
Xilinx Foundation Series v1.5i training Page 1

Xilinx Academy - Foundation Series training, part II
This tutorial demonstrates the HDL-based flow through the Foundation Series tools. It also shows the integrated
synthesis and implementation features, new as of the Foundation Series release 1.5. This tutorial has been
extracted from the F1.5 Quick-Start guide, and also includes timing simulation.

Before working on this tutorial, make sure you have properly installed the Foundation Series tools, including the
FPGA Express license and any recent patches. Instructions for installation have already been provided to you, in
the document called “Foundation Series training preparation.”

The HDL-Based Design Flow

This tutorial guides you through a typical HDL-based design procedure using a design of a runner’s
stopwatch(called Watch). This design targets an XC4000E device; however, all of the principles and flows
taught are applicable to any Xilinx device family.

In the first part of the tutorial, you use the Foundation Series design entry tools to complete the design.
The design is composed of HDL elements and a LogiBLOX macro; you will synthesize the design using
the FPGA Express compiler, integrated within the Foundation Series environment. Next, you will
implement the design using the Xilinx Implementation Tools. Finally, you will verify the design through
timing simulation, using the new Script Wizard.

Tutorial Project Directories and Files
During the software installation, the WTUT_VHD and WTUT_VER directories are created within
c:\fndtn\Active\projects, and the tutorial files are copied into these directories. These directories contain
incomplete versions of the design, done in VHDL and Verilog, respectively. You will complete the design
in the tutorial. Solutions projects, that contain all completed input and output files, are also provided. The
following table lists the associated project.

You may copy the tutorial project to a new project if you wish to work on this tutorial more than once. The
WATCHVHD and WATCHVER solution projects contain the design files for the completed tutorials,
including HDL files and the bitstream file.

VHDL or Verilog?

This tutorial has been prepared for both VHDL and Verilog designs. This document applies to both
designs simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through the tutorial when you open the project.

Starting the Project Manager
1. Double click the Foundation Series Project Manager icon on your desktop or select Programs →

Xilinx Foundation Series → Xilinx Foundation Project Manager from the Start menu.

Directory Description

WTUT_VHD Incomplete Watch Tutorial - VHDL

WTUT_VER Incomplete Watch Tutorial - Verilog

WATCHVHD Solution for Watch - VHDL

WATCHVER Solution for Watch - Verilog

Xilinx Foundation Series v1.5i training

Page 2 February 1999

2. A Getting Started dialog box opens. You can select a recently opened project from this box. If you have
not opened this tutorial project already, click the More Projects... button.

Figure 1 Getting Started Dialog Box

3. In the Directories list, browse to c:\fndtn\Active\projects. In the Projects list, open WTUT_VHD or
WTUT_VER by double clicking.

Design Description
The design used in this tutorial is a top-level HDL design file that references several other lower-level
macros. The lower-level macros are either HDL modules or LogiBLOX modules. The design begins as an
unfinished design. Throughout the tutorial, you complete the design by generating some of the modules
as new modules, and by completing some others from existing files.

This is the same design that you worked on in the schematic-based tutorial. The only difference is: this
design is done in HDL rather than a schematic flow. Watch is a simple runner’s stopwatch. There are two
external inputs, and three external output buses in the completed design. The system clock is an internally
generated signal produced by the OSC4, the internal oscillator in the XC4000 devices. The following list
summarizes the input lines and output buses.

Inputs:

• STRTSTOP - Starts and stops the stopwatch. This is an active-low signal which acts like the start/stop
button on a runner’s stopwatch.

• RESET - Resets the stopwatch to 00.0 after it has been stopped.

and three additional inputs, used by the hardware debug circuit (not used in this lab):

The HDL-Based Design Flow

Xilinx Academy Page 3

• GSRT

• CLK_SELECT

• EXT_CLK

Outputs:

• TENSOUT[6:0]—7-bit bus which represents the Ten’s digit of the stopwatch value. This bus is in 7-
segment display format viewable on the 7-segment LED display on the Xilinx demonstration board.

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents the One’s digit of the stopwatch
value.

• TENTHSOUT[9:0]—10-bit bus which represents the Tenths’ digit of the stopwatch value. This bus is
one-hot encoded.

and an output, generated by the debug circuit (not used in this lab):

• CLK_OUT_15HZ

The completed design consists of the following functional blocks.

• OSC4 - Xilinx Unified Library component which represents the XC4000 on-chip oscillator.

• STATMACH - State Machine module.

• CNT60 - HDL-based module which counts from 0 to 59, decimal. This macro has 2 4-bit outputs,
which represent the ones and tens digits of the decimal values, respectively.

• TENTHS - Logiblox 10-bit, one-hot encoded counter. This macro outputs the tenths digit of the watch
value as a 10-bit one-hot encoded value.

• HEX2LED - HDL-based macro. This macro decodes the ones and tens digit values from hexadecimal
to 7-segment display format for viewing on the FPGA Demonstration Board.

• SMALLCNTR - A simple Counter.

• DEBUG_CKT - Contains STARTUP and READBACK for use with the demonstration board. (This
module is required for the Hardware tutorial and is not used in this training session.)

Xilinx Foundation Series v1.5i training

Page 4 February 1999

The Project Manager
The Project Manager controls all aspects of the design flow. You will notice in the HDL flow, the project
manager appears a little different than it did for the schematic flow. A Synthesis phase button is now
included in the Flow tab. Additional HDL tabs (for errors, warnings and messages) appear in the message
console.

Figure 2 Project Manager

Design Entry
In this hierarchical design, you examine HDL files, correct syntax errors, create an HDL macro, and add a
LogiBLOX module.

Adding Source Files
4. You must add HDL files to the project before they can be synthesized. Four HDL files have already

been added to this project, but have not yet been analyzed. Use Synthesis → Analyze All HDL
Source Files to update these files.

5. Add the remaining HDL file to the project. Select Synthesis → Add HDL Source Files and select
SMALLCNTR.VHD or SMALLCNTR.V from the project directory.

This file will be analyzed when it is added to the project. HDL files that have been added to the project
always have one of four status indicators associated with the file. Examples of these indicators are:

• A red question mark means the file has been modified and needs to be re-analyzed. Right-click the file
and select Analyze.

The HDL-Based Design Flow

Xilinx Academy Page 5

• A red X means errors have been found. You will correct errors in an HDL file in the next section.

• A red exclamation point means warnings have been issued. Select the file and examine the warnings
under the HDL Warnings tab. Many warnings can be safely ignored.

• A green check means that the file is up-to-date with no errors or warnings.

Correcting HDL errors
The SMALLCNTR design contains a syntax error that must be corrected. The red “x” next to the filename
indicates an error was found during analysis. The Project Manager reports errors in red and warnings in
blue in the console.

Note: To open extended help on Express errors or warnings, select the error or message in the
HDL Error or Warning tab, then press the F1 key. Try this on the errors found in your HDL source
during this lab.

6. Open SMALLCNTR.VHD or SMALLCNTR.V in the HDL Editor

Starting the HDL Editor
There are three different ways to open the HDL Editor tool.

• From the Flow tab, click the HDL icon in the Design Entry box. This will open the HDL editor
and allow you to select the file you wish to edit.

• or, Double click an HDL file name in the Files tab.

• or, Right-click an HDL file in the Files tab and select Edit from the resulting menu.

7. Correct any errors in the HDL source file. The comments next to the error explain this simple fix.

8. Select File → Save to save the file.

9. Re-analyze the file by selecting Synthesis → Check Syntax in the HDL Editor or by right-clicking
the HDL file in the Project Manager and selecting Analyze.

Xilinx Foundation Series v1.5i training

Page 6 February 1999

Creating an HDL-Based Module
With Foundation Series, you can easily create modules from HDL code. The HDL code is connected to
your top-level HDL design through instantiation and compiled with the rest of the design.

You will now create a new HDL module. This macro serves to convert the two 4-bit outputs of the CNT60
module into a 7-segment LED display format.

Using the HDL Design Wizard and HDL Editor

When you enter the name and ports of the component in the HDL Wizard, the Wizard creates a “skeleton”
HDL file which you complete by inserting the remainder of your code.

10. From the Flow tab in the Project Manager, click the HDL Editor button.

11. In the HDL Editor dialog, click the radio button next to Use HDL Design Wizard and click OK.

12. Follow the instructions from the Wizard. When you are prompted for a preferred HDL language,
choose whichever one you want, VHDL or Verilog.You may create files in either language, since
Express allows mixed language projects. As long as the ports between your VHDL and Verilog
modules match, mixed language projects are supported.

13. When you are prompted for a file name, type HEX2LED.

14. The HEX2LED component has a 4-bit input port named HEX and a 7-bit output port named LED. To
enter these ports, first click the New button in the Ports dialog box. Select Input as the direction and
type HEX in the Name field. Then, click the arrow next to the Bus field to select 3:0, which is the width
of the bus. In the Name field, you should now see HEX[3:0], and a corresponding pin should appear on
the symbol diagram on the left.

Figure 3 HDL Wizard

15. Repeat the previous step for the LED[6:0] output bus. Be sure that the direction is set to Output .

16. Click Finish to complete the Wizard session. A “skeleton” HDL file now displays in the HDL Editor.

The HDL-Based Design Flow

Xilinx Academy Page 7

Figure 4 Skeleton VHDL File

Figure 5 Skeleton Verilog File

Using the Language Assistant

17. Open the Language Assistant (select Tools → Language Assistant from the HDL Editor pull-
downs) and use the template called HEX2LED Converter located under the Synthesis Templates
heading. This template provides source code to convert a 4-bit value to 7-segment LED display format.

Figure 6 Language Assistant

18. Before adding this template to your HDL file, be sure that the cursor in the HDL Editor is positioned
below the line with the comments “<<enter your statements here>>” for VHDL. For Verilog, enter
code after the “// Add your code here” line.

Xilinx Foundation Series v1.5i training

Page 8 February 1999

19. Add the HEX2LED Converter template code by clicking the Use button in the Language Assistant
while the HEX2LED Converter template is selected.

20. Close the Language Assistant by clicking the X in the upper right corner of the window.

21. Verilog only: After the “//add your declarations here” statement and before the HEX2LED converter
that you just added, add the following line of code to the VerilogHDL file to allow an assignment.

reg[6:0] LED;

22. You now have complete and functional HDL code. Now, check the syntax using Synthesis → Check
Syntax .

23. After you successfully complete the syntax check, save the file by selecting File → Save from the
HDL Editor.

24. Add this HDL file to your current project by selecting Project → Add to Project .

25. Exit the HDL Editor.

Creating a LogiBLOX Module
In this section, you create a LogiBLOX module called Tenths. Tenths is a 10-bit one-hot encoded counter. It
counts the tenths digit of the stopwatch’s time value.

The LogiBLOX Module Generator GUI can be invoked from either the Project Manager, the HDL Editor, or
the Schematic Editor. The operation of the tool is the same regardless of where it is invoked from. In the
next steps, we will open LogiBLOX from the HDL Editor.

26. If you have closed the HDL Editor, open STOPWATCH.VHD or STOPWATCH.V.

27. From within the HDL Editor, select Synthesis → LogiBLOX .

28. The Setup window opens if this is your first call to the LogiBLOX module generator. If the Setup
window does not open, click the Setup button. Enter the following items.

a) Under the Device Family tab, use the pulldown to select xc4000e.

b) Under the Options tab, select VHDL Template or Verilog Template. This template will be
inserted into your top-level STOPWATCH file.

c) If you plan to simulate an HDL design, select Behavioral VHDL Netlist or Structural Verilog
netlist, depending on the HDL simulator you want to use.

29. Click OK when you have defined all of the options.

Examining the Top-Level HDL (reference)

Open STOPWATCH.VHD or STOPWATCH.V in the HDL Editor. This is the top level of the design and
consists mainly of the top level ports and connections to the lower hierarchical blocks. Two Xilinx
library components have been instantiated in this HDL file: OSC4 and the BUFG.

OSC4: The XC4000 devices contain an on-chip oscillator used to generate internal clock signals. To
access the internal oscillator, you must instantiate the OSC4 component. In the Watch design, the 15Hz
clock output of the OSC4 component is used as the system clock in the design.

BUFG: All Xilinx devices contain a set of Global Buffers that provide low-skew distribution of high
fanout signals. In the Watch design, a BUFG component drives the clock signal from the OSC4. The
signal on the output of the BUFG is the buffered clock signal which drives all the clocks in the system.
Express infers global clock buffers, but since this clock signal is generated by the instantiated OSC4
component, the BUFG must also be instantiated.

The HDL-Based Design Flow

Xilinx Academy Page 9

Figure 7 LogiBLOX Setup for VHDL Designs

30. Fill in the LogiBLOX Module Selector with the following settings.

• Module Type: Counters

• Module Name: Tenths

• Bus Width: 10

• Operation: Up

• Style: Maximum Speed

• Encoding: One Hot

• Async Val: 0000000001

31. Check or uncheck the appropriate boxes on the module diagram so that only the following four pins
are used.

• Async. Control

• Clock Enable

• Q_OUT

• Terminal Count

Xilinx Foundation Series v1.5i training

Page 10 February 1999

Figure 8 LogiBLOX Module Selector

32. Click OK. The module is created and automatically added to the project library.

A number of files are added to the project directory. These files follow:

• TENTHS.NGC - This file is the netlist that is used during the Translate phase of imple-
mentation.

• TENTHS.VHI or TENTHS.VEI - This is the instantiation template that is used to incorpo-
rate the LogiBLOX module in your source HDL.

• TENTHS.VHD or TENTHS.V - This is an HDL file to be used only for functional simula-
tion. Do not attempt to synthesize this file. Also do not add this file to the Foundation
Series project.

• TENTHS.MOD - This file stores the configuration information for the Tenths module.

• LOGIBLOX.INI - This file stores the LogiBLOX configuration for the project.

Instantiating the LogiBLOX Module in the HDL Code

You now have the LogiBLOX counter available to your project. Your HDL code must call it, therefore you
must insert some delarations and instantiations into your code. You will insert the LogiBLOX-generated
code fragments: TENTHS.VHI into your VHDL code or TENTHS.VEI into your Verilog.

VHDL Flow (see Verilog flow instructions in the next section)

33. If you have closed the HDL Editor, open STOPWATCH.VHD.

The HDL-Based Design Flow

Xilinx Academy Page 11

34. Place your cursor after the line that states:

“-- Place the LogiBLOX Component Declaration for Tenths here”

Select Edit → Insert File and choose Tenths.vhi. The VHDL template file for the LogiBLOX
instantiation is inserted.

The Component Declaration does not need to be modified. Now you will move the instantiation
portion of the code fragment.

35. Highlight the inserted code from “--Component Instantiation” to “TERM_CNT=>);”. Select Edit →
Cut .

Figure 9 VHDL Component Declaration of LogiBLOX Module

36. Place the cursor after the line that states:

“--Place the LogiBLOX Component Instantiation for Tenths here.”

Select Edit → Paste to place the instantiation here.

Change “instance_name” to “XCOUNTER”

37. Edit this instantiated code to connect the signals in the Stopwatch design to the ports of the LogiBLOX
module. The completed code looks like the following.

Xilinx Foundation Series v1.5i training

Page 12 February 1999

Figure 10 VHDL Component Instantiation of LogiBLOX Module

38. Save the design and close the HDL Editor. Now, skip the Verilog Flow section and go to “Simulating
the HDL.”

Verilog Flow

39. If you have closed the HDL Editor, open STOPWATCH.V.

40. Place your cursor after the line that states:

“//Place the LogiBLOX Module Declaration for Tenths here” (This line is at the end of the file.)

Select Edit → Insert File and choose Tenths.vei. The Verilog template file for the LogiBLOX
instantiation is inserted.

The Component Declaration does not need to be modified.

Figure 11 Verilog Module Declaration of LogiBLOX Module

The HDL-Based Design Flow

Xilinx Academy Page 13

Note: Alternately, the remaining module declaration can be placed in a new Verilog file (name it
TENTHS.V) and added to the project. Be careful not to overwrite the Verilog simulation model,
also named TENTHS.V, if one has been created. This module declaration is required to define the
port directions of the ports of the LogiBLOX module.

41. Highlight the inserted code from “Tenths instance_name” to “.TERM_CNT());”. Select Edit → Cut .

42. Place the cursor after the line that states:

“//Place the LogiBLOX Component Instantiation for Tenths here.”

Select Edit → Paste to place the instantiation here.

Change “instance_name” to “XCOUNTER”.

43. Edit this code to connect the signals in the Stopwatch design to the ports of the LogiBLOX module.
The completed code is shown in the following figure.

Figure 12 Verilog Component Instantiation of LogiBLOX Module

44. Save the design and close the HDL Editor.

Simulating the HDL
At this point, you could use a behavioral simulator to simulate your HDL. (This is not a part of this lab,
however. This information is provided for your later use.) Application notes are available from two
companies, describing the use of their simulators with Foundation Series.

• Active-VHDL, from Aldec. Download the application note (in zip format) from the Aldec web site:
http://www.aldec.com/Support/xilinx.zip

• ModelSim, from Model Technology. Download the application note (in pdf format) from the MTI web
site: http://www.model.com/pdf/108xilinxfnd.pdf. Or visit the Model Technology tech-
notes page: http://www.model.com/support/technote.html , and click on the ModelSim and
Xilinx Foundation link.

Xilinx Foundation Series v1.5i training

Page 14 February 1999

If you have Active-VHDL loaded, it is accessible via the Tools → Simulation/Verification
pulldown menu from the Foundation Series Project Manager.

Figure 13 Active-VHDL from Project Manager menu

Synthesis and Implementation

Preparing Synthesis
Now that the design has been entered and analyzed, the next steps are to synthesize and implement the
design. In this lab, we will “pull” the design completely through synthesis and implementation. However,
it is also possible to synthesize and implement the design in separate steps, if you want to.

Note: you must have the PCM.EXE patch installed before doing this section. See the handout:
“Foundation Series training preparation” for details about the PCM.EXE patch.

45. Set the global synthesis options by selecting Synthesis → Options . Set the Default Frequency to 20,
and check the Export Timing Constraints box. Click OK to accept these values.

46. Click the + next to STOPWATCH.VHD (or STOPWATCH.V). This shows the entities (or modules)
within the HDL file. Some files may have multiple entities (or modules).

Project Management (Versions tab - reference)
Project management controls design versions and revisions. A version represents an input design
netlist. For HDL, versions represent synthesis runs. Each time a change is made to the source design,
such as logic being added to or removed from the schematic or the HDL source being modified, a new
version is created. A revision represents an implementation on a given version, usually with new
implementation options, such as different placement or router effort level.

Foundation Series maintains revision control, meaning that the resulting files from each
implementation revision are archived in the project directory.

Note: The project management tools currently support revision control for implementation
data only. To save your source code changes for future use, you should archive the source HDL
code and/or synthesized netlists(s) manually.

Foundation Series manages and displays your design versions and revisions graphically in the Versions
tab of the Project Manager. Since you have not yet implemented the design, the Versions tab is currently
empty.

Synthesis and Implementation

Xilinx Academy Page 15

47. Select the entity named “stopwatch” and click the Implementation button from the Flow tab.

This step will cause the flow to proceed first through Synthesis, then Implementation. Synthesis may
also be done separately, by clicking the Synthesis button under the flow tab, or by right-clicking on the
entity name, and choosing Synthesize from the resulting menu.

48. In the Synthesis/Implementation window, complete the Target Device fields with this information:

• Family: XC4000E

• Device: 4003EPC84

• Speed Grade: -3

49. Check the boxes labeled Edit Synthesis/Implementation Constraints and View Estimated Perfor-
mance after Optimization.

Note: Selecting the Edit Synthesis/Implementation Constraints box automatically opens the
Express Constraints Editor after synthesis is complete.

Note: Selecting the View Estimated Performance after Optimization box automatically opens the
Optimized dialog box which displays the results of the synthesis and optimization.

Figure 14 Synthesis/Implementation Window

50. Next you will set Implementation options. Do not run the implementation yet.

Preparing Implementation
Design Implementation is the process of translating, mapping, placing, routing, and generating a BIT file
for your design. The Design Implementation tools are now embedded into the Foundation Series Project
Manager for easy access and project management.

Xilinx Foundation Series v1.5i training

Page 16 February 1999

51. In the Physical Implementation Settings portion of the Synthesis/Implementation dialog box, notice
the Revision Name field is automatically filled in. If you want to use another name, enter it in the box.

Implementation Options
52. Click the Options button. The Options dialog box opens. A summary of the options provided in this

box follows.

Figure 15 Implementation Options Dialog Box

• User Constraints File (.ucf). By default, Foundation Series creates a blank UCF file in the project direc-
tory. You can edit this UCF file from the Files view in the Project Manager. Because the name of this
UCF file is the same as the project name, it may already be loaded in the Options dialog box, above. If
you have other UCF files that you want to use instead, browse to find and select them.

• Program Option Templates. If you wish, enter and modify implementation options by using the
Program Option templates.

• Optional Targets. You can specify whether you want to generate a Timing Simulation netlist for back-
annotated timing simulation, as well as Configuration Data, which is the design’s .bit file suitable for
device programming. For this lab, you must make sure to check “Produce Timing Simulation Data.”

53. Click OK to close the Options dialog.

54. Launch Synthesis/Implementation by clicking RUN.

In the following process of Synthesis and Implementation, Express first synthesizes the design and opens
the Express Constraints Editor (since you clicked the Edit Synthesis/Implementation Constraints option
earlier).

Synthesis and Implementation

Xilinx Academy Page 17

Using the Express Constraints Editor (tutorial instructions)
Xilinx recommends that you let the automatic placement and routing program, PAR, define the pinout of
your design. Pre-assigning locations to the pins can sometimes degrade the performance of the place-and-
route tools. However, it is usually necessary, at some point, to lock the pinout of a design so that it can be
integrated into a PCB (printed circuit board).

Define the initial pinout by running the place-and-route tools without pin assignments, then locking down
the pin placement so that it reflects the locations chosen by the tools. Assign locations to the pins in the
Watch design so that the design can function in a Xilinx demonstration board. Because the design is simple
and timing is not critical, these pin assignments do not adversely affect the ability of PAR to place-and-
route the design. For HDL-based designs, these pin assignments can be done in a User Constraints File

The Express Constraints Editor (information for reference)
You control optimization options and pass timing specifications to the Place and Route software
through a GUI in the Express Synthesis software. This editor is only available with the Foundation
Express product, not with Base Express. All timing specifications are passed in the netlist directly to the
place and route engine and are used in the synthesis process for timing estimation purposes.
Constraints tabs are:

• Clocks

The Default Frequency set in Synthesis → Options is applied to all clocks in the design. To
change the specification of a clock, click inside the box to the right of the clock and select Define.
Enter the clock period or give the rise and fall times.

• Paths

All types of paths that can be covered by timing specifications are listed here, with unique specifica-
tions given for each clock in the design. To modify these specifications, enter a new delay in the Req.
Delay column.

To create a subpath within a path, right click the source or destination and select New Subpath.
Give the subpath a new name and delay value, then select sources and destinations by double
clicking the instances. You can also use wildcards in the selection filters to choose a group of
elements.

• Ports

With the Ports tab, you set input and out delay requirements, assign clock buffers, insert pullup or
pulldown resistors in the I/O, set delay properties for input registers, set slew rate, disable the use
of I/O registers, and assign pin locations. For all but the pin locations, click in the box to use the
pulldown menu. For pin locations, type the pin number in the box.

• Modules

With the Modules tab, you choose to keep or eliminate hierarchy and disable resource sharing. You
can also override the default settings for effort and area versus speed at the module level.

• Xilinx Options

The Ignore unlinked cells during GSR mapping option directs Express to infer a global reset signal
(and, therefore, insert the STARTUP module), even if black boxes have been instantiated. Express
cannot know the reset characteristics of any logic in black boxes, so it will not insert STARTUP
unless you check this option.

Xilinx Foundation Series v1.5i training

Page 18 February 1999

(.UCF) or with the Express Constraints Editor. Although .UCF files are provided for this tutorial, you will
assign the pin location constraints in the Express Constraints Editor.

55. In the Express Constraint Editor, click the Import Constraints button. Select WATCHVHD.EXC or
WATCHVER.EXC, depending on the language you are using. These files are located in the project
directory.

This file has been created for you during a previous synthesis run. The only difference you should see
between your initial constraints and the ones saved in the .EXC file is the set of pin locations under the
Ports tab.

You can save Constraint Editor settings for a design by clicking the Export Constraints button.
When this .EXC file is read in for a later synthesis run, all constraints are re-established in the GUI, as
long as they can be matched to instances in the current version.

56. Under the Paths tab, click in the box directly below the Req. Delay header. Change the delay to 35.
Under the Ports tab, the Input Delays for RESET and STRTSTOP have changed to 35, as these repre-
sent all the Pad to Setup delays.

You can change the values of individual Input or Output Delays by clicking the value in the Ports tab
and either editing the value there or using the pulldown tab to select a value or define a new one.
Change the values on one of the output signals using one of these methods.

Figure 16 Ports Tab Display

57. Under the Paths tab, right click on the RC-oscout to All Output Ports row and select New
Subpath . The Create/Edit Timing Subpath window opens.

Give this new subpath a name, Sub_flops_to_out, and a Delay value, 30. On the left hand side, double
click all four flip flops that contain the name /ver1/sixty/lsbcount/qout*, to determine the sources of
this subpath. On the lower right hand side, use the filter to select the destinations. Type ONE* in the
field and click the Select button. All the ports beginning with ONESOUT will be highlighted. Click
OK to see your new subpath.

You have now created a new subpath between the LSBSEC port (defined in your design source file
“cnt60”) and its outputs.

Note: Base Express users cannot access the Express Constraints Editor. Pin location constraints
must therefore be defined in a UCF file, which Xilinx has provided. Select Implementation →
Implementation Options . Click the Browse button next to User Constraints and select
BASE.UCF.

Synthesis and Implementation

Xilinx Academy Page 19

Figure 17 Editing Subpath in the Express Constraints Editor

58. Under the Ports tab, add the two final pin locations: RESET must be assigned to P28, and STRTSTOP
must be assigned to P18. To reassign, click the box and enter the pin number (including the P).

Note: The remaining I/Os have pin assignments. This information is contained in the .exc file,
which you imported in Step 1.

59. Click OK to continue synthesis. Express now optimizes the design.

Viewing Synthesis Results
Since you checked the View Estimated Performance after Optimization box earlier, the Express Constraints
Editor opens after the optimization phase of synthesis with preliminary performance results. The delay
values are based on wireload models and, therefore, must be considered preliminary. Consult the post-
route timing reports for the most accurate delay information.

60. Under the Clocks tab, examine the estimated delay value of the clock. Delays greater than the specifi-
cation appear in red.

61. Under the Paths tab, examine the estimated delays for the paths and subpath. Click the source or
destination of a path to see the members of the path, and click a specific path to see the individual
segments of that path.

Xilinx Foundation Series v1.5i training

Page 20 February 1999

Figure 18 Estimated Timing Data Under Paths Tab

62. Examine the Ports tab to see that all of the settings and delays have been assigned and met.

63. Under the Modules tab, you can examine the elements used to synthesize this design. Click the box in
the second row under Area and select Details . This section summarizes all the design elements used
in the Stopwatch design that Express knows about.
Since the Tenths module is a LogiBLOX component and has not been synthesized by Express, it is
UNLINKED and no summary information is available.

Note: Black boxes (modules not read into the Express design environment) are always noted as
UNLINKED in the Express reports. As long as the underlying netlist (.xnf, .ngo, .ngc or EDIF) for
a black box exists in the project directory, the Implementation tools merge the netlist during the
Translate phase. Since the Tenths module was built using LogiBLOX called from the project, the
tenths NGC file will be found.

64. Click OK to complete the Synthesis phase.

At this point, an XNF file exists for the Stopwatch design. If desired, you may perform a post-synthesis
simulation of this design using the Foundation Series functional simulator. The simulator used for
functional simulation is the same one used for timing simulation, which you will use in the last section of
this tutorial. The only difference is that the design which is loaded into the simulator for timing simulation
contains worst-case routing delays based on the actual placed and routed design.

Running Implementation — The Flow Engine
65. Now that the Synthesis phase has completed, the Flow Engine displays and implementation begins.

Synthesis and Implementation

Xilinx Academy Page 21

Figure 19 Flow Engine

When the implementation is complete, the Flow Engine closes automatically, and the Foundation Series
Project Manager is fully visible again.

66. The status of the implementation is displayed in the console window at the bottom of the Project
Manager. You should see (OK Implemented) and Completed Successfully for the version and revision.
If you encountered any errors in the implementation, refer to the Implementation Log file for details
on the error.

Viewing Implementation Results
The Foundation Series Project Manager maintains control over all of your design implementation versions
and revisions. You can directly view and analyze these implementations from the Project Manager.

67. Click the Versions tab in the left-hand pane of the Project Manager. You should see a hierarchical
display of the implementation you just ran. The revision that is most current is displayed in bold.

Figure 20 Versions Tab

68. With the current revision selected, click the Reports tab in the right-hand side of the Project Manager.
The Reports tab displays reports and logs for the selected revision of the design.

Xilinx Foundation Series v1.5i training

Page 22 February 1999

69. Double click the report entitled Implementation Report Files. This displays the Xilinx Report Browser,
which contains all of the implementation reports. You have the option to browse through any of these
reports at this time.

Timing Simulation

Timing simulation uses the block and routing delay information from the routed design to give a more
accurate assessment of the behavior of the circuit under worst-case conditions. For this reason, timing
simulation is performed after the design has been placed and routed.

The following section of the lab includes the Script Editor, Script Wizard, and Simulator. These tools, used
for timing simulation, are the same ones used for functional simulation (which may be run following
design entry). The only difference is that the design which is loaded into the simulator for timing
simulation contains worst-case routing delays based on the actual placed and routed design.

Invoking Timing Simulation
1. To invoke the timing simulator, click the Timing Simulation icon in the Verification phase button in the

Project Manager Flow diagram.

The simulator is now loaded and ready to simulate. For this simulation, you will use script files.

Simulating with Script Files - Script Wizard and Script Editor
The Foundation Series functional simulator provides simulation by applying various types of stimulus
including keyboard stimulus, formulae, and by using the internal binary counter. In this section, you use a
script file to simulate the design, and will use the new Script Wizard feature from the Script Editor..

2. To invoke the Script Editor, select Tools → Script Editor from the pulldown menus within the Simu-
lator. A dialog box prompts you to select a script file.

Other Implementation Tools (reference)
The Foundation Series Project Manager also gives you access to the other implementation tools,
including the Timing Analyzer, EPIC Design Editor, Floorplanner, JTAG Programmer, Prom File
Formatter and Hardware Debugger. These tools can be invoked from the Tools → Implementation and
Tools → Device Programming menus. The Timing Analyzer and Device Programming tools are also
available from the Flow diagram.

These implementation tools are sensitive to the implementation revision. That is, depending on which
Revision you have selected in the Versions tab when you invoked the tool, the tools will be loaded with
data from that implementation revision.

Now you can invoke any of these tools to see what they look like. For more information, refer to the
appropriate online documentation for each tool.

Timing Simulation

Xilinx Academy Page 23

3. Choose Use Script Wizard to invoke the Script Wizard.

4. Follow the instructions in the Wizard to advance to the Initialization page.

5. On the Initialization page, select the following options.

• Delete Existing Signals — clears all the waveforms at the start of each simulation.

• Restart (Power On) — forces the simulator to perform a global reset at the start of the
simulation to initialize all of the registers.

• Simulation Mode: Timing

• Step Size: 30 ns — determines the size of the simulation step.

• Generate additional comments — inserts comments into the script file to aid you in
further editing of the script file.

• Script File Description — type “Simulation Script File for Watch Tutorial.” Whatever you
type here will be placed as a comment at the top of the script file.

Figure 21 Script Wizard -- Initialization

6. Click Next to advance to the Vectors page.

Vectors provide a more convenient way to use buses in the script file. By defining vectors, you can
more easily refer to these buses in the rest of the script file. You can also create vectors out of any group
of signals, regardless of whether they are a bus in the original design.

In this step, you define vectors for the three output buses, ONESOUT[6:0], TENSOUT[6:0], and
TENTHSOUT[9:0]. For simplicity, name these vectors ONES, TENS and TENTHS, respectively.

7. Click the New button. This adds a new vector to the vector list entitled Vector_Name_1 by default.
Type TENS in the place of Vector_Name_1 to rename it.

8. Click the Browse... button. This displays a Component Selection window which contains all of the
signals in the design. On the right-hand side, scroll down to find the TENOUTS6 [7-bit] bus. Select this
bus, and then click OK. By doing this, you have assigned the seven bits of the TENSOUT bus to the
newly created TENS vector.

30 ns

Xilinx Foundation Series v1.5i training

Page 24 February 1999

Figure 22 Script Wizard Component Selection

The seven bits of the TENSOUT bus are listed as components in the newly created TENS vector.

9. With the TENS vector selected, click the Radix pulldown menu to change the radix of the vector to
Binary. This determines how the vector is displayed in the simulator.

10. Repeat Steps 6 through 8 to create vectors called ONES and TENTHS for both the ONESOUT[6:0] and
TENTHSOUT[9:0] buses, respectively.

Figure 23 Script Wizard Vectors

11. Click the Next button to advance to the Stimulators page.

Stimulators define the action of the inputs in the design. There are several different commands that
can be used to define input stimulus. You will use three different methods in this tutorial. For a
complete description of all available commands, refer to the online help.

12. To select the first signal to stimulate, click the Browse... button.

13. In the Component Selection window, scroll down the signal list on the right-hand side, and locate the
CLKINT signal. Select it and click OK.

Timing Simulation

Xilinx Academy Page 25

14. See the CLKINT signal listed in the Simulators and Watched Signals list. Click the CLKINT signal and
the Stimulator Type field now becomes active. Use the pulldown menu in the Stimulator Type field to
select Clock.

15. In the Value field, set the pattern of the clock. By typing 0 1 (with a space between them) in the value
field, you define the clock as having a pattern of low for one simulation step (previously defined as
10ns), then high for one simulation step. This pattern repeats indefinitely to produce the clock signal.

Figure 24 Clock Stimulus

16. Repeat Steps 12 and 13 to add the STRTSTOP signal to the Stimulated signals list.

17. With the STRTSTOP signal selected in the Stimulated Signals list, set the Stimulator Type to Aldec
Waveform.

18. In the Value field, type the following:

H200L30H500L30H500L30H3000

Similar to the Custom Formula you can create for functional simulation, this waveform means high for
200ns, then low for 30ns, then high for 500ns, and so on. This waveform will define a stimulus pattern
for the STRTSTOP input signal.

19. Repeat Steps 12 through 13 to add the RESET signal and the GSRT signal to the Stimulated Signals list.

20. With the RESET signal selected in the Stimulated Signals list, set the Stimulator Type to be Waveform.

21. In the value field type the following.

@0=0 9500=1 400=0

This means “at 0ns the signal is 0, 950ns later the signal is high, 40ns later the signal is low.” Note that
the units of this measurement are tenths of nanoseconds. This waveform provides a reset pulse to reset
the stopwatch during the simulation.

In the same manner, set the GSRT Stimulator Type to be Waveform. In the value field, type:

@0=0 400=1

Xilinx Foundation Series v1.5i training

Page 26 February 1999

22. The Stimulators page also allows you to select signals which you wish to “watch” in a printed output
file. Since you will be setting a printed output file in the next section of the Wizard, you will add more
signals to this list so that they may be watched.

Repeat Steps 12 and 13 to add the TENS, ONES, and TENTHS vectors to the Stimulated and Watched
Signals list. Be sure that you add the vectors and not the buses.

Figure 25 Selecting Vectors to Watch

23. Because the TENS, ONES, and TENTHS vectors are outputs, they should not have stimulus assigned
to them. Select each of these vectors individually and set the Stimulator Type to be None.

24. You should now see six signals listed in the window. Select them all by performing a Shift-Click and
then click the Toggle Watch button. This changes the watch status of all of them from No to Yes.

Figure 26 Signals’ Stimulus

25. Click Next to advance to the Breakpoints and Simulation page.

Timing Simulation

Xilinx Academy Page 27

Breakpoints allow you to monitor the simulation for some output response. You can specify how the
simulator will notify you when the output response is detected.

26. On the Breakpoints and Simulation page, click the Browse... button to choose the first signal to set a
breakpoint on.

27. In the Component Selection window, choose the ONES vector from the signal list and click OK.

28. You should now see the ONES vector listed in the Defined Breakpoints list. Highlight ONES, and then
from the Condition pulldown menu, select Low State . This defines the condition which must be
present on the ONES vector for the breakpoint to occur.

29. In the Action field, type the following:

print > tim_out.txt

This tells the simulator to write out an output report called tim_out.txt whenever the breakpoint
condition is met.

30. Set the Simulation Command to Cycle, and the Simulation Value to 400. This tells the simulator to run
for 400 clock cycles.

Figure 27 Breakpoints and Simulation

31. Click Finish . You can now view your completed script file in the Script Editor.

Viewing the Script File with the Script Editor
32. Save the script file that was created by the Script Wizard by selecting File → Save. Be sure that the file

is being saved into the current Foundation Series project directory (that is,
C:\Fndtn\Active\projects\watch_proj_name). Name the script file watchtim.cmd.

33. Look through the script file to see what the Script Wizard created.

Running the Simulation from the Script Editor
34. You can execute the simulation directly from the Script Editor. To do this, select Execute → Go.

Xilinx Foundation Series v1.5i training

Page 28 February 1999

A log of the executed commands appears at the bottom of the Script Editor, including messages indi-
cating when breakpoints were encountered.

35. To view the simulation results in the Waveform Viewer, move the Script Editor window and bring the
Waveform Viewer window to the front of your view. Inspect the simulation results to make sure they
are accurate. Note that the TENTHS output is active-low and you are viewing the inverted value in the
simulator. Also, you are viewing the HEX2LED result of ONES and TENS.

You should now see that this is indeed performing a timing simulation based on actual delays in the
placed and routed design. If you zoom in to get a closer view of the waveforms, you will see that there is a
delay from the rising edge of the clock to the transitions or the counter outputs.

Figure 28 Timing Simulation Waveforms

For more detailed information related to actual path delays and system performance requirements, you
can use the Xilinx Timing Analyzer to do Static Timing Analysis.

Viewing the Printed Output File
As previously mentioned, you set a breakpoint action to write to a printed output file called tim_out.txt.
This file is a text file that is viewable in any text editor. You can use the Script Editor or any other text
editor to view this file.

To view this file from the Script Editor, select File → Open from the Script Editor and set the File Type filter
to *.* . Locate the file tim_out.txt, and click Open.

This file is a printed output file in the form of a state table, showing the states of all the “watched” signals
at the times at which breakpoints were encountered. The times at the five breakpoints should match the
times listed in the log console area of the Script Editor when the simulation was originally run. You should
still be able to see the console messages to verify this.

Closing the Simulator
36. When you are satisfied with the results of the simulation, you may close the Script Editor and the

Simulator.

You have now completed the Foundation Series 1.5i lab, showing the new HDL flow, plus new features of the
Script Wizard and Design pull-through. More new features are included with Foundation Series 1.5i. Please
experiment with other parts of the software and ask the lab instructor if you have questions!

