
Palo Alto, CA 94303 USA

650 960-1300

901 San Antonio Road

Sun Microsystems, Inc.

Multiprocessor SPARC™

Architecture Simulator

(MPSAS) Programmer’s

Guide

Part Number: 800-6941-03



Please

Recycle

Copyright © 1999 Sun Microsystems, Inc. All rights reserved. The contents of this documentation is subject to the current version of

the Sun Community Source License, microSPARC-II ("the License"). You may not use this documentation except in compliance with

the License. You may obtain a copy of the License by searching for "Sun Community Source License" on the World Wide Web at

http://www.sun.com. See the License for the rights, obligations, and limitations governing use of the contents of this documentation.

Sun Microsystems, Inc. has intellectual property rights relating to the technology embodied in this documentation. In particular, and

without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, all Sun-based trademarks and logos, Solaris, Java and all Java-based trademarks and logos are

trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. microSPARC is a trademark

or registered trademark of SPARC International, Inc. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the United States and other countries. an architecture developed by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY

INVALID.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS

OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)

AND /OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.



Contents

1. Overview 1

1.1 Simulation Levels 2

1.1.1 Instruction-Accurate Module 2

1.1.2 Transaction-Accurate Module 2

1.2 Modularization Criteria 3

2. Framework 5

2.1 Module Classes and Module Instances 6

2.2 Module Configuration 6

2.3 Message Passing 9

2.3.1 Channels 10

2.3.2 Message Composition 10

2.3.3 Interface Operations 11

2.4 Cycle Paradigm 13

2.5 Layers 17

2.6 Framework Services 17

2.6.1 Data Types 18

2.6.2 Interaction with the User 19

2.6.3 Asynchronous Input 20
Contents iii



3. Writing a Module 21

3.1 Module Instance State 21

3.1.1 Static and External Variables 22

3.2 Use of Accesses 23

3.3 Use of Interfaces 26

3.3.1 Simulating a Bus 26

3.3.2 Interface State Pointer 27

3.4 Performance Tips 28

3.4.1 Preallocated Memory 28

3.4.2 Common Message Formats 28

3.4.3 Cycle Entry Points 29

4. Module Entry Points 31

4.1 Configuration Entry Points 31

4.1.1 Module Class Initialization Entry Point 32

4.1.2 Create Module Instance Entry Point 34

4.1.3 Configure Interface Entry Point 38

4.1.4 Create Shared Object Entry Point 42

4.1.5 Lookup Shared Object Entry Point 44

4.1.6 Verify Configuration Entry Point 46

4.2 User Interface Entry Points 48

4.2.1 Dump State Entry Point 48

4.2.2 Restore State Entry Point 52

4.2.3 Module Command Entry Point 55

4.2.4 Load Memory Entry Point 60

4.3 Simulation Entry Points 62

4.3.1 Start Simulation Entry Point 62

4.3.2 Receive Entry Point 62

4.3.3 Cycle Entry Points 66

4.3.4 Simulation Dieing Entry Point 67
iv Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



5. Miscellaneous Framework Routines 69

5.1 Display Routines 69

5.2 Error Exit Routines 70

5.3 Halt Routines 71

5.4 Simulation Control Routines 71

5.5 64-Bit Integer Routines 71

5.6 Interface Manipulation Routines 72

5.7 Symbol Table Access Routines 72

5.8 SPARC Assembly/Disassembly Routines 72

5.9 String Routines 72

5.10 ASCII Conversion Routines 73

5.11 Global Variables 73

6. Product Structure 75

6.1 MPSAS Root Directory 75

6.2 Layers 75

6.3 Directory Structure 77

6.4 Inside a Layer 78

6.5 Makefile Usage 79

6.5.1 Targets 79

6.5.2 Faster Makes 80

6.5.3 Compiler Flags 80

6.5.4 Multiple Sets of Derived Files 81

6.6 Adding to an Existing Layer 82

6.6.1 Adding a File to the Layer Archive 82

6.6.2 Adding a Module 83

6.6.3 Adding a Message Type 83

6.6.4 Adding a Layer Command 84

6.7 Adding a New Layer 87

6.8 How the Framework Knows About the Layers 88
Contents v



6.9 Makeall 89

7. Asynchronous Input (sigio ) 91

7.1 Preparing to Use the sigio  Facility 91

7.1.1 Interface Connected to sigio 92

7.1.2 Opening File Descriptors 92

7.1.3 Registering File Descriptors 92

7.2 Communications 92

7.2.1 sigio  Message Type 93

7.3 sigio  Modes 93

7.3.1 Raw Mode Input 93

7.3.2 Block Mode Input 94

7.4 Flow Control 94

8. Access Classes 95

8.1 The ACCESS_CLASS Structure 96

8.2 Expressions and Accesses 97

8.2.1 Defining an Access 97

8.2.2 EXPR and ACCESS Data Structures 99

8.2.3 Expression Parsing 101

8.2.4 Expression Evaluation 102

8.2.5 Access Expressions 103

8.2.6 Multiple Evaluators 103

8.3 An Example Access Class 104

8.3.1 Access Constructors 105

8.3.2 The ck_syntax  Entry Point 106

8.3.3 Evaluator Functions 107

8.3.4 The set  Entry Point 108

8.3.5 The Print Entry Point 111

8.3.6 The dump and restore  Entry Points 112

8.3.7 The set_base  Routine 113
vi Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



8.3.8 The Access Class Variable 116

8.4 Derived Access Classes 118

8.4.1 Existing Access Classes 119

8.5 Parameters 119

8.6 Macros for Creating Accesses 121

A. Framework Manual Pages 123

B. Example Module Listing 183

C. Services Provided by the Layers 195

C.1 Message Types 195

C.1.1 computer  Layer Message Types 195

C.1.2 sparc  Layer Message Types 196

C.2 computer  Layer Memory Routines 197

C.2.1 The mem_state  Structure 200
Contents vii



viii Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Figures

FIGURE 1-1 Abstract View of a Basic Computer System 1

FIGURE 2-1 Configuration Phase 8

FIGURE 2-2 Interface Operations 11

FIGURE 2-3 Cycle Phases 14

FIGURE 3-1 Bus Module 27

FIGURE 6-1 MPSAS Layers 76

FIGURE 6-2 MPSAS Layers with Additional Fictitious Layers 77

FIGURE 8-1 Data Structures After an Access Is Defined 97

FIGURE 8-2 Data Structures After an Expression Is Parsed 101

FIGURE 8-3 Handling of Message Fields by Word2 Access Class 115
Figures ix



x Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Tables

TABLE P-1 Typographic Conventions xv

TABLE 2-1 Framework SPARC Data Types 18

TABLE 2-2 Framework Non-SPARC Data Types 19

TABLE 5-1 Display Routines 69

TABLE 8-1 Framework Access Classes from Which New Classes Can Be Derived 119

TABLE A-1 Macrodata Described by Access 131

TABLE A-2 Defined Data Types 145
Tables xi



xii Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Preface

This book, Multiprocessor SPARC™ Architecture Simulator (MPSAS) Programmer’s
Guide, is one of a four-manual documentation set for the microSPARC-II technology.

The other three manuals are:

■ Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide, which

describes how to use MPSAS and its associated programs.

■ microSPARC-IIep Validation Catalog, which describes a suite of validation tests for

the microSPARC-IIep technology

■ microSPARC-IIep Megacell Reference, which explains how to build

microSPARC-IIep megacells

Organization of This Book

This book is intended for programmers who need to create or modify modules to

simulate a SPARC-based computer system. It contains the following chapters and

appendixes.

Chapter 1, Overview, describes MPSAS from the programmer’s point of view. It

introduces a number of concepts used in the rest of the manual.

Chapter 2, Framework, discusses the services provided by the framework.

Chapter 3, Writing a Module, discusses how to use the services provided by the

framework to write a module.

Chapter 4, Module Entry Points, describes the entry points (routines) a module

provides for its configuration, user interface, and simulation, as well as the

framework routines they call.
xiii



Chapter 5, Miscellaneous Framework Routines, describes the framework routines used

by modules.

Chapter 6, Product Structure, describes the source structure layout, its makefiles, and

layers. It describes how to add message types and user interface commands to each

layer.

Chapter 7, Asynchronous Input (sigio), describes the asynchronous UNIX input facility

(called sigio ) and how modules can use it.

Chapter 8, Access Classes, describes how to write or modify an access class.

Appendix A, Framework Manual Pages, provides detailed descriptions of all

framework routines that may be called by a module.

Appendix B, Example Module Listing, contains a source listing of the example
module class.

Appendix C, Services Provided by the Layers, describes the message types and utility

routines provided in layers above the framework layer.

At the end of the book is an index.

Prerequisite Knowledge

It is assumed that you are familiar with programming in the C language in the

UNIX® environment and that you have a basic familiarity with computer

architecture, in particular the SPARC architecture. For further information, see the

list of documents in the following section.

Related Books and References

The following documents contain material that further explains or clarifies

information presented in this guide.

The SPARC Architecture Manual/Version 8 by David Weaver, Prentice Hall; ISBN:

0138250014

The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice

Hall; ISBN: 0131103628
xiv Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup

Typographic Conventions

TABLE P-1 describes the typographic conventions used in this book.

Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals by using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,

instructions, files, and

directories; on-screen computer

output; email addresses; URLs

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, section titles in

cross-references, new words or

terms, or emphasized words

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

<> A bit number or colon-

separated range of bit numbers

within a field; bit 0 is the least

significant bit.

WB_VECTOR<15:0>
Preface xv



Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .

Disclaimer

The information in this manual is subject to change and will be revised from time to

time. For up-to-date information, contact your Sun representative.
xvi Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 1

Overview

The MPSAS behavioral simulator is a software tool, written in C++ and SPARC

assembly language, with which you can model SPARC-based computer systems at

the instruction or transaction level. The system being simulated is independent of

the computer on which the simulation is running. When run on a SPARCstation™,

MPSAS typically simulates thousands of SPARC instructions per second.

In MPSAS, a computer system is modeled by a group of autonomous units called

modules. Each module contains code and state to model the behavior of a hardware

component. Typically, each module’s state is private, although portions of it can be

shared with other modules. Modules communicate with each other by passing

messages and through shared state. A module updates its state based on messages it

receives and as time elapses.

FIGURE 1-1 shows an abstract view of a basic computer system. The rectangles are

modules; the lines between them represent their communication paths. The system

depicted has two processors, each with a memory-management unit and a cache.

These two processors share a serial port, disk controller, RAM, and ROM. The bus

arbitrates between the requests of the two processors.

FIGURE 1-1 Abstract View of a Basic Computer System

cpu

bus

serial

rom

ram

mmu cache
disk

cpu mmu cache
1



MPSAS measures time in cycles. Modules use cycles to synchronize with each other

(just as hardware uses a system clock for synchronization) and to divide their work

into time-dependent pieces. A module can specify that a message is to be delivered

some number of cycles in the future. This delay feature is useful in simulating the

response time of a device or communication delays.

1.1 Simulation Levels
A module can simulate the behavior of its hardware at different levels of detail. As

the level of detail increases, the following situations result:

■ A module more accurately simulates all of the behaviors of its hardware.

■ The performance of the simulator decreases.

■ The effort to develop a module increases.

Modules of different levels of detail can be mixed in a system to provide the

required level of accuracy and speed.

Two common levels of simulation detail for a module are called instruction accurate
and transaction accurate.

1.1.1 Instruction-Accurate Module

An instruction-accurate module simulates its hardware at a low level of detail. It

correctly simulates the functions of its hardware, but its timing and transactions

might not be correct.

The structure of a system modeled by instruction-accurate modules can be quite

different from the structure of the system hardware (due to the simulation’s level of

abstraction).

The order in which instructions are executed by the processors in the system might

differ from the order in which they would be executed on actual hardware. Quite

often these inaccuracies are acceptable.

1.1.2 Transaction-Accurate Module

A transaction-accurate module accurately simulates the transactions involving the

module and the module’s state. It is more detailed than an instruction-accurate

module.
2 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The structure of a system modeled by transaction-accurate modules is similar to the

structure of the system hardware.

1.2 Modularization Criteria
In MPSAS, a computer system is modeled as a collection of modules. Thus, the

functions of the system must be decomposed into a set of modules. Various trade-

offs are involved in decomposing the system.

The functions of a module should be as cohesive as possible. Typically, there is a

large degree of sharing of data and communications between them.

The degree of interdependence between modules should be minimized to decrease

the overhead of message passing. Sharing of state can reduce the message-passing

overhead.

Typically, a computer system has a hardware block diagram that shows the

integrated circuits and how they are connected. Hardware designers follow a set of

modularization criteria similar to those followed by the module programmer, so

their block diagram is a reasonable starting point for decomposing the system into

modules.

The blocks can be decomposed into several MPSAS modules, or some of the blocks

can be combined into one module because hardware constraints differ from

simulation constraints. Each bus in the hardware block diagram that has more than

one reader should be modeled by a module.

The negative characteristics of a too coarsely decomposed system are:

■ Reduction of runtime configurability

■ Reduction of reuse of modules

■ Increased complexity of debugging the system simulation—larger modules are

more complex

■ Reduced opportunities for parallel development by multiple programmers

The negative characteristics of a too finely decomposed system are:

■ Increase in number of required modules states

■ Degraded performance because of excess message passing
Chapter 1 Overview 3



4 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 2

Framework

In addition to the code implementing the modules, MPSAS contains code to

implement the framework. The framework performs several key functions:

■ Supports module classes and module instances

■ Controls the configuration of the modules

■ Implements the message-passing facility

■ Implements the cycle paradigm

■ Implements the concept of layers

■ Provides support functions for the modules.

Think of the framework as surrounding the modules and providing the environment

in which the modules exist. This idea is analogous to the UNIX kernel providing an

environment in which applications exist. This book describes the environment

created by the framework for modules; it does not discuss the internal data

structures and detailed operations of the framework.

The operation of the framework proceeds in two distinct phases: configuration and

simulation.

Soon after the simulator is started, the framework enters the configuration phase.

The configuration phase parses a configuration file and then initializes the modules

specified in it.

The simulation phase starts immediately after the configuration phase finishes.

During the simulation phase, the simulation is said to be running if activities related

to simulating the computer system are occurring (that is, the message-passing

facility is active and cycles are advancing). The user can start and stop the

simulation at will, and the modules and framework can stop the simulation as well

(for example, at breakpoints).
5



2.1 Module Classes and Module Instances
The framework supports module classes and module instances. To the framework, a

module class is a set of entry points (pointers to C routines). These entry points are

called module entry points. A module instance is associated with a module class but

it also includes a state. This document uses the term module by itself in many cases

where the distinction between class and instance is unimportant or obvious.

A module class is analogous to a C data type; it specifies the behavior of an object. A

module instance is analogous to a C variable; it is an instance of some C data type

and has state associated with it.

The framework can support an unlimited number of module classes and module

instances. Increasing the number of module instances in a simulation does not

increase the framework’s overhead (that is, the framework imposes no speed penalty

for a large number of module instances).

The framework deals with module classes and module instances during the

configuration phase. During the simulation phase, the framework only deals with

the module instances.

The framework controls which module executes at any time. It calls a module entry

point to have it perform some function related to that module’s configuration or

simulation. The module entry point can call routines in the framework (called

framework routines) to help it complete its task, but eventually the module entry

point returns control to the framework.

2.2 Module Configuration
The configuration of the modules in the system is divided into six steps:

1. Initializing the module classes

2. Initializing each module instance of each module class

3. Initializing each interface of each module instance

4. Create each shared object of each module instance

5. Looking up each shared object used by each module instance

6. Verifying the final configuration of each module instance
6 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The framework performs each configuration step for all modules before it proceeds

to the next step. For example, all module classes are initialized, and then all module

instances of all module classes are initialized.

Each module must support the first step of configuration; the other steps are

optional, but most modules support some of them.

Each module provides a routine to perform each step it supports. These routines are

called module configuration entry points.

The framework calls the module configuration entry points to aid in the

configuration of the system specified by the configuration file. Each entry point can

have several parameters associated with it; some parameters are passed to the entry

point when the framework calls it; others are obtained by the entry point calling an

appropriate framework routine.

The module configuration entry points pass information to the framework by a

combination of the entry point’s return code and calls to appropriate framework

routines.

FIGURE 2-1 shows how the framework and module configuration code interact during

the configuration phase. The modname prefix in the module entry point names

represents the name of some arbitrary module class. Note that only module classes

that have instances defined in the configuration file are involved in the configuration

process.
Chapter 2 Framework 7



FIGURE 2-1 Configuration Phase

for each module class
call class’s module init entry point

for each module class
for each instance of the module class

call class’s create instance entry point

for each module class
for each instance of the module class

for each interface of the instance
call class’s config intf entry point

for each module class
for each instance of the module class

for each shared object to be created
call class’s create shared object

                    entry point

for each module class
for each instance of the module class

for each shared object to be looked up
call class’s lookup shared object

                    entry point

for each module class
for each instance of the module class

call class’s verify config entry point

configuration done

modname_module_init()
register other module entry points

modname_create_instance()
allocate and initialize instance state
parse configuration file arguments

modname_config_intf()
verify interface declaration

      parse interface arguments
register interface options

modname_create_shared_object()
register object pointer

      register object size

modname_lookup_shared_object()
get object pointer

      get object size

modname_verify_config()
verify instance state is correct

Framework Modules
8 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



2.3 Message Passing
Modules communicate by sending messages to each other much like two integrated

circuits communicate, where the source chip drives its output pins and the

destination chip samples its pins some time later. (Of course, the pins of the two

chips must be connected by wires to enable the chips to communicate.)

Instead of pins, modules have interfaces. An interface provides a module with access

to the framework message-passing facility like a pin provides the die of a chip access

to the printed circuit board wires. Like a pin, each interface belongs to a single

module instance.

There are some important differences between interfaces and pins.

■ Interfaces can transmit messages which may contain many bits. Thus, each

interface may represent a group of pins (for example, the bus interface of a chip).

■ Pins can be connected in a configuration that includes multiple receivers (for

example, a snoopy bus). Interfaces are typically connected in a

one-to-one configuration. They can be connected in a many-to-one configuration,

provided the many interfaces only send messages and the one interface only

receives messages. Other interface configurations are not allowed.

A message sent by a module to an interface it owns is received by the module

connected to the remote interface. One-to-one interfaces are bidirectional. The

interface that originated the message is called the source interface or the local interface;

the interface that receives the message is called the destination interface or the remote
interface.

The framework allows each module instance to have any number of interfaces. The

framework assigns a unique 32-bit opaque value (called the interface handle) to each

interface during the configuration phase. The module can store this handle for later

operations involving the interface.

During configuration, the module can examine the interface type and the interface

arguments of each of its interfaces specified in the configuration file. From those two

sources, it determines how each interface is to behave.

For example, an MMU module may require two types of interfaces: one to connect to

the processor and one to connect to the memory system. In this case, a different type

could be assigned to each interface, and the MMU would examine the interface type

of each interface to identify it.

Topics related to message passing are:

■ Channels

■ Message composition

■ Interface operations
Chapter 2 Framework 9



2.3.1 Channels

The framework message-passing facility consists of three independent channels:

positive-phase simulation, negative-phase simulation, and debug. Interfaces can

support message passing on all channels.

Modules use the simulation channels to communicate information relevant to the

simulation. For example, a processor may send a message on a simulation channel to

fetch an instruction from the memory subsystem. The positive-phase simulation

channel is used to send a message to an interface during the positive (first) half of a

cycle. The negative-phase simulation channel is used to send a message to an

interface during the negative (last) half of a cycle.

Modules use the debug channel to communicate information on behalf of the

simulator user. For example, the user enters a command that causes the processor to

send a message on the debug channel to fetch an instruction from the memory

subsystem and then display it. Debug channel accesses should not change the

simulation state unless the user specifically asks the simulator to change the

simulation state. (For example, if a user requests an instruction in memory to be

disassembled, the simulator should not mark the cache as referenced. If the user asks

to write to an address in memory, the state of the cache may have to be changed.)

Simulation channel messages are only delivered by the framework when the

simulation is running. However, debug channel messages are always delivered by

the framework. So, users can stop the simulation and still have the modules

communicate on their behalf.

Each simulation channel message has a cycle delay associated with it. Depending on

the characteristics of the destination interface, the framework may deliver the

message immediately (ignoring the delay) or may delay the transmission of the

message by the specified number of cycles. All debug channel messages have zero

delay.

The framework has a message queue for each channel. The simulation channel

message queues accept messages with an arbitrary positive delay. A delay of zero is

not allowed in certain situations (described later). The debug channel message queue

accepts only messages with zero delay.

2.3.2 Message Composition

A message is composed of the following elements:

■ Size — Specifies the size of the message data in bytes.

■ Data pointer — Points to a dynamically allocated contiguous block of memory of

“size” bytes if the message size is non-zero; otherwise the data pointer can be any

value. In the first case, a message pass transfers the ownership of the data from
10 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



the sender to the receiver. The receiver may free the data or reuse it. The sender

must not access the data even though it may still have a pointer to the data.

■ Message type — Specifies how the message data is to be interpreted. Each

message type has a unique opaque pointer associated with it. Message types must

be registered with the framework. If the format of the data for a message type is

described to the framework, the simulator user can observe the fields of the

message when it is sent between interfaces.

2.3.3 Interface Operations

Three message-passing operations are associated with an interface: sending

messages, receiving messages, and queuing messages. Each of these operations can

occur over the simulation or debug channels.

FIGURE 2-2 shows a representation of how the three interface operations interact with

the framework message-passing facility. The rectangles are module instances, the

rounded rectangles are interfaces, and the ladderlike objects are queues. In the

figure, interface a of module instance A is connected to interface b of module

instance B.

FIGURE 2-2 Interface Operations

FIGURE 2-2 shows only one of the three message channels; the diagram applies

equally to all of them.

aModule A b Module B

Framework
Message-passing
Facility

send

receive send

receive

queue

queue
Chapter 2 Framework 11



The send Operation

The send operation transfers a message from a source interface to a destination

interface. Framework routines perform a send operation on the simulation or debug

channels. The interface handle specifies the source interface. The message is received

by the destination interface.

Note that an interface can be connected to itself. When a message is sent to such an

interface, it is received by the same interface (which is both source and destination).

The receive Operation

Unlike some message-passing systems, a module does not call a routine to receive a

message and become blocked until one arrives. Instead, a module registers a routine

that is called by the framework when a message arrives. This routine is known as a

receive entry point. The act of the framework calling an interface’s receive entry point

is called delivering the message.

A module can register a different receive entry point for each of its interfaces for

each of the three message channels. The interface handle on which a message was

received is passed to the receive entry point. One receive entry point can use this

information to service multiple interfaces. A receive entry point can determine if it

was called to receive a simulation or debug channel message, but it cannot

determine if it received a positive or negative phase simulation channel message.

Interface Receive Modes

Mode specifies an interface’s behavior for messages it receives from another

interface; it does not affect how messages are sent by the interface. There are two

interface receive modes: queued and immediate.

When a module sends a message and the destination interface is in queued mode,

the message is put in a framework message queue and the sending module

continues execution. The message waits in the message queue for a number of cycles

equal to its delay value and then is delivered. In FIGURE 2-2 on page 11, interface b is

in queued mode because a queue exists between the source interface a and the

destination interface b.

When a module sends a message and the destination interface is in immediate mode,

the message is delivered immediately (that is, the message bypasses the message

queue). The sending module does not continue execution until the destination

interface’s receive entry point returns. The delay value of the message is ignored, but

its value is passed to the receive entry point. In FIGURE 2-2, interface a is in

immediate mode because no queue exists between the source interface b and the

destination interface a.
12 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Note that the sending module does not know if the destination interface is in

immediate or queued mode.

Immediate interfaces are faster than queued interfaces because there is less overhead

in a message transfer. However, they are typically only used in instruction-accurate

modules since the framework does not honor the message delays of send
operations.

Sending a message to an immediate interface amounts to nothing more than a

function call with a standard set of parameters to the destination receive entry point

(through a pointer).

With immediate mode interfaces, programmers must be careful to avoid

uncontrolled recursive message passing. For example, assume a system contains a

processor and a memory directly connected by a pair of interfaces, each in

immediate mode. The processor sends request messages to the memory, and the

memory sends back response messages (the processor is a master and the memory is

a slave). If the processor sends a new request message before returning from a

previous response message from the memory, the message passes may become

uncontrolled recursive function calls. The processor’s interface being in queued

mode prevents this situation.

The queue Operation

The queue operation causes a message to be received by a local interface as though

it was sent from the remote interface. The operation is used by a module to access

the framework message queues and send a message to itself.

Framework routines perform a queue operation on the simulation or debug

channels. The interface handle specifies the interface to queue the message to. The

queued message is delivered to the specified interface after the specified cycle delay.

In FIGURE 2-2 on page 11, the queue operation is shown for interface a and interface

b. The message does not go out of the interface; it only comes into the interface.

Queued and immediate mode interfaces are treated identically by the queue

operation.

2.4 Cycle Paradigm
MPSAS can simulate synchronous and asynchronous hardware.
Chapter 2 Framework 13



To support synchronous hardware, the framework uses the concept of a cycle. Its

closest analogy is the system clock of a computer system. Module instances can

perform work each cycle (for example, a processor advancing its instruction

pipeline).

To support asynchronous hardware, the framework allows modules to send

messages with zero delay.

A cycle consists of six steps:

1. Delivering positive-phase messages whose delay has expired

2. Calling positive-phase module cycle entry points

3. Delivering zero-delay positive-phase messages sent in phase 2

4. Delivering negative-phase messages whose delay has expired

5. Calling negative-phase module cycle entry points

6. Delivering zero-delay negative-phase messages sent in phase 5

The first three steps are collectively known as the positive-phase of the cycle. The

last three steps are collectively known as the negative-phase of the cycle. The

positive-phase and negative-phase allow a module to synchronize its activities to

both the rising and falling edges of a clock.

FIGURE 2-3 shows a timing diagram analogy for a cycle. The numbers 1 through 6

refer to the steps of a cycle.

FIGURE 2-3 Cycle Phases

During steps 1 and 4, messages are delivered. These steps are analogous to

synchronous logic’s sampling of its inputs on the rising and falling edge of the clock,

respectively. The nonvertical rising and falling edges in FIGURE 2-3 represent modules

sending zero-delay messages in response to those they received in step 1 and 4,

respectively.

1 2 3

one cycle

4 5 6

positive-phase negative-phase
14 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



During steps 2 and 5, module cycle entry points are called. They may send messages.

This behavior is analogous to synchronous logic driving its outputs.

During steps 3 and 6, any zero-delay messages sent by the cycle entry points are

delivered, allowing asynchronous logic to communicate before the next cycle starts.

If the steps of a cycle are being executed, the simulation is running; otherwise, it is

stopped.

Messages sent to an interface in queued mode are delivered after the delay expires.

A message is sent to a particular phase (positive or negative). A message sent with a

delay of n cycles in cycle c will be delivered to the beginning of its associated phase

of cycle c+n (that is, n cycles later).

Positive-phase, zero-delay messages sent in step 2 or 3 are delivered in step 3.

Negative-phase, zero-delay messages sent in step 5 or 6 are delivered in step 6. Zero-

delay messages sent to the phase opposite to the phase from which they are sent are

not allowed; the attempt causes a fatal error.

Messages sent to an interface in immediate mode are delivered in the step in which

the send operation is invoked (they bypass the framework message queues).

Therefore, such messages can be received in any of the six steps (since messages can

be sent in any of the six steps.)

Pseudocode for the steps of a cycle as executed by the framework is shown below.
Chapter 2 Framework 15



During steps 1 and 4, each message in the positive-phase and negative-phase

simulation channel queues is delivered to the corresponding receive entry point of

its destination interface or its delay is decremented. Receive entry points can add

messages to the simulation channel queues. Therefore, the messages being processed

in the simulation channel queues may have been put there at two different times:

1. They may have already been in the queue before the loop was started.

2. They may have been added to the queue by a module’s receive entry point called

by the deliver action of step 1 or 4.

During steps 2 and 5, the positive-phase and negative-phase cycle entry points

(respectively) of each module instance (that registered one with the framework) are

called. A cycle entry point can also add messages to the simulation channel queues.

During steps 3 and 6, all messages with zero delay that were added to the simulation

queues by the cycle entry points are delivered. This is done because these messages

must be delivered before the next cycle starts. Any messages with zero delay added

to the simulation channel queues by the receive entry points called in step 3 and 6

are delivered before the phase finishes.

Finally, after step 6, the cycle count is incremented and the cycle is finished.

for each positive-phase simulationQ message
if message’s delay is 0

 deliver message
else

 decrement message’s delay
call positive-phase module cycle entry points

            for each positive-phase simulationQ message added by
cycle entry points

if message’s delay is 0
 deliver message

for each negative-phase simulationQ message
if message’s delay is 0

 deliver message
else

 decrement message’s delay
call negative-phase module cycle entry points

            for each negative-phase simulationQ message added by
cycle entry points

if message’s delay is 0
 deliver message

increment cycle count

step 1

step 2

step 3

step 4

step 5

step 6
16 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



2.5 Layers
The MPSAS makefiles and directory structure divide the source files for the

simulator into a hierarchy of layers. Each layer creates a new level of services. Those

services are created from the source files in that layer and the services in all the

layers below it. The bottom layer is the framework layer.

To the framework, the layers do not appear as a hierarchy; they appear as

independent entities composed of:

■ A layer name

■ A list of user interface commands implemented by the layer

■ A list of module classes simulated by the layer

■ A layer initialization routine.

The layer name is used for display.

The framework user interface module uses the list of user interface commands to

distribute the set of user interface commands across the layers. Layers can add

commands to support the services created by that layer.

The framework uses the list of module classes to determine which module classes

are available in a simulator executable.

The framework calls the layer initialization routine once, soon after the simulator is

started. The layer initialization routine initializes the data structures used by that

layer. Register message types can be registered with the framework in layer

initialization routines. The alternative would be to register message types in a

module’s initialization routine. This alternative is not recommended because

message types are typically used by more than one module.

2.6 Framework Services
The framework provides modules with several additional services in the following

categories:

■ Data types

■ Interaction with the user

■ Asychronous input
Chapter 2 Framework 17



2.6.1 Data Types

MPSAS allows modules to use variables of any C data type (for example, int, short,

long) in their state or in their messages. However, the framework provides a set of

types based on the SPARC version 8 data types (see TABLE 2-1).

The preceding types along with the built-in C data types float and double
(floating-point single and floating-point double) constitute the entire set of SPARC

version 8 data types except for floating-point quad.

Use the preceding types in module states and messages in preference to equivalent

(but less precise) standard C types such as unsigned char and int . The sizes of the

standard C types depend upon the compiler used, whereas the types in TABLE 2-1 are

guaranteed to be the specified size.

The LWord and s_LWord data types are actually typedef’ed as double since the C

compiler does not support 64-bit integers. You should never use the standard C

arithmetic and logical operators (for example., +, ==, >) with the LWord types

because those operators will consider the LWord types as floating-point values

rather than as 64-bit integer values. You can use the C assignment operator (that is,

=) to assign one LWord to another. The framework provides a set of macros and

routines to perform arithmetic, logical, and conversion operations on the LWord
types (see the Math64 manual page).

TABLE 2-1 Framework SPARC Data Types

Type
Size (in
bits) Description

Byte 8 unsigned byte

s_Byte 8 signed byte

HWord 16 unsigned halfword

s_HWord 16 signed halfword

Word 32 unsigned word

s_Word 32 signed word

LWord 64 unsigned long (double) word

s_LWord 64 signed long (double) word
18 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



TABLE 2-2 shows some general-purpose data types the framework defines and

standard data types it uses in a nonstandard way.

2.6.2 Interaction with the User

Modules interact with the simulator user in several ways:

■ Module commands

■ Accesses

■ State dump and restore

■ Memory load

Module Commands

During the configuration phase, a module informs the framework of the name of

each module command it supports and the corresponding module command entry

point. This entry point is invoked by the framework when the simulator user

executes the command. This mechanism allows modules to extend the set of user

interface commands.

Accesses

The framework provides commands that allow the user to print module variables,

set them, dump them out to trace files, and use them in expressions. However, the

framework itself has no built-in knowledge about the variables defined by modules.

Modules use a mechanism called accesses to register information about the module’s

state with the framework, allowing the framework to manipulate variables as

required for these purposes.

A package called an access class must exist for each type of variable to be described

by accesses. The framework provides a rich set of access classes that directly

supports the SPARC version 8 data types, as well as some other constructs familiar

to C programmers. The framework supports strings, bit fields, and arrays. A

grouping mechanism collects accesses and treats them as one. New access classes

can be created if necessary.

TABLE 2-2 Framework Non-SPARC Data Types

Type Size (in bits) Description

Bool 8 Boolean (0 = FALSE, 1 = TRUE)

caddr_t 32 opaque pointer
Chapter 2 Framework 19



State Dump and Restore

A module can dump its state to a file or restore its state from a file. These operations

are performed in response to commands from the user.

The state dump and restore facility allows the user to store the state of a system, quit

from the simulator, start the simulator again, and then restore the saved state of the

system.

Memory Load

The memory load facility initializes modules that simulate memory (for example,

RAM and ROM). The contents of a user-specified file are loaded into the module’s

memory.

2.6.3 Asynchronous Input

The framework provides a facility (called sigio) to allow modules to independently

accept asynchronous input from UNIX file descriptors. The framework reads data

from the file descriptor when it is available and sends it to its associated module in

a message. Because of the method the framework uses to provide this facility,

modules must not write data to the file descriptor directly. Instead, they send a

message containing the data, and the framework writes the data to the file

descriptor.
20 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 3

Writing a Module

This chapter explains some of the issues involved in writing a module. It provides

guidance in the following areas:

■ Module instance state

■ Use of accesses

■ Use of interfaces

■ Performance tips

3.1 Module Instance State
All instances of a module class share its routines, but each instance requires its own

independent module state. You meet this requirement by collecting the members of

the state into a C structure; then, instruct the module class to dynamically allocate

and initialize the structure for each module instance. Typically, the state structure is

called modname_state , where modname is the name of the module class.

A pointer to the state structure is registered with the framework for each module

instance. When the framework calls an entry point in a module, it passes back to it

the state pointer for that module instance. The instance casts the opaque pointer to a

modname_state structure pointer and accesses its state via the state pointer.

Typically, the state pointer variable is called msp (module state pointer).

The module state can be any legal C data structure. However, some practical

limitations do exist. The limitations occur because any members of the state that may

change during the simulation must be able to be dumped to and restored from a file

(see Section 4.2, User Interface Entry Points).
21



The example module state structure is listed below. Appendix B, Example Module
Listing, contains the source code listing of an example module called example . This

module simulates a simple count-down timer containing a small memory. Portions

of the source listing are included throughout this document as examples.

The inst_name member is a pointer to the module instance’s name. It is used by the

module instance to identify itself to the simulator user. Typically, modules have this

member in their state.

The intf_intf member is an opaque pointer that contains the interrupt interface

handle. The handle identifies an interface to the framework for interface operations

such as send and queue . The handle is also passed to the receive entry point of each

interface. An interface’s handle is stored in the state if the module must perform a

send or queue operation on that interface and the interface’s handle is not available

from a previous receive operation.

The other members of the example state structure are described later in this book.

3.1.1 Static and External Variables

Any static or external variable declared in a module class is shared by all instances

of that module. Any change an instance makes to the value of one of these types of

variables affects all other instances. Use these types of variables with care because

their use may violate the independence of each instance.

Typically, static and external variables store read-only data structures, such as tables,

for all instances of a module class to share.

#define MAX_CORE_SIZE   0x4000
struct example_state {
    char           *inst_name;  /* module instance name */
    caddr_t         intr_intf;  /* interrupt interface handle */
    LWord           reg_addr;   /* address of timer register */
    Byte           *core_ptr;   /* pointer into core array */
#define EXAMPLE_DUMP_PT count
    Word            count;      /* timer register */
    Byte            core[MAX_CORE_SIZE]; /* memory array */
};
22 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



3.2 Use of Accesses
An access is an entity that presents to the framework—using a standard interface—

everything it needs to manipulate a module variable (such as message fields). At

configuration time, a module instance defines accesses for each of its variables to

which the user is to have access. The routines used by the module instance routine to

do this are introduced in this chapter and described in detail in the Access Create

(for macros that create accesses) and Access Control (for routines that control aspects

of the behavior of any access) manual pages in Appendix A.

Every access is an instance of some access class. If you are familiar with object-

oriented languages such as C++, think of an access as being an object and an access

class as being a class in the object-oriented sense. You will find that some of the

terminology, such as “constructor,” was borrowed from that paradigm.

The framework contains a number of access classes for variables of type Word,

HWord, char* , and so on. You can write your own access classes, although doing so

is not a trivial task for someone who has never written one before. It is probably best

to understand the kinds of data that can be described with access classes and stick to

them as much as possible. Of course, if the user need not have access to certain data,

then there is no need to describe that data using accesses—and hence no concern for

whether existing access classes can describe them.

The following is a simplified form of the code used by the cpu module’s create

instance routine to describe two pieces of its state:

■ irl , the interrupt request level, which is a Byte

■ tbr , the trap base register, which is a Word divided into two bit fields, tba and

tt .

#include "types.h"
#include "expr.h"
#include "state_access.h"
 ...
        /* this code gets executed by cpu_create_instance() */
        ACCESS *access;

        BYTE("irl", &msp->irl);
        access = RO(WORD("tbr", &msp->tbr.w));
        MEMBER_BITF(access, "tba", TBR_TBA_MASK);
        MEMBER_BITF(access, "tt", TBR_TT_MASK );
        access_compact_print(access);
         ...
Chapter 3 Writing a Module 23



The irl is handled by a simple use of the BYTEmacro, which describes variables of

type Byte . It is passed the name by which the user will refer to the variable, and a

pointer to the variable’s data in memory. That is all the framework needs to know to

allow the user to manipulate the irl value, as seen here.

Creating the tbr variable is somewhat more involved. First, we use the WORDmacro

to describe the entire variable as a Word, just as we used the BYTEmacro for irl .

Those macros return a pointer to the ACCESSdata structure they create; we didn’t

need the pointer with irl , but we need it with tbr . We pass the pointer to the RO
macro, making the access read-only—that is, an attempt by the user to change its

value with the set command will fail.

The ROmacro also returns the pointer to the access, which we save for further calls.

The next two lines use MEMBER_BITFto create two Bitfield accesses, tba and tt ,

as “members”—variables within a variable—of tbr . Because tbr has members,

printing it results in its members being printed. Ordinarily, members are each

printed on a separate line; the call to access_compact_print causes the members

of tbr to be printed on the same line. The result is a variable that behaves as

follows.

Notice that members of an access are referred to by the notation access. member.

cpu1: print irl
0x00

cpu1: set irl=3

cpu1: when irl changes {print -v cpu1.irl; stop}

cpu1: print tbr
tba=0x0 tt=0x0

cpu1: set tbr.tba=1

cpu1: set tbr.tt=2

cpu1: print tbr
tba=0x1 tt=0x2

cpu1: expr tbr
0x1020  4128
24 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The following macros create accesses: FLOAT, DOUBLE, BOOL, BYTE, S_BYTE, CHAR,
HWORD, S_HWORD, WORD, S_WORD, LWORD, S_LWORD, WORD_ADDR, LWORD_ADDR, STR,

BBITF, S_BBITF, BITF , S_BITF , LBITF , S_LBITF , MEMBER_BITF, MEMBER_LBITF,
GROUP, and ARRAY. The Access Create manual page discusses these macros in more

detail, but two—GROUPand ARRAY—merit special mention here.

■ GROUP— Any access can have members. Ordinarily, having members only affects

the way an access is printed, in the manner demonstrated above. But the GROUP
macro creates an access that is nothing more than the collection of its members.

That is, no data are associated with the group itself; when the group is dumped,

all of its members are dumped. A group may not be assigned a value. Use a group

to create a collection of data that the user will likely want to display or dump as a

whole.

The access_add_member function adds members to a group or to any other

access. For the common cases involving module state variables, state_members
provides another, more convenient, way to do the same thing. As shown in the

example, MEMBER_BITFand MEMBER_LBITFautomatically make the accesses

they create members of another access, since that is usually the way bit fields are

used.

■ ARRAY— This macro creates an array, using some other access as a template for

an element of the array. For example, a command to print or set an array prints or

sets every element of the array; or a command can specify an individual member

to be affected by supplying an integer index expression as a parameter.

A number of routines modify the behavior of an access.

■ access_hide — Prevents an access from showing up in the output of the list
command. For example, a developer might use access_hide with a special

access created for debugging that is not for use by the average user.

■ access_invalid_print — Overrides the error message that is normally

displayed when the user prints a variable that is currently invalid.

■ access_address_generator — Describes a variable whose address may vary

during the simulation; you supply a function that generates the current address of

the variable whenever the framework needs it.

■ access_change_func — Specifies a function that is consulted each time the

user tries to set a particular variable. This “change routine” approves or rejects

the set and can even modify the value that is ultimately assigned.

■ access_arg — Stores an arbitrary pointer in an access for use by any routines

you associate with the access.

■ access_custom_set , access_custom_print , access_custom_dump , and

access_custom_restore — Override specific functions that would ordinarily

be handled by the accesses’s class; you need not write a new access class.
Chapter 3 Writing a Module 25



3.3 Use of Interfaces
Interfaces provide the mechanism for modules to communicate with other modules.

A module may need to communicate with many other modules and may support

many types of transactions. To decide how to partition a module’s communications

needs among its interfaces, use criteria similar to those discussed in Section 1.2,

Modularization Criteria.

A module can support multiple interface types. For example, an MMU module may

support two interface types: virtual and physical. The virtual interface connects to a

processor, and the physical interface connects to the memory subsystem.

A module can support multiple instances of each interface type. For example, a

memory module can support multiple-port access by supporting an interface type

that allows access to the memory and then supporting one instance of this interface

type for each port.

More than one type of transaction can be multiplexed on an interface by having a

field in the message data specify the message’s transaction type. Also, different

message formats can be multiplexed on an interface by use of multiple message

types on it.

3.3.1 Simulating a Bus

A hardware bus consists of multiple writers and multiple readers connected

together. Access to the bus is controlled by some arbitration logic.

In MPSAS, a bus is simulated with its own module. A bus module has an interface

for each device connected to the bus and performs arbitration and routing among

the bus writers (also called masters).

FIGURE 3-1 shows a bus module with several masters (m) and slave (s) interfaces

connected to it. The master interface is connected to the writers; the slave interface is

connected to the readers.
26 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



FIGURE 3-1 Bus Module

The bus arbitrates among the various messages sent to it by the masters. Masters

send requests to the bus at the beginning of a cycle, and the cycle entry point of the

bus uses an arbitration algorithm to select which master is granted access to the bus.

That master’s message is forwarded to the addressed slave.

3.3.2 Interface State Pointer

A module can associate a state structure with an interface. A pointer to the structure

(called the interface state pointer) is registered with the framework.

The interface state pointer can be read or written by the module at any time and

with any value. The get_interface_state framework macro returns the interface

state pointer. The set_interface_state framework macro sets the interface state

pointer at any time. The register_intf_state framework routine sets the

interface state pointer during the configuration phase.

The data pointed to by the interface state pointer is considered to be part of the

module instance state; it just has a special method to access it.

cpu1 bus

serial

rom

ram

disk
m

s

s

s

s

m

s

s

s

s

mm

cpu2 mm
Chapter 3 Writing a Module 27



3.4 Performance Tips
The performance of the simulator is greatly affected by the level of detail in the

modules of that system. As the level of detail is increased, the simulator

performance decreases since it is performing more work to simulate the same

activity.

However, you can use the techniques described below to maximize performance at a

given level of detail.

3.4.1 Preallocated Memory

As much as possible, a module should avoid using the dynamic memory allocation

routines (that is, malloc and calloc ) in code executed in the simulation phase.

When a module needs to allocate memory for the data of a new message, it is a

natural to use dynamic memory allocation routines. However, instead of

dynamically allocating the memory during the simulation phase, for performance

allocate the memory in the configuration phase and store a pointer to the memory in

the module instance’s state. The module returns the preallocated memory when

done with it.

Performance sidelight: When a developer modified a processor module to

preallocate memory for each message it sent to the memory subsystem (that is, each

time it a fetched an instruction or performed a load/store operation), performance of

the entire simulator increased by approximately 15%.

Use the preallocation technique only when you know the maximum memory

requirements of a module. Usually, you know this information because the hardware

being modeled has finite resources.

Using preallocated memory slightly complicates the dumping and restoring of the

module instance’s state. The framework provides routines that greatly aid in this

effort. For more information, see Section 4.2, User Interface Entry Points.

3.4.2 Common Message Formats

Many modules support multiple interfaces. Potentially, each one of these interfaces

may speak a different protocol and may require a different message format.

However, the interfaces are usually not independent. That is, a message received on

one interface may result in a message being sent by the module on another interface.
28 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



If the message data formats between such interdependent interfaces are similar

enough, the message received on one interface can then later be sent on another

interface. This technique saves the overhead of allocating/deallocating memory for a

message (even preallocated memory has some overhead) and copying information in

the message. Usually, only a few fields in the message need to be updated before the

message is sent.

3.4.3 Cycle Entry Points

A cycle entry point is invoked every cycle of the simulation. Thus, the performance

of the simulator is significantly affected by the overhead imposed by its cycle entry

points.

Avoid cycle entry points in a module whenever possible. If a module must have a

cycle entry point, make it as efficient as possible. For example, many cycle entry

points really only need to be called when triggered by an event (such as receiving a

message). The cycle entry point should test the trigger as efficiently as possible (for

example, testing one Boolean variable in the module’s state).
Chapter 3 Writing a Module 29



30 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 4

Module Entry Points

A module’s entry points are divided into three categories: configuration, user

interface, and simulation.

Configuration entry points configure the module class, instances of the module class,

and its interfaces. They are called by the framework during the simulator’s

configuration phase.

User interface entry points support requests made on behalf of the user. They are

called by the framework during the simulator’s simulation phase.

Simulation entry points simulate the behavior associated with the module. They are

composed of the interface receive entry points and the cycle entry point. The

simulation entry points are called by the framework during the simulator’s

simulation phase.

For details on how these entry points fit into the various phases, review Chapter 2,

Framework.

4.1 Configuration Entry Points
A module class provides the six entry points that the framework calls to handle the

following six steps of configuration for that module:

1. Initializing the module class

2. Initializing each module instance of the module class

3. Initializing each interface of each module instance

4. Registering objects that can be shared between modules

5. Looking up objects that can be shared between modules

6. Verifying the final configuration of each module instance
31



4.1.1 Module Class Initialization Entry Point

A module class’s initialization entry point (also called the module init entry point) is

called just once, before any of the other module entry points. For a description of

how the framework determines the address of a module init entry point given its

class name, refer to Chapter 6, Product Structure.

A module init entry point is defined as follows:

int modname_module_init()

By convention, the name of every module entry point called by the framework is

prefixed by the name of the module class (referred to as modname above). For

example, the name of the cpu module’s module init entry point is

cpu_module_init .

The module init entry point initializes the module class, typically:

■ Calls framework routines to register the address of the module’s other entry

points

■ Initializes global variables

■ Sets the module class extra pointer

Registering Module Entry Points

The following framework routines register with the framework the address of the

corresponding module configuration entry points (shown in parentheses; they are

described later):

■ register_create_instance (create instance)

■ register_config_interface (config interface)

■ register_verify_config (verify config)

■ register_shared_object_create (shared object create)

■ register_shared_object_lookup (shared object lookup)

All of the module configuration entry points are optional. All of the routines except

shared_object_create and shared_object_lookup are used by most

modules. These framework registration routines can only be called once per module

init entry point.

The following framework routines register with the framework the address of the

corresponding module entry points (shown in parentheses; they are described later):

■ register_cycle (cycle)

■ register_pos_cycle (positive-phase cycle)

■ register_neg_cycle (negative-phase cycle)

■ register_dump (dump)

■ register_restore (restore)

■ register_load_file (load file)

■ register_module_command (module command)
32 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The framework calls the module entry points during the simulation phase. All of the

entry points are optional, although most modules register dump and restore entry

points. These framework registration routines can be called only once per module

init entry point, except for the register_module_command routine, which is called

once for each module command.

Initializing Global Variables

The module init entry point is a convenient place to initialize global variables since

it is called only once no matter how many instances of that module are specified in

the configuration file.

Module Class Extra Pointer

Each module class has an opaque pointer, called extra , associated with it. A

module class sets the pointer to a value that can be retrieved by the other module

configuration entry points. Most modules do not use the extra pointer. It is used

primarily when the other module configuration entry points are shared by more

than one module init entry point (and therefore by more than one module class).

The extra pointer is stored in the framework, but its value is not used by the

framework.

The module init entry point sets its extra field with the set_module_extra
routine. The value of the extra field is fetched with the get_module_extra
routine and can be called by any module configuration entry point.

Return Value

The module init entry point returns 0 if it detects no errors; otherwise, it returns

nonzero, causing the simulator to exit with an appropriate message.

Example

Below is a listing of the module init entry point of the example module (see

Appendix B, Example Module Listing, for the complete source listing for the module).
Chapter 4 Module Entry Points 33



The example module registers the create instance, config interface, verify config,

shared object create and lookup, dump, restore, and cycle entry points, and one

command entry point.

The declaration for core_shorthelp and core_longhelp is not shown in the

preceding listing; they are both static arrays of characters.

4.1.2 Create Module Instance Entry Point

A module’s create module instance entry point (also called the create instance entry
point) is called once for each instance of that module specified in the configuration

file.

A create instance entry point is defined as follows:

caddr_t  modname_create_instance( args)
char *args;

The create instance entry point creates an instance of its module class:

■ Allocates and initializes the module instance state

■ Parses the configuration file instance arguments

■ Registers a cycle entry point

Module Instance State

The create instance entry point allocates and initializes a copy of the module

instance state (typically, a structure called modname_state ).

int
example_module_init()
{
        register_create_instance(example_create_instance);
        register_config_interface(example_config_intf);
        register_verify_config(example_verify_config);
        register_shared_object_create(example_create_shared_obj);
        register_shared_object_lookup(example_lookup_shared_obj);
        register_dump(example_dump);
        register_restore(example_restore);
        register_cycle(example_cycle);
        register_module_command("core", example_core_cmd,
            core_shorthelp, core_longhelp);
 }
34 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The framework allows a module instance to have any number of interfaces. If a

module needs to maintain some state for each interface, the module programmer

might find it convenient to allocate space for the state in the create instance entry

point. The get_num_interfaces framework routine returns the number of

interfaces connected to the calling module instance. The

get_num_interfaces_by_type framework routine returns the number of

interfaces connected to the calling module instance of a particular type.

The get_config_mod_instance_name framework routine returns a pointer to the

module instance’s name. A module uses the name only for identifying itself to the

user. Most messages generated by modules start with the module instance name

followed by a colon. A copy of the instance name pointer is stored in the instance

state structure with the name inst_name . A module must not modify the name.

Parsing Arguments

Each module instance declared in the configuration file can have a character string

of arguments associated with it. These arguments configure the behavior of a

module instance, allowing different instances of the same module class to behave

differently.

The create instance args parameter points to the configuration file argument string.

If there are no arguments, it points to the empty string (“” ).

The interpretation of the argument string is up to the module; it is not interpreted by

the framework. You can specify keywords in upper case and parameters in lower

case (for example, PIPELINE enabled).

You can specify multiple arguments for the configuration file. The framework

concatenates them all into a single string separated by newlines.

The get_argc_argv and look_for_keyword routines are helpful in parsing the

argument string. The get_argc_argv routine parses a null-terminated string and

returns an array of arguments (like the arguments passed to a C main routine). The

look_for_keyword routine searches an array of arguments for a particular

keyword and, optionally, certain parameters.

Registering Cycle Entry Point

You can call the register_cycle or register_pos_cycle framework routines

from the create instance entry point to register a positive-phase cycle entry point

with the framework. You can call the register_neg_cycle framework routine to

register a negative-phase cycle entry point. These entry points override the cycle

entry points that might have been registered by the module init entry point of a

module.
Chapter 4 Module Entry Points 35



Registering the cycle entry points in the create instance entry point instead of in the

module init entry point allows different module instances of the same module class

to have different cycle entry points (or, perhaps, none at all).

Return Value

The create instance entry point returns an opaque pointer. The framework considers

this the state pointer of the module instance being configured. If the instance has no

state, it just returns 0 (NULL).

Reporting Errors

The create instance entry point reports errors by calling the fatal_nodump
framework routine.

The other module configuration entry points do not call the fatal_nodump routine

to report errors because they have a return code that indicates whether an error

occurred. All return values of the create instance entry point are valid.

Example

Below is a listing of the create instance entry point of the example module.
36 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The example_create_instance framework routine allocates and clears a copy of

the module’s state structure (see Appendix B, Example Module Listing for the

definition of the state structure).

get_config_mod_instance_name retrieves the instance name. The pointer is

stored in the state for error messages later on.

Argument vector argv is obtained from the args string by the get_argc_argv
framework routine.

static caddr_t
example_create_instance(args)
        char           *args;
{
        struct example_state *msp;
        int             argc;
        char          **argv;
        int             index;

        /* Allocate a chunk of memory big enough for my state. */
        if ((msp = (struct example_state *) calloc(1,
            sizeof(struct example_state))) == NULL) {
                fatal_nodump("Unable to malloc.\n");
        }

        /* Store pointer to instance name in my state. */
        msp->inst_name = get_config_mod_instance_name();

        /* Convert args to an argc/argv data structure. */
        argc = get_argc_argv(&argv, args);

        /* Get address (64-bit value) of my counter register. */
        if ((index = look_for_keyword(argc, argv, “REG_ADDR”, 1,
            msp->inst_name)) <= 0) {
                fatal_nodump("%s: error in config file\n",
                        msp->inst_name);
        }

        msp->reg_addr = strto64(argv[index], (char **)NULL, 0);

        /* Create access to count register. */
        WORD("count", &msp->count);

        /* Return an opaque pointer to my state. */
        return (caddr_t)msp;
}

Chapter 4 Module Entry Points 37



The look_for_keyword framework routine is called to search for the REG_ADDR
keyword with one parameter. If the keyword is not found or the parameter is

missing, then fatal_nodump displays an error message and quits from the

simulator.

Otherwise, the parameter is converted from an ASCII string to a 64-bit integer with

the strto64 framework routine and assigned to the reg_addr member of the state

structure.

An access called count is created with the WORDframework macro to allow the

simulator user to read and write the count value. The count is the current value of

the 32-bit count-down timer.

Finally, the state is cast to an opaque pointer and returned to the framework.

4.1.3 Configure Interface Entry Point

A module’s configure interface entry point (also called the config intf entry point) is

called once for each interface of each instance of that module specified in the

configuration file.

A config intf entry point is defined as follows:

int modname_config_intf( state, intf)
caddr_t state, intf;

The config intf entry point configures an interface:

■ Verifies the interface declaration as it appears in the configuration file

■ Calls framework routines to register interface options

The state parameter is an opaque pointer to the module instance state of the instance

that owns the interface. The state parameter is a common parameter to module

entry points; it is the value returned to the framework by the module’s create

instance entry point.

The intf parameter (referred to as the interface handle) is an opaque pointer that

identifies the interface to the framework. The module saves the value of the interface

handle in its state if it needs to send a request message (that is, not a message in

response to a request) to that interface in the simulation phase. The framework

maintains information about each interface. The module can access this information

through a set of framework macros and routines.
38 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Verifying the Interface Declaration

The config intf entry point verifies that the interface declaration, as it appears in the

configuration file, is acceptable to the module. It can examine the interface type, its

connected/unconnected status, and argument string to perform this verification.

The get_interface_type framework macro returns a pointer to the interface type

string. The config intf entry point must ensure that the type is supported by the

module.

The is_interface_connected framework macro returns 1 if the interface is

connected to another interface and 0 if it is unconnected. Sending a message to an

unconnected interface causes a fatal error. Messages are received on an unconnected

interface only if the module queues a message on it. This behavior can be used by a

module to delay an action.

The get_interface_args framework macro returns a pointer to the interface

argument string. If there are no interface arguments, the macro returns a pointer to

the empty string (“” ).

The interpretation of the argument string is up to the module; it is not interpreted by

the framework. You can specify keywords in upper case and parameters in lower

case (for example, DEBUG on).

You can specify multiple interface arguments for the configuration file. The

framework concatenates them all into a single string separated by newlines.

The get_argc_argv and look_for_keyword routines are helpful in parsing the

argument string.

Registering Interface Options

The config intf entry point calls framework routines to register interface options with

the framework.

■ register_sim_intf_receive and register_pos_sim_intf_receive
specify the address of the positive-phase simulation channel receive entry point.

■ register_neg_sim_intf_receive specifies the address of the negative-

phase simulation channel receive entry point.

■ register_dbg_intf_receive specifies the addresses of the debug channel

receive entry point. A receive entry point is optional, although if a message is sent

to an interface on a channel that has not registered a receive entry point, a fatal

error occurs.

The four preceding framework registration routines can only be called once per

interface.

■ register_sim_intf_mode and register_dbg_intf_mode specify the receive

mode of an interface (immediate or queued) for the simulation (positive-phase
Chapter 4 Module Entry Points 39



and negative-phase) and debug channels, respectively. A mode must be registered

for a channel if, and only if, a receive entry point has been registered for that

channel.

■ The register_intf_state framework routine sets the interface state (stored in

the framework’s interface structure) to an opaque 32-bit value. Typically, the

opaque value is a pointer to a structure that is associated with the interface. The

value of the interface state pointer is retrieved with the get_interface_state
framework macro at any time.

Return Value

The config intf entry point returns 0 if it detects no errors; otherwise, it returns

nonzero, and the framework causes the simulator to exit.

Example

Below is a listing of the config intf entry point for the example module.
40 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The example_config_intf routine casts the opaque state parameter to an

example_state struct pointer called msp.

static int
example_config_intf(state, intf)
    caddr_t     state;
    caddr_t     intf;
{
    struct example_state *msp = (struct example_state *)state;
    char       *type = get_interface_type(intf);
    int         connected = is_interface_connected(intf);
    int         okay_to_be_unconnected = 0;
    static char duplicate_interface_type[] = "%s: interface\
\"%s\":\n\tOnly one \"%s\" interface type allowed.\n";
    static char unknown_interface[] = “%s: interface\
\”%s\”:\n\tUnknown interface type \”%s\”.\n”;
    static char unconnected_interface[] = “%s: interface\
\”%s\”:\n\tInterface type \”%s\” cannot be unconnected.\n”;

    if (strcmp(type, SLAVE_INTF_TYPE_NAME) == 0) {
            register_sim_intf_mode(IMMEDIATE_MODE);
            register_sim_intf_receive(example_slave_sim_rcv);
            okay_to_be_unconnected = 1;
    } else if (strcmp(type, INTR_INTF_TYPE_NAME) == 0) {
            if (msp->intr_intf) {
                    fwprintf(duplicate_interface_type,
                        get_interface_mod_inst_name(intf),
                        get_interface_name(intf), type);
                    return 1;
            }
            msp->intr_intf = intf;
    } else {
            fwprintf(unknown_interface,
                get_interface_mod_inst_name(intf),
                get_interface_name(intf), type);
            return 1;
    }
    if (!connected && !okay_to_be_unconnected) {
            fwprintf(unconnected_interface,
                get_interface_mod_inst_name(intf),
                get_interface_name(intf), type);
            return 1;
    }
    return 0;
}

Chapter 4 Module Entry Points 41



The get_interface_type framework macro extracts the type string from the

interface handle.

The is_interface_connected macro extracts the connected flag from the

interface handle.

The type string is compared with the interface type names (the macro definitions are

not shown) supported by the module. If the type does not match, an error message

is displayed. Note the use of the get_interface_mod_inst_name and

get_interface_name framework macros to get information about the interface for

the error message.

If the interface type is slave , then the register_sim_intf_mode and

register_sim_intf_receive framework routines register the slave receive entry

point with the framework. The example module only sends a message to a slave
interface if it receives a request message from that interface. Therefore, the example
module does not need to store its slave interface handles. Also, it does not require

the slave interface to be connected because if it receives a message from a slave
interface, it must be connected.

If the interface type is interrupt , then the example module saves the interface

handle in the module state for later use. First, it tests whether the handle in the state

has already been assigned. If it has, the example module displays an error message

because it allows only one interrupt interface. Note that the slave interface never

performed this check since any number of slave interfaces are allowed and their

interface handles need not be stored.

The interrupt interface does not have a receive entry point or mode assigned to it

because the example module does not receive messages on this interface—it is

write-only.

Finally, the config intf entry point tests whether the interface is illegally

unconnected. If so, an error message is displayed. If not, the config intf entry point

returns to the framework.

4.1.4 Create Shared Object Entry Point

The create shared object entry point is called once per declaration of each shared

object in each module instance in a module class.

A create shared object entry point is defined as follows:

int modname_create_shared_obj( state, obj_name)
caddr_t state;
char *obj_name;
42 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The create shared object entry point configures a shared object:

■ Verifies the shared object declaration as it appears in the configuration file

■ Calls framework routines to register shared object options

The state parameter is an opaque pointer to the module instance state of the instance

that owns the shared object. The obj_name parameter is the name of the object from

the configuration file that is being configured for sharing.

Verifying Shared Object Declaration

The name of the object is checked against a specific list of objects in the module that

are capable of being shared.

Registering the Shared Object

The create shared object entry point calls framework routines to register information

about the shared object.

■ register_object_ptr specifies the address of the object being shared.

■ register_object_size specifies the size of the object being shared.

Return Value

The create shared object entry point returns 0 if it detects no errors; otherwise, it

returns nonzero, and the framework causes the simulator to exit.

Example

Below is a listing of the create shared object entry point for the example module.
Chapter 4 Module Entry Points 43



The example_create_shared_obj routine casts the opaque state parameter to

an example_state struct pointer called msp.

The obj_name parameter is compared with the object names the module supports.

If the parameter does not match, then an error message is printed. If the parameter

matches, then the pointer to object in the module state is returned to the framework.

4.1.5 Lookup Shared Object Entry Point

The lookup shared object entry point is called once per lookup of each shared object

in each module instance in a module class.

A lookup shared object entry point is defined as follows:

int modname_lookup_shared_obj( state, obj_name)
caddr_t state;
char *obj_name;

The lookup shared object entry point configures a shared object:

■ Verifies the shared object lookup as it appears in the configuration file

■ Calls framework routines to get information about the shared object

The state parameter is an opaque pointer to the module instance state of the instance

that intends to share the object. The obj_name parameter is the name of the object to

which the pointer to the shared object is being assigned.

static int
example_create_shared_obj(state, obj_name)
    caddr_t state;
    char *obj_name;
{
    struct example_state *msp = (struct example_state *) state;

    if(!strcmp(obj_name, “count”)) {
            register_object_ptr(&msp->count);
            register_object_size(sizeof(Word));
            return 0;
    }
    else {
        fwprintf(“%s:example_create_shared_obj:%s Object unknown\n”);

            return 1;
    }
 }
44 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Verifying the Shared Object Lookup

The name of the object is checked against a specific list of objects in the module that

are capable of being shared.

Configuring the Shared Object

The lookup shared object entry point calls framework routines to get information

about the shared object.

■ get_object_ptr returns the address of the object being shared.

■ get_object_size returns the size in bytes of the object being shared.

Return Value

The lookup shared object entry point returns 0 if it detects no errors; otherwise, it

returns nonzero, and the framework causes the simulator to exit.

Example

Below is a listing of the lookup shared object entry point for the example module.
Chapter 4 Module Entry Points 45



The state pointer is cast to variable called msp.

The pointer to the shared object is retrieved by get_object_ptr and is assigned to

a void pointer. This pointer is then cast to u_example_psr and assigned to the

variable in the state.

The size, in bytes, of the object is retrieved by the get_object_size routine.

4.1.6 Verify Configuration Entry Point

A module’s verify configuration entry point (also called the verify config entry point)
is called once for each instance of that module specified in the configuration file.

A verify config entry point is defined as follows:

int modname_verify_config(state)
caddr_t state;

static int
example_lookup_shared_obj(state, obj_name)
    caddr_t state;
    char *obj_name;
{
    struct example_state *msp = (struct example_state *) state;
    union u_example_psr sh_psr;
    ACCESS* access;
    void *ptr = get_object_ptr();

    if(!strcmp(obj_name, “example_psr”)) {
        msp->sh_example_psr = (union u_example_psr *) ptr;
        msp->sh_example_psr_size = get_object_size();
        /* Shared PSR */
        access = WORD(“sh_example_psr”,
                     &msp->sh_example_psr->w);
        access_compact_print(access);
        MEMBER_BITF(access, “et”, WORD_MASK(sh_psr, et));
        return 0;
    }
    else {

fwprintf(“%s:example_lookup_shared_obj:%s Object unknown\n”,
msp->inst_name, obj_name);
      return 1;
    }
}

46 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The verify config entry point examines the state passed into it, determines if it

contains a legal configuration of the instance, and checks the combinations and

number of interfaces of the instance. The module’s other configuration phase entry

points must store this information in the state so it can be checked in the verify

config entry point.

Return Value

The verify config entry point returns 0 if it detects no errors; otherwise, it returns

nonzero, and the framework causes the simulator to exit.

Example

Below is a listing of the verify config entry point of the example module.

The example_verify_config routine casts the opaque state parameter to an

example_state struct pointer called msp.

It makes sure that the instance has an interrupt interface by examining the interrupt

interface handle it sets in its config intf entry point. If the interrupt interface is

missing, example_verify_config returns 1; otherwise, the state is valid and

example_verify_config returns 0.

static int
example_verify_config(state)
    caddr_t         state;  /* per instance state pointer */
{
    struct example_state *msp = (struct example_state *)state;

static char missing_interface[] = "example: module instance
\"%s\":\n\tInterface type \"%s\" not present.\n";

    if (msp->intr_intf == NULL) {
            fwprintf(missing_interface, msp->inst_name,
                INTR_INTF_TYPE_NAME);
            return 1;
    }

    return 0;
}

Chapter 4 Module Entry Points 47



4.2 User Interface Entry Points
During the simulation phase, the framework calls module user interface entry points

to handle the following user-initiated actions:

■ Dump module instance state to a file

■ Restore module instance state to a file

■ Execute a module command

■ Load simulated memory from a file

A module’s user interface entry points are registered with the framework during the

configuration phase.

4.2.1 Dump State Entry Point

A module’s dump state entry point (also called the dump entry point) is called when

the user requests that the state of that module instance be dumped. If a module has

state that changes on the basis of message traffic on the simulation channel—as most

modules do—the module should register a dump entry point.

The dump entry point works in conjunction with the restore entry point described in

Restore State Entry Point on page 52. The code in the dump and restore entry points

both agree on the format of the dumped state so that the restore entry point can

rebuild the state of the module instance as it was when it was dumped by the dump

entry point.

A dump entry point is defined as follows:

Bool modname_dump( state, stream)
caddr_t state;
FILE    *stream;

By convention, the name of the dump entry point is the module name (modname)

followed by an underscore and the word dump.

The state parameter to the dump entry point is the opaque state pointer of the

instance to be dumped.

The module dumps the state to the stream specified by the stream parameter, which

is opened and closed by the framework.

The members of the instance state structure that must be dumped are those that are

associated with the simulation channel and that change during simulation (for

example, writable registers).
48 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



You must take special care when dumping pieces of module state that are

implemented using pointers. Pointers in the state structure could point to memory

that is part of the state structure (for example,. a pointer into an array in the state

structure) or could point to memory that is outside the state structure (for example,

statically or dynamically allocated memory). In both of these cases the pointers must

be dumped to the stream in an address-independent form because pointers are not

reusable in a different invocation of the simulator. For example, if a state structure

member contains a pointer to a string, the actual string must be dumped. If a state

member is a pointer into another state member that is an array, this pointer could be

converted into an integer index and this index value dumped.

The framework provides the following routines that assist in dumping pieces of state

that were implemented with pointers.

■ dump_buffer writes a dynamically allocated block of memory to a stream.

■ dump_string writes a null-terminated string to a stream.

■ dump_array_ptr converts a pointer into an array into its equivalent integer

index and then writes it to a stream.

■ dump_message writes a message to a stream.

■ dump_intf writes an interface handle to a stream.

Return Value

The dump entry point returns a Bool type, which is true if the dump is successful

and false otherwise.

Example

The following state structure is used throughout this section to illustrate the various

user-interface entry points.

#define MAX_CORE_SIZE   0x4000
struct example_state {
    char           *inst_name;  /* module instance name */

caddr_t intr_intf; /* interrupt interface handle */
    LWord           reg_addr;   /* address of timer register */
    Byte           *core_ptr;   /* pointer into core array */
#define EXAMPLE_DUMP_PT count
    Word            count;      /* timer register */
    Byte            core[MAX_CORE_SIZE]; /* memory array */
};
Chapter 4 Module Entry Points 49



Note – The core_ptr and core members are not used in any other routines of the

example module outside this section and are only of use for this section.

The example module’s state structure is divided into two sections: a section that can

be dumped directly to the stream without conversion and a section that cannot.

The structure members in the group below the EXAMPLE_DUMP_PTdefinition are

members that can be dumped directly to the stream and need no conversion.

The members in the group above the EXAMPLE_DUMP_PTdefinition are members

that either need conversion before being dumped or do not need to be dumped at

all. The inst_name , intr_intf , and reg_addr members should not be dumped;

they are initialized during the configuration phase and do not change in the

simulation phase. If these were dumped and then restored, the values restored

would invalidate values initialized during the configuration phase and could cause

serious problems. Core_ptr points into the core array, so it must be converted to a

form that can be written to the stream.

The following example illustrates a module dump entry point.
50 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



/*
 * This routine is called by the framework when the user requests
 * the state of an instance of the example module class to be
 * dumped to a file.
 */
static Bool
example_dump(state, fp)
        caddr_t         state;
        FILE           *fp;
{

struct example_state *msp = (struct example_state *) state;
        char           *src = (char *) &msp->EXAMPLE_DUMP_PT;
        int             size;  /* # bytes we dump */

/*
 * Calculate the size of the portion of state below

 * the dump point.
 */

        size = sizeof(struct example_state) -
            (int) (src - (char *) msp);

/*
 * Write out portion of my state below the dump point.
 */

        if (fwrite(src, size, 1, fp) != 1) {
                fwprintf_unbuf("%s: fwrite failed\n",
                    msp->inst_name);
                fwperror("");
                return FALSE;
        }

/*
 * Write out members of my state above dump point
 * that change with the simulation.
 */

        if (dump_array_ptr(fp, msp->core, sizeof(Byte),
            msp->core_ptr)) {
                fwprintf_unbuf("%s: dump_array_ptr failed\n",
                    msp->inst_name);
                fwperror("");
                return FALSE;
        }

        return TRUE;
}

Chapter 4 Module Entry Points 51



In the example_dump routine, the number of bytes of the portion of the state

structure that can be dumped without conversion is calculated and saved in the

size variable. Next, this section is written to the stream. The rest of the code writes

the portion of the state structure that needs conversion. The call to

dump_array_ptr converts the pointer core_ptr into its equivalent index into the

core array and writes this value to the stream.

If the fwrite or the dump_array_ptr routines fail, an error message is displayed

and the dump entry point returns false . The error messages are displayed with the

fwprintf_unbuf routine, followed by fwperror to display the system error. The

fwprintf_unbuf routine is used because fwperror is unbuffered and order

between the messages should be preserved.

4.2.2 Restore State Entry Point

A module‘s restore state entry point (also called the restore entry point) is called when

the user requests the state of that module to be restored. If a module registers a

dump entry point, it should register a restore entry point.

The restore entry point works in conjunction with the dump entry point described in

Dump State Entry Point on page 48.

A restore entry point is defined as follows:

Bool modname_restore( state, stream)
caddr_t state;
FILE    *stream;

By convention, the name of the restore entry point is the module name (modname)

followed by an underscore and the word restore .

The state parameter to the dump entry point is the opaque state pointer of the

instance to be dumped.

The module restores the module instance state from the stream specified by the

stream parameter, which is opened and closed by the framework. The stream

specified by the parameter stream should be considered read-only.

The restore entry point clears the module instance’s state and then restores the

module instance’s state from a file that was previously written by the module’s

dump entry point.

The clearing of the module instance’s state members is usually accomplished by

overwriting the existing state of the module. In some cases, state members need

special attention. For example, state members that have pointers to dynamically

allocated memory should free the memory before overwriting the pointers.
52 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



You can restore pointers that were dumped by the framework dump routines by

using the following matching routines.

■ restore_buffer reads a block of memory from a stream and dynamically

allocates space for it.

■ restore_string reads a null-terminated string from a stream malloc ’s space

and reads a string from a file.

■ restore_array_ptr reads an index from a file and converts it to its equivalent

pointer into an array.

■ restore_message reads a message from a stream.

■ restore_intf reads an interface handle from a stream.

Return Value

The module restore entry point returns a Bool type. It returns true if the restore is

successful and false otherwise.

Example

The following example illustrates the example module’s restore entry point.
Chapter 4 Module Entry Points 53



In the example_restore routine, the size of the portion of the state structure that

can be dumped without conversion is calculated and saved in the size variable.

/*
 * This routine is called by the framework when the user requests
 * the state of an instance of the example module class to be
 * restored from a file.
 */
static Bool
example_restore(state, fp)
        caddr_t         state;
        FILE           *fp;
{

struct example_state *msp = (struct example_state *) state;
        char           *src = (char *) &msp->EXAMPLE_DUMP_PT;
        int             size;  /* # bytes we dump */

/*
 * Calculate the size of the portion of state below
 * the dump point.
 */

        size = sizeof(struct example_state) -
            (int) (src - (char *) msp);

/*
 * Read in portion of my state below the dump point.
 */

        if (fread(src, size, 1, fp) != 1) {
fwprintf_unbuf("%s: fread failed\n",msp->inst_name);

                fwperror("");
                return FALSE;
        }

/*
 * Read in members of my state above dump point that
 * change with the simulation.
 */

        if (restore_array_ptr(fp, msp->core, sizeof(Byte),
            &msp->core_ptr)) {
                fwprintf_unbuf("%s: restore_array_ptr failed\n",
                    msp->inst_name);
                fwperror("");
                return FALSE;
        }
54 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Next, this section is read from the stream. The call to restore_array_ptr reads an

index and converts it to its equivalent pointer, core_ptr , into the core array.

If the fread or restore_array_ptr routines fail, an error message is displayed

and the restore entry point returns false . The error messages are displayed with

the fwprintf_unbuf routine followed by fwperror to display the system error.

The fwprintf_unbuf routine is used because fwperror is unbuffered and order

between the messages should be preserved.

4.2.3 Module Command Entry Point

A module command entry point is registered with the framework during the

configuration phase for each user interface command the module adds. When the

user issues the command, the framework calls the appropriate entry point.

A command entry point is defined as follows:

Bool modname_cmd_cmd( state, cmd, args)
caddr_t  state;
char    *cmd;
char    *args;

By convention, the name of the module command entry point starts with the name

of the module (modname) followed by the name of the command (cmd) and the letters

cmd (separated by underscores).

The state parameter to the command entry point is the opaque state pointer of the

module instance requested to execute the command.

The cmd parameter points to a null-terminated string that contains the command

name.

The args parameter points to a null-terminated string that contains the remainder of

the command line typed by the user (not including the newline).

The framework provides routines to help with the processing of commands—

parsing strings, parsing and evaluating expressions, and manipulating access

variables.

■ ui_parsew returns the next word (sequence of nonwhite characters) in the string.

The routine is useful when parsing strings.

■ ui_parse_delimiter finds a delimiter in a string and returns the string

following it. The routine is useful when parsing strings.

■ xpr_parse parses an expression from a string. The routine is useful when a

command argument is an expression.

■ expr_boolean ensures that an expression’s value can be interpreted as a

Boolean.
Chapter 4 Module Entry Points 55



■ expr_access ensures that an expression represents an access

■ expr_get_LWord and expr_get_Word parse and evaluate expressions and

return LWord and Word, respectively.

■ expr_eval_boolean evaluates an expression that results in an integer as a

Boolean value.

■ expr_show displays an expression given the expression tree.

■ expr_show_value displays the value of an expression.

■ expr_equiv compares two expressions to see if they represent the same

expression.

■ expr_free frees an expression tree.

■ capture_printf and init_capture_info can be used with expr_show and

expr_show_value to capture their output in a string.

■ Macros EXPR_IS_INTEGERand EXPR_IS_ACCESSdetermine whether an

expression is of integer type or represents an access, respectively.

■ The following macros provide convenient ways of obtaining the value of an

expression once it has been evaluated: BYTE_VALUE, HWORD_VALUE,

WORD_VALUE, LWORD_VALUE, FLOAT_VALUE, DOUBLE_VALUE, STRING_VALUE,
and VALUE_HI_WORD.

■ access_valid provides a convenient, standard way of ensuring that an access

expression is valid.

■ access_isa and access_class_isa determine whether an access or access

class is related to some other access class.

A module command entry point might need to send messages to other modules to

get the information necessary to process a command. This communication is done

over the debug channel. An example of this is an MMU module command that

requires the MMU to translate a virtual address into a physical address—MMU

might have to get information from a RAM device to make the translation. Refer to

Section 2.4, Cycle Paradigm for a discussion on sending and receiving messages over

the debug channel.

The user interface provides variables that contain command return codes. Module

command entry points can optionally set these variables to return a numeric result

to the user.

The user interface variables that hold these return codes are cmd_result , for

integer results, and cmd_result_double , for floating-point results. To set one of

these user interface variables, you simply set the global variable of the same name.

The framework provides a macro SET_CMD_RESULT_AS_WORDthat can set the

cmd_result variable to a Word value.

Commands that can run for more than a second or so (for example, in loops) should

periodically check the fw_terminate_cmd global variable. This is a Bool variable

that the framework sets to false every time a command is started. If the user types
56 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



a Control-C while the command is running, the framework sets

fw_terminate_cmd to true . Commands can detect this situation and terminate the

command.

Return Value

The module command entry point returns one of two values to the framework:

■ UI_CMD_IS_DONE— Returned if the command processing has completely

finished before this entry point returns.

■ UI_CMD_IS_NOT_DONE— Returned when the module has not finished

processing the command at the time the entry point returns to the framework. In

this case, the framework will not start executing another command until this one

finishes. Use UI_CMD_IS_NOT_DONEwhen a command entry point sends

messages to other modules and needs to wait until all the messages propagate.

For example, the cpu module’s read command entry point sends a message on

the debug channel to the memory subsystem to access memory. The cpu module’s

read command entry point returns UI_CMD_IS_NOT_DONEto the framework.

Later, when the cpu module gets a response back from the memory subsystem, it

completes the read command; the cpu ’s debug receive entry point notifies the

framework that the read command has finished by sending a message to the

framework’s command_done interface.

Example

Following is the example module’s core command entry point. The example

displays an entry in the core array. If an index is specified, it displays that entry,

otherwise, it displays the byte pointed to by the core_ptr variable.
Chapter 4 Module Entry Points 57



/*
 * This routine is called each time the user invokes the "core"
 * command.
 */
static int
example_core_cmd(state, cmd, args)
        caddr_t     state;
        char       *cmd;    /* Actual command string */
        char       *args;   /* Any arguments to the command */
{
     struct example_state *msp = (struct example_state *) state;
        char       *rest_of_line;
        char       *index_str;
        Byte       *cptr;
        int         index_num;

        if (*args == ’\0’) {   /* if nothing specified */
                /* display the core_ptr entry */
                cptr = msp->core_ptr;
                if (cptr == NULL) {
                        fwprintf("%s: core_ptr is NULL\n",
                            msp->inst_name);
                        /* Set cmd_result variable to -1. */
                        cmd_result = make64(-1, -1);
                        return UI_CMD_IS_DONE;
                }
                index_num = (msp->core_ptr - &msp->core[0])
                    / sizeof(Byte);
        } else {
                /*

  * Parse core argument. Make sure only one arg
                 * on line.
                 */
                rest_of_line = ui_parsew(args, &index_str);
                if (*rest_of_line != ’\0’) {
                        fwprintf("Usage: core [<index>]\n");
                        return UI_CMD_IS_DONE;
                }

- more -
58 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Note – The framework provides other mechanisms by which you can display

contents of variables (that is, accesses). This example just illustrates how it can be

done by a command entry point.

The example_core_cmd routine looks at the argument string to determine which

array element to print. If the user did not supply arguments, the core_ptr field in

the state structure is used as a pointer to the array element to print and the index is

calculated. If an argument is supplied, it is evaluated as an expression and the index

is set to the result.

Once the index and pointer are calculated, the value is printed and the cmd_result
user-interface variable is set to the displayed value. This function returns

UI_CMD_IS_DONEbecause all command processing has been completed at the end

of the routine.

 /*
  * Get expression parser to evaluate index
  * expression.
  */

               if (expr_get_Word(index_str, EXPR_OPT_MSG,
                    _, &index_num) == FALSE) {
                        return UI_CMD_IS_DONE;
                }

if (index_nu m < 0 || index_num > MAX_CORE_SIZE-1) {
                        fwprintf(

"%s: invalid index specified \"%s\".\n",
                            msp->inst_name, index_str);
                        return UI_CMD_IS_DONE;
                }

                cptr = &msp->core[index_num];
        }

        fwprintf("%s: core[%d] =  0x%x\n", msp->inst_name,
            index_num, *cptr);

/*
 * Set cmd_result variable to value of the element
 * displayed.
 */

        SET_CMD_RESULT_AS_WORD(*cptr);

        return UI_CMD_IS_DONE;
}

Chapter 4 Module Entry Points 59



4.2.4 Load Memory Entry Point

Modules that simulate memory can register a module load memory entry point (also

called a load file entry point). This entry point is called by the framework when the

user issues a load or load_section command that refers to this module.

A load file entry point is defined as follows:

Bool modname_load_file( state, stream, addr, size)
caddr_t   state;
FILE     *stream;
LWord     addr;
int       size;

By convention, the name of the load file entry point is the module name (modname)

followed by _load_file.

The state parameter to the command entry point is the opaque state pointer of the

instance specified in the load command.

The stream parameter specifies the stream from which the module reads the image of

memory; the stream is opened and closed by the framework.

The addr parameter is the destination address, in the simulated address space, of the

image to be loaded.

The size parameter is the size, in bytes, of the memory image to be loaded.

Typically, the contents of the load file entry point consist of reading size bytes of data

from stream into the module instance’s simulated memory at address addr.

Return Value

The load file entry point returns a Bool type. It returns true on successful loading

of the file, and false otherwise.

Example

The example below illustrates the example module‘s load entry point, which loads

a file’s contents into its core array.
60 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



In the example, the address range for addr is checked first. If it is valid, then the

actual data is read from the file into the core array.

/*
* This routine is called when the user asks that a file be loaded

 * into an instance of the example module’s memory.
 */
static Bool
example_load_file(state, fp, addr, size)
    caddr_t   state;
    FILE     *fp;     /* stream to load memory from */
    LWord     addr;   /* address to load memory into */
    int       size;   /* # bytes to load into my memory */
{
    struct example_state *msp = (struct example_state *) state;

    /*
     * Check for valid address range.
     * Valid addresses range from 0 to MAX_CORE_SIZE-1
     */
    if (UCMP64(add_64_32(addr, size), >,
        make64(0, MAX_CORE_SIZE-1))) {
            fwprintf(
              "%s: invalid address 0x%x%08x specified.\n",
                msp->inst_name, HI_W(addr), LO_W(addr));
            return FALSE;
    }

    if (fread(&msp->core[LO_W(addr)], size, 1, fp) != 1) {
            fwprintf_unbuf("%s: load file failed\n",
                msp->inst_name);
            fwperror("");
            return FALSE;
    }

    return TRUE;
}

Chapter 4 Module Entry Points 61



4.3 Simulation Entry Points
During the configuration phase, each module can register entry points that are

invoked during the simulation phase to inform the module about the progression of

the simulation. Four types of module simulation entry points can be registered:

■ Start simulation entry point

■ Interface message receive entry point

■ Positive-phase and negative-phase cycle entry points

■ Simulation dieing entry point

4.3.1 Start Simulation Entry Point

A module class’s start simulation entry point (also called the start entry point) is

called just before the first cycle of the simulation is started.

A start entry point is defined as follows:

Bool modname_start( state)
caddr_t state;

The start entry point can perform any initialization related to the module instance’s

state and can send messages on the simulation channels (since the simulation phase

has started).

The start entry point returns true if it detects no errors; otherwise, it returns false .

Many modules do not need a start entry point.

4.3.2 Receive Entry Point

A module registers a receive entry point for an interface at configuration time if it

expects to receive messages on the interface.

Receive entry points are called by the framework to deliver a message to the

module.

A receive entry point is defined as follows:

void modname_intftype_channel_rcv( state, intf, data, type, size, delay)
caddr_t state, intf, data, type;
int size, delay;
62 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



By convention, the name of a receive entry point is a concatenation of the following,

separated by underscores: the module class name (modname), the interface type

(intftype), the channel (channel)—dbg , sim , or dbg_or_sim for both—and the letters

rcv .

The state parameter provides access to the module instance state registered during

the configuration phase. This parameter is not interpreted by the framework and is

typically cast into a pointer to this module’s state structure.

The intf parameter is the interface handle for the interface on which the module

received the message. It can be used to return the message to the sender or, if the

receive entry point is used for multiple interfaces, to determine which interface

received the message. This interface handle is also needed for certain framework

services (for example, get_interface_state ).

The data parameter is an opaque pointer to the message that is being delivered. The

module code typically casts this into a pointer to a message structure to interpret the

message.

The size parameter is the size, in bytes, of the message pointed to by data . If the

value of size is 0, data might be a null pointer.

The type parameter specifies the message type, registered at configuration time, of

the message being delivered.

The delay parameter specifies any remaining delay associated with a message. The

delay is nonnegative for the simulation channel and −1 for the debug channel. If the

receive routine is for the simulation channel, the delay is always 0 (since the delay

has already been introduced by the framework before the message was delivered). If

the interface is an immediate mode interface, the value of delay is the delay

specified by the sender of the message. In that case, the module can simulate the

delay with a queue operation, ignore it, or pass it on.

The purpose of a receive entry point is to allow the module to react to a message

being sent on an interface. Each module reacts differently, depending on the device it

is simulating. The receive entry point might need to send messages or queue

messages in order to react to the message.

The framework provides the following macros to send messages.

■ send_sim_channel and send_pos_sim_channel send a message on the

positive-phase simulation channel.

■ send_neg_sim_channel sends a message on the negative-phase simulation

channel.

■ send_dbg_channel sends a message on the debug channel.

■ send_either_channel and send_pos_either_channel send a message on

either the positive-phase simulation or debug channel.
Chapter 4 Module Entry Points 63



■ send_neg_either_channel sends a message on either the negative-phase

simulation or debug channel.

For the details of these routines, see the Send manual page.

The preceding send macros also have functions with the same name but _func
appended. You can use them if a module requires a pointer to a send routine.

The framework provides four functions to queue messages on an interface:

■ queue_on_dbg_channel
■ queue_on_sim_channel
■ queue_on_pos_sim_channel
■ queue_on_neg_sim_channel

These routines queue messages on the debug and simulation channels, respectively.

For the details of these functions, see the Queue manual page.

The module can use functions get_interface_state and

set_interface_state to get or set the interface state pointer for the receiving

interface.

You can use the following macros to dynamically change the receive entry points for

an interface:

■ modify_sim_intf_receive
■ modify_pos_sim_intf_receive
■ modify_neg_sim_intf_receive
■ modify_dbg_intf_receive

The module can obtain the pointer to the current receive entry point by calling the

following routines:

■ get_sim_intf_receive
■ get_pos_sim_intf_receive
■ get_neg_sim_intf_receive
■ get_dbg_intf_receive

Example

Following is a listing of the simulation receive routine from the example module.
64 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



In the above example, the parameters state and data are cast into useful structure

pointers. This example module interprets the incoming data parameter as a pointer

to a gen_bus_pkt structure.

A response to the message is built based on the type field of the gen_bus_pkt . If

the message is a read request, count is copied into the data field of the

gen_bus_pkt . If the message is a write request, the data field from the

static void
example_slave_sim_rcv(state, intf, data, type, size, delay)

caddr_t state;/* opaque ptr to this module’s state struct */
caddr_t intf; /* interface message came in on. */
caddr_t data; /* opaque ptr to the data pkt */
caddr_t type; /* type id of the data pkt */
int     size; /* sizeof the data packet */
int     delay;/* always 0 for queued interfaces */

{
struct example_state *msp = (struct example_state *) state;
struct gen_bus_pkt *gbp = (struct gen_bus_pkt *) data;
Word tmp;

if (EQ64(gbp->paddr, msp->reg_addr)
         && gbp->size == sizeof(Word)) {
        switch (gbp->type) {

     case GEN_BUS_RD:
   GBP_DATA_WORD(gbp) = msp->count;
   break;

        case GEN_BUS_WR:
   msp->count = GBP_DATA_WORD(gbp);
   break;

        case GEN_BUS_RW:
   tmp = msp->count;

msp->count = GBP_DATA_WORD(gbp);
   GBP_DATA_WORD(gbp) = tmp;
   break;

        default:
            fatal("%s: unknown gen_bus_pkt type of 0x%x.\n",
                msp->inst_name, gbp->type);

}
gbp->status = GEN_BUS_OK;

    } else {
        gbp->status = GEN_BUS_FAULT;
    }
    send_sim_channel(intf, (caddr_t)gbp, size, type, delay);
}

Chapter 4 Module Entry Points 65



gen_bus_pkt is copied into count . If the message is a read-modify-write request,

the data field from the gen_bus_pkt and count are exchanged.

Next, the status field of the gen_bus_pkt is set, and the message is sent back to the

sender. Notice that the intf parameter is used to return the message to the sender.

Because the module does not originate requests and only responds to requests, this

module can just use the intf parameter to return the message to the sender instead

of storing the interface handle during the configuration phase.

4.3.3 Cycle Entry Points

Each module can register a positive-phase and negative-phase cycle entry point

during the configuration phase. These entry points are called by the framework once

each cycle during the appropriate phase. For more details on cycles see Section 2.4,

Cycle Paradigm.

A cycle entry point is defined as follows:

void modname_cycle( state)
caddr_t state;

By convention, the name of a cycle entry point is the module class name (modname)

followed by an underscore and the word cycle .

The state parameter provides access to the module instance state registered during

the configuration phase. This parameter is not interpreted by the framework and is

typically cast into a pointer to this module’s state structure.

Cycle entry points can use the same framework functions described with the receive

entry points earlier.

Example

Following is the cycle entry point for the example module.
66 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



This routine first casts the incoming parameter state to a useful structure pointer

for this module. The example module maintains a count of its state. That count is

decremented each cycle, and when the count reaches zero, an interrupt message is

sent on its interrupt interface.

4.3.4 Simulation Dieing Entry Point

A module instance’s simulation dieing entry point (also called the dieing entry point)
is called just before the simulation exits to clean up a module before the simulation

exits (for example, to remove temporary files).

A dieing entry point is defined as follows:

void modname_dieing( state)
caddr_t state;

The dieing entry point must be registered in the module’s create instance entry

point. Most modules do not need a dieing entry point.

static void
example_cycle(state)
      caddr_t         state;
{

struct example_state *msp = (struct example_state *) state;
        struct gen_int_pkt *gip;

      if (--msp->count == 0) {
           gip = new_gen_int_pkt();

           gip->action = INTERRUPT_SET;

           send_sim_channel(msp->intr_intf, (caddr_t)gip,
               sizeof(*gip),gen_int_msgtype, 0);
      }
}

Chapter 4 Module Entry Points 67



68 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 5

Miscellaneous Framework Routines

This chapter describes some framework routines used by modules. The use of these

routines is not confined to any one of the three types of module entry points

(configuration, user interface interaction, or simulation) or accesses, so they are

considered “miscellaneous.”

5.1 Display Routines
The framework provides a family of routines to display messages for the simulation

user. They are similar in function to the standard C display routines that write

characters to stdout and stderr .

TABLE 5-1 shows each framework routine and its corresponding standard C display

routine.

TABLE 5-1 Display Routines

Framework Display Routine Standard C Display Routine

fwprintf printf

fwprintf_unbuf fprintf(stderr, ...)

fwflush fflush(stdout)

fwputchar putchar

fwputs puts

fwperror perror
69



The framework display routines offer two advantages over the standard C display

routines:

1. All output generated by the framework display routines is sent to the display and

also to the simulator log file.

2. Portions of the output generated by the standard C display routines can be lost;

framework display routines do not have this problem.

Another advantage of using the framework display routines is that the modules are

isolated from the actual display devices; they never have to specify stdout or

stderr . The framework could be enhanced to support a graphical user interface

(GUI) without the need to change the modules.

5.2 Error Exit Routines
The framework provides four fatal routines associated with exiting from the

simulator when an error is detected.

■ The fatal routine should be used whenever a module detects a nonrecoverable

programming error (for example, an unexpected null pointer). The fatal routine

causes the simulator to:

a. Display a message provided by the caller (printf -style calling conventions).

b. Display the stack backtrace of the simulator.

c. Exit from the simulator cleanly.

d. Dump core.

■ fatal_sim is similar to the fatal routine for simulation channel requests. For

debug channel requests, it just displays a message and returns.

■ fatal_nodump is the same as the fatal routine except that it does not dump

core. Use this routine whenever a module detects a nonrecoverable user error and

no other mechanism exists to inform the framework (for example, a malloc
command fails during a module user interface command).

■ fatal_push specifies the address of a function to call when step 3 of the fatal
or fatal_nodump routines is reached. Most modules do not need this step.

Do not call the standard C abort and exit routines; if they are called, the simulator

will not exit cleanly.
70 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



5.3 Halt Routines
The framework provides two routines to halt the simulation. A halted simulation

cannot be restarted. A module should halt the simulation when it discovers an error

situation but wants to allow the simulator user to inspect the state of the simulation

when the error occurred.

■ halt displays a message provided by the caller (printf -style calling

conventions) and then halts the simulation.

■ halt_simulation simply halts the simulation.

5.4 Simulation Control Routines
The framework provides routines to start, stop, and test the running status of the

simulation.

■ stop_simulation stops the simulation before the next cycle starts.

■ start_simulation starts the simulation running.

■ sim_running returns a value that indicates if the simulation is currently running

or not.

5.5 64-Bit Integer Routines
The framework provides routines and macros to support 64-bit integers (the LWord
and s_LWord framework data types). There are many routines and macros, and they

are not listed here individually. Please refer to the Math64 manual page for complete

details.

There are routines and macros to support most of the standard C integer arithmetic

and logical operators, as well as routines and macros to support conversion to and

from other C data types.
Chapter 5 Miscellaneous Framework Routines 71



5.6 Interface Manipulation Routines
The framework provides routines that allow a module instance to create and connect

interfaces independently of the contents of the configuration file.

■ create_unconnected_interface creates an unconnected interface.

■ connect_interfaces connects two interfaces owned by a module instance.

5.7 Symbol Table Access Routines
The framework provides two routines to access the symbol table information that

gets loaded into the framework by the load , load_section , and symtab
commands.

■ toSymbolic converts an address into its equivalent symbol.

■ toAddr accepts a symbol name and converts it to its equivalent address.

5.8 SPARC Assembly/Disassembly
Routines
The framework provides a routine to access the SPARC one-line assembler and a

routine to access the SPARC one-instruction disassembler.

■ The assemble pointer points to the one-line assembler routine. It assembles the

contents of a string into its equivalent SPARC 32-bit integer instruction.

■ The print_disassembly pointer points to the disassembler routine. It

disassembles a SPARC 32-bit integer instruction and displays it.

5.9 String Routines
The framework provides three routines to manipulate strings.
72 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



■ strdup_fatal duplicates a string, using the standard C strdup routine. If the

strdup fails, strdup_fatal calls the fatal routine with an appropriate error

message.

■ strmcpy and strmcat perform the same operations as the standard C strcpy
and strcat routines, respectively, except that they concatenate an arbitrary

number of strings.

5.10 ASCII Conversion Routines
The framework provides several routines to convert between some framework data

types and ASCII representations.

■ dtoa converts a double into its ASCII equivalent.

■ ctoa converts a character into its octal ASCII equivalent.

■ ctoa_hex converts a character into its hexadecimal ASCII equivalent.

■ atoc accepts an ASCII string and converts it to its character equivalent.

5.11 Global Variables
The framework declares several global variables that can be accessed by modules.

■ The cyclecount variable is equal to the number of cycles executed by the

simulator since it was started. It is incremented by the framework each time a

cycle finishes. Its value must never be written by modules. It can be used by

modules for synchronization (for example, to enable a processor 1000 cycles into

the simulation) or for display purposes.

■ The instrcount variable is equal to the number of instructions executed by all

of the processors since the simulation was started. The processor modules must

increment this variable each time a non-annulled instruction is successfully or

unsuccessfully executed. This value is used by the framework for performance

measurements.

■ The progname variable is set to the name of the simulator as invoked on the

command line. Any path components of the name are removed. The progname
variable must never be written by modules.

■ The opt_simpleprint variable is a flag that indicates if the simpleprint
option is enabled or disabled (by the user). When the simpleprint option is

enabled, modules should try to produce terse output messages that can be easily

parsed by a program.
Chapter 5 Miscellaneous Framework Routines 73



74 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 6

Product Structure

MPSAS comes with all of the source code for the framework, modules, and

supporting routines. This source code and makefiles to create archives and

executables from the source are arranged in a directory hierarchy, which is described

in this chapter. This chapter also explains how to add your own modules and make

other common changes.

6.1 MPSAS Root Directory
When you installed MPSAS using extract_unbundled , you specified a directory

in which to install MPSAS, or you let the directory default to /usr/share . In the

directory, the installation process created directory sparctools , and within that,

directory mpsas. This directory, called the mpsas root directory, contains all of the

source files, organized into various subdirectories.

6.2 Layers
MPSAS source files are conceptually organized into a hierarchy of layers, as shown

in FIGURE 6-1. Generally, each layer can use modules, variables, functions, and other

features defined in the layers below it, but cannot use things defined in the layers

above it. The software in each layer is built separately from that in other layers.

Organizing the source into layers makes it possible to share code wherever possible

and still have alternatives for the same functionality. In particular, the organization

allows MPSAS to simulate multiple architectures that share some modules and have

differing versions of other modules. The modules in common are simply placed in
75



lower layers of the hierarchy. In effect, each layer provides a foundation of modules,

message types, commands, variables, and so on that can be built upon in higher

layers.

FIGURE 6-1 MPSAS Layers

The fw (framework) layer, on the bottom of the hierarchy, contains the user interface,

the software that processes the configuration file, I/O-handling software, the

routines that allow processes to communicate with one another, the software that

calls all of the modules’ cycle routines, and so on. The ui and sigio modules are in

the fw layer.

The computer layer contains modules, message types, and other definitions that are

useful in simulating a large class of computers. The ram , rom , serial , and simdisk
modules are in the computer layer.

The sparc layer contains modules, message types, and other definitions that are

useful in simulating a large class of SPARC-based computers. The cpu , fpu , and

trap modules are in the sparc layer.

In the tree-shaped configuration formed by the various layers, the leaves represent

architectures. An architecture layer is a layer in which an mpsas executable is built—

that is, all of the modules required in order to simulate a complete system are

present in an architecture layer or the layers below it. The product comes with four

architecture layers; these architectures are described in Multiprocessor SPARC
Architecture Simulator (MPSAS) User’s Guide. The simple architecture contains no

additional modules, since the minimal architecture it describes uses only modules

defined in lower layers. But the other, more realistic architectures each add an MMU

and modules for other architecture-dependent features.

Note that an mpsas executable contains only one choice from each vertical level of

the tree; for example, the sun4e architecture consists of the four layers sun4e ,

sparc , computer , and fw . It would not be possible with the current arrangement of

layers to create an mpsas executable containing both the sun4e and mbus layers, for

example.

fw

sparc

computer

simple sun4c sun4e mbus
architecture architecture architecture architecture
76 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



You can add to the layers that come with the product. You could, for example, add a

new architecture called my_arch at the same level as the existing architectures. It

could make use of all of the modules defined in the fw , computer , and sparc
layers, but none of the modules contained in other architectures. Or, you could

create a layer on top of the sun4c architecture; this might be appropriate if your

design was very close to the sun4c architecture, since the new architecture could

make use of any modules contained in the sun4c architecture. You could even create

simulators for systems based on a different line of processors. All of these

alternatives are depicted in FIGURE 6-2, with the fictitious layers in italics.

FIGURE 6-2 MPSAS Layers with Additional Fictitious Layers

6.3 Directory Structure
In the mpsas root directory you should find the following entities (directories are

marked with a trailing slash; executables are marked with a trailing asterisk):

■ makeall* — A shell script that builds all of the mpsas executables from source

■ Makefile.common — A file included by most other makefiles, encapsulating

most of the logic about how the system is built

■ fw/ — A directory containing the fw layer

■ computer/ — A directory containing the computer layer

■ sparc/ — A directory containing the sparc layer

■ simple/ — A directory containing the simple architecture layer

■ sun4c/ — A directory containing the sun4c architecture layer

fw

sparc

computer

simple sun4c sun4e mbus
architecture architecture architecture architecture

bogus

bogus1000
architecture

sun4c-mod
architecture

my_arch
architecture
Chapter 6 Product Structure 77



■ sun4e/ — A directory containing the sun4e architecture layer

■ mbus/ — A directory containing the mbus architecture layer

■ stand/ — A directory containing sample programs for running on the simulator,

as well as many routines of use in writing your own programs to run on the

simulator (an appendix to the User’s Guide describes this directory)

■ util/ — A directory containing utility programs that work with the simulator

Many of these directories contain subdirectories to further organize the source code:

■ fw/include/ — Public header files defined by the fw layer

■ computer/include/ — Public header files defined by the computer layer

■ sparc/include/ — Public header files defined by the sparc layer

■ sparc/cpu/ — Source for the cpu module

■ sparc/fpu/ — Source for the fpu module

6.4 Inside a Layer
A layer is always implemented as a directory (whose name is the name of the layer)

in the mpsas root directory. Each layer directory contains certain files that support

the layering concept:

■ Makefile — Input file to the make program

■ Makefile.inc — File included by makefiles in this layer and every layer above

this one; these files actually contain the information that defines the hierarchy of

layers

■ layer.c — A C source file providing a special data structure describing the

layer, as well as any layer initialization code

In addition, the layer directory will contain C source files and header files for the

modules and commands defined in that layer. These files might be organized into

subdirectories. Any header files that might be included by layers above this one are

placed in an include subdirectory.

When make is run in a layer directory, it creates (at least) archive lib layer.a in that

directory. This archive contains the object files for everything in this layer that might

be used by a layer above this one; in particular, it contains all modules and

commands defined by this layer. The object files constituting that archive will not be

present as individual object files. There may be some source files for which the object

does not go into the archive.
78 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



A zero-length file called our_lib_part is created during the make. This file’s

timestamp is used by make to determine whether a particular directory’s source

code that is destined for an archive needs to be recompiled.

In a layer representing an architecture, you will also find the file vers.c , which

defines a string printed out when mpsas initializes, and by the version command

In an architecture directory, make creates several files in addition to the archive

mentioned earlier. File mpsas is the simulator executable. Also created are files

fingerprint.c , built_layers.c , and various object files not placed in the

archive. fingerprint.c contains another string printed out by the version
command. built_layers.c contains a table through which mpsas can access the

data structures defined in the layer.c files in the various layers.

6.5 Makefile Usage
This section explains how to use make in layer directories, given the special

makefiles they use.

6.5.1 Targets

The following makefile targets are available in any layer directory or subdirectory:

■ all (the default target) — Makes everything in this directory and any

subdirectories

■ this — Makes everything in this directory (list any targets to be built in this

directory as dependencies)

■ clean — Removes all derived files (files generated by the make) in this directory

and in any subdirectories

■ this_clean — Removes all derived files in this directory

■ lint — Runs lint on the C source files in this directory, leaving the output in

lint.out . lint is run with -u and -q to suppress messages about non-Sun

portability and about externals. Note that this way of running lint does not

check the arguments of calls to functions defined in other layers.

To fully understand which files are affected by executing make, be sure to read

Multiple Sets of Derived Files on page 81.
Chapter 6 Product Structure 79



6.5.2 Faster Makes

Ordinarily, running make on mpsas in an architecture layer directory will cause

make to visit each layer below the architecture to make sure that those layers are up-

to-date. This procedure can take significant time, and if you are only making

changes to files in your architecture directory, those makes will never actually make

anything.

By setting macro X to the null string on the make command line, you can cause make
to ignore the fact this layer’s derived files are dependent upon the archives in other

layers; therefore, make will not visit those layers. You might even want to create an

alias to do such a make:

alias mk "make X="

Clearly, the link aspect of the build is unchanged—the archives of those other layers

are still searched as before. If those archives do not exist, the build will fail. If they

exist but are not up-to-date, make will not know this. In using X= you are relieving

make of the responsibility to verify that those layer archives exist and are up-to-date.

6.5.3 Compiler Flags

make allows you to control the options with which the compiler and other programs

used by make are run. You exercise this control by means of macro definitions on the

make command line or by environment variables. Four of these macros—ASFLAGS,
CFLAGS, CPPFLAGS, and LDFLAGS—are set by the mpsas makefiles and therefore

should not be set by the user. However, the mpsas makefiles do allow you to add

your own flags to those used by the mpsas makefiles. For example, developers will

typically want to do all compiles and links with switch -g so that the resulting

executable can be debugged. To add flag, put the following line in your .login file:

setenv CFLAGS0 -g

The following environment variables can be used to control flags in this way:

■ ASFLAGS0— Additional flags for as (used with .s and .S files)

■ CFLAGS0— Additional flags for cc (used with .c files and for linking)

■ CPPFLAGS0— Additional flags for cpp (used with .c files and .S files)

■ LDFLAGS0— Additional flags for ld (used for linking)

These flags are propagated to every submake and makes of other layers. CFLAGS,
etc., are typically defined in /usr/include/make/default.mk and are described

in the manual page for make.

Because the .KEEP_STATE feature of make is used by mpsas, changing these

environment variables will cause many things to be remade.
80 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



6.5.4 Multiple Sets of Derived Files

In some cases, you might want multiple copies of an architecture’s simulator in the

architecture directory at the same time. For example, you might ordinarily compile

the simulator with flags that allow debugging, but at some point decide that you

want to test the performance of the optimized simulator. As another example, you

might want a version of the simulator compiled with flags that allow profiling, or

even a version compiled with a different compiler.

Ordinarily, recompiling with different switches will destroy all of the derived files as

they currently exist, forcing make to regenerate them if you later rebuild with the old

switches. However, the makefiles of mpsas allow the specification of a name suffix

that is used in all archive names as well as in the mpsas executable name, allowing

multiple copies to coexist in the same directory. To use this feature, set macro NAME
on the command line to an appropriate suffix, as in the following make command, to

produce an optimized version of mpsas (executed in the directory of an architecture

layer):

make NAME=opt CFLAGS0=-O

In this case, after making archive lib layer-opt.a in each layer, make creates

executable mpsas-opt in the architecture directory.

When you specify a name suffix in this manner, make looks for that suffix in all
archive names—not just the archive in the current directory. The makefiles define

macro LIB to be the name of the archive to be built in this layer, qualified by the

NAMEmacro if it was used. Hence, every layer will list ${LIB} as a dependency of

its this target.

If you add other makefile targets to a layer and you want different versions of that

target depending upon NAME, use macro OBJ_NAMEin the target’s name, as is done

here for the mpsas executable:

this: mpsas${OBJ_NAME}

OBJ_NAMEwill either be nothing (if NAMEwas not used) or a hyphen followed by the

value of the NAMEmacro.

Note – If you used NAMEwhen executing make in a layer directory, making the

clean target will only remove those files if you again specify NAME.
Chapter 6 Product Structure 81



6.6 Adding to an Existing Layer
You can extend an existing layer in several ways. You might simply want to add a

new C source file to be compiled and linked into the executable. Perhaps you have

created a whole new module definition that you would like to add to the simulator

so that you can configure it into your system. Or you might simply have created a

new message type for use in the layer, or a command that the layer adds to the

repertoire.

Probably the best approach to modifying a makefile is to look in existing mpsas
makefiles for a case similar to yours and do the analogous thing. This section gives

you a good idea of how to do the more common modifications.

6.6.1 Adding a File to the Layer Archive

Macro LIB_OBJS lists all of the object files to be included in the layer’s archive.

Adding the name of the object file to this list automatically causes it to be made and

added to the archive. make knows how to build the object for the common kinds of

source code, so you probably won’t have to tell make how to compile or assemble

your source file.

Macro CSRCSdefines the C source files in the current directory. All of the files listed

in it will have lint run on them by a make lint .

One of these two macros is usually defined in terms of the other. For example, in the

following makefile text, CSRCSis defined to be the list of .c files corresponding to

the .o files in LIB_OBJS , plus mmugen.c .

With CSRCSdefined this way, only LIB_OBJS needs to be modified for each new C

source file. However, if a non-C object file were to be added to the layer’s archive,

the definition of CSRCSwould need to change.

# Object files to go into the library.
LIB_OBJS  =  mmu.o sys.o layer.o

# C source files to be linted.
CSRCS =  ${LIB_OBJS:%.o=%.c} mmugen.c
82 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



6.6.2 Adding a Module

To add a new module to a layer, first add any source files as described in the

previous section. Then, edit file layer.c and add an entry to the array of

module_info structures it defines. The entry should contain the name of the

module class (a string) and the address of the class’s module initialization routine.

For example, the following layer.c file defines two modules, sys4c and mmu.

The array is terminated by a NULL. Also, notice the extern declarations for the

module initialization routines.

The layer structure is generally the only variable defined in a layer.c file that is

visible from outside the file. It contains the layer name, a pointer to a command list

(in this case, NULL because the layer defines no commands), a pointer to the

module_info table, and as the layer initialization entry point (in this case, NULL
because the layer requires no special initialization).

6.6.3 Adding a Message Type

Message types are defined in the layer initialization entry point in the layer.c file.

For example, the following layer.c file defines a gen_int_pkt message type.

#include "types.h"
#include "layer.h"

extern int sys_module_init();
extern int mmu_module_init();

static struct module_info sun4c_mod_info[] = {
        {"sys4c",  sys_module_init},
        {"mmu",    mmu_module_init},
        NULL
};

struct layer sun4c_layer =
        {"Sun4c", NULL, sun4c_mod_info, NULL};
Chapter 6 Product Structure 83



The computer_init routine of this example calls framework routine add_msgtype
to define the message type, then creates accesses to describe the fields of such a

message. For more information on the use of accesses, see Section 3.2, Use of Accesses.

6.6.4 Adding a Layer Command

If a layer adds commands (other than module commands) to the simulator’s

repertoire, it does so through the layer.c file, as in this example.

Typically (as in this case), the actual table and functions describing the commands

will be in some other file; only the address of the table is needed in the layer

structure.

#include "types.h"
#include "layer.h"
#include "msgtype.h"
#include "expr.h"
#include "msg_access.h"
#include "gen_int_pkt.h"

static void
computer_init(layer)
        struct layer    *layer;
{
        struct gen_int_pkt *gip = 0;
        gen_int_msgtype = add_msgtype("gen_int_pkt");
        WORD("irl",       &gip->irl      );
        WORD("action",    &gip->action   );
        WORD("irl_valid", &gip->irl_valid);
        WORD("extra",     &gip->extra    );
}

struct layer computer_layer =
        {"Computer", NULL, NULL, computer_init};

#include "types.h"
#include "ui_cmds.h"
#include "layer.h"

extern struct ui_cmd_entry ui_sparc_cmds[];

struct layer sparc_layer =
       {"SPARC", ui_sparc_cmds, NULL, NULL};
84 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The table itself is an array of ui_cmd_entry structures, terminated by a NULL. A

ui_cmd_entry looks like this.

When a command is typed, the framework looks through the layer structures—

starting with the fw layer and working up to the architecture layer—for a table entry

whose command name matches the one used in the command. If the framework

finds such an entry, it calls the entry point designated by the entry’s func field,

passing it the rest of the command line (after the command name and any white

space) and the “message context” as arguments. The function can use all of the same

framework facilities to do its work as module commands, described in Chapter 3,

Writing a Module. The function returns UI_CMD_IS_DONEor

UI_CMD_IS_NOT_DONE, just as does a module command.

The function takes two parameters:

■ A string (char* ) containing the arguments to the command. For example, if the

command was cmd -v a b c , then the first argument to the function would be

-v a b c .

■ The message context (struct event_cmd_msg* ) in which the command was

issued. Your function should treat this value as if it were opaque, never

dereferencing it to access the structure’s members. This context information is

needed by certain functions which deal with expressions, such as expr_parse .

Here is an example of a file that sets up two fictitious layer commands,

show_widgets and reset_widgets , and a table describing them to be referenced

in layer.c :

struct ui_cmd_entry {
        char *cmd;           /* command name */
        char *short_helpstr; /* string that explains syntax */
        char *long_helpstr;  /* string that explains command */
        int  (*func)();      /* routine that performs command */
};
Chapter 6 Product Structure 85



#include "types.h"
#include "ui_cmds.h"
#include "module.h"

static int
show_widgets_cmd(rest_of_line, msg_context)
        char *rest_of_line;
        struct event_cmd_msg *msg_context;
{
        ...
        return UI_CMD_IS_DONE;
}

static int
reset_widgets_cmd(rest_of_line, msg_context)
        char *rest_of_line;
        struct event_cmd_msg *msg_context;
{
        ...
        return UI_CMD_IS_DONE;
}

struct ui_cmd_entry ui_sparc_cmds[] = {
    {
        "show_widgets",
        "show_widgets - print widget information",
        "show_widgets\n\
        This command prints the total number of widgets since\n\
        the last reset_widgets command was issued.",
        show_widgets_cmd
    },
    {
        "reset_widgets",
        "reset_widgets - reset widget information",
        "reset_widgets\n\
        This command resets the widget totals to zero.",
        reset_widgets_cmd
    },
    NULL /* terminate the list of layer commands */
};
86 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



6.7 Adding a New Layer
Probably the best way to create a new layer is to start with a similar layer and then

modify files as necessary to form the new layer linkages and other necessities.

To add a new layer:

1. Create a new directory for the layer in the same directory as the other layers.

2. Copy into it the relevant contents of a similar layer.

For example, if you are creating a new architecture layer, you might want to copy the

following files from the sun4c architecture into the new directory:

Makefile Makefile.inc layer.c vers.c

If the layer is not an architecture layer, there will be no vers.c file to copy.

3. Modify Makefile to list the correct object files in LIB_OBJS and the correct C
source files in CSRCS.

4. Architecture makefiles also set CFLAGSto define the name of the architecture;
change this setting as well.

5. Change targets this and this_clean if the list of products from this directory is
not the same as it was for the sun4c architecture.

6. Makefile.inc contains instances of the layer’s name (e.g., sun4c ); change those
to the new layer’s name.

7. A line includes the Makefile.inc of the layer below this one in the hierarchy

described earlier.

For the sun4c version of Makefile.inc that line looks like this:

include ${ROOT}/sparc/Makefile.inc

Change the layer name (here, sparc ) to that of the layer which is to be directly
below your new layer in the hierarchy.

That change establishes the position of your new layer in the tree.

8. Change layer.c as described in the previous section to reflect the modules,
commands, message types, etc., of the new layer. Wherever the name of the old
architecture appears, change it to the name of the new architecture.

9. If the layer represents an architecture, change the architecture name wherever it
appears in vers.c .
Chapter 6 Product Structure 87



6.8 How the Framework Knows About the
Layers
If something goes wrong in setting up a new layer, it may help to understand what’s

going on with the makefiles and the layer.c files.

When you run make in a layer directory, the various Makefile.inc files included

automatically create macro LAYERSwith the names of all the layers in it, in order

from the layer corresponding to the current directory down to the fw layer. This list

of layers is used to generate flags for the preprocessor, telling it to look in the

include directories in those layers for header files, as well as in the current directory.

If the layer directory corresponds to an architecture (remember that this simply

means you are creating a version of mpsas in this layer), the makefiles also use the

list of layers to create file built_layers.c . As an example, here is the

built_layers.c for the sun4c architecture:

This file creates a null-terminated array of pointers to layer structures, where the

layer structures themselves are defined in the layer.c files of the various layers.

The framework uses this layers array to find out what modules are available in the

various layers, and so on. Since the names of the layer structures—for example,

sun4c_layer —are generated simply by appending to the name of the layer, it is

important that the names in the Makefile.inc and layer.c files for a new layer

be set up correctly. Also, layer.o must be in the LIB_OBJS list of every layer’s

makefile.

Built_layers.o is explicitly listed as a dependency for the mpsas executable

target and is explicitly linked into the executable. The list of layers is also used to

construct macro LDLIBS , which is a list of the archives to be searched in making

executables. The references in built_layers.o to the various layer structures

cause all of the layer.o files to be brought into the executable from those archives.

/* THIS FILE IS GENERATED AUTOMATICALLY */
extern struct layer sun4c_layer, sparc_layer, computer_layer, fw_layer;
struct layer *layers[] = {&sun4c_layer, &sparc_layer, &computer_layer, &fw_layer, 0};
88 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



6.9 Makeall
You can use the makeall script in the mpsas root directory to build multiple

architectures. This script is useful when you have made changes to a layer that is

used by several architectures or when you want to build the entire product from

source.

The mpsas root directory must be your current working directory when you run the

script. Simply type makeall followed by a list of targets to be built. If you do not

specify any targets, the target that appears first in the makefile is built; for layer

directories, this target is all .

The script then asks which architectures you want to build. You can enter a list of

architecture layer names, separated by spaces, or just press Return to have all

(sun4c , sun4e , mbus, and simple ) architectures built. The build in each directory is

done with X= for efficiency, but it does build the layer directories starting with fw
and working up the tree so that any dependencies are up-to-date.

By default, makeall arranges for the C compiler to be invoked with switch -O to

produce optimized code. You can override this behavior by setting environment

variable CFLAGS0(makeall sets CFLAGS0to -O if it is not already set).

The script builds the entire mpsas product but allows only a subset of the

architecture layers to be built in order to save time and space. It tries to make the

specified targets in all of the mpsas directories it knows about (minus those

corresponding to any architectures which you omitted), including those that do not

correspond to layers (such as stand ).
Chapter 6 Product Structure 89



90 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 7

Asynchronous Input (sigio )

The sigio facility provides a service that allows modules to independently accept

asynchronous input from UNIX file descriptors. If a module needs to perform

synchronous (blocking) input to a file descriptor or only needs to output to a file

descriptor, it should not use the sigio facility; instead, it should use the standard

UNIX input/output facilities.

The sigio facility consists of the sigio module class and a set of framework

routines. The sigio module uses the UNIX SIGIO signal to determine when input

is available for a file descriptor.

When input data is available for a file descriptor, the sigio module reads the data

and sends it in a debug channel message to the module associated with the file

descriptor. When a module needs to output data to its file descriptor, the module

sends the data to the sigio module in a debug channel message. A module must

never perform input or output operations directly to a file descriptor that is being

used by the sigio facility.

7.1 Preparing to Use the sigio Facility
A module performs the following steps in preparation for using the sigio facility:

1. Ensure that one of the module’s interfaces is connected to the instance of the

sigio module class.

2. Open each file descriptor.

3. Register the file descriptor(s) and interface with sigio .
91



7.1.1 Interface Connected to sigio

The module’s interface connected to sigio must register a debug channel receive

entry point and be set to QUEUED_MODE. The simulation channel is unused, so no

receive entry point for it should be registered.

A module can use one interface connected to sigio to support any number of file

descriptors. A module can have more than one interface connected to sigio , but

this is not required.

7.1.2 Opening File Descriptors

Each file descriptor used with the sigio facility must be opened with read

permission. If a module needs to send output to a file descriptor, it must also be

opened with write permission.

7.1.3 Registering File Descriptors

The module’s verify config entry point informs the sigio facility of the file

descriptors on which sigio is to perform input and output on behalf of the module.

■ sigio_set_input_mapping maps a file descriptor to the module’s interface

connected to sigio for input.

■ sigio_set_output_mapping maps a file descriptor to the module’s interface

connected to sigio for output.

7.2 Communications
A module sends a message to the sigio module to write data to a file descriptor

used with the sigio facility. The sigio module sends a message containing data to

a module when input is available on the module’s file descriptor.
92 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



7.2.1 sigio Message Type

The format of the messages sent to and from the sigio module is shown below.

The fd field specifies the file descriptor being read/written. It is used to potentially

multiplex more than one file descriptor over a single interface. For incoming data,

the sigio module sets fd to the file descriptor that it read. For outgoing data, a

module sets fd to the file descriptor it wants to write.

The data_size field specifies the number of bytes to be read/written.

The data field is a variable-length array of characters of data_size bytes. It

contains the data read by, or to be written by, sigio .

7.3 sigio Modes
When a file descriptor is registered with the sigio facility for input or output with

the sigio_set_input_mapping and sigio_set_output_mapping routines, one

of two modes is specified: raw or block.

For output to a file descriptor, raw mode and block mode are functionally

equivalent, although block mode output has less overhead. The sigio facility writes

data_size bytes from the data array to fd .

7.3.1 Raw Mode Input

If a file descriptor is in raw mode, then sigio sends one message for each character

received from the file descriptor.

struct sigio_msg {
        int fd;          /* File descriptor         */
        short data_size; /* Number of bytes of data */
        char data[1];    /* data being transferred */
};
Chapter 7 Asynchronous Input (sigio ) 93



7.3.2 Block Mode Input

If a file descriptor is in block mode, then sigio reads characters into an internal

buffer and sends one message containing the buffer contents when a newline is

encountered in the input or when 256 characters have been read.

When a message is sent because a newline was detected, the newline is not placed in

the data field of the message. When a message is sent because the buffer is full, only

255 characters from the buffer are placed in the message; the 256th character is sent

in the next message. In both cases, the data field of the message is null-terminated

so it can be parsed as a string. The terminating null character is included in the

data_size field count so that the string length of the data field is one less than the

data_size field’s value.

Block mode input can only be used to read ASCII data because sigio interprets the

input stream. Raw mode input can be used to read binary or ASCII data.

7.4 Flow Control
The framework debug channel message queue has a finite number of messages it can

contain (approximately 1,000). If the modules in the system exceed this limit by

sending or queueing too many debug messages in a cycle, a fatal error occurs.

Typically, overflowing the debug channel message queue is not a concern of modules

because they place very few messages in the debug queue each cycle. However, it is

a concern for the sigio module. Remember that the sigio module sends one

message per character received if a file descriptor is in raw mode. It is quite possible

for the sigio module to overflow the message queue in this case.

To prevent the overflow of the message queue, the sigio module examines the

debug queue before it sends a message to a module. If the queue is full, the sending

of the message is delayed until the framework has a chance to empty the debug

queue.

This overflow prevention implements a crude form of flow control between the

sigio module and external devices sending data to it via a file descriptor. If sigio
processes the input more slowly than the device creates it, eventually the sending

device will block when it sends.
94 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



CHAPTER 8

Access Classes

Chapter 3, Writing a Module, showed how the module programmer can tell the

framework about module state, thus giving the user the ability to print, set, and

dump state variables and to use them in expressions. Each variable is associated

with a particular access class, and that access class knows how to print, set, etc.,

variables of its class. The framework has built into it a number of access classes that

cover the common data types, and you can write your own access class to add

support for a new type of variable.

Writing an access class is not a trivial task, especially a class for a complicated type.

Furthermore, there are limitations to the expressiveness of the access class

mechanism. Therefore, it is always wise to consider, when defining a module’s state

or a message packet, whether your definition can be readily described by existing

access classes. Only consider writing a new access class as a last resort.

If you have some information that you want users to be able to display but none of

the existing access classes seem to fit, consider whether you want users to be able to

make changes to the information, trace it, and use it in expressions. If you find that

you really only care that users can print the information, then you can write a

module command to display the information.

In this chapter, we first look briefly at the data structure representing an access class,

then look in more detail at what happens when an access is defined and when an

expression involving that access is parsed and evaluated. Next, we use an example

access class as an introduction to the various entry points constituting an access

class. Finally, we tie up some loose ends: how to derive one access class from

another, how to write an access class that makes use of access parameters, and how

to set up macros that allow accesses to be created with relative ease.
95



8.1 The ACCESS_CLASSStructure
An access class is represented by a variable (which by convention has a name that

begins with AC_) of type ACCESS_CLASS. The ACCESS_CLASSdata structure

consists largely of pointers to routines (generally referred to as access class entry
points, or in this document, simply as entry points) that the framework calls when it

wants to do things to a variable of that class. The structure looks like this.

The name field is the name of the access class, for example, Word. This is distinct

from the name of an access; for example, pc and psr might be the names of two

accesses belonging to the Word access class. An access is always an instance of some

access class. All the knowledge about how to manipulate a Word is represented in

the ACCESS_CLASSdata structure for the Word access class, whereas information

about the pc variable (for example, where the data is located) is in the pc access. The

data structure for an access is of type ACCESS; ACCESSis defined later.

The other fields of the ACCESS_CLASSstructure are discussed in upcoming sections

as new concepts are introduced. For now, just notice that each of the entry points—

destroy , ck_syntax , set , …, cleanup —takes as its first argument a pointer to the

particular access it is to manipulate. Accesses are object oriented in the sense that the

framework does not have built-in knowledge of how to print, set, dump, etc., any

/* The ACCESS_CLASS structure, which defines a class of data. */
typedef struct access_class_ ACCESS_CLASS;
struct access_class_ {

ACCESS_CLASS* base; /* class this one is derived from, or NULL */
char* name; /* e.g. "Word" */
DATA_TYPE eval_type; /* data type evaluator puts in value field */
unsigned expr_size; /* size of an EXPR for this access class */
void (*destroy) (/* ACCESS* */);
Bool (*ck_syntax) (/* ACCESS* */);
Bool (*set) (/* ACCESS*, ACCESS* value_list */);
Bool (*print) (/* ACCESS*, void (*  print_p)(), void* arg */);
Bool (*dump (/* ACCESS*, void (*   dump_p)(), void* arg */);
Bool (*restore) (/* ACCESS*, void (*restore_p)(), void* arg */);
void (*set_base) (/* ACCESS*, char* base */);
Bool (*as_unsigned) (/* ACCESS* */);
Bool (*as_signed) (/* ACCESS* */);
Bool (*as_float_pt) (/* ACCESS* */);
Bool (*as_string) (/* ACCESS* */);
void (*cleanup) (/* ACCESS* */);

};
96 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



variables; rather, the framework does the work that is common to all variables

regardless of their class and then calls upon the corresponding entry point from the

access’s access class to do the part of the job that differs from class to class.

8.2 Expressions and Accesses
To write access classes, you need to understand how accesses are used in

expressions. This section shows the data structures built when an access is defined

and when an expression involving that access is parsed.

8.2.1 Defining an Access

FIGURE 8-1 depicts the arrangement of key data structures after a module instance

named cpu1 , with variable msp pointing to a cpu_state structure containing its

state, defines an access named “pc” by executing the statement

WORD("pc", &msp->pc);

FIGURE 8-1 Data Structures After an Access Is Defined

Note – Only those fields that are of interest here are shown.

name
ck_syntax
print
set

. 
. 
.

ACCESS_CLASS AC_Word

type
eval
value

. 
. 
.

access for pc

. 
. 
.

full_name
class

ACCESS_EXPR

"cpu1.pc"

"Word"

struct cpu_state

pc

datap

. 
. 

.

. 
. 
.

. 
. 
.

0x2040

Bool Word_ck_syntax(access) {...}

Bool Word_print(access, ...) {...}

Bool Word_set(access, ...) {...}

Bool Word_eval(access) {...}
ac_word.o

ACCESS *construct_Word(access, ...) {...}

. 
. 
.

Chapter 8 Access Classes 97



File ac_word.o contains all of the routines to deal with variables of type Word,

along with an ACCESS_CLASSstructure called AC_Word. The call to the WORDmacro

created an instance of an ACCESS_commondata structure (labeled “access for pc” in

the figure) that contains a pointer (datap ) to the module instance’s pc variable.

The macro first invoked a routine to create a new access with the appropriate name,

class, and data type as follows:

access_for_pc = access_new_ck("pc", &AC_Word, UNSIGNED);

This routine does all of the class-independent initialization of an access. But part of

the initialization of an access is class-dependent, so the macro then called the

constructor for this access class:

construct_Word(access_for_pc, &msp->pc);

An access class might have multiple constructors, each taking different arguments to

create an access of the same class. For example, there are three constructors for the

Bitfield class, depending upon whether the pointer and mask correspond to a

Byte , a Word, or an LWord; as part of creating an access of class Bitfield , you call

the constructor appropriate to the particular bit field being described.

The constructor for the Word access class simply checks that datap is Word-aligned

and saves it in the ACCESS_commonstructure.

The nature of the ACCESS_commondata structure merits some explaining. First, the

ACCESSstructure, which is used to describe all accesses, is an extension of a

structure, called EXPR, that is heavily used in the interface to the expression-

handling facilities. That is, an access expression is considered a particular type of

expression, so an ACCESSconsists of an EXPR—which contains information common

to all expressions—followed by information relevant only to access expressions. The

definitions for EXPR, ACCESS, and ACCESS_commonlook something like this.

typedef struct {
fields needed by framework to describe any expression

} EXPR;

typedef struct {
        EXPR    e;

additional fields needed by framework to describe an access expression
} ACCESS;

typedef struct {
        ACCESS    a;

additional fields needed for an access expression of certain common classes;
this information is not for the framework, but for the access class entry points

} ACCESS_common;
98 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The ACCESSstructure contains information common to all accesses—information

used by the framework—but each access class can extend this structure again to

include information specific to that access class. In the case of AC_Word, the

extended data structure is called ACCESS_common(because the same structure is

used for variables of type Byte , HWord, and others).

The EXPRstructure within an access is actually not used (hence the shading in

FIGURE 8-1). However, when an access is used in an expression, a copy is made of the

access’s data structure and in this copy the EXPRpart is used.

8.2.2 EXPRand ACCESSData Structures

The definition of an EXPR structure looks something like this.

Only those fields that you might legitimately need to use are listed. As with all

framework data structures, your code should not depend upon the order of these

fields.

next links EXPRtrees together into a list.

type tells what type of EXPRthis is. Depending upon an EXPR’s type, it might be

possible to cast a pointer to the EXPRinto a pointer to some other structure that

begins with an EXPR, allowing access to more information. For example, a type of

ACCESS_EXPRmeans that the EXPRis really an ACCESS.

The value field is a union of members to hold an expression’s value in various

formats; the value_type field tells which member should be used.

The eval field is a pointer to the function that should be called to evaluate the

expression.

The definitions for EXPR_TYPE, DATA_TYPE, and U_VALUEfollow.

/* An EXPR is a node in an expression tree returned by expr_parse(). */
typedef struct expr_ EXPR;
struct expr_ {
        EXPR*           next;           /* for list of expression trees; NULL=end */
        EXPR_TYPE       type;           /* type of this EXPR */
        DATA_TYPE       value_type;     /* type of resulting value */
        U_VALUE         value;          /* result of the evaluation */
        Bool            (*eval)();      /* function to evaluate this EXPR */
          ...
};
Chapter 8 Access Classes 99



The following is essentially the definition of an ACCESS:

Note that an ACCESSbegins with an EXPR, so that in effect an ACCESSis a specific

type of EXPR.

name is the name under which the access was created; full_name is the fully

qualified name of the access, with the module instance name or message type name

prepended.

class is a pointer to the access class for this access.

arg is a field reserved for use by the module programmer in customizing an access

(discussed later).

Some accesses allow parameters, as in ram1.bytes(0x1000,5) . When an

expression is being parsed, each of these parameters is parsed into its own

expression tree. A pointer to each parameter’s tree is placed into the corresponding

element of the params array in the access expression, and the corresponding bit is

set in params_used to indicate the presence of that parameter.

/* EXPR_TYPE is an enumeration of the various types of EXPRs. */
typedef enum {
    UNARY_OP, BINARY_OP, QUEST_OP, IN_OP, TO_OP, CHANGES_OP, ASSEMBLE,
    ACCESS_EXPR, VALUE
} EXPR_TYPE;

/* DATA_TYPE is an enumeration of data types understood by the expression parser. */
typedef enum {UNSIGNED=1, SIGNED, FLOAT_PT, STRING} DATA_TYPE;

/* U_VALUE is a union for the value field of an EXPR. */
typedef union {
        LWord    l;   /* 64-bit integer */
        double   d;   /* double */
        char*    s;   /* string */
} U_VALUE;

#define EXPR_MAX_PARAMS 6
typedef struct {
        EXPR            e;              /* begin with an EXPR because we are one */

 char*  name; /* e.g. "pc" */
 char*  full_name; /* e.g. "cpu1.pc" or "bus_pkt.asi" */
 ACCESS_CLASS*  class; /* class this is an instance of */
 void*  arg; /* access-specific arg, for whatever */
 unsigned char  params_used; /* mask of parameters supplied */
 EXPR*  params[EXPR_MAX_PARAMS]; /* the parameters */

          ...
} ACCESS;
100 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



8.2.3 Expression Parsing

Given this access definition for pc , suppose the user types the command

when pc == 0x2180

The when command calls framework routine expr_parse to parse the expression

text into a tree of EXPRstructures representing the expression. This tree is kept

around; at the end of each cycle, it is evaluated—that is, the value of the expression

at that time is ascertained.

FIGURE 8-2 depicts key data structures after the user interface parses the expression

used in this command.

FIGURE 8-2 Data Structures After an Expression Is Parsed

arg1
arg2

name
ck_syntax
print
set

. 
. 
.

ACCESS_CLASS

type
eval
value

. 
. 
.

access for pc

. 
. 
.

full_name
class

BINARY_OP

ACCESS_EXPR

VALUE

"cpu1.pc"

"Word"

struct cpu_state

pc

datap

. 
. 
.

. 
. 
.

returned by
expr_parse()

type
eval
value

. 
. 

.

constant 0x2120

type
eval
value

. 
. 
.

== operator

. 
. 
.

0x2180

. 
. 
.

0x2040

Bool Word_ck_syntax(access) {...}

Bool Word_print(access, ...) {...}

Bool Word_set(access, ...) {...}

Bool Word_eval(expr) {...}
ac_word.o

/* Evaluate arg1 == arg2;

Bool u_eq(expr) {...}
       integer version */

/* Degenerate evaluator for values */
Bool valid(expr) {return TRUE;}

ACCESS *construct_Word(access, ...) {...}

. 
. 
.

type
eval
value

. 
. 

.

access expression for pc

. 
. 

.

full_name
class

ACCESS_EXPR

"cpu1.pc"

datap

. 
. 

.

C
O
P
Y

Chapter 8 Access Classes 101



Function expr_parse has returned a pointer to a tree of three EXPRstructures. The

top structure corresponds to the == operator. Its type is BINARY_OP(binary

operator), and its arg1 and arg2 point to a copy of the access for cpu1.pc and an

EXPRstructure containing the value 0x2180.

Each EXPRstructure in the tree has associated with it an evaluator function (pointed

to by eval )—the function which should be called to evaluate that node in the tree.

The VALUEnode’s evaluator function simply returns TRUE, indicating that the value

already in its value field is valid. The == operator’s evaluator is a routine that

evaluates its two arguments, compares them as integers, and puts 1 in its value
field if they are both valid and have the same value, else 0.

Notice that the access’s eval field points to a function defined by the access class.

This pointer was set during the parse. After making a copy of the ACCESS(and

filling in any parameters to the variable provided in the expression—in this case

none), the parser calls the access class’s ck_syntax entry point on the copy. This

routine determines whether this is a valid use of the access (for example,

Word_ck_syntax complains if any parameters were supplied) and then sets the

eval pointer to the address of a suitable evaluator function.

The resulting expression tree remains in memory until freed by means of the

framework routine expr_free .

8.2.4 Expression Evaluation

The following call evaluates the expression just discussed (where expr is the EXPR
pointer returned by expr_parse ):

expr->eval(expr)

This call returns a Bool . If it returns FALSE, the expression is invalid; if it returns

TRUE, the expression is valid and its value is in expr->value . The value field is a

union of LWord, double , and char* types, so that every data type enumerated in

type DATA_TYPE—UNSIGNED, SIGNED, FLOAT_PT, and STRING—can be

represented. Expr->value_type is the data type of the expression’s value field.

The evaluation proceeds as follows. The call expr->eval(expr) is actually made

to the u_eq function, the == evaluator for integers (SIGNEDor UNSIGNED). This

routine then calls the evaluator for arg1 :

expr->arg1->eval(expr->arg1)

That call is actually made to the Word_eval function, which gets the Word pointed

to by datap and puts it in the least significant Word of value (using the LWord
union member), and returns TRUE. Since the value field is initialized to 0 when the

expression tree is created, this routine is sufficient to set the entire value of the

LWord when it is being used as an UNSIGNED.
102 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The u_eq routine sees that arg1 is valid and evaluates arg2 in the same way:

expr->arg2->eval(expr->arg2)

That call is actually made to the valid function, which returns TRUEto indicate that

its result—which is already in the value field—is valid. The u_eq routine sees that

arg2 is also valid and compares expr->arg1->value to expr->arg2->value as

LWords and sets expr->value to 1 if they are equal, else 0. Finally, u_eq finishes

by returning TRUE.

8.2.5 Access Expressions

One might reasonably wonder why the ACCESSdata structure needs to be copied

when an expression tree is created. That is, why can’t the expression tree point

directly to the ACCESSdata structure built by the WORDmacro?

The primary reason is that access expressions can involve parameters. For example,

the ram module creates a bytes variable for each of its module instances, and

bytes can take several parameters. If the user enters the following commands, we

need to keep around two expression trees involving the one access, each with

different parameters:

when ram1.bytes(0x4038,32) changes

when ram1.bytes(0x3140) > 3

Another way to solve the problem would have been to put the parameters in a

different data structure, but expression evaluation is more efficient with just one

structure.

To be precise, copied ACCESSdata structures resulting from the use of accesses in

expressions are called access expressions. Structurally, of course, they are identical to

accesses, except that more of the fields are used. Where the distinction is obvious or

unimportant, this manual often refers to an access expression as an access.

8.2.6 Multiple Evaluators

One might also ask why the ACCESS_CLASSstructure does not contain a pointer to

the evaluator function, since it contains pointers to so many other functions defined

for the class. After all, if it did, then the framework could take care of setting the

eval pointer of the access expression.

The answer is that there can be more than one evaluator function for an access class.

In access classes that use parameters, it is often possible for the ck_syntax entry

point to look at the way parameters are used and choose an evaluator peculiar to

that use of parameters. This approach can save considerable expression evaluation

time over the alternative of having one evaluator that always examines the way
Chapter 8 Access Classes 103



parameters are used and then executes the appropriate code. Remember that the

ck_syntax entry point is only called when the expression is parsed, whereas the

evaluator function is called each time the resulting expression tree is evaluated—

therefore, it makes sense to do as much of the work in the ck_syntax entry point as

you can.

8.3 An Example Access Class
In this section, a simple access class illustrates how to write the various parts of an

access class. This access class is for variables of type Word. It is not the

implementation for AC_Word, since AC_Word is created from a special template file

that allows several access classes to share code, thereby obscuring what is

happening. Functionally, however, the two are identical. This new implementation is

called Word2, and the ACCESS_CLASSstructure is AC_Word2.

File ac_Word2.h defines the extended ACCESSdata structure that Word2 accesses

use.

Note – Files ac_Word2.h and ac_Word2.c are not included with MPSAS. They are

merely teaching tools for this chapter rather than code actually used in the simulator

as delivered.

This data structure can be safely cast to either an ACCESS*or an EXPR*, since it

begins with an ACCESSand an ACCESSbegins with an EXPR. The larger structures

can be thought of as having been derived from the smaller structures, inheriting all

of the members of the parent structure and adding their own.

It is a good idea to put this structure definition in a file separate from the access class

implementation itself; if you later decide to derive another access class from this one,

the new class will need the definition for the old class’s structure.

/*
 * ac_Word2.h -- Header file for access class used in programmer’s guide.
 */

/* Declare the extended ACCESS structure for Word2 accesses. */
typedef struct {
        ACCESS  a;      /* stuff common to all accesses */
        Word*   where;  /* address or offset of data given to constructor */
        Word*   datap;  /* where, or where + base if set_base() called */
} ACCESS_Word2;
104 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The datap field is the one actually used to retrieve the data. The purpose of the

where field is discussed later.

8.3.1 Access Constructors

A constructor for an access class is a routine called to initialize a new access of that

class. A constructor typically takes arguments that are stored in the class-specific

part of the extended ACCESSstructure. There can be more than one constructor for a

class if there are different contexts in which such an access might be used. For any

particular access, only one constructor should be called to initialize the access.

Following is the beginning of the file containing the Word2 access class, showing its

only constructor.

/*
 * ac_Word2.c -- Access class used in programmer’s guide; for Word variables.
 */

#include "types.h"
#include "expr.h"
#include "access_class.h"
#include "ac_Word2.h"

/*
 * This is the constructor for Word2 accesses; it gets called whenever a
 * new Word2 access is defined. It does NOT get called when an access is
 * copied by the parser.
 */
extern ACCESS*
construct_Word2(access, where)
        ACCESS*         access; /* ptr to the access, from access_new() */

Word* where; /* ptr/offset to the Word to which to provide access */
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;

        /* Make sure the data pointer is on an appropriate boundary. */
        if ((unsigned long)where & (sizeof(Word)-1))
                fatal( "%s %s access data pointer misaligned\n",
                       access->class->name, access->name );

        it->where = it->datap = where;
        return access;
}

Chapter 8 Access Classes 105



This constructor accepts a pointer to the Word variable as a parameter. All this

constructor does is ensure that the data pointer is Word-aligned and assign it to the

where and datap fields. In some cases, this value is actually an offset, but for now

think of it as a pointer to the data.

Notice that the constructor receives an ACCESS*and casts it to an ACCESS_Word2*,
assigning the value to a variable called it . The it variable is used much like the

this keyword of C++ (the latter name was avoided in order to simplify a potential

future port to C++) to point to the data structure corresponding to an instance of the

class.

The constructors for a class are generally its only externally defined functions. All

other functions of the class are called by the framework through the ACCESS_CLASS
structure or through pointers set by such functions, so they might be static.

Notice that the constructor used the framework routine fatal to display its error.

Constructors (except those for framework access classes, which can be used with the

var command) can only be called during the simulator’s initialization, and any error

represents an error on the part of the programmer.

8.3.2 The ck_syntax Entry Point

The ck_syntax entry point is called during the parsing of an expression involving

an access of this class.

/*
 * ck_syntax() checks the syntax of a Word2 access. Called by the expression
 * parser, it is responsible for syntax-checking (number and types of
 * parameters); the return is TRUE if all is OK. It also sets the eval ptr.
 */
static Bool
Word2_ck_syntax(access)
        ACCESS*         access;
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;

        /* Make sure there are no parameters. */
        if (access->params_used) {
                fwprintf("usage: %s   (no parameters)\n", access->full_name);
                return FALSE;
        }

        access->e.eval = Word2_eval; /* set up evaluator function */
        return TRUE;
}

106 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



This routine checks that the parameters are all being used correctly; in this case, that

means ensuring that none were used at all. The routine simply checks that the mask

of supplied parameters, params_used , is 0.

The ck_syntax entry point checks on structures created in response to the user’s

typing, so errors are to be expected. Hence, an error results in a message to the user

and a return value of FALSE to indicate failure.

If the parameters are all right, the ck_syntax entry point chooses an evaluator

routine (the Word2 class only has one evaluator function) and puts its address in the

eval field of the access expression’s EXPRpart. Finally, the routine returns TRUEto

indicate to the parser that the access expression is a proper one.

Remember that all of this is happening to a copy of the access. Only the constructor

touches the original access; the other routines work with an access expression

involving that access.

8.3.3 Evaluator Functions

When it comes time to evaluate the expression (remember that the expression, once

parsed, can be evaluated repeatedly), the eval function is called, using the pointer

set by the ck_syntax entry point. The evaluator function’s job is to place in

expr->value the current value of the variable represented by the access expression.

Here is the evaluator for Word2 accesses.

In this case, evaluation simply dereferences the data pointer and places the Word
thus obtained in the appropriate part of the EXPRstructure. The WORD_VALUEmacro

accesses the least significant Word of the value field (taken as an LWord). Then, the

evaluator function returns TRUEto signify that the result is valid. There is no way

that an access of this class can ever be invalid, but if an evaluator function decides

that the variable represented by the access expression is invalid (as it might, for

example, if the variable depended on a pointer that was currently NULL), the

evaluator function signifies this by returning FALSE.

/*
 * eval() evaluates a Word2 access.
 */
static Bool
Word2_eval(expr)
        EXPR*           expr;
{
        WORD_VALUE(expr) = *((ACCESS_Word2*)expr)->datap;
        return TRUE;
}

Chapter 8 Access Classes 107



You might be wondering why this routine does not begin with a line like

ACCESS_Word2* it = (ACCESS_Word2*)access;

as the constructor did, and then just dereference it->datap . It could, but with most

compilers that solution would actually result in additional overhead that the cast

avoids, and evaluators are the only routines in access classes for which performance

is particularly important.

8.3.4 The set Entry Point

The set entry point is called when the user uses the set command to set an access

expression involving an access of that class, such as

set cpu1.pc = 0x3128

Some access expressions can be set to multiple values. For example, you can set five

consecutive words of physical memory with a command like

set ram1.words(0xfe00) = 3, 4, cpu1.pc+1, -9, 3.1416

So, the arguments to the set entry point of an access class are:

■ A pointer to the access expression being set

■ A pointer to the first of a linked list of expression trees

The expression trees have already been evaluated by the time the access’s set entry

point is called, so the top node of each tree contains the value of interest. There is

never any need to walk the tree or even to look at the node type: the value_type
and value fields are all that matter. Also, the values are guaranteed to be valid; if

any are invalid, the set entry point is not called.

The set entry point must take the list of value expressions and assign them—

whatever that means to the access class—to the variable described by the access

expression. Here is the set entry point for the Word2 access class.
108 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



#define MANTISSA_MASK ((Word)~0 >> 1)
static Bool
Word2_set(access, value_list)
        ACCESS*         access;
        EXPR*           value_list;
{
        ACCESS_Word2*   it  = (ACCESS_Word2*)access;
        Word            hi  = VALUE_HI_WORD(value_list);
        Word            lo  = WORD_VALUE(value_list);
        Word            val;

        /* Make sure the types are compatible and the data fits. */
        switch (value_list->value_type) {
        case UNSIGNED:
                if (hi)
                        return ac_err_too_big(access, value_list);
                val = lo;
                break;
        case SIGNED:
                /* Make sure all bits of hi word match lo word’s sign bit. */
                if (hi != ((s_Word)lo >> (BITS_PER_WORD-1)))
                        return ac_err_too_big(access, value_list);
                val = lo;
                break;
        case FLOAT_PT: /* assumes floats are IEEE single-precision float pt */
                *(float*)&val = DOUBLE_VALUE(value_list);
                break;
        default:
                return ac_err_set_type(access, value_list);
        }

        /* See if the "change" routine approves. */
        if (access->change && !access->change(access, it->datap, &val))
                return FALSE;

        /* Set the thing. */
        *it->datap = val;

        /* Complain if there was more than one value in the list. */
        if (value_list->next)
               ac_warn_set_extra(access);

        return TRUE;
}

Chapter 8 Access Classes 109



This routine first looks at the data type of the first value in the list. If it is not

UNSIGNED, SIGNED, or FLOAT_PT, then it is not a valid value to assign to this type

of access. Currently, only STRING values are excluded, but writing it this way

prepares for the possibility of additional data types being created in the future. If

one were to use a string, as in

set cpu1.pc = "zort"

framework routine ac_err_set_type would display an appropriate message and

return FALSE, which this routine would then return. The return of FALSE indicates

that the set failed.

If the value is an UNSIGNEDinteger, the routine checks to make sure that it will fit

into a Word and then saves it in val . Remember that an integer expression evaluates

to an LWord; therefore, such size checks are necessary to make sure that values will

fit into the variable the access is describing. If the value does not fit, framework

routine ac_err_too_big displays an appropriate message and returns FALSE,

which this routine then returns.

A similar check is done for SIGNEDintegers. Here, though, the check is that the

upper Word of the value is just an extension of the sign bit of the lower Word.

No check is performed for floating-point numbers. Note that the value could change,

since the value is of type double and we are converting it to a float so it will fit in

a Word, but the semantics of IEEE floating-point assignment ensure that a reasonable

value will be assigned in every case.

Having put the value in val , the routine next checks (using routine

access_change_func ) whether a change routine has been defined for the access

and if so, calls it with pointers to the old and new values. If the change routine

returns FALSE, the set is aborted. The change routine is responsible for printing out

an appropriate error message if it rejects the new value.

If the need for change routines is unclear, bear in mind that a set entry point applies

to all accesses of a given class. It is the change routine that enforces range

restrictions, etc., on a particular access of that class.

Notice that the change routine is not given any information about the type of the

original value. It should not need that information. From that original value, the bit

pattern in val was created, and either that bit pattern is valid or it isn’t. Where it

came from is irrelevant.

If the change routine approves the new value (by returning TRUE), the next step is to

actually change the Word pointed to by datap . Remember that the change routine is

allowed to change the new value, so it is important that the new value whose

address was passed to the change routine be used in the assignment.

Next, this routine checks for additional values. Since a Word can only hold one

value, this code calls framework routine ac_warn_set_extra to display a standard

warning if the user tries to set the variable to more than one value:

set cpu1.pc = 1, 2
110 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The value_list argument is actually a linked list of expression trees;

value_list->next is the next tree in the list, or NULL.

Finally, the routine returns TRUEto indicate that the set succeeded.

8.3.5 The Print Entry Point

An access class’s print entry point is called whenever the user uses the print
command to print an access variable of that class. Its job is to print an appropriate

human-readable representation of the variable’s current value, without a trailing

newline. Here is the print entry point for the Word2 class.

Argument print_p is a pointer to a function that should be used for printing. arg
is an argument that must be passed to print_p . The rest of the arguments to

print_p are the same as those to printf —a format string followed by values to be

used with the conversion specifiers of the format string.

Remember that an access class can handle more than one data type. The Word2 class

handles accesses of type UNSIGNED, SIGNED, and FLOAT_PT, although the code that

specifies this has not yet been shown. In a class that handles more than one data

type, the print entry point will probably need to do different things depending

upon the access’s data type. Here SIGNEDand UNSIGNEDare handled by the same

code, but FLOAT_PTmust be handled separately. Assuming you have set up the

class correctly, the framework will not create an access of the wrong type for a given

/*
 * print() prints a Word2 in hex or floating point.
 */
static Bool
Word2_print(access, print_p, arg)
        ACCESS*         access;
        void            (*print_p)();
        void*           arg;
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;
        char            buf[80];

        if (access->e.value_type == FLOAT_PT)
                print_p(arg, dtoa(buf, DOUBLE_VALUE(it)));
        else
                print_p(arg, "0x%08x", WORD_VALUE(it));
        return TRUE;
}

Chapter 8 Access Classes 111



class, so there is no check for the STRING type here as there was with the value

expression of the set entry point. The routine returns TRUEto indicate that it was

successful.

Notice that the value being printed is not obtained by dereferencing datap , but

rather is the value field of the EXPRpart of the access’s data structure (macros

DOUBLE_VALUEand WORD_VALUEuse the value field). This works because the

framework always evaluates an access expression before calling the print entry

point (or set , dump, or restore routines). If the access expression is invalid, the

print (or whichever) entry point will not be called.

Notice that for floating-point accesses, the value field is being used as a double .

This usage might seem incorrect, since the evaluator function only set the lower

Word of the value field—clearly, the Word the access describes is a float , not a

double . But you will see later that the value field is always converted to the form

expected by expression operators, which for floating-point values is double and for

integers is LWord. It might look as though the print entry point is behaving

inconsistently, because for integers it only uses the lower Word, but of course the

lower Word would not change in converting from a Word to an LWord, and the

print entry point is only concerned with printing the lower Word.

Another reason evaluation is done prior to calling these entry points is that if the

access expression involves parameters, those parameters need to have been

evaluated by the time these routines are called. It is the evaluator function that

evaluates any parameters used in the access expression.

8.3.6 The dump and restore Entry Points

The framework calls an access class’s dump entry point when the dump command is

executed. The dump entry point should dump a compact representation (generally

something close to its internal representation) of an access expression, using a

routine supplied for that purpose. The restore entry point restores it. Here are the

dump and restore routines for the Word2 class.
112 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Arguments dump_p and restore_p are pointers to functions that do the actual

dumping and restoring. arg is an argument that must be passed to those functions.

The other two arguments to each of those functions are a pointer to the data area and

the length of the data area in bytes. Those functions return TRUEif they succeed, else

FALSE. Word2_dump and Word2_restore simply pass the return code on.

In the current release of MPSAS, the restore function is not used. For compatibility

with future releases, however, it is included in the ACCESS_CLASSstructure.

8.3.7 The set_base Routine

If an access is used to describe a field of a message type or if the access has an

address generator function associated with it (the association having been created by

a call to access_address_generator ), then the data described by the access

might be in a different place each time an expression involving that access is

evaluated. The framework uses an access class’s set_base entry point during each

evaluation to tell the access expression where the data is now located.

/*
 * dump() dumps a Word2 out to a file.
 */
static Bool
Word2_dump(access, dump_p, arg)
        ACCESS*         access;
        Bool            (*dump_p)();
        void*           arg;
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;
        return dump_p(arg, it->datap, sizeof(Word));
}

/*
 * restore() restores a previously dumped Word2 from a file.
 */
static Bool
Word2_restore(access, restore_p, arg)
        ACCESS*         access;
        Bool            (*restore_p)();
        void*           arg;
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;
        return restore_p(arg, it->datap, sizeof(Word));
}

Chapter 8 Access Classes 113



It is not required that an access class have a set_base entry point. If an access class

does not have a set_base entry point, then it is a fatal error to try to create an

access of that class to describe a message field or to associate with such an access an

address generator function. If you are writing a general-purpose access class,

however, it is probably possible to write a set_base entry point and worth the

effort. Here is the set_base entry point for the Word2 class.

Recall that the constructor set both the where and datap fields of the extended

access data structure to the address of the Word. If the access is not one that moves

around, these fields remain the same forever. But if the set_base entry point is

called, datap is set to the sum of the new base address passed in through

Word2_set_base and the value passed to the Word2 constructor as the location of

the datum. The constructor stored this location in the where field. When set_base
is used, where is assumed to be not the address of the data, but rather an offset to it

from some base address, which is the value provided in the call to set_base .

For example, consider the following code, taken from the computer layer’s

initialization entry point. It is part of the code that uses accesses to describe the

gen_int_pkt message type.

Because gip is initialized to 0, expressions such as &gip->irl evaluate to the

offsets of various fields from the beginning of the packet. When an expression

involving one of the fields defined here is parsed by expr_parse , the framework

/*
 * set_base() changes the base pointer for the access’s datum.
 */
static void
Word2_set_base(access, base)
        ACCESS*         access;
        char*           base;
{
        ACCESS_Word2*   it = (ACCESS_Word2*)access;
        it->datap  =  (Word*)(base + (unsigned long)it->where);
}

        struct gen_int_pkt *gip = 0;
          ...
        gen_int_msgtype = add_msgtype("gen_int_pkt");
        WORD("irl",       &gip->irl      );
        WORD("action",    &gip->action   );
        WORD("irl_valid", &gip->irl_valid);
        WORD("extra",     &gip->extra    );
          ...
114 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



makes the following adjustments in the ACCESSstructure to ensure that the access is

relocated to the appropriate field in the message being transmitted at the time the

expression is evaluated:

1. It sets base_eval to eval , the pointer to the evaluator function as set by the

ck_syntax entry point.

2. It sets eval to point to a special routine within the framework.

The latter routine is called when the expression is evaluated; it does three things.

1. It makes sure the message being transmitted is of the same message type as the

one used in the expression; if not, it returns FALSE to indicate that the expression

is invalid.

2. It calls the access’s set_base entry point with the address of the current message

packet.

3. It calls the access’s real evaluator through field base_eval .

In other words, when expr_parse sees that the access referenced in an expression

is a message field, it arranges for a wrapper to be called instead of the normal

evaluator routine. The layer moves the access to the right spot and then calls the

normal evaluator.

FIGURE 8-3 depicts the relationship between the where and datap fields in a Word2
access when used in this way. This usage of the two fields is typical of framework

access classes.

FIGURE 8-3 Handling of Message Fields by Word2 Access Class

base

where

datap
datum

message packet
Chapter 8 Access Classes 115



8.3.8 The Access Class Variable

The last part of the access class is an instance of the ACCESS_CLASSdata structure—

the one that represents that access class. Here it is for the Word2 class.

Note – Underscore (_) is a macro defined to be 0. By convention it is not used in

place of 0 used as a count, but rather where 0 means “I don’t want/have one of

those.”

The first underscore is in the base field, indicating that this class is not derived from

any other class. This field is discussed in more detail in a later section. The next field

is name, a string that will be displayed in certain messages and list command

output. The eval_type field, here UNSIGNED, is the data type returned by the

class’s evaluator functions. The framework uses this field to determine whether it

needs to do any additional work to get the data type called for in an expression.

The fourth field, expr_size , is the size of the extended access data structure for this

class, in bytes. This field is used by routine access_new to allocate the access

structure when an access of this class is created.

The next field is destroy and the destructor entry point for the class. This field is

optional, and in fact very few classes will need destructors. A destructor is called

when an access of that class is deleted (using access_delete ). A destructor

receives as an argument a pointer to the access being deleted and has a void return.

The destructor’s job is to release any resources allocated by the access.

Note – The destructor deallocates resources held by the access itself, not resources

held by access expressions referring to that access.

The next few fields are pointers to the ck_syntax , set , print , dump, restore ,

and set_base entry points, which have already been discussed.

 /*
 * Here is the actual ACCESS_CLASS data structure for Word2 accesses.
 */
ACCESS_CLASS AC_Word2 = { _, "Word2", UNSIGNED, sizeof(ACCESS_Word2),
        _,              Word2_ck_syntax,  Word2_set,            Word2_print,

 Word2_dump,     Word2_restore,    Word2_set_base,
        _,              ac_sex_Word,      ac_float_to_double,   CANNOT_PROMOTE,
        _
};
116 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



The next four fields are used in conjunction with the eval_type field. They are

pointers to functions that convert from whatever is returned by the evaluator

functions to the various expression data types (as enumerated in DATA_TYPE), in the

formats required by the expression evaluator. Such a conversion is called a promotion.

Here, as_unsigned is an underscore, which means that no conversion is required

(eval_type is UNSIGNED). The fact that as_signed is given the value

ac_sex_Word means that if the value of the access is to be used as a signed integer,

ac_sex_Word (which sign-extends the Word to an LWord) should be called on the

access rather than the evaluator specified by the ck_syntax entry point. If the value

is to be interpreted as a floating-point number, then the framework should call

ac_float_to_double (which converts the float value to double ). The entry for

as_string is CANNOT_PROMOTE, which is a special value which indicates that the

promotion is impossible. Therefore, if one were to try to use an access of this class as

a string, an error would result.

Four promoter functions are built into the framework:

■ ac_sex_Byte — Sign-extends a Byte to 64 bits

■ ac_sex_HWord — Sign-extends an HWord to 64 bits

■ ac_sex_Word — Sign-extends a Word to 64 bits

■ ac_float_to_double — Converts a float to double

If you need to write your own promoter function, it should look like this:

The promoter function is called instead of the routine specified by the ck_syntax
entry point (that is, access->e.eval points to the promoter function); therefore,

the first thing the promoter function must do is evaluate the access normally. A

pointer to the routine to do this evaluation has been saved by the framework in

access->promote_eval . It, like the promoter function itself, follows the protocol

for evaluator functions: receive a pointer to the access, and return TRUEif the value

is invalid, else FALSE.

Note that no promoter function is provided for conversion to UNSIGNEDbecause

EXPRstructures are initialized to zeroes. That is, the upper Word of the value
LWord is already zero, so if the access expression is to be used as an unsigned value,

then all that is required is for the evaluator function to set the lower Word. Since the

Bool
promoter_func_name(access)

ACCESS *access;
{

if (!access->promote_eval(access)) /* evaluate the access */
        return FALSE; /* if it’s invalid, so are we */

promote value field, in place
return TRUE if result is valid, else FALSE

}

Chapter 8 Access Classes 117



vast majority of variables are unsigned integers, the savings obtained by not having

to call a function to make an LWord out of the access expression’s value is

substantial.

The last field in the ACCESS_CLASSstructure is the cleanup entry point, here an

underscore. This is another field you will probably never need to use. It is a pointer

to a routine to be called when an access expression (the copy of an access produced

when an access is used in an expression) is freed via expr_free . The field takes a

pointer to the access as an argument and has a void return. Its job is to release any

resources allocated by the ck_syntax entry point for this access expression.

8.4 Derived Access Classes
If you create a new access class by using or adding onto the access data structure of

some other class, you might want to set the base pointer to point to the

ACCESS_CLASSstructure of the class whose access data structure you borrowed.

That way, the access_isa and access_class_isa framework functions will

identify the new class as being derived from the old (base) class.

Creating new classes by deriving them from old classes is strongly encouraged.

If a new access class is being derived just for use within a particular module, the

module init entry point for that module is probably the best place to create the new

class. If its use will span modules, the new class is probably best defined within the

layer initialization entry point for the lowest layer (the one closest to the framework)

that will use that class. As an example, the following code might be used to create a

new access class called Word2_addr , derived from Word2, which differs from its

base class only in the way it prints a Word (using routine Word2_addr_print , not

shown).

ACCESS_CLASS AC_Word2_addr;
           ...
        AC_Word2_addr = AC_Word2;
        AC_Word2_addr->base = &AC_Word2;
        AC_Word2_addr->name = "Word2_addr";
        AC_Word2_addr->print = Word2_addr_print;
           ...
118 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



8.4.1 Existing Access Classes

TABLE 8-1 shows the framework access classes from which you might want to derive

your own classes. There are other access classes, but they are less general or more

dangerous to inherit from, so you should not derive new classes from them. The

table lists for each class the name of the class’s ACCESS_CLASSvariable, the name of

the extended ACCESSdata structure used by the class, and the access-creating

macros from common_access.h which use the class.

8.5 Parameters
The Word2 access class demonstrated much of what goes into writing an access

class. One thing it did not demonstrate is the handling of parameters.

You can expect the use of parameters to substantially complicate an access class.

Here are some of the complications introduced.

■ The access class’s ck_syntax entry point must check the parameters supplied

and their types.

■ For efficiency, you might want to have more than one evaluator function: one for

the case where all the parameters are constants, for example. In addition, the

access class’s ck_syntax entry point will have to make this determination and

assign the appropriate evaluator’s address to the access->e.eval field.

■ Depending upon what the parameter means, the access class’s print , set , dump,

and restore entry points might need to refer to its value in doing their jobs.

TABLE 8-1 Framework Access Classes from Which New Classes Can Be Derived

Class Variable ACCESS Type Macros That Use It

AC_Bool ACCESS_common BOOL

AC_HWord ACCESS_common HWord, S_HWORD

AC_Word ACCESS_common Word, S_WORD

AC_LWord ACCESS_common LWord, S_LWORD

AC_bit_field ACCESS_bit_field BITF , S_BITF , BBITF , S_BBITF, LBITF ,

S_LBITF , MEMBER_BITF, MEMBER_LBITF

AC_string ACCESS_common STR

AC_group ACCESS_group GROUP
Chapter 8 Access Classes 119



Some of the access classes used with the ram and rom modules understand several

different uses of parameters. For example, the word access can be used in these ways

to select different parts of the module instance’s memory:

■ word — All Words

■ word (addr) — The Word containing the Byte at address addr

■ word (addr,num) — number of Words starting with the one containing the Byte at

address addr

■ word (addr1,,addr2) — All Words from the one containing the Byte at address

addr1 to the one containing the Byte at address addr2, inclusive

The following code is from the ck_syntax entry point of an access class used with

the ram and rom modules; it checks that an access expression fits one of the above

patterns and that any parameters supplied evaluate to integers.

The PARAMS_ABOVEmacro returns TRUEif in the specified access expression any

parameters of higher number than that specified were used. Parameters are

numbered left to right from 0 to EXPR_MAX_PARAMS-1(currently 5). So

PARAMS_ABOVE(it,2) is TRUEfor variable expression word(,,,1) but FALSE for

word(,,1) .

The PARAM_USEDmacro returns TRUEif in the specified access expression the

specified parameter number was used. The second line of the conditional checks that

if any parameters were used, parameter 0 was used. The third line of the conditional

checks that parameters 1 and 2 were not both used, as they are in word(1,1,1) .

The loop that follows checks parameters 0 to 2 (the only ones which could have been

used) to see that if they were used, they are of integer type. Macro

EXPR_IS_INTEGERreturns TRUEif the value_type field of the specified access

expression is either UNSIGNEDor SIGNED.

        if ( PARAMS_ABOVE(it, 2) ||
             (!PARAM_USED(it, 0) && PARAMS_ABOVE(it, 0)) ||
             (PARAM_USED(it, 1) && PARAM_USED(it, 2)) )
                goto usage_err;
        for (i=0; i<3; i++)
           if (PARAM_USED(it, i) && !EXPR_IS_INTEGER(access->params[i]))
                        goto usage_err;
          ...
usage_err:
        fwprintf("usage: %s[(start[,num])] or %s(start,,end)\n",
            access->full_name, access->full_name);
        return FALSE;
120 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



8.6 Macros for Creating Accesses
Given an access class like Word2, the following things need to be done to describe a

module state variable of that class:

■ Create a new access of that class and of the appropriate type.

■ Call a constructor for that class with the appropriate arguments.

■ Add the access to the module’s list of accesses.

The same procedure holds for describing a message field, except that the access is

added to a different list—the list of fields for the most recently defined message

type. Since modules typically create many accesses, macros such as WORDhide these

steps. You might want to create similar macros for access classes you write.

For the Word2 class, one might want to create macros WORD2, s_WORD2, and

FLOAT2, which create UNSIGNED, SIGNED, and FLOAT_PT Word2accesses,

respectively. They could be implemented as follows.

These macros, like those in fw/include/common_access.h , are each broken into

two parts. WORD2_ACCESScalls access_new_ck with the name of the access, a

pointer to the access class, and the data type of the access. Access_new_ck creates

the access, does any class-independent initialization on it, and returns a pointer to it.

That pointer and a pointer to the actual Word for this access are passed to

construct_Word2 , the constructor for the Word2 class, which does the class-

dependent initialization.

But WORD2_ACCESSjust creates the access without putting it on a list of accesses for

a module instance or message type. The WORD2macro is built on top of

WORD2_ACCESS, taking the access pointer returned by it and passing it to the

ADD_ACCESSmacro. ADD_ACCESSis defined by state_access.h to be

add_state , a routine that adds an access to the list of accesses for the currently

initializing module instance. If you are defining a message type, then instead of

including state_access.h , you include msg_access.h , which defines

ADD_ACCESSto be add_field , a routine that adds an access to the list of fields for

the most recently added message type.

/* Macros to create unsigned and signed Word2 accesses, e.g. WORD2("pc", &msp->pc); */
#define   WORD2(name,datap) ADD_ACCESS(  WORD2_ACCESS(name,datap))
#define S_WORD2(name,datap) ADD_ACCESS(S_WORD2_ACCESS(name,datap))
#define  FLOAT2(name,datap) ADD_ACCESS( FLOAT2_ACCESS(name,datap))
#define   WORD2_ACCESS(name,datap) \

construct_Word2(access_new_ck(name,&AC_Word2,UNSIGNED),datap)
#define S_WORD2_ACCESS(name,datap) \

construct_Word2(access_new_ck(name,&AC_Word2, SIGNED),datap)
#define  FLOAT2_ACCESS(name,datap) \

construct_Word2(access_new_ck(name,&AC_Word2,FLOAT_PT),datap)
Chapter 8 Access Classes 121



The same division of labor exists between S_WORD2and S_WORD2_ACCESS, and

between FLOAT2 and FLOAT2_ACCESS.

Note – Different constructors might require different arguments, and therefore

different access-creating macros will require different arguments.
122 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



APPENDIX A

Framework Manual Pages

This chapter contains detailed descriptions of the global variables and routines

provided by the framework for use by the module programmer. These descriptions

are in a form similar to that of the UNIX manual pages.
123



Command Framework Globals Command

Name

cmd_result , cmd_result_double , SET_CMD_RESULT_AS_WORD,

fw_terminate_cmd — Global variables useful to user interface commands

Synopsis
#include "types.h"

LWord cmd_result;

double cmd_result_double;

Word SET_CMD_RESULT_AS_WORD(return_code)
Word return_code;

Bool fw_terminate_cmd;

Description

The user interface maintains variables called cmd_result and

cmd_result_double . User Interface commands set the variables by setting the

global variables cmd_result and cmd_result_double .

SET_CMD_RESULT_AS_WORD()sets cmd_result to the 32-bit value specified by

return_code.

Fw_terminate_cmd is a read-only Boolean variable that is set to true by the

framework when a user types Control-C during the execution of a user interface

command. User interface commands that take some time to execute (for example,

generate large amounts of output) should check this variable periodically to allow

the user to interrupt the command. It is reset to false at the start of each user

interface command.
124 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Miscellaneous Framework Globals Miscellaneous

Name

cyclecount , instrcount , opt_simpleprint — Miscellaneous framework global

variables

Synopsis
int instrcount;

int cyclecount;

int opt_simpleprint;

Description

The global variable instrcount corresponds to the user interface variable of the

same name. Each time a processor executes an instruction, it should increment this

variable. instrcount is used by the framework in the time command to calculate

the instructions-per-second value.

The global variable cyclecount also corresponds to a user interface variable of the

same name. It is incremented by the framework each cycle and should be considered

read-only by the modules. The framework also uses this value in the time command

to calculate the cycles-per-second value. Modules can use cyclecount to obtain the

number of cycles simulated.

The opt_simpleprint global variable contains the value of the simpleprint
option. For details, see the manual page for the option command, in Appendix B of

the Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide. If you plan to

parse the simulator’s output in another program, you might want your code to

generate output that is more easily parsed when this variable is true .
Appendix A Framework Manual Pages 125



Access Class Framework Routines Access Class

Name

ac_sex_Byte , ac_sex_HWord , ac_sex_Word , ac_float_to_double ,

ac_err_set_type , ac_err_too_big , ac_warn_set_extra , PARAM_USED,
PARAMS_ABOVE, access_new_ck , access_new , add_state , add_field —

Routines used in writing access classes

Synopsis
#include "types.h"
#include "expr.h"
#include "access_class.h"

Bool ac_sex_Byte( ACCESS * access)
Bool ac_sex_HWord(ACCESS * access)
Bool ac_sex_Word( ACCESS * access)
Bool ac_float_to_double(ACCESS * access)

Bool ac_err_set_type(ACCESS * access, EXPR * expr)
Bool ac_err_too_big( ACCESS * access, EXPR * expr)

void ac_warn_set_extra(ACCESS * access)

Bool   PARAM_USED(ACCESS * access, unsigned param_num)
Bool PARAMS_ABOVE(ACCESS *access, unsigned param_num)

ACCESS *access_new_ck(char * name, ACCESS_CLASS * class,
                                              DATA_TYPE datatype)
ACCESS *access_new(   char * name, ACCESS_CLASS * class,
                                              DATA_TYPE datatype)

#include "module.h"
ACCESS *add_state(ACCESS * access)

#include "msgtype.h"
ACCESS *add_field(ACCESS * access)

Description

These functions are useful in developing new access classes. An access class is

essentially a template from which accesses can be instantiated. For details see

Chapter 8, Access Classes.
126 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



ac_sex_Byte () , ac_sex_HWord () , and ac_sex_Word () sign-extend Byte , HWord,

and Word values to s_LWord s for use in expression evaluation. Although accesses

can represent data of any size and format, there is a well-defined size and format for

each data type to be used in an expression; an access class must provide for such

conversions, called promotions. Similarly, a float value must be promoted to a

double before it can be used in an expression, and that is just what

ac_float_to_double () does.

The rest of the routines are useful primarily in writing the set entry point for an

access class. Each reports a particular type of error in a standard way; hence, use of

these routines gives a common feel to all accesses.

ac_err_set_type () displays the following error message:

Cannot set access’s name (type datatype) to datatype value

The routine always returns false , so it can be used as follows within the set
routine (which indicates a problem by returning false ):

if (access cannot be set to expr’s value type)
return ac_err_set_type(access, expr);

ac_err_too_big() displays the following error message and returns false :

Value doesn’t fit in access’s classname access’s name
value is expr’s value

ac_warn_set_extra() displays the following warning message:

Extra values ignored in set of access’s name

PARAM_USED()returns true if the specified parameter is used in access expression

access, else false . PARAMS_ABOVE()returns true if any of the parameters above

param_num are used in access. Parameters are numbered 0 through

EXPR_MAX_PARAMS-1(currently 5).

If you create a new access class, you may want to create new macros for it like those

in fw/include/common_access.h . Common_access.h is included by

state_access.h and msg_access.h , which are included by code using accesses

to describe module state variables or message types, respectively. The macros you

write should use the following routines to do their work.

access_new_ck() creates a new access with the specified name, class, and datatype
and returns a pointer to it. You must call a constructor for the class to ready the

access for use. access_new_ck() is actually a wrapper around access_new() ,

which has the same arguments. access_new() returns NULL if it cannot create the

specified access, and the wrapper simply causes a fatal error in that event.

After the constructor has been called, you usually want the access placed on a list of

variables to be found later by the expression parser. add_state() adds access to the

list of variables for the currently initializing module instance. Add_field () adds
Appendix A Framework Manual Pages 127



access to the list of fields for the message type currently being described (see

add_msgtype() , discussed in the Message Type manual page). Both return access.

Errors in either are fatal.

SEE ALSO

Access Create

Access Control

Access Misc

Expressions

Message Types
128 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Access Create Framework Routines Access Create

Name
FLOAT, DOUBLE, BOOL, BYTE, S_BYTE, CHAR, HWORD, S_HWORD, WORD, S_WORD,
LWORD, S_LWORD, WORD_ADDR, LWORD_ADDR, STR, BBITF, S_BBITF, BITF , S_BITF ,

LBITF , S_LBITF , GROUP, ARRAY, FLOAT_ACCESS, DOUBLE_ACCESS, BOOL_ACCESS,
BYTE_ACCESS, S_BYTE_ACCESS, CHAR_ACCESS, HWORD_ACCESS,

S_HWORD_ACCESS, WORD_ACCESS, S_WORD_ACCESS, LWORD_ACCESS,

S_LWORD_ACCESS, WORD_ADDR_ACCESS, LWORD_ADDR_ACCESS, STR_ACCESS,
BBITF_ACCESS, S_BBITF_ACCESS, BITF_ACCESS, S_BITF_ACCESS,

LBITF_ACCESS, S_LBITF_ACCESS, GROUP_ACCESS, ARRAY_ACCESS,
MEMBER_BITF, MEMBER_LBITF— Macros to create accesses

Synopsis
#include "types.h"
#include "expr.h"
#include "state_access.h" or "msg_access.h"

/* macros to create accesses and add to appropriate list */
ACCESS      *FLOAT(char * name, float   * datap)
ACCESS     *DOUBLE(char * name, double  * datap)
ACCESS       *BOOL(char * name, Bool    * datap)
ACCESS       *BYTE(char * name, Byte    * datap)
ACCESS     *S_BYTE(char * name, s_Byte  * datap)
ACCESS       *CHAR(char * name, char    * datap)
ACCESS      *HWORD(char * name, HWord   * datap)
ACCESS    *S_HWORD(char * name, s_HWord * datap)
ACCESS       *WORD(char * name, Word    * datap)
ACCESS     *S_WORD(char * name, s_Word  * datap)
ACCESS      *LWORD(char * name, LWord   * datap)
ACCESS    *S_LWORD(char * name, s_LWord * datap)
ACCESS  *WORD_ADDR(char * name, Word    * datap)
ACCESS *LWORD_ADDR(char * name, LWord   * datap)
ACCESS        *STR(char * name,  char    ** datap)

ACCESS   *BBITF(char * name, Byte  * datap, Byte mask)
ACCESS *S_BBITF(char * name, Byte  * datap, Byte mask)
ACCESS    *BITF(char * name, Word  * datap, Word mask)
ACCESS  *S_BITF(char * name, Word  * datap, Word mask)
ACCESS   *LBITF(char * name, LWord * datap, LWord mask)
ACCESS *S_LBITF(char  * name, LWord * datap, LWord mask)

ACCESS *GROUP(char *name, Bool (*eval)())
ACCESS *ARRAY(ACCESS *access, char * name,

unsigned num_elements, unsigned spacing,
void (*flex_func)(), void *flex_arg)
Appendix A Framework Manual Pages 129



/* macros to create accesses without adding them to a list */
ACCESS      *FLOAT_ACCESS(char * name, float   * datap)
ACCESS     *DOUBLE_ACCESS(char * name, double  * datap)
ACCESS       *BOOL_ACCESS(char * name, Bool    * datap)
ACCESS       *BYTE_ACCESS(char * name, Byte    * datap)
ACCESS     *S_BYTE_ACCESS(char * name, s_Byte  * datap)
ACCESS       *CHAR_ACCESS(char * name, char    * datap)
ACCESS      *HWORD_ACCESS(char * name, HWord   * datap)
ACCESS    *S_HWORD_ACCESS(char * name, s_HWord * datap)
ACCESS       *WORD_ACCESS(char * name, Word    * datap)
ACCESS     *S_WORD_ACCESS(char * name, s_Word  * datap)
ACCESS      *LWORD_ACCESS(char * name, LWord   * datap)
ACCESS    *S_LWORD_ACCESS(char * name, s_LWord * datap)
ACCESS  *WORD_ADDR_ACCESS(char *name, Word    * datap)
ACCESS *LWORD_ADDR_ACCESS(char *name, LWord   * datap)
ACCESS        *STR_ACCESS(char * name, char    ** datap)

ACCESS   *BBITF_ACCESS(char * name, Byte  * datap, Byte mask)
ACCESS *S_BBITF_ACCESS(char * name, Byte  * datap, Byte mask)
ACCESS    *BITF_ACCESS(char * name, Word  * datap, Word mask)
ACCESS  *S_BITF_ACCESS(char * name, Word  * datap, Word mask)
ACCESS   *LBITF_ACCESS(char * name, LWord * datap, LWord mask)
ACCESS *S_LBITF_ACCESS(char * name, LWord * datap, LWord mask)

ACCESS *GROUP_ACCESS(char * name, Bool (*eval)())
ACCESS *ARRAY_ACCESS(ACCESS *access, char * name,

unsigned num_elements, unsigned spacing,
void (*flex_func)(), void *flex_arg)

/* macros to create a bit field as a member of something else */
ACCESS  *MEMBER_BITF(ACCESS *access, char * name, Word mask)
ACCESS *MEMBER_LBITF(ACCESS *access, char * name, LWord mask)

Description

These macros create accesses. An access is a construct that gives the framework

enough information about a variable to allow the user to print it, set it, use it in

expressions, dump it to a trace file, and so on. The use of accesses is discussed in

Section 3.2, Use of Accesses.

A module instance uses accesses to describe parts of its internal state. In this case,

include state_access.h . A common place for such code is in the module’s create

instance entry point; however, if the allocation or use of a variable depends upon the

number and kind of interfaces configured for the module instance, it may be

desirable to create certain accesses later in the configuration phase, for example, in

the verify config entry point.

Accesses are used to describe the fields of a message type. In this case, include

msg_access.h . Description of message types is typically done in a layer’s

initialization routine.
130 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Note – You may not include both state_access.h and msg_access.h in a single

file.

Macros FLOAT() , DOUBLE() , …, ARRAY() define accesses and put them where they

can be found by the expression-handling code in the framework, thus making them

available for use in the user interface as described above. These, along with

MEMBER_BITF() and MEMBER_LBITF() , are the macros you will generally use to

create accesses. Macros FLOAT_ACCESS() , DOUBLE_ACCESS() , …, ARRAY_ACCESS()
are identical to their counterparts in the previous set except that they do not make

the accesses available to the user. Rather, an access created with one of these macros

is usable only by the handle it returns, which can be used in further calls. These

macros are generally only used when describing arrays, to create the template for an

element of the array.

TABLE A-1 lists the type of data handled by each macro.

TABLE A-1 Macrodata Described by Access

Macro Data Type

ARRAY multiple repetitions of some other access

BBITF unsigned bit field within a Byte

BITF unsigned bit field within a Word

BOOL variable of type Bool

BYTE variable of type Byte

CHAR variable of type char

DOUBLE variable of type double

FLOAT variable of type float

GROUP arbitrary collection of other accesses

HWORD variable of type HWord

LBITF unsigned bit field within an LWord

LWORD variable of type LWord

LWORD_ADDR variable of type LWord containing addresses

MEMBER_BITF unsigned bit field as part of a Byte or Word access

MEMBER_LBITF unsigned bit field as part of an LWord access

S_BBITF signed bit field within a Byte

S_BITF signed bit field within a Word

S_BYTE variable of type s_Byte
Appendix A Framework Manual Pages 131



The user’s view of a piece of module instance state or a message field, through an

access, is called a variable. Each of the preceding macros takes a name argument,

which is the name by which the variable will be known to the user. If the access

describes module instance state, the full name of the access is actually

module_instance.name. The user need not type the full name of such an access when

focused on the module instance for which it is defined. If the access describes a

message field, its full name is actually message_type.name, where message_type is the

name used in the call to add_msgtype () . The user must always type the full name

of an access describing a message field.

Most of the macros take an additional datap argument that is a pointer to the datum.

Those macros which define bit fields take a mask argument that isolates the part of

the Byte , Word, or LWord of interest. mask may not have holes in it; that is, it must

be a set of contiguous 1 bits. The mask of an LWord bit field may not span both

words of the LWord.

Usually, a bit field is part of some larger entity that might be of interest as a whole.

MEMBER_BITF() creates a bit field access as a member of access, such that when

access is printed you will see all of its members. When using MEMBER_BITF() , the

name field is taken to be an extension to the name rather than the name itself. For

example, consider the following code, which might be used to create an access for a

SPARC processor’s PSR field and member accesses describing the PSR’s S and CWP

fields:

access = WORD("psr", &state->psr);
MEMBER_BITF(access, "s", S_MASK);
MEMBER_BITF(access, "cwp", CWP_MASK);

The full name of the variable corresponding to the CWP would be

module_instance.psr.cwp .

For MEMBER_BITF() , access can refer to either a Byte or a Word (or some class

derived from Byte or Word); mask should correspond to that type. MEMBER_LBITF()
is like MEMBER_BITF() except that access should refer to an LWord and mask should

be an LWord.

S_HWORD variable of type s_HWord

S_LBITF signed bit field within an LWord

S_LWORD variable of type s_LWord

S_WORD variable of type s_Word

STR variable of type char* (null-terminated string)

WORD variable of type Word

WORD_ADDR variable of type Word containing addresses

TABLE A-1 Macrodata Described by Access (Continued)

Macro Data Type
132 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



GROUP() creates an access that is a collection of other accesses. It is not possible to

set the value of a group. When a group is printed, all of its members are printed (as

is true of any access that has members). When the group is dumped or restored, all

of its members are dumped or restored. You can supply your own evaluator function

(see Chapter 8, Access Classes) for a group as eval. Use NULL for this argument to

obtain the default evaluator, which yields an invalid result if any member of the

group is invalid or otherwise yields the bitwise exclusive-or of the values of all of its

members. Members are added to a group by the access_add_member () and

state_members () function (see the Access Control manual page) if the group

describes module instance state; groups are generally not used with message fields.

ARRAY() creates an access that describes an array of num_elements elements, using

access as a template for an element of the array. The elements are spaced regularly,

spacing bytes apart. You can create arrays whose datap, num_elements, or spacing vary

over time by providing a function flex_func that is called immediately before the

evaluate routine is called. An argument to flex_func can be supplied as flex_arg. For

arrays fixed in location, size, and spacing, use NULL for flex_func.

A flex function should look like this:

The ACCESS_array structure is defined as follows:

void flex_func_name(array)
    ACCESS_array *array;
{
    set array->num, array->spacing, array->base2 as needed
}

typedef struct {
    ACCESS     a;
    ACCESS*    element;    /* ptr to access we’re an array of */
    void       (*flex_func)(); /* see above */
    void*      flex_extra; /* for use by flex_func() */
    unsigned   num;        /* number of elements in array */
    unsigned   spacing;    /* number of bytes between elements */
    char*      base1;      /* base, as set by set_base() */
    char*      base2;      /* base, as set by set_base() and
                              perhaps modified by flex_func() */
    char*      element_base; /* base2 + index * spacing */
    unsigned   index;      /* for change routine */
} ACCESS_array;
Appendix A Framework Manual Pages 133



The flex_extra field is initialized by the constructor to flex_arg . The flex

function can set any or all of the num, spacing , and base2 fields. base2 is the

pointer used by the array access class as the base of the array when it calculates

element_base , the address of a particular element. When a change function is

called, the index field is the index of the element being set.

The use of name in the user interface refers to the entire array. For example, printing

name will show the values of all its elements. You can set name to a list of values, as

in

set my_values = 87, 31, 23

The last value is duplicated as many times as necessary to fill the array. When used

in an expression, for example, my_values changes, an array evaluates to the bitwise

exclusive-or of all of its elements’ values.

You refer to a particular element of the array by putting the index (an expression) in

parentheses as a parameter, as in

print my_value(cpu1.l0+2)

To create an array access, first create some other access representing an element of

the array. Use the version of the macro that does not make the access available to the

user. The name you choose for the access is irrelevant. Then, use the ARRAY() macro

to create the array. For example, the following code creates an array of 20 contiguous

Words, called my_words :

access = WORD_ACCESS("", &state->my_words);
ARRAY(access, "my_words", 20, sizeof(Word), NULL, NULL);

While it would be perfectly valid to create a group with arrays as members, it would

not be valid to create an array using a group as a template for the element (since

there is no address associated with a group).

The RO() macro is just shorthand for the access_read_only () function, described

in the Access Control manual page.

When accesses are dumped, the format they are dumped in depends upon the class

of the access. In most cases, the format used is the same as the internal

representation for the data; for example, a FLOATvariable is dumped in C float
format.

When a string is dumped, the length is first written to the file as a long . If the string

is a NULLpointer, -1 is written for the length. Next, the characters of the string—not

including the null terminator—are written. Obviously, there are no characters to

write if the string is a NULL pointer or the empty string.

Bit fields of no more bits than a Byte are dumped as Byte s to conserve space; the

rest are dumped as Words. Note that this optimization does not depend upon the

value of the bit field at any point in time, but rather upon the mask used to define it.

When a group is dumped, it dumps its members.
134 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



If an array element is dumped, it dumps like an ordinary access of that type. When

an entire array is dumped, each element is dumped like an ordinary access of that

type; however, if the array has a flex function associated with it, the number of

elements is dumped as an unsigned before the elements are dumped.

Bugs

When creating an array element template that has members, you must use a macro

that makes the element template available to the user (if you didn’t, you couldn’t

give it members). You can at least hide the element template by using

access_hide () .

The array mechanism does not blend seamlessly with the members mechanism.

Suppose you have created an access bar and given it members a and b. If you create

an array foo using bar as a template, you might think that you could write

expressions like foo(3).a and foo(5).b , but in fact these expressions are not

allowed. Printing foo(3) will indeed print a and b for foo(3) , but you may not

refer to the members directly.

This capability can be simulated, however, by also creating arrays called foo.a and

foo.b , each with an appropriate element. This technique would make possible

expressions like foo.a(3) .

See Also

Access Control

Access Class

Access Misc

Expressions

Message Types
Appendix A Framework Manual Pages 135



Access Control Framework Routines Access Control

Name

access_read_only , access_hide , access_add_member , state_members ,

access_compact_print , access_invalid_print ,

access_address_generator , access_change_func , access_arg ,

access_custom_set , access_custom_print , access_custom_dump ,

access_custom_restore — Change the behavior of accesses

Synopsis
#include "types.h"
#include "expr.h"

ACCESS *access_read_only(ACCESS * access)

ACCESS *access_hide(ACCESS * access)

Bool access_add_member(ACCESS * access, EXPR * member)
void state_members(ACCESS * access, char * member_name, ... NULL)

ACCESS *access_compact_print(ACCESS * access)

void access_invalid_print(ACCESS * access, Bool (* func)())

void access_address_generator(ACCESS * access, char *(* func)())

void access_change_func(ACCESS * access, Bool (* func)())
void access_arg(ACCESS * access, void * arg)

void access_custom_set(    ACCESS * access, Bool (* func)())
void access_custom_print(  ACCESS * access, Bool (* func)())
void access_custom_dump(   ACCESS * access, Bool (* func)())
void access_custom_restore(ACCESS * access, Bool (* func)())

Description

These functions provide fine control over certain aspects of the behavior of accesses.

access_read_only() makes it impossible for the user to change the value of the

variable described by access. That is, the set command gives an error if such an

access is the target of the set.

access_hide() prevents access from showing up in the list command’s list of

variables defined for a module instance. However, it will still show up in list -v
output.
136 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



access_add_member() adds access expression member to the list of members for

access. Member must be the result of the expr_parse() of an expression consisting

of a variable and its parameters. When the user directs the simulator to print access,

its members will be printed instead.

If you are describing module state, if you are sure that the member access exists, and

if no parameters to the member need to be specified, then state_members()
provides a more convenient interface than access_add_member() . For each

member_name provided (a NULL marks the end of the names), an access expression

corresponding to module_instance.access_name.member_name is added to the list of

members for access. It is a fatal error if no such access exists. Note, however, that

macros MEMBER_BITF() and MEMBER_LBITF() provide even more convenient

interfaces for describing bit fields as members of another access.

access_compact_print() causes the print command to show the members of

access all on one line rather than on separate lines. An example of this is

ui1: print cpu1.tbr
tba=0x0 tt=0x0

access_invalid_print() causes the print command to call func when access is

invalid rather than just printing a message saying that the variable is invalid. See the

Access Class manual page for a description of the interfaces to the print function.

access_address_generator() causes func to be called whenever an expression

is evaluated which involves access. The expression evaluator uses the address

returned by func as the base address of the variable; hence, with this feature you can

describe a variable that moves around in memory. The address generator function

should look like this:.

access_change_func() causes func to be called whenever the user tries to set

access. func approves or rejects the set with its return code and may even change the

actual value assigned. The change function should look like this.

char *addr_gen_func(access)
ACCESS *access;

{
...
return current_address_of_datum;

}

Appendix A Framework Manual Pages 137



Note that old and new are of type void* , so you will need to cast them to the

appropriate pointer type before using them.

access_custom_print() , access_custom_set() , access_custom_dump() ,

and access_custom_restore() arrange for func to be called to print, set, dump,

or restore access instead of the routine provided by access’s class. See the Access Class
manual page for a description of the interfaces to these class functions.

access_arg() causes expressions involving access to have arg available in the

ACCESSstructure as access->arg . arg can be anything the module programmer

deems useful to any of the access’s functions written by the module programmer.

See Also

Access Create

Access Class

Access Misc

Expressions

Bool change_func(access, old, new)
ACCESS *access;
void   *old;
void   *new;

{
if new points to a bad value {

print an error message
return FALSE;

}
perhaps change the value pointed to by new
return TRUE;

}

138 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Access Misc Framework Routines Access Misc

Name

access_valid , access_isa , access_class_isa — Miscellaneous access-related

routines

Synopsis
#include "types.h"
#include "expr.h"

Bool access_valid(ACCESS * access)

Bool access_isa(ACCESS * access, ACCESS_CLASS * class)
Bool access_class_isa(ACCESS_CLASS * class1, ACCESS_CLASS * class2)

Description

access_valid() evaluates access and returns true if it is valid. If it is not valid,

access_valid prints an appropriate error message and returns false .

access_isa() returns true if access is of class class or is of any class derived from

class.

access_class_isa() returns true if class1 is the same as class2 or if class1 is

derived from class2.

See Also

Access Create

Access Control

Access Class

Expressions
Appendix A Framework Manual Pages 139



Assembly Framework Routines Assembly

Name

assemble , print_disassembly — Assemble/disassemble instructions

Synopsis
#include “types.h”

Bool (*assemble)( str, addr, instr_p)
char *str;
LWord addr;
Word *instr_p;

Bool (*print_disassembly)( prev, inst, next, addr)
Word prev, inst, next;
LWord addr;

Description

These functions provide support for dealing with instructions as assembly language

rather than machine code. They are actually pointers to functions, because the

framework only provides the interface to this capability (the pointer) and not the

implementation (the function); it is expected that some other layer will set these

pointers to appropriately written routines. In the architectures delivered with

MPSAS, the sparc layer does this. All calls to those routines, however, should be

made through this framework interface.

assemble() sets the Word pointed to by instr_p to the numeric instruction

corresponding to the assembly language instruction in str and returns true . If there

is an error in the assembly language, false is returned. The instruction is assembled

as though it were to end up in simulated memory at address addr. Although addr is

an LWord, only the least significant Word of it is used.

print_disassembly() displays the assembly language equivalent of the numeric

instruction inst and returns true . If the numeric instruction represents a badly

formed instruction, false is returned. If you provide the instructions on either side

of that one in prev and next and the instruction is part of a sethi/add sequence used

to set the 32-bit value of a register, the address shown in the disassembly will be

more accurate. However, the disassembly can be done using 0 for prev and next. addr
is the address at which inst appears; it is needed to properly interpret instructions

containing offsets relative to the program counter. Although addr is an LWord, only

the least significant Word of it is used.
140 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Config Info Framework Routines Config Info

Name

get_config_mod_instance_name , get_num_interfaces ,

get_num_interfaces_by_type , get_module_extra , set_module_extra ,

get_object_ptr , get_object_size — Get and set module, module instance,

interface information, and shared object information during configuration phase

Synopsis
#include "module.h"
#include "interface.h"

char *get_config_mod_instance_name()
int get_num_interfaces()

int get_num_interfaces_by_type( type_name)
char *type_name;

caddr_t get_module_extra()

void *get_object_ptr()
int get_object_size()

void set_module_extra( extra)
caddr_t extra;

Description

These routines return information about instances, interfaces, and shared objects

during the configuration phase. If any of the routines are called outside the

configuration phase, the functions will exit by calling fatal() .

These routines can be called by all the module’s configuration entry points except

the module init entry point. set_module_extra() is an exception and must be

called only from a module init entry point. get_object_ptr() and

get_object_size() should only be called from the lookup shared object entry

point.

During the configuration phase, get_config_mod_instance_name() returns a

string pointer to the module instance name currently being configured. The module

should only read this string; it must not overwrite it.

During the configuration phase, get_num_interfaces() returns the number of

interfaces of the module instance currently being configured during the initialization

phase.
Appendix A Framework Manual Pages 141



During the configuration phase, get_num_interfaces_by_type() returns the

number of interfaces of type type_name for the module instance currently being

initialized.

During the configuration phase, get_module_extra() returns the value of the

extra field of the module currently being initialized.

get_module_extra() can be called from a module’s init entry point to set the

module’s extra field to the opaque value extra.

During the configuration phase, get_object_ptr() gets the pointer to the object

being shared.

During the configuration phase, get_object_size() returns the size of the object

being shared, in bytes.
142 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Convert Framework Routines Convert

Name

dtoa , ctoa , ctoa_hex , atoc — Convert between ASCII and other formats

Synopsis
#include “types.h”

char *dtoa(char * buf, double d)

char *ctoa(char * buf, char c, char quote)

char *ctoa_hex(char * buf, char c)

char *atoc(char * buf, char * cp, char quote)

Description

These functions convert internal data representations to their representation in the C

programming language, and vice versa. They are useful when accepting character or

string input from the user or when displaying characters, strings, or floating-point

values for the user to see.

dtoa() puts into buf the ASCII C source representation of double d. You (as the

programmer) are responsible for making sure that buf is large enough. The number

of mantissa digits shown is specified through the option float_precision ;

because the maximum setting for float_precision is 500, you would need a

buffer of 508 bytes to guarantee that the buffer would not be overrun.

ctoa() puts into buf the ASCII C source representation of char c. No quotes are

placed in buf. This representation is always in one of these forms:

■ c The character itself

■ \c Special notation for certain control characters: \n \t \b \r \f \v

■ \ddd Three octal digits, for example, \001, for other control characters

■ \c Backslash is also used to escape metacharacters: \\ \quote

quote should be either a single quote or a double quote; if c matches quote, it is

preceded by a backslash.

ctoa_hex() is the same as ctoa() except that the \ddd form is replaced with the

value represented as two hexadecimal digits and no quote character is used. The

output from ctoa_hex() is limited to two characters.

atoc() puts at *cp the character corresponding to the ASCII C source representation

of a character in buf and returns the address within buf following the character’s

representation. The following are allowable forms for representing a character.
Appendix A Framework Manual Pages 143



■ c Any character except quote
■ \c Special notation for certain control characters: \n \t \b \r \f \v

■ \ddd One to three octal digits, for example, \001

■ \c Backslash in front of any other character means use it literally

quote should be either a single quote or a double quote; it indicates which of the two

marks the end of the string of character representations. If buf does not start with a

legal representation for a character or if the first character in buf matches quote, NULL
is returned. buf should not contain the opening quote, but should contain the closing

quote; before the closing quote it may contain the representations of any number of

characters.

The following example uses atoc() to convert a string obtained from the user

(including quotes) to its internal representation.

char   user_input[80], *from = user_input+1;
char internal_rep[80], *to   = internal_rep;
gets(user_input);
if (user_input[0] != ’"’)

error("string is missing opening quote");
while (*from != ’"’) {

from = atoc(from, to++, ’"’);
if (!from)

error("bad character representation in string");
}
if (from[1])

error("garbage after closing quote");
*to = ’\0’; /* terminate the internal representation */
144 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Data Types Framework Routines Data Types

Name

data_type_name , data_type_value — Convert between data type name and

value

Synopsis
#include “types.h”

char *data_type_name(type)
DATA_TYPE type;

DATA_TYPE data_type_value(name)
char *name;

Description

These functions convert back and forth between a DATA_TYPEand its name. The

defined data types (symbols defined for enum DATA_TYPE) and their corresponding

names are listed in TABLE A-2.

If a type other than those listed is passed to data_type_name () , it returns the string

"<invalid type!>" .

If a name other than those listed is passed to data_type_value () , it returns 0.

TABLE A-2 Defined Data Types

Enum Symbol Name

UNSIGNED unsigned

SIGNED signed

FLOAT_PT float

STRING string
Appendix A Framework Manual Pages 145



Dump State Framework Routines Dump State

Name

dump_array_ptr , dump_buffer , dump_intf , dump_message , dump_string —

Utilities to help a module dump portions of its state to a file

Synopsis
int dump_array_ptr( stream, array_base, element_size, ptr)
FILE *stream;
char *array_base;
u_int element_size;
char *ptr;

int dump_buffer( stream, buf, size)
FILE *stream;
char *buf;
int size;

int dump_intf( stream, intf)
FILE *stream;
caddr_t intf;

int dump_message( stream, data, type, size, delay)
FILE *stream;
caddr_t data;
caddr_t type;
int size;
int delay;

int dump_str( stream, str)
FILE *stream;
char *str;

Description

These dump state routines work in conjunction with the restore state routines to

provide facilities to dump data to, and restore data from, a stream.

dump_array_ptr() converts the pointer ptr into its equivalent integer index and

then writes it to stream. The array_base parameter points to the base of the array. The

element_size parameter is the size of each array element in bytes. The ptr parameter

may be NULL. The corresponding routine to read this information from a stream is

restore_array_ptr() .
146 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



dump_buffer() writes size bytes from buffer buf into stream. If buf is NULL, size is

ignored. Size must be nonnegative. The corresponding routine to read this buffer

from a stream is restore_buffer() .

dump_intf() dumps interface handle intf to stream. It handles a NULL intf handle.

The corresponding routine to read the interface handle from a stream is

restore_intf() .

dump_message() writes a message to stream. data is a pointer to the message’s data

area, or NULL if there is no data with the message. The type parameter must be a

valid message type, and size is the size of data in bytes (which can be 0). The

corresponding routine to read the message from a stream is restore_message() .

dump_string() writes the null-terminated string str to stream. It handles NULL
string pointers and zero-length strings. The corresponding routine to read the string

from a stream is restore_string() .

Return Values

On success, all dump state routines return 0; on failure, they return 1.

See Also

Restore State
Appendix A Framework Manual Pages 147



Expressions Framework Routines Expressions

Name
expr_parse , expr_set_msg_context , expr_free , expr_boolean ,

expr_access , expr_get_LWord , expr_get_Word , expr_eval_boolean ,

expr_show , expr_show_value , expr_equiv , EXPR_IS_INTEGER,

EXPR_IS_ACCESS, BYTE_VALUE, HWORD_VALUE, WORD_VALUE, LWORD_VALUE,
FLOAT_VALUE, DOUBLE_VALUE, STRING_VALUE, VALUE_HI_WORD— Parse and

handle expressions

Synopsis
#include "types.h"
#include "expr.h"

EXPR *expr_parse(char * str, unsigned options, char * rest_p)

void expr_set_msg_context(struct event_cmd_msg * context)

void expr_free(EXPR * expr)

EXPR *expr_boolean(EXPR * expr)
EXPR *expr_access( EXPR * expr)

Bool expr_get_LWord(char * str, unsigned options, char * rest_p,
lword_p)

Bool expr_get_Word( char * str, unsigned options, char * rest_p,
word_p)

Bool expr_eval_boolean(EXPR * expr)

void expr_show(      EXPR * expr, (* print_p)(), void * arg)
Bool expr_show_value(EXPR * expr, (* print_p)(), void * arg)

void capture_printf(CAPTURE_INFO * capture, printf-style args)
Bool init_capture_info(CAPTURE_INFO * capture)

Bool expr_equiv(EXPR * expr1, EXPR * expr2)

Bool EXPR_IS_INTEGER(EXPR * expr)
Bool EXPR_IS_ACCESS( EXPR * expr)

Byte     BYTE_VALUE(EXPR * expr)
HWord   HWORD_VALUE(EXPR * expr)
Word     WORD_VALUE(EXPR * expr)
LWord   LWORD_VALUE(EXPR * expr)
float   FLOAT_VALUE(EXPR * expr)
double DOUBLE_VALUE(EXPR * expr)
char  *STRING_VALUE(EXPR * expr)

Word  VALUE_HI_WORD(EXPR * expr)
148 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Description

These functions enable you to easily deal with expressions following the syntax

defined in the User Interface chapter of Multiprocessor SPARC Architecture Simulator
(MPSAS) User’s Guide.

expr_parse() parses an expression from the beginning of str and returns the

corresponding expression tree. If there is an error in the expression, an appropriate

message is printed and NULL is returned. options controls the behavior of the parse.

Currently, the only choices for options are 0 and EXPR_OPT_MSG; the latter allows the

use of message types and message fields within the expression (normally an error).

If rest_p is NULL, it is considered an error if the entire string will not parse as a valid

expression. If rest_p is not NULL, *rest_p is set to the address of the first nonwhite

character in str following the largest expression that could be formed (from the start

of str).

Use code like the following to evaluate an expression tree named expr:

if (expr1->eval(expr1)) {

/* use expression’s value */
} else {

/* expression is invalid */

}

That is, the top EXPRstructure in the expression tree contains a pointer to the routine

that should be used to evaluate the expression. If that routine returns true , then the

expression is valid and the value field of the EXPRstructure contains the result. If the

routine returns false , the expression is invalid—that is, it cannot be evaluated at

this time—and the value field is meaningless.

expr_set_msg_context() sets the message context in which expressions will be

evaluated to context. If context is NULL, then all message types and message fields

used in expressions will be invalid. The appropriate message context is passed to

every layer command entry point when invoked by the framework; see Adding a
Layer Command on page 84 for details.

expr_free() frees an expression tree returned by expr_parse() .

expr_boolean( ) checks whether expr is of integer type, so that it could be used as

a Boolean. Similarly, expr_access() checks whether expr represents an access

expression. If the check passes, expr is returned. If the check fails, an appropriate

error message is printed, expr is freed, and NULL is returned.

expr_get_LWord() parses an expression from str as if the call

expr_parse(str, options, rest_p)

had been made, makes sure the expression is of integer type, evaluates the

expression, places the result in *lword_p, frees the expression tree, and returns true .

If the expression is invalid, an appropriate message is displayed and false is
Appendix A Framework Manual Pages 149



returned. expr_get_Word() is similar, except that the result is expected to fit into a

Word (*word_p). If the result is too large (that is, the most significant 32 bits of the

LWord result are not 0 and the most significant 33 bits of the result are not 1), an

appropriate message is displayed and false is returned.

expr_eval_boolean() evaluates expr (which must be of integer type); if the

expression is invalid or its value is 0, expr_eval_boolean() returns false ;

otherwise, it returns true .

expr_show() prints the expression corresponding to expr, with enough parentheses

to make the order of evaluation clear. All printing is done by calling the function

pointed to by print_p with arg as the first argument, followed by printf -style

arguments.

expr_show_value() evaluates expr and prints its value, and then returns true . If

expr is invalid, false is returned instead. As with expr_show() , printing is done

through print_p() . Integers are always shown in hexadecimal; if simulator option

simpleprint is not on, other interpretations can be displayed, depending upon the

value of expr. If the value fits in a Word, decimal is shown and a symbolic

representation will be shown if there is one. If the value is valid ASCII, the character

representation is also shown. Expressions of type FLOAT_PTare shown to the

precision set in simulator option float_precision . Expressions of type STRING
are shown as they would be represented in C, using backslash notation where

appropriate.

Sometimes it is desirable to capture the output that would be generated by

expr_show( ) or expr_show_value() in a string. You can capture that output by

declaring a variable of type CAPTURE_INFO, initializing it with

init_capture_info() ; then, call expr_show() or expr_show_value() with

capture_printf (the address of the capture_printf() routine) as print_p and

the address of the CAPTURE_INFOvariable as arg. When control returns, the

CAPTURE_INFOvariable’s buf member will either be NULL (if no output was

generated) or will point to a buffer containing the output accumulated into a single

string. This buffer is allocated by malloc () and should be freed with free() .

init_capture_info() returns NULL if it is unable to allocate the minimum buffer.

The maximum number of bytes that should be generated by each call to

capture_printf() is 256.

expr_equiv() returns true if expr1 and expr2 represent exactly the same

expression; otherwise, it returns false .

All of the following routines are macros that take an EXPR* argument. However,

they actually cast their argument to type EXPR*, so that they may be used more

readily with ACCESS*arguments and pointers to other types derived from EXPR.

The EXPR_IS_INTEGER() macro returns true if the value of expr is of data type

SIGNEDor UNSIGNED.

EXPR_IS_ACCESS() returns true if expr represents an access.
150 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



BYTE_VALUE() , HWORD_VALUE(), … STRING_VALUE() all return the value of expr.
Use the appropriate one for your interpretation, within the bounds of the data type

of expr (for example, using STRING_VALUE() when expr is an UNSIGNEDwill likely

result in a segmentation violation).

VALUE_HI_WORD()returns the most significant 32 bits of the LWord value of expr.
Appendix A Framework Manual Pages 151



Fatal Framework Routines Fatal

Name

fatal , fatal_sim , fatal_nodump , fatal_push — Exit-handling routines

Synopsis
#include "types.h"

void fatal( format [ ,arg ]...)
char *format;

void fatal_sim( debug, inst_name, format [ ,arg ]...)
int debug;
Char *inst_name
char *format;

void fatal_nodump( format [ ,arg ]...)
char *format;

void fatal_push( func)
void (*func)();

Description

fatal() writes printf -style output to stderr, exits the simulator, and produces a

core dump.

fatal_sim() is similar to fatal() if debug is 0. If it is nonzero, fatal_sim()
only writes printf -style output and then returns. In both cases, the message

displayed is prefixed with the string “inst_name:”.

fatal_nodump() writes printf -style output to stderr and exits the simulator with

an exit value of 1. No core dump is produced.

fatal_push() saves the function pointer func in the framework. func will be called

by fatal() and fatal_nodump() before exiting. fatal_push() can be called as

many times as needed to save function pointers. Functions registered in this way are

called in LIFO order.

See Also

Halt
152 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Fwprint Framework Routines Fwprint

Name

fwprintf , fwprintf_unbuf , fwflush , fwperror , fwputchar , fwputs — Print

utilities

Synopsis
#include "types.h"

void fwprintf( format [ ,arg ]...)
char *format;

void fwprintf_unbuf( format [ ,arg ]...)
char *format;

void fwfflush()

void fwperror( s)
char *s;

void fwputchar( c)
char c;

void fwputs(s)
char *s;

Description

These functions write to stderr and stdout. Modules should not call any of the UNIX

system routines that write to stdout or stderr directly or indirectly; these routines

should be used instead. Any output generated by these print routines is also written

to the log file.

fwprintf() writes buffered printf -style output to stdout.

fwprintf_unbuf() writes unbuffered printf -style output to stderr.

fwfflush() flushes the buffer associated with stdout.

fwperror() writes a short error message to stderr describing the last error

encountered during a call to a system or library function. If s is not NULL and does

not point to an empty string, the error message is shown in the form

s: message

fwputs() writes the null-terminated string pointed to by s, followed by a newline

character, to stdout.

fwputchar() writes a character to stdout.
Appendix A Framework Manual Pages 153



Halt Framework Routines Halt

Name

halt , halt_simulation — Routines to halt the simulation

Synopsis
#include "types.h"

void halt( format [ ,arg ]...)
char *format;

void halt_simulation()

Description

halt() writes printf -style output to stdout, stops the simulation, and sets the

simulation to the halt state (the simulation cannot be restarted).

halt_simulation() stops the simulation and sets the simulation to the halt state.

See Also

Fatal
154 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Interface Config Framework Routines InterfaceConfig

Name

register_dbg_intf_mode , register_dbg_intf_receive ,

register_sim_intf_mode , register_sim_intf_receive ,

register_intf_state — Interface registration routines

Synopsis
#include "interface.h"

void register_dbg_intf_receive( rcv)
void (*rcv)();

void register_sim_intf_receive( rcv)
void (*rcv)();

void register_dbg_intf_mode( mode)
int intf_mode;

void register_sim_intf_mode( mode)
int intf_mode;

void register_intf_state( state)
caddr_t state;

Description

These routines are called by the module during the configuration phase to register

the different attributes of an interface. These routines can only be called from the

module’s configure interface entry point and can only be called once per call to a

module’s configure interface entry point.

register_dbg_intf_receive() and register_sim_intf_receive() register

the receive entry points for the interface being configured for the debug and

simulation channels, respectively. The rcv parameter is the receive entry point for the

interface being configured. A receive entry point needs to be registered only if

messages will be sent or queued to the interface.

If and only if a receive routine was registered for an interface, a mode needs to set

for the interface. register_dbg_intf_mode() and

register_sim_intf_mode() register the mode of the interface being configured

for the debug and simulation channels, respectively. There are two valid interface

modes: queued and immediate. The interface.h file defines two constants,

QUEUED_MODEand IMMEDIATE_MODE, that can be used to specify the two modes.

These routines accept these two defined constants in the mode parameter.
Appendix A Framework Manual Pages 155



Modules have the option of associating state with an interface.

register_intf_state() registers state (specified by the parameter state) to be

associated with the interface being configured. It is not interpreted by the framework

and can be obtained in receive entry points by calling the

get_interface_state() function.

See Also

Interface Info
156 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Interface Connect Framework Routines InterfaceConnect

Name

connect_interfaces — Connect two interfaces routine

Synopsis
#include "interface.h"

void connect_interfaces( intf1, intf2)
caddr_t intf1, intf2;

Description

A module can call the connect_interfaces() routine at any time to connect two

interfaces it owns. If the interfaces are already connected to some other interface,

they are unconnected before being connected together.

The intf1 and intf2 parameters are the handles of the two interfaces to connect

together.

If one of the interfaces is a READ_ONLYinterface and there is at least one interface

connected to it, the connect_interfaces() routine fails.

If one of the interfaces is a read-only interface, the other interface must be a write-

only interface.

An interface can be connected to itself (provided it is a read-write interface).

See Also

Interface Create
Appendix A Framework Manual Pages 157



Interface Create Framework Routines InterfaceCreate

Name

create_unconnected_interface — Interface creation routine

Synopsis
#include "interface.h"

void create_unconnected_interface( name, type, rw_type)
char *name, *type;
int rw_type;

Description

create_unconnected_interface() allows a module to create an interface

independently of the contents of the configuration file. The routine is called by a

module during the configuration phase. It can be called by any configuration phase

entry point that is associated with a module instance except for the configure

interface entry point (for example, verify configuration entry point).

The parameters to the create_unconnected_interface() routine provide

information usually specified by an interface declaration in the configuration file.

The name parameter is a pointer to the string containing the name of the interface to

create. The type parameter is a pointer to the string containing the type of the

interface. The rw_type parameter is one of READ_WRITE, READ_ONLY, or

WRITE_ONLY.

create_unconnected_interface() calls the module’s configure interface entry

point to configure the interface (just as the framework does when it is configuring an

interface specified in the configuration file).

connect_interfaces() connects the newly created interface to another interface.

See Also

Interface Connect
158 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Interface Info Framework Routines Interface Info

Name

get_interface_mod_inst_name , get_interface_name ,

get_interface_type , get_interface_args , is_interface_connected ,

get_interface_sim_mode , get_interface_dbg_mode ,

get_interface_state , set_interface_state — Set and get interface handle

information

Synopsis
#include "interface.h"

char *get_interface_mod_inst_name(caddr_t intf)

char *get_interface_name(caddr_t intf)

char *get_interface_type(caddr_t intf)

char *get_interface_args(caddr_t intf)

u_char is_interface_connected(caddr_t intf)

u_char get_interface_sim_mode(caddr_t intf)

u_char get_interface_dbg_mode(caddr_t intf)

caddr_t get_interface_state(caddr_t intf)

void set_interface_state(caddr_t intf, caddr_t state)

Description

These macros set and get information associated with an interface handle.

get_interface_mod_inst_name() returns a string pointer to the name of the

module instance that owns interface handle intf.

get_interface_name() returns a string pointer to the name of the interface of

interface handle intf.

get_interface_type() returns a string pointer to the interface type of the

interface handle intf.

get_interface_args() returns a pointer to the interface’s argument string for the

interface handle intf. If no interface arguments were specified in the config file, a null

string is returned.

is_interface_connected() returns 1 if the interface handle intf is connected to

another interface and returns 0 if it is not.
Appendix A Framework Manual Pages 159



get_interface_sim_mode() returns the interface mode for the simulation

channel of the interface handle intf. This value can be UNKNOWN_MODE,

IMMEDIATE_MODE, or QUEUED_MODE.

get_interface_dbg_mode() returns the interface mode for the debug channel of

the interface handle intf. This value can be UNKNOWN_MODE, IMMEDIATE_MODE, or

QUEUED_MODE.

get_interface_state() returns an opaque pointer to the interface state of the

interface handle intf.

set_interface_state() sets the state pointer of the interface handle intf to state.
160 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Interface Receive Framework Routines Interface Receive

Name

modify_sim_intf_receive , modify_pos_sim_intf_receive ,

modify_neg_sim_intf_receive , modify_dbg_intf_receive ,

get_sim_intf_receive , get_pos_sim_intf_receive ,

get_neg_sim_intf_receive , get_dbg_intf_receive — Get and set the receive

entry points for an interface

Synopsis
void modify_sim_intf_receive( intf, rcv)
caddr_t intf;
void (*rcv)();

void modify_pos_sim_intf_receive( intf, rcv)
caddr_t intf;
void (*rcv)();

void modify_neg_sim_intf_receive( intf, rcv)
caddr_t intf;
void (*rcv)();

void modify_dbg_intf_receive( intf, rcv)
caddr_t intf;
void (*rcv)();

void (*)() get_sim_intf_receive( intf)
caddr_t intf;

void (*)() get_pos_sim_intf_receive( intf)
caddr_t intf;

void (*)() get_neg_sim_intf_receive( intf)
caddr_t intf;

void (*)() get_dbg_intf_receive( intf)
caddr_t intf;

Description

These macros allow modules to get the current receive entry point and set the

receive entry point for interfaces during the simulation phase.

modify_sim_intf_receive() and modify_pos_sim_intf_receive() change

the receive entry point for the positive-phase simulation channel for an interface

specified by the intf parameter.
Appendix A Framework Manual Pages 161



modify_neg_sim_intf_receive( ) changes the receive entry point for the

negative-phase simulation channel for an interface specified by the intf parameter.

modify_dbg_intf_receive() changes the receive entry point for the debug

channel for an interface specified by the intf parameter.

For the preceding macros, the rcv parameter specifies the new receive entry point.

These macros can only be called if a receive entry point was registered for the

channel during the configuration phase.

To obtain the current receive entry point for an interface, you can use the

get_sim_intf_receive() , get_pos_sim_intf_receive() ,

get_neg_sim_intf_receive( ), and get_dbg_intf_receive() macros. These

macros return the receive entry point for the interface specified by the intf parameter

for the specified channel.

For more information on receive entry points, see Section 4.3, Simulation Entry Points.
162 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Math64 Framework Routines Math64

Name

HI_W, LO_W, UCMP64, SCMP64, EQ64, ucmp_64_64 , scmp_64_64 , USET64, make64,

strto64 , hex64 , hex32 , add_64_64 , add_64_32 , sub_64_64 , sub_64_32 ,

shiftl_64 , shiftr_64 , arith_shiftr_64 , and_64_64 , or_64_64 , xor_64_64 ,

not_64 , neg_64 , umul_32_32 , smul_32_32 — Arithmetic operations for 64-bit

integers

Synopsis
#include “types.h”

Word HI_W(LWord lw)
Word LO_W(LWord lw)

Bool UCMP64(LWord lw1, relation, LWord lw2)
Bool SCMP64(LWord lw1, relation, LWord lw2)
Bool EQ64(LWord lw1, LWord lw2)
int ucmp_64_64(LWord lw1, LWord lw2)
int scmp_64_64(LWord lw1, LWord lw2)

void USET64(LWord lw, Word w)
LWord make64(Word w1, Word w2)
LWord strto64(char * buf, char ** buf_p, int base)

char *hex32(char * buf, Word w)
char *hex64(char * buf, LWord lw)

LWord add_64_64(LWord lw1, LWord lw2)
LWord add_64_32(LWord lw,   Word w)
LWord sub_64_64(LWord lw1, LWord lw2)
LWord sub_64_32(LWord lw,   Word w)

LWord       shiftl_64(LWord lw, int num)
LWord       shiftr_64(LWord lw, int num)
LWord arith_shiftr_64(LWord lw, int num)

LWord and_64_64(LWord lw1, LWord lw2)
LWord  or_64_64(LWord lw1, LWord lw2)
LWord xor_64_64(LWord lw1, LWord lw2)
LWord not_64(LWord lw)

LWord neg_64(LWord lw)

LWord umul_32_32(Word w1, Word w2)
LWord smul_32_32(Word w1, Word w2)
Appendix A Framework Manual Pages 163



Description

These macros and functions provide a fairly complete set of arithmetic capabilities

on 64-bit integers. Two data types correspond to such integers: an LWord is an

unsigned 64-bit integer, and an s_LWord is a two’s-complement signed 64-bit

integer. However, the distinction between an LWord and an s_LWord is usually

unimportant—the programmer is responsible for picking the signed or unsigned

version of an arithmetic operation as appropriate—and this manual page generally

refers to an entity of either type generically as an LWord.

Be careful not to use the normal C operators with LWords (other than assignment,

which is done with the = operator). For efficiency, LWords are actually seen by the

compiler as being of type double . Therefore, if you were to try to add two LWords

together using the + operator, for example, the compiler would not complain; rather,

it would perform a double-precision floating-point add of the two 64-bit integers,

yielding some bizarre result.

HI_W() and LO_W() return the most significant and least significant Words of lw,

respectively.

UCMP64() and SCMP64() allow unsigned and signed comparison lw1 and lw2.

relation is any relational operator, as in

if (UCMP64(lw1, >, lw2))

ucmp_64_64() and scmp_64_64() compare lw1 and lw2 as unsigned or signed

numbers and return

-1 if lw1 < lw2
 0 if lw1 == lw2
 1 if lw1 > lw2

Usually, UCMP64() and SCMP64() are more convenient ways to compare LWords.

EQ64() tests whether lw1 and lw2 are equal. It is more efficient than UCMP64() used

for this purpose.

USET64() sets the upper Word of lw to 0 and sets the lower Word to w.

make64() returns the LWord with lw1 as its most significant Word and lw2 as its

least significant Word.

strto64() is identical to C library function strtol( ) except that it accepts larger

integers and returns an LWord.

hex64() places in buf the hexadecimal representation of lw, including a leading 0x ,

but without leading zeroes. hex32() does the equivalent for a Word.

add_64_64() and sub_64_64() return the LWord sum lw1+lw2 or difference

lw1−lw2.
164 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



add_64_32() and sub_64_32() return the LWord sum lw+w or difference lw−w. w
is always interpreted as an unsigned integer.

shiftl_64() and shiftr_64() return the LWord obtained by shifting lw left or

right by num bits, shifting in zeroes. Only the bottom 6 bits of num are used, and

they are taken to be an unsigned number in the range of 0 to 63.

arith_shiftr_64() is like shiftr_64() except that it copies the sign bit rather

than shifting in zeroes.

and_64_64() , or_64_64() , and xor_64_64() return the bitwise AND, OR, or

XOR of lw1 and lw2.

not_64() returns the one’s-complement (bitwise NOT) of lw.

neg_64() returns the two’s-complement negation of lw (that is, −lw).

umul_32_32() and smul_32_32() return the LWord produced by multiplying lw1
and lw2, interpreted as either unsigned or signed operands.
Appendix A Framework Manual Pages 165



Message Types Framework Routines Message Types

Name

add_msgtype , get_msgtype , get_msgname — Add and access message types

Synopsis
#include "msgtype.h"

caddr_t add_msgtype( name)
char *name;

caddr_t get_msgtype( msgname)
char *msgname;

char *get_msgname( msgtype)
caddr_t msgtype;

Description

The add_msgtype() function creates a new message type with the specified name.

Any errors are fatal. An opaque handle for that message type is returned. By

convention, this handle is saved in a global variable with the same name as the

message type except that msgtype is substituted for pkt , as in

caddr_t gen_bus_msgtype;
...
gen_bus_msgtype = add_msgtype("gen_bus_pkt");

so that it can be conveniently accessed by any module.

After this call, you can describe the fields (if any) of the message by using the

macros described in the Access Create manual page (assuming you have included

msg_access.h ).

Message types are usually defined in the layer initialization entry point of the lowest

layer (the layer closest to the fw (framework) layer) that uses them.

get_msgtype() and get_msgname() allow module code to examine the mapping

of message type to name. Using these functions, module code can obtain one from

the other. get_msgname() returns NULL if there is no message type with the name

specified by the name parameter.
166 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Queue Framework Routines Queue

Name

queue_on_sim_channel , queue_on_pos_sim_channel ,

queue_on_neg_sim_channel , queue_on_dbg_channel —Queue a message on

an interface

Synopsis
void queue_on_sim_channel( state, intf, datap, msgtype, size, delay)
caddr_t state, intf, datap, msgtype;
int size, delay;

void queue_on_pos_sim_channel( state, intf, datap, msgtype, size, delay)
caddr_t state, intf, datap, msgtype;
int size, delay;

void queue_on_neg_sim_channel( state, intf, datap, msgtype, size, delay)
caddr_t state, intf, datap, msgtype;
int size, delay;

void queue_on_dbg_channel( state, intf, datap, msgtype, size)
caddr_t state, intf, datap, msgtype;
int size;

Description

These routines are very much like the send routines (see the Send manual page) with

one major difference—the direction of the message. When you send a message to an

interface, it is delivered to the remote interface of the specified interface. When you

queue a message on an interface, it is delivered to the local interface specified by intf.
The queue operation can be thought of as “send this message to me on this

interface.” The send operation can be thought of as "send this to the remote module

connected to this interface."

The functions queue_on_sim_channel() and queue_on_pos_sim_channel()
perform a queue operation on an interface for the positive-phase simulation channel.

The function queue_on_neg_sim_channel() performs a queue operation on an

interface for the negative-phase simulation channel. The function

queue_on_dbg_channel() performs a queue operation on an interface for the

debug channel.

The state parameter is the state pointer of the calling module. The intf parameter is

the handle of the interface to which to queue the message. The datap parameter is a

pointer to the message, and size is the size of the message being sent. Valid values for
Appendix A Framework Manual Pages 167



size are greater than or equal to zero. If size is 0, then datap can be any value

including NULL. If size is greater than 0, datap must point to dynamically allocated

memory. The msgtype parameter is the type of the message being sent.

For queue_on_sim_channel() , queue_on_pos_sim_channel() , and

queue_on_neg_sim_channel() , the delay parameter specifies to the framework

the number of cycles to delay before delivering the message.The delay value must be

greater than or equal to 0.

See Also

Send
168 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Registration Framework Routines Registration

Name

register_config_interface , register_create_instance ,

register_verify_config , register_cycle , register_pos_cycle ,

register_neg_cycle , register_shared_object_create ,

register_shared_object_lookup , register_dump , register_restore ,

register_load_file , register_module_command — Utilities to register

module entry points with the framework

Synopsis
void register_create_instance(create)
int (*create)();

void register_config_interface(config_intf)
int (*config_intf)();

void register_shared_object_create(shared_obj_create)
int (*shared_obj_create)();

void register_shared_object_lookup(shared_obj_lookup)
int (*shared_obj_lookup)();

void register_verify_config(verify_config)
int (*verify_config)();

void register_cycle(cycle)
int (*cycle)();

void register_pos_cycle(cycle)
int (*cycle)();

void register_neg_cycle(cycle)
int (*cycle)();

void register_dump(dump)
int (*dump)();

void register_restore(restore)
int (*restore)();

void register_load_file(load_file)
int (*load_file)();

void
register_module_command( name, func, short_helpstr, long_helpstr)
char *name;
Appendix A Framework Manual Pages 169



int (*func)();
char *short_helpstr;
char *long_helpstr;

Description

These routines register the address of module entry points with the framework. They

are called during the configuration phase.

register_create_instance() registers the address of a module’s create instance

entry point.

register_config_interface() registers the address of a module’s config intf

entry point.

register_shared_object_create() registers the address of the module’s

shared object create entry point.

register_shared_object_lookup() registers the address of the module’s

shared object lookup entry point.

register_verify_config() registers the address of a module’s verify config

entry point.

register_cycle() and register_pos_cycle() register the address of a

module’s positive-phase cycle entry point. register_neg_cycle() registers the

address of a module’s negative-phase cycle entry point.

register_dump() registers the address of a module’s dump state entry point.

register_restore() registers the address of a module’s state restore entry point.

register_load_file() registers the address of a module’s load file entry point.

register_module_command() is called once for each user interface command that

a module creates. name is the name of the command. func is a pointer to the module

command entry point. short_helpstr is a short description of the syntax of the

command. The long_helpstr string is a complete description of the syntax and

semantics of the command.
170 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Restore State Framework Routines Restore State

Name

restore_array_ptr , restore_buffer , restore_intf , restore_message ,

restore_string — Utilities to help a module restore portions of its state from a

file

Synopsis
int restore_array_ptr( stream, array_base, element_size, ptr)
FILE *stream;
char *array_base;
u_int element_size;
char **ptr;

int restore_buffer( stream, buf, size)
FILE *stream;
char **buf;
int *size;

int restore_intf( stream, intf, inst_name)
FILE *stream;
caddr_t *intf;
char *inst_name;

int restore_message( stream, data, type, size, delay)
FILE *stream;
caddr_t *data;
caddr_t *type;
int *size;
int *delay;

int restore_string( stream, str)
FILE *stream;
char **str;

Description

These restore state routines work in conjunction with the dump state routines to

provide facilities to restore data from a stream. The parameters passed to the state

restore routines generally match those passed to the corresponding state dump

routine, except that the state restore parameters are pointers.

restore_array_ptr() reads the output generated by the dump_array_ptr()
routine from stream and converts it to its equivalent pointer ptr into the array

array_base. The element_size parameter is the size of each array element in bytes.
Appendix A Framework Manual Pages 171



restore_buffer() reads the output generated by the dump_buffer() routine

from stream and returns a pointer to it in buf. Space is allocated for the buffer by

calling malloc() . The size parameter is set to the number of bytes in the buffer.

restore_intf() reads the output generated by the dump_intf() routine from

stream and restores an interface handle. The intf parameter points to the interface

handle to be set, and inst_name is the name of the module instance that owns the

interface handle.

restore_message() reads the output generated by the dump_message() routine

from stream. It sets the data, type, size, and delay parameters. Space is allocated for the

message data by calling malloc() .

restore_string() reads the output generated by the dump_string() routine

from stream and returns it in str. Space is allocated for the string by calling

malloc() .

Return Values

On success, the state restore routines return 0; on failure they return 1.

See Also

Dump State
172 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Send Framework Routines Send

Name

send_sim_channel , send_pos_sim_channel , send_neg_sim_channel ,

send_dbg_channel , send_either_channel , send_pos_either_channel ,

send_neg_either_channel — Send a message on an interface

Synopsis
#include "interface.h"

void send_sim_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;

void send_pos_sim_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;

void send_neg_sim_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;

void send_dbg_channel( intf, datap, size, msgtype)
caddr_t intf, datap;
int size;
caddr_t msgtype;

void send_either_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;

void send_pos_either_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;
Appendix A Framework Manual Pages 173



void send_neg_either_channel( intf, datap, size, msgtype, delay)
caddr_t intf, datap;
int size;
caddr_t msgtype;
int delay;

Description

These macros send messages on an interface.

send_sim_channel() and send_pos_sim_channel() send a message on the

positive-phase simulation channel.

send_neg_sim_channel( ) sends a message on the negative-phase simulation

channel.

send_dbg_channel() sends a message on the debug channel.

send_either_channel() and send_pos_either_channel() send a message

on either the debug or the positive-phase simulation channel (depending on the

delay parameter).

send_neg_either_channel() sends a message on either the debug or the

negative-phase simulation channel (depending on the delay parameter).

The parameters intf, datap, size, and msgtype are common to each of the preceding

macros. The message will be sent to the remote interface connected to the interface

specified by the intf parameter. The datap parameter is a pointer to the message, and

size is the size of the message being sent. Valid values for size are greater than or

equal to 0. If size is 0, datap can be any value including NULL. If size is greater than 0,

datap must point to dynamically allocated memory. The msgtype parameter is the

type of the message being sent.

For simulation channel send macros, the delay parameter specifies to the framework

the number of cycles to delay before delivering the message. The delay value must be

greater than or equal to 0. send_dbg_channel() does not have a delay parameter

because delays are not allowed on the debug channel.

The send either macros can be used to send a message on the debug channel or the

simulation channel. The delay parameter tells the framework which channel to send

the message on. If delay is zero or positive, the message is sent on the simulation

channel with that amount of delay. If the delay parameter is negative, the message is

sent on the debug channel.

The send either macros are useful for receive entry points that receive messages on

both the debug and simulation channels. The delay parameter passed to receive entry

points when delivering a simulation channel message is either zero or a positive

number. When a message is delivered on the debug channel, the receive entry point

is called with a negative value in the delay parameter. Because of this characteristic of

the delay parameter, the send either macros allow the receive entry point to use the
174 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



same code to react to both simulation and debug messages. The receive entry point

can call the appropriate send either macro with the delay passed into the receive

entry point, and the message will be sent on the channel on which the message was

received.

Each of the above macros also has a function with the same name and _func
suffixed that performs the same way as the macro.

See Also

Queue
Appendix A Framework Manual Pages 175



Shared Obj Reg Framework Routines Shared Obj Reg

Name

register_object_ptr , register_object_size — Shared object registration

routines

Synopsis
#include "module.h"

void register_object_ptr( ptr)
void *ptr;

void register_object_size( size)
int size;

Description

These routines are called by the module during the configuration phase to register

the pointer and the size of the object being shared. These routines can only be called

from the module’s create shared object entry point and can only be called once per

call to a module’s create shared object entry point.

The pointer to the object being registered as a shared object is passed to

register_object_ptr() as a parameter. The size in bytes of the object being

shared is passed to register_object_size() as a parameter.

See Also

Config Info
176 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Sigio Framework Routines Sigio

Name

sigio_set_input_mapping , sigio_set_output_mapping — Map a file

descriptor for input or output with an interface

Synopsis
#include "sigio.h"

caddr_t sigio_set_input_mapping( fd, mode, intf)
int fd;
int mode;
caddr_t intf;

caddr_t sigio_set_output_mapping( fd, mode, intf, fd_name)
int fd;
int mode;
caddr_t intf;
char *fd_name;

Description

sigio_set_input_mapping() and sigio_set_output_mapping() are called

by a module’s verify config entry point to ask the sigio facility to perform input

and output, respectively, on file descriptor fd. This file descriptor must have been

opened by the module.

The mode parameter must be SIGIO_RAW_MODEor SIGIO_BLOCK_MODE.

The intf parameter is the interface handle owned by the calling module that will be

used to communicate with the sigio facility.

The fd_name parameter for sigio_set_output_mapping is used for error

messages associated with output sigio performs to fd.

The sigio message type is used to communicate with sigio . The message format

is described in Chapter 7, Asynchronous Input (sigio).

Return Values

Both functions return the handle for the interface previously mapped to fd, or NULL
if none.
Appendix A Framework Manual Pages 177



Simulation Control Framework Routines Simulation Control

Name

stop_simulation , start_simulation , sim_running — Start, stop, and check

the status of the simulation

Synopsis
#include "types.h"

void stop_simulation()

void start_simulation()

Bool sim_running()

Description

stop_simulation() can be used by module code to stop the simulation. The

remainder of the cycle will be simulated before the simulation is stopped. This

allows each module to be at the same point of simulation before everything is

stopped. stop_simulation() is commonly used by a module to stop the

simulation when an error condition is reached.

start_simulation() starts the simulation if the simulation is currently not

running. It has no effect if the simulation is already running.

sim_running() can be used to determine whether the simulation is currently

running.

Return Values

sim_running() returns true if the simulation is currently running; otherwise,

false .
178 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



String Framework Routines String

Name

strmcat , strmcpy , strmdup , strdup_fatal — Concatenate many strings

Synopsis
#include “types.h”

char *strmcat( buf, s1, s2, ..., NULL)
char *buf, *s1, *s2;

char *strmcpy( buf, s1, s2, ..., NULL)
char *buf, *s1, *s2;

char *strmdup( s1, s2, ..., NULL)
char *s1, *s2;

char *strdup_fatal( s)
char *s;

Description

strmcat() , strmcpy() , and strmdup() concatenate an arbitrary number of

strings—s1, s2, …—to make a new string. A NULLargument marks the end of the list

of strings.

strmcat() and strmcpy() create the new string in buf; the caller is responsible for

ensuring that buf is large enough to hold the new string.

strmdup() allocates space for the string from the heap using malloc() ; the caller

is responsible for freeing the space for the string (using free() ) when it is no longer

needed. Both functions return a pointer to the new string.

strdup_fatal() allocates space (using malloc() ) to duplicate the string s. It

copies s into this new buffer and returns a pointer to it. It calls fatal_nodump( ) if

malloc() fails.
Appendix A Framework Manual Pages 179



String Parse Framework Routines String Parse

Name

ui_parsew , ui_parse_delimiter , look_for_keyword , get_argc_argv —

String parsing utilities

Synopsis
#include "types.h"

char *ui_parsew( str, wp)
char *str;
char **wp;

char *ui_parse_delimiter( str, wp, del)
char *str;
char **wp;
char del;

int look_for_keyword( argc, argv, keyword, num_params, errmsg)
int argc;
char **argv;
char *keyword;
int num_params;
char *errmsg;

int get_argc_argv( argvp, args)
char ***argvp;
char *args;

Description

ui_parsew() parses through the string str. It deletes leading white space characters

and writes a null character after the first word (sequence of nonwhite characters) in

the string. The word pointer wp is set to point to this first word. It returns a pointer

to the rest of the line. If the string does not contain any text, wp and the returned

pointer point to the null character.

ui_parse_delimiter() searches through the string str for the delimiter del. It

places a null character after the word to the left of the delimiter. The word pointer

wp is set to point to this word. The string to the right of del will be returned. If no

delimiter is found, wp points to the null character at the end of the string and the

entire string str is returned.

look_for_keyword() scans through the arguments pointed to by argv and looks

for keyword. num_params specifies how many parameters must be after keyword. The

routine verifies that each parameter exists. If keyword has no parameters, num_params
180 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



should be 0. If the caller wants a message to be displayed when an error occurs, it

must set errmsg to the string it wants to display as a prefix to the error message;

otherwise, it sets errmsg to NULL. If keyword is not found, -1 is returned. If the

parameter validation fails, 0 is returned. If everything is successful, the index after

keyword into argv is returned.

get_argc_argv() parses the string pointed to by the parameter args in a way that

simulates argc and argv for main . It considers args to point to a string containing

tokens separated by one or more spaces, newlines, tabs, carriage returns, or

formfeeds. This routines sets the value pointed to by argvp to point to an array of

strings (character pointers). This array has argc + 1 elements, and the last element

is a null character pointer. The number of arguments found is returned. Null

characters will be placed in the string pointed to by the args parameter.

get_argc_arv() allocates an array that is returned in the pointer pointed to by the

parameter argvp, which should be freed by the caller, using free() .
Appendix A Framework Manual Pages 181



Symbols Framework Routines Symbols

Name

toSymbolic , toAddr — Convert between addresses and their symbolic

representations

Synopsis
#include “types.h”
#include “symtabhndlr.h”

char *toSymbolic( addr, buf)
LWord addr;
char *buf;

Bool toAddr( buf, addr_p)
char *buf;
LWord *addr_p;

Description

These functions allow conversion between numeric addresses and symbolic

addresses. All currently loaded symbol tables are searched (starting with the last one

loaded), each for the range of addresses associated with it. Note that addresses are

64-bit LWords.

toSymbolic() puts the symbolic representation—or, if there is none, the

hexadecimal representation— of address addr into character buffer buf. The caller is

responsible for ensuring that buf is large enough. buf is returned. The representation

is always in one of the following forms:

symbol
symbol+0x hex
0x hex

toAddr() puts the numeric address corresponding to the symbolic address in buf
into the LWord pointed to by addr_p, and returns true . If the symbol used cannot be

found in any of the currently loaded symbol tables, however, toAddr() returns

false . Each symbol table is searched first for the symbol as given; if that fails, the

search is performed again for the same symbol with an underscore prepended,

because C compilers generally prepend an underscore to identifier names.
182 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



APPENDIX B

Example Module Listing

Some chapters in this document refer to the example module class for examples.

This appendix contains a complete listing of the example module class. Note that

this example was designed to compile under Sun C; it will not compile under C++.

For an example of a C++ style module class, see the cxx.c and cxx.h files in the

computer layer.

Here is the listing of the example file.

#include "types.h"
#include "module.h"
#include "interface.h"
#include "gen_bus_pkt.h"
#include "gen_int_pkt.h"
#include "expr.h"
#include "state_access.h"

/* Names the config file uses for the interfaces. */
#define SLAVE_INTF_TYPE_NAME    "slave"
#define INTR_INTF_TYPE_NAME     "interrupt"
struct example_psr {
       u_int rsv : 26;
       u_int et  : 1;
       u_int rsv_1 : 5;
};

union u_example_psr {
       struct example_psr s;
       Word w;
};

#define MAX_CORE_SIZE   0x4000
struct example_state {
        char           *inst_name;  /* module instance name */
        caddr_t         intr_intf;  /* interrupt interface handle */
183



        LWord           reg_addr;   /* address of timer register */
        Byte           *core_ptr;   /* pointer into core array */
        union u_example_psr *sh_example_psr;
#define EXAMPLE_DUMP_PT count
        Word            count;      /* timer register */
        Byte            core[MAX_CORE_SIZE]; /* memory array */
};
/*
 * EXTERNALS
 */
extern caddr_t  gen_int_msgtype;

/*
 * FORWARD DECLARATIONS
 */

int             example_module_init();

/* registration routines */
static caddr_t  example_create_instance();
static int      example_config_intf();
static int      example_create_shared_obj();
static int      example_lookup_shared_obj();
static int      example_verify_config();
static Bool     example_dump();
static Bool     example_restore();
static void     example_cycle();
static int      example_core_cmd();

/* interface receive routines */
static void     example_slave_sim_rcv();

/* misc forward declarations */
static void     example_create_accesses();

static char core_shorthelp[] = "core [<index>] - display core memory array";
static char     core_longhelp[] = "core [<index>]\n\

/* This command displays the core memory array. If index is specified, it\n\
* displays the specified element. If index is omitted, it displays the\n\

     * element pointed to by the current core pointer."; */
/*

* This routine is called once for the example module class. It registers the other
 * module class entry points with the framework.
 */
int
example_module_init()
{
        /* Register the module class entry points with the framework. */
        register_create_instance(example_create_instance);
184 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



        register_config_interface(example_config_intf);
        register_shared_object_create(example_create_shared_obj);
        register_shared_object_lookup(example_lookup_shared_obj);
        register_verify_config(example_verify_config);
        register_dump(example_dump);
        register_restore(example_restore);
        register_cycle(example_cycle);

  register_module_command("core", example_core_cmd, core_shorthelp,
            core_longhelp);

        return 0;       /* no errors */
}
/*
 * This routine is called once by the framework for each instance of the
 * example module class defined in the config file.
* This routine parses the config file arguments for this instance declaration,

 * allocates a copy of my state structure, and returns a pointer to it.
 */
static caddr_t
example_create_instance(args)
        char           *args;
{
        struct example_state *msp;
        int             argc;
        char          **argv;
        int             index;

        /* Allocate a chunk of memory big enough for my state. */
        if ((msp = (struct example_state *) calloc(1,
            sizeof(struct example_state))) == NULL) {
                fatal_nodump("Unable to malloc.\n");
        }

        /* Store pointer to instance name in my state. */
        msp->inst_name = get_config_mod_instance_name();

  /* Get framework to convert args to an argc/argv data structure. */
        argc = get_argc_argv(&argv, args);

        /* Get address (64-bit value) of my counter register. */
        if ((index = look_for_keyword(argc, argv, "REG_ADDR", 1,
            msp->inst_name)) <= 0) {

fatal_nodump("%s: error in config file\n", msp->inst_name);
        }

        msp->reg_addr = strto64(argv[index], (char **)NULL, 0);

          /* Create access to allow user to read and write count register. */
        WORD("count", &msp->count);
Appendix B Example Module Listing 185



        /* Return an opaque pointer to my state. */
        return (caddr_t)msp;
}
/*
 * This routine is called by the framework for each interface defined
 * in the config file for each example instance.
 * If it finds a problem it returns non-zero otherwise zero.
 */
static int
example_config_intf(state, intf)
        caddr_t         state;
        caddr_t         intf;
{
        struct example_state *msp = (struct example_state *)state;
        char           *type = get_interface_type(intf);
        int             connected = is_interface_connected(intf);
        int             okay_to_be_unconnected = 0;

static char duplicate_interface_type[] = "example: module instance
\"%s\", interface \"%s\":\n\tOnly one \"%s\" interface type allowed.\n";

static char unknown_interface[] = "example: module instance \"%s\",
interface \"%s\":\n\tUnknown interface type \"%s\".\n";

static char unconnected_interface[] = "example: module instance \"%s\",
interface \"%s\":\n\tInterface type \"%s\" cannot be unconnected.\n";

        if (strcmp(type, SLAVE_INTF_TYPE_NAME) == 0) {
                /*

* Any number of slave interfaces is allowed. Messages arriving
 * on them are all handled by the example_slave_sim_rcv()
 * routine. I never send to the slave interface unless it

                 * sends me a message so it can be unconnected.
                 */
                register_sim_intf_mode(IMMEDIATE_MODE);
                register_sim_intf_receive(example_slave_sim_rcv);
                okay_to_be_unconnected = 1;
        } else if (strcmp(type, INTR_INTF_TYPE_NAME) == 0) {
                /*

 * Only one interrupt interface is allowed. Its interface
 * handle is stored in my state. I never receive from the

* interrupt interface so I don’t register a receive routine
                 * for it.
                 */
                if (msp->intr_intf) {
                        fwprintf(duplicate_interface_type,
                            get_interface_mod_inst_name(intf),
                            get_interface_name(intf), type);
                        return 1;
                }
186 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



                msp->intr_intf = intf;
        } else {
                fwprintf(unknown_interface,
                    get_interface_mod_inst_name(intf),
                    get_interface_name(intf), type);
/*
 * This routine is called after all interfaces have been configured for all
 * modules. It is called for each example instance. If this routine likes the
 * state, it returns 0 otherwise non-zero.
 */
static int
example_verify_config(state)
        caddr_t         state;  /* per instance state pointer */
{
        struct example_state *msp = (struct example_state *)state;
        static char missing_interface[] = "example: module instance
\"%s\":\n\tInterface type \"%s\" not present.\n";

        /*
* Make sure that an interrupt interface handle was stored in my state

         * during the example_config_intf() routine.
         */
        if (msp->intr_intf == NULL) {
                fwprintf(missing_interface, msp->inst_name,
                    INTR_INTF_TYPE_NAME);
                return 1;
        }

        return 0;
}
/*
* This routine is called by the framework when the user requests the state of an

 * instance of the example module class to be dumped to a file.
 */
static Bool
example_dump(state, fp)
        caddr_t         state;
        FILE           *fp;
{
        struct example_state *msp = (struct example_state *) state;
        char           *src = (char *) &msp->EXAMPLE_DUMP_PT;
        int             size;  /* # bytes we dump */

        size = sizeof(struct example_state) - (int) (src - (char *) msp);

        /*
         * Write out portion of my state below the dump point.
         */
        if (fwrite(src, size, 1, fp) != 1) {
Appendix B Example Module Listing 187



fwprintf_unbuf("%s: fwrite failed\n", msp->inst_name);
fwperror("");
return FALSE;

        }

        /*

            * Write out portion of my state above dump point that changes with
         * the simulation.
         */

           if (dump_array_ptr(fp, msp->core, sizeof(Byte), msp->core_ptr)) {
fwprintf_unbuf("%s: dump_array_ptr failed\n",msp->inst_name);
fwperror("");
return FALSE;

        }

        return TRUE;
}
/*
* This routine is called by the framework when the user requests the state of an

 * instance of the example module class to be restored from a file.
 */
static Bool
example_restore(state, fp)
        caddr_t         state;
        FILE           *fp;
{
        struct example_state *msp = (struct example_state *) state;
        char           *src = (char *) &msp->EXAMPLE_DUMP_PT;
        int             size;  /* # bytes we dump */

  size = sizeof(struct example_state) - (int) (src - (char *) msp);

        /*
         * Read in portion of my state below the dump point.
         */
        if (fread(src, size, 1, fp) != 1) {
                  fwprintf_unbuf("%s: fread failed\n", msp->inst_name);
                fwperror("");
                return FALSE;
        }

        /*
            * Read in portion of my state above dump point that changes with
         * the simulation.
         */

if (restore_array_ptr(fp, msp->core, sizeof(Byte), &msp->core_ptr)) {
fwprintf_unbuf("%s: restore_array_ptr failed\n", msp->inst_name);

fwperror("");
return FALSE;

        }
188 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



return 1;
        }

        if (!connected && !okay_to_be_unconnected) {
fwprintf(unconnected_interface,

                    get_interface_mod_inst_name(intf),
                    get_interface_name(intf), type);

return 1;
        }

        return 0;
}

/*
 * This routine is called by the framework for each shared object
 * declaration defined in the config file for each example instance.
 * If it finds a problem it returns non-zero, otherwise zero.
 */

static int
example_create_shared_obj(state, obj_name)
        caddr_t state;
        char *obj_name;
{
        struct example_state *msp = (struct example_state *) state;

        if(!strcmp(obj_name, "count")) {
register_object_ptr(&msp->count);
register_object_size(sizeof(Word));
return 0;

        }
        else {
               fwprintf("%s:example_create_shared_obj: %s Object unknown\n",
                            msp->inst_name, obj_name);
           return 1;
        }
}

/*
 * This routine is called by the framework for each shared object lookup
 * in the config file for each example instance.
 * If it finds a problem it returns non-zero; otherwise, zero.
 */

static int
example_lookup_shared_obj(state, obj_name)
        caddr_t state;
        char *obj_name;
Appendix B Example Module Listing 189



{
        struct example_state *msp = (struct example_state *) state;
        union u_example_psr sh_psr;
        ACCESS*             access;
        void                *ptr = get_object_ptr();
        int                 size = get_object_size();

        if (!strcmp(obj_name, "example_psr")) {
msp->sh_example_psr = (union u_example_psr *) ptr;
msp->sh_example_psr_size = size;
/* Shared PSR */
access = WORD("sh_example_psr", &msp->sh_example_psr->w);
access_compact_print(access);
MEMBER_BITF(access, "et", WORD_MASK(sh_psr, et));
return 0;

        } else {
fwprintf("%s:example_lookup_shared: %s Object unknown\n"

                    msp->inst_name, obj_name);
return 1;

        }
}

/*

 * Slave simulation channel interface receive routine.
* This routine is called for each message received on the slave interface type.

 */

static void
example_slave_sim_rcv(state, intf, data, type, size, delay)

  caddr_t state; / * opaque ptr to this module’s state struct */

        caddr_t         intf;   /* interface message came in on. */
        caddr_t         data;   /* opaque ptr to the data pkt */
        caddr_t         type;   /* type id of the data pkt */
        int             size;   /* sizeof the data packet */
        int             delay;  /* always 0 for queued interfaces */
{
        struct example_state *msp = (struct example_state *) state;
        struct gen_bus_pkt *gbp = (struct gen_bus_pkt *) data;
        Word            tmp;

        /*

* Compare physical address of request with my address and ensure that
         * the size of the request is 4 bytes.
         */

  if (EQ64(gbp->paddr, msp->reg_addr) && gbp->size == sizeof(Word)) {
                /* Examine the packet’s type field. */

switch (gbp->type) {
case GEN_BUS_RD:

 /* Load my register’s contents into the packet. */
 *(Word*)gbp->data = msp->count;
 break;
190 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



case GEN_BUS_WR:
 /* Set my register’s contents from the packet. */

                        msp->count = *(Word*)gbp->data;
                        break;

case GEN_BUS_RW:
                        /*

* Load my register’s contents into the packet and write
* my register’s contents with the packet’s original contents.

                        */
                        tmp = msp->count;
                        msp->count = *(Word*)gbp->data;
                        *(Word*)gbp->data = tmp;
                        break;

default:
 fatal("%s: unknown gen_bus_pkt type of 0x%x.\n",

                            msp->inst_name, gbp->type);
                }

gbp->status = GEN_BUS_OK;
        } else {

gbp->status = GEN_BUS_FAULT;
        }

        send_sim_channel(intf, (caddr_t)gbp, size, type, delay);
}
/*
 * This routine is called once each cycle the simulator executes.
 */
static void
example_cycle(state)
        caddr_t         state;
{
        struct example_state *msp = (struct example_state *) state;
        struct gen_int_pkt *gip;

        /* Decrement counter. If zero, send an interrupt packet. */
        if (--msp->count == 0) {

gip = new_gen_int_pkt();

gip->action = INTERRUPT_SET;

send_sim_channel(msp->intr_intf, (caddr_t)gip, sizeof(*gip),
                    gen_int_msgtype, 0);
        }
}
/*
 * This routine is called each time the user invokes the "core" command.
*/
static int
example_core_cmd(state, cmd, args)
Appendix B Example Module Listing 191



        caddr_t         state;
        char           *cmd;    /* Actual command string */
        char           *args;   /* Any arguments to the command */
{

        struct example_state *msp = (struct example_state *) state;
        char           *rest_of_line;
        char           *index_str;
        Byte           *cptr;
        int             index_num;

        if (*args == ’\0’) {
                /* nothing specified - display the core_ptr entry */

cptr = msp->core_ptr;
if (cptr == NULL) {

fwprintf("%s: core_ptr is NULL\n", msp->inst_name);
                        /* Set cmd_result variable to -1. */
                        cmd_result = make64(-1, -1);
                        return UI_CMD_IS_DONE;
                }

index_num = (msp->core_ptr - &msp->core[0]) / sizeof(Byte);
        } else {

/* Parse core argument. Make sure only one arg on line. */
rest_of_line = ui_parsew(args, &index_str);
if (*rest_of_line != ’\0’) {

                        fwprintf("Usage: core [<index>]\n");
                        return UI_CMD_IS_DONE;

}

/* Get expression parser to evaluate index expression. */
if (expr_get_Word(index_str, EXPR_OPT_MSG,

                    _, &index_num) == FALSE) {
                        return UI_CMD_IS_DONE;

}

if (index_num < 0 || index_num > MAX_CORE_SIZE-1) {
  fwprintf("%s: invalid index specified \"%s\".\n",

                            msp->inst_name, index_str);
                        return UI_CMD_IS_DONE;

}

                cptr = &msp->core[index_num];
        }

         fwprintf("%s: core[%d] =  0x%x\n", msp->inst_name, index_num, *cptr);
        /* Set cmd_result variable to value of the element displayed. */
       SET_CMD_RESULT_AS_WORD(*cptr);

       return UI_CMD_IS_DONE;
}

192 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



/*
* This routine is called when the user asks that a file be loaded into an instance

 * of the example module’s memory.
 */
static Bool
example_load_file(state, fp, addr, size)
        caddr_t         state;
        FILE           *fp;     /* stream to load memory from */
        LWord           addr;   /* address to load memory into */

  int size; /* number of bytes to load into my memory */
{
        struct example_state *msp = (struct example_state *) state;

        /*
         * Check for valid address range.
         * Valid addresses range from 0 to MAX_CORE_SIZE-1
         */
          if (UCMP64(add_64_32(addr, size), >, make64(0, MAX_CORE_SIZE-1))) {

fwprintf("%s: invalid address 0x%x%08x specified.\n",
                    msp->inst_name, HI_W(addr), LO_W(addr));

return FALSE;
        }

        if (fread(&msp->core[LO_W(addr)], size, 1, fp) != 1) {
fwprintf_unbuf("%s: load file failed\n", msp->inst_name);
fwperror("");
return FALSE;

        }

        return TRUE;
}

Appendix B Example Module Listing 193



194 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



APPENDIX C

Services Provided by the Layers

Some of the layers provided with the product provide services of use to module

programmers. This appendix details these services.

C.1 Message Types
The message types mentioned here are all discussed in detail in the chapter on

Message Types in Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide.

This section supplements the User’s Guide by supplying information on routines of

use to the module programmer in dealing with those message types. Since the

structure of each message type is visible to the user through the msg command, the

structure itself is presented in the User’s Guide and is not duplicated here.

C.1.1 computer Layer Message Types

The computer layer defines (and describes using accesses) two message types in its

layer.c file:

■ gen_bus_pkt
■ gen_int_pkt

The message types are available as global caddr_t variables gen_bus_msgtype
and gen_int_msgtype .

gen_bus_pkt Message Type

The new_gen_bus_pk routine returns a new gen_bus_pkt structure allocated with

calloc ; the programmer is responsible for deallocating the packet.
195



#include "types.h"
#include "gen_bus_pkt.h"
struct gen_bus_pkt

*new_gen_bus_pkt( data_size, extra_size, total_size_p)
int data_size, extra_size, *total_size_p;

data_size is the number of bytes of data the packet must hold in its data field.

extra_size is the number of bytes beyond the data field that can be used for storing

data; if extra_size is nonzero, the packet’s extra field is initialized to the size of the

packet not including the extra area at the end. The total size of the packet is returned

at * total_size_p. If memory cannot be allocated for the packet, a fatal error is issued;

otherwise the address of the packet is returned.

The new_gen_bus_pkt_dbg function does the identical thing, except that if the

memory cannot be allocated, a NULL is returned.

char *GEN_BUS_EXTRA(struct gen_bus_pkt *gbp)
is a macro that returns a pointer to the extra area of a gen_bus_pkt structure.

Byte GBP_DATA_BYTE( struct gen_bus_pkt*gbp)
HWord GBP_DATA_HWORD( struct gen_bus_pkt*gbp)
Word GBP_DATA_WORD( struct gen_bus_pkt*gbp)
Word GBP_DATA_2ND_WORD( struct gen_bus_pkt*gbp)
LWord GBP_DATA_LWORD( struct gen_bus_pkt*gbp)
are all macros that return parts of the data field of a gen_bus_pkt . For example,

GBP_DATA_BYTEreturns the first Byte of the data field. The only macro that does

not return the beginning of the data field is GBP_DATA_2ND_WORD, which returns

the least significant Word of the data field taken as an LWord. Use these macros

only when the data field is large enough to actually hold the item the macro will try

to return.

gen_int_pkt Message Type

New_gen_int_pkt allocates a gen_int_pkt with calloc ; you are responsible for

deallocating the packet. If memory for the packet is not available, a fatal error is

issued.

#include "types.h"
#include "gen_int_pkt.h"
struct gen_int_pkt *new_gen_int_pkt()

C.1.2 sparc Layer Message Types

The sparc layer defines (and describes using accesses) three message types in its

layer.c file:
196 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



■ trap_pkt
■ cpu_pkt
■ fpu_pkt

The message types are available as global caddr_t variables trap_msgtype ,

fpu_msgtype , and coproc_msgtype .

C.2 computer Layer Memory Routines
You might want to create a module that simulates some type of memory array. The

computer layer of MPSAS includes a set of routines (called memory routines in this

section) that, if they meet your needs, do most of this work for you. From these

routines, you can easily build a module, as the computer layer does for RAM and

ROM.

You will have to write the module init routine for your module. That module init

routine will probably register some of the memory routines with the framework, to

do such things as create instances of the module or handle requests from the

framework. You can choose to register some of your own routines and some of those

from this package, changing specific aspects of the behavior of the module. The

following files supply this functionality:

■ computer/include/mem.h — Include this to use memory routines

■ computer/mem.c — Source for memory routines

These files might be of interest as examples:

■ computer/ram.c — RAM module; trivial example

■ computer/rom.c — ROM module; sets up to reject writes

The following memory routines are externally available. Each is a module entry

point for some functionality needed by the framework.

■ mem_create_instance — Creates instance entry point

■ mem_config_intf — Config intf entry point

■ mem_dump— Dump instance state entry point

■ mem_restore — Restore instance state entry point

■ mem_load_file — Load file entry point

■ mem_slave_sim_rcv , mem_slave_sim_RO_rcv — Simulation channel receive

entry points

■ mem_slave_dbg_rcv — Debug channel receive entry point

These entry points are used in the ram and rom modules. Refer to the chapter on

modules in Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide for a

description of their behavior.
Appendix C Services Provided by the Layers 197



Here is the ram module:

In this simple case, the module init routine simply registers routines out of the

memory library to do all the work, and everything else is handled by those routines.

Mem_create_instance is a create instance routine. You might want to replace it or

provide a wrapper for it if, for example, your module takes additional module

parameters over those taken by the ram and rom modules: START_ADDRand SIZE .

Mem_config_intf is a config intf routine, so it is called by the framework for each

interface defined in the configuration file for each instance of a memory object. This

routine expects to be called to set up interfaces of type

MEM_SLAVE_INTF_TYPE_NAME(defined in mem.h). A module based on these

routines can be configured to have an arbitrary number of such interfaces, over

which another module could read from and write to the memory. If you want to

have additional interfaces of another type, you will need to replace this routine or

provide a wrapper for it.

/*
 * ram.c -- RAM module for MPSAS.
 */

#include "types.h"
#include "module.h"
#include "mem.h"

/*
 * ram_module_init() is called during initialization because of an entry
 * in the config table. Its job is to tell the framework the details about
 * this module so that instances of it can be created.
 *
 * This module relies on libmem to do all the work.
 */
int
ram_module_init()
{
        register_create_instance(mem_create_instance);
        register_config_interface(mem_config_intf);
        register_dump(mem_dump);
        register_restore(mem_restore);
        register_load_file(mem_load_file);

return 0; /* indicate success */
}

198 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



mem_dumpand mem_restore are dump instance state and restore instance state

entry points. You might need to replace them in order to implement other

functionality for which you extended the module’s state structure beyond the

mem_state structure used by the routines discussed here. The mem_state Structure
on page 200 discusses this matter further.

The config intf routine registers the receive routines for the simulation channel and

the debug channel on the interface. Ordinarily, it registers mem_slave_sim_rcv
and mem_slave_dbg_rcv to be the handlers for messages on the simulation and

debug channels, respectively, but you can override those choices. To do so, your

module init routine should create a mem_funcs structure (defined in mem.h) with

pointers to the appropriate routines, then use the set_module_extra framework

routine to put the address of the mem_funcs structure where the config intf routine

can get it. It should all look something like this:

The rom module uses this mechanism in order to use mem_slave_sim_RO_rcv as

the receive routine rather than mem_slave_sim_rcv . The mem_funcs structure

itself looks like this:

There are default routines for each of these members, and you can specify that you

want the default used simply by setting the corresponding member to 0.

mem_slave_sim_rcv and mem_slave_dbg_rcv handle messages on the

simulation and debug channels, respectively. Another variant of the simulation

channel receive routine, mem_slave_sim_RO_rcv , always returns a status of

GEN_BUS_FAULTon any write (to simulate read-only memory). Note that these

routines can tell when you have put a wrapper around them, and if so they will not
send back the response message, so that the wrapper has control over the response

to the request. That is, these receive routines only send back the response if you did

not override them in the mem_funcs structure.

int
my_mem_module_init()
{

static mem_funcs my_mem_func s = { <names of various routines> };
        set_module_extra(get_config_mod_class(), &my_mem_funcs};
        register_config_interface(mem_config_intf);

other initialization
}

struct mem_funcs {
void (*slave_sim_rcv)(); /* default is mem_slave_sim_rcv */
void (*slave_dbg_rcv)(); /* default is mem_slave_dbg_rcv */

};
Appendix C Services Provided by the Layers 199



C.2.1 The mem_state Structure

The memory routines use a module state structure called mem_state , defined in

mem.h.

If you need to add additional state information in order to implement your memory

module, you can do so by defining a new structure that contains a mem_state as its

first member, followed by whatever additional members you require. You will need

to replace the mem_create_instance routine to allocate this new structure. Also, if

the members you added need to be saved and restored, you will need to replace

mem_dumpand mem_restore .

The inst_name field is the string name of the module instance, used in printing

messages to the user.

Lo_addr and hi_addr are the physical addresses of the first and last bytes of

simulated memory.

The offset field is used when disassembling instructions. The user can set it to any

64-bit value via the offset_for_disassembly variable, and the access class for

the instruction variable uses this when disassembling instructions. The memory

routines themselves really don’t use it.

core is a pointer to an array representing the memory being simulated. The size
field is the size of the array—the number of bytes of memory being simulated.

signif_mask is a value constructed from lo_addr and size , such that given

LWord simulated memory address addr , the expression
LO_W(addr) & signif_mask

yields the index into the core array corresponding to the byte at address addr . That

is, by setting high-order bits to 0, this expression yields a number in the range 0 to

size-1 .

/* State structure for memory. Dump only saves the core array. Note that
 * since this structure is of fixed size, it can easily be extended by a
 * module that requires extra state information. */
struct mem_state {
        char           *inst_name;      /* name of inst that mem is in */
        LWord           lo_addr;        /* lowest address simulated */
        LWord           hi_addr;        /* highest address simulated */
        LWord           offset;         /* offset for disassembly */

Word size; /* # bytes simulated - size of core[] */
Word signif_mask; /* AND mask to get index from address */

        struct mem_funcs funcs;
        unsigned char  *core;           /* the actual ram being simulated */
};
200 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



funcs is a mem_funcs structure, constructed from the programmer’s mem_funcs
structure (if one was supplied), but with all defaults filled in. That is, this structure

will contain valid pointers to simulation and debug channel receive routines.

If you write your own create instance routine, it should initialize all of these

members to appropriate values. One way to ensure that these members are set

appropriately is to start with the code for mem_create_instance in mem.c. A

better way would be to write a wrapper for mem_create_instance , calling it to do

its part of the job and then finishing the job in the wrapper.
Appendix C Services Provided by the Layers 201



202 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



Index
NUMERICS
64-bit integer, 18, 71, 163, 164

A
abort, 70

AC_bit_field, 119

AC_Bool, 119

ac_err_set_type, 110, 126

ac_err_too_big, 110, 126

ac_float_to_double, 117, 126

AC_group, 119

AC_HWord, 119

AC_LWord, 119

ac_sex_Byte, 117, 126

ac_sex_HWord, 117, 126

ac_sex_Word, 117, 126

AC_string, 119

ac_warn_set_extra, 110, 126

AC_Word, 98, 104, 119

access, 19, 23

access class, 19, 23

access classes, deriving, 118

access expressions, 103

access parameters, 100, 103, 119

ACCESS structure, 24, 99, 100, 103

access_add_member, 25, 136

access_address_generator, 25, 113, 136

access_arg, 25, 136

ACCESS_bit_field structure, 119

access_change_func, 25, 110, 136

ACCESS_CLASS structure, 96, 103, 116

access_class_isa, 56, 118, 139

ACCESS_common structure, 98, 119

access_compact_print, 24, 136

access_custom_dump, 25, 136

access_custom_print, 25, 136

access_custom_restore, 25, 136

access_custom_set, 25, 136

access_delete, 116

ACCESS_group structure, 119

access_hide, 25, 136

access_invalid_print, 25, 136

access_isa, 118, 139

access_new, 116, 126

access_new_ck, 98, 121, 126

access_read_only, 136

access_valid, 56, 139

add_64_32, 163

add_64_64, 163

add_field, 121, 126

add_msgtype, 166

add_state, 121, 126

address generator function, 113

and_64_64, 163

arith_shiftr_64, 163

ARRAY, 25, 129

ARRAY_ACCESS, 129

assemble, 72, 140

assembler, 72

asynchronous input, 20, 91

atoc, 73, 143

B
basic computer system, 1
203



BBITF, 25, 119, 129

BBITF_ACCESS, 129

BITF, 25, 119, 129

BITF_ACCESS, 129

BOOL, 119, 129

Bool, 19

BOOL_ACCESS, 129

bus, 26, 27

BYTE, 24, 25, 129

Byte, 18

BYTE_ACCESS, 129

BYTE_VALUE, 56, 148

C
caddr_t, 19

calloc, 28

capture_printf, 56

change routine, 25, 110

CHAR, 25, 129

CHAR_ACCESS, 129

ck_syntax entry point, 103, 104, 106, 117, 118, 119

cleanup entry point, 118

cmd_result, 56, 124

cmd_result_double, 56, 124

config intf entry point, 170

configuration entry point, 7

configuration file, 5, 7, 9

configuration phase, 5, 7, 9, 19, 23, 27, 141

connect_interfaces, 72, 157

constructor, 105

create instance entry point, 34, 170

create shared object entry point, 42

create_unconnected_interface, 72, 158

ctoa, 73, 143

ctoa_hex, 73, 143

cycle, 2, 14, 73, 125

cycle count, 16

cycle entry point, 14, 15, 16, 29, 35, 66, 170

cyclecount, 73, 125

D
data type, 18

DATA_TYPE enum, 100, 145

data_type_name, 145

data_type_value, 145

debug channel, 10, 10, 174

debug channel message queue, 10

decomposing the system, 3

delay, 2, 174

destination interface, 9, 12, 16

destructor entry point, 116

dieing entry point, 67

directory structure, 17

disassemble, 140

disassembler, 72

display messages, 69

DOUBLE, 129

double, 18

DOUBLE_ACCESS, 129

DOUBLE_VALUE, 56, 148

dtoa, 143

dump command, 112

dump core, 70

dump entry point, 48, 112, 119

dump state, 20, 21

dump state entry point, 170

dump_array_ptr, 49, 146

dump_buffer, 49, 146

dump_intf, 49, 146

dump_message, 49, 146

dump_string, 49, 146

E
entry point, 6

EQ64, 163

evaluator function, 102, 107

evaluators, multiple, 103

example module, 22

exit, 70

exit from the simulator, 70

EXPR structure, 99, 99

expr_access, 55, 148

expr_boolean, 55, 148

expr_equiv, 148

expr_eval_boolean, 148

expr_free, 118, 148

expr_get_LWord, 56, 148

expr_get_Word, 56, 148

EXPR_IS_ACCESS, 56, 148

EXPR_IS_INTEGER, 56, 120, 148

expr_parse, 101, 115, 148

expr_set_msg_context, 148
204 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



expr_show, 56, 148

expr_show_value, 56, 148

EXPR_TYPE enum, 100

expression, 19, 97

expression evaluation, 102

expression evaluation performance, 103

expression parsing, 101

external variable, 22

F
fatal, 70, 73, 152

fatal_nodump, 70, 152

fatal_push, 70, 152

fatal_sim, 70, 152

FLOAT, 129

FLOAT_ACCESS, 129

float_precision, 143

FLOAT_VALUE, 56, 148

framework, 5

framework global variables, 73

framework layer, 17

framework message queue, 13

framework routine, 6, 69

fw_terminate_cmd, 56, 124

fwflush, 69, 153

fwperror, 69, 153

fwprintf, 69, 153

fwprintf_unbuf, 69, 153

fwputchar, 69, 153

fwputs, 69, 153

G
gen_int_pkt, 114

get_argc_argv, 35, 180

get_config_mod_instance_name, 35, 141

get_dbg_intf_receive, 161

get_interface_args, 39, 159

get_interface_dbg_mode, 159

get_interface_mod_inst_name, 159

get_interface_name, 159

get_interface_sim_mode, 159

get_interface_state, 27, 64, 159

get_interface_type, 39, 159

get_module_extra, 33, 141

get_msgname, 166

get_msgtype, 166

get_neg_sim_intf_receive, 161

get_num_interfaces, 35, 141

get_num_interfaces_by_type, 35, 141

get_object_ptr, 45, 141

get_object_size, 45, 141

get_pos_sim_intf_receive, 64, 161

get_sim_intf_receive, 64, 161

GROUP, 25, 119, 129

group, 19, 25

GROUP_ACCESS, 129

H
halt, 71, 154

halt_simulation, 71, 154

hex32, 163

hex64, 163

HI_W, 163

HWORD, 25, 129

HWord, 18, 119

HWORD_ACCESS, 129

HWORD_VALUE, 56, 148

I
immediate mode, 12, 12, 13, 15

index expression, 25

init_capture_info, 56

instrcount, 73, 125

instruction-accurate, 2, 13

interface, 9, 10, 11, 26

interface argument, 9

interface handle, 9, 12, 13

interface mode, 12

interface multiplexing, 26

interface state pointer, 27

interface type, 9, 26

inter-module communication, 1

is_interface_connected, 39, 159

L
layer, 17

layer initialization entry point, 118

LBITF, 25, 119, 129
Index 205



LBITF_ACCESS, 129

list command, 25, 136

LO_W, 163

load command, 72

load file entry point, 60, 170

load memory, 20

load_section command, 72

local interface, 9, 13

look_for_keyword, 35, 180

lookup shared object entry point, 44

LWORD, 25, 129

LWord, 18, 119

LWORD_ACCESS, 129

LWORD_ADDR, 25, 129

LWORD_ADDR_ACCESS, 129

LWORD_VALUE, 56, 148

M
make64, 163

makefile, 17

malloc, 28

many-to-one interface, 9

member, 24

MEMBER_BITF, 24, 25, 119, 129

MEMBER_LBITF, 25, 119, 129

memory allocation, 28

message, 10

message delay, 12, 13, 16

message format, 28

message passing, 10

message queue, 10, 12

message type, 11, 17, 26, 166

message-passing facility, 9, 11

modify_dbg_intf_receive, 161

modify_neg_sim_intf_receive, 64, 161

modify_pos_sim_intf_receive, 64, 161

modify_sim_intf_receive, 64, 161

module class, 6, 17, 21

module command, 19

module command entry point, 19, 55

module entry point, 6

module init entry point, 32, 118

module state, 6, 19, 21

module variable, 23

N
neg_64, 163

negative-phase, 14

negative-phase simulation channel, 10

not_64, 163

O
one-to-one interface, 9

opt_simpleprint, 73, 125

or_64_64, 163

P
PARAM_USED, 120, 126

PARAMS_ABOVE, 120, 126

performance, 1, 6, 13, 28, 73

positive- phase simulation channel, 10

positive-phase, 14

print command, 111, 137

print entry point, 111, 119

print_disassembly, 72, 140

progname, 73

promoter functions, 117

promotion, 127

Q
queue, 11

queue a message, 11, 13

queue_on_dbg_channel, 64, 167

queue_on_neg_sim_channel, 64, 167

queue_on_pos_sim_channel, 167

queue_on_sim_channel, 167

queued mode, 12, 13

R
receive a message, 11, 12

receive entry point, 12, 12, 16, 62

recursive message passing, 13

register_config_interface, 169

register_create_instance, 32, 169

register_cycle, 32, 35, 169

register_dbg_intf_mode, 39, 155
206 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999



register_dbg_intf_receive, 39, 155

register_dump, 32, 169

register_intf_state, 27, 40, 155

register_load_file, 169

register_module_command, 169

register_neg_cycle, 32, 35, 169

register_neg_sim_intf_receive, 39

register_object_ptr, 43, 176

register_object_size, 43, 176

register_pos_cycle, 32, 35, 169

register_pos_sim_intf_receive, 39

register_restore, 169

register_shared_object_create, 32, 169

register_shared_object_lookup, 32, 169

register_sim_intf_mode, 39, 155

register_sim_intf_receive, 39, 155

register_verify_config, 169

remote interface, 9

restore entry point, 52, 112, 119

restore state, 20, 21

restore_array_ptr, 53, 171

restore_buffer, 53, 171

restore_intf, 53, 171

restore_message, 53, 171

restore_string, 53, 171

RO, 24

running, 5, 10, 15, 71, 178

S
S_BBITF, 25, 119, 129

S_BBITF_ACCESS, 129

S_BITF, 25, 119, 129

S_BITF_ACCESS, 129

S_BYTE, 25, 129

s_Byte, 18

S_BYTE_ACCESS, 129

S_HWORD, 25, 119, 129

s_HWord, 18

S_HWORD_ACCESS, 129

S_LBITF, 25, 119, 129

S_LBITF_ACCESS, 129

S_LWORD, 25, 119, 129

s_LWord, 18

S_LWORD_ACCESS, 129

S_WORD, 25, 119, 129

s_Word, 18

S_WORD_ACCESS, 129

scmp_64_64, 163

SCMP64, 163

send a message, 11, 12, 13, 167

send_dbg_channel, 173

send_either_channel, 173

send_neg_either_channel, 173

send_neg_sim_channel, 173

send_pos_either_channel, 173

send_pos_sim_channel, 173

send_sim_channel, 173

set command, 136

set entry point, 108, 119

set_base entry point, 114

SET_CMD_RESULT_AS_WORD, 56, 124

set_interface_state, 27, 64, 159

set_module_extra, 33, 141

shiftl_64, 163

shiftr_64, 163

sigio, 20

sigio facility, 91, 177

sigio module, 91, 92

sigio module class, 91

sigio_set_input_mapping, 92, 177

sigio_set_output_mapping, 177

sim_running, 71, 178

simpleprint option, 73

simulation channel, 10, 10, 174

simulation channel message queue, 10, 16

simulation phase, 5

smul_32_32, 163

source interface, 9, 12

stack backtrace, 70

start entry point, 62

start_simulation, 71, 178

state pointer, 21

state restore entry point, 170

state structure, 21, 27

state_members, 25, 136

static variable, 22

stop_simulation, 71, 178

STR, 25, 119, 129

STR_ACCESS, 129

strcat, 73

strcpy, 73

strdup, 73

strdup_fatal, 73, 179

string, 72

STRING_VALUE, 56, 148

strmcat, 73, 179
Index 207



strmcpy, 73, 179

strmdup, 179

strto64, 163

sub_64_32, 163

sub_64_64, 163

symbol table, 72, 182

symtab command, 72

synchronous input, 91

T
time command, 125

timing diagram, 14

toAddr, 182

toSymbolic, 72, 182

trace file, 19

transaction-accurate, 2

U
U_VALUE union, 100

ucmp_64_64, 163

UCMP64, 163

ui_parse_delimiter, 55, 180

ui_parsew, 180

umul_32_32, 163

user interface command, 19

USET64, 163

V
VALUE_HI_WORD, 56, 148

variable, 132

variables, 19

verify config entry point, 46, 92, 170

W
WORD, 24, 25, 129

Word, 18, 119

WORD_ACCESS, 129

WORD_ADDR, 25, 129

WORD_ADDR_ACCESS, 129

WORD_VALUE, 56, 148

X
xor_64_64, 163
208 Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide • July 1999


	Preface
	Overview
	Framework
	Writing a Module
	Module Entry Points
	Miscellaneous Framework Routines
	Product Structure
	Asynchronous Input (sigio)
	Access Classes
	Framework Manual Pages
	Example Module Listing
	Services Provided by the Layers
	Index

