DISRUPTION IN RTL
DESIGN FOR SOCs

A NEW METHODOLOGY

o
pEiEy

i
6
| i

5 A

Disruption in RTL Design
for SOCs: A New Methodology

CLAYTON CHRISTENSEN defines a
“disruptive technology” as an innovation
that establishes a new standard in product
cost and accessibility, and gradually displaces
even successful market and technology
leaders. A fundamental new form of micro-
processor — extensible processors — combines
the dramatic productivity of complete soft-
ware programmability with the exceptional
performance and efficiency of optimized
logic circuits. This innovation promises not
just to disrupt the traditional microprocessor
market, but also to change how all digital

logic is designed.

T
AT

Logic is a major consumer of silicon design effort. New chips are charac-
terized by rapidly increasing logic complexity. Moore’s Law scaling of
silicon density makes multi-million gate designs feasible. And fierce
product competition in system functionality makes these advanced silicon
designs necessary. A well recognized “design gap” grows wider every year
between the growth in chip complexity and productivity growth in logic
design tools, shown in Figure 1.

Complexity: Productivity:
Logic transistors Transistors per
per chip (K) staff-month

100,000 // 1,000,000
10,000 o / 100,000
1,000 }""‘" 10,000

100 S _90ve = 1 000
10 4 Y S - 100
i 10
1980 1985 1990 1985 2000 2005 2010

Figure 1: Design complexity and designer productivity

Moreover, the market trend towards high-performance, low power
systems - long battery life cell-phones, four megapixel digital cameras,
fast, inexpensive color printers, high-definition digital televisions, and 3D
video games - is also increasing the number of system-on-chip designs.
Unless something closes the design gap, future chips will become impossible
to design.

The methodology for chip logic design has not changed significantly in
ten years, since the proliferation of logic synthesis for register transfer
logic (“RTL”) languages. The capacity of the design tools has increased,
the verification speed has improved, and efforts for design reuse have
yielded continuing productivity improvements. However, the challenges
of the logic design problem are outstripping the available solutions. Two
central problems of RTL design stand out — brutal complexity of logic
verification for multi-million gate designs and the enormous time and
cost penalties for design bugs. If a new methodology could remove these
costs and risks, it would rapidly proliferate across system-on-chip design.

4

RTL is the commonly accepted way of designing SOC hardware

The conventional model of system-on-chip (“SOC”) design closely
follows the tradition of its predecessor: the combination of a standard
microprocessor, standard memory and logic built as ASICs, shown in
Figure 2. In fact, many system-on-chip designs inherit their architectures
directly from earlier board-level designs. Chip-to-chip interconnect is
expensive and slow, so shared buses and narrow data paths (often 32 bits
wide) are typical of these board-level designs. SOC designs that are simple
ports of board-level designs, often: carry over these limited-width bus
architectures because this backward-looking approach is the easiest way
to architect an SOC. Most commonly, the processors used in these carry-
overs from board-level designs are general-purpose RISC processors
originally designed in the 1980s for general-purpose UNIX desktops and
servers. Separate hardwired (non-programmable) ASICs implement all
the logic functions that lie beyond the performance limit of the general-
purpose processor.

Memory

;

sz synsnsn npnansnznsnsezage

{
|
|
b
;.
|
[
|
!
|

function

RTL
function

RTL
function

RTL

Figure 2: Board to SOC design transition

e Y

e e T

When all these components are combined on a single piece of silicon,
clock frequency increases and power dissipation decreases. Reliability
and cost often improve as well. These benefits alone can justify the
investment in system-on-chip design. However, the shift to SOC integra-
tion does not automatically change the organization of the design. The
architecture of these chips typically inherits the limitations imposed by
the earlier board-level design. They are often organized around a single
32-bit bus because this approach saves pins - an expensive commodity
in a board-level design, but much less relevant to on-chip connections.
The designs often retain the rigid partitioning between a single micro-
processor doing supervision tasks - running user-interfaces, real-time
operating systems and high-level user tasks - and a set of logic blocks,
each dedicated to a single function - data transformation, protocol
processing, image manipulation or other data-intensive tasks. These
architectures, derived from board-level design concepts, typically assume
that communication between the logic blocks, and between logic blocks
and the processor, is a bottleneck, plagued with the long latency, low
clock frequency and narrow data-path width of chip-to-chip connections.
Typical data bandwidth between ASIC-based logic chips and the control
processor rarely reaches one hundred megabytes per second. The aggregate
bandwidth among all logic functions rarely exceeds a few hundred
megabytes per second.

Ironically, these bottlenecks commonly disappear in single-chip designs.
While a 64-bit bus might be prohibitively expensive in board-level design,
128- and 256-bit connections, running at hundreds of megahertz, are
easy to design, efficient and appropriate between adjoining blocks on an
SOC. Using these wider signal paths, bandwidth between a processor and
surrounding logic can exceed one gigabyte per second. Moreover, inte-
grated circuits potentially offer much higher aggregate bandwidth. With
deep sub-micron line-widths and six or more layers of metal interconnect,
the theoretical cross-section bandwidth of a die 10mm on a side can
approach 10" bits per second (ten terabits/sec). While few practical designs
will achieve this limit, it creates tremendous architecture headroom and
invites a new approach to system architecture.

The traditional approach to system-on-chip design is further constrained
by the origins and evolution of microprocessors. Most popular embedded
microprocessors, especially 32-bit architectures, are direct descendants of
‘desktop computer architectures of the 1980s: ARM, MIPS, 68000/ColdFire,

PowerPC, x86 and so forth. These processors were designed to serve as
general-purpose application processors and were architected for imple-
mentation as standalone integrated circuits. These processors typically
support only the most generic data-types (8-, 16- and 32-bit integers)
and operations (integer load, store, add, shift, compare, logical-AND,
etc.). This makes them well suited to a diverse mix of control-oriented
applications found in computer systems. These architectures are equally
good (or equally bad) at databases, spreadsheets, PC games and desktop
publishing. All suffer from a common bottleneck: the need for complete
generality dictates execution of an arbitrary sequence of these primitive
instructions. Even the most silicon-intensive, deeply pipelined super-scalar
implementation methods can rarely sustain much more than two instruc-
tions per cycle. And the harder processor designers push against this limit,
the higher the cost and power per unit of useful performance extracted
from the microprocessor architecture.

Compared to computer systems, embedded systems are more diverse as

a group, but are individually more specialized. A digital camera may do
complex image processing, but never does SQL database queries. A network
switch must handle complex communications protocols at optical inter-
connect speeds, but doesn’t need to do 3D graphics. A consumer audio
device may do complex media processing, but doesn’t run COBOL appli-
cations for payroll. This creates two issues for general-purpose processors
in data-intensive embedded applications. First, the poor match between
the critical functions of the application (e.g. image, audio, protocol pro-
cessing) and a basic integer instruction set means critical applications
take more computation cycles. Generic processors are routinely bigger
and slower than application-specific engines. Second, these more focused
embedded applications will not take full advantage of a generic processor’s
broad capabilities, wasting expensive silicon rescurces.

A large slice of embedded systems interact closely with the “real world”
or communicate complex data at high rates. These data-intensive tasks
could be performed by some hypothetical general-purpose microprocessor
running at tremendous speed. For many tasks, however, no such processor
exists today, and the fastest available processors typically cost orders of
magnitude too much, and dissipate orders of magnitude too much power.
Instead, designers have traditionally turned to hard-wired circuits to
perform these data-intensive functions: image manipulation, protocol
processing, signal compression, encryption, etc. In the past ten years,

wide availability of logic synthesis and ASIC design tools has made register
transfer level (RTL) design the standard for hardware developers. RTL-
based design is reasonably efficient (compared to custom transistor-level
circuit design) and can effectively exploit the intrinsic parallelism of many
data-intensive problems. If similar operations are required on a whole
block of data, RTL design methods - specialized operations, pipelining,
replicated operators in a single data-path, replicated function units - can
often achieve tens or hundreds of times the performance of a general-
purpose processor. Because no RTL design tries to solve an arbitrary,
generic sequential problem, it avoids the generic single processor bottle-
neck. The more computationally intensive the data manipulation, the
greater the potential RTL speed-up.

Large SOC designs now require tremendous resources for RTL design
The evolution of silicon technology is now bringing a new crisis to
system-on-chip design. To be competitive communication, consumer and
computer products require rapid increases in functionality, reliability and
bandwidth, and rapid declines in cost and power consumption. All of this
dictates increasing use of high-integration silicon, where much of the
data-intensive function must be designed in RTL. At the same time, the
design productivity gap, the increase in deep sub-micron prototyping
costs and the time-to-market pressure of global electronics markets, all
put intense pressure on chip designers.

A few characteristics of typical deep-submicron design illustrate
the challenge:

e In a generic 0.13p standard cell foundry process, silicon density
routinely exceeds 100K usable gates per mm®. A low cost chip
(50mm?” of core area) can implement 5M gates of logic. Because it
can be done, someone will find a way to exploit this potential in
any target application.

e In the past, silicon capacity and design automation tools limited the
productive size of a block of RTL to less than 100K gates. Improved
synthesis and place-and-route tools are raising that ceiling. Blocks of
500K gates are within the capacity of the tools, but design methods
may not be keeping up.

 The design complexity of a typical RTL block grows much more
rapidly than its gate count, and the complexity of a system increases
much more rapidly than the number of constituent blocks. Verification

@

complexity has grown disproportionately. Many real-world design
efforts report that 90% of effort is now spent on block-level or
system-level verification.

e The cost of a bug is going up. Much is made of the rising cost of
deep-submicron masks - a full set is approaching $1M. This,
however, is just the tip of the iceberg. The combination of the larger
teams required by larger design, higher staff costs, bigger NRE fees
and, most importantly, lost profitability and market share, makes
show-stopper bugs intolerable. Methods that reduce the occurrence
such show-stoppers, or permit painless work-arounds, pay for them-
selves rapidly.

o All embedded systems now have significant software components.
Software integration is typically the last step in the development
process and routinely gets blamed for overall program delays. Earlier
and faster hardware/software validation is widely viewed as a critical
risk-reducer for new products.

o Standard protocols are growing rapidly in complexity. The need to
conserve scarce communications spectrum, plus the inventiveness
of modern protocol designers, have created complex new standards
(for example: IPv6 Internet Protocol packet forwarding, G.729 voice
coding, JPEG2000 image compression, MPEG4 video, Rijndael AES
encryption). The new standards create serious demands for both
greater flexibility and computational throughput. These require new
implementation methods, compared to earlier protocols in equivalent
roles (for example, IPv4 packet forwarding, G.711 voice coding,
JPEG, MPEG2 and DES encryption) that could be implemented
using RTL design.

A consistent rule in the behavior of markets is that competitive forces
drive the embrace of new technologies. In the case of electronics, Gordon
Moore’s prophesy, that silicon density would double roughly every 18
months, sets a grueling pace for ali chip developers. This universal expec-
tation for ever cheaper, faster transistors also invites systen: buyers to
expect constant improvements to functionality, battery life, throughput
and cost. The moment a new function is technically feasible, the race is
on to deliver it. The competition is literally that intense in many markets.
And in volume markets, expectations for functionality are increasingly
set by the economics of silicon - functionality expands to consume the
available electronics budget. Just a single CMOS process step, say from

0.18p1 to 0.13p, roughly doubles the available silicon for a given die size,
and die cost. In the last five years - the period in which “system-on-chip”
has become a key concept for chip designers - we’ve seen a roughly ten
times increase in silicon capacity. Competitive pressure has pushed us to
the next generation system-on-chip, characterized by dozens of functions
working together, as illustrated in Figure 3.

function

RTL
function

RTL
function

Figure 3: SOC meets Moore’s Law

This ceaseless growth in complexity is a central dilemma for system-on-
chip design. If all these logic functions could be implemented with general-
purpose processor cores that were cheap and fast enough, they would be.
Processor hardware is pre-designed and pre-verified, so block design
based on microprocessors becomes an exercise in developing software.
This approach allows developers to fix bugs literally in minutes instead
of months. It also allows the addition of new features at any time in the
product development, even in the field. Unfortunately, for the most
computationally demanding problems, generic processor cores fall far
short of the mark with respect to application throughput, cost, and power
efficiency. Conversely, custom logic - especially for new complex functions
or emerging standards - takes too long to design, and is too rigid. (Logic,
once designed, is hard tc change without incurring large verification costs.)
A closer look at the make up of the typical RTL block in Figure 4 gives
insight into a resolution of this paradox.

In most RTL designs, the data-path consumes the vast majority of the
gates. The data-path may be as narrow as 16 or 32 bits, or as wide as hun-
dreds of bits. It will typically contain many data registers, representing
intermediate states of the computation, and will often have significant
blocks of RAM, or interfaces tc RAM shared with other blocks. The
choice of data-path elements, and the connections among elements are

Finite

State
Machine

Figure 4: Hardwired RTL function: data-path + state machine

often direct reflections of the fundamental data types on which the block
operates. For example, a packet-processing block may directly implement
a data-path that corresponds to the structure of the packet header. An
image processing function may directly implement a data-path for a row
or column of eight pixels from an 8x8 pixel image block. These basic
data-path structures are largely independent of the finer details of the
algorithm. By contrast, the finite state machine contains nothing but control
details. All the nuances of the sequencing of data through the data-path,
all the error conditions, all the handshakes with other blocks are captured
in this subsystem. It may represent only a few percent of the gate count,
but it embodies most of the design and verification risk. If a late change
is made in the function of the RTL block, the change is much more likely
to affect the state machine than the structure of the data-path.

One way to understand the risks associated with hardware state machines,
is to examine the combinatorial complexity of verification. A state machine
with N states and I inputs may have as many of N” “next-state” equations
and each of these will be some function of the I inputs, or 21 possible
input combinations. This means that at least N**21 input combinations

10

must be tried to exhaustively test all the state transitions. Typically, how-
ever, it will take many cycles to test each such transition, since it may
require a number of cycles to reach the desired state, and a number of
cycles to determine if the desired transition occurred. For a relatively
simple state machine with 40 states and 20 inputs, truly exhaustive testing
probably takes tens of billions of cycles requiring months with typical
RTL simulators. Because of these exceedingly long simulation times, logic
is rarely tested this completely. Even when formal verification methods
are used, the basic problem remains.

RTL replacement using Xtensa is a way to get it done

Hardwired RTL design has many attractive characteristics — small area,
low power, and high-throughput. However, the liabilities of RTL - difficult
design, slow verification, and poor scalability to complex problems -

are starting to dominate. A design methodology that retains most of the
efficiency benefits of RTL, but reduces design time and risk, has a natural
appeal. Application-specific processors as a replacement for complex RTL
fit this need.

An application-specific processor can implement data-path operations
that closely match those of RTL functions. The equivalent of the RTL
data-paths are implemented using the integer pipeline of the base
processor, plus additional execution units, registers and other functions
added by the chip architect for a specific application. The Tensilica
Instruction Extension (TIE) language - an extension of Verilog - is
optimized for high-level specification of data-path functions, in the form
of instruction semantics and encoding. This form of description is much
more concise than RTL because it omits all sequential logic, including
state machine descriptions, pipeline registers, and initialization sequences.
The new processor instructions described in TIE are available to the
programmer via the compiler and assembler, just like the processor’s base
instructions. All sequencing of operations within the data-paths is simply
controlled by the program, through the existing instruction fetch, decode
and execution mechanism of the processors, and are typically written in
a high-level language - C and C++ - running on the extended processor.

Extended processors used as RTL-block replacements routinely use the
same structures as traditional data-path-intensive RTL blocks: deep
pipelines, parallel execution units, problem-specific state registers, and
wide paths to local and global memories. They can sustain the same high

computation throughput and support the same low-level data interfaces
as typical RTL design. The control of these data-paths, however, is very
different. Cycle-by-cycle control of the data-paths is not fixed in the state
transitions hardwired into the logic. Instead, the sequence of operations
is explicit in the software executed by the processor. Control flow decisions
are made explicitly in branches; memory references are explicit in load
and store operations; sequences of computations are explicit sequences
of general-purpose and application-specific computation operations.
The vocabulary of the block is set by the data-path and expressed as

the processor instruction set, but the overall function is determined by
the program.

Data RAM

Register

. | e
' ;
Processor

Register Decoder ﬁ(r:/\gir)e

Control

Figure 5: Programmable function: data-path + processor + software

1"

This transition from hardwired state machine tc program control has
several important implications:

1. Flexibility. Chip developers, system builders, and, when appropriate,
end-users can change the block’s function just by changing the
program. This means new functions, bug fixes and performance
upgrades can potentially be made at any time, including changes
made to products already in the field.

2. Software-based development. Developers can use sophisticated,
low-cost software development methods for implementation of most
chip features. PC-based native code development and source-level
debug with graphical user interfaces make development, enhancement
and maintenance of functions significantly easier. Developers rou-
tinely report, for example, that software-style real-time debug tcols
give much higher visibility and much faster bug fixes than typical
hardware simulation methods.

3. Fast, complete system modeling. RTL simulation is slow. For a 10
million gate design, even a modern software simulator may not
exceed a few cycles per second. Only the most basic interface verifi-
cation can be achieved. Simulation of realistic data sets is impossible.
Even mixed-mode models suffer from the RTL simulation bottleneck.
By contrast, processor simulations, including cycle- and bit-exact
support for processor extensions, run at hundreds of thousands of
cycles per second, per processor, so the simulation of even a complex
system, implemented with large numbers of processors will typically

™ run at least a thousand times faster than the RTL equivalent.

4. Unification of control and data. No modern system consists solely of
hardwired logic. There is always some processor and software function,
though it may be restricted to simple initialization, user-interface or
error handling. Moving RTL functions into a processor removes the
artificial distinction between control and data processing. This unifi-
cation typically simplifies development and eliminates unnecessary
interface hardware, driver software and communication bottlenecks.

5. Time-to-market. Moving critical functions from RTL to application-
specific processors simplifies the design, accelerates system modeling
and pulls in finalization of hardware. Application-specific processors
easily accommodate changes to standards because details do not get
cast in stone, but are instead implemented in runtime software. For
the traditional RTL flow, prototypes cannot be built until every detail

12

of every logic function has been designed and verified. Almost any
error, even in rare state transitions, mandates a new prototype run,
with million dollar costs and months of delay. When the processor
implements the critical data functions, the hardware prototypes can
be safely built as soon as the basic data-path functions are fixed. All
control functions can be implemented in software in simulator or
hardware emulation during prototype fabrication, or directly on the
prototype hardware as soon as it is ready.

Most importantly, perhaps, migration from RTL design to application-
specific processors boosts the productivity of the engineering team. It
reduces both the engineering manpower for RTL development and for
verification. It sharply cuts risks of fatal logic bugs and permits graceful
recovery when a bug is discovered. It accelerates the start of software
bring-up and reduces the uncertainty typically surrounding hardware-
software integration. It frees up low-level resources for more highly
leveraged work in invention of new functions, development of improved
system-level architectures and support of new customers and markets.
The more complex the RTL task, the greater the impact of this advantages.

A couple of caveats, however, should be noted. For all the attractive prop-
erties of application-specific processors, they are not always the right
choice. Three cases stand out:

» Small, fixed state machines: Some logic tasks are too trivial to warrant
a processor. A state machine with just a handful of states, no data
storage, no computation and little risk of bugs or changes could, of
course, be implemented as short sequence of instructions. However,
if the function requires less than a few dozen states, or less than a
few thousand total gates, a processor would plainly be inefficient.
Bit-serial engines, such as simple UARTS, fall into this category.

o Simple data buffering: Similarly, some logic tasks amount to no
more than storage control. A FIFC controller built with a RAM and
some wrapper logic, can be emulated via memory cperations within
a processor, but a simple FIFO is faster, simpler and commonly
available in standard design libraries.

° Very deep pipelines: Some computation problems have so much
regularity and so little state-machine control, that a single very deep
pipeline is the ideal implementation. All data passes through exactly
the same sequence of operations with modest control conditions or

13

14

data dependencies. The common examples - 3-D graphics and mag-
netic disk read channel chips - sometimes have pipelines hundreds
of clock stages deep. Application-specific processors could be used
to control such pipelines, but the benefits of instruction-by-instruc-
tion control would be of less obvious help in these applications.
More complex or irregular computations dictate shorter pipelines so
operations sequences can be more finely controlled. In contrast,
application-specific processors are optimized to support pipelines of
up ten or twenty stages in depth. Even in these very data-intensive
cases, application-specific processors may eventually prove effective.
The application-specific data-paths typically dominate the silicon
area, so the overhead for processor-based implementation over state-
machine-based implementation is modest. These computations are
often highly parallel, so multiple processors can be fully used. In
these cases, systems built around multiple processors with these
shorter pipelines will often achieve nearly the same efficiency as RTL
with very deep pipelines, but with greater versatility.

The migration of functions between software and hard-wired logic over
time is well known. In fact, during early pre-standards exploration,
processor-based implementations are common, even for simple standards
that clearly allow efficient logic only implementations. Some common
standards that have followed this path include popular video codecs such
as MPEG2, 3G wireless protocols such as W-CDMA and encryption and
security algorithms such as SSL and triple-DES. The speed of this migra-
tion, however, has been limited by the large gap in performance and
design ease between software-based and RTL-based development. The
emergence of application-specific processors creates a new path, quick
and easy enough for development and refinement of new protocols and
standards, yet efficient enough in silicon area and power to support very
high volume deployment.

Conclusion

The steady, rapid improvement in silicon density is opening the door to a
wide spectrum of new digital preducts, from optical-rate routers to
multi-megapixel digital cameras. The difficulty of designing millions of
gates of new logic for each system-on-chip, however, threatens to frustrate
this potential. A new design methodology - configuration and program-
ming of application-specific processors in place of register-transfer-level
logic design - offers important benefits.

The net result is a fundamental disruption of the traditional decade-old
methodology for RTL-based logic design. This new methodology allows
each of the increasing number of functional blocks in a system-on-chip
to be replaced by an analogous processor with similar throughput and
cost, but much greater flexibility. It reduces the design time and design
risk, because of simpler specification, much faster verification, and seam-
less functional changes at any point in the product development flow. It
liberates engineers from routine and repetitive low-level RTL tasks, so
they can attack new functions and higher-level system optimizations.

Another result is gradual obsolescence of the RTL-centric design approach
of the 1990s. Languages like Verilog and VHDL will remain important
only as intermediate data formats, used for process portability and low-
level validation of design integration. Design reuse in large organizations
and market transactions for silicon intellectual property can now shift
from RTL representations to formal descriptions of processor configurations.

This transition even holds some promise to change the fundamental
economics of silicon development. As this new methodology takes hold,
as did RTL design only ten years ago, the design of very complex chips
will get easier and less expensive. Pervasive programmability will also
expand the number of applications and customers each design can support.
This means greater silicon product longevity and better return on the
development investment.

This broad use of extensible processors may also drive the fundamental
disruption of the embedded microprocessor market. These very small,
very fast processors will be built in such large numbers, and used by such
a wide range of engineers, that the popularity of traditional processors
will be seriously undermined. The lower cost, easier integration, and
more-than-adequate general-purpose performance will all tend to make
the extensible processor an increasingly attractive alternative. As extensible
processors become broadly understood as basic building blocks, they

may displace legacy processors in most general-purpose processing tasks.

These processors promise to significantly simplify the whole system-on-
chip design and programming challenge and to ultimately displace current
leading processor architectures. Christensen’s model of disruptive
innovation is at work in microprocessors.

15

16

© 2002 Tensilica, Inc.

yF 4
tensilica
V. 4

