

Programmable Systems Transform the Design and Implementation of Adaptive Optics Systems Platform

IRM

cadenc

1111111

XILINX

Chris Musial Technical Fellow Boeing-SVS

Stensie

THE FUL

Celoxica

The MathWorks

Adaptive Optics Primer

- The Earth's Atmosphere Is Not a Homogenous Medium
- Turbulence Causes Index of Refraction To Vary Both Spatially and Temporally
- Light From a Point Source Is Spread Out and Distorted
- Images Collected By The Telescope Lack Clarity and Detail

AO Processing Corrects For Atmospheric Effects

AO Dramatically Improves Intensity & Sharpness

After

Image of StarImage of StarWithout AOWith AOCompensationCompensation

Before

Neptune Without AO

Neptune With AO

Why AO Is Important ...

 Astronomers Use AO To Improve The Resolution of Large Ground Based Telescopes

- Without AO, Giant Telescopes Resolve No Better Than Something You Can Buy At a Department Store
- With AO, They Can Outperform Hubble
- Laser Communication Systems Use AO To Increase Range and Reduce Bit Error Rates
- Mil-Aero Programs Employ AO For Many Reasons
 - High Resolution Reconnaissance and Surveillance
 - Precision Targeting, Tracking, and Engagement
- FPGA Technology Can Bring a Dramatic Cost Reduction To The Application of These Systems

Real-Time AO Control System

- Wavefront Sensor (WFS) Measures Distortion
- Control System Processes WFS Data To Drive Mirror System
- Adaptive Mirror Applies Conjugate of The Distortion
- Real-Time, Closed Loop, Image Processing System

Today We Will Construct a "Simple" AO Processor System

- Turbulence Degrades Wavefront In Many Ways
 - Low Order Effects Cause Wavefront to Tilt Back and Forth
 - Higher Order Distortion Effects Distort The Shape of The Wavefront (Coma, Astigmatism, Aberrations etc.)

Designing a Tilt Correction System Using Virtex-II Pro

- Tilt Causes The Image To Dance Around
- While The High Resolution Camera Is Exposing The Image, The Dancing Motion Blurs Fine Detail
- To Correct The Dance, The Adaptive Mirror Is "Steered" At High Speed to Keep The Object Centered In The Camera

AO Image Processing Characteristics

- Streaming Based Flow of Image Pixels
- KHz Imaging Frame Rates
- Repetitive, Systolic Number Crunching
- Processing Algorithms Are Multiply-Accumulate Based
- High Data Rates Are The Processor Design Driver
- Need High Throughput With Low Latency

An Excellent Fit For Xilinx FPGA Technology

Data Flow Diagram Of Processing Functions

Processor Design Tradeoffs

• Multi-Processor, S/W Based Architecture

- Readily Available Commercial Boards
- "S/W Based Processors Are Easier To Program"
- Larger Package, Based Upon Multiple Boards From Multiple Vendors
- Limited Parallelism, Determinism, Interface Capabilities
- Weight, Volume, Power

Platform FPGA Approach

- Significantly Simpler H/W Design
- Improved Performance, Determinism, Latency
- Tremendous I/O and Interface Flexibility
- "FPGA Programming Is Hard"
- Ideal Configuration Encourages Build to Print Solution = Cost + Risk

Platform FPGA Best Addresses Our Packaging and Performance Requirements

Why Choose Xilinx ?

• Boeing's View on FPGA Tradeoffs Many Capable Devices Exist For The Job - Still Primarily a Xilinx vs. Altera Trade • Why We Choose Virtex-II Pro Over Stratix - Virtex-II CLB Is a Better Fit For Our DSP Applications Stratix Has No Embedded Microprocessor Core Stratix Advantages Aren't Enablers For Most Of Our Apps Broad V2-Pro Family Supports Diverse Applications Commercial FPGA Board Vendors Mostly Use Xilinx - Xilinx Offers Unique DSP Design Tool Capabilities Xilinx Customer Support Has Helped Us to Succeed

Creating a Processor Solution Around V2-Pro

Addressing The Image Data Transfer Problem

- Our Processor Must Interface to a Serial Fiber-Optic Data Link
- This is a "Transfer Pixels From A to B" Problem
- Low-Latency and Protocol Simplicity Are Highly Desired
- Fiber-Channel, Rapid-I/O, 1394b Are "Overkill"
- Prefer a Programmable Serial Transceiver to "Keep It Simple"

MGTs Are A Nice Match For This Application

Addressing The DSP Algorithm Challenge

Tilt Correction Processor Functions

- Programmable 2D Image Convolver
- Image Statistics and Thresholding
- Computation of Intensity Center of Mass

- V2-Pro Features That Benefit This Application
 - Embedded Multipliers Allow Single Clock Cycle Execution of The Convolver and Centroid Computations (True Parallelism)
 - Block RAM Offers Configurable, Video Delay Line Buffers
 - SRL16 Yields Programmable Filter Coefficients and Logic-**Efficient Delay**
 - "Free" Pipelining Via Abundant Flip-Flops and LUT RAM

High-Level Modeling Of The Pixel Processing Input Image Tilt Corrector Image Processing Pipeline Centroid

Object

Thresholding

Image

Statistics

2D Image

Convolution

System Generator Model Of Pixel Processing Functions

Centroid

Multiply

Accumulates

FPGA Approach Minimizes **Processing Latency**

 Image Data Is Processed As It **Clocks Into The FPGA Pipeline**

- No Buffering, Frame Grabbing, DMA to Memory etc.
- Target Location Available As Soon As Last Pixel Has Clocked **Through The Pipeline**
- Reduced Latency = Higher **Control Loop Bandwidth**
 - Reject More Image Dancing

Done Processing Before Frame Transfer Is Complete

V2-Pro Allows Concurrent Graphics and Processing

- Video Formatter Takes Input Video Stream and Passes It On To a DVI Transmitter Chip
 - Eliminates Need For a Dedicated Graphics Display Card

• FPGA Processing is Fully Parallel

- Video Formatter Doesn't "Influence" Pixel Processing Pipeline
- Mitigate Bus Contention When Using a Multi-Board, Multi-Processor Approach

We Still Need a Servo Control Loop

- Servo Compensator Processes Object Centroid and Derives Commands to Move The Steering Mirror
 - Feedback Loop Used to Keep Object Centered Within The Image
- These Are Not Computationally Intense Functions
 Much Better Fit to Software...
- Virtex-II Pro Gives Integrates This Back-End S/W Capability Via The PPC 405
- Mathworks Offers Tools To Efficiently Develop Control Systems

Copyright 2003. All rights reserved

- Simulink, Real-Time Workshop, State Flow etc.

Xilinx Platform Studio Provides S/W Integration

Integrating The PPC Core With Our FPGA Application

We Use Xilinx S/W Libraries to Complete The Design

- Xilinx EDK Includes Key Items Needed to Build a Functional, Embedded Micro-Controller
 - Boot Code, Device Driver S/W, Network Stack, Lightweight Kernel etc.
- GPIO, UART, BRAM, 405 Bus Interfaces Are Graphically Configured Via Platform Studio
- User Concentrates Primarily On The Development of Application C-Code

Summary

• Platform FPGAs Are An Excellent Fit to Adaptive Optics

- Our Example Applies To The More Complicated, High-Order Wavefront Processing
- Virtex-II Pro Enables a Complete, Integrated Processing System
 - A Single Device Can Replace What Once Required a Number of Loosely Coupled Processor Boards
- High Level Design Tools Enable Rapid System Development and Afford Practical FPGA Solutions
 - The H/W and S/W Functions Can Be Readily Applied to Other Programs

Thank You!

IBM

cadence

XILINX"

Agilent Technologies

Altrum

mahlo

The For The New Era NE

Celóxica

The MathWorks

VF SUSTERIS US

ij.

TEXAS INSTRUMENTS

Synopsys

NALLATECH

WIND RIVER

CMP