
TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

NAND Flash Applications
Design Guide

System Solutions from
Toshiba America Electronic Components, Inc.

Atsushi Inoue, Staff MTS, Memory Business Unit
Doug Wong, Staff MTS, Memory Business Unit

Revision 1.0
August  2003



TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC. 3

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Copyright © 2003 by Toshiba America Electronic Components, Inc.
All Rights Reserved.

This “NAND Flash Applications Design Guide” and the information and know-how it contains constitute the exclu-
sive property of Toshiba America Electronic Components, Inc. (“TAEC”), and may not be reproduced or disclosed
to others without the express prior written permission of TAEC.  Any permitted reproductions, in whole or in part,
shall bear this notice.

The information in this NAND Flash Applications Design Guide has been checked, and is believed to be reliable;
however, the reader understands and agrees that TAEC MAKES NO WARRANTY WITH RESPECT TO THIS
DESIGN GUIDE, ITS CONTENTS OR THEIR ACCURACY, AND EXCLUDES ALL EXPRESS AND IMPLIED
WARRANTIES, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILI-
TY, OR NON-INFRINGEMENT.  The reader further understands that he or she is solely responsible for all use of
the information contained within, including, but not limited to, securing any necessary intellectual property rights,
however denominated.

All information in this “NAND Flash Applications Design Guide” is subject to change without prior notice, at TAEC’s
sole discretion. 

All trademarks, trade names, product, and/or brand names are the property of their respective holders.

* The information contained herein is subject to change without notice.

* The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 

* TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA
products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA
products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook,” etc.

* The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These
Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”).
Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices,
etc. Unintended Usage of Toshiba products listed in this document shall be made at the customer’s own risk. 

* The products described in this document may include products subject to foreign exchange and foreign trade laws.

* The products contained herein may also be controlled under the U.S. Export Administration Regulations and/or subject to the approval of the U.S. Department of Commerce or U.S. Department of State prior to export. Any export
or re-export, directly or indirectly in contravention of any of the applicable export laws and regulations, is hereby prohibited.

www.memory.toshiba.com



TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
www.memory.toshiba.com

TABLE OF CONTENTS

1. HISTORY OF FLASH AT TOSHIBA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2. HOW FLASH WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 NAND VS NOR FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3. THE NAND FLASH INTERFACE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.1 PAGE READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.2 PAGE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.3 BLOCK ERASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

4. HARDWARE INTERFACING  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

5. LARGE BLOCK VS. SMALL BLOCK NAND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

6. FAILURE MODE OVERVIEW  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

6.1 BAD BLOCK IDENTIFICATION (INITIAL BAD BLOCKS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

6.2 BLOCKS THAT FAIL DURING USE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

6.3 FAILURE MODES MECHANISM AND SYMPTOMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Permanent Failures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Soft Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

7. MANAGING NAND FLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

7.1 BAD BLOCK MANAGEMENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

7.2 ERROR CORRECTING CODE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7.3 WEAR LEVELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7.4 SOFTWARE DRIVERS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7.5 HARDWARE CONTROLLERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

8.  TIPS FOR USING NAND FLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

8.1 MROM / NOR REPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

8.2 TO PARTITION OR NOT TO PARTITION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

8.3 CONSIDERATIONS FOR PREPROGRAMMING NAND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

8.4 CONSIDERING MEMORY CARDS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

9. INTRODUCTION TO COMPACTFLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

4

* The information contained herein is subject to change without notice.

* The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 

* TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA
products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA
products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook,” etc.

* The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These
Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”).
Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices,
etc. Unintended Usage of Toshiba products listed in this document shall be made at the customer’s own risk. 

* The products described in this document may include products subject to foreign exchange and foreign trade laws.

* The products contained herein may also be controlled under the U.S. Export Administration Regulations and/or subject to the approval of the U.S. Department of Commerce or U.S. Department of State prior to export. Any export
or re-export, directly or indirectly in contravention of any of the applicable export laws and regulations, is hereby prohibited.

NAND FLASH APPLICATIONS DESIGN GUIDE



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

When Dr. Masuoka, who is now a professor at
Tohoku University, joined Toshiba in 1971, he had 
been thinking that the substitution of magnetic memory
would be indispensable for the development of semi-
conductor memory.

He also understood that the market size for memory
is more dependent on its bit cost than its user-friendli-
ness. For instance, let’s compare the market size
between DRAMs and SRAMs. SRAM is faster, requires
no refresh, and is very user-friendly, but the market size
for DRAMs is much larger than that of SRAMs. The
only reason why the DRAM market is larger is because
the cost of DRAMs is much lower than that of SRAMs.
This is the RAM story, but the ROM story is similar. Like
SRAM, the byte-EEPROM (electrically erasable pro-
grammable read only memory) is very user-friendly,
because it can erase and program a single byte. But 
its cost is so high that it cannot be widely adopted. A
mechanical hard disk, which can also be considered 
to be a type of non-volatile memory, does not offer 
byte programming, but does offer sector (sometimes
referred to as block) programming and is widely used
because of low cost. What is required for hard disk
emulation is not the flexibility of byte programming, 
but a low cost per bit.

Based on the concepts above, Dr. Masuoka
applied for a patent on simultaneously erasable
EEPROMs in 1980. Although a conventional byte-EEP-
ROM has two transistors per cell, a new memory cell,
which consists of only one transistor, was proposed to
reduce cost. To realize a one-transistor cell, the byte
erase scheme was dismissed, and a simultaneous
multi-byte erase scheme was adopted. The develop-
ment of an actual test device was started in 1983 with
Dr. Masuoka’s colleagues: Mr. Asano and Mr. Iwahashi
for the design, Mr. Tozawa, Mr. Komuro, Mr. Tanaka for
the device technology, and supported by Mr. Suzuki,
the memory senior manager. Fortunately, the device
was verified to be functional. In June of 1984, the first
paper was submitted to IEDM. At that time, Dr. Masuoka
recognized that it must be the first simultaneously eras-
able EEPROM in the world and thought about naming it
with his colleagues. Mr. Ariizumi, one of his colleagues,
proposed naming it “Flash” sometime in June of 1984,

before the submission of the IEDM paper. Why Mr.
Ariizumi suggested the term “Flash” was because the
device could erase a large number of memory cells
simultaneously, which made him imagine the Flash of a
camera. But no one, at the moment, could have
dreamed that Flash memory would be used in digital
cameras as it is today. So what was first called simulta-
neously erasable EEPROM became known as “Flash”
from 1984. The memory cell area for the first proposed
Flash EEPROM was 64 sq. microns while a conven-
tional byte-erasable EEPROM cell at that time occu-
pied 272 sq. microns using the same lithography
design rule of 2 microns.

In December of 1984, the first paper for the Flash
EEPROM was presented at IEDM in San Francisco. A
subsequent paper on a 256k bit Flash EEPROM was
presented at ISSCC in San Francisco in February of
1985. After that, Dr. Masuoka was interviewed by
Business Week and the Flash EEPROM was reported
in Business Week on Mar. 25, 1985. On the news, Dr.
R.D. Pashley of Intel was interviewed to provide coun-
terpoints against the future of Flash EEPROM, but
afterwards, Intel stopped developing UV-EPROM (ultra-
violet erasable programmable read only memory) and
focused on Flash memory development. And Dr.
Pashley later became the General Manager of the
Flash memory division of Intel.

After Toshiba presented the 256k bit Flash EEP-
ROM at the ’85 ISSCC, Seeq developed a 128k bit
Flash EEPROM and announced it at the ’87 ISSCC.
Seeq’s memory cell was programmed by hot electron
injection and erased by field emission from the floating
gate to the drain. Therefore, Seeq’s cell could be real-
ized by a dual polysilicon structure while Toshiba’s
Flash EEPROM cell used a triple polysilicon structure
due to the formation of the erase gate. Intel presented
a 256k bit Flash EEPROM at the ’88 ISSCC. Intel
adopted the same cell structure as that of the UV-
EPROM. It is programmed by the hot electron injection
like a UV-EPROM and erased by the field emission
from the floating gate to the source. In principal, this
concept is quite similar to that of the first proposed
Flash EEPROM by Toshiba.

1. History of Flash at Toshiba

5



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Like a UV-EPROM cell, a Flash EEPROM cell has
a dual gate structure in which a floating gate exists
between a control gate and a silicon substrate of a
MOSFET. A floating gate is perfectly isolated by an
insulator, e.g., silicon dioxide, so that the injected elec-
trons cannot leak out of the floating gate after power is
removed. This is the basic storage mechanism for the
Flash EEPROM non-volatile memory. The charge
retention mechanism for Flash EEPROM is the same
as conventional UV-EPROM and byte-erasable EEP-
ROM. Like a UV-EPROM, a Flash EEPROM was origi-
nally programmed by a hot electron injection mecha-
nism, and like a byte-erasable EEPROM, it was erased
by field emission from a floating gate. Although the
erase mechanism for a Flash EEPROM cell is the
same as that for a byte-erasable EEPROM cell, their
basic uses as LSI memories are typically different. In a
Flash EEPROM, the whole chip can be erased simulta-
neously, while a byte-erasable EEPROM is erased only
one byte at a time. When the byte erase function is

eliminated, an electrically re-programmable non-volatile
memory can be realized by utilizing only one transistor
per cell. A UV-EPROM also simultaneously erases all
its bits, and is programmed by a hot electron injection
mechanism. In this sense, UV-EPROM is similar to
Flash EEPROM in functionality except that the erase
operation is carried out by UV irradiation. 

2.1 NAND vs NOR Flash

Current semiconductor memories achieve random
access by connecting the memory cells to the bit lines
in parallel, as in NOR-type Flash. In NOR-type Flash, if
any memory cell is turned on by the corresponding
word line, the bit line goes low (see figure 1). Since the
logic function is similar to a NOR gate, this cell
arrangement results in NOR Flash.

However, speedy access is not always required in
order to replace magnetic memory. The NAND Flash is

2.How Flash Works

Bit Line 

Word line 

Unit Cell Unit Cell 

4F2 10F2

Source line Source line 

Word line 

NAND NOR

Bit Line 
Contact 

2F

2F

2F

5F

Cell

Array

Layout

Cross-section

Cell size

Figure 1. NAND Flash vs. NOR Flash

6



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

a new Flash configuration that reduces memory cell
area so that a lower bit cost can be achieved. In 1987,
Toshiba proposed the NAND Flash, and its NAND
structured cell arranged as eight memory transistors in
series. The NAND Flash cell array, fabricated by using
conventional self-aligned dual polysilicon gate technol-
ogy, had only one memory transistor, one forth of a
select transistor and one sixteenth of the contact hole
area per bit. This technology realizes a small cell area
without scaling down the device dimensions. The cell
area per bit was half that of a DRAM using the same
design rule of 1mm (which was used for the 1M bit
DRAM). As a result, Toshiba realized that it was possi-
ble for higher capacity NAND Flash to be developed
earlier than DRAM (for the same density) by one
process generation. In comparison, conventional EEP-
ROM was behind DRAM by one process generation at
that time.

As explained above, the most important character-
istic of memory is the bit cost.  In the case of a semi-
conductor memory, the bit cost is dependent on the
memory cell area per bit. And since the cell area of
NAND Flash is smaller than that of NOR Flash, NAND
Flash has always had the potential from the start to be
less expensive than NOR Flash. However, it takes a
rather long time for a NAND Flash to read out the first
data byte compared to NOR Flash because of the
resistance of the NAND cell array. Nonetheless, this
time is still much faster than the seek time for a hard
disk by several orders of magnitude.  Therefore, NAND
Flash is ideally positioned as a replacement for mag-
netic hard disks.

The advantages of NAND Flash are that the eras-
ing and programming times are short. The program-
ming current is very small into the floating gate
because NAND Flash uses Fowler-Nordheim tunneling
for both erasing and programming. Therefore, the
power consumption for programming does not signifi-
cantly increase even as the number of memory cells
being programmed is increased. As a result, many
NAND Flash memory cells can be programmed simul-
taneously so that the programming time per byte
becomes very short. Conversely, the NOR Flash can
be programmed only by byte or word, and since it uses
the hot electron injection mechanism for programming,
it also consumes more power, and the programming
time per byte is longer. The programming time for NOR
Flash is typically more than an order of magnitude
greater than that of NAND Flash.

The power consumption of NAND Flash or NOR
Flash is about one tenth that of a magnetic hard disk
drive. Also, the seek time for semiconductor memories
is much faster than that of a magnetic hard disk.
However, NAND Flash and NOR Flash must be erased
before reprogramming, while a magnetic hard disk
requires no erasure. Therefore, in the case of continu-
ous programming where the seek time is negligibly
small, a magnetic hard disk drive can be programmed
more quickly. 

For both for NOR Flash and NAND Flash, the
endurance (which means the number of cycles a block
or chip can be erased and programmed) is limited. 
In order to replace the UV-EPROM with Flash, an
endurance of 1,000 cycles was sufficient. It is estimated
that at least 1,000,000 cycles are required to replace a
magnetic hard disk drive. NOR Flash is typically limited
to around 100,000 cycles. Since the electron flow dur-
ing hot electron injection into the floating gate during
programming is different from the one due to tunneling
from the floating gate to the source during erasing,
oxide degradation is enhanced. However, in NAND
Flash, both the programming and erasing is achieved
by uniform Fowler-Nordheim tunneling between the
floating gate and the substrate. This uniform program-
ming and uniform erasing technology guarantees a
wide cell threshold window even after 1,000,000
cycles. Therefore, NAND Flash has better characteris-
tics with respect to program/erase endurance. In some
recent scaled NOR Flash memories, their erasing
scheme has been changed from source side erasing 
to uniform channel erasing, which is the same as the
NAND Flash.

From a practical standpoint, the biggest difference
a designer will notice when comparing NAND Flash
and NOR Flash is the interface. NOR Flash has a fully
memory-mapped random access interface like an
EPROM, with dedicated address lines and data lines.
Because of this, it is easy to “boot” a system using
NOR Flash. On the other hand, NAND Flash has no
dedicated address lines. It is controlled using an indi-
rect I/O-like interface and is controlled by sending com-
mands and addresses through an 8-bit bus to an inter-
nal command and address register. For example, a typ-
ical read sequence consists of the following: writing to
the command register the “read” command, writing to
the address register 4 bytes of address, waiting for the
device to transfer the requested data in the output data
register, and reading a page of data (typically 528

7



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

bytes) from the data register. The NAND Flash’s opera-
tion is similar to other I/O devices like the magnetic disk
drive it was originally intended to replace. But because
of its indirect interface, it is generally not possible to
“boot” from NAND Flash without using a dedicated
state machine or controller. The advantage of the indi-
rect interface is that the pinout does not change with
different device densities since the address register is

internal. Because NAND Flash is optimized for solid-
state mass storage (low cost, high write speed, high
erase speed, high endurance), it is the memory of
choice for memory cards such as the SmartMediaTM,
SDTM card, CompactFlashTM, and MemoryStickTM.

Programming Erasing

N N

P (Si-Sub)

N N

20V

20V 20V

0V

0V 20V

0V0V

P (Si-Sub)

(Tunneling)(Tunneling)

Figure 2. NAND Flash Cell Biasing.

3. The NAND Flash Interface

The pinout of the standard NAND Flash in the TSOP I package is shown in figure 3 below.

1

2

3

4

5

6
7

8

9

10
11

12

13

14
15

16

17

18
19

20

21

22
23

24

NC

NC

NC

NC

NC

GND
R/B

RE#

CE#

NC
NC

Vcc

Vss

NC
NC

CLE

ALE

WE#
WP#

NC

NC

NC
NC

NC

48

47

46

45

44

43
42

41

40

39
38

37

36

35
34

33

32

31
30

29

28

27
26

25

NC

NC

NC

NC

I/O 8

I/O 7
I/O 6

I/O 5

NC

NC
NC

Vccq

Vss

NC
NC

NC

I/O 4

I/O 3
I/O 2

I/O 1

NC

NC
NC

NC

Figure 3. NAND Flash Cell Pinout.

CLE: Command Latch Enable

ALE: Address Latch Enable

CE#: Chip Enable

WE#: Write Enable

RE#: Read Enable

WP#: Write Protect

R/B: Ready/Busy

GND: Test Input (grounded)

I/O: Input Output

Vcc: Positive Supply (core)

Vccq: Positive Supply (I/O)

Vss: Negative supply (ground)

8



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

The basic interface is fairly simple. When asserted
low, the chip enable (CE#) pin enables the NAND Flash
to accept bytes provided to the I/O pins of the chip
when write enable (WE#) is asserted low or enable the
output of a data byte when read enable (RE#) is assert-
ed low. When CE# is high, the chip ignores RE# and
WE# and the I/O is tri-stated. The Command Latch
Enable (CLE) pin and the Address Latch Enable (ALE)
pin act as multiplexer select pins by selecting which
internal register is connected to the external I/O pins.
There are only three valid states as shown in the 
table below:

The key to understanding how the NAND Flash
operates is the realization that in the NAND Flash, the
read and program operation takes place on a page
basis (i.e., 528 bytes at a time for most current NAND
devices) rather than on a byte or word basis like NOR
Flash. A page is the size of the data register. The erase
operation takes place on a block basis (for most current
NAND devices, the block size is 32 pages). There are
only three basic operations in a NAND Flash: read a
page, program a page, and erase a block. Let’s exam-
ine each of these operations in more detail.

3.1 Page Read

In a page read operation, a page of 528 bytes is
transferred from memory into the data register for out-
put. The sequence is as follows:

• Command phase: With CLE=1, ALE=0, the com-
mand byte 00h is placed on the I/O pins and WE#
is brought low, then high. This stores the “read
mode 1” command into the command register.

• Address phase: With CLE=0, ALE=1, the first
address byte is placed on the I/O pins and WE# is
toggled. This first address byte “N” (called the col-
umn byte in Figure 5) is usually set to 0 in order to
start reading from the beginning of the page. It is
possible to set N to any value between 0 and 255.
Because the page is actually 528 bytes long, a dif-
ferent read command is used if you want output
data to start from byte 256-511 (read mode 2—
command byte 01h is used instead of 00h). A third
read command is used if you want output data to
come from bytes 512-527 (read mode 3—com-
mand byte 50h is used instead of 00h). It should
be noted that the full page is transferred from
memory into the register. The value N, in conjunc-
tion with the read command used, simply sets the
output data pointer within the register. The
address bytes which follow after column byte N,
indicated by Row1 and Row2 in the figure, are
used to set the page within a block (lowest 5 bits
in byte Row1), and the block within the device. In
the higher density NAND devices, the address
phase is 4 bytes long rather than 3.

• Data Transfer phase: CLE and ALE are set to
zero while the chip goes busy in preparation 
for data readout. During the busy period, the
ready/busy pin (R/B) goes low for up to 25
microseconds while data is being read from the
memory array and transferred into the data 
register. During this period, it is important that
chip enable is held low to keep the read operation
from being stopped mid-cycle (note: this restric-
tion is removed in a new family of NAND Flash
devices known as CE don’t care).

• Read Out phase: Once R/B returns high, data is
available in the data register for read out. The first
data byte output is byte N. Each RE# pulse reads
out the next byte in the register. Once the last byte
(D527) is read out, standard NAND Flash will auto-
matically go busy (another data transfer phase) in
preparation for reading out the next page (with no
additional command or address input). In the data-
sheet, this is called sequential read. If this is not
desired, chip enable must be brought high (Note:
For the CE don’t care family of NAND Flash, the
automatic sequential read function does not exist).

ALE CLE Register Selected
0 0 Data register
0 1 Command register
1 0 Address register
1 1 Not defined

Register      

tR      

Data-Out      

Address      

Page Address
Cell      

N

9

Table 1. NAND Register Selection.

Figure 4. Page Read Operation.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Why is a page 528 bytes long? Since the original
intent of the NAND Flash was to replace magnetic hard
disk drives, the intention was for the page to be big
enough to store 1 sector (512 bytes) worth of data with
16 bytes extra for overhead such as error correcting
code. Because the use of ECC is common with NAND
Flash, read mode 1 is the most often used read com-
mand as it enables one to read the entire 528 byte page.

3.2 Page Program

In a page program operation, a page of 528 bytes
is written into the data register and then transferred into
the memory array. The sequence is as follows:

• Command phase: With CLE=1, ALE=0, the com-
mand byte 80h is placed on the I/O pins and WE#
is brought low, then high. This stores the “serial
data input” command into the command register.
This command also resets the register to all “1”s
(all FFh).

• Address phase: With CLE=0, ALE=1, the first
address byte is placed on the I/O pins and WE# is
toggled. This first address byte “N” (called the col-
umn byte in the figure below) is usually set to 0 in
order to start writing from the beginning of the page.
However, like the read command, it is also possible
to set N to any value between 0 and 255. The first
byte that is written in the data phase will then
overwrite the FFh at location N in the register. If
you desire to overwrite the register values starting
at byte N (N=256-527), you need to precede the
80h command with either 01h or 50h (the read
mode 2 and read mode 3 commands). It should
be noted that the full page is transferred from the
register into the memory each time the program
command (10h) is received. However, since the
serial data input command (80h) resets the regis-
ter to all “1s,” bytes in the register that are not
overwritten with data will remain “1” and should not
affect the memory contents. Like the read mode,
the address bytes which follow after column byte
N, indicated by Row1 and Row2 in the figure, are
used to set the page within a block (lowest 5 bits
in byte Row1), and the block within the device. In
the higher density NAND devices, the address
phase is 4 bytes long rather than 3 (Figure 7).

Register      Data-In      

tPROG      

Page Address

                            Cell      

10

Figure 6. Page Program Operation.

CE

ALE

CLE
WE

RE

R/B

I/O1~8      

Command

Address
N

Address Address Data-Out Data-Out Data-Out

DN DN+1 D527

Wait(tR)

00H Col Row1 Row2

low

Figure 5. Page Read Timing Diagram.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

CE

ALE

CLE
WE

RE

R/B

I/O1~8      

Command Command

Address Address Address Data-In Data-In Data-In

Wait(tPROG)

80H Col Row1 Row2 D0 D1 D527 10H

low

high

11

• Data Input phase: CLE and ALE are set to zero,
and data bytes are written into the data register. 
If you try to write more bytes than the page size,
the last byte in the register will contain the last
byte written.

• Program phase: With CLE=1, ALE=0, the auto
program command (10h) is written to the com-
mand register. The device then goes busy for
tPROG (typically 250us). During this busy period,
even if chip enable goes high, the device will 
finish programming.

• Timeout Check phase: Although not shown on the 
diagram, it is typical to check the status after pro-
gramming. If the device was unable to program a
bit from 1 to 0 within the time allowed, the
pass/fail bit returned by the status read command
will indicate a failure. If this happens, the block
should be considered bad because the device
has already attempted to program the bit multiple
times before the internal timeout occurred.

3.3 Block Erase

In a block erase operation, a group of consecutive
pages (typically 32) is erased in a single operation.
While programming turns bits from “1” to “0”, block era-
sure is necessary to turn bits from “0” back to “1”. In a
brand new device, all usable (good) blocks are in the
erased state.

• Command phase: With CLE=1, ALE=0, the com-
mand byte 60h is placed on the I/O pins and WE#
is brought low, then high. This stores the “auto
block erase” command into the command register.

• Address phase: With CLE=0, ALE=1, two address
bytes are written into the address register. Notice
that only two address bytes are required. There is
no “column” byte as in the read and program
operations. In the first address byte (Row1), only
the upper 3 bits are used. The lower 5 bits of
Row1 are reserved for the page within the block
(for device with 32 pages per block) and during a
block erase operation, all pages within the block
will be erased; therefore, the value of the least
significant 5 bits are actually Don’t Care. The upper
3 bits of Row1 and the 8 bits of Row2 determine
the block that will be erased. Because this is only
11 bits (2048 blocks max.), higher density NAND
devices require 3 address bytes (Figure 9). 

Register      Erase      

Page Address

                            Cell      

Figure 7. Page Programming Timing Diagram.

Figure 8. Block Erase Operation.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

• Erase phase: With CLE=1, ALE=0, the auto block
erase confirm command (D0h) is written to the 
command register. The device then goes busy for
tERASE (typically 2ms). During this busy period,
even if chip enable goes high, the device will 
finish erasing the block.

• Timeout Check phase: Although not shown on the
diagram, it is typical to check the status after
erasing to make sure a timeout (erase failure) did
not occur. If the device was unable to erase the
block successfully within the time allowed, the
pass/fail bit returned by the status read command
will indicate a failure. If this happens, the block
should be considered bad because the device
has already attempted to erase the block (and
verify it is erased) multiple times before the 
internal timeout occurred.

4. Hardware Interfacing

When you examine the timing diagrams in the
datasheets for standard NAND Flash devices, you will
notice that there was the expectation that NAND Flash
would be connected to a controller chip or specialized
interface state machine because of two characteristics:

• The chip enable is shown asserted low continu-
ously during the period of the operation. Actually,
chip enable can be deasserted in between individ-
ual write cycles and read cycles; however, it must

remain continuously asserted low during the read
cycle busy period. For chip enable don’t care
NAND, this restriction is removed.

• Signal ALE is shown to be high continuously
between individual write cycles. Actually, in
between write cycles, ALE can go low as long 
as the setup and hold times are met.

These timing diagrams are relatively easy to
achieve if you connect the NAND Flash to a state
machine. However, if you intend to connect the NAND
to a microprocessor bus directly, some glue logic will be
necessary. There are several ways to connect the
NAND Flash to the host:

1) Using general purpose input/output (GPIO) pins
2) Using a memory-mapped interface with glue logic
3) Using a Chip-Enable Don’t Care NAND

The key requirement in all cases will be to meet the
timing diagram restrictions. For example, the setup and
hold times for CLE, ALE, CE#, and data input with
respect to WE# are shown below. Note that CLE, ALE,
and CE# are not required to be held in a particular
state outside the interval. The practical implication is
that CLE and ALE can be connected to the host
address lines in order to select the internal register
connected: data register, command register, or 
address register.

CE

ALE

CLE
WE

RE

R/B

I/O1~8      

Command Command

Address Address

Wait(tERASE)

60H Row1 Row2 D0H

low

high

12

Figure 9. Block Erase Timing Diagram.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

The data read cycle is shown below. Not shown 
on the diagram are CLE and ALE, which are both
assumed to be low. This diagram is for the Chip Enable
Don’t Care NAND; notice that the chip enable state is

Don’t Care during the busy period preceding the data
read cycle. For standard NAND, chip enable must be
held low during the busy period preceding data read out.

Symbol

tCLS

tALS

tCS

tDS

tCLH

tALH 

tCH

tDH

tWP

Spec 

0ns

0ns

0ns

20ns

10ns

10ns

10ns

10ns

25ns

Setup

Other

Hold

Set up time for ALE, CLE, -CE is based on the falling edge of -WE, hold time base on the rising 

edge of -WE.

Set up time for I/0 is based only on the rising edge of -WE.

tDHtDS

tWP

tCHtCS

tCLS/tALS
CLE/ALE

CE

WE

ALE/CLE

I/01 to I/08

tCLH/tALH

tALH/tCLHtALS/tCLS

Figure 10. NAND Flash Timing Requirement for Address/Command Inputs.

Command In/Address In

Symbol

tRC

tRP

tREH

tREA

tCEA

tOH 

tRR

Spec 

50ns

35ns

15ns

35ns

45ns

10ns

20ns
tOH tOH

tRR

tRP tREH tRP

tCEA

tRC

CE

RE

I/0 to I/08

RY/BY

tREA tRHZ tRHZtREA

tCH

Figure 11. NAND Flash Timing Requirement for Data Reads.

Data Read

13



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Using GPIO Pins

Using GPIO pins to control the NAND signals (such as ALE, CLE, /CE, /WE, and /RE) offers great flexibility in
meeting the NAND timing requirements. However, unless the speed requirements are relatively low, the perform-
ance is likely to be a fraction of the NAND’s potential performance. Also, GPIO pins are often scarce in a system,
so this may not be an acceptable use of a scarce resource. However, although adding GPIO pins to the interface
may involve additional cost, it may be easier to control the NAND for some platforms.

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

/RB

/CE

ALE

CLE

/RE

/WE

D0-7 I/O 1-8

Standard or 

Chip Enable 

DC NAND

Connected only to NAND

Shared by other memory devices

Vcc

Figure 12. Physical Connection When GPIO are Used.

Memory-Mapped Interfacing using Glue Logic

In order to interface to a standard NAND Flash device, it is necessary to use a latched signal to drive the
NAND’s chip enable. The simplest approach is to use a latched GPIO pin.

A1

A0

GPIO

GPIO

/CS
/OE

/WE

ALE

CLE

/RB

/CE

/RE

/WE

D0-7 I/O 1-8

Standard or 

Chip Enable 

DC NAND

Connected only to NAND

Shared by other memory devices

Vcc

Figure 13. Physical Connection When Memory Mapped.

14



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

The GPIO pin controlling the chip enable is asserted low at the beginning of the NAND read, program, or
erase cycle and is not deasserted until the end of the entire cycle. Note that the read enable and write enable to
the NAND is qualified by an address decoded chip select. In this way, only read or writes intended for the NAND
actually toggle the NAND’s read enable or write enable pins. When /CS is deasserted, the glue logic deasserts
/RE and /WE, which tri-state the NAND’s outputs.

Using a Chip Enable Don’t Care NAND

Perhaps the simplest method to connect NAND Flash to a microprocessor bus is the use of a Chip Enable
Don’t Care (CEDC) NAND Flash instead of a standard NAND Flash. The main difference between standard
NAND and CEDC NAND is that chip enable does not need to be continuously asserted low during the read busy
period. The removal of this restriction allows chip enable to be deasserted between individual read or write cycles
and enables the direct connection of the NAND to a microprocessor with no glue logic. The NAND chip enable will
work as expected and qualify the read enable and write enable signals. The only function that was removed from
standard NAND to make this possible was the elimination of the automatic sequential read function, 
which was rarely used anyway.

Unlike NOR Flash, NAND Flash does not have any dedicated address pins to be connected to the microprocessor
address pins. Therefore, most people think that a direct interface between NAND and a microprocessor is difficult.
However, as shown in Figure 14, the interface does not require any glue logic. Toshiba has demonstrated this glue-
less NAND connection between the Toshiba TX4927 MIPS processor and the Toshiba TC582562AXB NAND Flash.

On the TX4927 demonstration board, the timing for the chip select (/CS) of the TX4927 was modified as
described in Figures 15 and 16. This was easily done by changing the register values that controlled the timing for
/CS. Most high end processors with integrated chip select circuitry have programmable timing. With CLE connect-
ed to A0 and ALE connected to A1, the software driver for the NAND need only access 3 address locations.
Access to the base address for /CS accesses the NAND data register by setting CLE=0 (A0=0) and ALE=0
(A1=0). Writes to base address+1 writes the NAND command register by setting CLE=1 (A0=1) and ALE=0
(A1=0). Writes to base address+2 writes the NAND address register by setting CLE=0 (A0=0) and ALE=1 (A1=1). 

GIPO

/CS

A1

A0

/OE

/WE

/RB

/CE

ALE

CLE

/RE

/WE

D0-7 I/O 1-8

TC582562AXB

CEDC NAND

Connected only to NAND

Shared by other memory devices

Vcc

Figure 14. Connection Using Chip Enable Don’t Care NAND.

15



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

SYSCLK

CE*

ADDR[19:0]

ACE*

OE*/BUSSPRT*

SWE*

BWE*

BE*

DATA[15:0]

ACK*

f f

ff c

c

S1 S2 S3

40ns 40ns 40ns

Symbol

tCLS

tALS

tCS

tDS

tCLH

tALH 

tCH

tDH

tWP

Spec 

0ns

0ns

0ns

20ns

10ns

10ns

10ns

10ns

25ns

4927

40ns

40ns

40ns

80ns

40ns

40ns

40ns

40ns

40ns 

Setup

Other

Hold

* BWE, BE, ACK is not used 

GBUSCLK = 100MHz = 10ns

The bus speed is set to 1/4 of the GBUSCLK                      SYSCLK = 40ns 

Figure 15. Command In Address Timing Generated by TX4927.

SYSCLK

CE*

ADDR[19:0]

ACE*

OE*/BUSSPRT*

SWE*

BWE*

BE*

DATA[15:0]

ACK*

f f

f

c

S1 S2 S3

40ns 40ns 40ns

Data Latch

Symbol

tRC

tRP

tREH

tREA

tCEA

tOH 

Spec 

50ns

35ns

15ns

35ns

45ns

10ns

4927

120ns

40ns

80ns

approx 80ns

approx 80ns

-(*1)

(*1) Data latch point is within OE low, so not an issue

* BWE, BE, ACK is not used 

Figure 16. Data Read Timing Generated by TX4927.

Command In/ Address In (120ns/cycle)

Data Read (120ns/cycle)

16



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

With the introduction of the CEDC NAND, interfac-
ing to NAND Flash has never been easier.

In the current NAND architecture, each page con-
sists of 528 bytes, and each block consists of 32
pages. Future NAND devices will use the large
page/large block structure in which a page in a single
memory array will be 2112 bytes (4 times larger) and a
block will consist of 64 pages (2 times larger) resulting

in a block size that is 8 times larger. The first of these
new large block NAND Flash devices is the 1 Gbit-
TC58NVG0S3AFT05. Note that all large block devices
will also have the CEDC feature. The increased page
and block size will enable faster program and erase
speeds in future high density NAND Flash.

Although the internal architecture will be different,
the external physical interface will be the same.

5. Large Block vs. Small Block NAND

Density 0.16 micron 0.13 micron 0.13 micron
Small Page (528 B) Small Page (528 B) Large Page (2112 B)
Small Block (16kB) Small Block (16kB) Large Block (128kB)

64 Mb TC58V64BFT (standard) N/A N/A
128 Mb TC58128AFT (standard) TC58DVM72A1FT00 (standard) N/A

TC581282AXB (CEDC) TC58DVM72A1XB11 (CEDC) N/A
256 Mb TC58256AFT (standard) TC58DVM82A1FT00 (standard) N/A

TC58256AXB (CEDC) TC58DVM82A1XB11 (CEDC) N/A
512 Mb TC58512FT (standard) TC58DVM92A1FT00 (standard) N/A

TH58DVM92A1XB11 (CEDC) N/A
1 Gb TH58100FT (standard) TC58DVG02A1FT00 (standard) TC58NVG0S3AFT05 (CEDC)
2 Gb N/A N/A TH58NVG1S3AFT05 (CEDC)

Note: CEDC = Chip Enable Don’t Care

Therefore, in most cases, only the Flash software needs to be updated in order to use these new devices.

The effective read speed of the large block NAND devices is similar to the small block devices:

Read Time = 6 cycles x 50ns + 25 µs + 2112 cycles x 50ns = 131 µs
Read Speed = 2112 bytes/131 µs = 16.1 Mbytes/sec

The effective write speed of the large block NAND devices is more than 3 times faster than small block 
NAND devices.

Write Time = 5 cycles x 50ns + 2112 cycles x 50ns + 1 cycle x 50ns + 200µs = 306 µs
Write Speed = 2112 bytes/306µs = 6.9 Mbytes/sec

The effective erase speed is nearly 8 times faster than small block NAND devices.

Erase Time = 4 cycles x 50ns + 2ms = 2ms
Erase Speed = 128kB/2ms = 64 Mbytes/sec

17

Table 2. Toshiba NAND Flash Product Families.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

6.1 Bad Block Identification (Initial Bad Blocks)

The NAND Flash was designed to serve as a low
cost solid state mass storage medium. In order to
achieve this goal, the standard specification for the
NAND allows for the existence of bad blocks in a cer-
tain percentage. A bad block list (or bad block table)
that can be updated needs to be maintained in the sys-
tem. The bad block table can either be stored in one of
the good blocks on the chip, or on another chip in the
system such as RAM. A bad block table is also required
because unlike magnetic media, Flash memory does
not possess infinite write/erase capability; there is a
finite number of write and erase cycles that all types of
Flash memory can achieve. Because all Flash memory
will eventually wear-out and no longer be useable, a
bad block table needs to be maintained to track blocks
that fail during use.

Allowing for the existence of bad blocks increases
the effective chip yield and enables a lower cost. The
existence of bad blocks does not affect the good blocks
because each block is independent and individually
isolated from the bit lines by block select transistors. 

During outgoing testing and burn-in testing, blocks
that are considered bad by Toshiba are marked with a
00h in byte 0x205 (byte 517) in each page of a bad
block (this is the same as the SmartMedia format for
marking bad blocks). Toshiba determines that blocks
are bad by performing extensive pattern testing over
both temperature and voltage extremes.

The cause of bad blocks could be a number of 
reasons (decoder failure, word line failure, memory cell
failure), so once the bad blocks have been located,
Toshiba recommends that the bad blocks no longer be
accessed. To locate the bad blocks on a brand new
device, read out each block. Any block that is not all
FFh (all 1s) in byte 517 (starting from byte 0) of the 1st
page of a block is a bad block. The figure below is a
flowchart that shows how bad blocks can be detected
by doing a read check on each block. 

Once you erase a block, the non-FF bytes will also
be erased. If this occurs, re-identifying the bad blocks
will be difficult without testing at different temperatures
and voltages and running multiple test patterns, so if
the list of bad blocks is lost, recovering bad block loca-
tions is extremely difficult.

6. Failure Mode Overview

Start

End

Yes

Pass

No

Block =1

Read Check

Last Block

Block = Block +1 Bad Block *1

Read Check: To verify the column address 517
byte of 1st page in the block with FF (Hex)
   

*1. No erase operation is allowed to bad blocks

18

Figure 17. Bad Block Test Flow.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

6.2 Blocks that Fail During Use

As mentioned in the previous section, all Flash
memory has a finite lifetime and will eventually wear
out. Since each block is an independent unit, each
block can be erased and reprogrammed without affect-
ing the lifetime of the other blocks. For NAND memory,
each good block can be erased and reprogrammed
more than 100,000 to 1,000,000 times typically before
the end of life. This is described in Toshiba’s NAND
datasheet.

The primary wear out mechanism is believed to be
excess charge trapped in the oxide of a memory cell,
and the net effect is that erase times increase until an
internal timer times out (Narrowing Effect). The pro-
gramming time seen by the user actually decreases
slightly with an increasing number of total write/erase
cycles, so the device’s end of life is not characterized
by program failures. Generally, only a severe device
failure can cause a page program failure.

Therefore, blocks should be marked as bad and no
longer accessed if there is either a block erase failure
or a page program failure. This can be determined by
doing a status read after either operation. The status
read command is used to determine the outcome of the
previous erase or program operation. Block erase oper-
ations are automatically verified, so the entire block is
FFh if the status bit indicates the erase operation
passed. For programming, the status bit indicates the
program operation passed if all zeros (“0”) in the data
register are correctly programmed into memory. One
(“1”) bits in the data register are not verified and are
ignored. Therefore, if “0s” are already programmed into
a page in memory, all program operations to that page,
regardless of the data in the data register, would pass.
By not verifying “1s,” partial page programming is possible.

6.3 Failure Modes Mechanism and Symptoms

Although random bit errors may occur during use,
this does not necessarily mean that a block is bad.
Generally, a block should be marked as bad only if
there is a program or erase failure. The four main fail-
ure modes that can be distinguished as “permanent
failures” or “soft errors” are described below.

Permanent Failures

Write/Erase Cycle Endurance—This error may be man-
ifested as a cell, page, or block failure which is detect-
ed by doing a status read after either an auto program
or auto block erase operation (Figure 18).

Soft Errors

Over Programming—This is caused when the threshold
voltage of a “0” data cell becomes too high as a result
of excess programming current. Normally, all threshold
voltages are below a bias voltage (Vbias) so that the
application of Vbias to unselected pages will enable
them to turn on (Figure 19). If the threshold voltage of a
cell is too high (Figure 20), the bias voltage that is sup-
posed to be high enough to turn on any cell during the
read cycle is insufficient, so the cell never turns on
(Figure 21). Therefore the error occurs during a pro-
gram, but can only be detected by reads. The resultant
error symptom is that all cells on that bit line in the
block read out as “0,” so in the worse case scenario, if
this bit is supposed to be “1” for all other pages in the
block, there will be a one bit failure for each page in the
block. This condition is cleared by a block erase.

Program Disturb—In this failure mode, a bit is uninten-
tionally programmed from “1” to “0” during the program-
ming of a page. The bit error may occur either on the
page being programmed or on another page in the
block. Bias voltage conditions in the block during page
programming can cause a small amount of current to
tunnel into memory cells. Multiple partial page pro-
gramming attempts in a block can aggravate this error
symptom. Since this error is caused by the soft pro-
gramming of memory cells, the condition is removed by
block erasure.

Program disturb effects are also worsened by ran-
domly programming pages in a block. Therefore, the
datasheets for NAND Flash now require programming
pages in sequential order only (from lowest page
address to highest page address). 

19



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Programmed Cell
"0" Data

Erased Cell
"1" Data

Leak in oxide

bit, page,
or block failure

n n

p-well

Write/Erase
Endurance Stress

n n

p-well

n

n

n

n

p-well

Vpp (Program)

Vpp (Erase)

R1

R2

Figure 18. Write/Erase Endurance.

Unselected page = Vbias: Tr = ON 

Selected page = 0 Volt: Tr =   

Unselected page = Vbias: Tr = ON 

Unselected page = Vbias: Tr = ON 

The sense amp senses  the bit line voltage 
and determines "1" or "0" 

Bit Line
Pre-chargeBit Line

Voltage

Bit Line [V]

Time0

"1"

"0"

{ON if "1"data
OFF if "0"data

Figure 19. Normal Read Operation.

20



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Over programmed bit

Vth

VBias

Data "0"

Data "1"

+

-

—

Figure 20. Programmed Bit Exceeding VBias.

The sense amp senses "0" data for cells that are affected 
by over programmed cell. 

Over Programmed Cell 

Unselected page = Vbias: Tr = ON 

Unselected page = Vbias: Tr = ON 

Selected page = 0 Volt: Tr = ON
But because above cell does not 
turn on, the current does not flow.  

Bit Line
Voltage

Bit Line 
Bit Line
Pre-charge

[V]

Time0

"0"

Figure 21. Read Operation with Over Programmed Cell.

21



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Read Disturb—In this failure mode, a read operation can disturb the memory contents causing a “1” to change to
a “0.” The bit error occurs on another page in the block, not the page being read. During a read operation, pages
are read by applying zero volts to the selected word line. All other pages in the block are biased to a positive volt-
age (Vbias) so that their memory cells will turn on regardless of whether they have been programmed or not. This
bias potential causes a tiny amount of charge to flow. After a large number of read cycles (between block erases),
the charge can build up and can cause a cell to be soft programmed from “1” to “0.” Block erasure removes 
the charge.

Intentional
Program "1"              "0"

Weak programming stress

n n

p-well

VG = 20V 

VBL = 10V 

Tr1

n n

p-well

VG = 20V 

n n

p-well

VG = 10V 
Tr2 Tr3

Tr2, Tr3: Weak program stress                Possible unintentional program "1"             "0"  

VBL = 0V VBL = 10V 

VG= 10V 

VG = 20V
(selected page) 
VG = 10V 

VG = 10V 

Tr1

Tr3

Tr2

Figure 22. Bias Condition During Program and Program Disturb Conditions.

Very weak program stress

n n

p-well

VBias 

VBias 

VBias 

VBias 

0V
(selected page) 

Continuous read without                Possible unintentional program "1"             "0"
erase in between 

Bit Line 

Figure 23. Read Disturb.

22



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Data Retention—A memory may change its state after a certain amount of storage time. This is due to charge
injection or charge leakage (Figure 24). 

7. Managing NAND Flash

In order to use NAND Flash effectively, the NAND
Flash must be managed by some kind of external con-
troller. This may be done either by software executing
on the host (e.g. a device driver), or by firmware exe-
cuting on a dedicated microcontroller (e.g. a USB or
ATA controller). This is necessary in order to make 
the NAND Flash appear to the system as an ideal 
block device. 

7.1 Bad Block Management

In a brand new device, the standard NAND Flash
specification allows for the existence of initial bad
blocks. Standard NOR Flash devices have extra spare
memory blocks that are used to replace bad blocks, but

NAND Flash devices have a minimal amount of redun-
dant memory blocks because it was always expected
that an intelligent controller would ignore the bad
blocks. Since NAND Flash would be used for solid
state mass storage, it was expected that blocks would
eventually wear out; therefore, it was expected that the
system be able to handle bad blocks that would form
during use.

The standard factory location for the bad block byte
is byte 517 (the 518th byte) of a NAND page. If this
byte is FFh, the block is good, otherwise, the block is
bad (typically indicated by 00h). This format for marking
bad blocks is from the SmartMedia card (NAND Flash
in a removable card package) and was standardized by
the SSFDC Forum (Solid State Floppy Disk Card – the
former name of SmartMedia). If additional bad blocks
form during use, the block is marked as bad. Generally,

n n

p-well

"0" data 

"0" data 

"1" data 

"1" data 

n

p-well
Storage 

nn

p-well

n n

p-wellStorage 

n

Figure 24. Data Retention.

23



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

this is possible even if the block being marked was
considered bad by the factory. To distinguish between
factory marked bad blocks and blocks that go bad during
use, two flag values are defined in the SmartMedia for-
mat: 00h (for initial factory marked bad blocks) and F0h
(for blocks that go bad during system use).

An alternative approach to the “in block” method of
keeping track of bad blocks is to maintain a bad block
table. However, where do you store a bad block table
since that block could be bad? For NAND TSOP
devices only, the first block of the NAND Flash (block 0)
is guaranteed to be good. Thus, Block 0 could be used
to hold a bad block table if desired. However, at power
up, many systems simply scan the first page of each
block to determine whether they are good or bad and
build a bad block table in RAM. 

7.2 Error Correcting Code

The use of an error correcting code is essential in
order to maintain the integrity of stored code. Soft
errors (especially during programming) occur at a rate
of approximately 1E -10 or 10-10 or about 1 bit per 10 bil-
lion bits programmed. Single bit correcting (two bit error
detecting) Hamming code is sufficient for NAND Flash.
Toshiba has developed C sample code for implementing
Hamming code. It is available in a separate document
entitled, The SmartMediaTM ECC Reference Manual.

7.3 Wear Leveling

If Flash memory had infinite write/erase endurance,
wear leveling would not be necessary. However, unlike
magnetic media, Flash memory eventually wears out
and no longer programs or erases in the allotted
amount of time. Because the design of typical file sys-
tems assumed the characteristics of magnetic media,
certain physical locations may be repeatedly rewritten.
For example, in the DOS FAT file system, the FAT and
directory areas must be modified multiple times each
time a file is written or appended. When multiplied by
the thousands of files in a typical file system, the FAT
and directory areas of the disk will experience vastly
more writes than any other area of the disk.

When Flash memory is used to emulate a disk

drive, the physical areas of the Flash that contain the
FAT and directory would be worn out first, leading to
early failure of the file system stored on the Flash. In
order to spread out the writes across as much of the
Flash as possible, a wear leveling algorithm is imple-
mented by the controller (software or firmware in a
hardware controller) which translates a logical address
to different physical addresses for each rewrite.
Generally, this logical to physical lookup table is imple-
mented in RAM and is initialized at power up by read-
ing each physical block in the NAND Flash to deter-
mine its logical block value.

Ideally, wear leveling is intrinsic to the file system
itself. Several new file system device driver programs
exist, which write new data sequentially rather than
overwriting a fixed location. These device drivers typi-
cally execute on the host processor and use a tech-
nique known as journaling. Two examples of journaling
systems for Flash memory are JFFS2 (Journaling
Flash File System 2) and YAFFS (Yet Another Flash
File System), which automatically spread out wear by
writing sequentially to free Flash space. See the web-
sites in Table 3 for further information.

7.4 Software Drivers

Software drivers for managing NAND Flash are
becoming available from a variety of sources. There
are open source developments such as JFFS2 and
YAFFS, as well as a number of drivers available from
third parties. The table below lists the sources of NAND
Flash driver software we are currently aware of or have
discovered on the web.

7.5 Hardware Controllers

There are a number of sources for hardware con-
trollers for NAND Flash. To date, the main application
for these controllers has been for use inside Flash
memory cards such as CompactFlash, USB drives, 
or Flash memory card reader/writers. Manufacturers
include SST, Cypress, Standard Microsystems Corp.,
and many others.

24



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

8. Tips for Using NAND Flash

8.1 MROM / NOR Replacement

In many cases, the intended use of the NAND
Flash is to act as a large read-only memory. There are
two problems to consider. First, some type of bootstrap
ROM is necessary (unless the processor has a built-in
NAND controller state machine) since NAND Flash is
not a random access device. The bootstrap ROM will
typically be MROM or NOR Flash, although some
processors have the ability to boot from a serial EEP-
ROM. The bootstrap ROM code’s job is to copy code
from the NAND Flash into system RAM. The second
problem, the existence of initial bad blocks that must be
skipped over, is handled by the bootstrap ROM code.
Of course for systems without a significant amount of
RAM space, shadowing code from the NAND into RAM
is not a viable option. However, for most systems run-
ning on a 32 bit microprocessor and running an indus-
trial strength real-time OS, significant amounts of RAM
(SDRAM) are likely to be available, and shadowing from
NAND Flash would be a very cost effective solution.

Typically, the bootstrap ROM code would be written
in assembly language and should do minimal system
initialization like setting up chip selects and initializing
the DRAM controller. Then the bootstrap ROM code
would:

1. Read the first page of a NAND block and, exam-
ine the bad block mark location

2. Determine whether the block is good or not
3. If good, copy the data from the NAND Flash into

system DRAM and correct the data if necessary
4. If bad, skip over the block
5. If additional blocks need to be transferred,

repeat the process

There is one question that often comes up: “Is ECC
really necessary?” After all, the likeliest cause of a bit
error is during the programming process. For example,
if you program a block, then verify it has no errors, how
reliable is the data? In these ROM-like applications
where the write/erase cycles are very low, the actual
failure rate for a block is about 3 ppm after 10 years
(i.e. 3 blocks out of every million blocks will have a bit
error after 10 years) in which a block failure is defined
as a single bit error. This result was derived from test-
ing 29,708 pieces of 512Mb NAND (0.16um) by writing
a checkerboard pattern into blocks and storing at 125C.
Since there will be a non-zero data retention failure
rate, you should limit the amount of code to 1 block to
achieve a low ppm probability of failure.

It is taken for granted that NAND Flash is not
bootable (at least for the moment) because of the lack
of separate address and data lines, but there actually is
a variant of NAND Flash that is! Co-developed by
Toshiba and M-Systems, the monolithic DiskOnChip®
has a true random access type of interface (13 address
lines, 16 data lines, chip enable, write enable, output
enable, etc.) in a TSOP or BGA package. A small boot-
strap loader program (1kB or 2kB) can be executed
directly from the DiskOnChip® without shadowing.
TrueFFS® software drivers have been written by M-
Systems for the following operating systems: Windows
CE, Linux, VxWorks, Symbian, Windows NT, PSOS,
QNX, Nucleus, and DOS.

Product Name Company/Sponsor Website

F1Pack Angel & Jet Tokyo Electron http://tmg-eng.teldevice.co.jp/f1pack.html
FlashFX Datalight http://www.datalight.com
JFFS2 Red Hat http://sources.redhat.com/jffs2/
NAND File system Kyoto Software Research Contact Toshiba http://www.toshiba.com/taec/
smxFFS Micro Digital http://www.smxinfo.com
TargetFFS-NAND Blunk Microsystems http://www.blunkmicro.com/ffs
TrueFFS M-Systems http://www.m-sys.com
YAFFS Toby Churchill http://www.aleph1.co.uk/armlinux/projects/yaffs/

25

Table 3. Sampling of NAND Flash Software Drivers.



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

8.2 To Partition or Not to Partition

In the previous section, the NAND Flash is used
exclusively as a ROM in which a file system is unnec-
essary. However, many applications may wish to use
part of the NAND Flash as a ROM, and part as a file
system. In this case, there are basically two approach-
es. In the first case, we can partition the NAND Flash
into two separate distinct regions in which code is
stored in one partition and the file system is stored in
the other. In the second case, we could use the entire
NAND Flash as a file system and store the code as a
special file within it. The first case will be simpler to
implement because the bootstrap loader program will
not have to understand the file system in order to
retrieve code from the NAND Flash. However, the sec-
ond case is more versatile. If code should grow in the
future, there is no need to repartition the NAND Flash.
Development is easy because one can simply reload a
new ROM image as a file. However, a more sophisti-
cated bootstrap loader program requiring more space
will be necessary.

8.3 Considerations for Preprogramming NAND

The preprogramming of NAND Flash (i.e. the pro-
gramming of NAND Flash chips before they are sol-
dered on to the system board as opposed to in-system
programming) is different than the preprogramming
NOR Flash primarily because of the existence of bad
blocks which prevents the use of fixed physical
addressing. Device programmers that can program
NAND Flash are designed to program only good, whole
blocks and skip over bad blocks. All overhead bytes
(including ECC bytes) must be included in the data file
itself. In the data file, every 518th byte (byte 517) out of
every 528 bytes should be left as 0xFFh. As discussed
in section 6.1, this byte is reserved as the bad block
flag byte. A separate white paper describing the issues
in preprogramming NAND Flash is available from
Toshiba America Electronic Components, Inc.
(http://www.toshiba.com/taec->products->memory->
Flash-NAND).

If the NAND Flash is divided into two partitions as
described in section 8.2, it will be necessary to program
the NAND Flash in two operations. In the first opera-
tion, the code portion is programmed. Since the bad

block distribution will vary from chip to chip, the last
physical block programmed will differ. If the second par-
tition (i.e. file system partition) is to be written starting
at the same physical address in every chip during the
second program operation, several spare blocks (1-
2%) typically need to be added to the code partition to
allow for bad blocks to enable the second partition to
start at a fixed block location. Of course, there is still a
possibility that in a particular chip, the bad blocks are
concentrated in the code partition section. If this hap-
pens, there would be an insufficient number of good
blocks in the physical block range allocated for code
storage to actually store the code. Also, the hassle of
dealing with two separate files (code and file system) to
be programmed can lead to errors. Therefore, it will be
more convenient to avoid partitioning the Flash and
implement case 2 in section 8.2 by storing the code as
a special file in the file system and program a single file
into the Flash.

8.4 Considering Memory Cards

If portable storage is necessary, the easiest
solution is to use one of the removable memory cards
available. The advantage of using a memory card is
that most memory cards (except the SmartMedia and
xD Picture Card, for example) have a built-in memory
controller chip. Toshiba, as the inventor of SmartMedia,
co-inventor of the SD card, and a major manufacturer
of CompactFlash cards, offers a variety of possible
solutions. For further information on these cards see:

• SmartMedia – http://www.ssfdc.or.jp
• SD Card – http://www.sdcard.org
• CompactFlash – http://www.compactflash.org

26



www.memory.toshiba.com

NAND FLASH APPLICATIONS DESIGN GUIDE

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

9. Introduction to CompactFlash

The CompactFlashTM card is a small, removable,
storage and I/O card. Invented by SanDisk, the specifi-
cations are now determined by the CompactFlash
Association (CFA) (http://www.compactflash.org), an
organization that promotes the adoption of
CompactFlash. The CompactFlash can be used in such
applications as portable and desktop computers, digital
cameras, handheld data collection scanners, PDAs,
Pocket PCs, handy terminals, personal communicators,
advanced two-way pagers, audio recorders, monitoring
devices, set-top boxes, and networking equipment.

A CompactFlash card is essentially a small form
factor card version of an ATA PC Card (AT Attachment)
specification and includes a True IDE (Integrated Drive
Electronics) mode which is compatible with the
ATA/ATAPI-4 specification. As such, there are three 
distinct interface modes that a CompactFlash card 
can use:

• PC Card Memory Mode (uses WE#, OE# to
access memory locations)

• PC Card I/O Mode (uses IOWR#, IORD# to
access I/O locations)

• True IDE Mode (uses IOWR#, IORD# to access
I/O locations)

The CompactFlash card is essentially a solid state
ATA disk drive. To control an ATA disk drive, one writes
to the task file registers. The values put into these task
file registers control the drive (the ANSI T13 committee
defines these registers and the commands used to
control all ATA/IDE drives—see http://www.t13.org).
These task file registers can be mapped into either
memory or I/O address space.

A typical CompactFlash card consists of a con-
troller and several NAND Flash memory chips. The
convenient aspect of using them is that the controller
typically implements ECC in hardware and the NAND
Flash management in firmware offering both high relia-
bility and high performance. Two application notes de-
scribing a reference interface between the CompactFlash
card and either the MPC8260 or PPC405 are available
from Toshiba America Electronic Components, Inc.
(http://www.applications.toshiba.com).

27



For more information about Toshiba's memory products, please go to: 
www.memory.toshiba.com.

©2003 Toshiba America Electronic Components, Inc.
All product or brand names are the propenty of their respective holders.

FLSH 03 808
8/03


