
Palo Alto, CA 94303 USA

650 960-1300

901 San Antonio Road

Sun Microsystems, Inc.

Multiprocessor SPARC™

Architecture Simulator

(MPSAS) User’s Guide

Part Number: 800-6795-03



Please

Recycle

Copyright © 1999 Sun Microsystems, Inc. All rights reserved. The contents of this documentation is subject to the current version of the

Sun Community Source License, microSPARC-II (“the License”). You may not use this documentation except in compliance with the

License. You may obtain a copy of the License by searching for “Sun Community Source License” on the World Wide Web at http://

www.sun.com. See the License for the rights, obligations, and limitations governing use of the contents of this documentation.

Sun Microsystems, Inc. has intellectual property rights relating to the technology embodied in this documentation. In particular, and

without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, all Sun-based trademarks and logos, Solaris, Java and all Java-based trademarks and logos are

trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. microSPARC is a trademark or

registered trademark of SPARC International, Inc. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY

INVALID.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS

OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)

AND /OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.



Contents

Preface xv

1. Overview 1

1.1 Modular Structure 2

1.2 Communications 3

1.2.1 Messages 3

1.2.2 Interfaces 4

2. Tutorial 5

2.1 The Start 5

2.2 A More Sophisticated Session 9

3. User Interface 15

3.1 Universally Available Commands 16

3.2 Module Commands 19

3.2.1 cpu  Commands 20

3.2.2 fcpu  Commands 21

3.2.3 fpu  Commands 21

3.2.4 sun4c and sun4e mmu Commands 21

3.2.5 cmu Commands 21
Contents iii



3.3 Processing of Command Lines 22

3.3.1 History Mechanism 23

3.3.2 Quick Substitution 24

3.4 Expressions 25

3.4.1 Data Types 25

3.4.2 Constants 25

3.4.3 Operators 26

3.4.4 Variables 28

3.4.5 Message Information 30

3.4.6 Invalid Expressions 30

4. Sample Architectures 31

4.1 simple  Architecture 31

4.2 sun4c Architecture 33

4.3 sun4e Architecture 35

4.4 mbus Architecture 38

5. Configuration File 41

5.1 Overview 41

5.2 Language 42

5.2.1 Syntax 43

5.2.2 Semantics 44

5.3 Preprocessing 45

6. Message Types 47

6.1 coproc_pkt  and fpu_pkt 47

6.2 gen_bus_pkt 49

6.3 gen_int_pkt 51

6.4 no_data 51

6.5 sigio 52
iv Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



6.6 string 52

6.7 trap_pkt 52

7. Modules 55

7.1 cmu: Cypress 604/605 Cache and MMU Module 55

7.1.1 Simulated Behavior 56

7.1.2 Variables 56

7.1.3 Commands 57

7.1.4 Configuration 58

7.1.5 Interfaces 58

7.2 cpu : SPARC Processor Module 62

7.2.1 Simulated Behavior 62

7.2.2 Variables 63

7.2.3 Commands 65

7.2.4 Configuration 69

7.2.5 Interfaces 71

7.2.6 Source Files 73

7.3 fcpu : Fast SPARC Processor Module 74

7.3.1 Simulated Behavior 74

7.3.2 Variables 75

7.3.3 Commands 79

7.3.4 Configuration 81

7.3.5 Interfaces 84

7.3.6 Source Files 86

7.4 fpu : SPARC Floating-Point Unit Module 87

7.4.1 Simulated Behavior 87

7.4.2 Variables 87

7.4.3 Commands 88

7.4.4 Configuration 89
Contents v



7.4.5 Interfaces 89

7.4.6 Source Files 90

7.5 gintr : sun4m Interrupt Controller Module 90

7.5.1 Simulated Behavior 90

7.5.2 Variables 91

7.5.3 Configuration 91

7.5.4 Interfaces 92

7.5.5 Source Files 93

7.6 gtimer : sun4m Timer Module 94

7.6.1 Simulated Behavior 94

7.6.2 Variables 94

7.6.3 Configuration 95

7.6.4 Interfaces 96

7.6.5 Source Files 97

7.7 intr : Interrupt Controller Module 97

7.7.1 Simulated Behavior 97

7.7.2 Variables 98

7.7.3 Configuration 98

7.7.4 Interfaces 99

7.7.5 Source Files 100

7.8 mbus: Mbus Module 100

7.8.1 Simulated Behavior 101

7.8.2 Variables 101

7.8.3 Configuration 102

7.8.4 Interfaces 104

7.8.5 Source Files 110

7.9 mmu: sun4c/sun4e MMU Module 110

7.9.1 Simulated Behavior 111

7.9.2 Variables 111

7.9.3 Commands 111
vi Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.9.4 Configuration 112

7.9.5 Interfaces 112

7.9.6 Source Files 114

7.10 msi : Mbus to SBus Module 115

7.10.1 Variables 115

7.10.2 Commands 116

7.10.3 Configuration 117

7.10.4 Interfaces 117

7.10.5 Source Files 118

7.11 ram  and rom : Memory Modules 118

7.11.1 Simulated Behavior 118

7.11.2 Variables 119

7.11.3 Load Command 121

7.11.4 Configuration 121

7.11.5 Interfaces 122

7.11.6 Source Files 123

7.12 s4vme: sun4e SBus to VME Bus Controller Module 123

7.12.1 Simulated Behavior 123

7.12.2 Variables 124

7.12.3 Configuration 124

7.12.4 Interfaces 124

7.12.5 Source Files 126

7.13 sbus : SBus Module 126

7.13.1 Simulated Behavior 126

7.13.2 Variables 127

7.13.3 Configuration 128

7.13.4 Interfaces 129

7.13.5 Source Files 132
Contents vii



7.14 serial : Dual Serial Port Module 132

7.14.1 Simulated Behavior 132

7.14.2 Variables 134

7.14.3 Configuration 134

7.14.4 Interfaces 135

7.14.5 Source Files 136

7.15 sigio : Simulator Input and Output Module 136

7.15.1 Configuration 137

7.15.2 Interfaces 137

7.15.3 Source Files 137

7.16 simdisk : Simulated Disk Module 137

7.16.1 Simulated Behavior 138

7.16.2 Registers 138

7.16.3 Variables 140

7.16.4 Configuration 140

7.16.5 Interfaces 141

7.16.6 Source Files 142

7.17 socket : Message to UNIX Socket Module 143

7.17.1 Simulated Behavior 143

7.17.2 Configuration 143

7.17.3 Interfaces 144

7.17.4 Source Files 145

7.18 sys4c  and sys4e : sun4c and sun4e System Modules 145

7.18.1 Simulated Behavior 145

7.18.2 Variables 146

7.18.3 Configuration 147

7.18.4 Interfaces 148

7.18.5 Source Files 152
viii Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.19 timer : Simple Timer Module 152

7.19.1 Simulated Behavior 152

7.19.2 Variables 153

7.19.3 Configuration 153

7.19.4 Interfaces 154

7.19.5 Source Files 155

7.20 trap : External Trap Module 155

7.20.1 Simulated Behavior 155

7.20.2 Configuration 159

7.20.3 Interfaces 159

7.20.4 Source Files 161

7.21 ui : User Interface Module 161

7.21.1 Variables 161

7.21.2 Commands 162

7.21.3 Configuration 162

7.21.4 Interfaces 162

7.21.5 Source Files 163

7.22 vmebus : Primitive VMEbus Module 164

7.22.1 Configuration 164

7.22.2 Interfaces 165

7.22.3 Source Files 166

8. Trace Tools 167

8.1 make_ss_trace 167

8.2 ss_trace_cmds 168

A. Error Messages 169

A.1 Configuration File Processing 169

A.2 Expression Handling 171

A.3 Miscellaneous 172
Contents ix



B. Command Manual Pages 173

C. The stand  Directory 227

C.1 Overview 227

C.2 SPARC Support 229

C.3 Utility Routines 229

C.4 Example Programs 230

Index 243
x Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Figures

FIGURE 1-1 Interface Connections 4

FIGURE 4-1 simple  System 32

FIGURE 4-2 sun4c System 33

FIGURE 4-3 sun4e System 36

FIGURE 4-4 Mbus Dual Processor (DP) System 39
Figures xi



xii Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Tables

TABLE 3-1 history  Event Specifiers 23

TABLE 3-2 history  Argument Operators 24

TABLE 3-3 Expression Operators 26

TABLE 4-1 simple  System Memory Map 32

TABLE 4-2 sun4c System Memory Map (Type 1 Device Space) 34

TABLE 4-3 sun4c System Memory Map (Type 0 Device Space) 34

TABLE 4-4 sun4c System Memory Map (System Space) 35

TABLE 4-5 sun4e System Memory Map (Type 1 Device Space) 37

TABLE 4-6 sun4e System Memory Map (Type 0 Device Space) 37

TABLE 4-7 sun4e System Memory Map (System Space) 37

TABLE 4-8 Mbus SP and DP System Memory Map 40

TABLE 5-1 Conventions for the Syntax of the Configuration File 43

TABLE 6-1 type  Field Values for coproc_pkt  and fpu_pkt 48

TABLE 6-2 type  Field Values for gen_bus_pkt 50

TABLE 6-3 status  Field Values for gen_bus_pkt 50

TABLE 7-1 Default asi  Values 68

TABLE 7-2 Default Memory Variable asi  Values 75

TABLE 7-3 Defined Mbus Transaction Types 105

TABLE 7-4 Corresponding Mbus and Gen_bus_pkt Types 106
Tables xiii



TABLE 7-5 Mbus Slave Access Status Codes 107

TABLE 7-6 Mbus Type Assignment for Simple Masters 107

TABLE 7-7 gen_bus_pkt  Status Assignment for Simple Slaves 109

TABLE 7-8 MMU Page Types 114

TABLE 7-9 serial  Registers 132

TABLE 7-10 simdisk  Registers 138

TABLE 7-11 Mapping of vme_intr  Interrupt Levels to CPU Interrupt Levels 1 151

TABLE 7-12 External Traps 155
xiv Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Preface

This book, Multiprocessor SPARC™ Architecture Simulator (MPSAS) User’s Guide, is

one of a four-manual documentation set for the microSPARC-II™ technology. The

other three manuals are:

■ Multiprocessor SPARC Architecture Simulator (MPSAS) Programmer’s Guide, which

explains the facilities for creating or modifying MPSAS modules or otherwise

extending MPSAS

■ microSPARC-IIep Validation Catalog, which describes a suite of validation tests for

the microSPARC-IIep technology

■ microSPARC-IIep Megacell Reference, which explains how to build

microSPARC-IIep megacells

Organization of This Book

This book is intended for programmers who develop and debug programs to be run

on hardware that is simulated by MPSAS. It contains the following chapters and

appendixes:

Chapter 1, Overview, introduces MPSAS and a number of concepts used in the rest of

the manual.

Chapter 2, Tutorial, contains examples on how to use MPSAS to accomplish common

simulation tasks.

Chapter 3, User Interface, discusses the MPSAS user interface, details the command-

line interface, and briefly describes each command.

Chapter 4, Sample Architectures, describes the sample architectures provided with

MPSAS and lists the modules, features, and configurations.
xv



Chapter 5, Configuration File, tells how to configure MPSAS and includes the syntax

and semantics of MPSAS configuration files.

Chapter 6, Message Types, describes the messages the modules use to communicate

with each other.

Chapter 7, Modules, describes the purpose and behavior of the MPSAS modules, how

to control them through the user interface and configuration file, how the modules

interface with each other, and which source files implement them.

Chapter 8, Trace Tools, discusses a support program for MPSAS that helps process

trace output that the simulator produces.

Appendix A, Error Messages, lists common error messages and suggests ways to

troubleshoot errors.

Appendix B, Command Manual Pages, describes MPSAS user-interface commands in

detail.

Appendix C, The stand Directory, describes tools that are provided with MPSAS for

programming on bare SPARC hardware, which is the environment simulated by

MPSAS.

At the end of the book is an index.

Prerequisite Knowledge

It is assumed that you are familiar with programming in the C language in the

UNIX® environment and that you have a basic familiarity with computer

architecture, in particular the SPARC architecture. For further information, see the

list of documents in the following section.

Related Books and References

The following documents contain material that further explains or clarifies

information presented in this guide.

The SPARC Architecture Manual/Version 8 by David Weaver, Prentice Hall; ISBN:

0138250014
xvi Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice

Hall; ISBN: 0131103628

Typographic Conventions

TABLE P-1 describes the typographic conventions used in this book.

Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals by using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

TABLE P-1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, instructions,

files, and directories; on-screen computer

output; email addresses; URLs

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with on-screen

computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, section titles in cross-

references, new words or terms, or

emphasized words

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

<> A bit number or colon-separated range of

bit numbers within a field; bit 0 is the least

significant bit.

WB_VECTOR<15:0>
Preface xvii



Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .

Disclaimer

The information in this manual is subject to change and will be revised from time to

time. For up-to-date information, contact your Sun representative.
xviii Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 1

Overview

The MPSAS behavioral simulator is a software tool with which you can model

computer systems based on the SPARC technology at the instruction or transaction

level. The system being simulated is independent of the computer on which the

simulation is running. When run on a SPARCstation™ machine, MPSAS typically

simulates thousands of SPARC instructions per second.

The goal of instruction-level simulation is to model the programmer’s view of a

computer system. This process entails simulations of the execution of processor

instructions, system and device registers, interrupts, and the memory hierarchy. The

structure of the simulator need not directly correspond to the structure of the

hardware.

The goals of transaction-level simulation are to model the major components of the

computer system hardware (for example, each ASIC and bus), model the

transactions between those components, and support the programmer’s view.

Transaction-level models are more difficult to develop and run more slowly than

instruction-level models, but they model the computer hardware more accurately.

The sample architectures supplied with MPSAS are modeled at the instruction level.

The simulator aids the following activities:

■ Porting machine-dependent code, for example, UNIX kernel, boot PROM, and

diagnostics. The target computer system hardware need not be available before

code testing starts. Also, the simulator provides a software environment that is

more easily controlled and observed than that of real hardware.

■ Estimating performance. Accurate instruction counts of a benchmark program can

be obtained with an instruction-level simulation. Accurate cycle counts require a

timing-accurate, transaction-level simulation.

■ Verifying the correctness of a design, for example, testing a cache coherence

protocol.
1



■ Verifying the correctness of a lower-level simulation, for example, gate-level. The

lower-level simulation and MPSAS simulation of the same computer system are

run simultaneously with the same test program, and their results are compared

periodically.

■ Exploring design trade-offs by simulating the different configurations of interest.

The MPSAS user interface supports a set of commands that control and observe the

simulation. A batch facility is provided to combine commands in a text file. Online

help is available for the commands.

1.1 Modular Structure
To build a system, a hardware design engineer selects instances of integrated circuits

from a catalog and connects their pins via printed circuit board traces. Similarly, a

user of MPSAS selects instances of module classes compiled into the simulator

executable and connects their interfaces together. All of this information about

instances of module classes and interface connections is located in a configuration

file.

A module class is the code that simulates some hardware. An MPSAS module class

may represent part of an integrated circuit or several boards full of integrated

circuits. Instances of a module class are called module instances. This manual uses

the term module by itself in many cases, where the distinction between class and

instance is either unimportant or obvious.

Modules are written as necessary to simulate a computer system. For simplicity,

several sample modules are available with MPSAS, including a SPARC integer unit

(IU), a SPARC floating-point unit (FPU), memory management units (MMUs),

memory, I/O devices, and assorted buses. You can use the sample modules along

with custom modules in a simulation.

The configuration file is an ASCII text file. You can simulate different systems from

the same set of modules by invoking the same simulator executable with different

configuration files. For example, you can include a cache module in, or exclude it

from, a simulation by using different configuration files.

In addition to the code for the various module classes, a simulator executable

contains code that sets up the module classes and their instances, calls each module

instance every cycle to do its next increment of work, handles communications

between module instances, and provides an interface by which you can control and

observe the simulated system. This software is collectively called “the framework.”

A cycle is the notion of simulation time used in MPSAS. Its closest hardware analogy

is the system clock.
2 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



An architecture is a simulator executable combined with one or more configuration

files and any files that are required by the modules in the configuration files. Each

configuration file specifies a system that uses module classes included in an

architecture. MPSAS provides four sample architectures:

■ sun4c – SPARCstation 1

■ sun4e – SPARCengine™ 1

■ mbus – a generic multiprocessor Mbus machine

■ simple – a “bare bones” machine (CPU, FPU, RAM, and serial ports)

The files for each architecture are located in a directory with the same name as the

architecture.

1.2 Communications
Communications are effected as follows.

1.2.1 Messages

Module instances communicate by sending messages to each other. For example, a

module that simulates a processor can send a message to a module that simulates a

memory device to fetch an instruction.

Message passing takes place over a channel, which is a mechanism provided by the

framework to transport messages. There are two types of channels: simulation and

debug. The simulation channel is only active when the simulation is running (the

simulator cycles are being incremented). It is used by module instances to transfer

information, such as a memory request, that is required by the simulation. The

debug channel is always active and is used by module instances to support user

interface commands.

Messages can contain data. No message size or content restrictions are enforced by

the framework. However, there is a set of message formats that most modules use.

Each message has an associated type (a 32-bit value). The type implies the message

protocol (format of message data and its use) and is used as an aid in the debugging

modules and to multiplex multiple protocols on a connection.

Associated with each message is an optional cycle delay, which allows a module

instance to send a message to another instance such that it is not received

immediately but, rather, is delayed by a specified number of cycles.
Chapter 1 Overview 3



1.2.2 Interfaces

Interfaces provide module instances with access to the simulation and debug

channels. An interface is similar in concept to a group of pins on an integrated

circuit. Interfaces are visible to you in the configuration file and in some user-

interface commands.

Each interface belongs to a module instance. For two module instances to

communicate, their interfaces must be connected together. FIGURE 1-1 shows two

module instances, each with an interface (the circles) that are connected together.

The line between the interfaces represents the simulation and debug channels.

Module instance A owns interface α; module instance B owns interface β.

FIGURE 1-1 Interface Connections

When module instance A sends a message to its α interface, it is received by module

instance B on its β interface.

Each interface has an associated name and type (for example, bus of type slave).

Each module supports a fixed number of interface types. A module instance can

have multiple interfaces of the same type; the name uniquely identifies each

interface. Modules can enforce restrictions on the number of interfaces of each type.

α βInstance A Instance B
4 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 2

Tutorial

This chapter shows MPSAS being used to run a simple tutorial program, which is

included with the product.

The tutorial introduces a number of different commands along with some other

features of the user interface. (Chapter 3, User Interface, details the command syntax.)

It uses the version of MPSAS and support files of the simple architecture.

Chapter 4, Sample Architectures, describes the system simulated by the simple
architecture. For the purpose of this tutorial, you need know only that the simulated

system contains a SPARC processor module, called cpu1 , a memory module called

ram1 , and user interface-related modules.

In this tutorial, an overview tells you how to use MPSAS. The directions explain

what you will accomplish without specifying the exact commands to type. Following

those directions is a screen image that shows the commands and the responses from

the simulator.

In this tutorial, you execute the simulator twice; the two sections, The Start on page

5 and A More Sophisticated Session on page 9, correspond to those two executions of

the simulator.

2.1 The Start
In this section, you learn how to start the simulator, load and run a simple program,

and examine and change the contents of memory. You should have a shell running,

and your current directory should be the one in which MPSAS was installed on your

machine. To begin, change directory to the one that contains the simple architecture

(type cd sparctools/MPSAS/simple ) and then type mpsas to execute the

simulator.
5



At this point, the last few lines on the screen should look something like the

following. (The characters in boldface are your input; the rest of the example is

simulator output.)

MPSAS takes a few seconds to initialize, displaying the messages shown above as it

does so. The first line identifies the architecture and the release number of the

simulator. The second and third lines show that the simulator is preprocessing and

reading configuration information from file config_file in the current directory.

The simulator then builds the system, as described in the configuration file. The two

lines that begin with serial1: (yours may differ slightly from those shown here)

are the result of the initialization of module instance serial1 , which you do not use

in this tutorial.

The ui1: prompt is from the user interface module, which is waiting for you to type

a command and press Return. This prompt indicates that the simulator is currently

focused on module instance ui1 . When the user interface requires a module instance

name, you can omit it if it is the currently focused module instance.

Now load the program named tutorial , located in the stand directory, as shown

in the following screen image. First, type help to display the usage of the load
command and then use the load command to load the tutorial program from the

MPSAS stand directory into address 0 of module instance ram1 . The simulator also

loads the program’s symbol table.

hostname% cd sparctools/MPSAS/simple
hostname% mpsas
Simple architecture - Mpsas Release 1.1
Preprocessing configuration file "config_file".
Parsing configuration file "config_file".
Creating C module classes.
Creating module instances and interfaces.
Performing interface configurations.
Performing interface configuration verifications.
serial1: Serial Port A is /dev/ttyp9
serial1: Serial Port B is /dev/ttypa
Negative phase is inactive.

ui1:
6 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



MPSAS simulates a bare machine, with no operating system, monitor, or other code

besides that which you load into it. Therefore, the tutorial program, like any

program that you run on MPSAS, contains its own trap tables and processor

initialization code.

You will be executing a number of commands that are specific to the SPARC

processor module, so tell the simulator to focus on cpu1 . Notice that the prompt

changes to show the new focus. To ensure that the program is loaded properly, use

the read command to display five words of memory, starting at address 0, as

instructions. You should see the beginning of the trap table.

Use the sh command to invoke a shell with a command to show the source code for

the tutorial program, tutorial.c , in the stand directory. The source code for

the trap table, trap handlers, and other support code is also in that directory; in this

tutorial, however, you do not work with the support code. The tutorial program

computes a function of the number in global variable num, leaving the result in

global variable result . Write a number into num, run the program until it stops,

and then read result . The support code stops the simulation when the program

finishes by issuing a special SPARC trap instruction, which is understood by the

simulator to be a request to stop the simulation.

 ui1:  help load
d <load address> <instance> <file> [<symtable start> [<symtable end>]]

    This command loads data into a module instance. It is used to
    initialize modules that contain memory (e.g., RAM, ROM, etc.).
    It reads data from SPARC a.out and ELF files and loads it into a
    module instance at the specified load address. The load address is
    interpreted by ....

ui1:  load 0 ram1 ../stand/tutorial

ui1:

ui1: focus cpu1

cpu1: read inst 0 5
_trap_table:              :   ba        _start
_trap_table+0x4:          :   mov       %psr, %l0
_trap_table+0x8:          :   nop
_trap_table+0xc:          :   nop
_trap_table+0x10:         :   mov       0x1, %l3

cpu1:
Chapter 2 Tutorial 7



The line of output beginning with trap1: is the indicator that this special trap

instruction was executed by the program, stopping the simulation.

The four dots to the right of the hex value of &result , returned by the read
command, are an ASCII display of the four characters that make up that word.

Because all four characters are unprintable, they print as periods.

cpu1: sh more ../stand/tutorial.c
/*
 * tutorial.c -- A tiny program used in the tutorial.
 * You set num to something, run the program, and result contains the answer.
 */

unsigned num;           /* you set this before you start */
unsigned result;        /* the answer will be here */

/*
 * fact(u) returns the factorial of u.
 */
unsigned
fact(u)
        unsigned u;
{
        unsigned factorial = 1;
        while (u)
                factorial *= u--;
        return factorial;
}

/*
 * main() just computes some useless number using fact().
 */
int
main()
{
        result  =  fact(num+1) - fact(num);
}

cpu1: write word &num 3

cpu1: run
trap1: cpu connected to me stopped the simulation.

cpu1: read word &result 1
_result            0x00000012 ....

cpu1:
8 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Type list to show what variables are defined by the currently focused module

instance, in this case, cpu1 . An entry suffixed with an asterisk contains members

(variables within the variable), which you see when you print the entry. Try printing

some variables by using the print command, like the SPARC processor module’s

pc and psr . Finally, type quit to exit from the simulator and return to the shell

prompt.

2.2 A More Sophisticated Session
Now run the same program again, but with a few more commands and features this

time.

To restart a simulation, exit the simulator and restart it. While it may work in some

cases to simply reset the SPARC processor’s pc and npc variables, these steps are

sometimes problematic because the simulator does not reset all the module

cpu1: list
cpu1 Variables:
annul        annulled_count            bytes        cc           chars
doubles      exec* executed_count            ext_trap_pending
external_count floats       fp           fpu_ea       g0
g1           g2 g3           g4           g5           g6
g7           hwords i0           i1           i2           i3
i4           i5 i6           i7           instructions intr_count
irl          l0 l1           l2           l3           l4
l5           l6 l7           latest_instr latest_instr_addr
latest_mem_addr latest_mem_addr_valid     latest_mem_data
latest_mem_data_size latest_trap_instr         latest_trap_num
latest_trap_pc lwords       master_rcv_routine        npc
nwins        o0 o1           o2           o3           o4
o5           o6 o7           pc           prefetch
prefetch_instr prefetch_instr_pc         prefetch_valid
psr*         sanitycheck sp           stop_on_reset             tbr*
trap_count   watchexec watchexternal             watchintr    watchtrap
wim          words y

cpu1: print pc
0x00001aa4 &__exit+0x4

cpu1: print psr
impl=0x1 ver=0x1 n=0 z=1 v=0 c=0 ec=0 ef=1 pil=0x0 s=1 ps=0 et=1 cwp=0x0

cpu1: quit
hostname%
Chapter 2 Tutorial 9



instances. Exiting and restarting the simulator is one sure way to take the simulator

to a known state. Therefore, if the simulator is still running from the first part of the

tutorial, quit it now and restart.

In this section, you run script tutorial_cmds in the simple architecture directory

to set up the tutorial program. (A script is a file that contains MPSAS commands.)

Create a user-interface alias for the command sh more and then use the alias to

display the script.

Scripts and aliases are both mechanisms for reducing the amount of typing you have

to do and the number of things you have to remember. If you put your alias
commands in a file called .MPSASrc in your home directory, those aliases are

immediately available every time you execute MPSAS. As MPSAS starts up, it looks

for such a file and executes any commands in it when it is started. Refer to Appendix

B, Command Manual Pages, for details.

MPSAS ignores those lines in a script that begin with # as well as the blank lines.

The if command ensures that one argument is specified ($argc == 1 ). The load
and focus commands are the same as before, but the write command sets the

hostname% mpsas
Simple architecture - Mpsas Release 1.1
Preprocessing configuration file "config_file".
Parsing configuration file "config_file".
Creating C module classes.
Creating module instances and interfaces.
Performing interface configurations.
Performing interface configuration verifications.
serial1: Serial Port A is /dev/ttyp9
serial1: Serial Port B is /dev/ttypa
Negative phase is inactive.

ui1: alias m sh more

ui1: m tutorial_cmds
# tutorial_cmds - MPSAS script to load and set up tutorial program.
# usage: tutorial_cmds <value for "num" variable>
if ($argc != 1) { \
        echo Usage: $0 \\<value\\>; flush \
}

load 0 ram1 ../stand/tutorial
focus cpu1
write word &num $1
echo Tutorial program has been loaded and "num" has been initialized to $1.

ui1:
10 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



value of num to $1 , which is a notation that is replaced by the first argument to the

command that invokes the script. Finally, the echo command writes its arguments to

the screen or window so that scripts can display arbitrary messages.

Invoke the script with the file command, with 3 as an argument. Now that the

program is loaded and variable num is set, type fork to create a copy of the

simulator.

At this point, you are interacting with the copy (a child process), and any change in

state does not affect the original simulator. Later, you can return to the original

simulator and continue from this saved state without exiting, restarting the

simulator, and redoing your setup.

Next, find out how to set a breakpoint. Type help without any arguments to display

the usage statement for each command and pipe the result to the UNIX grep utility

to show only those lines that contain the word break .

Set a breakpoint on the tutorial program’s fact function, which computes the

factorial of a number, and run the program. When you hit the breakpoint, type

where for a stack backtrace.

The simulator does not know how many arguments each function has or their types,

so it just displays cpu1 ’s registers in0 (%i0 ) through in5 (%i5 ) in hexadecimal.

ui1: file tutorial_cmds 3
Tutorial program has been loaded and "num" has been initialized to 3.

cpu1: fork
MPSAS process 2934 active
MPSAS process 2932 waiting

cpu1:

cpu1: help | grep break
breakpoint [add <address> | delete <number>] - breakpoints
breakpoint [add <address> | delete <number>] - breakpoints

cpu1: breakpoint add &fact

cpu1: run
cpu1: breakpoint 1 at _fact (0x1000) encountered.

cpu1: where
_fact(0x3 0x0 0x0 0x0 0x0 0x0)
_main+0x14(0x10a0 0x0 0x0 0x0 0x0 0x0)
_start+0x40(0x0 0x0 0x0 0x0 0x0 0x0)

cpu1:
Chapter 2 Tutorial 11



Using the set command, set cpu1 ’s watchexec variable to 1 and step a few

instructions. When watchexec is true (nonzero), the cpu1 module instance prints

instructions in disassembled form after it executes them. As you advance through

the program with the step command, the displayed instructions have been

completely executed.

Turn the watchexec flag off; you have to type only enough characters in a variable

name to unambiguously identify it. Use the when command to have the simulator

print the current window pointer in the cpu1 ’s psr register whenever it changes,

along with the pc , then continue execution.

Notice that cpu1.psr.cwp changed before you hit the breakpoint because the

simulator performed the print operation. Show all cpu1 registers by typing regs .

cpu1: set watchexec=1

cpu1: step 4
cpu1.watchexec(31): _fact             : sethi%hi(_end+0xffffbb70), %g1
cpu1.watchexec(32): _fact+0x4         : add%g1, 0x398, %g1
cpu1.watchexec(33): _fact+0x8         : save%sp, %g1, %sp
cpu1.watchexec(35): _fact+0xc         : st%i0, [%fp + 0x44]

cpu1:

cpu1: set watchexe=0

cpu1: when psr.cwp changes {print -v cpu1.psr.cwp,cpu1.pc}

cpu1: run
cpu1.psr.cwp: 0x6
cpu1.pc:      0x00001084        &_main+0x1c
cpu1: breakpoint 1 at _fact (0x1000) encountered.

cpu1:
12 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Now type run again to continue execution.

Use the simulator’s expr command to evaluate the result and compare it with the

value of the tutorial program’s result variable. expr prints the result in

hexadecimal, decimal, symbolic (in case the value is an address), and character

formats for convenience.

Now quit out of the copy of the simulator, which then returns the original

simulator. The simulator’s state is now identical to its state before fork . From here,

you can run the program again, or fork and run the program in another copy of the

simulator. For now, type quit again to exit the simulator.

cpu1: regs
Window: 6
     INS           LOCALS        OUTS          GLOBALS
0:   0x000010a0    0x00000000    0x00000004    0x00000000
1:   0x00000000    0x00000000    0x00000000    0xffffff98
2:   0x00000000    0x00000000    0x00000000    0x00000002
3:   0x00000000    0x00000000    0x00000000    0x00000000
4:   0x00000000    0x00000000    0x00000000    0x00000000
5:   0x00000006    0x00000000    0x00000000    0x00000000
6:   0x0000af80    0x00000000    0x0000af20    0x00000000
7:   0x00001a98    0x00000000    0x00001094    0x00000000

y:   0x00600000
pc:  0x00001000  _fact
npc: 0x00001004  _fact+0x4
sp:  0x0000af20  _end+0x6e90
fp:  0x0000af80  _end+0x6ef0

psr: 0x114010a6
     impl ver n z v c ec ef pil s ps et cwp
      1    1  - Z - - 0  1   0  1 0  1   6
wim: 0x00000002 (.....X.)  ['.' is valid, 'X' is invalid]
tbr  0x00000000 (tba=0x0 tt=0x0)
cpu1:

cpu1: run
cpu1.psr.cwp:   0x5
cpu1.pc:        0x0000100c      &_fact+0xc
cpu1.psr.cwp:   0x6
cpu1.pc:        0x0000109c      &_main+0x34
cpu1.psr.cwp:   0x0
cpu1.pc:        0x00001aa0      &__exit
trap1: cpu connected to me stopped the simulation.

cpu1:
Chapter 2 Tutorial 13



There are many more commands and features than those you have used here, but

you are now acquainted with the basics and can experiment with more. Reading

Chapter 3, User Interface, will increase your familiarity with the commands.

Afterward, you may want to start up the tutorial program again and try out the

commands.

For more details, see Appendix B, Command Manual Pages, or online help.

cpu1: expr 4 * 3 * 2 - 3 * 2
0x12    18      &_trap_table+0x12       ’\022’

cpu1: read word &result 1
_result            0x00000012 ....

cpu1: quit
Child exiting
MPSAS process 2934 terminated
MPSAS process 2932 active
No more children running. Next quit terminates the simulation.

cpu1: quit
hostname%
14 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 3

User Interface

This chapter provides a brief description of each of the MPSAS commands.

Appendix B, “Command Manual Pages” contains the details.

MPSAS has an online help facility. Type help to show the commands and their

operations.

At any time, the user interface is focused on a particular module instance. The name

of that module instance, followed by a colon, is your prompt. Being focused on a

module instance has the following ramifications:

■ While many commands are independent of the modules and are universally

available, some are associated with a particular module class; you can only

execute them with regard to an instance of that class. By focusing on a module

instance, you temporarily add any of its commands to the user interface’s

repertoire.

■ The help command shows commands defined by the currently focused module

instance in addition to those that are universally available.

■ In referring to the currently focused module instance’s variables, you need not

specify the module instance name.

You can create the MPSAS MODULE_CMD_PATHenvironment variable to specify the

order of module instances the user interface examines to match for module

commands. If MODULE_CMD_PATHdoes not exist, the user interface examines only

the currently focused module instance.

MPSAS initially has its focus on the instance of the ui (user interface) module, but

you can change the focus with the focus command.

Note – If the ui module’s isconstprompt variable value is set to true , the

prompt changes to mpsas: , followed by a newline, which is more suitable for

interfacing with other programs. In this case, the focus command does not change

the prompt.
15



3.1 Universally Available Commands
This section briefly describes the universally available commands in related

groups—roughly in an order that a user learning to use MPSAS may find useful.

Refer to Appendix B, Command Manual Pages, for details.

■ The help and focus commands, as mentioned above, are universally available.

■ The quit command causes the simulator to exit (with a particular return code, if

desired), returning control to the shell from which it was invoked.

■ The version command gives information about the version of MPSAS you are

running, along with some details on who built it and how.

■ The list command prints different types of information, such as module

variable names, the names of configured module instances, and the names of

message types.

■ The load command loads an executable in ELF format into a memory module,

that is, into simulated memory.

■ The load_section command loads only a section, such as text or data, from an

executable. Both commands also load the executable’s symbol table into the

framework.

■ The symtab command loads only the symbols from an executable into the

framework.

■ The run command starts the simulated machine once you have loaded a program

into the memory of the simulated machine. Execution continues until one of the

following situations occurs:

■ The program that runs on the simulated computer hits a breakpoint.

■ The program executes a special trap, which is recognized by the simulator as a

request to stop the simulation.

■ You type the tty interrupt character (usually Control-C).

■ You type the stop command.

■ The module stops the simulation (usually due to an error).

■ The cycle command causes the simulation to run for only a certain number of

cycles. (To step by instruction, use the cpu module step command, discussed in

the next section.)

■ The print command displays variables and is useful for showing the internal

state of modules.

■ The window command displays the output of user-interface commands in a

window.

■ The set command changes the value of a variable, which you can use to change

many aspects of a module’s state.
16 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ In general, wherever a value is required by a command, you can use an

expression. MPSAS contains a expression evaluator (described in Expressions on

page 25). If you simply want to know what an expression evaluates to or how it is

parsed, use the expr command. If you want to know what the numeric value of

some SPARC instruction disassembles to, use the dasm command.

■ MPSAS provides a facility for executing commands when certain conditions,

called triggers, occur. The when command specifies a trigger to be checked at the

end of each cycle, along with a list of commands to be executed if the trigger

“fires.”

■ The snoop command specifies a trigger and a list of commands. In this case, the

trigger is checked when a message is transmitted between modules. This

command is useful for debugging new modules because, when combined with

the msg command, it displays messages. You can also use snoop and set to

modify the contents of messages.

■ The onstop command specifies a list of commands to be executed when the

simulation stops.

■ The status command lists the events currently known to the simulator. An event

is the order to perform a set of commands when certain conditions are met.

■ The delete command deletes an event.

■ If you do not want an event to be active but would like to recall it later, you can

disable it with the disable command and then reinstate it with the enable
command.

■ The msg command shows the format of a message type or the contents of a

message being snooped.

■ You can create your own variables with the var command and use them to record

interesting values, for example, when triggers fire.

The event facility, the expression evaluator for event triggers, user-defined variables,

and the set of variables defined by the various modules combine to give you a great

deal of power in analyzing your simulated system and the program that runs on it.

For example, the following command arranges for the simulator to display the string

user when cpu1 enters user mode and super when it enters supervisor mode, and

then stop in either case:

when cpu1.psr.s changes {expr cpu1.psr.s ? "super" : "user"; stop}

The following commands arrange for the simulator to count the number of traps of

each type caused by the program; traps is an array of 256 counters.

var add traps unsigned Word 256
when cpu1.trap_count changes \
{set traps(cpu1.latest_trap_num) = traps(cpu1.latest_trap_num) + 1}
Chapter 3 User Interface 17



■ The following commands provide features similar to those available in various

UNIX shells:

■ The setenv command associates text with a name; thereafter, you can expand

the name in a command to that text. The echo command prints out its

arguments to the screen.

■ The alias command associates a list of commands with a name, in effect

creating a new command.

■ The unalias command removes an alias.

■ The history command displays the last few MPSAS commands you typed.

■ You can store MPSAS commands in files, called scripts, and then execute them,

with parameters, with the file command.

The echo command causes commands from scripts to be echoed as they are

executed.

The if command, particularly useful in scripts, conditionally executes a list of

commands. If a script encounters problems, the flush command can prevent

ensuing commands in the script from being executed.

■ The user interface is active even while the simulation is running (although no

prompt is displayed). If you want a command to be executed when the simulation

stops (rather than at the time the command is entered), precede it with the wait
command. Typically, a run in a script is followed by a wait if the run is not the

last command in the script.

■ When tests are automated with the file command, the potential problem exists

that the program may do something unexpected and never hit any of the

breakpoints set for it. For example, it may end up in an infinite loop. To ensure

that a test terminates in a reasonable amount of time, you can set watchdog timers

with the commands rtimer (real time) and vtimer (virtual time—only the time

the computer spends running MPSAS is considered).

■ The sh command executes Bourne shell commands or starts a shell.

■ If you are running a large program, such as an operating system, on the simulator,

you may find a problem that occurs only after many minutes of simulation or

after some substantial setup. In that case, you can use the state command to

save the state of the simulator to the file system right before the interesting part

and then restore it later, eliminating the lengthy setup.

Also, you can direct the simulator to fork a copy of itself. After the fork, you will

work in the copy until you quit from it, at which point the original simulator

returns, looking just like it did before the fork. Using this mechanism, you can

quickly perform a number of experiments from that known state.

■ You may want to run a program on the simulated machine and capture

information about what the machine is doing in a file for later analysis by a

program, for example, to see how effective your cache is at keeping the processor

off the bus. In this case, you can use the group command to associate a name
18 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



with a collection of state information and message fields, and then dump groups

out to a trace file or trace-analyzer program. The trace command manages such

files and programs.

■ The time command displays information about the time and other resources the

simulator has consumed, as well as information about the rate at which cycles

and instructions of the simulated machine are being simulated.

■ The option command displays or sets parameters that control the behavior of

MPSAS in certain situations, such as the printing of expression values. Unlike

setting a module variable with the set command, which only affects the module

that owns the variable, changing an option may affect the entire simulator.

3.2 Module Commands
Modules can add to the base set of commands described in the previous section.

These commands are immediately available whenever you are focused on an

instance of the module that defines them, or they are present in a module instance

specified in the MODULE_CMD_PATHenvironment variable.

The MODULE_CMD_PATHenvironment variable is composed of a list of module

instances, separated by colons. When the user interface encounters a module

command, that is, the command does not match one of the built-in commands, it

checks the module instances specified in MODULE_CMD_PATHin the order they are

listed. You can include the currently focused module instance in MODULE_CMD_PATH
by using the special module instance name of period (. ).

You can execute a module command independently of the focus or

MODULE_CMD_PATHenvironment variable by preceding it with the name of the

module instance you want to execute the command and a period. In the following

example, the cpu1 ’s breakpoint command is invoked with the three possible

forms:
Chapter 3 User Interface 19



A module command is actually handled by the specified instance of the module, so

that, for example, setting a breakpoint by means of cpu1.breakpoint does not

affect cpu2 in a configuration with multiple instances of the cpu module.

This section only briefly describes each module’s commands. Refer to Chapter 7,

Modules, for details and for information about the modules with which these

commands are associated.

3.2.1 cpu Commands

The cpu module’s breakpoint command sets, deletes, and lists breakpoints for a

CPU. A breakpoint stops the CPU just before executing the instruction at a particular

virtual address. The where command displays a stack backtrace for the program

that is running on the simulated computer.

Whereas the universally available cycle command directs the simulation to

advance a specified number of cycles, the cpu module’s step command directs the

simulation to advance a certain number of instructions. Software developers usually

are not interested in what the CPU does on a cycle-by-cycle basis and prefer to see

the effects of whole instructions instead.

You can display the in registers (i0 – i7 ) of a cpu module with the ins command.

Similarly, the locals , outs , and globals commands print out the other register

groups. The regs command prints out all of the above, along with all of the

registers that are accessible in supervisor mode.

The allstages command shows the contents of each pipeline stage.

cpu1: breakpoint
No breakpoints currently set.

cpu1: focus ram1

ram1: breakpoint
Unknown command: "breakpoint"

ram1: cpu1.breakpoint
No breakpoints currently set.

ram1: setenv MODULE_CMD_PATH cpu1:.

ram1: breakpoint
No breakpoints currently set.
20 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Each cpu module keeps track of all its accesses to memory for each ASI. You can

display this information with the accesses command. Similarly, the profile
command arranges for counts to be kept of the loads and stores to various address

ranges.

The read command displays the contents of virtual memory in various formats,

including disassembly. The write command changes the contents of virtual

memory.

Sometimes a program that runs on your simulated computer reaches an address

without showing how it arrived there. Rather than tracing through the instructions

that led the program to that point, you can use the itrace command to set the

number of instructions you want to record, then run the simulated system until it

arrives at that address and use the itrace command again to print out the most

recently executed instructions.

3.2.2 fcpu Commands

The fcpu module (fast CPU) supports all of the cpu module commands, described

in the previous section.

3.2.3 fpu Commands

The fpu module’s show_fpq command displays the contents of the floating-point

queue. The finish_fpop command finishes execution of the oldest floating-point

operation in that queue.

3.2.4 sun4c and sun4e mmuCommands

The mmumodule used in the sun4c and sun4e architectures defines a single

command, xlate , which takes a virtual address and mmucontext number and

displays the physical address and memory type to which they map.

3.2.5 cmu Commands

The commands for the cmu module of the mbus architecture are:

■ xlate , which translates a virtual address to the corresponding physical address.

In addition, a number of commands display the various internal and external data

structures used by cmu.
Chapter 3 User Interface 21



■ tables , which displays translation tables

■ ranges , which shows how the tables map memory

■ contexts , which shows mmucontexts that have valid mappings; lines shows

valid cache lines. The cmu module keeps extensive statistics.

■ sstat , which displays statistics about the activity on the processor bus and Mbus

■ clstat , which shows statistics for all cache lines, such as hits and misses for

reads, writes, and read-modify-writes

■ cstat , which shows the same statistics for the cache as a whole

■ alias_cnt , which tells how many virtual address aliases were detected on reads

and writes

■ mstat , which displays statistics about mmu, such as how many table walks it had

to do at each level and the hit rate on the TLB

3.3 Processing of Command Lines
The user interface attaches special meanings to these characters:

> | $ ; \

To suppress that special meaning, precede the character with a backslash. Also, a

backslash as the very last character in a line causes the next line to be considered a

continuation of the command (with the backslash and newline removed).

Each time a command is executed, MPSAS processes it as follows:

1. If the command is read from a script and echoing of script commands has been
turned on, MPSAS echoes the command to the screen.

2. MPSAS looks at the command name (everything up to the first space, tab, or
semicolon) to see if it is an alias; if so, MPSAS replaces the alias name with the
alias definition.

3. MPSAS looks for a semicolon that represents the end of this command. If it finds
one, it cuts off the remainder of the command after the semicolon and processes it
later.

4. MPSAS expands references to names defined with setenv (such as $foo ). If no
such variable exists, the reference expands to nothing.

5. MPSAS looks for redirection symbols similar to those in the Bourne shell:

a. mpsas_command > path causes the specified file to be created and the output
of the command to be redirected into it.
22 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



b. mpsas_command >> path causes the specified file to be opened and the output
of the command to be redirected into it.

c. mpsas_command | shell-command causes the specified Bourne shell command
to be run with the output of the MPSAS command piped into it. A common
example is help | more .

If MPSAS finds such a redirection construct, it sets up the specified redirection and

then strips the construct from the command.

6. MPSAS replaces \ char with char.

7. MPSAS locates the code for the specified command and executes it.

If you type a command, the following steps occur prior to those above.

1. The command is added to the key file and the log file.

2. The history is replaced.

3. Quick substitution is performed.

4. If either of the previous two steps takes place, the resultant command is echoed.

5. The command is added to the history buffer.

Note – The user interface is case-sensitive.

3.3.1 History Mechanism

The MPSAS command history facility provides a subset of the features provided

by the UNIX C shell history mechanism.

TABLE 3-1 shows the history event specifiers.

TABLE 3-1 history Event Specifiers

Syntax Interpretation

!! Previous event

! n Event n
Chapter 3 User Interface 23



You can suffix the event specifier with an argument operator, which starts with a

colon (: ). TABLE 3-2 shows the argument operators that history accepts.

You can omit the colon for the * and $ operators. If you omit the second exclamation

point in the event specifier and specify an argument operator, the event defaults to

the previous one. For example, !$ , !!$ , and !!:$ all specify the last argument of

the previous command.

To modify the maximum number of events you can store in the history buffer, set the

user interface module’s history variable, which defaults to 100. To display the

history buffer, type the ui module history command.

3.3.2 Quick Substitution

The MPSAS quick substitution facility is similar to the UNIX C shell quick

substitution mechanism. The syntax is:

^old-pattern^new-pattern[^]

MPSAS replaces old-pattern in the previous command the first time it is found with

new-pattern. If new-pattern is omitted, MPSAS deletes old-pattern.

!- n Current event less n

! str Most recent event that starts with the pattern str

!? str? Most recent event that contains the pattern str

TABLE 3-2 history Argument Operators

Syntax Interpretation

* All arguments

$ Last argument

n Argument n, 0 being the command, 1 the first argument, and so on

TABLE 3-1 history Event Specifiers (Continued)

Syntax Interpretation
24 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



3.4 Expressions
Many of the commands take expressions as arguments. MPSAS includes an

expression-handling package that is patterned after, but not identical to, expression

handling for the C programming language.

3.4.1 Data Types

MPSAS supports the four basic data types:

■ Unsigned (unsigned 64-bit integers)

■ Signed (signed 64-bit integers)

■ Float (IEEE double-precision floating point)

■ String (dynamically allocated null-terminated char arrays)

3.4.2 Constants

You can enter integer constants in the usual C bases, as characters, and as the words

false and true . For example:

Notice, however, that you must double each backslash. With that caveat, you enter

floating-point and string constants, also, as in C. For example:

ui1: expr 17, 017, 0x17, ’A’, ’\\n’, ’\\102’, false, true0x11 17
’\021’
0xf     15      ’\017’
0x17    23      ’\027’
0x41    65      ’A’
0xa     10      ’\n’
0x42    66      ’B’
0x0     0       ’\000’
0x1     1       ’\001’

ui1: expr .75, 4e12, -9.3E-6, "hello, world\\n", "\\"\\\\"
    0.750000
 4.00000e+12
-9.30000e-06
"hello, world\n"
"\"\\"
Chapter 3 User Interface 25



If you have loaded symbols from some executable (for example, with the load
command), you can reference them in expressions as &symbol, for example, &main .

Because most C compilers prepend each C identifier with an underscore to create the

actual symbol name, the expression package looks first for the symbol as you

specified it and then, if that label does not exist, for the same label with a leading

underscore.

Note – MPSAS loads only relocatable symbols, such as assembly language labels,

but not absolute symbols. Automatic variables in C programs do not generate

relocatable symbols.

3.4.3 Operators

TABLE 3-3 enumerates the operators supported within expressions. The first column

shows the operator, the data types it takes in each argument position, and the data

type it returns. For example,

usfc = us ? usfc1 : usfc2

means that the ?: operator returns a result that may be unsigned (u),

signed (s), floating-point (f), or string (c), that the first argument must be either

unsigned or signed, and that the other arguments may be unsigned, signed, floating

point, or string. The last two operands are numbered 1 and 2 so that they can be

referred to in the description of the operator, “if us is 0 then usfc2 else usfc1.”

The table is arranged in order of increasing precedence; entries not separated by

lines are of equal precedence. You can use parentheses in the usual way to change

the bindings. To see how an expression is parsed, use the command:

expr -v expression.

All binary operators are left-associative; the ?: operator is right-associative.

TABLE 3-3 Expression Operators

Operator Meaning

usfc =us ? usfc1 : usfc2 If us is 0 then usfc2 else usfc1

u =us1 || us2 Logical OR of us1 and us2 (0 if both are 0, else 1)

u =us1 && us2 Logical AND of us1 and us2 (0 if either is 0, else 1)

u =us1 | us2 Bitwise OR of us1 and us2. | must be escaped so as not to be

interpreted as a pipe symbol by user interface command processing.

u =us1 ^ us2 Bitwise XOR of us1 and us2
26 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The difference between operators as_float and to_float (and the differences

between their counterparts for the other data types) may not be obvious. as_float
causes the argument’s bit pattern to be reinterpreted as the bit pattern for a floating-

point number. to_float causes the argument’s value to be converted to floating-

point format.

For example, suppose x is an UNSIGNEDWord variable and y is a FLOATWord

variable. The expression x == y does not parse correctly because the expression

parser does not allow direct comparison of integers to floating-point numbers. If you

know that x is currently being used to hold an IEEE single-precision floating-point

number, then to have it interpreted that way, the expression should be as_float x

u =us1 & us2 Bitwise AND of us1 and us2

u =usfc1 == usfc2
u =usfc1 ! = usfc2
u =usf in ranges

1 if usfc1 and usfc2 have the same value, else 0

1 if usfc1 and usfc2 have different values, else 0

1 if usf is within one of the specified ranges (see below), else 0

u =usfc1 < usfc2
u =usfc1 <= usfc2
u =usfc1 > usfc2

u =usfc1 >= usfc2

1 if usfc1 is less than usfc2, else 0

1 if usfc1 is less than or equal to usfc2, else 0

1 if usfc1 is greater than usfc2, else 0. > must be escaped so as not to

be taken as a redirect symbol.

1 if usfc1 is greater than or equal to usfc2, else 0

us =us << u
us =us >> u

us shifted left u modulo 64 bits

us shifted right u modulo 64 bits. >> must be escaped so as not to be

taken as a Redirect symbol. >> does arithmetic shift if us is signed.

usf =usf1 + usf2
usf =usf1 - usf2

usf1 plus usf2
usf1 minus usf2

usf =usf1 * usf2
usf =usf1 / usf2
us =us1 %us2

usf1 times usf2 (u/s operands must fit in 32 bits)

usf1 divided by usf2 (u/s operands must fit in 32 bits)

Remainder after dividing usf1 by usf2; operands must fit in 32 bits

sf =- usf Zero minus usf

u =! us Logical negation of us (1 if us is 0, else 0)

u =~ us Bitwise negation (1’s complement) of us

u =as_unsigned usf
s =as_signed usf
f =as_float usf
u =to_unsigned usf
s =to_signed usf
f =to_float usf

usf reinterpreted as an unsigned integer

usf reinterpreted as a signed integer

usf reinterpreted as a floating-point number

usf converted to an unsigned integer

usf converted to a signed integer

usf converted to a floating-point number

u =usfc changes
u =asm( us, c)

1 if usfc has changed from previous value, else 0

The numeric instruction that results from assembling at address us
the assembly language instruction in string c

TABLE 3-3 Expression Operators (Continued)

Operator Meaning
Chapter 3 User Interface 27



== y. If, however, you want to know whether the integer value in x, when converted

to floating point, matches y, then the expression should be to_float x == y . This

expression would be true , for example, if x were 4 and y were 4.0.

The operator as_string (similar to as_unsigned ) causes its operand to be

reinterpreted as a string. However, reinterpretation of numbers as strings, and vice

versa, is only allowed with variables that are written to support the feature, and

exactly what “reinterpreted as a string” means depends on how the support for that

variable was written. No such variables are included with MPSAS, hence

as_string is of no use with the simulator.

For the in operator, ranges is a comma-separated list of ranges, surrounded by

square brackets. A range is either a single expression whose value is to be matched

or two expressions separated by a colon, in which case the range is the first

expression’s value through the second expression’s value, inclusive. The expression:

pc in [&func1, &func3, &func6:&func9-1]

is true if the value of variable pc matches label func1 or label func3 , or lies

anywhere between label func6 and one less than label func9 , inclusive. All

expressions in the list must be of the same data type as the first operand.

In general, operators require that their operands be of matching types. For example,

adding integers and floating-point operands requires a conversion:

However, the expression handler generally converts unsigned operands to signed

when they are mixed with other signed operands. Also, the second operand of >>
and <<, if signed, is converted to unsigned.

3.4.4 Variables

Names that refer to values that can change are called variables, which you can use

freely in expressions. A variable can be any of the following:

■ name — A user-defined variable or group (see the var command on page 218 and

the group command on page 188)

■ [instance.]name — Part of the state of some module instance

If no module instance is specified, the currently focused instance is used.

■ msgtype — 1 if the current message is of the specified message type, else 0

■ msgtype.field — A field in a message

ui1: expr (17 % 3) + 2.5
expression parser: cannot mix integers and floating point

ui1: expr to_float(17 % 3) + 2.5
     4.50000
28 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Note – Messages are generally of interest only in the development of new modules.

When you supply a variable name, the expression package first looks for a user-

defined variable by that name. If there is none, it looks for a user-defined group by

that name. And so on down the list.

Within each category, MPSAS performs a minimum-ambiguity lookup. You need not

type the full name of the variable, but only enough to unambiguously identify it

within the category. For example, if there are exactly two user-defined variables,

num_traps and next_value , then:

■ n is ambiguous, causing the search to fail with a message to that effect.

■ nu matches num_traps .

■ na is not found, causing the search to continue with the next category.

This minimum-ambiguity feature is only applied to the last period-delimited

segment of a name. For example, ab does not match abc.def .

Every variable has a data type (as described in Data Types on page 25) and belongs to

a particular class. The class of a variable generally implies its size, how it looks when

printed, how it is set, what it evaluates to when used in an expression, and so on.

You can add new classes. The following classes are provided by the framework for

general use and show up in various modules:

■ byte (8 bits)

■ hword (16 bits)

■ word (32 bits)

■ lword (64 bits)

■ bitfield (part of one of the above)

■ string (character strings)

The list command can show the variables available for a particular module

instance. The msg command can show the variables (fields) in a particular message

type.

Some variables can take parameters, which are expressions separated by commas

and placed within parentheses following the variable name. For example, the

following expression accesses a particular byte of memory:

ram1.bytes(cpu1.l2+3)

A variable name plus associated parameters (if any) is called a variable expression;

for simplicity, we often refer to variable expressions simply as variables, ignoring the

distinction. Parameters can be arbitrarily complex expressions. It is possible to skip a

parameter, as in this example, which refers to all of the bytes between two addresses:

ram1.bytes(cpu1.l2+3,,cpu1.l3)

The number, data types, and allowed values of parameters differ from one

parameter to the next. Refer to the description of the variable for details.
Chapter 3 User Interface 29



The value of an array is the exclusive-OR of the values of all of its elements. This

exclusive-OR value serves as a checksum on the entire array, allowing it to be used

with the changes operator to trigger an event if any member of the array changes.

Similarly, the value of a group is the exclusive-OR of the values of all of its members.

Note – The exclusive-OR checksum may not change if multiple elements or

members change in complementary ways between checks; in such situations, the

changes operator may not notice a change.

3.4.5 Message Information

Four special variable names provide information about messages that are sent

between modules, namely:

■ msgsize — Number of bytes in the message

■ msgdata — The value of the message data pointer

■ msgdelay — The delay left for the message (−1 for debug channel)

■ msgtype —The value of the message type pointer

You can use these message variables only in snoop command trigger expressions or

in the command list of a snoop. For example, if you want to snoop on all simulation

channel packets of size 50 bytes, you can use the following command:

snoop msgsize == 50 { msg -v }

3.4.6 Invalid Expressions

An expression can be invalid; that is, it has no value at the time. Division by zero

produces an invalid result, as does a reference to a message type different from that

of the current message (the message that triggers a snoop event, causing expressions

to be evaluated). Integer * , / , and %that use operands greater than 32 bits also

generate an invalid result. A reference to an array element in which the index is too

large is invalid. A group with an invalid member is invalid. There may be cases in

which part of a module instance’s state does not have any meaning; the variable that

represents that state may generate an invalid result when evaluated.

Each operator attempts to handle invalid operands in a way that makes sense. For

example, arithmetic on an invalid operand yields an invalid result. Logical operators

treat an invalid operand the same as false . The ?: operator treats its first operand

as a Boolean (so that if it is invalid, then it is false ) and passes on the selected

operand, including its validity or invalidity, ignoring the remaining operand’s

validity. The changes operator never reports a change when its operand is invalid.

Where commands use an expression as a boolean (such as the if command), an

invalid expression is treated as false .
30 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 4

Sample Architectures

MPSAS provides four sample architectures: simple , sun4c, sun4e, and mbus. The

files for each are contained in directories whose names match that of the

architecture. These directories are located in the top of the MPSAS source tree. Each

directory contains:

■ C++ language source code for any module classes specific to that architecture

■ A makefile (called Makefile ) that builds the simulator executable

■ A configuration file for each system that the architecture models

■ Setup files that are required by the module instances declared in the configuration

files

To build a simulator executable, type cd to change to the architecture’s directory and

type make. This step produces an executable file, called mpsas. To start the

simulator, type its name at the operating system prompt. The simulator uses the

system configuration file called config_file unless otherwise specified.

4.1 simple Architecture
The simple architecture contains one computer system simulation, which simulates

no specific computer but contains the minimum module instances to create a SPARC

computer and run useful programs. It should be chosen for simple SPARC programs

that do not need the facilities of an MMU or any special devices. The simple system

is the fastest of all computer systems included with MPSAS.

The simple system contains the following module instances. (Module classes are in

parentheses.)

■ serial1 (serial )

■ ram1 (ram), trap1 (trap )

■ fpu1 (fpu ), cpu1 (fcpu )
31



■ sigio1 (sigio )

■ ui1 (ui )

FIGURE 4-1 illustrates the system. The boxes are module instances. The lines between

the boxes represent one or more interfaces. The ui1 and sigio1 module instances

are not shown since they are considered part of the framework.

FIGURE 4-1 simple System

Note the following:

TABLE 4-1 shows the simple system memory map.

Module Instance Remarks

serial1 Accessible only through the trap1 module and is not directly accessible to

cpu1 . Does not support interrupts.

ram1 1 Mbyte

trap1 Supports all processor external traps, except the disk operation trap (0xd2).

fpu1 SPARC FPU version 7

cpu1 • SPARC version 8

• Seven register windows

• The PSRimplementation field is 0x1

• The PSRversion field is 0x1

• Prefetching is enabled

• Automatic start (default)

• Supports interrupts

TABLE 4-1 simple System Memory Map

Address Range Description

00000000 – 000fffff ram1

cpu1fpu1

serial1

ram1

trap1
32 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



4.2 sun4c Architecture
The sun4c architecture contains one computer system simulation. There is no

simulation for the sun4c cache and many of the I/O devices.

The sun4c system contains the following module instances. (Module classes are in

parentheses.)

■ serial1 (serial )

■ simdisk1 (simdisk )

■ rom1 (rom)

■ eeprom1 and ram1 (ram)

■ mmu1(mmu)
■ trap1 (trap )

■ cpu1 (cpu )

■ sys1 (sys4c )

■ sigio1 (sigio )

■ ui1 (ui )

FIGURE 4-2 illustrates the system.

FIGURE 4-2 sun4c System

trap1

cpu1

sys1

serial1

rom1

simdisk1

mmu1

ram1

trap1
Chapter 4 Sample Architectures 33



Note the following:

TABLE 4-2, TABLE 4-3, and TABLE 4-4 define the sun4c system memory maps.

Module Instance Remarks

serial1 Located in the processor’s type 1 device space and system space. Interrupts

are on level 12.

simdisk1 The initialization file is called simdisk.init . This module instance is in the

processor’s system space. Interrupts are on level 12.

rom1 128 Kbytes. Located in the processor’s type 1 device space.

eeprom1 2 Kbytes. Located in the processor’s type 1 device space.

ram1 4 Mbytes. Located in the processor’s type 0 device space, starting at address

0x0.

mmu1 The initialization file is called mmu.init . Supports all processor external

traps.

trap1 Supports all processor external traps.

cpu1 • SPARC version 7

• Seven register windows

• The PSRimplementation field is 0x1

• The PSRversion field is 0x1

• Prefetching is enabled

• Supports interrupts

sys1 No caches are connected.

TABLE 4-2 sun4c System Memory Map (Type 1 Device Space)

Address Range Description

f1000000 – f1ffffff serial1 registers

f2000000 – f2ffffff eeprom1

f3000000 – f3ffffff sys1 counter and timer registers

f5000000 – f5ffffff sys1 interrupt controller registers

f6000000 – f6ffffff rom1

TABLE 4-3 sun4c System Memory Map (Type 0 Device Space)

Address Range Description

00000000 – 003fffff ram1
34 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



4.3 sun4e Architecture
The sun4e architecture contains one computer system simulation. There is no

simulation for the sun4e cache and many of the I/O devices.

The sun4e system contains the following module instances. (Module classes are in

parentheses.)

■ serial1 (serial )

■ simdisk1 (simdisk )

■ rom1 (rom)

■ vram1 and ram1 (ram)

■ vmebus1 (vmebus), s4vme1 (s4vme)

■ mmu1(mmu)
■ trap1 (trap )

■ cpu1 (cpu )

■ sys1 (sys4e )

■ sigio1 (sigio )

■ ui1 (ui )

FIGURE 4-3 illustrates the system.

TABLE 4-4 sun4c System Memory Map (System Space)

Address Range Description

30000000 – 3fffffff sys1 context register

40000000 – 4fffffff sys1 enable register

60000000 – 6fffffff sys1 bus error register

a0000000 – afffffff simdisk1 registers

f0000000 – ffffffff serial1 registers
Chapter 4 Sample Architectures 35



FIGURE 4-3 sun4e System

Note the following:

Module Instance Remarks

serial1 Located in the processor’s type 1 device space and system space.

Interrupts are on level 12.

simdisk1 The initialization file is called simdisk.init . This module instance is

in the processor’s system space. Interrupts are on level 12.

rom1 128 Kbytes. Located in the processor’s type 1 device space.

trap1

cpu1 sys1

serial1

rom1

simdisk1

mmu1

s4vme1

vmebus

vram1

ram1
36 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



TABLE 4-5, TABLE 4-6, and TABLE 4-7 define the sun4e system memory maps.

vram1 8 Kbytes. Located on the VME bus, starting at address 0x00800000.

ram1 4 Mbytes. Located in the processor’s type 0 device space, starting at

address 0x0.

vmebus1 Contains one 32-bit slave (vram1 ) and one 16-bit slave (s4vme1).

mmu1 The initialization file is called mmu.init .

trap1 Supports all processor external traps.

cpu1 • SPARC version 7

• Seven register windows

• The PSRimplementation field is 0x1

• The PSRversion field is 0x1

• Prefetching is enabled

• Supports interrupts

sys1 No caches are connected.

TABLE 4-5 sun4e System Memory Map (Type 1 Device Space)

Address Range Description

e2000000 – e2ffffff serial1 registers

e6000000 – e6ffffff sys1 counter and timer registers

ea000000 – eaffffff sys1 interrupt controller registers

ec000000 – ecffffff rom1

TABLE 4-6 sun4e System Memory Map (Type 0 Device Space)

Address Range Description

00000000 – 003fffff ram1

TABLE 4-7 sun4e System Memory Map (System Space)

Address Range Description

30000000 – 3fffffff sys1 context register

40000000 – 4fffffff sys1 enable register

60000000 – 6fffffff sys1 bus error register

a0000000 – afffffff simdisk1 registers

f0000000 – ffffffff serial1 registers

Module Instance Remarks
Chapter 4 Sample Architectures 37



4.4 mbus Architecture
The mbus architecture contains two computer system simulations:

■ SP (single processor), configuration file: config_file
■ DP (dual processor), configuration file: dp_config_file

The SP and DP mbus systems simulate no specific computer; they contain

simulations of Mbus, SPARC reference MMU, and a virtual cache.

The SP system contains the following module instances. (Module classes are in

parentheses.)

■ intr1 (intr )

■ timer1 (timer )

■ simdisk1 (simdisk )

■ serial1 (serial )

■ rom1 (rom)

■ ram1 (ram)

■ trap1 (trap )

■ mbus1 (mbus)

■ cmu1 (cmu)

■ fpu1 (fpu )

■ cpu1 (fcpu )

■ sigio1 (sigio )

■ ui1 (ui )

The DP system contains all of the module instances of the SP system plus the

following: trap2 (trap ), cmu2 (cmu), fpu2 (fpu ), and cpu2 (fcpu ).

FIGURE 4-4 illustrates the DP system. The dotted lines in the mbus module instance

are not paths in the mbus; they are just lines that pass under it. The SP system looks

the same as the DPsystem, except it does not have the extra module instances, as

represented by the shaded boxes.
38 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



FIGURE 4-4 Mbus Dual Processor (DP) System

Note the following:

Module Instance Remarks

intr1 • The serial1 device uses bit 1 (mask 0x2) in the interrupt registers.

• The simdisk1 device uses bit 2 (mask 0x4) in the interrupt

registers.

• The timer1 device uses bit 3 (mask 0x8) in the interrupt registers.

timer1 Contains one timer. Increments the count for each cycle. Directly

accessible to processors. Interrupts are on level 14.

simdisk1 The initialization file is called simdisk.init . Directly accessible to

processors. Interrupts are on level 4.

cpu1

mbus1

rom1cmu1

ram1

fpu1

timer1
cmu2

fpu2

trap1

simdisk1

intr1

trap2

serial1

cpu2
Chapter 4 Sample Architectures 39



TABLE 4-8 define the Mbus SP and DP system memory map.

serial1 Directly accessible to processors. Interrupts are on level 12.

rom1 256 Kbytes

ram1 2 Mbytes

trap1 and trap2 Supports all processor external traps.

mbus1 An internal arbiter enables the register. Processor 0 (cpu1 ) is enabled

by default; processor 1 (cpu2 ) is disabled; simdisk1 is disabled.

cmu1 and cmu2 Cypress type CY605. Mbus module ID of 8 for cmu1, 9 for cmu2. 64

TLB entries.

fpu1 and fpu2 SPARC FPU version 7

cpu1 and cpu2 • SPARC version 8

• Eight register windows

• The PSRimplementation field is 0x1

• The PSRversion field is 0x1

• Automatic start (default)

• Prefetching is enabled

• Supports interrupts

TABLE 4-8 Mbus SP and DP System Memory Map

Address Range Description

000000000 – 0001fffff ram1

fe0001008 – fe000100b mbus1 arbiter enable register

ff0000000 – ff003ffff rom1

ff1100000 – ff11fffff serial1 registers

ff1200000 – ff12fffff simdisk1 registers

ff1300000 – ff13fffff timer1 registers

ff1400000 – ff14fffff intr1 registers]

Module Instance Remarks
40 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 5

Configuration File

When the simulator starts, it parses a configuration file, a readable ASCII text file

that specifies which module instances are involved in the simulation and how they

are connected.

5.1 Overview
The configuration file is composed of module class declarations, which contain

module instance declarations. The classes must be chosen from the available module

classes in a simulator binary. Most classes can have any number of instance

declarations.

Each instance declaration comprises three optional components:

■ Instance arguments, which provide a mechanism for the configuration file to

control features of a module instance. For example, a memory module may have

an instance argument to specify the size of its memory and allow different

instances of the same memory module class to have different sizes.

■ Interface declarations, which specify the interfaces of a module instance. Besides

a name and a type, interface declarations are composed of connectivity

information, optional arguments, and optional read-only or write-only flags.

■ Global declarations, which provide a mechanism for modules to share portions

of their state.

Following is an example of a configuration file entry for a fictional processor
module class.
41



The module class processor has one instance, called processor1 . Its arguments

specify that the instance should have seven register windows and that prefetching is

enabled. The processor1 instance has three interfaces.

The ram interface is of type master and is connected to the slave interface of the

ram1 module instance. The ASI argument controls the behavior of the master
interface. The control interface is also of type master . The configuration file

syntax allows multiple interfaces of the same type as long as they have different

interface names (ram and control in this case).

The interrupt interface is not connected to another interface and does not receive

messages. If processor sends it a message, a fatal error occurs.

The cmd_done interface is a write-only interface that must be connected to a read-

only interface.

5.2 Language
This section describes the language of the configuration file, including its syntax and

semantics.

module processor {
        instance processor1 {
                args "NUM_REGISTER_WINDOWS 7";
                args "PREFETCH enabled";

                interface ram of type master {
                        connected to ram1:slave;
                        args "ASI 0-250";
                }

                interface control of type master {
                        connected to control1:slave;
                        args "ASI 251-255";
                }
                interface interrupt of type interrupt {
                        unconnected;
                }
                interface cmd_done of type cmd_done {
                        connected to ui1:cmd_done;
                        write-only;
                }
        }
}

42 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



5.2.1 Syntax

TABLE 5-1 explains the conventions for the syntax of the configuration file.

Comments in a configuration file start with # or // and continue to the end of the

line. You can use white space (spaces, tabs, and new lines) to separate tokens. A

token is one of the following:

■ A keyword:

■ A punctuation mark:

; { } :

■ A name that consists of an alphabetic character or underscore, followed by any

number of alphanumeric, underscore, or period characters. Alphabetic characters

can be upper or lower case; the case is significant. If you choose to use a keyword

as a name, you must enclose it in quotes (" ) to prevent its interpretation as a

keyword.

■ A string, which is any text (except newlines and quotes), enclosed in quotes (" ).

The tokenized file must satisfy this grammar:

config_file = module*

module = module name { instance* }

TABLE 5-1 Conventions for the Syntax of the Configuration File

Symbol Meaning

item Literal text

item Metavariable

= Definition for a metavariable

( item item) Grouping

item* 0 or more of item (optional with repetition)

item+ 1 or more of item (mandatory with repetition)

| Alternation

module unconnected write-only

instance connected to public

args read-only external

interface of type
Chapter 5 Configuration File 43



instance = instance name (; | { argument* interface* global*})

argument = args string ;

interface = interface name of type name { interface_param }

global = public name ; | external name from name: name ;

interface_param = argument* | connection | rw_flag

connection = unconnecte d ; | connected to name : name ;

rw_flag = read-onl y ; | write-only ;

5.2.2 Semantics

The config_file metavariable represents the entire contents of the configuration file.

The module metavariable represents a module class declaration. The name
metavariable is the name of the module class. You can use only module classes that

are in the simulator executable; use the list classes user-interface command in

the simulator to display available module classes. A module class declaration can

appear more than once for a specific module class.

The instance metavariable represents a module instance declaration. The name
metavariable is the module instance name and is chosen by the configuration file

author for expressing connectivity information in the configuration file and also in

user-interface commands, such as focus . All instance names must be unique across

all module classes.

The argument metavariable passes information to a module instance or an interface.

See the corresponding module class section in Chapter 7, Modules, for the arguments

that are used by the modules. The characters between the quotes are passed to the

module, and the configuration file syntax enforces no formats. However, all sample

module classes use the convention of uppercase characters for literals and lowercase

characters for user-supplied values.

The interface metavariable represents an interface declaration of a module instance.

The first name metavariable is the interface name and is chosen by the configuration

file author for expressing connectivity information in the configuration file and also

in user-interface commands. All interface names must be unique across their module

instance.

The second name metavariable is the interface type name. See the corresponding

module class section in Chapter 7, Modules, to see what interface types are supported

by the modules.
44 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The global metavariable makes a name public (public keyword) or gets a reference

to a global name (external keyword). It is used by a module instance to share

portions of its state with other modules. A public declaration associates a pointer

with name. An external declaration gets the value of the external pointer (known

as name) from name: name, where the first name is the module instance and the

second name is the public name.

The interface_param metavariable specifies connectivity, interface arguments, and

read or write flags. If no read-only or write-only flag is specified, interfaces provide

a bidirectional, one-to-one connection. A unidirectional, many-to-one connection is

allowed if the modules that own the “many” interfaces only send messages to their

interface (write-only) and the module connected to the “one” interface only receives

messages (read-only). This methodology is useful in situations when multiple

modules communicate with another module, which does not reply.

The connection metavariable either specifies that an interface is unconnected or

identifies the interface to which it is connected. If an interface is identified, it is

specified as name: name, where the first name is the module instance and the second

name is the interface name. Interfaces can be connected to themselves.

The rw_flag metavariable specifies whether an interface is read-only or write-only. If

neither flag is specified, the interface is read-write. A read-only interface only

receives messages. A write-only interface is only sent by a module. Multiple write-

only interfaces can be connected to a single read-only interface.

You can enclose name that matches one of the language keywords, such as module ,

in quotes to prevent its interpretation as a keyword.

5.3 Preprocessing
A preprocessor can parse the configuration file before it is parsed by the framework.

The default is to preprocess the configuration file by the C preprocessor (cpp ). The

framework obtains the cpp path name by examining the UNIX CPPenvironment

variable. If UNIX CPPdoes not exist, the path name defaults to /usr/lib/cpp .

You can disable the preprocessing or specify the preprocessor path name by using

the appropriate MPSAS command-line switches (see Appendix B, Command Manual
Pages).

If you use cpp to preprocess the configuration file, do not use comments that start

with a pound sign (#) because cpp may interpret them as preprocessor directives,

such as #define . Use the C style comment symbol (/* */ ) or the C++ style

comment symbol (// ) instead.
Chapter 5 Configuration File 45



46 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 6

Message Types

Each message that is sent between module instances has an associated message type

that specifies the format and meaning of the message data.

The modules that the simulator provides use eight message types:

■ coproc_pkt
■ fpu_pkt
■ gen_bus_pkt
■ gen_int_pkt
■ no_data
■ sigio
■ string
■ trap_pkt

The pkt suffix is an abbreviation for “packet.”

6.1 coproc_pkt and fpu_pkt
The coproc_pkt message type is used by the cpu module and a coprocessor

module; MPSAS does not provide any coprocessor module examples. The fpu_pkt
message type is used by the cpu module and the fpu module. Both message types

have the same format and usage; the only difference is their field names.

The fpu_pkt format is as follows.
47



coproc_pkt has the same format, except that the leading f of the field names is

replaced with a c .

The type field determines the type of request and the members of the data_u union

that are valid, according to TABLE 6-1.

The status field specifies the success of a floating-point or coprocessor unit

operation: 0x0 for success, 0x2 for failure.

The fsr field contains the contents of the status register to be read or written.

The fcc field contains the contents of the condition code register to be read or

written.

The freg field contains the index of the register to access.

TABLE 6-1 type Field Values for coproc_pkt and fpu_pkt

Type Interpretation Valid data_u Members

0x10 Read register freg data

0x11 Write register freg data

0x12 Read status register fsr

0x13 Write status register fsr

0x14 Read queue fpop pc

0x15 Write queue fpop pc

0x16 Read condition codes fcc

struct fpu_packet {
        Word type;
        Word status;
        union {
                Word fsr;
                Word fcc;
                struct {
                        Byte freg;
                        Word data;
                } modreg;
                struct {

                        Word fpop;
                        LWord pc;
                } modfpq;
         } data_u;
};
48 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The data field contains the contents of the register to be read or written.

The fpop field contains the SPARC instruction with a floating-point or coprocessor

unit operation.

The pc field contains the virtual address of the SPARC instruction in the fpop field.

6.2 gen_bus_pkt
The gen_bus_pkt (generic bus packet) message type is used by a master module to

request a data transfer with a slave module, for example, processor reading memory.

The request can pass through the bus and other types of intermediary modules.

gen_bus_pkt contains the data that define the request as well as status information.

The format is as follows.

struct gen_bus_pkt {
        Word  type;
        Word  status;
        Word  extra;
        Word  routeflg;
        Word  asi;
        Word  size;
        LWord paddr;
        LWord vaddr;
        union {
                Byte bytes[1];
                HWord hwords[1];
                Word words[1];
                LWord lwords[1];
        } data;
        Byte other[1];
};
Chapter 6 Message Types 49



The type field specifies the type of transfer. TABLE 6-2 defines the values.

The status field specifies the status of the request. TABLE 6-3 defines the values.

The extra field extends the gen_bus_pkt protocol (for example, bus signals). Its

exact use is defined by the two interfaces that are involved in its transfer. Many

interfaces do not use the extra field at all. If all of the extra information does not fit

in the 32 bits that are available, a convention exists to place this information at the

end of gen_bus_pkt and to set the extra field to the offset of this information from

the start of gen_bus_pkt .

routeflg (route flag) also extends the gen_bus_pkt protocol. It provides another

32 bits of general-purpose space.

asi (address space identifier) optionally supplements the address fields. The least

significant byte contains the SPARC ASI when the vaddr field is in use.

The size field specifies the size of the request in bytes. It is the size of the variable-

length data array.

The paddr field specifies the physical address of the request and provides space for

64 bits. The validity of the paddr field is determined by the module that sends

gen_bus_pkt .

The vaddr field specifies the virtual address of the request and provides space for 64

bits. The validity of the vaddr field is determined by the module that sends

gen_bus_pkt .

TABLE 6-2 type Field Values for gen_bus_pkt

Type Interpretation Symbol

0x0 Write GEN_BUS_WR

0x1 Read GEN_BUS_RD

0x2 Read and write GEN_BUS_RW

0x3 Reference (no data transfer) GEN_BUS_REF

TABLE 6-3 status Field Values for gen_bus_pkt

Status Interpretation Symbol

0x0 Okay GEN_BUS_OK

0x1 Fault GEN_BUS_FAULT

0x2 Busy GEN_BUS_BUSY
50 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The data field is a variable-length array of size bytes. It is interpreted as an array

of bytes, halfwords, words, or longwords. The C language union notation used in

the definition of the data field is slightly misleading in suggesting that the data
field is a minimum of 8 bytes in size; its minimum size is 0 bytes.

The other field is a variable array of bytes that starts after the end of the data field

and stops at the end of gen_bus_pkt . Again, the C language notation used is

slightly misleading in suggesting that the location of the other field is fixed. The

other field is present to allow users to observe any information that is located after

the data field.

6.3 gen_int_pkt
The gen_int_pkt (generic interrupt packet) message type is used by devices to

signal level-sensitive interrupts.

The format is as follows.

The irl field optionally contains the interrupt request level.

The action field specifies if the interrupt is being set (0x1) or cleared (0x0).

The irl_valid field is nonzero if the irl field contains a valid value; otherwise, it

is zero.

The extra field extends the gen_int_pkt protocol.

6.4 no_data
The no_data message type has no associated data. It signals another module that an

event has occurred, but no information about that event is required.

struct gen_int_pkt {
        Word  irl;
        Word  action;
        Word  irl_valid;
        Word  extra;
};
Chapter 6 Message Types 51



6.5 sigio
The sigio message type is used by the sigio module to transfer I/O data to and

from other modules.

The format is as follows.

The fd field contains the UNIX file descriptor that is being accessed. The

data_size field contains the number of bytes in the data field (a variable length

array).

6.6 string
The string message type sends a null-terminated string between modules. Its

operation is not visible at the user level.

6.7 trap_pkt
The trap_pkt message type is used by the cpu module and the trap module for

external cpu trap instructions.

The format is as follows.

struct sigio_msg {
        int     fd;
        short   data_size;
        char    data[1];
};
52 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The trap_num field contains the trap number (128 to 255).

The out_reg , local_reg , and global_reg fields contain the values of the out ,

local , and global registers of the cpu module.

The update_out , update_local , and update_global fields control the writing

of the out , local , and global registers of the cpu module. If 1 (true ), the

corresponding register is written; otherwise, it is not.

The carry_flag field and super_flag field contain the value of the carry flag

and supervisor flag (respectively) of the cpu module’s PSRregister.

The update_carry field and update_super field control the writing of the carry
flag and supervisor flag (respectively) of the cpu module’s PSRregister. If 1
(true ), the flag is modified; otherwise, it is not.

struct trap_pkt {
        Word    trap_num;
        Word    out_reg[8];
        Bool    update_out[8];
        Word    local_reg[8];
        Bool    update_local[8];
        Word    global_reg[8];
        Bool    update_global[8];
        Bool    carry_flag;
        Bool    update_carry;
        Bool    super_flag;
        Bool    update_super;
};
Chapter 6 Message Types 53



54 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 7

Modules

This chapter describes the modules that MPSAS provides, including their purposes

and behavior, as well as any variables that the module defines for accessing the state

of a module instance and the module commands that it offers. Also included are

details on configuration arguments and the module interfaces. For those interested

in the implementation of modules, the source files for each module are listed.

All modules included with MPSAS simulate at the instruction level.

7.1 cmu: Cypress 604/605 Cache and MMU
Module
The cmu (cache/MMU) module simulates the Cypress CY604 and CY605, as

described in SPARC RISC User’s Guide, second edition, February 1990, except for

known errors in that document and the following features, which are not

implemented in the simulation:

■ The write buffer

■ The multichip operation

■ Watchdog, software internal, and software external reset

The write buffer is not implemented; hence, cmu does not generate asynchronous

errors.

cmu contains a SPARC Reference MMU and a virtual cache.
55



7.1.1 Simulated Behavior

cmu accepts memory access requests from a processor module. Depending on the

request and the state of cmu, cmu can interrogate its cache for the data, pass the

request to the Mbus, or handle the request itself. cmu simulates the registers and

functions of the CY604/CY605, except those mentioned in the previous section.

7.1.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ afar — This Word variable contains the asynchronous fault address register.

■ afsr — This Word variable contains the asynchronous fault status register. It is

composed of the following fields: uc , to , be , afa , and afo . Modifying the

asynchronous fault status register performs no functions.

■ ctpr — This Word variable contains the context table pointer register. The least

significant 10 bits must always be set to 0.

■ ctxtr or context — This Word variable contains the context register. Valid

values are from 0 to 4095.

■ dptp — This Word variable contains the data access PTP register. It is composed

of the addr and valid fields.

■ iptp — This Word variable contains the instruction access PTP register. It is

composed of the addr and valid fields.

■ itr — This Word variable contains the index tag register. It is composed of the

itag and dtag fields.

■ mptag — This Word array variable contains the Mbus physical tags for each cache

line (2,048 lines). It is composed of the following fields: tag , sh , m, and v.

■ pvtag — This Word array variable contains the processor virtual tags for each

cache line (2,048 lines). It is composed of the following fields: tag , context , v,

sh , and sup .

■ rpr — This Word variable contains the root pointer register. It is composed of the

addr and valid fields.

■ rr — These Word variables contain the reset register. It is composed of the

following fields: wdr , sir , and ser . The reset functions of the CY604/CY605 are

not simulated, so modifying the reset register performs no function.

■ scr — This Word variable contains the system control register. For the CY604

mode, it is composed of the following fields: impl , ver , mca, mcm, mv, bm, c , cm,

cl , ce , nf , and me. For the CY605 mode, it is composed of the following fields:

impl , ver , mca, mcm, mv, mid , bm, c , mr, cm, ce , nf , and me.
56 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ sfar — This Word variable contains the synchronous fault address register.

■ sfsr — This Word variable contains the synchronous fault status register. It is

composed of the following fields: cbt , uc , to , be , lvl , at , ft , fav , and ow.

■ tlb — This LWord array variable contains the TLB contents. It is composed of the

following fields: va , ctxt , ppn , cacheable , modified , acc , st , and v. There is

one array element for each TLB entry.

■ trcr — This Word variable contains the TLB replacement register. It is composed

of the following fields: rc and irc . These fields are each 8 bits since the cmu
supports up to 256 TLB entries.

7.1.3 Commands

In addition to the base set of commands, the following commands are available for

dealing with instances of this module class. See Universally Available Commands on

page 16 for details on invoking these commands.

■ alias_cnt — This command displays the number of virtual address aliases that

are detected.

■ clstat — This command displays the cache statistics for each line.

■ contexts — This command displays contexts that have any valid virtual-to-

physical address translations.

■ cstat — This command displays statistics that are related to the cache portion of

cmu.

■ lines — This command displays the context, virtual address, physical address,

state, and data of all the valid cache lines. The state is one of EC(Exclusive Clean),

EM(Exclusive Modified), SC (Shared Clean), or SM(Shared Modified).

■ mstat — This command displays statistics related to the MMU portion of cmu.

■ ranges [context] — This command displays the virtual-to-physical address

mapping ranges for context or for the current context (as stored in the context
register) if none is specified.

■ sstat — This command displays the statistics related to the entire cmu module.

■ tables [context] — This command displays the translation tables for context or

for the current context (as stored in the context register) if none is specified.

■ xlate virtual address [user ] — This command displays the physical address

corresponding to virtual address for the current context (as stored in the context
register). It also sets the cmd_result variable of the ui module to the physical

address. The virtual address is treated as a supervisor access unless user is

specified. The translation tables and TLB are used to calculate the physical

address regardless of the current cmu mode.
Chapter 7 Modules 57



7.1.4 Configuration

There are nine interface types: virtual , cache_flush , control_registers ,

local , bypass , diagnostic , mbus_master , mbus_snoop , and cmd_done . The

first six interface types are known as the processor request interfaces and are

described as a group in Interfaces on page 58. The last three interface types are

described individually.

There must be one interface of each of the nine types, except for mbus_snoop . If the

cmu module instance is configured to behave as a CY604, then no mbus_snoop
interfaces are allowed; otherwise (that is, the CY605 operation), one mbus_snoop
interface is required.

Instance Arguments

Following are the instance arguments:

CMU_TYPE604|605 — This mandatory argument specifies whether the cmu module

instance should behave as a CY604 or a CY605.

MID value from 0 to 15 — This mandatory argument specifies the Mbus module ID

cmu uses when it makes requests on the Mbus. The mid field of the SCR is set to the

MID value. The MID for the CY604 must be set to 15.

NUM_TLB_ENTRIESvalue from 1 to 256 — This mandatory argument specifies the

number of TLB entries in the MMU. The actual CY604 and CY605 have 64 entries

each.

Note – The following information about this module is for advanced users.

7.1.5 Interfaces

This section describes the interfaces.
58 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Processor Request Interfaces

The processor request interfaces all handle requests from a processor and support

simulation and debug channel accesses, which use the gen_bus_pkt protocol.

These interfaces use the type , status , asi , vaddr , size , and data fields of the

gen_bus_pkt in the normal way and do not use the extra , routeflg , and paddr
fields.

The type field values known by all processor request interfaces are GEN_BUS_RD,
GEN_BUS_WR, and GEN_BUS_RW. Any other value is a fatal error for the simulation

channel.

cmu can only handle one request at a time to its processor request interfaces. If it

receives a request but is currently processing a previous one, a fatal error occurs for

the simulation channel request.

Virtual Processor Request Interface

The virtual interface handles memory access requests from a processor.

The asi field must be 8, 9, 10, or 11.

A request received on the virtual interface can be handled locally by cmu if the

cache is enabled and a cache hit occurs. Otherwise, one or more Mbus transactions

occur for operations, such as cache line fills, cache flushes, and table walks.

If a request is completed successfully, it is returned to the virtual interface with

status set to GEN_BUS_OK. Otherwise, status is set to GEN_BUS_FAULT, and the

cmu synchronous fault status and address registers contain information about the

fault.

cache_flush Processor Request Interface

The cache_flush interface handles requests to flush a cmu cache line (ASI 0x10 to

0x14 in CY604/CY605). The least significant 4 bits of asi specify a page (0x0),

segment (0x1), region (0x2), context (0x3), or user (0x4) type flush. Other values

cause a fatal error.

The gen_bus_pkt size and data fields are ignored.

When the flush completes, the request is returned to the cache_flush interface,

with status set to GEN_BUS_OK.
Chapter 7 Modules 59



control_registers Processor Request Interface

The control_registers interface handles requests to access the cmu control

registers (ASI 0x4 in the CY604/CY605).

The control registers are words. If size is not 4 bytes, the request is sent back to the

control_registers interface, an error message is displayed, and the simulation is

stopped.

Bits 8 through 15 of vaddr specify the cmu register to access. If they specify an

illegal register address, a message is displayed and the request is returned to the

control_register interface. Otherwise, the specified register is accessed and the

request is returned. In both cases, status is set to GEN_BUS_OK.

local Processor Request Interface

The local interface handles requests to access the Mbus with the Mbus MBL signal

active (ASI 0x1 in CY604/CY605). The cache and MMU are bypassed.

If the Mbus request is completed successfully, the request is returned to the local
interface with status set to GEN_BUS_OK. Otherwise, status is set to

GEN_BUS_FAULTand the cmu synchronous fault status and address registers contain

information about the fault.

bypass Processor Request Interface

The bypass interface handles requests to access the Mbus (ASI 0x20 to 0x2f in

CY604/CY605). The least significant 32 bits of vaddr are copied to the least

significant 32 bits of paddr . Bits 32 through 35 of paddr are set to bits 0 through 3 of

asi . The cache and MMU are bypassed.

If the Mbus request is completed successfully, the request is returned to the bypass
interface with status set to GEN_BUS_OK. Otherwise, status is set to

GEN_BUS_FAULTand the cmu synchronous fault status and address registers contain

information about the fault.

diagnostic Processor Request Interface

The diagnostic interface handles requests to access the cmu diagnostic facilities.

A write to ASI 0x3 causes a TLB flush (size and data fields ignored). A read to ASI

0x3 causes a TLB probe (size must be 4 bytes). An access to ASI 0x6 accesses the

TLB entries (size must be 4 bytes). An access to ASI 0xe accesses the cache virtual

and physical address tags (size must be 4 bytes). An access to ASI 0xf accesses the

cache data (size must be from 1 to 8 bytes).
60 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



When the access is complete, the request is returned to the diagnostic interface

with status set to GEN_BUS_OK.

mbus_master

The mbus_master interface issues requests to access Mbus slaves and supports

simulation and debug channel accesses. The mbus_master interface uses the

gen_bus_pkt protocol. It uses the type , status , asi , paddr , size , and data
fields of gen_bus_pkt in the normal way and does not use the vaddr field. The

routeflg contains the mbus multiplexed signals. The extra field contains the

mbus physical signals (for responses only).

If the mbus physical signals indicate that a slave is busy (RETRYor RELENQUISHand

RETRY), the request is returned to the mbus_master interface.

cmu sets the mid field of the multiplexed signals to the mid field of the SCR on each

request that it initiates.

If cmu needs to lock the Mbus, it sets the keep_bus field in the multiplexed signals

to 1. If it turns out that the cmu does not need to lock the Mbus, such as if the

current transaction fails, it sends a request to the mbus_master interface with the

gen_bus_pkt type set to GEN_BUS_REFand the keep_bus field set to 0.

mbus_snoop

The mbus_snoop interface handles requests to snoop the cmu cache and supports

simulation and debug channel accesses. This interface uses the gen_bus_pkt
protocol and the type , paddr , size , and data fields of the gen_bus_pkt in the

normal way, but does not use the status , asi , and vaddr fields. The extra field

contains the mbus physical signals. The routeflg contains the mbus multiplexed

signals.

After cmu performs the requested snoop, it returns the request to the mbus_snoop
interface. It sets the msh and mih fields of the physical signals appropriately. If mih
is set, cmu also loads the cache line being snooped into the gen_bus_pkt data
field.

cmd_done

The cmd_done interface notifies the user interface that a cmu user command is

complete. It supports only debug channel accesses. cmu sends to this interface only

and does not receive requests. The cmd_done interface uses the no_data protocol.
Chapter 7 Modules 61



Source Files

The source files are:

■ mbus/cmu.c — The source for the module, but not cache and MMU submodules

■ mbus/cmu.h — Private declarations for the module

■ mbus/cmu_cache.c — The source for the cache submodule

■ mbus/cmu_cache.h — Private declarations for the cache submodule

■ mbus/cmu_mmu.c — The source for the reference MMU submodule

■ mbus/cmu_mmu.h — Private declarations for the MMU submodule

■ mbus/cmu_ui.c — Commands for the cmu module (but not submodules)

■ mbus/srmmu.h — Declarations for any reference MMU

7.2 cpu : SPARC Processor Module
The cpu module simulates a SPARC IU and supports SPARC architecture version 7

or version 8 operations. We recommend that you use the fcpu module instead of the

cpu module because fcpu offers approximately two times higher performance than

cpu and several enhancements. The cpu module source is in the MPSAS source tree

but is not compiled.

7.2.1 Simulated Behavior

The cpu module has three pipeline stages: fetch, execute, and writeback.

■ The fetch stage is used when prefetching is performed. It stores the extra

instruction that is prefetched. When cpu attempts to access the next instruction, it

firsts looks in the fetch stage to see the instruction has already been prefetched.

■ The execute stage performs the read and execute stages of a typical SPARC

processor. When an instruction is received from memory, it is put in the read

stage.

■ The writeback stage writes the result of an executed instruction into the register

file.

The cpu module supports the following features:

■ External interrupts

■ Communication with an FPU and a coprocessor

The cpu module has no ancillary state registers (ASRs) and does not include a cache

or MMU.
62 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.2.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ active — This Bool variable indicates whether cpu is active, which means that

it will fetch instructions for execution. It is true by default.

■ annulled_count — This read-only Word variable keeps track of the number of

instructions cpu annuls.

■ cycles — This read-only Word variable keeps track of the number of cycles cpu
executes.

■ executed_count — This read-only Word variable keeps track of the number of

instructions the cpu executes.

■ fetch , execute , write — These Word variables contain the pipeline stage

information of the corresponding name. Each pipeline stage contains a processor

unit (p-unit ), which has the following members:

■ annulled — The flag that indicates whether the instruction is annulled

■ instr — The instruction in the pipeline stage

■ cwp — The current window pointer

■ pc — The PC that corresponds to the instruction

■ r1 — The RS1 value

■ r2 — The RS2 or immediate value

■ trap_num — The trap number if trapped is set

■ trapped — The flag that indicates whether a trap is taken

■ wr — The value to write back

If a stage is empty, the text empty stage is displayed.

■ flags — This Word variable contains fields that indicate what type of instruction

is being executed. The fields are:

■ co_load — Performing a coprocessor load instruction

■ co_store — Performing a coprocessor store instruction

■ csr_cc — Performing a CSR condition code instruction

■ csr_rw — Performing a CSR read or write instruction

■ doing_coproc — Performing a coprocessor operation

■ doing_float — Performing a floating-point operation

■ fetch — Fetching an instruction

■ float_load — Performing a floating-point load instruction

■ float_store — Performing a floating-point store instruction

■ fsr_cc — Performing an FSR condition code instruction

■ fsr_rw — Performing a Floating-point Status Register (FSR) read or write

instruction

■ load — Any type of load instruction

■ store — Any type of store instruction
Chapter 7 Modules 63



■ Integer Unit (IU) registers — The following Word variables contain the value of

their respective SPARC registers:

pc npc y i< 0-7> o<0-7> l< 0-7> g<0-7> psr tbr wim sp f p cc

sp (stack pointer) and fp (frame pointer) are equivalent to l6 and l7 ,

respectively.

When the value of a window register is printed, the current window is assumed

unless (window number) is appended to the variable name. For example, i0(4 )

displays i0 for window 4.

The fields for the psr and tbr registers can be accessed individually by name.

The psr fields are impl , ver , ec , ef , pil , s , ps , et , and cwp. The variable cc is

the icc field of the PSR. Each bit can be accessed individually as follows: n, z , v,

and c . The tbr fields are tba and tt .

■ irl — This Byte variable contains the current interrupt request level (IRL ) (0 to

15).

■ latest_instr — This read-only Word variable contains the latest instruction

that entered the execute stage.

■ latest_instr_addr — This read-only Word variable contains the address of

the latest instruction that entered the execute stage.

■ latest_mem_addr — If latest_mem_addr_valid is set, this read-only Word
variable contains the address of the latest memory access or the CTI target

address.

■ latest_mem_addr_valid — This read-only Bool variable indicates whether

the variable latest_mem_addr has a valid value. It becomes valid when a load,

store, or CTI instruction finishes executing in the execute stage.

■ latest_mem_data — If latest_mem_data_size is nonzero, this read-only

LWord variable contains the data for the latest memory access.

■ latest_mem_data_size — This read-only Byte variable contains the data size

for the latest memory access.

■ latest_trap_instr — This read-only Word variable contains the latest

instruction that caused a trap.

■ latest_trap_num — This read-only Byte variable contains the trap number of

the latest trap.

■ latest_trap_pc — This read-only Word variable contains the PCof the

instruction that caused the latest trap.

■ ls_debug — This Bool variable indicates whether to print debug statements

regarding loads and stores the cpu module performs.

■ nwins — This read-only Word variable contains the number of register windows

and is set by the NUM_REGISTER_WINDOWSconfiguration file argument.
64 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ prefetch — This Bool variable indicates whether prefetch is enabled. It is

controlled by the PREFETCHconfiguration file argument.

■ sanitycheck — If this Bool variable is true , then when the save instruction is

executed in supervisor mode, a check ensures that a subsequent overflow does

not write to a supervisor area that does not exist. A message is displayed if there

is a conflict.

■ stop_on_reset — This Bool variable controls whether the simulation should

stop when a reset trap occurs. It is true by default.

■ trap_count — This read-only Word variable keeps track of the number of traps

taken.

■ trap_instr — When a trap is taken, this read-only Word variable contains the

instruction.

■ trap_npc — When a trap is taken, this read-only Word variable contains the

address that is written into local2 (%l2 ) for the trap handler.

■ trap_pc — When a trap is taken, this read-only Word variable contains the

address of the instruction that is written into local1 (%l1 ) for the trap handler.

■ trap_type — This Byte variable contains the trap type when a trap is taken.

■ watchfetch , watchexecute , watchwrite — These Byte variables, if nonzero,

indicate whether or how to display the corresponding pipeline stage contents

each cycle. They can be set to one of the following:

■ 0 — Does not display the stage

■ 1 — Prints the instruction in the stage

■ 2 — Displays the entire p-unit contents for the stage

If the pipeline stage is empty, nothing is displayed.

■ watchallstages — This Byte variable, if nonzero, indicates whether or how to

print the contents of all the three pipeline stages (fetch, execute, and write) each

cycle. They can be set to one of the following:

■ 0 — Does not display the stage

■ 1 — Prints the instruction in the stage

■ 2 — Displays the entire p-unit contents for the stage

7.2.3 Commands

In addition to the base set of commands, the following commands are available for

dealing with instances of this module class. See Universally Available Commands on

page 16 for details.
Chapter 7 Modules 65



■ accesses [asi]

This command displays statistics about the cpu accesses over its master
interfaces. If asi is specified, only statistics for that ASI are displayed; otherwise,

all ASIs with a master interface are displayed with the number of reads, writes,

read-modify-writes, and references.

■ allstages

This command displays the contents of the fetch, execute, and write stages of the

pipeline.

■ breakpoint [add address | delete number]

This command manages the fast breakpoint facility, as follows:

■ breakpoint — Shows all current breakpoints

■ breakpoint add address — Creates a new breakpoint

■ breakpoint delete number — Deletes the specified breakpoint

If a breakpoint occurs, the simulation is stopped before that instruction is

executed. This command offers lower overhead than the when command as a

breakpoint (for example, when cpu1.pc == address {stop }). breakpoint stops

only if the instruction at address will be executed; when stops even if the

instruction is annulled.

If a breakpoint is set on the first instruction of a function, the stack backtrace

displayed by the where command may list the wrong caller function. This error

occurs because of pipeline effects and does not occur when the pipeline is

disabled. To see the correct caller function, step one cycle and invoke the where
command again.

The cmd_result variable of the ui module is set to the breakpoint number that

is created when the add option is specified.

■ globals

This command displays the global registers.

■ ins [window number]

This command displays the in registers. If window number is specified (for

example, ins 4 ), the in registers for that window are displayed. Otherwise, the

current window registers are displayed.

■ itrace [ [ -v ] [ –l count ] | showsize | bufsize ]

This command manages the instruction trace facility. After instructions (including

annulled instructions and instructions that cause traps) are executed, they are

placed in a circular buffer. With no arguments, itrace shows the contents of the

buffer in the order the instructions were executed. If -v is specified, a more

verbose display is produced. If -l is specified, the most recent count instruction is

displayed. If showsize is specified, the size of the buffer is displayed. If bufsize is
66 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



specified (a 32-bit integer expression), the instruction buffer is set to bufsize
instructions. bufsize defaults to zero, in which case no instruction tracing is

performed.

■ locals [window number]

This command displays the local registers. If window number is specified, (for

example, locals 4 ), the local registers for that window are displayed.

Otherwise, the current window registers are displayed.

■ outs [window number]

This command displays the out registers. If window number is specified (for

example, outs 4 ), the out registers for that window are displayed. Otherwise,

the current window registers are displayed.

■ profile [ create base limit granularity | delete | enable | disable
| clear | summary ]

This command manages the profile facility. A profile keeps counts of load or store

references to memory ranges. When a profile is created, base and limit (low and

high) virtual addresses to examine are specified. granularity specifies the number

of bytes each counter covers. The profiling is enabled when first created, and

commands exist to enable and disable the gathering of the counts. The summary

displays the value of all nonzero counters. If profile has no parameters, the

current state of the profile is displayed.

■ read [-asi asi] inst|lword|word|hword|byte address count

This command causes cpu to perform a load (read memory), starting at address
and displaying count of one of the following:

■ inst — Disassembled instruction

■ lword — A long (double) word

■ word — A word

■ hword — A halfword

■ byte — A byte
Chapter 7 Modules 67



If asi is not specified, read sets it according to TABLE 7-1 to mimic the default asi
generated by the SPARC processor for its memory references. The word data
under the Type column represents all types, except inst (that is, lword , word ,

hword , and byte ).

If asi is specified, read overrides the asi calculated in the table.

■ regs [window number]

This command displays all the processor registers, which are pc , npc , ins , outs ,

locals , globals , psr , tbr , sp , fp , wim, and y. If window number is specified (for

example, regs 4 ), the registers for that window are displayed. Otherwise, the

current window registers are displayed.

■ step [count]

This command causes the simulation to run for a number of instructions. If count
is omitted, step defaults to one. The cpu pipeline must be disabled with the

PIPELINE configuration file argument, and the cpu active variable must be

true .

■ write [-asi asi] inst|lword|word|hword|byte address data[, data]

This command causes cpu to perform a store (write memory), starting at

address and storing data. data can be in the following formats:

■ inst — A word

■ lword — A double word

■ word — A word

■ hword — A halfword

■ byte — A byte

write handles asi in the same manner as read does.

■ where [max number of stackframes]

This command displays the entire stack backtrace or only the specified number of

stack frames. It makes some assumptions about the register and register window

usage of the program that runs on cpu . If the program does not support stack

frames, where produces incorrect results.

TABLE 7-1 Default asi Values

PSR.S Type asi

0 data 0xa (user data)

0 inst 0x8 (user instruction)

1 data 0xb (supervisor data)

1 inst 0x9 (supervisor instruction)
68 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.2.4 Configuration

The cpu interfaces are master , null_master , trap , interrupt , fpu , coproc , and

cmd_done . There must be one null_master , one cmd_done , and one interrupt
interface. There can be 0 to 256 master interfaces (up to 1 for each ASI), 0 to 128

trap (for trap numbers 128–255) interfaces, 1 fpu interface, and 1 coproc interface.

Instance Arguments

Following are the instance arguments.

■ NUM_REGISTER_WINDOWSnumber of register windows

This mandatory argument specifies the number of register windows for the cpu
instance. Valid values are 1 to 16.

■ IMPLEMENTATIONprocessor implementation value

This mandatory argument specifies the architecture implementation. Its value is

used in the impl field of the PSR. Valid values are 0 to 15.

■ VERSIONprocessor version value

This mandatory argument specifies the processor version number. Its value is

used in the ver field of the PSR. Valid values are 0 to 15.

■ PREFETCH enabled | disable d

This mandatory argument specifies whether to enable instruction prefetch in the

cpu pipeline. The fetch stage is used only when prefetching is performed.

■ INITIAL_REG_VALUE 32-bit value

This mandatory argument specifies the value to which all the cpu registers are

initialized.

■ PIPELINE enabled | disabled

This optional argument specifies whether to enable the cpu pipeline. If the

pipeline is disabled, cpu executes only one instruction to completion at a time.

The pipeline must be disabled to enable the step command. The default value is

disabled.

■ DELAYED_WRITE_INSTRUCTION_COUNTcount

This optional argument specifies the number of instructions to wait before the

writing of delayed-write registers. It is an integer from 0 to 3. By default, if the

pipeline is enabled, the count is set to 3; if the pipeline is disabled, it is set to 0.
Chapter 7 Modules 69



■ NEG_RESULT_OVERFLOW_METHOD 0 | 1

This optional argument is only used if the SDIV or SDIVcc instructions are valid.

The value specified indicates which negative result overflow detection method to

use, as follows:

■ 0 indicates use of the following negative result overflow detection method:

result < (–2**31).

■ 1 indicates use of the following negative result overflow detection method:

result < (–2**31 with a remainder of 0).

See The SPARC Architecture Manual/Version 8 for more details on these methods.

If you do not specify the following optional arguments in the configuration file, the

default value for each is implemented . If you specify any of them as

unimplemented and that instruction is then executed, an illegal_instruction
trap occurs.

■ SMUL_INSTR implemented | unimplemented
■ SMULcc_INSTR implemented | unimplemented
■ UMUL_INSTR implemented | unimplemented
■ UMULcc_INSTR implemented | unimplemented
■ SDIV_INSTR implemented | unimplemented
■ SDIVcc_INSTR implemented | unimplemented
■ UDIV_INSTR implemented | unimplemented
■ UDIVcc_INSTR implemented | unimplemented

Master Interface Arguments

Only one master interface argument applies:

ASI asi range — This mandatory argument specifies the ASIs for which the master

interface handles cpu requests. asi range can be a single value or a range of values

from 0 to 255.

For example, ASI 0-3 7-8 specifies ASIs 0, 1, 2, 3, 7, and 8.

Trap Interface Arguments

Only one trap interface argument applies:

TRAPtrap range — This mandatory argument specifies traps that are to be considered

external and handled by the corresponding interface. trap range is a range of values

from 128 to 255. When an external trap is taken, it is handled by the module to

which the trap interface is connected; otherwise, the trap is executed normally.

For example, TRAP 200-202 specifies that when trap 200, 201, or 202 occurs, it is

handled by the associated interface.
70 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Note – The following information about this module is for advanced users.

7.2.5 Interfaces

This section describes the interfaces.

master

The master interface issues requests to the memory subsystem. There can be 0 to

256 master interfaces (up to 1 for each ASI). This interface supports simulation and

debug channel accesses.

The master interface type uses gen_bus_pkt , the generic bus packet protocol,

which is used by the cpu to perform fetches, loads, and stores.

Requests

Each gen_bus_pkt sent represents a single request to memory, where type is one

of GEN_BUS_WR, GEN_BUS_RD, or GEN_BUS_RW. status is set to GEN_BUS_OK; the

vaddr , size , and asi fields identify the address of the request to be copied to or

read from the data field of the packet. paddr is set to the same value as the vaddr .

The routeflg and extra fields are not used.

Responses

The master interface receives responses from the memory subsystem. If status is

GEN_BUS_OK, the memory response was successful. If status is GEN_BUS_FAULT
or GEN_BUS_BUSY, cpu takes a trap. The type of trap depends on the operation cpu
was performing.

null_master

There must be one null_master interface, which supports simulation and debug

channel accesses.

The null_master interface handles the requests for the ASIs that were not

configured with the master interface. For example, if only master interfaces for

ASIs 0–127 are configured, then any request to an ASI in the range 128–255 are sent
Chapter 7 Modules 71



to the null_master interface. null_master should be connected to itself. When

null_master receives a request, it prints out a message to indicate that a request

was sent to a null interface and the simulation stops.

trap

The trap interface handles external traps—traps that should be handled by other

modules). It sends a trap packet (trap_pkt ) when an external trap occurs and

handles the response. There can be 0 to 128 trap interfaces. Only simulation channel

accesses are supported.

Requests

The trap interface sends a trap_pkt for an external trap. It uses the fields

trap_num , out_reg , local_reg , global_reg , and carry_flag in the normal

way and sets the fields update_out , update_local , update_global , and

update_carry to false .

Responses

The trap interface receives responses for external traps. If any of the update_out ,

update_local , and update_global flags are set, the appropriate register in the

current window is overwritten with the field that corresponds to the flag. If the

update_carry flag is set, the PSR carry bit is overwritten with the value in

carry_flag .

interrupt

The interrupt interface handles external interrupts. There must be one

interrupt interface, which supports only simulation channel accesses. It uses the

gen_int_pkt protocol.

cpu does not send from this interface; instead, it receives external interrupt requests.

Only the irl field is read into the cpu state to take the interrupt.

fpu

There can be zero or one fpu interface. The fpu interface handles requests to the

Floating Point Unit (FPU) and its responses. It supports only simulation channel

accesses and uses the FPU packet (fpu_pkt ) protocol.
72 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Requests

cpu sends a request to the fpu interface when it needs to handle FPU data. The

request types are as follows:

■ Read or write a floating-point register

■ Read or write the floating-point status register

■ Read or write the floating-point queue

■ Read the floating-point condition codes

The type field of the fpu_pkt indicates the type of request and is set to one of the

following values: RDFREG, RDFSR, RDFPQ, WRFREG, WRFSR, WRFPQ, or RDFCC.

Responses

The fpu interface receives the response from the FPU. The status field of the

fpu_pkt indicates whether a floating-point exception occurred.

coproc

There can be one coproc interface, which handles requests and responses from the

coprocessor and supports only simulation channel accesses. It uses the coprocessor

packet (coproc_pkt ) protocol.

The behavior is the same as that of the fpu interface, but with coproc instructions.

cmd_done

There must be one cmd_done interface, which cpu uses to notify the user interface

that a cpu user command is complete. It only supports the debug channel and sends

to this interface but never receives requests. The cmd_done interface uses the

no_data protocol.

7.2.6 Source Files

All the files associated with this module are in the sparc/cpu directory, as follows:

■ cpu.h — State and register declarations

■ cpu_asr.c — ASR handling routines

■ cpu_cache.c — Routine that handles the FLUSHinstruction

■ cpu_execute.c — Routines that execute most of the IU instructions

■ cpu_float.c — Routines that execute coprocessor and FPU instructions
Chapter 7 Modules 73



■ cpu_load_store.c — Routines that execute loads and stores

■ cpu_module.c — Routines that configure the cpu module, most ui commands,

fetch stage routines, and read stage routines

■ cpu_trap.c — Trap handling routines

■ cpu_window_reg.c — Routines that handle the cpu_window_reg access class

■ cpu_window_register.h — Structure that handles the cpu_window_reg
access class

■ cpu_arch_trap.h — Trap types definitions

■ cpu_globals.h — Prototypes for all cpu global routines

■ cpu_register.h — Macros that handle register operations

■ cpu_sparc.h — Macros that decode SPARC instructions

7.3 fcpu : Fast SPARC Processor Module
The fcpu module simulates a fast SPARC IU. It supports the SPARC architecture

version 7 or version 8 operation.

7.3.1 Simulated Behavior

The fcpu module has no pipeline stages, which is the basis for its performance

advantage over the cpu module.

The fcpu module supports the following features:

■ External interrupts

■ Communication with an FPU

■ One instruction prefetch

The fcpu module has no ASRs and does not include a cache or MMU. It does not

support a coprocessor.
74 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.3.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

These memory variables provide access to the virtual address space as seen by the

fcpu module. They are similar to the similarly named memory variables in the ram
and rom modules, except that they accept an optional fourth parameter: the ASI. If

the ASI is not specified, it is set according to TABLE 7-2.

When these memory variables are used in commands, such as print , the fcpu
module sends debug channel messages to the memory on its master interfaces to

read or write the required data.

■ annul

If this Bool variable is true, the next instruction to be executed is annulled.

■ annulled_count

This read-only Word variable keeps track of the number of instructions annulled

by fcpu .

■ exec

This Group variable contains information on the instruction being executed. The

exec members are:

■ instr — Word that contains the instruction

■ pc — Word that contains the address of the instruction

■ cycle — Word that contains the cycle instruction that completed the execution

■ annulled — Bool that is set to true if the instruction was annulled

lwords bytes

words chars

instructions doubles

hwords floats

TABLE 7-2 Default Memory Variable asi Values

PSR.S Type asi

0 data 0xa (user data)

0 inst 0x8 (user instruction)

1 data 0xb (supervisor data)

1 inst 0x9 (supervisor instruction)
Chapter 7 Modules 75



■ trapped — Bool that is set to true if the instruction caused a trap

■ trap_num — Byte that contains the trap number if trapped true

■ executed_count

This read-only Word variable keeps track of the number of instructions executed

by fcpu .

■ ext_trap_pending

This read-only signed Word variable contains the trap number if fcpu is waiting

for an external trap to complete; –1 otherwise.

■ external_count

This read-only Word variable keeps track of the number of external traps taken.

■ fpu_ea

This Word variable contains the effective address for an FPU load or store

operation.

■ fpu_Wtmp

This Word variable stores 32 bits of a 64-bit FPU register access.

■ IU registers

The following Word variables contain the value of their respective SPARC

registers.

pc npc y i< 0-7> o<0-7> l< 0-7> g<0-7> psr tbr wim sp f p cc

sp (stack pointer) and fp (frame pointer) are equivalent to l6 and l7, respectively.

When the value of a window register is printed, the current window is assumed

unless ( window number) is appended to the variable name. For example, i0(4 )

displays i0 for window 4.

The fields for the psr and tbr registers can be accessed individually by name.

The PSRfields are impl , ver , ec , ef , pil , s , ps , et , and cwp. The variable cc is

the icc field of the PSR. Each of its bits can be accessed individually as follows:

n, z , v, and c . The tbr fields are tba and tt .

■ intr_count

This read-only Word variable keeps track of the number of asynchronous traps

(that is, interrupts) that are taken.

■ irl

This Byte variable contains the current interrupt request level (0 to 15).

■ latest_instr

This read-only Word variable contains the latest instruction that began execution.
76 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ latest_instr_addr

This read-only Word variable contains the address of the latest instruction that

began execution.

■ latest_mem_addr

If latest_mem_addr_valid is set, this read-only Word variable contains the

address of the latest memory access or CTI target address.

■ latest_mem_addr_valid

This read-only Bool variable indicates whether the variable latest_mem_addr
has a valid value. This variable becomes valid when a load, store, or CTI

instruction finishes executing.

■ latest_mem_data

If latest_mem_data_size is nonzero, this read-only LWord variable contains

the data for the latest memory access.

■ latest_mem_data_size

This read-only Byte variable contains the data size for the latest memory access.

■ latest_trap_instr

This read-only Word variable contains the latest instruction that caused a trap.

■ latest_trap_num

This read-only Byte variable contains the trap number of the latest trap.

■ latest_trap_pc

This read-only Word variable contains the PCof the instruction that caused the

latest trap.

■ master_rcv_routine

This read-only Byte variable specifies the type of memory response fcpu is

expecting. The response types are:

■ 0 — No response expected

■ 1 — Expecting an instruction fetch response

■ 2 — Expecting an IU load or atomic load or store response

■ 3 — Expecting an FPU load response

■ 4 — Expecting a store response (IU or FPU)

■ nwins

This read-only Word variable contains the number of register windows and is set

by the NUM_REGISTER_WINDOWSconfiguration file argument.

■ prefetch
Chapter 7 Modules 77



This Bool variable indicates whether the one instruction prefetch is enabled. It

defaults to the value specified by the PREFETCHconfiguration file argument; if

that argument is not present, to true .

■ prefetch_instr

This Word variable contains the prefetched instruction when prefetch_valid is

true .

■ prefetch_instr_pc

This Word variable contains the address of the prefetched instruction when

prefetch_valid is true .

■ prefetch_valid

This Bool variable is true if the prefetch buffer contains an instruction.

■ sanitycheck

If this Bool variable is true , then when the save instruction is executed in

supervisor mode, sanitycheck checks to ensure that a subsequent overflow

does not write to a supervisor area that does not exist. A message is displayed in

case of conflict.

■ stop_on_reset

This Bool variable controls whether the simulation stops when a reset trap

occurs. It is true by default.

■ trap_count

This read-only Word variable keeps track of the number of synchronous traps

taken.

■ watchexec

If this Bool variable is true , instructions are displayed after execution.

■ watchexternal

If this Bool variable is true , a message is displayed when external traps are

taken.

■ watchintr

If this Bool variable is true , a message is displayed when asynchronous traps

(that is, interrupts) are taken.

■ watchtrap

If this Bool variable is true , a message is displayed when synchronous traps are

taken.
78 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.3.3 Commands

In addition to the base set of commands, the following commands are available for

dealing with instances of this module class. See Universally Available Commands on

page 16 for details on invoking these commands.

■ accesses [asi]

This command displays statistics about the fcpu accesses over its master
interfaces. If asi is specified, it displays only the statistics for that ASI; otherwise,

it displays all ASIs with a master interface. It also shows the number of reads,

writes, read-modify-writes, and references.

■ breakpoint [add address | delete number]

This command manages the fast breakpoint facility, as follows:

■ breakpoint — Shows all current breakpoints.

■ breakpoint add address — Creates a new breakpoint.

■ breakpoint delete number — Deletes the specified breakpoint.

If a breakpoint occurs, the simulation is stopped before that instruction is

executed. This command offers lower overhead than using the when command as

a breakpoint (for example, when fcpu1.pc == address {stop }). breakpoint stops

only if the instruction at address will be executed; when still stops even if the

instruction is annulled.

The cmd_result variable of the ui module is set to the breakpoint number that

is created when the add option is specified.

■ globals

This command displays the global registers.

■ ins [window number]

This command displays the in registers. If window number is specified (for

example, ins 4 ), ins displays the in registers for that window. Otherwise, it

displays the current window registers.

■ itrace [ –l count | showsize | bufsize ]

This command manages the instruction trace facility. After instructions are

executed, including annulled instructions and instructions that cause traps, they

are placed in a circular buffer. With no arguments, itrace shows the contents of

the buffer in the order the instructions were executed. If –l is specified, itrace
displays the most recent count instructions. If showsize is specified, itrace
displays the size of the buffer. If bufsize (a 32-bit integer expression) is specified,

itrace sets the instruction buffer to bufsize instructions. Bufsize defaults to zero,

that is, no instruction tracing is performed.
Chapter 7 Modules 79



The commands in the itrace buffer are displayed in the following format:

( cycle): label : instruction

where:

■ cycle is the cycle count when the instruction completed execution.

■ label is a symbolic representation of the instruction address.

■ instruction is the disassembled instruction.

■ locals [window number]

This command displays the local registers. If window number is specified (for

example, locals 4 ), locals displays the local registers for that window.

Otherwise, it displays the current window registers.

■ outs [window number]

This command displays the out registers. If window number is specified (for

example, outs 4 ), outs displays the out registers for that window. Otherwise, it

displays the current window registers.

■ profile [ create base limit granularity | delete | enable | disable
| clear | summary ]

This command manages the profile facility. A profile keeps counts of load or store

references to memory ranges. When a profile is created, the base and limit (low

and high) virtual addresses to examine are specified. granularity specifies the

number of bytes each counter covers. The profiling is enabled when first created,

and commands exist to enable and disable the gathering of the counts. The

summary displays the value of all nonzero counters. If profile is specified with

no parameters, it displays the current state of the profile.

■ read [-asi asi] inst|lword|word|hword|byte address count

This command causes fcpu to perform a load (read memory), starting at

address and displaying count of one of the following:

■ inst — A word

■ lword — A double word

■ word — A word

■ hword — A halfword

■ byte — A byte

If asi is not specified, read sets it according to TABLE 7-1 on page 68 to mimic the

default asi generated by the SPARC processor for its memory references.

If asi is specified, it overrides the asi calculated in the table.
80 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ regs [window number]

This command displays all the processor registers, which are pc , npc , ins , outs ,

locals , globals , psr , tbr , sp , fp , wim, and y. If window number is specified (for

example, regs 4 ), regs displays the registers for that window. Otherwise, it

displays the current window registers.

■ start

This command starts the fcpu module. Use it only if the MANUAL_START
keyword is specified in the module configuration file entry.

■ step [count]

This command causes the simulation to run for a number of instructions. If count
is omitted, step defaults to 1.

■ where [max number of stackframes]

This command displays the entire stack backtrace or only the specified number of

stack frames. It makes some assumptions about the register and register window

usage of the program that runs on fcpu . If the program does not support stack

frames, where produces incorrect results.

■ write [-asi asi] inst|lword|word|hword|byte address data[, data]

This command causes fcpu to perform a store (write memory) starting at

address and storing data as specified. data can be in the following formats:

■ inst — A word

■ lword — A double word

■ word — A word

■ hword — A halfword

■ byte — A byte

write handles asi in the same manner as read .

7.3.4 Configuration

The fcpu interfaces are master , trap , master_access , interrupt , fpu , and

cmd_done . There must be one cmd_done and one interrupt interface. There can

be 0 to 256 master interfaces (up to 1 for each ASI), 0 to 128 trap (for trap numbers

128–255) interfaces, any number of master_access interfaces, and 1 fpu interface.

Instance Arguments

Following are the instance arguments.
Chapter 7 Modules 81



■ NUM_REGISTER_WINDOWSnumber of register windows

This mandatory argument specifies the number of register windows for this fcpu
instance. Valid values are 1 to 16.

■ IMPLEMENTATIONprocessor implementation value

This mandatory argument specifies the architecture implementation. value is used

in the impl field of the PSR. Valid values are 0-15.

■ VERSIONprocessor version value

This mandatory argument specifies the processor version number. value is used in

the ver field of the PSR. Valid values are 0-15.

■ PREFETCH enabled | disable d

This mandatory argument specifies whether to enable instruction prefetch in the

fcpu pipeline. Prefetching can be enabled or disabled during the simulation with

the fcpu prefetch variable.

■ INITIAL_REG_VALUE 32-bit value

This mandatory argument specifies the value to which all the fcpu registers are

initialized.

■ MANUAL_START

If this argument is specified, fcpu does not start fetching instructions until you

execute the start command. If this argument is omitted, fcpu starts fetching

instructions when the simulation is started.

■ DELAYED_WRITE_INSTRUCTION_COUNTcount

This optional argument specifies the number of instructions to wait before the

writing of delayed-write registers. It is an integer from 0 to 3. By default, if the

pipeline is enabled, the count is set to 3; if the pipeline is disabled, it is set to 0.

■ NEG_RESULT_OVERFLOW_METHOD 0 | 1

This optional argument is used only if the SDIV or SDIVcc instructions are valid.

The value specified indicates which negative result overflow detection method to

use, as follows:

■ 0 indicates to use the following negative result overflow detection method:

result < (–2**31).

■ 1 indicates to use the following negative result overflow detection method:

result < (–2**31 with a remainder of 0).

See The SPARC Architecture Manual/Version 8 for more details on these methods.
82 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



If you specify any of the above arguments as unimplemented and that instruction is

then executed, an illegal_instruction trap occurs. If you do not specify the

following optional arguments in the configuration file, the default value for each is

implemented . If you specify any of them as unimplemented and then execute that

instruction, an illegal_instruction trap occurs.

■ SMUL_INSTR implemented | unimplemented
■ SMULcc_INSTR implemented | unimplemented
■ UMUL_INSTR implemented | unimplemented
■ UMULcc_INSTR implemented | unimplemented
■ SDIV_INSTR implemented | unimplemented
■ SDIVcc_INSTR implemented | unimplemented
■ UDIV_INSTR implemented | unimplemented
■ UDIVcc_INSTR implemented | unimplemented

Master Interface Arguments

Only one master interface argument applies:

ASI asi range — This mandatory argument specifies the ASIs for which the master

interface that handles cpu requests. asi range can be a single value or a range of

values from 0 to 255.

For example, ASI 0-3 7-8 specifies ASIs 0, 1, 2, 3, 7, and 8.

Trap Interface Arguments

Only one trap interface argument applies:

TRAPtrap range — This mandatory argument specifies traps that are to be considered

external and handled by the corresponding interface. trap range is a range of values

from 128 to 255. When an external trap is taken, it is handled by the module to

which the trap interface is connected; otherwise, the trap is executed normally.

For example, TRAP 200-202 specifies that when trap 200, 201, or 202 occurs, it is

handled by the associated interface.

Note – The following information about this module is for advanced users.
Chapter 7 Modules 83



7.3.5 Interfaces

This section describes the interfaces.

master

The master interface issues requests to the memory subsystem. There can be 0 to

256 master interfaces (up to 1 for each ASI). It supports simulation and debug

channel accesses.

The master interface type uses gen_bus_pkt , the generic bus packet protocol,

which is used by the fcpu to perform fetches, loads and stores.

Requests

Each gen_bus_pkt sent represents a single request to memory, where type is one

of GEN_BUS_WR, GEN_BUS_RD, or GEN_BUS_RW. status is set to GEN_BUS_OK; the

vaddr , size , and asi fields identify the address of the request to be copied to or

read from the data field of the packet. paddr is set to the same value as the vaddr .

The routeflg and extra fields are not used.

Responses

The master interface receives responses from the memory subsystem. If status is

GEN_BUS_OK, the memory response was successful. If status is GEN_BUS_FAULT
or GEN_BUS_BUSY, cpu takes a trap. The type of trap depends on the operation cpu
was performing.

trap

The trap interface handles external traps—traps that should be handled by other

modules. It sends a trap packet (trap_pkt ) when an external trap occurs and

handles the response. There can be 0 to 128 trap interfaces. The trap interface

supports only simulation channel accesses.

Requests

The trap interface sends a trap_pkt for an external trap. It uses the fields

trap_num , out_reg , local_reg , global_reg , and carry_flag in the normal

way and sets the fields update_out , update_local , update_global , and

update_carry to false.
84 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Responses

The trap interface receives responses for external traps. If any of the update_out ,

update_local , and update_global flags are set, the appropriate register in the

current window is overwritten with the field that corresponds to the flag. If the

update_carry flag is set, the PSR carry bit is overwritten with the value in

carry_flag .

master_access

The master_access interface handles requests by other modules to perform debug

channel accesses to the memory subsystem as seen by the fcpu module. When the

fcpu module receives a message on the master_access interface, it accesses its

memory subsystem through its master interfaces and performs the required access.

The message is returned to the sender with the request completed.

The gen_bus_pkt protocol is used. The vaddr field specifies the virtual address to

access. The size field specifies the number of bytes to transfer. The type field

specifies the type of access. The asi field specifies the ASI of the access. The data
field transfers the data to or from the memory.

If an error occurs, the gen_bus_pkt status field is set to GEN_BUS_FAULT.

interrupt

The interrupt interface handles external interrupts. There must be one

interrupt interface, which supports only simulation channel accesses. It uses the

gen_int_pkt protocol.

fcpu does not send from this interface. It receives external interrupt requests. Only

the irl field is read into the fcpu state, and it takes the interrupt.

fpu

There can be zero or one fpu interface, which handles requests to and responses

from the FPU. It supports only simulation channel accesses and uses the FPU packet

(fpu_pkt ) protocol.

Requests

fcpu sends a request to the fpu interface when it needs to handle FPU data. The

request types are as follows:
Chapter 7 Modules 85



■ Read or write a floating-point register

■ Read or write the floating-point status register

■ Read or write the floating-point queue

■ Read the floating-point condition codes

The type field of the fpu_pkt indicates the type of request. It is set to one of the

following values: RDFREG, RDFSR, RDFPQ, WRFREG, WRFSR, WRFPQ, or RDFCC.

Responses

The fpu interface receives the response from the FPU. The status field of the

fpu_pkt indicates whether a floating-point exception occurred.

cmd_done

There must be one cmd_done interface. The fcpu uses this interface to notify the

user interface that a fcpu user command is complete. It supports only the debug

channel and sends to this interface but never receives requests. This interface uses

the no_data protocol.

7.3.6 Source Files

All the files associated with this module are in the sparc/fcpu directory, as

follows:

■ fcpu.h — State and register declarations

■ fcpu_arch_trap.h — Trap type definitions

■ fcpu_asr.c — ASR handling routines

■ fcpu_cache.c — Routine that handles the FLUSHinstruction

■ fcpu_execute.c — Routines that execute most of the IU instructions

■ fcpu32_fifo.c — Routines that implement the delayed-write registers

■ fcpu32_float.c — Routines that execute coprocessor and FPU instructions

■ fpu_globals.h — Prototypes for all fcpu global routines

■ fcpu32_module.c — Routines that configure the fcpu module

■ fcpu_register.h — Macros that handle register operations

■ fcpu_sparc.h — Macros that decode SPARC instructions

■ fcpu_trap.c — Trap handling routines

■ fcpu32_ui.c — Routines that implement user-interface commands
86 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ fcpu32_window_register.h — Structure that handles the fcpu_window_reg
access class

7.4 fpu : SPARC Floating-Point Unit Module
The fpu module simulates a generic SPARC version 7, 8, or 9 FPU.

7.4.1 Simulated Behavior

The fpu module connects directly to the cpu module’s fpu interface. The

communication between the fpu and cpu modules models the logical behavior of

the hardware interface between the SPARC IU and its FPU. The fpu module

maintains the following:

■ Floating-point registers

■ Floating-point status register, including condition codes

■ Floating-point trap state

■ Execution of floating-point instructions

The floating-point module runs in two different modes:

■ Normal mode — When the FPU is running in normal mode, floating-point

instructions finish executing and update the floating-point register file

immediately.

■ Delayed-write mode — When the delayed-write mode is active, the result of all

fpop s is queued and prevents the register file from being modified. The FSR is

written immediately (for example, fcmp instructions). Later on, you must issue

the finish_fpop command to write the results to the register file. In this mode,

you can control the order that fpop operations complete.

The fpu module only acts as a slave to the cpu module and does not communicate

with the cpu module.

7.4.2 Variables

The following variables represent the internal state of instances of the fpu module

class and are available for use in expressions and in commands that require

variables, such as print .

■ delayed_write_active

This read-only Boolean variable reflects the state of the delayed-write mode.
Chapter 7 Modules 87



■ Floating-point registers

The floating-point registers can be accessed as single-precision values by use of

the names f0-f31 , or as double-precision values by use of the names df0-df30
for version 7 and version 8 modes and df0 -df60 for version 9 mode. The register

numbers for the double-precision values follow the conventions used in assembly

language programming and are always even numbers.

■ fregs , dfregs

These two variable names correspond to the group of registers: fregs and

dfregs . fregs and dfregs are useful with the print command to print out the

set of floating-point registers as single-precision or double-precision values,

respectively. If used in an expression, they evaluate to 0.

■ fsr

This variable corresponds to the FSRand contains a number of bit fields that can

be accessed individually, namely, rd , rp , tem , ns , ver , ftt , qne , pr , fcc , aexc ,

and cexc .

For a complete description of the FSRand its fields, see the The SPARC
Architecture Manual.

■ sparc_version

This read-only Byte variable contains the SPARC version that is being simulated

(7, 8, or 9).

■ trap_state

This variable represents the state of the FPU with respect to traps. The allowed

values are:

■ 0 — No exception

■ 1 — Exception mode

■ 2 — Pending exception

7.4.3 Commands

In addition to the base set of commands, the following commands are available for

dealing with instances of the fpu module class. See Universally Available Commands
on page 16 for details on invoking these commands.

■ finish_fpop vaddr

This command writes the result of an fpop to the register file when fpu is in

delayed-write mode. It causes the FPU to finishing executing the oldest fpop
(that is, the fpop closest to the head of the queue) that matches vaddr, a 64-bit

integer value. If an error occurs, the user interface module’s cmd_result variable

is set to 1; otherwise, it is set to 0.
88 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ show_wrq

This command displays the contents of the delayed-write queue.

7.4.4 Configuration

The fpu module communicates over only one interface, which is usually connected

to a cpu module’s fpu interface.

Instance Arguments

Following are the instance arguments:

■ FSR_SPARC_VERSION7, 8, or 9

This argument specifies which version of the SPARC architecture the FPU should

simulate. If the value associated with this argument is 8 or 9, argument

FSR_FPU_VERSIONis required in the configuration file. If the value is 7, use of

FSR_FPU_VERSIONis a syntax error in the configuration file.

■ FSR_FPU_VERSIONvalue from 0 to 7

value is placed in the FSR version field. If the value associated with the

FSR_SPARC_VERSIONis 7, this argument is a syntax error in the configuration

file.

Note – The remaining information about this module is for advanced users.

7.4.5 Interfaces

The cpu interface, the only interface to the fpu module, receives messages from and

responds to messages from the cpu module. The fpu module does not communicate

with the cpu module; it only responds to its messages. The request types that are

made to the fpu module on this interface are as follows:

■ Read a floating-point register

■ Write a floating-point register

■ Read the floating-point status register

■ Write the floating-point status register

■ Read the floating-point queue

■ Write the floating-point queue

■ Read the floating-point condition codes
Chapter 7 Modules 89



The fpu_pkt protocol is used to communicate with the cpu module, as described in

Chapter 6, Message Types.

7.4.6 Source Files

The source files are:

■ sparc/fpu/fpu.c — Source code for the floating-point module

■ sparc/fpu/ {addsu b, compare , div , fpu_simulator , mul , pack , unpack ,

utility }.c — Code that emulates the floating-point operations

■ sparc/fpu/fpu.h — Common macro and structure definitions

■ sparc/fpu/{fpu_simulator, globals, ieeefp, reg}.h — Declarations

the emulator uses

■ sparc/include/fpu_pkt.h — Definition of message packet used to

communicate to the fpu module

7.5 gintr : sun4m Interrupt Controller
Module
The gintr module simulates a sun4m interrupt controller and has the following

features:

■ Twenty-three maskable interrupt devices priority encoded to a 4-bit level

(undirected interrupts)

■ Support for distribution of interrupts

■ Support for one to four processors

■ Support for processor-to-processor interrupts (directed interrupts)

■ Support for generating interrupts for asynchronous errors (broadcast interrupts)

7.5.1 Simulated Behavior

There are no major differences between the sun4m interrupt controller and the

simulated gintr module.
90 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.5.2 Variables

The following variables represent the internal state of instances of the fpu module

class and are available for use in expressions and in commands that require

variables, such as print .

The system register variables are as follows.

■ intr_tar_mask_reg

This Word variable contains the interrupt target mask register and can be written

to or read from, using two other addresses: the interrupt target mask set address

and the interrupt target mask clear address. The set and clear functions on the

interrupt target mask register can be triggered with these addresses.

■ intr_target_reg

This Word variable contains the intr_target_reg . It contains a target field.

■ sys_intr_pend_reg

This Word variable contains the system interrupt pending register. It contains the

following fields: me, i , m, v, fl , mi , vi , t , sc , a, e, s , k , sbus , and vme.

The processor register variable is intr_pend_reg ( index) , which is a Word
variable array that contains the interrupt pending register. index ranges from 0 to the

number of processors less 1.

7.5.3 Configuration

There are four types of interfaces: cpu, device, slave , and broadcast . There

can be up to 4 cpu interfaces, 23 device interfaces, 4 broadcast interfaces, and

any number of slave interfaces.

cpu Interface Arguments

INDEX value between 0 and 7 is a mandatory entry that specifies the processor index

and associates each of the processor registers with its processor interrupt interface.

The indices of all cpu interfaces must be contiguous.

device Interface Arguments

There are two device interface arguments:

■ IRL value between 1 and 15

This mandatory entry specifies the interrupt request level of the device.
Chapter 7 Modules 91



■ MASK32-bit value

This mandatory entry specifies the device bit mask used in the

sys_intr_pend_reg and the intr_tar_mask_reg registers. Normally, only

one bit should be set in the value. The same bit cannot be set in more than one

device mask, except for the processor timer device masks. Since there is a timer-

counter for each processor, the mask for each processor timer is the same.

Note – The remaining information about this module is for advanced users.

7.5.4 Interfaces

The interfaces are as follows.

cpu

The cpu interface informs the processor of interrupt-level changes and supports only

simulation channel accesses.

The cpu interface uses the gen_int_pkt protocol and does not use the irl_valid ,

action , and extra fields. The irl field is set to the greatest irl of all interrupting

devices. If no device is interrupting the processor, irl is 0. A request is sent to the

cpu interface only when the greatest irl of all interrupting devices changes. No

response is expected or allowed.

device

The device interface monitors the status of a device interrupt line and supports

only simulation channel accesses.

The device interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active interrupt and is set to INTERRUPT_CLEARto signal an inactive interrupt.

INTERRUPT_SETand INTERRUPT_CLEARactions field values set and reset bits in

the system interrupt pending register. The action field can be set to two other

values: INTERRUPT_SET_PROCand INTERRUPT_CLEAR_PROCset and clear bits in

the processor interrupt pending register.
92 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



slave

The slave interface accepts requests to read and write the addressable registers of

gintr and supports only simulation channel accesses. It merely responds and does

not initiate requests.

The slave interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , size , and data fields in the normal way and does not use the extra ,

routeflg , asi , and vaddr fields.

paddr bits 12, 13, 14, and 15 specify the processor; bits 0 through 4 specify the

registers. If paddr specifies an unknown processor or register or size is not 4 bytes,

the request is returned with status set to GEN_BUS_FAULT. If a write access is done

to the read-only register, or vice versa, then a warning message is printed and the

request is returned with status set to GEN_BUS_FAULT. Otherwise, the required

access is performed and the request is returned with status set to GEN_BUS_OK.

If intr_target_mask_set pseudo-register or intr_target_mask_clear , the

pseudo-register is written, the intr_pend_reg register for the target processor is

updated, and possibly a new irl is sent to the processor.

broadcast

The broadcast interface broadcasts level-15 interrupts to all processors and

supports only simulation channel accesses.

The broadcast interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active asynchronous error interrupt and the INTERRUPT_CLEARto signal an

inactive asynchronous error interrupt.

7.5.5 Source Files

The source files are:

■ mbus/gintr.c — Source for the module

■ mbus/gintr.h — Private declarations for the module

■ mbus/gal_int_stuff.h — Additional values for the action field in the

gen_int_pkt (only used in the gint and gtimer modules)
Chapter 7 Modules 93



7.6 gtimer : sun4m Timer Module
The gtimer module simulates the sun4m timer-counter chip. The timer-counters

follow the structure of other sun4 architectures. The resolution of the timers is

500 ns.

7.6.1 Simulated Behavior

The gtimer module models the sun4m timer chip very closely.

7.6.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ counter
counter( i)

This Word variable array contains the counter registers. Index i is the counter
for timer i. Each element is composed of the bit fields limit and value .

■ limit
limit( i)

This Word variable array contains the limit registers. Index i is the limit for

timer i. Each element is composed of the bit fields limit and value .

■ start_stop
start_stop( i)

This Word variable contains the start_stop register. Index i is the start_stop
for timer i. Each element is composed of bit field run .

■ sys_counter

This Word variable contains the sys_counter register. It is composed of limit
and value bit fields.

■ sys_limit

This Word variable contains the sys_limit register. It is composed of limit
and value bit fields.
94 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ timer_config

This Word variable contains the timer_config register. It has four bit fields: t0 ,

t1 , t 2, and t3 . t0 refers to timer 0; t1 refers to timer 1, and so on.

■ user_timer
user_timer( i)

This LWord variable array contains the user_timer registers. Index i is the

user_timer for the timer i. Each element is composed of the bit fields limit ,

value , and value1 . The number in the value bit field and the number value1
bit field must be concatenated to form the actual value of user_timer .

7.6.3 Configuration

There are three types of interfaces: slave , proc_interrupt , and

sys_interrupt . There can be any number of slave interfaces, but there must be

only one sys_interrupt interface. There can be as many proc_interrupt
interfaces as there are processors in the system.

Instance Arguments

The instance arguments are:

■ NUM_TIMERScount

This mandatory argument specifies the number of processor timers for the timer
instance being declared. count can be 1, 2, or 4.

■ CYCLES_PER_TICKcount

This mandatory argument specifies the number of simulator cycles per timer tick.

It can be any nonzero 32-bit value.

Interrupt Interface Arguments

The interrupt interface argument is TIMER value, which specifies the timer to which

the interrupt interface corresponds. value ranges from 0 to the number of timers

less 1.

Note – The remaining information about this module is for advanced users.
Chapter 7 Modules 95



7.6.4 Interfaces

This section describes the interfaces.

slave

The slave interface accepts requests to read and write the addressable registers of

the timer . It supports simulation and debug channel accesses.

The slave interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , size , and data fields in the normal way and does not use the extra ,

routeflg , asi , and vaddr fields.

The paddr field specifies which register to access. If size is not 4 bytes or 8 bytes or

if the paddr specifies an empty address, the request is returned to the slave
interface with status set to GEN_BUS_FAULT. Otherwise, the specified register is

accessed according to the gen_bus_pkt type field, and the packet is returned to

the slave interface with status set to GEN_BUS_OK.

proc_interrupt

The proc_interrupt interface causes an interrupt and supports only simulation

channel accesses.

The interrupt interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SET_PROCto

signal an active interrupt and is set to INTERRUPT_CLEAR_PROCto signal an

inactive interrupt.

A response to the interrupt request is not required. If one is received, it is sent back

to the interrupt interface with a delay of 1.

sys_interrupt

The sys_interrupt interface causes an interrupt and supports only simulation

channel accesses.

The interrupt interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active interrupt and is set to INTERRUPT_CLEARto signal an inactive interrupt.

A response to the interrupt request is not required. If one is received, it is sent back

to the interrupt interface with a delay of 1.
96 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.6.5 Source Files

The source files are:

■ mbus/gtimer.c — Source for the module

■ mbus/gtimer.h — Private declarations for the module

7.7 intr : Interrupt Controller Module
The intr module simulates an interrupt controller and not any particular hardware.

It has the following features:

■ Thirty-two maskable interrupt devices priority encoded to a 4-bit level

■ Support for one to eight processors

■ Support for processor-to-processor interrupts (softint )

7.7.1 Simulated Behavior

Each interrupt device interrupts at one IRL . That device can set and clear its

interrupt line. The intr module monitors the status of each line. It assigns each

device a 32-bit mask (usually with only one bit set), called the device mask. If the

bits of the device mask are set in the device_intr_reg , that device’s interrupt line

is active; otherwise, it is inactive. The device_intr_reg is not externally

accessible.

There are three addressable registers for each processor: masked , pending , and

softint . All registers are word size and can be accessed only as a word on a word-

aligned address. Address bits 4, 5, and 6 specify the processor; bits 2 and 3 specify

the register (pending = 00 , masked = 01 , and softint = 10). For example, the

address of the masked register for processor i is i * 16 + 4.

The masked register specifies which interrupt devices are allowed to interrupt the

processor. Its format is the same as device_intr_reg . If the bits of a device mask

are set in the masked register, that device can interrupt the processor.

The pending register specifies the interrupt status of each device that is not masked

in the masked register. If the bits of a device mask are set in the pending register,

that device is interrupting the processor.

The softint register allows any processor to interrupt the processor associated

with the softint register. It is composed of 15 bits, one for each nonzero IRL . If bit

i is set, then IRL is active. The softint register is similar to an interrupt device; it

has a device mask of 0x1 (bit 0). It differs from all other devices since it can interrupt
Chapter 7 Modules 97



on more than one IRL . If any of the softint bits (bits 1 through 15) are set and bit

0 of the masked register is set, bit 0 of the pending register is set and softint
attempts to interrupt the processor at the greatest IRL of the sofint .

The intr module selects the greatest IRL of all the pending interrupt devices and

softint and updates the processor with any changes. For example, if no interrupts

are active and a serial device of IRL 12 and a timer device of IRL 14 both activate

their interrupt lines, the processor sees an IRL of 14. Eventually, it services the timer

interrupt, the timer deactivates its interrupt line, and the processor sees an IRL of 12.

7.7.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ device_intr_reg

This Word variable contains the device interrupt register.

■ masked( index)

This Word variable array contains the masked register for each processor. index
ranges from 0 to the number of processors less 1.

■ pending( index)

This Word variable array contains the pending register for each processor. index
ranges from 0 to the number of processors less 1.

■ softint( index)

This Word variable array contains the softint register for each processor. index
ranges from 0 to the number of processors less 1.

7.7.3 Configuration

There are three types of interfaces: cpu , device , and slave . There can be 0 to 8 cpu
interfaces, 31 device interfaces, and any number of slave interfaces.

cpu Interface Arguments

The cpu interface argument is INDEX value between 0 and 7, which is a mandatory

entry that specifies the processor index. It associates the per-processor registers with

their processor interrupt interface. The indices of all cpu interfaces must be

contiguous.
98 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



device Interface Arguments

The device interface arguments are as follows.

■ IRL value between 1 and 15

This mandatory entry specifies the interrupt request level of the device.

■ MASK32-bit value

This mandatory entry specifies the device bit mask used in the

device_intr_reg , masked , and pending registers. Normally, only one bit

should be set in the value. The same bit cannot be set in more than one device

mask. softint has bit mask 0x1 reserved for it.

Note – The remaining information about this module is for advanced users.

7.7.4 Interfaces

This section describes the interfaces.

cpu

The cpu interface informs the processor of interrupt-level changes and supports only

simulation channel accesses.

The cpu interface uses the gen_int_pkt protocol and does not use the irl_valid ,

action , and extra fields. The irl field is set to the greatest irl of all interrupting

devices. If no devices are interrupting the processor, irl is 0. A request is sent to the

cpu interface only when the greatest IRL of all interrupting devices changes. No

response is expected or allowed.

device

The device interface monitors the status of a device interrupt line and supports

only simulation channel accesses.

The device interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active interrupt and is set to INTERRUPT_CLEARto signal an inactive interrupt.
Chapter 7 Modules 99



slave

The slave interface accepts requests to read and write the addressable registers of

gintr and supports only simulation channel accesses. It merely responds and does

not initiate requests.

The slave interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , size and data fields in the normal way and does not use the extra ,

routeflg , asi , and vaddr fields.

paddr bits 4, 5, and 6 specify the processor; bits 2 and 3 specify the register

(pending = 00 , masked = 01 , and softint = 10). If paddr specifies an unknown

processor or register or size is not 4 bytes, the request is returned with status set

to GEN_BUS_FAULT. Otherwise, the required access is performed and the request is

returned with status set to GEN_BUS_OK.

If a masked register is written, the pending register for its processor is updated and

possibly a new IRL is sent to the processor.

7.7.5 Source Files

The source files are:

■ mbus/intr.c — Source for the module

■ mbus/intr.h — Private declarations for the module

7.8 mbus: Mbus Module
The mbus module simulates the level 1 and level 2 Mbus as defined in the SPARC
Mbus Interface Specification, Rev. 1.1. The differences between the specification and

the mbus module are:

■ mbus uses a fair, round-robin arbitration mechanism.

■ mbus does not support reflective memory systems.

■ Interrupts and AERR are external to mbus.

■ mbus snoops coherent write invalidate transactions of any size.

■ mbus supports a maximum of eight masters and eight slaves.
100 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.8.1 Simulated Behavior

The mbus module optionally supports a built-in or external arbitration enable

register; only one can be present. The arbitration enable register specifies which

mbus masters are enabled for arbitration. If the register is not present, all mbus
masters are enabled for arbitration.

Each mbus master has 1 bit associated with it in the arbitration enable register. If that

bit is 0, the master is not granted the mbus. Bit i of the register controls the mbus
master in slot i; bit 0 is the least significant bit of a word. The register is 32 bits.

If the built-in register is activated by appropriate configuration file entries, all

processors see it at the same physical address. It only supports word accesses on a

word boundary.

If the external register is activated, it is not considered part of the mbus module and

has no physical address associated with it by the mbus. The register is actually

contained in another module, which provides user interface and processor access to

its contents.

7.8.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ enable_reg_mask

This Word variable contains the value of the arbiter enable register. It only

exists when the built-in arbiter enable register is in use.

■ locking_master_interface

If a master has the mbus locked, this read-only string variable is the name of the

master interface. Otherwise, it is the string nil . It is updated each cycle.

■ master_interface

If a master has the mbus, this read-only string variable is the name of that master

interface. Otherwise, it is the string nil . It is updated each cycle.

■ master_mbus_request_mask

If bit i is 1 in this Word variable, the master in slot i is waiting for the mbus. This

variable is updated each cycle.

■ mbus_cycle_type

This Byte variable contains the 4-bit Mbus transaction type of the most recent

mbus access.
Chapter 7 Modules 101



■ msh_snoop_signal

The mbus cache consistency snoop code stores the msh value it receives from

snoop interfaces in this Bool variable, which is updated each cycle.

■ next_master_to_get_mbus

The mbus arbitration code uses this Byte variable as an index into its array of

masters to keep track of which master gets the mbus next. It is updated each

cycle.

■ num_masters_waiting

This Byte variable contains the number of mbus masters that are waiting to get

the mbus. It is updated each cycle.

■ slave_interface

If the mbus is waiting for a slave to respond to a master’s request, this read-only

string variable is the name of the slave interface. Otherwise, it is the string nil .

It is updated each cycle.

7.8.3 Configuration

There are three types of interfaces: master , slave , and snoop . There can be 0 to 8

master s, 1 to 8 slave s, and 1 snoop interface per master interface.

One type of object shared is used: arb_enable_reg . If it is specified, the external

arbiter enable register is activated. It cannot be specified if the built-in arbiter enable

register is also activated.

Instance Arguments

The instance arguments are:

■ ENABLE_REGISTER_ADDR36-bit address
■ ENABLE_REGISTER_INITIAL_VALUE 32-bit address
■ ENABLE_REGISTER_STUCKAT_ONE32-bit address

These optional arguments specify information about the built-in arbitration enable

register and also cause it to become active. They denote the address of the built-in

arbiter enable register, its initial value, and a mask of the bits (if any) that are always

1. If bit i is 1, the master in slot i is enabled for arbitration; bit 0 is the least significant

bit.

If ENABLE_REGISTER_INITIAL_VALUE or ENABLE_REGISTER_STUCKAT_ONEis
specified, ENABLE_REGISTER_ADDRmust be specified. If it is not specified, the built-

in arbiter enable register is not present and all masters are enabled for arbitration.
102 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



master Interface Arguments

The master interface arguments are as follows.

■ SLOTvalue between 0 and 31

This mandatory argument specifies the slot associated with the master interface.

The slot is used by the arbiter enable register and to match a master interface

with its snoop interface.

■ MID value between 0 and 15

This optional argument specifies the mbus module ID of the master. If it is

provided, the mbus module adds MID into all requests made for the master. If MID
is not provided, the module connected to the master interface must load its MID
into each of its requests.

■ MAKE_MBUS_SIGNALS

This optional argument specifies that the master does not generate mbus
multiplexed signals; therefore, the mbus module must perform this task. This

argument is valid for simple masters only.

■ ALWAYS_ENABLED

This optional argument specifies that the master is always enabled for arbitration

independent of the contents of the arbitration enable register. It is significant if the

built-in or external arbitration enable register is in use.

slave Interface Arguments

The slave interface arguments are as follows.

■ ADDR_BASE36-bit value
ADDR_MASK36-bit value

These mandatory entries specify the ranges of addresses to which a slave

responds. The range of each slave must be distinct. ADDR_BASE specifies the

lowest address in the range. ADDR_MASKspecifies which bits of the address are

examined. If the address bitwise AND’d with the mask is equal to the base, then

that address is inside the range.

■ MEMORY

One of the mbus slaves must specify this argument. Mbus coherent invalidate
transactions are acknowledged by the memory slave.

■ MAKE_MBUS_SIGNALS

This optional argument specifies that slave does not generate mbus physical

status signals; therefore, the mbus module must perform this task. This argument

is valid for simple slaves only.
Chapter 7 Modules 103



■ DEBUG_SUPPORTED

This optional argument specifies that slave supports debug channel accesses.

snoop Interface Arguments

The snoop interface argument is SLOTvalue between 0 and 7, which is a mandatory

argument that specifies the slot associated with the snoop interface. The slot is used

to match a snoop interface with its master interface.

Note – The remaining information about this module is for advanced users.

7.8.4 Interfaces

This section describes the interfaces.

master

The master interface handles requests to access mbus slaves and supports only

simulation and debug channel accesses. It uses the gen_bus_pkt protocol.

Requests

mbus queues its requests until the master is granted the mbus. It supports only one

outstanding request per master at a time.

mbus uses the type , status , paddr , size , and data fields of the gen_bus_pkt in

the normal way and does not use the asi , vaddr , and extra fields.

The route field of the gen_bus_pkt contains some of the Mbus multiplexed

signals. The format is as follows:
104 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The multiplexed_signals members are used in a manner consistent with the

Mbus specification, except that a value of 1 is always considered active and 0 is

considered inactive.

If the keep_bus bit is set, the master locks the bus so that only it can access the bus

next. It is similar to the mbb physical signal of the real Mbus; mbb is not in the

simulation. The mbb signal is asserted until the master wants to free the bus, but the

keep_bus signal is only asserted when the master wants the bus on the next cycle.

All 16 possible values of type are legal. The mbus module interprets only the values

specified in TABLE 7-3; the others are passed to the slave, as specified by paddr .

All of the above types, except MBUS_MEM_REF, are defined by the Mbus specification.

MBUS_MEM_REFis used when the gen_bus_pkt type is set to GEN_BUS_REF(no

data transfers, just a memory reference). It is useful to free a previously locked mbus.

The mbus module does not use the c , lock , mbl , va , sup , and mid bits, which are

provided for the slave to observe.

The MID must be set by the master on each transaction or specified in the master
interface declaration in the mbus declaration of the configuration file.

TABLE 7-3 Defined Mbus Transaction Types

mbus Transaction Type Value

MBUS_WRITE 0

MBUS_READ 1

MBUS_COHERENT_INVALIDATE 2

MBUS_COHERENT_READ 3

MBUS_COHERENT_WRITE_INVALIDATE 4

MBUS_COHERENT_READ_INVALIDATE 5

MBUS_MEM_REF 6

struct multiplexed_signals {
        u_int   pad    :11;     /* unused */
        u_int   mbl     :1;     /* boot mode/local mode */
        u_int   mid     :4;     /* Module Identifier */
        u_int   va      :8;     /* vaddr[19:12] */
        u_int   sup     :1;     /* Supervisor access */
        u_int   c       :1;     /* cacheable */
        u_int   lock    :1;     /* bus lock */

u_int keep_bus:1; /* allows master to lock Mbus */
        u_int   type    :4;     /* Transaction type */
};
Chapter 7 Modules 105



The master must set the gen_bus_pkt type to match the mbus transaction type

according to TABLE 7-4.

If the master specifies an address that does not match any mbus slave, the mbus
module sets the gen_bus_pkt status to GEN_BUS_FAULT, sets the mbus status
to time-out , and returns the request to the master.

Messages

A mbus master receives a message only in response to a previous mbus request it

made to access a slave. It uses the type , status , paddr , size , and data fields in

the normal way and does not use the asi , vaddr , and routeflg fields.

The extra field contains some of the Mbus physical signals. The format is as

follows:

The physical_signals members are used in a manner consistent with the Mbus

specification, except that a value of 1 is always considered active and 0 inactive.

The msh signal is 0 for unshared and 1 for shared. The mih signal is used only by

the mbus module and the snoop interfaces and is not valid.

TABLE 7-4 Corresponding Mbus and Gen_bus_pkt Types

mbus Transaction Type gen_bus_pkt Type

MBUS_WRITE GEN_BUS_WR

MBUS_READ GEN_BUS_RD

MBUS_COHERENT_INVALIDATE GEN_BUS_REF

MBUS_COHERENT_READ GEN_BUS_RD

MBUS_COHERENT_WRITE_INVALIDATE GEN_BUS_WR

MBUS_COHERENT_READ_INVALIDATE GEN_BUS_RD

MBUS_MEM_REF GEN_BUS_REF

struct physical_signals {
        u_int   pad    :27;     /* unused */
        u_int   msh     :1;     /* (level 2) shared block */
        u_int   mih     :1;     /* (level 2) Memory inhibit */
        u_int   status  :3;     /* slave status */
};
106 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The mrdy, mrty , and merr signals encode the status of the slave access. TABLE 7-5

lists the status codes.

If the status is Retry or Relinquish and Retry, the master must immediately send the

original request back to the mbus. If the original mbus transaction type was

MBUS_COHERENT_INVALIDATEand status is Relinquish and Retry, the master must

change the transaction type to MBUS_COHERENT_READ_INVALIDATE.

Support for Simple Masters

Masters that do not want to generate the mbus multiplexed signals when

making an mbus request can specify the keyword MAKE_MBUS_SIGNALSin their

mbus interface declaration in the configuration file.

The mbus looks at gen_bus_pkt and sets the mbus transaction type according to

TABLE 7-6.

The other fields of the multiplexed signals are all set to 0, except for the MID,

which must be specified in the configuration file.

When a master receives a response, it examines the status field of gen_bus_pkt to

determine the status of a request. The mapping between possible mbus status
(mrdy, mrty , and merr ) is specified in the next section on the slave interface.

TABLE 7-5 Mbus Slave Access Status Codes

merr mrdy mrty mbus Status

0 0 0 Idle

0 0 1 Relinquish and Retry

0 1 0 Valid (request successful)

0 1 1 Reserved

1 0 0 Bus error

1 0 1 Timeout

1 1 0 Fatal (uncorrectable error)

1 1 1 Retry (correctable error)

TABLE 7-6 Mbus Type Assignment for Simple Masters

gen_bus_pkt Type mbus Type

GEN_BUS_RD MBUS_READ

GEN_BUS_WR MBUS_WRITE

GEN_BUS_RW MBUS_WRITE

GEN_BUS_REF MBUS_MEM_REF
Chapter 7 Modules 107



This translation facility allows a simple master to be connected directly to mbus
without knowledge of the special mbus use of the gen_bus_pkt .

slave

The slave interface connects to mbus slaves and supports simulation and debug

channel accesses.

One slave must be identified as the memory slave since it acknowledges coherent
invalidate transactions on mbus. Each slave responds to a unique range of the

address space, as specified in the configuration file.

The slave interface uses the gen_bus_pkt protocol.

Messages

A slave receives a message from the mbus when a master attempts to access it. The

type , paddr , size , and data fields of the gen_bus_pkt are set according to the

standard gen_bus_pkt protocol; the slave interface does not use the extra field.

The routeflg contains the mbus multiplexed signals described above and is set

according to those conventions.

The mbus transaction information is specified by the mbus multiplexed signal
type field (4 bits). Slaves can look at this field to determine the exact transaction.

Many slaves need not know the exact transaction—for example, MBUS_READand

MBUS_COHERENT_READare handled the same way by the slave. They can examine

the gen_bus_pkt type field since the master sets this field as well as the mbus
type.

Responses

After a slave has performed the transaction from a previous request, it sends a

response back to the mbus. The slave must set the physical signals, described above,

to indicate the result of the request.

If the request is successful, the physical signal status should be set to valid; the

gen_bus_pkt status should be set to GEN_BUS_OK.

If the request is to an invalid address within the slave and the slave needs to inform

the master of this, it sets the gen_bus_pkt status to GEN_BUS_FAULTand sets the

physical signal status to timeout.
108 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



If the slave is busy, it can set the gen_bus_pkt status to GEN_BUS_BUSYand the

physical signal status to relinquish and retry. Alternatively, the slave can queue

the message internally and send a response to mbus when it is no longer busy. mbus
is inactive until the slave responds. The first method has lower performance but is

simpler and has less potential for deadlocks on mbus.

Support for Simple Slaves

Slaves that do not want to generate mbus physical signals when responding to a

mbus request can specify the keyword MAKE_MBUS_SIGNALS in their mbus interface

declarations in the configuration file.

mbus looks at the gen_bus_pkt status and converts it to the mbus status (the mrdy,
mrty , and merr bits ) according to TABLE 7-7.

The mapping of the mbus transaction types and mbus response status to standard

gen_bus_pkt status allows a simple slave to be connected directly to the mbus
without knowledge of the special mbus use of gen_bus_pkt .

snoop

Each master interface can have one snoop interface, which supports simulation

and debug channel accesses. The snoop interface uses the gen_bus_pkt protocol

and is connected to cache modules.

If a master acquires mbus and it is a MBUS_COHERENT_INVALIDATE,
MBUS_COHERENT_READ, MBUS_COHERENT_READ_INVALIDATE, or

MBUS_COHERENT_WRITE_INVALIDATEtransaction, the transaction is snooped.

Before the request is sent to the addressed slave, it is sent to each snoop interface in

turn (except the snoop interface of the master that originated the request). Each

cache examines the gen_bus_pkt , possibly modifies it, and then returns it to the

snoop interface.

The type , paddr , size , and data fields of the gen_bus_pkt are set according to

the standard gen_bus_pkt protocol. The extra field contains the mbus physical

signals. The routeflg contains the mbus multiplexed signals as set by the master.

The behavior of a cache module that receives a message on its snoop interface

depends on the mbus transaction type encoded in the multiplexed signals.

TABLE 7-7 gen_bus_pkt Status Assignment for Simple Slaves

gen_bus_pkt Status mbus Status

GEN_BUS_OK Valid

GEN_BUS_FAULT Bus error

GEN_BUS_BUSY Relinquish and retry
Chapter 7 Modules 109



Coherent Invalidates, Coherent Writes, and Invalidates

The cache must invalidate the cache line that contains paddr .

Coherent Reads

If the cache does not contain the line that contains paddr , it simply returns the

message. If the cache does have the line but does not own it, it sets the msh bit to 1

and returns the message. If the cache owns the line, it sets msh and mih to 1, copies

the line into the data field of the gen_bus_pk t, and returns the message.

Coherent Reads and Invalidates

Coherent reads and invalidates are handled in the same manner as

MBUS_COHERENT_READ, except that the line is invalidated and msh does not need to

be set.

7.8.5 Source Files

The source files are:

■ mbus/mbus.c — Source for module

■ mbus/mbus.h — Structures, macros, and definitions useful to modules that

connect to mbus

■ mbus/mbus_private .h — Declarations used only by the mbus module

7.9 mmu: sun4c/sun4e MMU Module
The mmumodule simulates the MMU of the sun4c (SPARCstation 1 and 1+) and

sun4e (SPARCengine 1e) systems. This two-level MMU is very simple and does not

contain a cache or hardware table walk.

The context register of the sun4c/sun4e MMU is in the sys module, not the mmu
module.
110 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.9.1 Simulated Behavior

The mmumodule contains a segment map and a page map, which are consulted

when a virtual-to-physical address translation is requested. Simulator programmers

must maintain the maps to get the desired address translations.

The translation maps are accessible to the CPU via ASI 0x3 for the segment map and

ASI 0x4 for the page map. The bits of the virtual address that select the segment

entry and page entry during virtual-to-physical translations, along with the context

register value, are used to select their respective entry for direct access to the

translation maps.

7.9.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ pme
pme ( index)

This Word variable array contains all the PMEs in the page table. index specifies the

PME to access and ranges from 0 to 8,191 (the number of PMEs less 1). Each PME is

composed of the following bit fields: valid , write , super , uncacheable , type ,

acc , mod, and ppn .

■ sme
sme ( index)

This Byte variable array contains all the SMEs in the segment table. index
specifies the SME to access and ranges from 0 to 32,767 (the number of SMEs less

1).

7.9.3 Commands

In addition to the base set of commands, the following command is available for

dealing with instances of this module class:

xlate virtual address context — This command displays the physical address

corresponding to the virtual address and context expressions. It does not modify the

state of mmu. The cmd_result variable of the ui module is set to the physical

address if the translation succeeds.

See Universally Available Commands on page 16 for details.
Chapter 7 Modules 111



7.9.4 Configuration

There are three types of interfaces: virtual , physical , and dup_context0 . There

must be one virtual interface, one physical interface, and any number of

dup_context0 interfaces.

Instance Arguments

The instance argument is:

mmu initialization filename

This mandatory argument specifies the path name of the mmu init file, which

contains the values of the segment and page tables. The file is read during

configuration and provides initial virtual-to-physical mapping for mmu.

The mmu init file contains the entire contents of the segment table (32 Kbytes),

followed by the entire contents of the page table (32 Kbytes).

A utility program, called mmugen, creates an mmu init file with a default mapping

of the first 4 Mbytes of virtual address space mapped to the first 4 Mbytes of

physical address space in context 0.

Note – The remaining information about this module is for advanced users.

7.9.5 Interfaces

This section describes the interfaces.

virtual

The virtual interface handles requests to translate virtual addresses to physical

addresses and to access the segment and page maps. It supports simulation and

debug channel accesses and uses the gen_bus_pkt protocol. A request made to an

unknown ASI is a fatal error for the simulation channel.
112 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Address Translation Requests

When an address translation request is received, the virtual address of the request is

converted to its corresponding physical address and the request sent to the mmu
physical interface.

The interface uses the type and status fields of the gen_bus_pkt in the normal

way and does not use the routeflg , size , and data fields.

The type field must be GEN_BUS_RD, GEN_BUS_WR, or GEN_BUS_RW. Any other

type value is a fatal error for the simulation channel.

The extra field contains the context to which the translation applies. The asi field

must contain 8, 9, 10 , or 11 .

The address to translate is extracted from the least significant 32 bits of the

gen_bus_pkt vaddr field. If the conversion fails, the gen_bus_pkt status is set to

GEN_BUS_FAULT, the reason for the failure is encoded in the extra field, and the

request is returned to the virtual interface. The translation can fail because of an

invalid PTE (extra = 2) or a protection violation (extra = 1).

If the translation succeeds, the least significant 32 bits of the gen_bus_pkt paddr
field are filled in with the translated address, the extra field is set to the page type

(from the PME), and the request is sent to the physical interface. No response to

the request is expected or allowed on the physical interface.

Map Access Requests

When a map access request is received, the map entry is read or written and the

response is returned to the virtual interface.

The interface uses the type and status fields of the gen_bus_pkt in the normal

way and does not use the routeflg and paddr fields. The extra field contains the

context to which the access applies. The asi field must contain 3 to access the

segment map and 4 to access the page map.

The least significant 32 bits of the gen_bus_pkt vaddr field and the context are

used to select the SME in the segment map or the PME in the page map according to

the same algorithm used by address translation requests.

The selected SME or PME is read if the gen_bus_pkt type field is GEN_BUS_RD
and is written if it is GEN_BUS_WR. If that field is any other value, it is a fatal error

for the simulation channel.

If the gen_bus_pkt size field is not 1 or 2 for a segment access or is not 4 for a

page access, the gen_bus_pkt status field is set to GEN_BUS_FAULTand the

extra field is set to 3.
Chapter 7 Modules 113



On a 2-byte segment access, only one SME is accessed. The data field is interpreted

as a halfword; the most-significant byte is set to 0 on a read and is ignored on a

write.

physical

The physical interface sends requests to access devices specified by their physical

addresses. A successful translation request received on the virtual interface is sent

to the physical interface to complete the request. The physical interface uses the

gen_bus_pkt protocol and supports simulation and debug channel accesses.

The interface uses the type , status , and paddr fields of the gen_bus_pkt in the

normal way and does not use the routeflg , asi , vaddr , size, and data fields.

The extra field contains the page type from the PME of the translation. TABLE 7-8

lists the allowable page type values.

No response to the packets sent to the physical interface is expected or allowed.

dup_context0

If the dup_context0 interface receives a message, it duplicates the SMEs for

context zero into the other seven contexts of the segment table. It supports

simulation and debug channel accesses and requires no data with a received

message. mmunever sends to the dup_context0 interface—not even to

acknowledge a received message.

7.9.6 Source Files

Following are the source files:

■ sun4e/mmu.c — Source for the module

■ sun4e/mmu.h — Public declarations related to the module

■ sun4e/mmu_private.h — Private declarations for the module

■ sun4e/asi_arch.h — Definitions of the ASI values specific to the mmumodule

■ sun4c/mmugen.c — Stand-alone program that generates the mmu init file

TABLE 7-8 MMU Page Types

Page Type Description

0 Main memory

1 I/O

2 16-bit VME (sun4e only)

3 32-bit VME (sun4e only)
114 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The sun4c directory contains symbolic links to the mmu.c, mmu.h and

mmu_private.h files in the sun4e directory. Also, the sun4e directory contains a

symbolic link to the mmugen.c file in the sun4c directory.

7.10 msi : Mbus to SBus Module
The msi module simulates the MSI chip of the SPARCserver 600 and SPARCstation

3 systems. Following are the differences between the module and the real hardware:

■ The module does not support diagnostic access (paddr 0xfe0000100 and

0xfe0000200).

■ All M-S and S-M accesses are synchronous.

■ The M-to-S Asynchronous Fault Status Register never has an error.

■ SBus slot configuration registers are ignored.

■ SBus master IOMMU bypass mode is not supported.

■ SBus masters that use direct virtual memory accesses (DVMA) cannot access SBus

slaves.

■ Mbus access to SBus does not have a higher priority than SBus masters.

■ Arbitration is not performed for the Mbus and SBus, although msi does contain

the arbiter enabled register.

■ The MID register functions only if the mbus module understands MID.

7.10.1 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ afar

This Word variable contains the asynchronous fault address register and is

ignored by the msi module.

■ afsr

This Word variable contains the asynchronous fault status register and the

following bit fields: err , le , to , berr , siz , s , mid , me, rd , sa , ssiz , wm, and pa .

It is ignored by the msi module.
Chapter 7 Modules 115



■ arb_enable_reg

This Word variable contains the arbiter enable register and the following bit fields:

sbw, en_SBus_0xf , en_SBus_0x3 , en_SBus_0x2 , en_SBus_0x1 ,

en_SBus_0x0 , en_Mbus_0xb , en_Mbus_0xa , en_Mbus_0x9 , en_Mbus_0x8 .

■ base_address_reg

This Word variable contains the IOMMU base address register and the following

bit fields: paddr_hi and paddr_lo .

■ control_reg

This Word variable contains the MSI control register and the following bit fields:

impl , ver , range , de , and me.

■ sbus_slot
sbus_slot ( index)

This Word array variable contains the sbus configuration slot registers and the

following bit fields: sega , cp , wma, ba64 , ba32 , ba16 , ba8 , and by. index specifies

the slot to access. The msi module ignores the sbus_slot variable.

■ show_translation_fault

If this Bool variable is true , which is the default, and an IOMMU translation

fault occurs, the msi module displays an error message.

■ tlb
tlb( index)

This Word array variable contains the IOMMU TLB contents. It is composed of the

following fields: va , lruq , ppn , cacheable , writeable , and valid . There is

one array element for each TLB entry.

■ translation_fault_count

This Word variable contains a count of the number of IOMMU translation faults

that have occurred.

7.10.2 Commands

In addition to the base set of commands, the following commands are available for

dealing with instances of this module class. See Universally Available Commands on

page 16 for details on invoking these commands.

■ ranges — This command displays the virtual-to-physical address mapping

ranges for the IOMMU.

■ show_tlb — This command displays valid IOMMU TLB entries.

■ stat — This command displays the statistics related to the msi module.
116 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ xlate virtual address — This command displays the physical address that

corresponds to virtual address according to the IOMMU translation tables. It also

sets the cmd_result variable of the ui module to the physical address.

7.10.3 Configuration

There are six types of interfaces: mbus_master , mbus_slave , register_slave ,

sbus_master , virtual , and cmd_done . There must be one mbus_master ,

sbus_master , and cmd_done interfaces, as well as zero or one virtual interface.

There can be any number of mbus_slave and register_slave interfaces.

Note – The remaining information about this module is for advanced users.

7.10.4 Interfaces

This section describes the interfaces.

mbus_master

The mbus_master interface accesses Mbus slaves for SBus masters and supports

simulation and debug channel accesses. It uses the gen_bus_pkt protocol with

mbus module extensions.

mbus_slave

The mbus_slave interface is used by Mbus masters to access SBus slaves (via msi ,

of course) and supports simulation and debug channel accesses. It uses the

gen_bus_pkt protocol without mbus module extensions.

register_slave

The register_slave interface provides access to the msi registers and supports

simulation and debug channel accesses. It uses the gen_bus_pkt protocol.
Chapter 7 Modules 117



sbus_master

The sbus_master interface accesses SBus slaves for Mbus masters and supports

simulation and debug channel accesses. It uses the gen_bus_pkt protocol with

sbus module extensions.

virtual

The virtual interface handles SBus DVMA requests to translate virtual addresses

to physical addresses and supports simulation and debug channel accesses. It uses

the gen_bus_pkt protocol with sbus module extensions.

cmd_done

When ui executes a module command that may not complete immediately, it waits

until it receives a message on this interface before it starts executing other

commands. cmd_done supports only the debug channel and uses the no_data
protocol. The ui module never sends to the cmd_done interface.

7.10.5 Source Files

The source files are:

■ mbus/msi.c — Source for the module

■ mbus/msi.h — Declarations that are related to the module

7.11 ram and rom : Memory Modules
The ram and rom modules each simulate a contiguous chunk of byte-addressable

memory. There are only minor differences in their behavior.

7.11.1 Simulated Behavior

The ram module simulates memory: You write to a memory location and later on

you can read it back. The starting address and size of the module instance memory

are specified in the configuration file. The block of memory thus described responds
118 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



to reads, writes, and read-modify-writes of arbitrary size, starting at arbitrary

addresses. For example, no checking is done to prevent a 4-byte read from taking

place at an odd address.

During initialization, a ram module instance attempts to read its initial contents from

a file in the current directory. For details of this initialization file, see Initial Contents
on page 122.

rom is like ram , except that the response to any write is an error. rom module

contents can be initialized from an initialization file or set with various commands,

but the simulated system itself cannot write to rom .

7.11.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ display mode(start addr)

display mode(start addr, number)

display mode(start addr, end addr)

You can examine and set the contents of memory with the above syntax formats.

display mode is one of the following:

■ lwords (unsigned 64-bit integers)

■ words (unsigned 32-bit integers)

■ instructions (same as words , but disassembles when printed)

■ hwords (unsigned 16-bit integers)

■ bytes (unsigned 8-bit integers)

■ chars (same as bytes , but prints as ASCII characters)

■ doubles (64-bit IEEE double-precision floating-point values)

■ floats (32-bit IEEE single-precision floating-point values)

Because of the minimum ambiguity recognizer for variable names, you need type

only the first character of the mode, for example, i for instructions .

If you inadvertently ask for a large memory array to be printed, you can stop the

print with Control-C.

The first format specifies only a starting address, which usually means “the

element containing this address,” such as the command. For example,

print bytes(0x171)

prints the byte at address 0x171.
Chapter 7 Modules 119



Similarly, the command print words(0x171) prints the word at 0x170 because

that is the word that contains the byte at address 0x171. In the set command, this

syntax means that as many elements should be affected as there are values

supplied. For example, the command

set words(0x171) = 1, 2, 3

sets the word at 0x170 to 1, the word at 0x174 to 2, and the word at 0x178 to 3.

In the second format, the number of elements is explicitly specified. For example,

the command

set words(0x171, 4) = 1, 2, 3

sets the four words starting at 0x170 to 1, 2, 3, 3. That is, the last value is repeated

as many times as necessary.

In the third format, the first and third parameters are supplied, skipping the

second parameter. The third parameter is the end address; all elements from the

one that contains the start address through the one that contains the end address

are affected. For example, the command

set words(0x171,0x17d) = 1, 2, 3

sets the four words starting at 0x170 to 1, 2, 3, 3, just like the previous command.

When these formats are used in expressions, they evaluate to unsigned integers or

floating-point numbers. If only one element is involved, the expression evaluates

to the value of that element. If more than one element is involved, the expression

evaluates to a special checksum , which should change if the contents of those

elements changes. This function is very useful with the changes operator; for

example, the command

when bytes(my_table, 100) changes

arranges for the simulation to stop if any of the 100 bytes starting at the address

in variable my_table changes. The checksum calculation is such that as long as

only one element is affected each cycle, checksum always changes.

■ offset_for_disassembly

This Word variable can correct disassembly labels when code is mapped to a

virtual address that differs from its physical address. Its value is initially 0, but

should be set to the offset between where instructions appear in the virtual

address space and where they appear in the physical address space. For example,

if you have linked a file at address 0 and loaded it into module instance rom1 at

0xfe000000 and boot mode is mapping rom1 into address 0, then by setting the

rom1 offset_for_disassembly to 0xfe000000, you can derive the right

symbols when you disassemble.

This feature is intended for situations where a single offset applies to all

instructions in the ram/rom module instance, not for situations in which pages

are arbitrarily mapped with an MMU.
120 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ size

This read-only Word variable contains the size of the memory array in bytes, as

configured.

■ start_addr

This read-only LWord variable contains the lowest address of the memory array

in bytes, as configured.

7.11.3 Load Command

You can use rom and ram modules with the load and load_section commands.

The load address is interpreted as the address at which the first byte should be

placed.

7.11.4 Configuration

This section discusses the configurations.

Instance Arguments

Two instance arguments apply:

■ SIZE size

This mandatory argument specifies the number of bytes of memory to simulate.

size must be a power of 2. It can end with the letter K, in which case it is

multiplied by 1,024. Similarly, it can end with the letter M, in which case it is

multiplied by 1,024 * 1,024. The range of valid sizes is 32 to 0x20000000 (0.5

Gbyte).

Be aware that the module actually allocates a buffer of this size for the memory

array, so adequate swap space must be available.

■ START_ADDR64-bit address

This mandatory argument specifies the physical memory address to which the

lowest byte of the simulated memory corresponds. The start address must be a

multiple of the memory size.

The ram and rom modules look only at those address bits, which determine the

offset into the memory array, completely ignoring any higher bits. That way, the

memory appears redundantly within the address space, which feeds into the

memory module. For example, if a ram module is configured onto a bus in such a

way that 16 Mbytes of address space are mapped into it but its size is only 4 Mbytes,

then the first byte of the memory array appears at offsets 0, 4M, 8M, and 12M.
Chapter 7 Modules 121



Initial Contents

When the module initializes, it sets all of memory to zeroes. Then, the module

checks for an initialization file in the current directory. The file should have the

name module instance.init , but its use is optional. If used, the file must contain

hexadecimal digits that represent the initial data. You can arbitrarily separate those

digits with white space (spaces, tabs, or newlines). The # symbol causes the rest of

the line to be ignored for comments. An example is:

By default, initialization begins with the first byte of memory. You can skip to an

arbitrary address with @addr, which causes the hexadecimal digits that follow to be

initialized, starting at address addr. If addr is a hexadecimal address, it must be

prefixed with 0x .

Note – The remaining information about this module is for advanced users.

7.11.5 Interfaces

One type of interface is supported by these modules: the slave interface.

The slave interface handles all requests to access memory and supports simulation

and debug channel accesses. You can configure an arbitrary number of slave
interfaces for ram or rom modules.

The slave interface uses the gen_bus_pkt protocol. Each packet received

represents a single access to memory, where the type is GEN_BUS_RD, GEN_BUS_WR,
GEN_BUS_RW, or GEN_BUS_REF. The paddr and size fields of the packet identify

the region of memory to be copied to or from the data field of the packet. The upper

bits of the paddr are masked off, leaving an index into the memory array; that is, the

memory appears redundantly if mapped into an address space larger than the

memory size.

After copying the data, the module sends gen_bus_pkt back with the status field

set to GEN_BUS_OK. If the request is for a write to a rom module, no data are copied

and the gen_bus_pkt is returned with status GEN_BUS_FAULT. In all cases, the

module processes the request and replies immediately, with no associated delays.

2   3        # release and version
fe002000 0100 # start address and length of table
122 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.11.6 Source Files

The files associated with these modules are in the computer directory:

■ ram.c , rom.c — Source for the ram and rom modules

■ mem.c — Source for the memory library routines

■ include/mem.h — Public header file for memory library routines

■ ac_mem_{byte,char,hword,instr,word,lword}.c, mem.act, ac_mem.h
— Source for access classes

7.12 s4vme: sun4e SBus to VME Bus
Controller Module
The s4vme module simulates the Sun S4-VME chip that exists in the SPARCengine

1E board. This chip connects the SPARCengine 1E SBus to the VME bus. s4vme
simulates only the following S4-VME chip functions:

■ 16-bit and 32-bit VME address spaces

■ SBus slave

■ VME master (16-bit and 32-bit address space)

■ VME slave (16-bit address space)

■ VME mailbox register

s4vme contains no arbitration or interrupt control logic.

7.12.1 Simulated Behavior

The s4vme SBus slave interface provides access to one register: the mailbox
register, which is accessed as a byte. The format of the mailbox register matches the

S4-VME chip specification.

The portion of the SBus address space occupied by the s4vme module is controlled

by the architecture. The least significant 5 bits of the address seen by s4vme specify

the address of the register to be accessed. The mailbox register is accessed with

these bits set to 0x10. Any other values are rejected.

There are no registers in the s4vme to which the VME slave interface provides

access. However, if the mailbox register is enabled and the VME slave interface

receives a request that matches its mailbox address, s4vme generates an interrupt.

The mailbox address is programmable.
Chapter 7 Modules 123



7.12.2 Variables

The following variable represents the internal state of instances of this module class

and is available for use in expressions and in commands that require variables, such

as print .

mbox — This Byte variable contains the mailbox register and is composed of the

bitfields iflg (interrupt pending flag), en (mailbox interrupt enabled), comp1
(address bits 15 and 14), and comp2 (address bits 3, 2, and 1).

7.12.3 Configuration

There are four types of interfaces: SBus_slave , SBus_interrupt , vme_master ,

and vme_slave16 . There must be one interface of each type, except for

vme_slave16 , which can have any number of interfaces.

Note – The remaining information about this module is for advanced users.

7.12.4 Interfaces

This section describes the interfaces.

SBus_slave

The SBus_slave interface accepts requests to read and write the addressable

registers of the s4vme module and also to initiate requests on the VME bus. It

supports simulation and debug channel accesses.

The SBus_slave interface uses the gen_bus_pkt protocol. The type , paddr ,

size , and data fields of the gen_bus_pkt are set according to the standard

gen_bus_pkt protocol. The status , routeflg , asi , and vaddr fields are not

used.

The extra field contains the SPARCengine 1E address space identifier. Valid values

are 1 (I/O), 2 (16-bit VME address), and 3 (32-bit VME address). Other values cause

s4vme to cause a fatal error for simulation channel accesses.
124 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



If an I/O request is received (extra = 1) and the bottom 5 bits of paddr do not

match the address of any s4vme register, or gen_bus_pkt size is not 1 byte, the

request is returned with status set to GEN_BUS_FAULT. Otherwise, the specified

register is accessed and the request is returned with status set to GEN_BUS_OK.

If a VME request is received (extra = 2 or 3), the request is forwarded to the

vme_master interface. When that interface receives a response, the response is

returned to the SBus_slave interface with the extra field set to contain the

SPARCengine 1 address space identifier.

If the SBus_slave interface receives a request and it is busy with a previous request

that was forwarded to the vme_master interface, the current request is returned

with status set to GEN_BUS_BUSY.

SBus_interrupt

The SBus_interrupt interface is used by s4vme to cause an interrupt and

supports only simulation channel accesses.

The SBus_interrupt interface uses the gen_int_pkt protocol and does not use

the extra field. The irl field is set to 7, irl_valid is set to 1; action is set to

INTERRUPT_SETto signal an active interrupt and is set to INTERRUPT_CLEARto

signal an inactive interrupt.

A response to an interrupt request is not required. If one is received, it is sent back to

the SBus_interrupt interface with a delay of 1.

vme_master

The vme_master interface is used by s4vme to access VME slaves. It performs these

requests in response to a request received on the SBus_slave interface with address

space (in extra field) set to 2 or 3. It supports simulation and debug channel

accesses.

The vme_master interface uses the gen_bus_pkt protocol. It uses the type ,

status , paddr , size , and data fields in the normal way and does not use the

routeflg , asi , and vaddr fields. The extra field is set to the VME address space

in bits (16 or 32).

If the response to a request sent to the vme_master interface has a status of

GEN_BUS_BUSY, the response is sent to the vme_master interface again with a delay

of one cycle. Otherwise, the request is returned to the SBus_slave interface since it

initiated the request. The extra field is set back to the SPARCengine 1 address space

of the request.
Chapter 7 Modules 125



vme_slave16

The vme_slave16 interface accepts requests from VME masters in 16-bit VME

address space to access the s4vme mailbox register. It does not initiate requests, but

only responds. vme_slave16 supports only simulation channel accesses.

The vme_slave16 interface uses the gen_bus_pkt protocol. It uses the status ,

paddr , and size fields in the normal way and does not use the type , extra ,

routeflg , asi , vaddr , and data fields.

If the mailbox register is disabled, size is not 1 or 2 bytes. If bits 15, 14, 3, 2, and 1

of paddr do not match the values programmed into the mailbox register, the

request is returned to the vme_slave16 interface with status set to

GEN_BUS_FAULT. Otherwise, a mailbox hit has occurred and the response is sent

back with status set to GEN_BUS_OK.

7.12.5 Source Files

Following are the source files:

■ sun4e/s4vme.c — Source code for the module

■ sun4e/s4vme.h — Private declarations for the module

■ sun4e/mmu.h — Public declarations for the SPARCengine 1E memory types

7.13 sbus : SBus Module
The sbus module simulates a simplified SBus. Its characteristics are:

■ The module uses a fair, round-robin arbitration mechanism.

■ Interrupts are external to sbus .

■ It supports a maximum of eight masters and eight slaves.

■ It does not support SBus rerun or late errors.

■ Slave addresses can be up to 36 bits in length.

■ DVMA SBus masters cannot access SBus slaves.

7.13.1 Simulated Behavior

The sbus module optionally supports a built-in or external arbitration enable

register; only one can be present. The arbitration enable register specifies which

sbus masters are enabled for arbitration. If it is not present, all sbus masters are

enabled for arbitration.
126 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Each sbus master has 1 associated bit in the arbitration enable register. If that bit is

0, the master is not granted sbus . Bit i of the register controls the sbus master in

offset i; bit 0 is the least significant bit of a word. The register is 32 bits.

If the built-in register is activated by appropriate configuration file entries, all

processors see it at the same physical address. It only supports word accesses on a

word boundary.

If the external register is activated, it is not considered part of the sbus module and

has no physical address associated with it by sbus . The register is actually contained

in another module, and that module provides user interface and processor access to

its contents.

7.13.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ enable_reg_mask

This Word variable contains the value of the arbiter enable register. It exists

only when the built-in arbiter enable register is in use.

■ next_master_to_get_sbus

The sbus arbitration code uses this Byte variable as an index into its array of

masters to keep track of which master gets the sbus next. It is updated each

cycle.

■ num_masters_waiting

This Byte variable contains the number of sbus masters that are waiting to get

sbus . It is updated each cycle.

■ master_sbus_request_mask

If bit i is 1 in this Word variable, the master in offset i is waiting for sbus . This

variable is updated each cycle.

■ master_interface

If a master has sbus , this read-only string variable is the name of that master

interface. Otherwise, it is the string nil . It is updated each cycle.

■ locking_master_interface

If a master has sbus locked, this read-only string variable is the name of the

master interface. Otherwise, it is the string nil . It is updated each cycle.
Chapter 7 Modules 127



■ slave_interface

If sbus is waiting for a slave to respond to a master’s request, this read-only

string variable is the name of the slave interface. Otherwise, it is the string nil . It

is updated each cycle.

7.13.3 Configuration

There are three types of interfaces: master , slave , and iommu. There can be zero to

eight master interfaces, one to eight slave interfaces, and zero or one iommu
interface.

There is one type of object shared used: arb_enable_reg . If it is specified, the

external arbiter enable register is activated. It cannot be specified if the built-in

arbiter enable register is also activated, however.

Instance Arguments

The optional instance arguments are:

■ ENABLE_REGISTER_ADDR36-bit address
■ ENABLE_REGISTER_INITIAL_VALUE 32-bit value
■ ENABLE_REGISTER_STUCKAT_ONE32-bit value

These arguments specify information about the built-in arbitration enable register

and also activate the register. The information includes the address of the built-in

arbiter enable register, its initial value, and a mask of the bits (if any) that are always

1. If bit i is 1, the master in offset i is enabled for arbitration; bit 0 is the least

significant bit.

If ENABLE_REGISTER_INITIAL_VALUE or ENABLE_REGISTER_STUCKAT_ONEis
specified, ENABLE_REGISTER_ADDRmust also be specified. If not, the built-in arbiter

enable register is not present and all masters are always enabled for arbitration.

Master Interface Arguments

The following master interface arguments apply.

■ USE_IOMMU

If this flag is specified, the sbus master uses DVMA.

■ SLOTvalue between 0 and 15

This argument specifies the SBus slot associated with the master interface. It is

mandatory if USE_IOMMUis specified for the master. Only one master can use

each slot value.
128 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ OFFSETvalue between 0 and 31

This argument specifies the bit offset into the arbiter enable register associated

with the master interface. It is mandatory if the arbiter enable register is in use.

Only one master can use each offset value.

■ MAKE_SBUS_SIGNALS

This optional argument specifies that the master does not generate sbus signals;

hence, the sbus module must do so. This protocol works for simple masters only.

■ ALWAYS_ENABLED

This optional argument specifies that the master is always enabled for arbitration

independently of the contents of the arbitration enable register. It is meaningful

only if the built-in or external arbitration enable register is in use.

Slave Interface Arguments

The slave interface arguments are:

■ ADDR_BASE36-bit value
ADDR_MASK36-bit value

These mandatory entries specify the ranges of addresses to which a slave

responds. The range of each slave must be distinct. ADDR_BASE specifies the

lowest address in the range. ADDR_MASKspecifies which bits of the address are

examined. If the address bitwise AND’d with the mask is equal to the base, then

that address is inside the range.

■ DEBUG_SUPPORTED

This optional argument specifies that the slave supports debug channel accesses.

Note – The remaining information about this module is for advanced users.

7.13.4 Interfaces

This section describes the interfaces.

master

The master interface handles requests to access sbus slaves and supports

simulation and debug channel accesses.

The master interface uses the gen_bus_pkt protocol.
Chapter 7 Modules 129



Requests

sbus queues its requests until the master is granted the sbus . Only one outstanding

request per master is supported at a time.

The master interface uses the type , status , paddr , size , and data fields of the

gen_bus_pkt in the normal way and does not use the asi , vaddr , and extra
fields.

The route field of the gen_bus_pkt contains some SBus signals. The format is as

follows:

If the keep_bus bit is set, the master locks the bus so that only it can access the bus

next. It is similar to the mbbphysical signal of the Mbus; mbb is not in the simulation.

mbb signal is asserted until the master wants to free the bus. However, the

keep_bus signal is only asserted when the master wants the bus on the next cycle.

The slot field is set by the sbus module for a master if it specifies

MAKE_SBUS_SIGNALSin the configuration file declaration for that interface.

Otherwise, the master is expected to set the slot field itself.

If the master specifies an address that does not match any sbus slave, the sbus
module sets gen_bus_pkt status to GEN_BUS_FAULTand returns the request to

the master.

Responses

An sbus master receives a message only in response to a previous sbus request it

made to access a slave.

In this case, the master interface uses the type , status , paddr , size , and data
fields of the gen_bus_pkt in the normal way and does not use the asi , vaddr ,

extra , and routeflg fields.

slave

The slave interface connects to mbus slaves and supports simulation and debug

channel accesses.

struct multiplexed_signals {
        u_int   pad    :27;     /* unused */
        u_int   slot    :4;     /* SBus slot number */
        u_int   keep_bus:1;     /* allows master to lock SBus */
};
130 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



One slave must be identified as the memory slave since it acknowledges coherent
invalidate transactions on mbus. Each slave responds to a unique range of the

address space, which is specified in the configuration file.

The slave interface uses the gen_bus_pkt protocol.

Requests

A slave receives a message from the sbus when a master attempts to access it. It sets

the type , paddr , size , and data fields of gen_bus_pkt according to the standard

gen_bus_pkt protocol and does not use the extra field. The routeflg contains

the sbus signals, described above, and is set according to those conventions.

Responses

After a slave has performed the transaction from a previous request, it sends a

response back to sbus . The slave must set the gen_bus_pkt status field to

indicate the result of the request.

If the request is successful, the physical signal status should be set to valid
and the gen_bus_pkt status should be set to GEN_BUS_OK.

If the request is to an invalid address within the slave and the slave must inform the

master of this error, it sets the gen_bus_pkt status to GEN_BUS_FAULT.

The slave cannot be busy since it does not support SBus rerun.

iommu

The iommu interface is present if the SBus supports DVMA. It supports simulation

and debug channel accesses. The iommu interface uses the gen_bus_pkt protocol.

SBus DVMA master requests are routed to the iommu interface by the sbus module

instead of to a sbus slave. The module connected to the iommu interface then

processes the request. When the process is complete, it returns the request to the

sbus module on the iommu interface, which then returns it to the original sbus
master.

The module connected to the iommu interface cannot send a request it receives back

to sbus on any sbus master interface. If it attempts to do so, a deadlock occurs.

For this reason, sbus DVMA masters cannot access sbus slaves.
Chapter 7 Modules 131



7.13.5 Source Files

The source files are:

■ mbus/sbus.c — Source for module

■ mbus/sbus.h — Structures, macros, and definitions useful to modules that

connect to sbus

■ mbus/sbus_private .h — Declarations used only by the sbus module

7.14 serial : Dual Serial Port Module
The serial module is modeled after the Z85C30 Serial Communications Controller

(Z-SCC). For details on the Z85C30 SCC, see the Z8030/Z8530 Serial Communications
Controller Technical Manual, Advanced Micro Devices, 1988.

The serial module features:

■ Two channels (also called ports), A and B

■ Asynchronous character transmissions

■ Support for receive interrupts

7.14.1 Simulated Behavior

Four addresses access the serial ports. The actual physical address is controlled by

the architecture. The bottom three bits of the address seen by serial specify the

type of access. The ports are accessed according to TABLE 7-9.

TABLE 7-9 serial Registers

Address<2:0> Description

0x0 Port B control access

0x2 Port B data access

0x4 Port A control access

0x6 Port A data access
132 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Internal Registers

Each channel in the serial module contains 14 write registers and seven read

registers, 1 byte each. The modes of communication, such as interrupts enabled or

interrupts disabled, are established by the values of the write registers. As data are

received or transmitted, the read register values may change to indicate the status of

serial .

The registers are accessed in a two-step process via a register pointer to perform the

addressing. For a particular register to be accessed, the pointer bits must be set by

writing to WR0(write register 0). The next read or write operation then accesses the

desired register. At the conclusion of this operation, the pointer bits are reset to 0 so

that the next control operation accesses either read or write register 0.

All write registers can be written to. However, the serial module only uses the

contents of WR0, WR1, and WR9.

Bits 5:0 of WR0indicate which register is accessed.

Bits 4:3 of WR1 indicate the Receive Interrupt Disable bits. The values of these bits

indicate the following:

■ 0x0 — Receive interrupts disabled

■ 0x1 — Receive interrupts enabled on first character or special condition

■ 0x2 — Receive interrupts enabled for all characters or special condition

■ 0x3 — Receive interrupts on special condition only

The serial module functions if receive interrupts are enabled or disabled for all

characters (values 0x2 and 0x0, respectively). Therefore, serial interprets the

values or 0x1 and 0x3 as interrupts disabled.

Bit 3 of WR9is the Master Interrupt Enable (MIE) bit and is used to globally inhibit

interrupts. If it is 1, then interrupts for both channel A and B are enabled.

The read registers keep status information, which can be read. However, the serial
module uses only RR0and RR1 for receive interrupt conditions.

Bit 0 of RR0 is the Rx Character Available bit. It is set to 1 when a character is

available in the serial receive buffer and is reset to 0 when the buffer is empty. The

size of the character buffer has no fixed limit.

Bit 2 and bit 5 of RR3 indicate the Rx Interrupt Pending for each channel.

At simulation startup, all registers are cleared, the Master Interrupt Enable is set to 1,

and the Rx Interrupt Disable bits are set to 1 and 0, respectively, to signal that

receive interrupts are enabled.
Chapter 7 Modules 133



7.14.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ a_enabled_rcv_int

If this Bitfield variable is set to 1, the Rx Interrupt Disable bits are set to 0x2

for port A (receive interrupts enabled). If it is set to 0, the Rx Interrupt Disable

bits are set to 0x0 (receive interrupts disabled).

■ b_enabled_rcv_int

If this Bitfield variable is set to 1, the Rx Interrupt Disable bits are set to 0x2

for port B (receive interrupts enabled). If it is set to 0, the Rx Interrupt Disable bits

are set to 0x0 (receive interrupts disabled).

■ a_pending_rcv_int

This Bitfield variable contains the value of the Rx Interrupt Pending bit for

port A.

■ b_pending_rcv_int

This Bitfield variable contains the value of the Rx Interrupt Pending bit for

port B.

■ int_enable

This Bitfield variable contains the value of the Master Interrupt Enable bit.

■ port_a_redirect_filename

This String variable indicates the name of the file to which to redirect the output

of a write port A request. If this variable is not a null string, the serial module

writes the character to the file instead of sending it to the sigio module.

■ port_b_redirect_filename

This String variable indicates the name of the file to which to redirect the output

of a write port B request. If it is not a null string, the serial module writes the

character to the file as opposed to sending it to the sigio module.

7.14.3 Configuration

There are three types of interfaces: slave , sigio , and interrupt . There can be any

number of slave , one sigio , and zero or one interrupt interfaces.

During startup, a pseudo-tty is opened for each port and the information is

displayed. For example:
134 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



serial1: Serial Port A is /dev/ttyp4
serial1: Serial Port B is /dev/ttyp5

The other end of the tty is intended to be connected to with the UNIX tip
command in another window, where characters sent to serial are displayed.

Characters typed in the window are sent to serial as input.

7.14.4 Interfaces

This section describes the interfaces.

slave

The slave interface accepts requests to read and write the control registers and the

character buffer for the A and B ports. It only responds, does not initiate requests,

and supports simulation channel accesses only.

The slave interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , size , and data fields in the normal way and does not use the extra ,

routeflg , asi , and vaddr fields.

The paddr field of the gen_bus_pkt specifies what is to be accessed. If an invalid

address is specified, the request is returned to the slave interface with status set

to GEN_BUS_FAULT. Otherwise, the specified request (read or write) is performed

according to the gen_bus_pkt type field.

The behavior of serial for the different types of requests is as follows.

■ Read data

■ A character is read from the character buffer.

■ The Rx Character Available bit in RR0 is set to 0 if there are no characters left

in the buffer.

■ If the Rx Interrupt Pending bit of RR3is set, it is cleared. gen_int_pkt is sent

to the interrupt interface. The action field of the packet is set to

INTERRUPT_CLEARto indicate that the interrupt has been cleared.

■ Write data

A character is sent to the sigio interface or to a file if redirected.

■ Read control

■ The read register specified by the contents of WR0<5:0> is read.

■ WR0<5:0> is reset to 0.

■ Write control

■ Data are written into the register specified by the contents of WR0<5:0>.

■ If the register written to is not WR0, WR0<5:0> is reset to 0.
Chapter 7 Modules 135



At the end of the operation, the gen_bus_pkt is returned to the slave interface

with status set to GEN_BUS_OK.

sigio

The sigio interface accepts characters as they arrive from the sigio module. It

supports only debug channel accesses.

The character is placed into the character buffer and the Rx Character Available bit

in RR0 is set. If receive interrupts are enabled and there is not an interrupt pending,

Rx Interrupt Pending is set and gen_int_pkt is sent to the interrupt interface

with the action set to INTERRUPT_SET.

interrupt

The interrupt interface is used by serial to handle interrupt requests and

responses. It supports only simulation channel accesses.

When a character is received from the sigio interface and interrupts are enabled,

gen_int_pkt is sent to the interrupt interface with the action set to

INTERRUPT_SET.

A response to the interrupt request is not required. If one is received, the request is

returned to the interrupt interface with a delay of 1.

7.14.5 Source Files

The source files are:

■ computer/serial.c — Source for the module

■ computer/serial.h — Private declarations for the module

■ computer/include/serial_registers.h — Internal register formats

7.15 sigio : Simulator Input and Output
Module
The sigio module provides file system input and output facilities to modules.
136 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.15.1 Configuration

Only one instance of the sigio module class can be created. One interface type

applies: sigio . There can be any number of sigio instances.

Note – The remaining information about this module is for advanced users.

7.15.2 Interfaces

The sigio interface sends and receives data to modules and supports only the

debug channel. It uses the sigio protocol.

Each sigio interface has an associated file descriptor. When input is available from

that file descriptor, the sigio module reads it, places it in a message, and sends it to

the sigio interface associated with the file descriptor. When the sigio module

receives a message on a sigio interface, it writes the data in the message to the file

descriptor that is associated with the interface.

7.15.3 Source Files

The source files are:

■ fw/sigio.c — Source for module and some framework routines

■ fw/sigio_private.h — Private declarations related to the module

■ fw/include/sigio.h — Public declarations related to the module

7.16 simdisk : Simulated Disk Module
The simdisk module simulates a disk controller, but not any particular hardware.

The simdisk module features the following:

■ Memory-mapped registers that control its operation

■ Bus master capability that transfers disk blocks directly to memory

■ Support for up to three disk partitions, stored as UNIX files

■ Support for interrupts

■ Support for 64-bit addresses
Chapter 7 Modules 137



Besides the memory-mapped interface to simdisk , most architectures support a

special CPU trap to access that module. See trap: External Trap Module on page 155

for more information.

7.16.1 Simulated Behavior

A program uses simdisk by loading its registers to specify a disk to memory

transfer and setting the start bit in one of the registers to start the transfer. If

interrupts are used, the program disk interrupt handler is invoked and the handler

accesses a register to clear the interrupt.

The simdisk module responds by becoming a bus master and performing the

transfer between memory and disk. If interrupts are enabled, simdisk posts an

interrupt when the transfer is complete.

If an error occurs during the access of the disk file, a message is displayed and the

simulation stops.

7.16.2 Registers

There are five addressable registers in simdisk . The portion of the address space

they occupy is controlled by the architecture. Each of the registers is 4 bytes and can

be read and written.The bottom 5 bits of the address seen by simdisk specify the

address of the first register to be accessed according to TABLE 7-10.

The registers must be accessed by a size that is a multiple of 4 bytes. The size

divided by 4 specifies the number of registers to be accessed. For example, if the

bottom 5 bits of the address are 0x8 and size is 8 bytes, the simdisk partition and

disk block numbers are accessed.

TABLE 7-10 simdisk Registers

Address<2:0> Description

0x0 Control

0x4 Memory start address (high 32 bits)

0x8 Memory start address (low 32 bits)

0xc Partition

0x10 Disk block number
138 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Control and Status Register

The format of the control and status register is as follows:

Memory Start Address Registers

The memory start address registers are two 32-bit registers that logically create one

64-bit register, which specifies the starting memory address for a transfer between

disk and memory.

Partition Register

The partition register specifies which of the three partitions (UNIX files) are in the

next disk operation. Its value can be 0, 1, or 2, corresponding to the three partitions.

Disk Block Number Register

The disk block number register contains the starting block number for a transfer

between disk and memory. Blocks are 512 bytes.

Number of Bytes Left to Transfer Register

Another register has the number of bytes that are left to be transferred by simdisk .

After each transfer, this register is decremented by the number of bytes that have

been transferred.

<31:4> transfer count Specifies the number of bytes to transfer between the disk and

memory.

<3:2> command If 1, reads a block from the disk; if 2, writes a block.

<1> interrupt enabled If 1, simdisk generates an interrupt after a transfer is

complete.

<0> start transfer If 1, the transfer between disk and memory is started. All

parameters required by the transfer must be loaded into the

simdisk registers before this bit can be set. When the

transfer is complete, the bit is set to 0.
Chapter 7 Modules 139



7.16.3 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ block_number

This Word variable contains the disk block number register.

■ busy

This Bool variable is true if simdisk is currently handling a disk-to-memory

transfer; otherwise, it is false .

■ csr

This Word variable contains the control and status register. It is composed of the

bit fields count , command, interrupt_enabled , and start_transfer .

■ interrupting

This Bool variable is true if the simdisk interrupt is active; otherwise, it is

false .

■ partition

This Word variable contains the partition register.

■ start_addr

This LWord variable contains the memory start address register.

7.16.4 Configuration

There are three types of interfaces: slave , master , and interrupt . There can be

any number of slave s, one master , and zero or one interrupt interfaces.

One mandatory instance argument applies: partition information filename, which is the

name of a file that describes the three simulated disk partitions. The syntax of each

line is filename partition where:

■ filename is the name of the UNIX file that contains the partition data.

■ partition is the maximum number of 512-byte blocks in the partition and can be

any value.

There must be three of these lines, one for each partition. If a partition is not needed,

use nofile .

Lines that start with a pound sign (#) are ignored.
140 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Note – The remaining information about this module is for advanced users.

7.16.5 Interfaces

This section describes the interfaces.

slave

The slave interface accepts requests to read and write the addressable registers of

the simdisk . It only responds, does not initiate requests, and supports simulation

channel accesses only.

The slave interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , size , and data fields in the normal way and does not use the extra ,

routeflg , asi , and vaddr fields.

The paddr and size fields specify which registers to access.

If simdisk is busy with a disk transfer when the slave request is received, the

request is returned to the slave interface with status set to GEN_BUS_BUSY.

Any access to the slave interface when simdisk is not busy with a disk transfer

clears the interrupt if it is active.

The paddr and size fields of gen_bus_pkt specify which registers to access. If an

invalid address and size combination is specified, the request is returned to the

slave interface with status set to GEN_BUS_FAULT. Otherwise, the specified

registers are accessed according to the gen_bus_pkt type field, and the packet is

returned to the slave interface with status set to GEN_BUS_OK.

master

The master interface is used by simdisk to transfer data between the disk and

simulated memory. It supports simulation channel accesses only.

The master interface uses the gen_bus_pkt protocol. It uses the type , status ,

paddr , vaddr , size , and data fields in the normal way and does not use the

extra , routeflg , and asi fields.
Chapter 7 Modules 141



simdisk sends a message to the master interface when the start_transfer bit

of the csr register is set to 1. The number of bytes, the disk block number (512-byte

blocks), the starting memory address, and the UNIX file (simdisk partition) to

access are taken from the appropriate simdisk registers. The start address is loaded

into the vaddr and paddr fields of gen_bus_pkt .

At the beginning of a disk operation, gen_bus_pkt is allocated large enough to

hold the specified number of bytes. A disk read operation reads the data from the

partition into the packet’s data area and then sends the packet to the master
interface with type set to GEN_BUS_WR. A disk write operation does not yet access

the disk (because it has no data to write) but sends the packet to the master
interface with type set to GEN_BUS_RD.

The simdisk waits until the master interface receives a response to its request. If

the response status is GEN_BUS_BUSY, status is set to GEN_BUS_OKand the

request is sent to the master interface again.

If the status is GEN_BUS_OKor GEN_BUS_FAULT, the simdisk request is

completed. If a disk write is being performed and the packet status is GEN_BUS_OK,
the data are written to the partition (UNIX file).

interrupt

The interrupt interface is used by simdisk to cause an interrupt. It supports

simulation channel accesses only.

The interrupt interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active interrupt and INTERRUPT_CLEARto signal an inactive interrupt.

At the end of a simdisk disk transfer, an interrupt is asserted if interrupts are

enabled in the simdisk control register.

A response to the interrupt request is not required. If one is received, it is returned to

the interrupt interface with a delay of 1.

If simdisk is interrupting and an access is made to any of its slave interfaces, the

interrupt condition is cleared.

7.16.6 Source Files

The source files are:

■ computer/simdisk.c — Source for the module

■ computer/simdisk.h — Private declarations for the module

■ computer/include/simdisk_registers.h — Internal register formats
142 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.17 socket : Message to UNIX Socket
Module
The socket module provides a mechanism to transfer MPSAS messages over a

UNIX socket so that the modules in an MPSAS simulation can communicate with

programs that are external to the simulation.

A program can connect to the socket as long as it follows the protocol expected by

the MPSAS modules with which it communicates. For example, a socket module can

connect to another MPSAS simulation that runs on a different machine or to another

type of simulator, such as Verilog.

The socket module is a socket client. Therefore, you cannot use two socket
modules to connect two MPSAS simulations.

7.17.1 Simulated Behavior

The socket module accepts messages from other MPSAS modules through

interfaces and then multiplexes them over a UNIX socket.

Each interface on a socket module has a unique numeric identifier associated with

it. When a message is received from a module on one of the socket interfaces, the

socket module writes the data in the message to the socket prefixed with the

identifier associated with that interface. When a message is available from the

socket, the socket module first reads the identifier from the socket, followed by the

message, and then forwards the message to the specified interface.

7.17.2 Configuration

There are two types of interfaces: pkt and sigio . There must be one sigio
interface; there can be any number of pkt interfaces.

Instance Arguments

Two mandatory instance arguments apply:

■ SOCKET_NUMBERinteger number — Specifies the UNIX socket number to which to

connect.

■ MACHINE_NAMEnamer — Specifies the host machine to which to connect.
Chapter 7 Modules 143



pkt Interface Arguments

The mandatory argument ID number from 0 to 255 associates a unique numeric

identifier with each pkt interface. Identifiers need only be unique for each socket
module instance.

Note – The remaining information about this module is for advanced users.

7.17.3 Interfaces

This section describes the interfaces.

pkt

The pkt interface connects to other MPSAS modules. Any messages it receives are

written to the socket. Any messages received by the socket are sent to a pkt
interface.

The format of the messages read and written to the socket are described by the

following C language data structure. Be sure to take into account alignment of fields

if this data structure declaration is not used by the program connected to the socket.

All messages sent by the socket module on its pkt interfaces are sent in the

positive phase of the simulation.

The intf_id field is the interface identifier and is set by the socket module when

it writes a message to the socket. The socket module requires this field to be set

when it reads a message from a socket.

The type field is the MPSAS message type associated with the packet.

The delay field is the MPSAS cycle delay associated with the packet. If it is equal to

–1, the packet is a debug channel packet.

struct socket_pkt {
        Byte    intf_id;
        caddr_t type;
        int     delay;
        int     size;
        Byte    data[1];
};
144 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The size field is the total size of the message data in bytes.

The data field is a variable-length array of the message data and contains size
bytes.

sigio

The sigio interface connects to the sigio module and uses the sigio protocol.

7.17.4 Source Files

The source files are:

■ fw/socket.c — Source code for the module

■ fw/socket.h — Private declarations for the module

■ fw/ipp. c — Interprocess package code (UNIX socket support routines)

■ fw/ipp.h — Interprocess package declarations

■ fw/tcp_socket.c — TCP/IP support code

■ fw/udp_socket.c — UDP support code

7.18 sys4c and sys4e : sun4c and sun4e
System Modules
The sys4c andsys4e modules are the central modules in the sun4c and sun4e

architectures, respectively. They implement system registers and route memory

requests to various devices, including the MMU. For the remainder of this chapter,

the term sys module refers to both the sys4e and sys4c modules.

7.18.1 Simulated Behavior

The sys module routes memory and interrupt traffic between the CPU, MMU,

memory, and devices in the system. The devices include simple slave devices,

DVMA bus masters, and other buses.

The sys module also maintains several system registers that control the system

behavior, as follows. For more details on the behavior of these registers, refer to the

sun4c or sun4e architecture manuals.
Chapter 7 Modules 145



■ Asynchronous error register

■ Asynchronous error virtual address register

■ Counter-timer registers

■ Context register

■ System enable register

■ Memory error register

■ Synchronous error register

■ Synchronous error virtual address register

■ Interrupt register

7.18.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print . Many of them correspond directly to the registers in the sun4c and

sun4e architectures.

■ async_err_reg

This Word variable corresponds to the asynchronous error register in the system.

It is broken up into the following fields; dvmaerr , invalid , and timeout .

■ async_err_vaddr

This Word variable corresponds to the asynchronous error virtual address register

in the system.

■ cntr0 limr0 cntr1 limr1

These Word variables correspond to the control registers for the counter-timer in

the system. Each is divided into the limit and value bit fields.

■ context ctxt_reg

These Byte variables correspond to the context register in the system.

■ en_reg

This Byte variable corresponds to the system enable register. It is broken up into

the following fields: boot , cache , diag , reset , and sdvma. When the simulation

starts up and at reset, all of these fields are set to 0, thereby enabling boot state

and disabling all others.

Note – Boot state is enabled when the boot bit is set to 0.

■ intr

This Byte variable corresponds to the interrupt register in the system. It is broken

up into the following fields: en_int , en_int1 , en_int4 , en_int6 , en_int8 ,

en_int10 , and en_int14 .
146 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ intr_pending

This Word variable does not correspond to a hardware register in the system and

is an informative register. It contains a field for each interrupt level, which is 1 if

an interrupt is pending at that level. The bit fields are lvl1 to lvl15 .

■ merr

This Word variable corresponds to the memory error register. In the hardware, it

controls the parity error checking mechanism. In the simulation, parity errors are

never generated. Modifying this register does not change the simulation. If a

program writes to this register, the data are retained in the register but the

requested action does not occur. The size of this register is one word. It is broken

up into the following fields: mperr , pcheck , perr , perr00 , perr08 , perr16 ,

perr24 , and ptest .

■ sync_err_reg

This Word variable corresponds to the synchronous error register in the system. It

is broken up into the following fields: invalid , memerr , proterr , rw, sberr ,

sizerr , time-out , and watchdog .

■ sync_err_vaddr

This Word variable corresponds to the synchronous error virtual address register

in the system.

7.18.3 Configuration

The sys4c module supports 11 interface types: cpu , cpu_intr , vac_cpu , vac_mmu,

mmu_vir , mmu_phy, type_0_device_space , type_1_device_space ,

system_space , dvma, and intr_set . The sys4e module supports the same

interface types as the sys4c module as well as the vme and vme_intr interface

types.

There must be only one interface of each of the following interface types configured

into the system: cpu , cpu_intr , vac_cpu , vac_mmu, mmu_vir , mmu_phy, and

type_0_device_space . There can be zero or more interfaces of the following

interface types configured in the system: type_1_device_space , system_space ,

dvma, and intr_set . In the case of a sys4e module, there must be zero or one vme
interfaces and there can be zero more vme_intr interfaces.

Arguments

The following arguments apply.
Chapter 7 Modules 147



■ DEBUG_SUPPORTED

Both sys interfaces support this optional argument, which specifies that the slave

supports debug channel accesses.

■ ADDR_BASEbase addr ADDR_MASKmask

These mandatory type_1_device_space interface arguments determine when

a memory request is directed to the device connected to this interface. The

address of the request (A) is directed to this device when this expression is true :

base addr == (A & mask) .

■ ADDR_BASEbase addr ADDR_MASKmask

These mandatory system_space interface arguments determine when a memory

request is directed to the device connected to this interface. The address of the

request (A) is directed to this device when this expression is true : base addr ==
(A & mask) .

■ IRL level

This optional intr_set interface argument specifies the interrupt request level

that is used for the device connected to this interface. The value of level must be

greater than or equal to 0 and less than 16. If the value is 0, which is the default,

then no interrupts are generated.

■ ADDR_BASEbase addr ADDR_MASKmask

These mandatory VME arguments determine when a memory request is directed

to the device connected to this interface. The address of the request (A) is directed

to this device when this expression is true : base addr == (A & mask) .

Note – The remaining information about this module is for advanced users.

7.18.4 Interfaces

This section describes the interfaces.

cpu

The cpu interface handles memory requests for the cpu module. It uses the

gen_bus_pkt protocol and the type , asi , status , vaddr , size , and data fields

of gen_bus_pkt in the normal way. It does not use the paddr , routeflg , and

extra fields.
148 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



The cpu interface is where the sys module receives memory requests from the cpu
module. Depending on the asi field of gen_bus_pkt , the requests can be sent to

other modules via other interfaces. The eventual response to a memory request is

returned to the cpu module via this interface.

cpu_intr

The cpu_intr interface sends interrupts to the cpu module. The sys module does

not receive messages on this interface. Rather, the gen_int_pkt protocol

communicates interrupts to the cpu module.

The sys module sends messages to the cpu module on this interface to change the

interrupt request level at the processor. To set an interrupt, set the irl field to the

interrupt level of the interrupt. To clear an interrupt, set the irl field to 0. The

remainder of the fields in gen_int_pkt are not used.

vac_cpu and vac_mmu

The vac_cpu and vac_mmu interfaces are not in use and are included for possible

future enhancements.

mmu_vir

The sys module uses the mmu_vir interface to pass memory requests to the mmu
module, which can be for physical address translations or for direct access to the

segment and page maps. It uses the gen_bus_pkt protocol and the type , asi ,

status , vaddr , size , and data fields of the gen_bus_pkt in the normal way and

does not use the paddr field. It uses the extra field to pass the context number to

the MMU and the routeflg field to mark this request as a CPU request (routeflg
= 1) or DVMA request (routeflg = 2). The sys module expects the mmumodule to

leave routeflg field unchanged.

Messages received on this interface are the result of failed memory translation

requests or responses to segment and page map accesses.

mmu_phy

The mmu_phy interface connects to the physical address side of an MMU. After

gen_bus_pkt is sent to the MMU on the mmu_vir interface, the MMU places the

physical address of gen_bus_pkt in the paddr field. If the address translation is

successful, the MMU forwards gen_bus_pkt to the sys module on this interface,
Chapter 7 Modules 149



which then routes that packet to the correct device, according to the device space

type (in the extra field) and paddr . When the response to the packet comes from

the device, it is returned directly to the cpu module and is not sent to the MMU.

mmu_phyuses the type , status , paddr , size , and data fields of the

gen_bus_pkt in the normal way and does not use the asi and vaddr fields. The

extra field contains the device space type. The routeflg marks the request as a

CPU request or DVMA request.

If routing the request fails, the status field is set to GEN_BUS_FAULT(1) and the

message is sent to the cpu module through the cpu interface.

type_0_device_space

The type_0_device_space interface communicates to main memory (type 0
space), as defined in the sun4e and sun4c architectures.

gen_bus_pkt communicates over this interface and uses the type , asi , status ,

vaddr , paddr , size , and data fields of the gen_bus_pkt in the normal way. The

extra field contains the device space type. routeflg marks the request as a CPU

request or DVMA request. Responses from the device connected to this interface are

sent through the cpu interface to the requester and not back through either the

mmu_vir or mmu_phy interfaces.

type_1_device_space

The type_1_device_space interface communicates to devices (type 1 space), as

defined in the sun4e and sun4c architectures.

gen_bus_pkt communicates over this interface. It uses the type , asi , status ,

vaddr , paddr , size , and data fields of gen_bus_pkt in the normal way. The

extra field contains the device space type. routeflg marks the request as a CPU

request or DVMA request. Responses from devices connected to this interface are

sent through the cpu interface to the requester and not back through either mmu_vir
or mmu_phy.

system_space

When memory requests arrive on the cpu interface with the system space ASI, they

are sent out to the system_space interface, bypassing the MMU.

The gen_bus_pkt communicates on this interface. It uses the type , asi , status ,

vaddr , paddr , size , and data fields of the gen_bus_pkt in the normal way. The

extra field contains the device space type. routeflg marks the request as a CPU

request or DVMA request.
150 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



dvma

The dvma interface is connected to devices that perform DVMAs.

The device that requests a DVMA sends a gen_bus_pkt message to this interface. If

there is already a DVMA in process, the message is returned to the requester on this

interface. Otherwise, the DVMA request is sent to the mmu_vir interface. The

memory request propagates through the system, just like a CPU memory request,

with the final response being sent to the DVMA requester. During propagation, the

routeflg field of the gen_bus_pkt contains the value GEN_BUS_DVMA_REQ(2).

intr_set

The intr_set interface connects to devices that generate interrupts. When this

interface receives a request, it checks the action field of gen_int_pkt to

determine if the request is to clear (action = 0) or set (action = 1) an interrupt. If

there is already an interrupt pending at the requester’s interrupt level, the message

is immediately returned on the same interface.

vme

When a memory request is made with the device space type of 2 or 3 (extra field in

gen_bus_pkt is 2 or 3), it is sent out on the vme interface. The response comes back

on this interface and is directed back to the requester.

vme_intr

Similar to the intr_set interface, the vme_intr interface receives gen_int_pkt
messages, which tell the sys module that a device wants to generate an interrupt.

The difference between this interface and the intr_set interface is that the irl
field of gen_int_pkt is interpreted differently. The irl field in this interface is

different from the eventual interrupt level sent to the CPU. See TABLE 7-11 for the

mapping information.

TABLE 7-11 Mapping of vme_intr Interrupt Levels to CPU Interrupt Levels 1

vme_intr IRL CPU IRL

1 2

2 3

3 5

4 8
Chapter 7 Modules 151



7.18.5 Source Files

The sys4c and sys4e modules share the same source code, as follows. The

differences are incorporated by conditional compilation based on the constant sun4e.

■ sun4c/sys.c — Symbolic link to sun4e/sys.c
■ sun4c/sys.h — Symbolic link to sun4e/sys.h
■ sun4e/sys.c — Source code for sys4e module

■ sun4e/sys.h — Include file for sys4e module

7.19 timer : Simple Timer Module
The timer module simulates a timer chip with one, two, four, or eight timers. The

timers are similar to those in the sun4c/sun4e architectures, except that they have 31

bits of resolution.

7.19.1 Simulated Behavior

Each timer has two associated registers: counter and limit . Their formats are the

same. Bits 0 through 30 contain the count value; bit 31 contains the limit flag.

The counter register value is incremented with each timer tick and is architecture

dependent. If the counter value reaches the limit register value, the counter is reset

to 1, the limit flags of both registers are set, and the timer module generates an

interrupt, the level for which is architecture dependent).

Reading the limit register clears the interrupt and the limit flags of each register.

Writing the limit register provides a value for the counter register to “match” and

resets the counter register to 1. If the limit flag of the limit register is cleared, the

limit flag of the counter register is also cleared.

Reading the counter register reads the value of that register. Writing the counter
register modifies the value of that register.

5 9

6 11

7 13

TABLE 7-11 Mapping of vme_intr Interrupt Levels to CPU Interrupt Levels 1 (Continued)
152 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Setting the limit register to 0 causes the timer to generate an interrupt each time

the counter overflows back to 0.

The exact address of the timer module’s registers is architecture dependent. The

timer module examines only bits 0 through 5 of the address it sees. All registers are

32 bits. Only word-aligned accesses of word size are allowed. The counter register of

timer i is at address i * 8. The limit register of timer i is at address i * 8 + 4 .

Each timer generates interrupts independently.

7.19.2 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ counter
counter( i)

This Word variable array contains the counter registers. Index i is the counter
for timer i. Each element is composed of the bit fields limit and value .

■ limit
limit (i)

This Word variable array contains the limit registers. Index i is the limit for

timer i. Each element is composed of the bit fields limit and value .

7.19.3 Configuration

There are two types of interfaces: slave and interrupt . There can be any number

of slave interfaces, but there must be one interrupt interface.

Instance Arguments

Two instance arguments apply.

■ NUM_TIMERScount

This mandatory argument specifies the number of timers for the timer instance

being declared. count can be 1, 2, 4, or 8.

■ CYCLES_PER_TICKcount

This mandatory argument specifies the number of simulator cycles per timer tick.

It can be any nonzero 32-bit value.
Chapter 7 Modules 153



Interrupt Interface Arguments

TIMER value is an interrupt interface argument that specifies the timer to which the

interrupt interface corresponds. value ranges from 1 to the number of timers.

Note – The remaining information about this module is for advanced users.

7.19.4 Interfaces

This section describes the interfaces.

slave

The slave interface accepts requests to read and write the addressable registers of

the timer . It supports both simulation and debug channel accesses.

The slave interface uses the gen_bus_pkt protocol and the type , status , paddr ,

size , and data fields in the normal way. It does not use the extra , routeflg ,

asi , and vaddr fields.

The paddr field specifies which register to access. If size is not 4 bytes or the

paddr specifies an empty address, the request is returned to the slave interface

with status set to GEN_BUS_FAULT. Otherwise, the specified register is accessed

according to the gen_bus_pkt type field and the packet is returned to the slave
interface with status set to GEN_BUS_OK.

interrupt

The interrupt interface causes an interrupt. It supports only simulation channel

accesses.

The interrupt interface uses the gen_int_pkt protocol and does not use the irl ,

irl_valid , and extra fields. The action field is set to INTERRUPT_SETto signal

an active interrupt and is set to INTERRUPT_CLEARto signal an inactive interrupt.

A response to the interrupt request is not required. If one is received, it is returned to

the interrupt interface with a delay of 1.
154 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



7.19.5 Source Files

The source files are:

■ mbus/timer.c — Source for the module

■ mbus/timer.h — Private declarations for the module

7.20 trap : External Trap Module
The trap module handles trap packets from the CPU, which generates them when

it executes a trap instruction that it has designated as external. These external traps

typically implement input or output operations in an architecturally independent

manner.

7.20.1 Simulated Behavior

The operation of the trap module is only visible to the simulator programmer

through SPARC trap instructions. The architecture configuration determines which

traps are considered external.

Arguments to and results from external traps are passed between the trap module

and the program that executes on the SPARC CPU via the CPU in, out, local, and

global registers. The carry bit of the CPU PSRcan also be modified by an external

trap.

TABLE 7-12 lists the traps (SPARC V9 values) the trap module understands.

TABLE 7-12 External Traps

Trap Number Function

0x148 (328) Stop simulation

0x149 (329) Simulator command

0x14a (330 Simulator string command

0x14b (331) Halt simulation

0x14e (334) Load file

0x151 (377) Empty message

0x152 (338) Disk operation

0x178 (376) Get character waiting flag from port B

0x179 (377) Read character from port B

0x17a (378) Write character to port B
Chapter 7 Modules 155



stop simulation Trap

The stop simulation trap stops the simulation (similar to the stop command). It

takes no arguments and returns no results. To restart the simulation, type run .

simulator command Trap

The simulator command trap allows a command to be executed on the simulator as

though you typed it. Thus, a program that runs on the simulator can control it.

The trap module builds the command string in a local buffer of 100 characters. Each

time simulator command trap occurs, the least significant byte of CPU out

register 0 (%o0) is added to the buffer. When a null character is added to the buffer

or if the buffer fills up, the contents of the buffer are sent to the user interface, which

executes the commands in the buffer as though you typed them.

Exercise caution on which commands are executed. For example, in the case of quit ,

the simulator stops and returns to the UNIX shell.

simulator string command Trap

The simulator string command trap allows a command to be executed on the

simulator as though you typed it. With this trap, a pointer to the null-terminated

command string is placed in CPU out register 0 (%o0) and the trap module reads

the string itself. Including the null character, the string can be up to 1,024 characters

in length.

halt simulation Trap

The halt simulation trap halts the simulation so that it cannot be restarted. It

takes no arguments and returns no results.

0x17c (380) Read character from port A

0x17d (381) Write character from port A

0x17e (382) Get character waiting flag from port A

0x3ff (1023) Bad CPU trap

TABLE 7-12 External Traps (Continued)
156 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



load file Trap

The load file trap can read the contents of a file in the host file system into

simulated memory. The parameters are as follows:

■ %o0— Pointer to file name in simulated address space

■ %o1— Offset into a file

■ %o2— Virtual address to place data

■ %o3— Number of bytes to read

■ %o4— ASI (least-significant byte)

■ %o5— 0 for loading instructions, 1 for loading data

This trap returns the number of bytes actually read in %o0. If an error occurs, –1 is

returned and the carry bit in the PSRis set.

empty message Trap

The empty message trap sends a message that contains no data to the empty
message interface. It takes no arguments and returns no results. The behavior of this

trap depends on what the empty message interface, which is architecturally

dependent, is connected to.

disk operation Trap

The disk operation trap supports transfers between simulated memory and a

simulated disk. The memory and the disk in the transfer are architecture dependent.

The memory is usually the system RAM; the disk is usually the simdisk module.

The disk operation is specified by the value of the CPU global register 1 (%g1). The

C language header file /usr/include/sys/syscall.h contains definitions of the

operating system calls. Four system calls are supported: open (SYS_open), write
(SYS_write ), read (SYS_read ), and lseek (SYS_lseek ).

The open operation is invoked before any of the other disk operations. The partition

to open is passed in CPU out register 0 (%o0), which must be 0, 1, or 2 if the trap

module is connected to the simdisk module. If the partition is valid, the CPU

carry flag is cleared after the external trap instruction; otherwise, it is set. The open
operation returns a file descriptor in the CPU out register 0 that must be used with

subsequent disk operations. The open operation completes immediately.

The write operation initiates a data transfer from memory to the current disk block.

CPU out register 0 contains the file descriptor from a previous disk open operation;

out 1 contains the 32-bit memory start address; out 2 contains the transfer count in

bytes. The interpretation of the memory start address (for example, virtual or

physical) is architecture dependent.
Chapter 7 Modules 157



The read operation initiates a data transfer from the current disk block to memory.

CPU out register 0 contains the file descriptor from a previous open operation; out 1

contains the 32-bit memory start address; out 2 contains the transfer count in bytes.

The interpretation of the memory start address (for example, virtual or physical) is

architecture dependent.

The lseek operation changes the current disk block (for all partitions). CPU out

register 0 contains the file descriptor from a previous open operation; out 1 contains

the offset in bytes. The offset is rounded down to a 512-byte disk block.

If the disk module is busy with a previous transfer when the write, read, or lseek
operations are attempted, the operations wait until the disk is free. If the operations

cause an error, the carry flag is set on return from the CPU external trap; otherwise,

it is cleared.

Interrupts are not used to signal that a disk read or write transfer has completed. In

most architectures, some assumptions about when the operation is completed can be

made. If this is not possible, an lseek operation to the current disk position (that is,

a nop for the disk) can be started immediately after a trap read or write operation.

The lseek trap then waits until the read or write is complete before returning to the

CPU.

get char waiting flag Traps

The get char waiting flag traps determine if any characters are waiting to be

read at a character device port (usually the serial module).

All of the port traps support two ports: A and B. The architecture determines which

character devices are considered ports A and B.

The get char waiting flag traps have no arguments. They set CPU out register 0

(%o0) to 0 if no characters are waiting, and 1 if characters are waiting at their

respective serial ports (A or B).

read character from port Traps

The read character from port traps cause a character to be read from the port

associated with the trap. The character is placed in the least significant byte of CPU

out register 0 (%o0). If no characters are available,%o0 is set to –1 (all ones).

write character to port Traps

The write character from port traps cause a character to be written to the

port associated with the trap. The character is read from the least significant byte of

CPU out register 0 (%o0).
158 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



bad cpu Trap

The bad cpu trap is executed in the trap handler for CPU traps that should not

occur. CPU local register 3 (%l3 ) must contain the bad trap’s trap number; local 1

must contain the PCat the time of the trap. The trap module displays a message with

this information and then stops the simulation.

7.20.2 Configuration

There are five types of interfaces: cpu_trap , simdisk_slave , serial_slave ,

cmd_request , and empty_message . There must be one cpu_trap interface. It

connects to the trap interface of the cpu module.

There can be zero or one simdisk_slave , serial_slave , cmd_request , and

empty_message i nterfaces. The simdisk_slave interface connects to the

simdisk module’s slave interface. The serial_slave interface connects to the

serial module’s slave interface. The cmd_request interface connects to the user
interface module’s cmd_request interface. The empty_message interface

connects to any interface that requires no data to be transferred for messages it

receives, usually the dup_content0 interface of the sun4c/sun4e mmumodule.

If the simdisk_slave , serial_slave , cmd_request , or empty_message
interfaces are not present and a trap that uses the interface is encountered, the trap
module displays a warning message and sets the CPU carry bit to 1 to indicate an

error.

There are no configuration file arguments for the trap module instance or any of its

interfaces.

Note – The remaining information about this module is for advanced users.

7.20.3 Interfaces

This section describes the interfaces.

cpu_trap

The cpu_trap interface accepts trap_pkt messages on the simulation channel. It

receives a message each time the CPU executes a trap instruction that it considers

external.
Chapter 7 Modules 159



When the trap module has completed the trap, it sends a trap packet back to the

CPU trap interface. Any registers in the trap packet that the trap module wrote

have the corresponding update flag set to true .

simdisk_slave

The simdisk_slave interface sends requests to write the registers of the simdisk
module on the simulation channel.

The simdisk_slave interface uses the gen_bus_pkt protocol. It always writes the

simdisk registers, so the gen_bus_pkt type field is always set to GEN_BUS_WR.
The least significant 5 bits of the vaddr and paddr fields are set to the first register

to write, and size is set to the number of registers multiplied by 4. The trap
module writes multiple and contiguous registers in simdisk in each packet that it

sends to the simdisk module.

Each packet sent to the simdisk is later sent back to the trap module in

acknowledgment. If gen_bus_pkt status of the response is GEN_BUS_BUSY,
status is set to GEN_BUS_OKand the packet is sent back to the simdisk with a

delay of 1. Otherwise, the trap is considered complete and trap_pkt is sent to the

cpu_trap interface. If gen_bus_pkt status of the response is GEN_BUS_FAULT,
the carry bit of the trap_pkt is set; otherwise, it is cleared.

serial_slave

The serial_slave interface sends requests to read and write the registers of the

serial module on the simulation channel. All of the port traps (for example, read
character from port ) use the serial_slave interface.

This interface uses the gen_bus_pkt protocol. Multiple gen_bus_pkt s are sent to

the serial_slave interface to read and write its registers, as specified by the 8530

type bus interface protocol, which the serial module supports.

cmd_request

The cmd_request interface issues user-interface commands to the simulator on the

debug channel. data of the message is the command string and the message type is

String . No response is expected or allowed. This interface is used by the

simulator command trap.
160 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



empty_message

The empty_message interface notifies another module of an event. When the

empty message trap occurs, a message with no data and of type no_data is sent to

the empty_message interface. No response is expected or allowed.

7.20.4 Source Files

The source files are:

■ sparc/trap.c — Source for module

■ sparc/trap.h — Private header file for module

7.21 ui : User Interface Module
The ui module provides a command-line user interface to the simulator. It parses

user commands and executes them. It also allows modules to send it commands.

For a description of the user interface commands and features, see Chapter 3, User
Interface.

7.21.1 Variables

The following variables represent the internal state of instances of this module class

and are available for use in expressions and in commands that require variables,

such as print .

■ cmd_result

This LWord variable is set by some commands to indicate their results. If a

command displays a numerical result that fits in an LWord, this variable can

contain that value. Some commands also use this variable to indicate success or

failure (0 for success, nonzero for failure). This variable is useful mainly for

command scripts invoked with the file command.

■ cmd_result_double

This Double variable is used in the same manner as cmd_result , except that it

is used by commands that product floating-point results.
Chapter 7 Modules 161



■ cyclecount

This Word variable contains the number of cycles the simulation has simulated. It

measures the performance of the simulator (the time command).

■ history

This Word variable controls the maximum number of events that can be stored in

the buffer that is used by the history mechanism. It defaults to 100 and cannot be

set to 0.

■ instrcount

This Word variable contains the number of instructions executed by all processors

in the simulation. It measures the performance of the simulator (the time
command).

■ isconstprompt

If this Bool variable is true, the ui prompt is set to sas: . Otherwise, it is set to

the name of the module instance on which the ui is focused, followed by a colon.

7.21.2 Commands

See Appendix B, Command Manual Pages, for a complete description of the user-

interface commands. See Processing of Command Lines on page 22 for details on

invoking the commands.

7.21.3 Configuration

Only one instance of the ui module class can be created.

There are four interface types: cmd_done , sigio , cmd_request , and

stop_simulation . There must be one cmd_done and sigio interfaces and zero or

one cmd_request and stop_simulation interfaces.

Note – The remaining information about this module is for advanced users.

7.21.4 Interfaces

This section describes the interfaces.
162 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



stop_simulation

When the stop_simulation interface receives a message, it stops the simulation.

This interface supports only the simulation channel and uses the no_data protocol.

The ui module never sends to the stop_simulation interface.

cmd_done

When ui executes a module command that may not complete immediately, it waits

until it receives a message on this interface until it starts executing other commands.

cmd_done supports only the simulation channel and uses the no_data protocol.

The ui module never sends to the cmd_done interface.

sigio

ui receives user commands from the sigio module on this interface, which

supports the debug channel only. It uses the sigio protocol. The ui module never

sends to the sigio interface.

cmd_request

ui receives user commands from any module on this interface, which supports only

the debug channel. It uses the string protocol. The ui module never sends to the

cmd_request interface.

7.21.5 Source Files

The source files are:

■ fw/ui.c — Source for module and some framework routines

■ fw/include/ui.h — Public declarations related to the module

■ fw/include/ui_cmds.h — Public declarations for layer commands

■ fw/ui_fw_cmds.c — Source for framework layer ui commands

■ fw/ui_fw_cmds.h — Declarations for framework layer ui commands

■ sparc/ui_sparc_cmds.c — Source for SPARC layer ui commands

■ sparc/ui_sparc_cmds.h — Declarations for SPARC layer ui commands

■ fw/event_cmds.c — Source for when, snoop , and onstop commands

■ fw/include/event_cmds.h — Declarations for event commands
Chapter 7 Modules 163



7.22 vmebus : Primitive VMEbus Module
The vmebus module connects VME masters and VME slaves. It supports 16-bit and

32-bit VME address spaces. The address range to which a slave responds can be

specified to vmebus . The vmebus arbitration is very simple: The first master to

request the bus receives it until the slave is done.

7.22.1 Configuration

There are five types of interfaces: one master and four slave types. There can be

between zero to eight master interfaces.

The four slave interface types are slave16_mapped , slave16_unmapped ,

slave32_mapped , and slave32_unmapped . 16 or 32 refers to the address space

occupied by the slave. Mapped slaves have a constant address range to which they

respond; unmapped slaves do not. There can be between zero to eight slave

interfaces of each slave interface type.

slave16_mapped and slave32_mapped Interface
Arguments

There are two slave16_mapped and slave32_mapped interface arguments.

■ ADDR_MASKmask
ADDR_BASEbase

These mandatory entries specify the range of addresses to which a slave

responds. The range of each slave in its address space must be distinct.

ADDR_BASEspecifies the lowest address in the range; ADDR_MASKspecifies which

bits of the address are examined. If the address bitwise AND’d with mask is equal

to base, then that address is inside the range. mask and base are 16-bit values for

16-bit address space and 32-bit values for 32-bit address space.

■ DEBUG_SUPPORTED

This optional entry specifies that the slave supports debug channel accesses.
164 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



slave16_unmapped and slave32_unmapped Interface
Argument

slave16_unmapped and slave32_unmapped take one optional argument:

DEBUG_SUPPORTED, which specifies that the slave supports debug channel accesses.

Note – The remaining information about this module is for advanced users.

7.22.2 Interfaces

The master interface handles requests to access vmebus slaves and supports

simulation and debug channel accesses. It uses the gen_bus_pkt protocol.

vmebus uses the status and paddr fields of gen_bus_pkt in the normal way. It

also uses all other fields, except extra . The extra field contains the address space

of the slave in bits. Values other than 16 or 32 are a fatal error for the simulation

channel.

When a request is received from a master, vmebus determines if the paddr lies in

the range of one of the mapped slaves in the specified address space. It examines the

least significant 16 or 32 bits of paddr to match the address space.

A master receives a message only in response to a previous vmebus request it made

to access a slave.

vmebus uses only the status field of the gen_bus_pkt . If vmebus is busy with a

request from another master, status is set to GEN_BUS_BUSY. If the request was not

accepted by any slave, status is set to GEN_BUS_FAULT. Otherwise, status is set

by the slave.

■ slave16_mapped
■ slave32_mapped
■ slave16_unmapped
■ slave32_unmapped

The slave interfaces connect to vmebus slaves and support simulation and debug

channel accesses. They use the gen_bus_pkt protocol.

A slave receives a message from vmebus when the address space size of a master

request matches that of the slave. If it is a mapped slave, the address of the request

in the paddr field must lie in the range of addresses specified by the slave interface

in the configuration file.
Chapter 7 Modules 165



The type , paddr , size , and data fields of gen_bus_pkt are set according to the

standard gen_bus_pkt protocol. The extra field contains the address space size

(16 or 32). The routeflg , asi , and vaddr fields are not used.

For unmapped slaves, the status field is GEN_BUS_OK. For mapped slaves, vmebus
does not use the status field.

A mapped slave performs the request, sets the gen_bus_pkt status to one of the

standard values to indicate the state of the request, and returns the request to its

slave interface.

An unmapped slave examines the request. If it accepts the request, the slave

performs the request and returns gen_bus_pkt to its slave interface with status
set to GEN_BUS_OK. If the slave does not accept the request, it returns the packet

with status set to GEN_BUS_FAULT. Any other status values cause a fatal error

for the simulation channel.

7.22.3 Source Files

The source files are:

■ sun4e/vmebus.c — Source for module

■ sun4e/vmebus.h — Declarations used only by the vmebus module
166 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



CHAPTER 8

Trace Tools

The built-in simulator trace facilities (trace , dump, and group commands) allow

module variables and messages to be traced. The util directory contains trace tools

to simplify tracing of the cpu module as it executes instructions. These trace tools

include a simulator command file that sets up the built-in simulator trace facilities

for the cpu module and a UNIX utility to convert this trace output into SPARCsim

version 5 trace records. You can display and analyze these trace records with the

SPARCsim trace record tools (sta , std , and stdsm ).

8.1 make_ss_trace
make_ss_trace is a UNIX program that reads simulator cpu module trace

information from its standard input (stdin ), converts it to SPARCsim trace records,

and writes these to its standard input (stdout ). The syntax is:

make_ss_trace [{-a | -e | -s | -t} name]* [ object file]

The a, e, s , and t options used in conjunction with name specify the name of the

annulled instruction, executed instruction, supervisor, and trap groups, respectively.

The defaults are: annulled_record , executed_record , supervisor_record ,

and trap_record . These are the groups that ss_trace_cmds sets up, as described

in the next section.

If object file is specified, make_ss_trace places its name into the SPARCsim trace

file. If object file cannot be opened for read access, make_ss_trace displays an error

message and exits. If object file is not specified, the default file name is the null string

(“”). We strongly recommend that you include object file because many SPARCsim

trace processing tools require that argument.

make_ss_trace outputs a SPARCsim trace record header that specifies a

SPARCsim type 5 IU and a SPARCsim type 0 FPU. The type 5 IU is interpreted as a

SPARC Version 8 processor.
167



8.2 ss_trace_cmds
The ss_trace_cmds command file sets up the simulator to trace cpu module

activity and pipe that information to stdin of the make_ss_trace program. The

command file must be invoked at the simulator prompt when the current working

directory of the simulator is one of the architecture directories. The syntax that

invokes the script from the simulator is:

file ../util/ss_trace_cmds cpu instance tracename [ object-file]

where:

■ cpu instance is the name of the processor module instance that is used as the

source of the tracing information.

■ trace name is the name of the trace within the simulator (as used by the trace
command) and also the name of the SPARCsim trace record file created by

make_ss_trace .

■ The optional object-file is the name of a SPARC a.out or ELF file, which is used

by SPARCsim trace analysis programs to convert processor addresses into

symbols. If you omit object file, ss_trace_cmds uses the file name in the

latest_file_loaded simulator environment (set by the load and

load_section commands) instead. If you omit object-file and if the environment

variable does not exist, the ss_trace_cmds script displays an error message and

does not perform the trace.

ss_trace_cmds sets up the trace in the simulator, which involves three types of

functions: opening the trace, creating groups that the make_ss_trace filter

requires, and creating the group triggers.

The trace command opens a trace, called tracename. All output to the trace is piped

to the make_ss_trace filter program, which produces a SPARCsim trace record

file, also called trace name.

The four groups required by the make_ss_trace program are created, as follows:

■ The executed_record group contains information about the latest instruction to

be successfully executed.

■ The annulled_record group contains information about the latest instruction

annulled.

■ The trap_record group contains information about the latest trap to be taken.

■ The supervisor_record group contains the supervisor bit of the processor

PSR.

Each of these groups has a trigger variable. A when event is created for each trigger

so that when the trigger changes value, its corresponding group is dumped to the

trace.
168 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



APPENDIX A

Error Messages

This appendix does not cover all the error messages that can be displayed while you

are running MPSAS. It describes only the common errors in the following areas:

■ Configuration file processing

■ Expression handling

■ Miscellaneous

A.1 Configuration File Processing
Following are some of the error messages that relate to the processing of

configuration files.

Configuration file error, line num at “ keyword” syntax error

There is a syntax error in the configuration file at line number num. keyword is

either the invalid keyword that caused the error or the valid keyword closest to

where the error occurred.

On occasion, other error messages are also displayed as a result of a syntax errors.

Module instance “ inst-name”, interface “ intf-name”, connected to
unknown module instance “ inst-name2”.

When declaring an interface, the connected to inst-name2:intf-name2 statement

specifies inst-name2, which is unknown to the simulator.

Module instance “ inst-name”, interface “ intf-name”, connected to
unknown interface “ intf-name2” of module instance “ inst-name2”.

When declaring an interface, the connected to inst-name2:intf-name2 statement

specifies an interface intf-name2, which is unknown to the instance inst-name2.
169



Module instance “ inst-name”, interface “ intf-name”, not connected to
a read-only.

When declaring an interface with the write-only flag, the connected to inst-
name2:intf-name2 statement specifies intf-name2, which is not a read-only interface.

A write-only interface must be connected to a read-only interface.

Module instance “ inst-name”, interface “ intf-name”, is not write-
only but it is connected to a read-only.

When declaring an interface, the connected to inst-name2:intf-name2 statement

specifies intf-name2, which is a read-only interface. Only a write-only interface can

be connected to a read-only interface.

Module instance “ inst-name”, interface “ intf-name”, connected to
module instance “ inst-name2”, interface “ intf-name2” but it is not
connected back.

The interface inst-name:intf-name is connected to inst-name2:intf-name2; however, in

the declaration of intf-name2, it is not connected to inst-name:intf-name.

intf_create_interface: instance “ inst-name”, interface “ intf-name”:
interface already declared in configuration file.

The interface intf-name is declared multiple times. Each interface name within an

instance must have a unique name.

Instance Name “ inst-name” already used

The instance inst-name is declared multiple times. Each instance name must have

a unique name.

create_module_class: module “ mod-name”: Module class already
created.

The module class mod-name is declared multiple times. Each module class must

have a unique name.

The following error messages pertain to the modules. Individual modules may vary

in their messages.

module-class: module instance “ inst-name”: interface type “ intf-type”
not present.

An interface of type intf-type was not declared. This interface must be declared.

module-class: module instance “ inst-name”, interface “ intf-name”: Only
one “ intf-type” interface type allowed.

More than one instance of type intf-type was declared; only one interface of this

type is allowed.
170 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



module-class: module instance “ inst-name”, interface “ intf-name”:
Unknown interface type “ intf-type”.

An interface was declared with an invalid interface type.

module-class: module instance “ inst-name”, interface “ intf-name”:
Interface type “ intf-type” cannot be unconnected.

Interface intf-name of type intf-type is not connected to another interface (via the

connect to statement).

Unknown or multiply defined keyword “ keyword-argument” in args.

The instance argument keyword-argument is either invalid or defined multiple

times for an instance.

module-class_config_intf: module instance “ inst-name”, interface
“ intf-name”: Unknown keyword “ keyword-argument” in config file args.

An invalid interface argument keyword-argument was specified for interface

intf-name.

instance-name: error in config file

If this message is displayed and no other information is provided, a required

argument for instance-name is missing in the file.

instance-name: keyword-argument value out of range

A message of this type indicates that a particular instance or interface argument

for instance-name was specified with an invalid value.

A.2 Expression Handling
This section discusses some of the error messages the expression parser produces.

expression parser: bad symbol: symbol-name

An unknown symbol name was specified in an expression. For example:

set pc = &main1

However, main1 or _main1 is not in the symbol table.

expression parser: don’t know what “ name” is

An undefined name was specified as part of an expression. The common causes

are:
Appendix A Error Messages 171



■ Syntax errors, such as

set pc = x9999

which should have been:

set pc = 0x9999

■ A symbol table name without the & character was specified. For example,

set pc = main

which should have been:

set pc = &main

expression parser: cannot use message types here expression
parser: cannot use message fields here.

Both of these messages result from a reference to a message when one is not being

transmitted. Message types and message fields can only be evaluated within a

snoop command list. For example:

         expr gen_bus_pkt.asi

is invalid. Instead, it should read:

         snoop (gen_bus_pkt.asi != 9) {print -v gen_bus_pkt.asi}

A.3 Miscellaneous

ui: command queue too large -- flushing

A command in the user interface command queue has caused the queue to

overflow. All the commands in the queue will be flushed; therefore, none of these

commands will be executed.

Malloc failed
Out of memory

Different kinds of these messages may appear during a simulation run—for

example, if MPSAS does not have enough memory to continue execution. The

simulation session sometimes terminates because of lack of memory. Other times,

only the error message is displayed. Nonetheless, MPSAS cannot continue

execution unless you allocate more memory for the process.
172 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



APPENDIX B

Command Manual Pages

This appendix describes in detail the universally available MPSAS commands in a

format that is similar to that of the UNIX manual pages. The first manual page is for

mpsas and shows how to invoke it from the shell.

Module commands are not described in this appendix. See Chapter 7, Modules, for

details on module commands.
173



mpsas User Command mpsas

Name

mpsas — Multiprocessor SPARC architectural simulator

Synopsis

mpsas [-k keyfile] [-l logfile] [-o name=value] [-p configdir] [-s cmdfile] [-n ]

[-m preprocessor] [configfile]

Description

mpsas is an architectural simulator for SPARC computers. It is equipped to simulate

several architectures and can be extended to simulate others. It is a useful tool in

evaluating hypothetical hardware designs and in porting software to hardware that

has yet to be built.

mpsas requires a configuration file that describes the system to be simulated in

terms of modules compiled into the simulator and their connections. See Chapter 5,

Configuration File, for details on the contents of this file. By default, this file is

./config_file .

When mpsas starts, it reads the configuration file and sets up the described system.

Some modules require additional initialization files. For details on the requirements

of a module for initialization, see the relevant section in Chapter 7, Modules, for that

module.

After reading the configuration file, mpsas looks for a startup command file called

.mpsasrc in your home directory and, if it finds one, executes all its commands.

Next, it looks for another startup file (./.mpsasrc by default) and executes its user-

interface commands. (Typically, you would put architecture-independent commands

in your home directory and architecture-dependent commands in each architecture

directory you use.)

Finally, mpsas displays a prompt and accepts commands interactively. See

Chapter 3, User Interface, for a description of this command-line interface.

mpsas records all keyboard input in a file (./mpsas.key by default). It also records

the entire session (keyboard input and simulator output) in another file (by default,

./mpsas.log ).

Options
-k keyfile

Specifies the path of the file to which to store keyboard input (by default,

./mpsas.key t).
174 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



-l logfile
Specifies the path of the file to which to store keyboard input and simulator

output (by default,./mpsas.log ).

-o name=value
Sets option name to value. Available options are described in the option
command on page 201. No spaces are allowed before or after the equal sign.

-p configdir
Specifies the path of a directory in which to look for configuration

information, which defaults to the current directory, including both the

configuration file and any initialization files for modules.

-s cmdfile
Specifies the path of a file from which to read commands on startup (by

default,./.mpsasrc ).

-n
Does not preprocess configuration file.

-m preprocessor
Specifies the path name of the configuration file preprocessor, which

defaults to the value of the CPP UNIXenvironment variable or /usr/lib/
cpp if one does not exist.
Appendix B Command Manual Pages 175



alias MPSAS Commands alias

Name

alias , unalias — Manage the command alias facility

Synopsis

alias [name [value]]

unalias name …

Description

The alias and unalias commands support a command alias facility similar to that

of the C shell. To add a new alias or replace an existing alias, specify name and value
to the alias command. value is terminated by an unescaped semicolon or the end-

of-line. To display the value of an existing alias, type alias name. To display the

names of all aliases currently defined, type the alias command by itself. To delete

one or more aliases, specify name to the unalias command.

Invoke an alias on the simulator command line by specifying its name in place of the

commands its represents. value can contain multiple commands, separated by

semicolcons; be sure to escape each semicolon with a backslash.

Examples
alias w cpu1.where

Creates an alias for the cpu1 module’s where command.

alias ls sh ls

Creates an alias for the UNIX ls command.

alias start set cpu1.watchexecute = 1 \; run

Creates an alias that enables the display of executed commands in cpu1 and

then starts the simulation.

See Also

setenv
176 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



cycle MPSAS Commands cycle

Name

cycle — Run the simulation for one or more cycles

Synopsis

cycle [ count ]

Description

The cycle command starts the simulation for count cycles or 1 cycle if count is not

specified. count is an unsigned 32-bit integer expression.

If the simulation is halted by a module (typically when the module discovers an

error), the simulation cannot be restarted.

The user-interface prompt is not displayed until the simulation stops running;

however, user-interface commands are still accepted. If you type the stop command

or Control-C, the simulation stops early.

If the output of the cycle command is redirected, all output produced by the

simulator is redirected until the simulation stops.

Example
cycle 100 >log

Runs the simulation for 100 cycles. Any output generated by the simulator is

sent to a file called log .

See Also

run
stop
cpu module step command
Appendix B Command Manual Pages 177



dasm MPSAS Commands dasm

Name

dasm — Disassemble a SPARC instruction

Synopsis

dasm address instruction

Description

The dasm command prints the disassembly of a SPARC instruction. Both address and

instruction are 32-bit integer expressions, unsigned or signed.

The cpu module’s read command can disassemble instructions, as can the ram and

rom modules’ instructions variable. Certain other cpu variables provide

disassembly as well. The dasm command is intended for situations other than those

in which you have the numeric value of an instruction and want to disassemble it.

See Also

cpu module read command
178 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



dump MPSAS Commands dump

Name

dump — Write contents of groups to traces

Synopsis

dump tracename groupname

Description

The dump command writes the contents of the members of groupname to tracename.

Each time a group is dumped to a trace, each member of the group is dumped to the

trace. The members that are dumped and their order match those that are displayed

by the group -v command for the group. The group data are prefixed with a byte

label assigned to that group for that trace.

Each group that is dumped to a trace is assigned a one-byte integer label to identify

that group in the trace output. The first time that a group is dumped to a trace, it is

assigned the next consecutive label for that trace, starting with 1. The group

definition is dumped to the trace in the following printf() style format:

“%c%c%s=%s%c”,

0 (special byte label reserved for group definitions),

byte label for groupname,

groupname,

members of groupname (as displayed by the group command),

’\0’ (null character string terminator)

See Also

group
trace
Appendix B Command Manual Pages 179



echo MPSAS Commands echo

Name

echo — Enable or disable command echo or display any text

Synopsis

echo on | off | [ -n ] text

Description

The echo command enables or disables echoing and displays messages. If echoing is

enabled, commands from a file command script are displayed when executed.

echo on turns on echoing; echo off turns off echoing. echo followed by text
displays text followed by a newline. text is terminated by the end of the line or the

next command on the line.

echo accepts the following special characters:

■ \b — Backspace

■ \c — Print line without a new line

■ \f — Form feed

■ \n — Newline

■ \r — Return

■ \t — Tab

■ \v — Vertical tab

■ \\ — Backslash

■ \ n — The 8-bit character whose ASCII code is the 1-digit, 2-digit, 3-digit, or 4-

digit octal number n. The first digit must be 0.

The leading backslash of the special characters must be entered into MPSAS as \\ so

that the user interface does not interpret the special characters.

Options
-n Suppress displaying a new line character after text.

See Also

file
180 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



events MPSASCommands events

Name
enable , disable , delete , status — Manage the event commands

Synopsis
enable event# [event# …] | all | when | snoop | onstop …

disable event# | all | when | snoop | onstop | current …

delete event# | all | when | snoop | onstop | current …

status [event# [event# …] | all | when | snoop | onstop …]

Description
These commands manage events created by the commands snoop , when, and

onstop .

The arguments specify which events are managed, as follows:

■ event# — The specific event number

■ all — All events

■ when — All when events

■ snoop — All snoops

■ onstop — All onstop events

■ current — The current event

Each command can accept more than one keyword.

enable enables the specified events.

disable disables the specified event. If you specify current , the current event that

caused the hit (if any) is disabled. You can use current within an event command

list only; it refers to that event command. For example:

   when (cpu1.pc == 0x1000) {echo pc == 0x1000; disable current}

When there is a hit (that is, cpu1.pc == 0x1000 ), MPSAS executes echo and then

disable causes the when event to be disabled.

delete deletes the specified events. The current option behaves in the same way

as with the disable command.

status displays the status of the specified events. If no argument is specified, the

status of all the events is displayed.

See Also
when
snoop
onstop
Appendix B Command Manual Pages 181



expr MPSAS Commands expr

Name

expr — Display the values of expressions

Synopsis

expr [-v ] expression [, expression] …

Description

The expr command evaluates arbitrary expressions and displays their values. The

output is formatted according to the expression’s data type: unsigned, signed,

floating-point, or string. The value of each expression appears on a line by itself.

The expr command differs from the print command in two ways:

■ expr can display any expression; print can only display variable expressions.

■ print can often display a more user-friendly representation of a variable; expr
displays an expression of a given data type the same way.

For unsigned and signed expressions, expr ordinarily displays the value in

hexadecimal decimal if that value fits into 32 bits; character, if it is valid ASCII; and

a symbolic representation, if the value is in the range of some symbol table and is

larger than some symbol from that symbol table. However, if the option

simpleprint is nonzero, expr only displays hexadecimal.

The float_precision option controls the number of mantissa digits displayed for

floating-point expressions.

Options

-v The expression itself is displayed, with parentheses as necessary (mostly

around binary operators) to show how the expression is parsed.

See Also

print
option
182 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



file MPSAS Commands file

Name

file — Execute simulator commands from a file

Synopsis

file filename [arg] …

Description

The file command causes simulator commands to be executed from filename as

though you typed them.

You can pass up to 99 arguments to the commands in filename. The commands in the

file reference the arguments as $0 , $1 , and so on. The file name is $0 ; the parameters

are $1 to $99 . The number of arguments (excluding $0) is available as $argc .

If an argument is referred to but not specified in the file command, the name

expands to the null string; for example, $5 expands to “” if there are fewer than five

arguments.

file supports nested file commands.

If echo is enabled (echo on command), commands are displayed as executed.

To exit from a command script early, use the flush command. All commands after

flush are ignored.

Example

if ($argc != 1) { \
        echo Usage: $0 <cpu\\>; flush \
}

setenv old_focus $focused_instance
focus $1 >/dev/null
if (ui1.cmd_result) { \
        echo $0: Unknown module instance "$1"; flush \
}
focus $old_focus

print -v $1.pc, $1.npc, $1.psr
Appendix B Command Manual Pages 183



The preceding is the content of a text file designed to be executed by the file
command. It prints the pc , npc , and psr variables of a cpu module instance. The if
command in the first line echoes a usage message if the number of file command

parameters ($argc ) is not 1. It then uses the focus command to ensure the

parameter is a module instance. Finally, the specified variables of the module

instance are printed.

See Also

echo
flush
184 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



flush MPSAS Commands flush

Name

flush — Empty user interface command queue

Synopsis

flush

Description

The flush command empties the user-interface command queue. It is used mainly

in file command scripts to exit from the script early.

See Also

file
Appendix B Command Manual Pages 185



focus MPSAS Commands focus

Name

focus — Change the default user-interface module instance

Synopsis

focus instance

Description

The focus command changes the default user-interface module instance to instance.

The uses of the default user-interface module instance (referred to as the focused

instance) include:

■ Instance variables of the focused instance are referred to by name; the instance

name and period prefix are optional. For example, if the focused instance is cpu1 ,

then the names pc and cpu1.pc are equivalent.

■ Commands of the focused instance are referred to by name; the instance name

and period prefix are optional. For example, if the focused instance is cpu1 , then

the commands read and cpu1.read are equivalent.

■ The help command displays information on the commands of the focused

instance.

■ The environment variable focused_instance is set to instance.

The ui module’s cmd_result variable is set to 0 on success and 1 on failure, for

example, in case of a bad module instance name; this characteristic can be used to

test for the existence of a module instance in file command scripts.

See Also

file
help
setenv
186 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



fork MPSAS Commands fork

Name

fork — Fork a duplicate of the simulator process

Synopsis

fork

Description

The fork command performs a UNIX fork operation on the simulator. The parent

process waits until the child dies. To return to the parent from the child, use the

quit command.

The fork command and the state command both preserve the state of the

simulator. state dumps the state to the file system; fork preserves the state in

memory.

fork supports nested fork commands.

See Also

quit
state
Appendix B Command Manual Pages 187



group MPSAS Commands group

Name
group — Manage the grouping of variable expressions

Synopsis
group [[-v ] name]

group name = member [, member] …

Description
The group command creates groups. A group treats several variable expressions,

message types, and other groups as members of a new variable.

Groups can be used in expressions. If a group is evaluated (for example, the expr
command) and all of the members evaluate to a valid value, the group evaluates to

a 64-bit checksum of the members’ values. If any of the members evaluate to

invalid, the entire group evaluates to invalid. If a group is displayed with the print
command, each member of the group is displayed.

If group is invoked without arguments, the names of all groups defined are

displayed. If group is invoked with name, the members of the group used to create

group are displayed.

If group is invoked with name, an equal sign, and at least one member, a new group

is created. member must be a variable expression.

You cannot change a group definition that has been dumped to an open trace.

Options
-v Displays the members of the group as dumped to a trace. This is a superset

of the list of members that contains not only the members themselves, but

also their variable expression arguments (transitive closure on the set of all

members).

Example
group foo = cpu1.psr, ram1.words(cpu1.pc)

Creates a group called foo that contains cpu1.psr and the word of ram1 that

matches the value of the cpu1.pc register. The output of the group -v
command looks like this:

group foo = cpu1.psr, cpu1.pc, ram1.words(cpu1.pc)

cpu1.pc is listed as a member of the group since ram1.words depends on it.
188 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

dump
trace
Appendix B Command Manual Pages 189



help MPSAS Commands help

Name

help — Access online user-interface command help

Synopsis

help [command]

Description

The help command provides information about simulator user-interface commands.

Help is available for all ui module commands and for the commands of the

currently focused module instance.

If command is specified, detailed help on command is displayed. Otherwise, a brief

description of all the available commands is displayed. This description may be

quite long; you may wish to pipe the output to the UNIX more program by typing

help | more .

See Also

focus
190 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



history MPSAS Commands history

Name

history — Display the history event buffer

Synopsis

history [ -h ] [ count ]

Description

The history command displays the contents of the history buffer. If you specify

count, history displays only the most recent count events.

The history mechanism is similar to the UNIX C shell history mechanism. For

information about how to use this mechanism, see Processing of Command Lines on

page 22.

Options
-h Does not display the event numbers.
Appendix B Command Manual Pages 191



if MPSAS Commands if

Name

if — Conditionally execute user-interface commands

Synopsis

if expression {commands}

Description

The if command evaluates integer expression. If it is valid and nonzero, commands
are executed.

The if command is used mainly in file command scripts.

See Also

file
192 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



list MPSAS Commands list

Name

list — Display information about the simulator and its modules

Synopsis

list [-v ] [instance-name]

list variable-name
list interfaces [instance-name]

list all | instances | classes | msgtypes

Description

The list command displays information about the simulator and its modules. If no

arguments are specified, the variable names of the currently focused module

instance are displayed.

■ list instance-name — Displays the names of instance-name’s variables

■ list variable-name — Displays the names of the members of variable-name
(usually bitfields)

■ list interfaces [instance-name] — Displays the interface names for instance-
name or for the currently focused instance

■ list all — Displays all variable and interface names in the system

■ list instance — Displays all module instance names configured

■ list classes — Displays all module class names available

■ list msgtypes — Displays all message type names

Options
-v Verbose option. For the first form of the list command,

list instance-name, the data type, class, and name of each variable are

displayed. Variables that are normally hidden when -v is not specified are

displayed, enclosed within parentheses.
Appendix B Command Manual Pages 193



load MPSAS Commands load

Name
load — Load a binary file into a module instance

Synopsis
load address instance file [symtable-start symtable-end]

Description
The load command initializes module instances that contain memory (for example,

RAM and ROM). It reads the contents of the SPARC statically linked binary file and

loads it into instance at address (a 64-bit integer expression). The interpretation of the

address value is determined by instance—it is a physical address for memory

modules.

If file contains a symbol table, the symbol table is loaded into the framework. The

symbols in this table can then be used in expressions (the & operator) and are used

by some commands to associate symbolic names with program addresses.

The optional symtable-start and symtable-end arguments specify the range of virtual

addresses for which to use the symbol table. They can be a symbol from the file’s

symbol table or a 64-bit integer constant. If omitted, symtable-start defaults to 0 and

symtable-end defaults to the largest 64-bit virtual address.

The load command loads SPARC a.out and SPARC ELF binary files the same way

as the SPARCstation boot PROM loads a kernel. If more precise control over the

sections loaded is needed, use the load_section command. The text segment is

loaded starting at address. For a.out OMAGIC files, the data segment is loaded at

the first byte after the end of the text segment. For a.out ZMAGIC and NMAGIC

files, the data segment is loaded at the first 8-Kbyte boundary after the end of the

text segment. For ELF files, all loadable segments are loaded in the order they

appear in file. Those that have execute permission but no write permissions are

considered text segments; the rest are considered data segments.

The cmd_result variable of the ui module is set to the program entry point

address, specified in file.

Several environment variables are set when a successful a.out load occurs, as

follows:

■ latest_file_loaded is set to file.

■ text_start is set to the hexadecimal value of the text section start address in

the module. This is equal to address for all binary files, except for a.out ZMAGIC

files. For these types of files, text_start is equal to address plus the size of an

a.out execution structure.
194 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ text_size is set to the hexadecimal value of the text section size in bytes.

■ data_start is set to the hexadecimal value of the data section start address in

the module.

■ data_size is set to the hexadecimal value of the data section size in bytes.

■ entrypoint is set to the hexadecimal value of the file’s entry point.

Several environment variables are set when a successful ELF load occurs, as

follows:

■ latest_file_loaded is set to file.

■ For each text or data segment loaded, text_ n_start or data_ n_start ,

respectively, is set to the hexadecimal value of the segment’s start address in the

module.

n in the variable name is replaced with an integer value, which is incremented for

each segment of that type loaded. For example, the first text segment loaded is

text_0_start .

■ For each segment loaded, text_ n_size or data_ n_size is set to the

hexadecimal value of the segment’s size in bytes.

■ entrypoint is set to the hexadecimal value of the file’s entry point.

See Also

load_section
symtab
Appendix B Command Manual Pages 195



load_section MPSAS Commands load_section

Name
load_section — Load a section of a binary file into a module instance

Synopsis
load_section address instance file section [ symtable-start ]

Description
The load_section command initializes module instances that contain memory (for

example, RAM and ROM). Its operation is similar to the load command, except that

it loads section from the binary file instead of all sections to allow more precise

control over what is loaded from a file and the address it is loaded into a module.

load_section reads the contents of section from the SPARC statically linked a.out
or ELF binary file and loads it into instance at address (a 64-bit integer expression).

instance determines the interpretation of the address value, which is a physical

address for memory modules.

If file contains a symbol table, load_section loads the symbol table into the

framework. The symbols in this table can then be used in expressions (the &
operator) and are used by some commands to associate symbolic names with

program addresses.

The optional symtable-start argument specifies the first virtual address for which the

symbol table applies. It can be a symbol from the file’s symbol table or a 64-bit

numeric constant. If symtable-start is omitted, it defaults to 0. If symtable-start is

specified, the last virtual address the symbol table is referenced for is equal to

symtable-start plus the section size, less 1. Otherwise, it defaults to the largest virtual

address.

a.out files only contain sections, called text and data . ELF files can have an

arbitrary number of sections with arbitrary names, although .text and .data
usually exist.

The cmd_result variable of the ui module is set to the program entry point

address, specified in file.

Several environment variables are set when a successful a.out load_section
occurs, as follows:

■ latest_file_loaded is set to file.

■ aout_section_start is set to the hexadecimal value of the section start address

in the module. For the data section, the start address is equal to address. For the

text section, it is equal to address for all a.out formats, except ZMAGIC, whose

start address is equal to address plus the size of an a.out execution structure.
196 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



■ aout_section_size is set to the hexadecimal value of the section size in bytes.

■ entrypoint is set to the hexadecimal value of the file’s entry point.

Several environment variables are set when a successful ELF load_section occurs,

as follows:

■ latest_file_loaded is set to file.

■ elf_section_start is set to address.

■ elf_section_size is set to the hexadecimal value of the section size in bytes.

■ entrypoint is set to the hexadecimal value of the file’s entry point.

See Also

load
symtab
Appendix B Command Manual Pages 197



msg MPSAS Commands msg

Name

msg — Show the contents of a message or the format of a message type

Synopsis

msg [-v ] [msgtype]

Description

If you include msgtype, the msg command prints the description of msgtype, showing

the class and name of each variable that it contains. These variables generally

correspond to fields within the actual C language structure for the message;

however, multiple variables may describe the same field to present different ways of

viewing or accessing it.

If you omit msgtype, msg prints information about the current message. This form of

the command is only valid in the command list of a snoop event. The output is a

summary line of this form:

cycle cyclenum: SIM|DBG src_instance:interface -> msgtype(size) ->
dst_instance:interface

which means: “On cycle cyclenum, module instance src_instance sent over interface

interface a size-byte message of type msgtype to module instance dst_instance’s

interface interface.”

SIM and DBGspecify whether the message was transmitted on the simulation or

debug channel, respectively.

Options
-v When msgtype is omitted, this option causes the contents of the current

message—that is, all of its variables—to be displayed after the summary

line.
198 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Examples

See Also

snoop

ui1: snoop {msg}

ui1: run
cycle 1: SIM cpu1:ram -> gen_bus_pkt(48) -> ram1:slave
cycle 1: SIM ram1:slave -> gen_bus_pkt(48) -> cpu1:ram
cycle 6: SIM cpu1:ram -> gen_bus_pkt(48) -> ram1:slave
...
Appendix B Command Manual Pages 199



onstop MPSAS Commands onstop

Name

onstop — An event that executes a series of commands every time simulation stops

Synopsis

onstop [[-p period] [-d ] {command-list}]

Description

The onstop command executes a sequence of commands (command-list) whenever

the simulation stops.

To display the status of the onstop events, use the onstop command without any

parameters or the status onstop command. To delete an onstop event, use the

delete command. To disable or enable an onstop event, use the disable or

enable command.

When the onstop event is created, the ui variable cmd_result is set to the event

number.

Options
-d Adds the onstop event in a disabled state

-p period
Causes command-list to be executed every period hits. For example, the

command onstop -p 5 {echo “5 more ”} causes the echo command to be

executed once for every five times that the simulation stops. Without this

option, onstop executes command-list every time simulation stops.

See Also

events
when
snoop
200 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



option MPSAS Commands option

Name

option — Set or examine global simulator options

Synopsis

option [ name [ value ] ]

Description

The option command manages the option mechanism. Options are parameters that

affect the entire simulation.

If name and value are specified, option name is set to value. If only name is specified,

the value of option name is displayed. If option is specified with no arguments, the

value of all options is displayed.

You can also set options on the command line when the simulator is first started (see

the mpsas command on page 174). However, you can set those options that must not

be changed during the simulation on the simulator command line only.

The options are:

■ block_signals — If block_signals is nonzero, the SIGINT and SIGTERM
signals are blocked by the simulator. You can set this option only on the simulator

command line.

■ float_precision — The float_precision option specifies the number of

mantissa digits displayed for floating-point values.

■ simpleprint — If simpleprint is nonzero, the display of many variables is

simplified to ease parsing of the output by a program and the user-interface

prompt remains constant.

See Also

mpsas
Appendix B Command Manual Pages 201



print MPSAS Commands print

Name

print — Display the values of variables

Synopsis

print [-v ] variable [, variable] …

Description

The print command displays the specified variables (more precisely, “variable

expressions,” which are variable names plus parameters, if any). For some variables,

the output is the same as that produced by the expr command; for others, it is in a

more human-readable form. For a group, print prints the members of the group.

For an array, print prints all elements of the array.

Options
-v Displays more labeling of the values that are printed. This option is often

useful for groups and multiple variables.

See Also

expr
202 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



quit MPSAS Commands quit

Name

quit — Exit the simulator

Synopsis

quit [ exit-value ]

Description

The quit command exits the simulator and returns to the operating system shell.

exit-value is a 32-bit integer expression. If you specify exit-value, the simulator exits

with that value; otherwise, it exits with a status of 0.
Appendix B Command Manual Pages 203



rtimer , vtimer MPSAS Commands rtimer , vtimer

Name

rtimer , vtimer — Set a real or virtual time limit on a simulation session

Synopsis

rtimer [seconds]

vtimer [seconds]

Description

The rtimer and vtimer commands set a limit on the amount of real time and

virtual time, respectively, which the simulator is allowed to execute. When the timer

expires, the simulator quits with an exit status of 1.

seconds is a 32-bit integer expression. If you specify seconds, the time limit is in

seconds. If seconds is 0, the timer is cancelled. If you omit seconds, the number of

seconds that remain before the timer expires is displayed and the ui module

cmd_result variable is set to this value.

Use the rtimer and vtimer commands to ensure that the simulator will exit, for

example, when the simulator is in an automated testing environment.
204 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



run MPSAS Commands run

Name

run — Start the simulation

Synopsis

run

Description

The run command starts the simulation. It does not restart the simulation but

continues from its current state.

If the simulation is halted by a module (typically when it discovers an error), you

cannot restart the simulation.

The user-interface prompt is not displayed until the simulation stops running, but

you can execute user-interface commands. If you type stop or Control-C, the

simulation stops early. Other actions, such as breakpoints, can cause the simulation

to stop.

If the output of the run command is redirected, all output produced by the

simulator is redirected until the simulation stops.

See Also

cycle
stop
Appendix B Command Manual Pages 205



set MPSAS Commands set

Name

set — Set variables

Synopsis

set variable = expression [, expression] …

Description

The set command changes the value of a variable (more precisely, a “variable

expression,” which is a variable name plus parameters, if any). How a variable is set

is determined by that particular variable. For instance, you can assign a list of values

to some variable expressions.

See Also

print
206 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



setenv MPSAS Commands setenv

Name

setenv — Associate text with a name

Synopsis

setenv [ name [text] ]

Description

The setenv command associates arbitrary text with a name. In subsequent

commands, the syntax $name is replaced with text, which includes everything from

the next nonblank character after name, if there is one, to the end of the command. If

you omit text, the syntax $name expands to nothing.

name must start with a letter or underscore and can be followed by any number of

alphanumeric characters and underscores. If you omit name, the simulator displays

all the names that have text associated with them.

When $name appears in a command, name must not be immediately followed by an

alphanumeric character or an underscore because MPSAS considers such characters

part of name as well.

The MPSAS setenv command is syntactically and semantically similar to the UNIX

C shell command by the same name. However, the names that are defined with the

MPSAS setenv command are not added to the environment, nor are the

environment variables accessible with the $name syntax.
Appendix B Command Manual Pages 207



sh MPSAS Commands sh

Name

sh — Execute UNIX commands

Synopsis

sh [command]

Description

The sh command executes UNIX commands as a child process of the simulator.

command specifies the UNIX command to execute. Any special symbols interpreted

by the simulator user interface (such as ; and >) that must be passed to command
must be escaped by a backslash.

If you omit command, the shell program specified by the UNIX SHELL environment

variable is invoked interactively.

Examples
sh ls

Executes the UNIX ls command.

sh ls *.c \| more

Executes the UNIX ls command and pipes the output to the UNIX more
command.
208 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



snoop MPSAS Commands snoop

Name

snoop — Create an event that is triggered by a message

Synopsis

snoop [-p period] [-d ] [-sim ] [-dbg ] [-src inst[:intf]] [-dst inst[:intf]]
[-path from-inst[:intf] to-inst[:intf]] [expr] [{command-list}]

Description

The snoop command causes command-list to be executed after a message that

matches the specified description is received by a module and the expression expr,
which typically refers to the fields within a message, is true (that is, a hit).

If you specify -sim , snoop performs snooping on simulation channel messages. If

you specify -dbg , snoop performs snooping on debug channel messages. Without

either of these options, snoop performs snooping on simulation channel messages

only.

If you specify expr, snoop executes command-list every time a message that matches

the option restrictions is received. If you do not specify expr or any of the options,

snoop executes command-list every time any message is received by any module

(that is, all messages are snooped and cause a hit). If command-list is not specified,

snoop defaults to the msg -v command.

To display the status of the snoop events, use the snoop command without any

parameters or status snoop . To delete a snoop event, use delete . To disable or

enable a snoop event, use disable or enable , respectively.

Refer to Expressions on page 25 for details on expressions.

When snoop creates a snoop event, it sets the ui variable cmd_result to the event

number.

Options
-d Creates the snoop event in a disabled state.

-sim Snoops the simulation channel.

-dbg Snoops the debug channel.

-p period
Causes command-list to be executed every period hits. For example, the

command snoop -p 5 (gen_bus_pkt.asi == 9) {echo 5 more } causes the
Appendix B Command Manual Pages 209



echo command to be executed once for every five messages of type

gen_bus_pkt , in which the asi is 9. Without this option, command-list is

executed on every hit.

-src inst[:intf]
Snoops every message that is sent from instance inst. Snooping is performed

when the message is received by any of the destination interfaces.

-dst inst[:intf]
Snoops every message that is received by instance inst. Snooping is

performed when the message is received by the destination interface.

-path from-inst[:intf] to-inst[:intf]
Snoops every message that is sent from instance from-inst to instance to-inst.
Snooping is performed when the message is received by the destination

interface.

In the -src , -dst , and -path options, if the interface (:intf) is not specified, all the

interfaces for the specified instance are snooped; otherwise, only the specified

interface is snooped.

Examples

The following command line, in which command-list is not specified, causes the

default command (msg -v ) to be executed when a message of type gen_bus_pkt ,

in which the asi is 9, is received by a module.

     snoop (gen_bus_pkt.asi == 9)

The following command line creates a snoop event that uses the default command

(msg -v ), but there is no trigger expression. The empty braces are required because

snoop with no parameters lists the current snoop events.

     snoop {}

The following snoop event causes information about the gen_int_pkt message to

be displayed every time a message of type gen_int_pkt is received by a module.

     snoop (gen_int_pkt) { msg }

The following command line causes the command stop to be executed whenever

any message is received by any module.

     snoop { stop }

The following command line modifies a message with the set command. You can

then modify the information being sent between modules and use this command

line to test a module or patch it (temporarily change its behavior). Here, any

gen_bus_pkt s sent by the cpu1 module with an asi of 8 are changed to 9.

     snoop -src cpu1 (gen_bus_pkt && gen_bus_pkt.asi == 8) { set
gen_bus_pkt.asi = 9 }
210 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

events
msg
expr
when
onstop
Appendix B Command Manual Pages 211



state MPSAS Commands state

Name

state —Dump or restore a snapshot of the simulator state

Synopsis

state [(dump | restore | delete ) name [instance]]

Description

The state command manages the state snapshot facility and is used mainly as a

time-saving measure. If you would like to repeatedly examine some program

behavior that occurs after many simulated cycles, you can dump the state of the

simulation to the file system slightly before the behavior of interest and then restore

it any number of times later (even if the simulator has been restarted).

If you specify instance, state manipulates only the state of that module instance.

Otherwise, it manipulates the state of all module instances as well as the framework

state. name is a user-specified name associated with the state; it must not start with a

slash or a period.

The state dump command writes the state of instance or the entire simulator to the

file system. If you specify instance, state creates a file, called name. instance.state .

Otherwise, it creates a directory called name in the current working directory, writes

the state of each module instance to its own file, writes the state of the framework to

a file, and creates links to any files that contain symbol tables that are currently

loaded (by the load , load_section , or symtab commands). If the state associated

with name already exists in the file system, state overwrites it.

The state restore command replaces the current state of instance or the entire

simulator with the state in name.

The state delete command removes state name from the file system.

If you do not specify arguments to the state command, state lists the names of all

the previously dumped states.

The dumping or restoring of a state may take some time because some modules,

such as RAM, may have very large states. You can use the fork command to save

the state in memory, proceed with the simulation, and then return to the original

state later.

See Also

fork
212 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



stop MPSAS Commands stop

Name

stop — Stop the simulation from running

Synopsis

stop

Description

The stop command stops the simulation. You can use it after the run and cycle
commands. As you do with all user-interface commands, you can type stop when

the simulation is running.

Typing Control-C also stops the simulation, but it also empties the user-interface

command queue. Typing Control-C is the only method to stop the simulation on

demand after you have entered a wait command.

See Also

run
cycle
wait
Appendix B Command Manual Pages 213



symtab MPSAS Commands symtab

Name

symtab — Manage symbol tables

Synopsis

symtab
symtab add filename start-address end-address
symtab delete number
symtab dump number
symtab offset offset number [segment-name]

Description

The symtab command manages the simulator’s knowledge of symbols. With no

arguments, symtab lists all the symbol tables known to the simulator, along with the

address ranges assigned to those symbol tables.

symtab add reads the symbols from executable filename (which can be in either

a.out or ELF format) and assigns them to the range of addresses, from start-address
to end-address. When address ranges of symbol tables overlap, symtab add uses the

most recently added symbol table. Each symbol table added is assigned a number,

which is stored in the ui module’s cmd_result variable and is shown when

symbol tables are listed.

symtab delete deletes symbol table number.

symtab dump displays all the symbols in symbol table number, along with their

values, in ascending order by value. Also shown is the name of the segment that

contains the symbol. Global (and, for ELF executables, weak) symbols are flagged as

such.

symtab offset adds offset (a 64-bit signed integer expression) to the value of the

symbols of symbol table number. If you specify segment-name, symtab offset
changes only the values of the symbols in that segment. You can use symtab
offset to load symbol tables of relocatable files. Typically, you use symtab add to

load the symbols first and then use symtab offset to add the base address of each

segment to the symbols in that segment. This procedure assumes that the relocatable

symbols initially have values relative to an address of zero.

The load and load_section commands also load symbol tables, just as though

they had been added with symtab add .

symtab loads only relocatable symbols (labels); in particular, it does not load

absolute symbols.
214 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

load
load_section
Appendix B Command Manual Pages 215



time MPSAS Commands time

Name

time — Display time-related simulator statistics

Synopsis

time [elapsed | relative ]

Description

The time command displays the real, system, and user time for the simulation. It

also displays other performance statistics, such as cycles per second and instructions

per second. The ui module variable cmd_result_double is set to the sum of the

system and user times.

If you specify elapsed , time displays the values since the very first the time
command was executed. If you specify relative , time displays the values since

the previous time command invocation was executed.
216 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



trace MPSAS Commands trace

Name

trace — Manage the trace facility

Synopsis

trace
trace open tracename file filename
trace open tracename pipe UNIX-command
trace flush tracename
trace close tracename

Description

The trace command manages the trace facility. A trace provides a destination for

the output of the dump command. Multiple traces can be active at one time; the

tracename parameter allows each trace to be manipulated individually.

trace open creates a new trace called tracename. If you specify file , trace open
stores all output sent to the trace in filename. If filename already exists, trace open
overwrites it. If you specify pipe , trace open runs UNIX-command as a child

process of the simulator and sends all output sent to the trace to its standard input.

trace flush causes the internal buffer associated with tracename to be flushed to

its associated file or pipe.

trace close deactivates tracename and closes the associated file or pipe.

trace with no arguments lists the names of the currently open traces.

See Also

dump
group
Appendix B Command Manual Pages 217



var MPSAS Commands var

Name

var — Manage user-defined variables

Synopsis

var [name …]

var add name datatype class [num-elements]

var delete [name …]

Description

The var command lists, creates, or deletes variables of various types, which can be

scalars or one-dimensional arrays. Once created, a user-defined variable can be used

in any expression. The set command sets a user-defined variable just like other

variables.

Note – Groups are also user-defined variables, but of a different kind. You manage

groups with the group command rather than with the var command.

The first syntax lists user-defined variables. If you provide names, var lists those

variables; otherwise, var lists all variables along with their data types and classes.

A variable’s data type is one of the following:

unsigned signed float string

The data type determines the interpretation of the bits that constitute the variable. A

variable’s class dictates its size (number of bits) and other details of its handling. See

Chapter 3, User Interface, for more information.

User-defined variables can be of any of the classes that are defined in TABLE B-1.

TABLE B-1 Classes of User-Defined Variables

Class Description Allowed Data Types

LWord 64 bits unsigned , signed , float

Word 32 bits unsigned , signed , float

HWord 16 bits unsigned , signed
218 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



var add creates a new user-defined variable with the specified name that has the

specified datatype and class. If you provide num-elements that are greater than 1, the

resulting variable is an array.

An array can be referred to as a whole in an expression, in which case it evaluates to

a simple checksum of its members. This reference is useful with the changes
operator so that you can trigger an event whenever any element of an array changes.

Individual members of an array are selected by supplying the index as a parameter

to the variable, in parentheses.

var delete deletes the specified user-defined variables.

Examples

To create a variable zort that holds a single-precision floating-point value, type:

var add zort float Word

To create an array, add an expression for the number of elements by typing:

var add zorts float Word 20

Then, you can set the tenth element, for example, by typing:

set zorts(9)=3.1415926535

See Also

group

Byte 8 bits unsigned , signed

Bool 8 bits, boolean unsigned , signed

String ASCII string string

TABLE B-1 Classes of User-Defined Variables (Continued)

Class Description Allowed Data Types
Appendix B Command Manual Pages 219



version MPSAS Commands version

Name

version — Print information that identifies the simulator

Synopsis

version

Description

The version command produces output similar to the following:

The first line identifies the architecture (in this case, simple ) and the release of the

simulator; this information comes directly from a string in file vers.c in the

architecture directory.

The next few lines are an ls -l listing of the layers that constitute the simulator

when the simulator was built. If you are using the Network Software Environment

(NSE), the final line reports the user who made the simulator and the NSE in which

it was done. If not, the line shows the directory of the make in place of the NSE.

Simple mpsas Release 1.0; layers are:
-rw-rw-r--  1 ns           5914 Jul 19 18:37 ../simple/libsimple.a
-rw-rw-r--  1 ns        1075604 Jul 19 18:34 ../fw/libfw.a
-rw-rw-r--  1 ns        1156712 Jul 19 18:27 ../sparc/libsparc.a
-rw-rw-r--  1 ns         536980 Jul 19 18:10 ../computer/libcomputer.a
Made in NSE environment "sim1" by user "fred"
220 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



wait MPSAS Commands wait

Name

wait — Wait for simulation to stop before executing the next command

Synopsis

wait

Description

The wait command prevents the next command from being executed until the

simulation has stopped. In the following example:

    run; wait; print cpu1.pc

the print cpu1.pc command is not executed until simulation has stopped.

Examples

In the following example, when there is a hit (that is, cpu1 .pc has the value 0x1000),

pc is displayed. The print cycle command is not executed until simulation stops.

    when (cpu1.pc == 0x1000) {print pc; wait; print cycle}

See Also

when
Appendix B Command Manual Pages 221



when MPSAS Commands when

Name

when — An event that executes a series of commands when an expression is true

Synopsis

when [-p period] [-d ] [expr] [{command-list}]

Description

The when command executes the sequence of commands, command-list, whenever

the specified expression expr is true (a hit). The expression is evaluated every cycle

while the simulation is running.

If you do not specify expr, the when event hits every cycle. If you do not specify

command-list, when defaults to the stop command.

To display the status of the when events, use when without any parameters or the

status when command. To delete a when event, use delete . To disable or enable

a when event, use disable or enable , respectively.

Refer to Expressions on page 25 for details on expressions.

When the when event is created, the ui variable cmd_result is set to the event

number.

Options
-d Adds the when event in a disabled state.

-p period
Causes the command-list to be executed every period hits. For example, the

command when –p 5 (cpu1 .pc == 0x1000 ) {echo “5 more ”} causes echo
to be executed once for every five hits. Without this option, command-list is

executed every hit.

Examples

The following example, in which command-list is not specified, causes stop to be

executed when the pc variable of cpu1 has value 0x1000:

     when (cpu1.pc == 0x1000)

when {} causes stop to be executed every cycle.
222 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

events
snoop
onstop
Appendix B Command Manual Pages 223



window MPSAS Commands window

Name

window — Manage display windows

Synopsis

window add window-name [-s ] [-d display] {command-list}
window delete [window-name]

window update [window-name]

window [list [window-name]]

Description

The window command manages the window facility. A window contains a list of

commands that are executed every time the simulation stops. The output of the

commands is displayed in the window.

window add creates a new window, called window-name. The program specified by

the MPSAS WINDOW_PROGRAMenvironment variable is forked. If this variable does

not exist, the program name defaults to tty_tool , located in the current directory

or in the directory ../util . The window program is passed the arguments

specified by WINDOW_ARGS. If this variables does not exist, the window program is

invoked with the following arguments:

-WL window-name -Wl window-name -Wi

window sends the output produced by command-list to the standard input of the

window program every time the simulation stops.

The tty_tool program is an OpenWindows™ application for the window
command.

window delete deletes window-name if one is specified; otherwise, it deletes all

windows.

window update executes command-list associated with one or more windows so that

their contents are updated. If you specify window-name, window update updates it;

otherwise, it updates all windows. If you modify a variable being displayed in a

window, for example, with the set command, the new value is not displayed until

the simulation stops. You can use update to force the new value to be displayed.

window list displays the names of the current windows. If you specify window-
name, window list displays information about that window only. With no

parameters, window list displays the names of the current windows.
224 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



If scrolling is disabled (default), the window is refreshed by echoing the string

specified by the WINDOW_CLEARenvironment variable to the window before the

command list associated with the window is executed. If this variable does not exist,

it defaults to the string \\012 .

The echo command echoes the clear string to the window and interprets the default

clear string as \012 ; command processing replaces \\ with \ . Octal 012 is the ASCII

code that clears the screen of the tty_tool program. To specify ASCII control

characters in the WINDOW_CLEARenvironment variable, precede each octal code with

four backslashes.

Options
-s Causes the output to the window to scroll. By default, it is refreshed each

time.

-d display
Displays the window on the specified OpenWindows display. This option

causes the -display option to be passed to the window program when it is

forked.

Examples
window add regs { cpu1.regs }

Displays the contents of the cpu1 registers.

window add stack { cpu1.where }

Displays the stack backtrace for cpu1 .

See Also

when
onstop
Appendix B Command Manual Pages 225



226 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



APPENDIX C

The stand Directory

The stand directory contains the source code for a number of small SPARC stand-

alone programs. Included in this directory are trap tables, trap handlers, start-up

code, utility routines, and program source. It gives you a working set of example

SPARC programs and several utilities to facilitate the creation of simple stand-alone

programs.

Note – This directory is not intended to provide a comprehensive general-purpose

program development environment.

C.1 Overview
SPARC IUs and computer systems require a certain amount of setup before they

become useful. Likewise, application programs need support before they can run.

Typically, the operating system provides the setup and application program support.

When writing a stand-alone program, you must link in all of this support with the

program. The stand directory contains code that starts the SPARC processor and

provides a minimal amount of support that is required by programs, as well as some

example programs.

The files in the directory are divided into three categories:

■ SPARC support

■ Utility routines

■ Example programs

TABLE C-1, TABLE C-2, and TABLE C-3 list the files in each of the categories.
227



TABLE C-1 SPARC Support Files in the stand Directory

File Name Description

crt.S Routines needed by the compiler

srt0.S Start-up code for the processor

trap.S Trap handlers

trap_table.S Trap table

TABLE C-2 Utility Files in the stand Directory

File Name Description

ld_st_a.S C routines to access load alternate, store alternate, and atomic memory

instructions

mp.c Synchronization primitives for multiprocessor systems

mpsas_trap.S C routines to access traps handled by the trap module

printf.c A limited, small printf routine

add_map.c A set of routines used by the refmmu and mpmmuprograms to set up

page tables

TABLE C-3 Example Programs in the stand Directory

File Name Description

delay.S A main program that determines the instruction delay for PSRwrites

fsqrt.s A main program for testing floating point

inexact.c A main program that generates an inexact floating-point exception

loop_test.c A main program that loops to keep the processor busy

mpmmu.c A main program that starts a multiprocessor mbus system with MMU

and caches on

refmmu.c A main program that starts a single-processor system with MMU and

cache on

pad.s A page of initialized data used to force data to another page for the

mpmmuand refmmu programs

reg_read.c A main program that prints out the values of a few registers

tutorial.c A main program for the tutorial in this book
228 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



C.2 SPARC Support
The stand directory includes code that is necessary to set up and run the SPARC

processor: a trap table, trap handlers, start-up code, and routines that are required

by the compiler.

The trap table is in trap_table.S . The majority of entries in the trap table stop the

simulation with the trap number in register %l3 and the PSRin %l0 . The overflow,

underflow, and floating-point exception trap table entries branch to the handlers in

trap.S . The reset trap table entry branches to the start-up code in srt.S . The start-

up code sets up the processor’s WIM, PSR, TBR, and stack pointer registers, as well as

the FPU’s FSRregister, and then calls the function main . If main returns, the start-

up code executes a special trap instruction that stops the simulation.

The C compiler generates code that depends on a number of routines. The stand
directory supplies these routines in the crt.S file. Among them are routines to

multiply, divide, and handle the returning of structures and call procedures through

a pointer in a register.

C.3 Utility Routines
The stand directory includes a small set of utility routines to facilitate development

of stand-alone programs. They provide the following functions:

■ Access to load alternate, store alternate, and atomic instructions from C

■ Multiprocessor synchronization primitives

■ Access to traps handled by the trap module

■ Formatted output

The following routines are described in greater detail in the manual pages at the end

of this appendix, starting at page 233.

C.3.1 Access to Load Alternate, Store Alternate, and

Atomic Instructions from C

The stand directory provides routines that give access to assembly load and store
instructions that are not accessible directly from the C language. The loada and

storea routines allow loads and stores to alternate ASIs.

Also, the functions ldstub and swap execute the ldstub and swap SPARC

instructions.
Appendix C The stand  Directory 229



C.3.2 Synchronization Primitives

The stand directory provides synchronization primitives. Blocking and nonblocking

lock routines are named lock_blk and lock_nblk , respectively. The companion

routine unlock releases the locks obtained by both lock routines.

Also available is a routine called barrier , which does not return on a processor

until the specified number of processors have called barrier . It can ensure that all

processors have reached a certain point in the code before any of them proceed.

C.3.3 Access to Traps Handled by the trap Module

MPSAS supports software traps that are signals to the simulator to provide a service.

The processor does not jump into the trap table when these traps are executed. The

simulator provides the service, and execution continues as if the trap has returned.

The services provided by this mechanism are:

■ Termination of the simulation

■ Issuance of commands to the simulator

■ Input and output on the serial ports

■ Access to a simulated disk

C.3.4 Formatted Output

The stand directory contains a printf routine, which can handle a maximum

number of 10 arguments and supports only a few of the formats (c , d, s , u, x ).

C.4 Example Programs
The procedure for building the example programs, as described below, is contained

in Makefile in the stand directory. The mpmmu, refmmu , and reg_read programs

only run on the mbus architecture. The remaining programs run on other

architectures as long as RAM appears to start at address 0 for the processor (for

example, by turning boot mode off before running the program).
230 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



C.4.1 delay

The delay program measures the number of instructions a write to the PSRis

delayed before taking effect. It writes the PSRand then reads it into four different

registers. Afterward, the program checks the registers to determine which of them

contain the newly written value of the PSR. It then reports the number of

instructions that are executed before the PSRchanges to the new value.

C.4.2 fsqrt

The fsqrt program is a small program that exercises the FPU. This program

executes three floating-point loads, three floating-point stores, and a square root

operation in an infinite loop.

C.4.3 inexact

The inexact program, also a small program, generates an inexact IEEE floating-

point exception. It investigates the behavior of the FPU while taking exceptions.

C.4.4 loop_test

The loop_test program keeps the processor busy long enough to test operations,

such as interrupts. It maintains a loop, incrementing a global variable and printing

out the latest value. A global variable is chosen to keep the compiler from

optimizing the loop out if printf is taken out.

C.4.5 mpmmu

The mpmmuprogram tests the Mbus architecture and runs on a multiprocessor Mbus

system. It sets up the processors with the MMUs and caches turned on and each

processor-MMU combination in a different context. The contexts are very similar

with only a difference in the stack’s memory mapping.

This program prints out messages along the way to inform you of what is going on.

After each processor is set up, mpmmucalls the do_something function, which

executes some atomic instructions, MMU probes, and cache flushes before returning.

The main function waits for all processors to return from do_something before

calling exit .
Appendix C The stand  Directory 231



C.4.6 refmmu

The refmmu program can test the mbus architecture with the MMU and caches on

and is similar to the mpmmuprogram. This program starts up a single processor mbus
architecture machine by turning on the cache and the MMU. It also calls a routine

called do_something when the MMU and cache are on, which performs a number

of probes, atomic instructions, and cache flushes.

C.4.7 reg_read

The reg_read program is a simple program that prints out the values of the

registers that are obtained via access to alternate ASIs.

C.4.8 tutorial

The tutorial program is the MPSAS tutorial. It does a calculation, including the

factorial of two global variables.
232 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Load and store stand Utilities Load and store

Name

loada , storea , swap, ldstub — Access to alternate ASIs and atomic instructions

Synopsis

unsigned int loada( asi, address)
unsigned int asi, address;

void storea( asi, address, data)
unsigned int asi, address, data;

unsigned int swap(a, b)
unsigned int a, *b;

unsigned char ldstub(a)
unsigned char *a;

Description

The loada routine provides the ability to load from an alternate ASI. The parameter

asi is the ASI from which to read; the parameter address is the address to access on

that ASI. This routine only handles ASIs in the range 0–0x2f.

The storea routine provides the ability to store from an alternate ASI. The

parameter asi is the ASI to which to store; the parameter address is the address to

access on the ASI. The parameter data is the data to be written. This routine only

handles ASIs in the range 0–0x2f.

The swap routine provides access to the atomic instruction swap. The two

parameters are the same parameters as the instruction. This routine swaps the value

a with the contents of the address b, using the swap instruction. The contents of b
are returned.

The ldstub routine provides access to the atomic instruction ldstub . The

argument a is a pointer to an address in memory, where the ldstub is done. The

byte contents of the address a are returned, and the byte pointed to by a is set to 0xff

atomically, using the ldstub instruction. The ldstub routine is used by the

sychronization primitives.

See Also

Sync
Appendix C The stand  Directory 233



map_list stand Utilities map_list

Name

map_list — Build page table for a list of pages

Synopsis

#include "mapping.h"

map_list( ctxt, map_descrip, num_pages)
int ctxt;
struct map_page_descrip *map_descrip;
int num_pages;

Description

map_list builds a page table for a number of pages in a particular context for a

standard reference MMU. The arguments specify the context number (ctxt), a

description of the desired map (map_descrip), and the number of pages to map

(num_pages).

The description of the pages to be mapped takes the form of an array of

map_page_descrip structures. Each structure defines the desired map for a

particular page. Following is the map_page_descrip structure:

The virt_page field is set to the virtual address to be mapped. The phys_page
field specifies the physical address to be associated with the virtual address in

virt_page . Because physical addresses for the standard reference MMU are 36 bits

wide, the phys_page field is set to the top 32 bits of the physical address; the

bottom 4 bits are assumed to be 0. The access field specifies the access to the page

and should be set to a constant based on TABLE C-4.

The cacheable field specifies whether the page is cacheable. This field should be

set to 1 for cacheable and 0 for noncacheable.

struct map_page_descrip {
unsigned phys_page;
unsigned virt_page;
unsigned access;
unsigned cacheable;

};
234 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



TABLE C-4 access Field Values

User Access Supervisor Access Constant Value

Read-only Read-only SR__UR__ 0

Read-write Read-write SRX_URX_ 1

Read-execute Read-execute SR_XUR_X 2

Read-write-execute Read-write-execute SRWXURWX 3

Execute-only Execute-only S__XU__X 4

Read-only Read-write SRW_UR__ 5

No access Read-execute SR_XU___ 6

No access Read-write-execute SRWXU___ 7
Appendix C The stand  Directory 235



printf stand Utilities printf

Name

printf — Formatted output

Synopsis

int printf( format [ ,arg ] ...)
char *format;
int arg;

int fprintf(port, format, [ ,arg ] ...)
int port;
char *s;
int arg;

Description

This printf utility is a limited version of the standard printf . It is limited to a

maximum of 10 arguments besides the format string. The only formats supported

are c , d, s , u, and x .

See Also

printf manual page
236 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Simulator traps stand Utilities Simulator traps

Name

exit , mpsas_cmd, char_out_a , char_out_b , char_in_a , char_in_b ,

char_waiting_a , char_waiting_b , s_open , s_read , s_write , s_lseek —

Access to simulator supported traps

Synopsis

void exit(status)
int status;

void mpsas_cmd(str)
char *str;

void char_out_a(c)
char c;

void char_out_b(c)
char c;

int char_in_a()

int char_in_b()

int char_waiting_a()

int char_waiting_b()

int s_open(part, flag)
int part;
int flag;

int s_read(fd, buffer, size)
int fd;
char *buffer;
int size;

int s_write(fd, buffer, size)
int fd;
char *buffer;
int size;

int s_lseek(fd, offset)
int fd;
int offset;
Appendix C The stand  Directory 237



Description

Each of the simulator trap routines corresponds to a trap supported by the simulator.

The routines set up the proper arguments and execute the proper trap instructions to

signal the simulator to perform a particular service.

exit executes a trap instruction that stops the simulation. The program calls this

function to stop the simulation and return to an MPSAS user-interface prompt.

mpsas_cmd routine passes a string to MPSAS to be executed as a user-interface

command. The maximum allowed length of the command is 99 characters. You can

use the backslash character to create longer commands.

The simulator supports a number of traps that manipulate the serial ports. These are

for character input, output, and polling. There is a trap for each of these operations

for each of two serial ports, making six total traps. The detailed behavior is

described in trap: External Trap Module on page 155.

char_in_a and char_in_b retrieve characters from the a and b serial ports. If no

characters are available, these routines return –1. The routines return characters in

the least significant byte of the integer.

char_out_a and char_out_b send characters to the a and b serial ports. The

character should be placed in the least significant byte of the integer.

char_waiting_a and char_waiting_b check the serial ports to see if data is

waiting to be read. They return a nonzero number if a character is waiting, 0 if no

characters are waiting.

s_open , s_read , s_write , and s_lseek manipulate the simulated disk partitions.

Their detailed behavior is described in trap: External Trap Module on page 155. These

routines pass the arguments expected by the trap module.

s_open returns a handle to the partition you are interested in using. The partition
argument specifies the partition number. Partition numbers are allotted by the

simdisk module based on the order in the simdisk initialization file.

s_read and s_write read and write from the raw partition. The fd argument

specifies the partition number and is obtained from the s_open call. The buffer and

size arguments specify the data and size of the transaction.

s_lseek seeks to a different spot on the simulated partition and subsequent reads

and writes start at that point in the partition. The fd argument specifies the partition

on which you are to operate. The offset argument specifies the new position in the

partition.
238 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

trap: External Trap Module on page 155

serial: Dual Serial Port Module on page 132

simdisk: Simulated Disk Module on page 137
Appendix C The stand  Directory 239



Sync stand Utilities Sync

Name

lock_blk , lock_nblk , unlock , barrier — Synchronization primitives

Synopsis

#include "mp.h"

LOCKDEC(x);

void lock_blk(lck)
lock_t *lck;

unsigned int lock_nblk(lck)
lock_t *lck;

void unlock(lck)
lock_t *lck;

BARDEC(x);

void barrier(bar, num_procs)
barrier_t *bar;
int num_procs;

Description

The lock_blk routine is a blocking lock primitive. The routine does not return until

the lock pointed to by lck has been acquired.

The lock_nblk routine is a nonblocking lock primitive. The routine returns after

attempting to acquire the lock pointed to by lck. If the caller did acquire the lock, the

return value is GOT_LOCK(0). If the caller did not acquire the lock,

DIDNT_GET_LOCK(0xff) is returned.

The unlock routine releases the locks obtained by lock_blk and lock_nblk .

Locks are declared and initialized by the LOCKDECmacro.

The barrier routine does not return on a processor until the specified number of

processors have called barrier . It can be used to ensure that all processors have

reached a certain point in the code before they proceed. The parameter bar is the

barrier being operated on. The pointer passed to barrier in the bar parameter

should be declared and initialized with the BARDECmacro. The parameter num_procs
is the number of processors that call barrier before any of them return.

These synchronization routines use the ldstub routine.
240 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



See Also

Load and store
Appendix C The stand  Directory 241



242 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



Index
SYMBOLS
.MPSASrc  file 10

A
alias  command 18, 176

alias_cnt  command 22

allstages  command 20

architectures 3

arrays 30

as_string  operator 28

B
bitfield  29

breakpoint  command 20

byte  29

C
changes  operator 30

channels 3

classes 29

clstat  command 22

cmu
commands 21

module 55–62

command-line special characters 22

communications 3

configuration file 2, 31, 41

contexts  command 22

continuation of a command 22

coproc_pkt  message type 47

cpu
commands 20

module 62–74

cstat  command 22

cycle  command 16, 20, 177

cycles 2

D
dasm command 17, 178

data types 25

debug channel 3

delete  command 17, 181

disable  command 17, 181

dump command 19, 167, 179

E
echo  command 11, 18, 180

enable  command 17, 181

error messages 169–172

exiting the simulator 9

expr  command 13, 17, 182

expression operators 26

external  45
243



F
fcpu

commands 21

module 74–87

file  command 11, 18, 183

finish_fpop  command 21

floating- point queue 21

flush  command 18, 185

focus  command 186

fork  command 11, 18, 187

fpu
commands 21

module 87–90

fpu_pkt  message type 47

framework 2

G
gen_bus_pkt  message type 49

gen_int_pkt  message type 51

generic bus packet, See gen_bus_pkt  message

type

generic interrupt packet, See gen_int_pkt
message type

gintr  module 90–93

globals  command 20

group  command 18, 167, 188

group value 30

gtimer  module 94–97

H
help  command 6, 11, 15, 190

history
command 18, 191

utility 23

hword  29

I
if  command 10, 18, 192

in  operator 28

information in messages 30

ins  command 20

instruction-level simulation 1

integer constants 25

interfaces 4

intr  module 97–100

invalid expressions 30

itrace  command 21

K
key file 23

L
latest_file_loaded  simulator environment

168

lines  command 22

list classes  command 44

list  command 9, 16, 29, 193

load  command 6, 16, 26, 168, 194

load_section  command 16, 168, 196

locals  command 20

log file 23

lookups by minimum ambiguity 29

lword  29

M
make_ss_trace  167

mbus
architecture 38

module 100–110

members 9

message

delay 3

types 3, 47

minimum ambiguity lookups 29

mmu
commands 21

module 110–115

MODULE_CMD_PATH 15, 19

modules 2, 55–166

mpsas command 174

msg command 17, 29, 198

msgdata  30

msgdelay  30

msgsize  30

msgtype  30
244 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999



msi  module 115–118

mstat  command 22

N
no_data  message type 51

O
onstop  command 17, 200

operators 26

option  command 19, 201

outs  command 20

P
performance 1

preprocessing of configuration files 45

print  command 9, 16, 202

profile  command 21

public  45

Q
quick substitution 24

quit  command 9, 16, 203

R
ram  and rom  modules 118–123

ranges  command 22

read  command 7, 8, 21

redirection 22

regs  command 12, 20

rtimer  command 18, 204

run  command 13, 16, 205

S
s4vme module 123–126

sbus  module 126–132

scripts 18

serial  module 132–136

set  command 12, 16, 206

setenv  command 18, 22, 207

sh  command 7, 18, 208

show_fpq  command 21

sigio
message type 52

module 136–137

simdisk  module 137–142

simple  architecture 5, 31

simulation channel 3

snoop  command 17, 209

socket  module 143–145

special characters in command lines 22

ss_trace_cmds  168

sstat  command 22

stack backtrace 11

stand  directory

code for SPARC support 229

example programs 230

overview 227

utilities 233–241

utility routines 229

starting the simulator 5

state  command 18, 212

status  command 17, 181

step  command 12, 16, 20

stop  command 213

string
class 29

message type 52

sun4c architecture 33

sun4e architecture 35

symtab  command 16, 214

sys4c  and sys4e  modules 145–155

T
tables  command 22

time  command 19, 216

trace  command 19, 167, 217

trace file (analyzer) 19

transaction-level simulation 1

trap  module 155–161

trap_pkt  message type 52

tutorial 5–13

tutorial_cmds  10
Index 245



U
ui  module 161–163

unalias  command 18, 176

V
var  command 17, 218

variable expressions 29

version  command 16, 220

vmebus  module 164–166

vtimer  command 18, 204

W
wait  command 18, 221

watchexecute  12

when command 17, 222

where  command 11, 20

window  command 16, 224

word  29

write  command 10, 21

X
xlate  command 21
246 Multiprocessor SPARC Architecture Simulator (MPSAS) User’s Guide • July 1999


	Preface
	Overview
	Tutorial
	User Interface
	Sample Architectures
	Configuration File
	Message Types
	Modules
	Trace Tools
	Error Messages
	Command Manual Pages
	The stand Directory
	Index

