 221

SPARC V9
concepts and terminology, 341

speculative load, 189, 231
split field of TSB register, 187
STD instruction, 231
STDF_mem_address_not_aligned trap, 232
store instructions, 351
STQF instruction, 232
STQFA instruction, 232
Synchronous Fault Address Register (SFAR), 205
Synchronous Fault Status Register (SFSR), 203

illustrated, 203

T
TA instruction, 299
Tag Access Register, 186, 206
Tcc instruction, reserved fields, 221
Tcc instructions, 299, 300
TCS instruction, 299
TE instruction, 299
terminology for SPARC V9, definition of, 341
TG instruction, 299
TGE instruction, 299
TGU instruction, 299
tl instruction, 299
TLB, 229

bypass operation, 214
Data Access register, 208, 211
Data In register, 186, 208, 211
demap operation, 214
hit, 352
miss, 184

handler, 36, 186, 199
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operations, 214
read operation, 214
reset, 198
Tag Read register, 211
translation operation, 214
write operation, 214

tle instruction, 299
TLEU instruction, 299
TN instruction, 299
TNE instruction, 299
TNEG instruction, 299
TPOS instruction, 299
Translation Table Entry see TTE
trap

MMU generated, 188
stack, 222
state registers, 222

Trap Enable Mask (tem) field of FSR register, 227,
228

TSB, 36, 201, 202, 229
caching, 184
locked items, 188
miss handler, 186
organization, 184
Pointer register, 207
Register, 184
Tag Target register, 188, 202

TSB_Base, 201
TSB_Size field of TSB register, 187
TTE, 181, 190
TVC instruction, 299
TVS instruction, 299

U
UltraSPARC-I

extended instructions, 234
internal registers, 191

unfinished_FPop floating-point trap type, 228
unimplemented

instructions, 221
unimplemented_FPop floating-point trap type, 226,

228
unimplemented_FPop floating-point trap type, 20

V
VA Data Watchpoint register, 190
VA out of range, 205

VA_watchpoint trap, 33, 37
virtual address

space illustrated, 63

W
Watchdog Reset (WDR), 222
watchpoint trap, 190
window_fill trap, 63
Writable (w) field of TTE, 183
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