
Summary

This application note describes the basic flow and some of the issues to be aware of for HDL simulation with Alliance Series
software. The goal of this document is to familiarize the user with some of the concepts but should not be considered a
replacement for the Xilinx or HDL simulator’s documentation. Please refer to the Xilinx HDL Design Guide and other
appropriate Xilinx documents for more detailed information on HDL simulation and synthesis. Also refer to the vendor
documentation for specific information about your particular simulator or synthesis tool.

Introduction
HDL simulation is becoming increasingly popular in the
design community due to increasing design size and com-
plexity, as well as recent improvements in design synthesis
and simulation tools. The two leading synthesis and simu-
lation languages today are Verilog and VHDL. Both of these
languages have been adopted standards by IEEE and both
are becoming increasingly popular in the logic design com-
munity. The Xilinx Alliance Series software currently sup-
ports the Verilog IEEE 1364 Standard, VHDL IEEE
Standard 1076.4 for Vital (Vital 95), and SDF version 2.1.

The new Xilinx Alliance Series was designed to be used
with several HDL synthesis and simulation tools to provide
a solution for programmable logic designs from beginning
to end. The Xilinx Alliance Series provides libraries, netlist
readers and netlist writers along with the powerful place
and route software that integrates with your HDL design
environment on PC and UNIX workstation platforms.

Overview of HDL Simulation Flow
A typical design flow includes these basic steps. (Figure 1)

1. HDL Code Entry

2. Behavioral or RTL (Pre-synthesis) Simulation

3. Synthesis of the design

4. Post-Synthesis simulation

5. Implementation (Place and Route) of the design

6. Timing simulation

7. Download of the design to the FPGA for in-circuit verifi-
cation

It may take several iterations of some of these steps to get
the desired result.

HDL Code Entry
Typically, the first step in beginning an HDL design is enter-
ing the HDL code, once the design specifications are final-
ized. During this design entry state there are many things to
keep in mind in order to create an efficient design.

Coding Style
Generally it is suggested to pick a specific coding style for
the design and adhere to it. This aids in reading and debug-
ging the code. Some things to consider are the following:

• Capitalization style
• Indentation style
• Use of spaces in the code
• Code commenting, use, and style

Keep in mind that there are differences between sythesiz-
able HDL code and simulatable HDL code. Generally the
synthesizable code set is a sub-set of the simulatable HDL
code. In other words, you can generally create HDL code
that simulates properly but may or may not synthesize. The
capabilities of the synthesis tool compared to the simulator
are dependent on the particular tools that you are using.
Review the documentation for your tools in order to deter-
mine the coding capabilities of each.

Behavioral Code
A general suggestion in the initial design creation is to keep
your code behavioral. Avoid instantiating specific compo-
nents unless necessary. This allows for more readable
code, faster and simpler simulation, code portability (the
ability to migrate to different device families) and code
reuse (the ability to use the same code in future designs).

Instantiation of Components
At times it becomes necessary to describe components
structurally in order to obtain the desired design structure
rather than specifying behavioral code. In order to accom-
plish this, a method called instantiation is used to describe
and connect these components to the existing design. A list
of several of the most frequently instantiated components
may be found in the appendix of the Xilinx Alliance Series
Quick Start Guide. It is suggested to always use capital let-
ters for all component names being instantiated as well as
all component pin names. This is required for instantiated
cells in behavioral simulation with Verilog Unisim library
and may be also required by synthesis tools. Cadence
schematics create lowercase names and must use the

0 Chip-Level HDL
Simulation Using the Xilinx
Alliance Series

XAPP 108 May 21, 1998 (Version 1.0) 0 3* Application Note

APPLICATION NOTE
XAPP 108 May 21, 1998 (Version 1.0) 1

/apps/hdl.htm

Chip-Level HDL Simulation Using the Xilinx Alliance Series
Cadence interface libraries and not the uppercase UNISIM
libraries. See Table 4 for an example of instantiating a Xil-
inx output register, OFD.

LogiBLOX
LogiBLOX modules may also be created and instantiated to
simplify the design process. The LogiBLOX module gener-

ation can create an instantiation template that may be used
to assist in the integration of the module into the design
code. A simulation model may also be created to be used
with behavioral simulation but should not be used in the
synthesis of the design.

RTL (Pre-synthesis) Simulation
RTL simulation is usually the second step in implementing
a design after initially entering the code. This first pass sim-
ulation is typically performed to verify code syntax and to
confirm that the functionality of the code is what is
intended. At this step no timing information is provided and
simulation should be performed in a unit-delay mode to
help prevent the possibility of a race condition.

Testbench
Before simulation is performed, a testbench or test fixture is
usually created to apply the stimulus to the design. A test-
bench is HDL code written for the simulator that instantiates
the design netlist(s), initializes the design and then applies
stimuli to verify the functionality of the design. The test-
bench can also be setup to display the desired simulation
output to a file, waveform or screen. The testbench has

many advantages over interactive simulation methods by
allowing repeatable simulation throughout the design pro-
cess and also provides documentation of the test condi-
tions. There are several methods to create a testbench and
simulate a design. A testbench may have a very simple
structure that sequentially applies stimulus to specific
inputs, or it may be very complex, including subroutine
calls, stimulus read in from external files, conditional stimu-
lus or other more complex structures. An example for Ver-
ilog and VHDL may be found in the $XILINX/synopsys/
tutorial directory.

Within the Verilog test fixture, it is recommended that you
also add a compiler directive ‘ timescale to define the simu-
lation timing unit and degree of precision. The syntax is:
‘timescale <time_unit> / <time_precision>. For example:

‘timescale 1ns / 100 ps.

HDL RTL
Simulation

Synthesis

Xilinx XACTstep
Implementation

HDL Timing
Simulation

HDL
Design

Testbench
Stimulus

X8345

Post-Synthesis Gate-Level
Functional Simulation

SIMPRIM
Library

UNISIM
Library

LogiBLOX
Modules

Figure 1: Typical Design Flow for Programmable Logic Device
2 XAPP 108 May 21, 1998 (Version 1.0)

The above example specifies that the basic delay unit of the
simulation is 1 nanosecond, but transitions may occur at
intervals of 100 picosecond. This matches the resolution
required by Xilinx Verilog libraries. There are no default
timescale values in Verilog so it is always recommended
that you specify the simulation units in the test fixture.

The test fixture generated by NGD2VER in later simula-
tions instantiates the design in the test fixture and also
declares the ‘ timescale unit for you.

Clocking the Design
Almost every synchronous design requires a clock or sev-
eral clocks to clock to the registers. A stimulus is typically
provided in the testbench that mimics the oscillation of an
external clock. If the FPGA internal oscillator is to be used,
the simulation model may provide this stimulus but in some
cases it may be desirable to manually apply the stimulus
through a testbench to decrease simulation time and allow
you to control the behavior directly. There are several ways

to manufacture a clock in a test bench but Table 4 illus-
trates fairly efficient ways to create the oscillator.

UNISIM Library
If a Xilinx component is instantiated into the HDL code, a
behavioral model must be available for this component
before you can perform a RTL simulation of the design. The
UNISIM library was created to address this need. To per-
form a behavioral simulation of the design containing
instantiated components, you must point the simulator to
the appropriate UNISIM library. For some simulators, the
library may also need to be compiled. Compilation of the
libraries is generally required for the VHDL Vital libraries
however the Verilog libraries may or may not need to be
compiled depending on the simulator being used. Consult
your simulator documentation for more information on com-
piling simulation libraries. See Table 5 for more information
about the UNISIM libraries. The source files for the Xilinx
unified simulation libraries are located in the following
directories:

Vital VHDL:

$XILINX/vhdl/src/unisims
The following 7 source files are provided:

unisim_VCOMP.vhd (component declaration file)
unisim_VCOMP52K.vhd (substitutional component

declaration file for XC5200 designs)
unisim_VPKG.vhd (package file)
unisim_VITAL.vhd (model file)
unisim_VITAL52K.vhd (additional model file for

XC5200 designs)
unisim_VCFG4K.vhd (configuration file for XC4000

edge decoders)
unisim_VCFG52K.vhd (configuration file for XC5200

internal decoders)

Verilog:

Each of the following directories contains individual files, one for each instantiable component.
$XILINX/verilog/src/UNI3000 (XC3000 family)
$XILINX/verilog/src/UNI4000E (XC4000E, XC4000L and SPARTAN families)
$XILINX/verilog/src/UNI4000X (XC4000EX, XC4000XL and XC4000XV families)
$XILINX/verilog/src/UNI5200 (XC5200 family)

In the above directories, $XILINX is the install directory for
the Xilinx software.

For Verilog users, there are typically two common ways to
point the simulator to the location of these libraries. You
may either add the ‘uselib compiler directive pointing to the
location of the UNISIM models on the system or you can
specify the library location from command line switches.
Consult your simulator documentation for details on setting
up compiler libraries.

Many VHDL simulators specify library locations from a
setup file or setting. Each simulator may have a different
method to specify simulation library location so please con-
sult the simulator documentation.

VHDL Global Set/Reset and Tri-State
If a global set/reset is desired for behavioral simulation, it
must be included in the behavioral code. Any described
register in the code must have a common signal that will
asynchronously set or reset the register depending on the

desired result. Similarly, if a global tri-state is desired for
simulation, it should be described in the code as well. The
UNISIM library also includes a few new models to assist in
Vital VHDL simulation of the global set/reset and tri-state
signals. Depending on the desired circuit, one or a combi-
nation of the following UNISIM models should be con-
nected to the described global set/reset and/or tri-state
signals in the design.

ROC (Reset On Configuration)
The ROC (Reset On Configuration) cell is a VHDL simula-
tion-only component used to generate a single high pulse
for simulating the global clearing or setting of registers that
occurs in an implemented design during device configura-
tion. This cell may be used in the simulations throughout
the design process. Figure 2 and Figure 3 depict models
for ROC cell simulation and implementation. The ROC cell
is reinserted when the VHDL netlist for timing is written out.
XAPP 108 May 21, 1998 (Version 1.0) 3

Chip-Level HDL Simulation Using the Xilinx Alliance Series
The ROC cell must be instantiated into the code to connect
to the design. The following is an example of such an
instantiation:

<instance_name>: ROC port map (O =>GSR_NET);

The width of the ROC initialization pulse is generally
passed in the design HDL testbench. The proper value for
the reset pulse width may be found in the data book for the
particular device you are targeting by finding the TPOR
(Power On Reset) specification. See Figure 2 for an exam-
ple configuration statement specifying a width of 100 ms.

ROCBUF (Reset On Configuration Buffer)
The ROCBUF (Reset On Configuration Buffer) cell is used
in similar VHDL cases to the ROC cell but instead of provid-
ing a component to drive the net, it allows the user’s test-
bench to drive the net without actually implementing it on
chip. Therefore the user can issue the reset initialization
pulse and subsequent reset pulses during the simulation
via the simulation reset port if multiple configuration cycles
are being simulated, however, the simulation reset port will
not appear as an input pin in the implemented design.

As with the ROC cell, the ROCBUF cell must be instanti-
ated into the code, however, this added port must now be
driven from the testbench file. If this port is desired for the
timing simulation as well, use the –gp switch for
NGD2VHDL to recreate the simulation reset port.

CONFIGURATION RTL_Simulation OF my_testbench_entity_name IS

FOR my_testbench_architecture_name

FOR design_instance_name:my_design

FOR design_architecture_name

FOR ALL:roc USE ENTITY unisim.roc(roc.v)

Generic MAP (width => 100 ms)

END FOR;

END FOR;

END FOR;

END FOR;

END RTL_simulation;

Figure 2: Sample ROC Configuration Statement for RTL Simulation

Figure 2: Model of ROC for Functional Simulation

O

ROC

D
>CK
CE

Q D
>CK
CE

Q

AR AS

Local Reset

GSR

Figure 3: Model of ROC During Implementation After
Logic Trimming

D
>CK
CE

QD
>CK
CE

Q

AR AS

Local Reset
4 XAPP 108 May 21, 1998 (Version 1.0)

TOC (Tri-state On Configuration)
The TOC (Tri-state On Configuration) cell is used in VHDL
to generate a single high pulse for simulating the global tri-
stating of the I/Os that occurs in an implemented design
during device configuration. Figure 4 and Figure 5 depict
the simulation and implementation models for the TOC cell.

The TOC cell is reinserted when the VHDL timing netlist is
written. As with the ROC cell, the TOC cell must be instan-
tiated into the code. The following is an example of this
instantiation:

<instance_name>: TOC port map (O => GTS_NET);

To set the width of the TOC pulse, a configuration state-
ment similar to that of the ROC must be specified in the
simulation testbench. Typically the duration of the tri-state
is similar to that of power on reset so the same value, TPOR,
can be used for TOC cell. These times may change
depending on the device, configuration method and options
chosen. See Figure 6 for an example configuration state-
ment for a TOC set for 100 ms.

TOCBUF (Tri-state On Configuration Buffer)
The TOCBUF (Tri-state On Configuration Buffer) cell allows
VHDL test benches to access to the net connected to the
tri-state pins of a design’s I/Os via a user-defined input port
referred to as the simulation tri-state port. Therefore the
user can not only issue the reset initialization pulse, emulat-
ing the tri-stating of I/Os in the design during configuration,
but can also issue subsequent initialization pulses via the
simulation tri-state port if multiple configuration cycles are
being simulated. Note, however, that the simulation tri-state
port will not appear as an input pin in the implemented
design.

As with the TOC cell, the TOCBUF cell must be instantiated
into the code however this tri-state simulation port must
now be driven by the testbench file. If this port is desired for

Figure 4: Model of TOC for Simulation

Output 1

Output Pad 1

O

ROC

Output 2

Output Pad 2
Local Tristate

GTS

Figure 5: Model of TOC After Logic Trimming

Output 2

Output Pad 2
Local Tristate

Output 1

Output Pad 1

CONFIGURATION RTL_simulation OF my_testbench_entity_name IS

FOR my_testbench_architecture_name

FOR design_instance_name:my_design

FOR design_architecture_name

FOR ALL:toc USE ENTITY unisum.toc(toc.v)

Generic MAP (width => 100 ms)

END FOR;

END FOR;

END FOR;

END FOR;

END RTL_Simulation;

Figure 6: SampleTOC Configuration Statement RTL Simulation
XAPP 108 May 21, 1998 (Version 1.0) 5

Chip-Level HDL Simulation Using the Xilinx Alliance Series
the timing simulation as well, use the –tp switch for
NGD2VHDL to create the simulation tri-state port.

STARTBUF (Startup Buffer)
The STARTBUF (Startup Buffer) cell allows VHDL designs
access to all of the input and output ports of the STARTUP
cell, and adds 2 extra ports (GSROUT and GTSOUT) for
simulation purposes. The port names for the STARTBUF
cell differ slightly from that of the STARTUP cell. See
Table 1 for details.

The input ports GSRIN and GTSIN can be connected
either directly or indirectly via combinational logic to input
ports of the design. The design input ports will appear as
input pins in the implemented design. Note that use of the
STARTBUF implies that the design has user-defined sig-
nals driving the global set/reset and/or tri-state resource(s)
available in the implemented design. This is in addition to
the automatic pulse that occurs during configuration.

Figure 7 and Figure 9 show how the STARTBUF is con-
nected for Functional and Timing simulation while Figure 8
depicts the implemented circuit.

The STARTBUF is not reinserted, the GSR/GTS are
directly wired to the ports.

To summarize, if it is desired to have either the Global Set/
Reset (GSR) or Global Tri-state (GTS) signal as a port in
the implemented design, it is suggested to use the START-
BUF cell for simulation and implementation. If it is desired
to have access to the Global Set/Reset signal during simu-
lation but not implementation, it is suggested to use the
ROCBUF cell. Similarly, if it is desired to have access to the
Global Tri-state signal during simulation but not implemen-
tation, use the TOCBUF cell. If it is not important to have
access to these global signals but if the user still wishes to
simulate the startup characteristics of the device, use the
ROC and TOC cells.

Table 1: STARTBUF Pin Descriptions.

STARTBUF
Pin Name

Connection Point
XC4000 STARTUP

Pin Name
XC5200 STARTUP Pin Name

GSRIN Global Set/Reset
Port of design

GSR GR

GTSIN Global Tri-state
Port of design

GTS GTS

GSROUT All registers asynchronous
set/reset

Not available, for
simulation only

Not available, for simulation only

GTSOUT All output buffers tri-state
control

Not available, for
simulation only

Not available, for simulation only

CLKIN Port or internal logic CLK CLK
Q2OUT Port or internal logic Q2 Q2
Q3OUT Port or internal logic Q3 Q3

Q1Q4OUT Port or internal logic Q1Q4 Q1Q4
DONEINOUT Port or internal logic DONEIN DONEIN
6 XAPP 108 May 21, 1998 (Version 1.0)

Figure 7: Model of STARTBUF Cell for Behavioral and Post-synthesis Simulation
Note: GSR has been configured as active low by the addition of an inverter to the STARTBUF

D
>CK
CE

Q D
>CK
CE

Q

AR AS

Output 1
Output Pad 1

Output 2
Output Pad 2Local Tristate

GTS

Local Reset

Device
Tristate
Port

Device
Reset
Port

STARTBUF

GTSOUT

GSROUT GSR

GTSIN

GSRIN

Figure 8: Diagram of Implementation Circuit After Logic Trimming
Note: GSR has been configured as active low by the addition of an inverter to the STARTBUF.

Output Pad 1

Output 2
Output Pad 2

Local Tristate

Output 1

D
>CK
CE

QD
>CK
CE

Q

AR AS

Local Reset

Startup

GTS

Device
Tristate
Port

Device
Reset
Port GSR
XAPP 108 May 21, 1998 (Version 1.0) 7

Chip-Level HDL Simulation Using the Xilinx Alliance Series
Verilog Global Set/Reset and Tri-State
For Verilog implementation, all behaviorally described
(inferred) and instantiated registers should have a common
signal which asynchronously sets or resets the register
however the Verilog UNISIM library does not have ROC,
ROCBUF, TOC, TOCBUF, or STARTBUF cells. The simula-
tion of their function is rather simple from the testbench.
Unlike VHDL VITAL 95, a global signal may be defined in
the testbench to connect sub-module signals such as GSR
or GTS.

For Verilog simulation without an instantiated STARTUP
block, the following should be added to the design code and
test fixture.

• Within the design Verilog code, GSR and/or GTS
should be declared as Verilog wire or register within the
design module.

• Then, within the test fixture file set two macros called:
- GSR_SIGNAL

to testfixture_module. design_instance.GSR (the
name of the global set/reset signal, qualified by the
name of the test fixture module) and design instance
name instantiated in the test fixture.

and the design instance name given in the test fixture
file and
- GTS_SIGNAL

to testfixture_module design_instance.GTS (The
name of the global tri-state signal, qualified by the
name of the test fixture module and the design
instance name given in the test fixture file.)

using the `define compiler directive. GSR and GTS should
then be toggled High, then Low in an “initial” block. The
duration of this reset and tri-state pulse should be obtained
from the Xilinx Data book by acquiring the TPOR (Power-
On Reset) specification for the device being used. This
example illustrates a 100 ns Power-On Reset width
(assuming a ̀ timescale of 1 ns). This example illustrates an
implementation targeting an XC4000 family device. See
Figure 10.

Figure 9: Model of Design Using STARTBUF for Timing Simulation
Note: GSR has been configured as active low by the addition of an inverted to the STARTBUF.

O

ROC

D
>CK
CE

Q D
>CK
CE

Q

AR AS

D
>CK
CE

Q D
>CK
CE

Q

AR AS

Output 1
Output Pad 1

Output 2
Output Pad 2Local Tristate

GTS

Local Reset

Device
Tristate
Port

Device
Reset
Port

GSR
8 XAPP 108 May 21, 1998 (Version 1.0)

GSR and GTS are the signal names used for this example
and active high is the polarity of these signals. See Table 2
for a listing of other Xilinx device’s global signal names and
polarities.

Asserting global set/reset and global tri-state when the
STARTUP block is specified in the design is similar to
asserting global set/reset and global tri-state without a
STARTUP block in the design. There are two differences,
however. The first difference is that the ‘define statement
must now specify the name of the net attached to the GSR

(for XC4000, see Table 2 for other devices) and/or GTS
pin on the STARTUP block. The other difference is that
the signals you toggle are now the external input ports
that control the “global_set_reset_port” and/or “global_tri-
state_port” on the STARTUP block. (Figure 11) After imple-
menting the design in Alliance Series (post-NGDBUILD,
post-MAP, or timing simulation), simply invoke the simula-
tion using the same test fixture. The test fixture and simula-
tion information may remain unchanged.

module testfixture_name;

‘define GSR_SIGNAL testfixture_module.design_instance.GSR;

‘define GTS_SIGNAL testfixture_module.design_instance.GTS;

initial

 begin

‘GSR_SIGNAL = 1; // reset the device

 ‘GTS_SIGNAL = 1; // tri-state all outputs

 #100 ‘GSR_SIGNAL = 0;

 ‘GTS_SIGNAL = 0; // device now active

 <add simulation data here>

Figure 10: Verilog Global Set/Reset Test Fixture Implementation Targeting XC4000 or Spartan Device.

Table 2: Global Reset and Tri-state Names for Xilinx Devices

Device Family
Global Reset

Name
Global Tri-state Name Default Reset Polarity

XC3000 GR Not Available Low
XC4000 GSR GTS High
XC5000 GR GTS High
XC9500 PRLD GTS High
SPARTAN GSR GTS High
XAPP 108 May 21, 1998 (Version 1.0) 9

Chip-Level HDL Simulation Using the Xilinx Alliance Series
LogiBLOX
As mentioned before, LogiBLOX can create a simulation
model in order to allow behavioral simulation of the Logi-
BLOX created module. This model is not necessary for
post-NGDBUILD, post-MAP or timing simulation. The pro-
cess for this simulation is different for Verilog and VHDL
users.

For Verilog, a structural netlist is created using a technol-
ogy independent library called SIMPRIMs. In order to sim-
ulate this netlist, the simulator needs to be pointed to the
location of the SIMPRIM models. The default location of
these models are located in $XILINX/verilog/data although
this location may be different on a particular system. The
extensions of these libraries are .vmd. If the LogiBLOX
module contains registers, these registers would need to
be initialized by performing a global reset.

For VHDL designs, a behavioral netilst is created but a
VITAL library needs to be compiled before simulating the
LogiBLOX netlist. The location of the source code for the
LogiBLOX library is $XILINX/vhdl/src/logiblox. Check with
the simulator vendor’s documentation for details on how to
compile this library

Synthesizing the Design
The method to synthesize a design is solely dependent on
the synthesis tools being used. Familiarize yourself with the
various synthesis options available to you. These options
may have a dramatic effect on the resulting compiled
design. Please refer to the Xilinx Synthesis and Simulation
Design Guide, the synthesis tool’s documentation for
instructions and hints on properly synthesizing the design
to be targeted to a Xilinx device.

Post-Synthesis Simulation
Post synthesis simulation is used to verify the design func-
tionality after the design has been synthesized and a struc-
tural representation of your design has been created. This
may be done in any of three steps, after synthesis, after
design netlist translation (NGDBUILD) or after Mapping the
design.

After Synthesis
If the synthesis tool has the capability of writing out a post-
synthesis HDL netlist of the design, this may be used to
simulate the design and evaluate the synthesis results.
This structural netlist will contain the synthesized gates cre-
ated by the synthesis tool. Using the same UNISIM library
used during behavioral simulation, a simulation may be
performed on this structural netlist.

The same testbench used for the behavioral simulation
may be used with this post-synthesis simulation, however
the deign needs to be initialized by performing a global
reset if this was not performed in the previous simulation.
The methods for executing a global reset are different for
Verilog and VHDL. See the previous Global Set/Reset and
Tri-state section for details on performing a global reset for
the design.

After Design Translation (Post NGDBUILD)
Simulation may also be performed after the netlist transla-
tion stage, NGDBUILD. Generally an HDL simulation may
be performed here if the synthesis tool is not capable of
writing out a structural simulation netlist. The .ngd file pro-
duced from NGDBUILD may be input into one of the simu-
lation netlisters, NGD2VER or NGD2VHDL. NGD2VER
and NGD2VHDL create a structural simulation netlist
based on the SIMPRIM models. SIMPRIMs are “generic”
technology independent models in which you perform sim-

module testfixture_name;

‘define GSR_SIGNAL port_connected_to_GSR_pin_of_STARTUP;

‘define GTS_SIGNAL port_connected_to_GTS_pin_of_STARTUP;

initial

 begin

 global_set_reset_port = 1; // reset the device

 global_tri-state_port = 1; // tri-state all outputs

 #100 global_set_reset_port = 0;

 global_tri-state_port = 0; // device now active

 <add simulation data here>

Figure 11: Asserting Global Set/reset and Global Tri-state for RTL Simulations
Note:The “define declaration can be REMed out for Post_NGDBuild, Post-MAP and Timing simulation.
10 XAPP 108 May 21, 1998 (Version 1.0)

ulation from the Alliance series software. Depending on the
simulator being used, these SIMPRIM models may need to
be compiled by the simulator before use.

In order to create the Verilog or VHDL simulation netlist, as
shown in Figure 12, perform the following steps on the syn-
thesis compiler produced EDIF or XNF netlist, referenced
here by <design>.

Note: The –ul switch for NGD2VER will automatically add
the `uselib directive specifying the location of the SIMPRIM
libraries. If your simulator does not accept this directive,
omit this switch.

NGD2VER and NGD2VHDL may create a template test-
bench or test fixture which may simplify the simulation of
the design. You may simply add your stimulus from the
behavioral simulation or create new simulation stimulus to
test the design for the desired outputs. The –tf and –tb
switches will create the test fixture or testbench template.
The Verilog test fixture file has a .tv extension and the
VHDL test bench file has a .tvhd extension.

As with the previous simulations, the simulator needs to be
pointed to the location of the simulation primitives, in this
case SIMPRIM models. The location of the compiled librar-
ies may be different on each system. See Table 5 for more
information about the SIMPRIM libraries.

For Verilog users, the –ul switch will add a `uselib directive
in the Verilog simulation netlist which points to the location
of the SIMPRIM models on the system. Alternatively, this
library location may be specified from command line
switches.

For VHDL users, this is usually done in the setup file
located in the simulation directory.

For more specific information, please consult the vendor
documentation for details on specifying design libraries.

After Map
Simulation may also be performed after the maping of the
design but before the place and route stage. This simula-
tion will include the block delays for the design but not the
routing delays. This is generally a good barometer to test
whether the design is meeting the timing requirements
before spending the time to fully place and route the
design.

As with the previous simulation, NGD2VER or NGD2VHDL
will create the structural simulation netlist based on SIM-
PRIM models. The following steps must be followed in
order to create a post-MAP simulation model. (Figure 13)

A template file for the test fixture may be generated as
mentioned in the previous simulation section.

The delays for the design are stored in an SDF, standard
delay format, file which is created by the simulation netlis-
ter, NGD2VER or NGD2VHDL. This SDF file will contain all
block or logic delays however will not contain any of the
routing delays for the design since the design has not yet
been placed and routed. All block delay values are worst
case values. Actual device block delays are generally
shorter under normal operating conditions.

For Verilog, the SDF file is automatically read when the
simulator compiles the Verilog simulation netlist. Within the
simulation netlist is the Verilog function $sdf_annotate
which specifies the name of the SDF file to be read in.

The user specifies the SDF file for most VHDL simultors.
The method for doing so is different depending on the sim-
ulator being used. Typically a command line or GUI switch
is used to read in the SDF file.

The post-MAP simulation may also be back annotated to
the original input netlist (EDIF or XNF file) to the Alliance
Series software. This means that many of the internal sig-
nal and instance names to the design may be replaced in
the simulation netlist to possibly aid in debugging internal
nodes of the design. When executing NGDANNO, including
the map.ngm file produced from the Map stage creates the
back annotated simulation file. Since many of the internal
signal and instance names of the design were most likely
created by the synthesis tool and contain names that have
no meaning to the designer, this step is not usually neces-
sary and disabling this feature will decrease the run time of
the Alliance Series software.

ngdbuild <design>

ngd2ver -tf –ul <design>.ngd ngdbuild_sim.v

or

ngd2vhdl –tb <design>.ngd ngdbuild_sim.vhd

Figure 12: Creating a Verilog or VHDL Simulation
Netlist

ngdbuild <design>

map <design>.ngd map.ncd

ngdanno map.ncd

ngd2ver –tf –ul map.nga map_sim.v

or

ngd2vhdl –tb map.ngd map_sim.vhd

Figure 13: Creating a Post-MAP Simulation Model
XAPP 108 May 21, 1998 (Version 1.0) 11

Chip-Level HDL Simulation Using the Xilinx Alliance Series
Placement and Routing of the
Design
It is not until this stage of design implementation that we get
the full picture as to how the design will behave in circuit.
The overall functionality of the design has been defined
from the beginning stages but it is not until the design has
been placed and routed that all of the timing information of
the design can be accurately calculated.

Timing Simulation
The timing simulation is the last step of chip-level verifica-
tion before downloading the bitstream to the device. A tim-
ing simulation netlist may be created after the design has
completed placement and routing in the Alliance Series
tools. As with the previous simulations, NGD2VER or
NGD2VHDL creates a structural netlist, however this netlist
comes from the placed and routed .ncd file.

SDF
For this timing simulation, an SDF file is created as with the
after MAP simulation however this SDF file contains all
block and routing delays for the design. As with the post-
map version, all delays are worst case values.

Back Annotation
As with the post-map simulation, the Timing simulation can
also be back annotated to the original design netlist. When
implementing the design from Design Manager, this option
is default. It is represented by the “Correlate Simulation
Data to Input Design” radio button in the Simulation Data
Options section of the Implementation Options window.
Since many of the internal signal and instance names of
the design were probably created by the synthesis tool and
contain names that have no meaning to the designer, this
step is not usually necessary and disabling this feature will
decrease the run time of the Alliance Series software.

During timing simulation, there are usually two occurrences
to look for. First, ensure that the design is functioning as
expected after placement and routing. Second, look for tim-
ing violations. Timing violations from the simulation are rep-

resented by a setup or hold time error message issued by
the simulator.

Setup and Hold Times
The simulator will issue a setup or hold time violation any
time data changes at a register input (data or clock enable)
within the setup or hold time window for the particular reg-
ister. These are a few typical causes of a setup or hold time
violation:

1. Data path delays are too long for clocking speeds.

2. Clock skew is unaccounted for before simulation.

3. Data paths cross out-of-phase or asynchronous clocks
(to each other).

4. Input data changing at the wrong time.

Some questions for debugging setup or hold time issues
are:

1. Did Trace or Timing Analyzer report the data path may
run at speeds being clocked in simulation?

2. Is clock skew being accounted for in this path delay?
Was the clock path analyzed by Trace or Timing Ana-
lyzer? Does subtracting the clock path delay from the
data path delay still allow clocking speeds?

3. Will slowing down the clock speeds eliminate the setup/
hold time violations?

4. Does this data path cross clock boundaries (from one
clock frequency to another)? Are the clocks synchro-
nous to each other? Is there appreciable clock skew
between these clocks?

5. Is this path an input path to the device? Does changing
the time at which the input stimulus is applied eliminate
the setup/hold time violations?

Hopefully the answers to these questions help determine
the cause of the setup or hold time violation. Based on
these responses, possible design changes may need to be
made in order to accommodate the simulation conditions.

While Xilinx data sheets state that there are zero hold-
times on the internal registers and I/O registers with the
default delay, it is still possible to receive a hold-time viola-
tion from the simulator. This hold-time violation is in reality
a setup violation on the register but in order to get an accu-
rate representation of the CLB delays, part of the setup
time must be modeled as a hold time. For more information
on this modeling please refer to http://www.xilinx.com/tech-
docs/782.htm.

Setup and hold violations may also occur on the write cycle
of a RAM. Special care must be taken when writing to
RAMs, especially asynchronous RAMs. It is suggested to
use synchronous RAMs in your design whenever possible
to simplify the write timing for a synchronous design.

ngdbuild <design>

map <design>.ngd map.ncd

par <options> map.ncd <design>.ncd map.pcf

ngdanno <design>.ncd

ngd2ver –tf –ul <design>.nga time_sim.v

or

ngd2vhdl –tb <design>.ngd time_sim.vhd

Figure 14: Creating a Timing Simulation Model
12 XAPP 108 May 21, 1998 (Version 1.0)

/techdocs/782.htm

Boundary Scan and Readback
At this time the Boundary Scan and Readback circuitry can
not be simulated. Xilinx is looking into the creation of mod-
els for these components, however are not currently avail-
able.

Decreasing Simulation Times
As designs get larger and more complex, simulation times
may also increase. Larger parts may take a long time to
compile and simulate depending on utilization and machine
in which the simulation is run. There are some techniques
that may speed up simulation. For Verilog simulation, the
‘ timescale resolution may be decreased in order to
decrease simulation time with the trade-off of less preci-
sion.

Xilinx development system’s RAM, swap space and disk
space requirements increase as design size increases. If
these requirements are not met, simulation times may
increase substantially or simulation may not be possible at
all. Most modern HDL simulators require faster CPU com-
putation speeds in order to manage shorter simulation
times. Older CPU architectures generally will be signifi-
cantly slower simulating a design.

Many simulators have other methods to speed up simula-
tion times. Please consult the vendor simulation manual for
addition suggestions for speeding up design simulation.

Downloading to the Device
Once the design is verified to behave as desired from a tim-
ing simulation, the design may be downloaded to the device
to test the design in circuit. Under normal operating condi-
tions, any synchronous path should function exactly as it
did in the timing simulation. Asynchronous paths are typi-
cally slightly faster in the actual device since the delays are
modeled for worst case conditions.

The Xilinx Alliance Series tools also includes a powerful
tool for in circuit debugging of the design called Hardware
Debugger. Hardware Debugger, when used with the
Xchecker cable, allows the viewing of logic levels and the
creation of waveforms of internal nodes within the FPGA.
When this information is used along with the information
received from the timing simulation, actual device behavior
may be compared with that found from the simulation mod-
els. Please refer to the Xilinx Dynatext on-line manual
Hardware Debugger Reference/User Guide for more
detailed information on in-circuit debugging of a design.

Conclusion
As Xilinx devices continue to grow in density and complex-
ity, it becomes increasingly important to create simple yet
powerful design simulation and implementation tools. Xilinx
recognizes this need and will continue to focus on the HDL
design entry and verification as an important part of the
design process and will continue its integration into this
design methodology.

Please visit the Xilinx World Wide Web site for the latest
information about Xilinx devices and software at
http://www.xilinx.com. Other Xilinx related documents
can be found in Table 3.

Table 3: Available Xilinx Documents

Synthesis and Simulation Design Guide

Cadence Interface/Tutorial Guide

Mentor Graphics Interface/Tutorial Guide

Synopsys (XSI) Interface/Tutorial Guide

Synopsys (XSI) Synthesis and Simulation Design Guide

Xilinx Development System User Guide
XAPP 108 May 21, 1998 (Version 1.0) 13

/apps/hdl.htm
/apps/hdl.htm

Chip-Level HDL Simulation Using the Xilinx Alliance Series
.

Table 4: Examples of common coding examples for Verilog and VHDL testbench creation. Most of these examples
are not valid for synthesis however are useful for simulation testbench creation.

Description Verilog VHDL
Delay or wait 20 nS ‘ timescale 1 ns/ 100 ps

#20;
wait for 20 ns;

Creation of a free running clock Initial
begin
 clock = 0;
 #25 forever #25 clock = ~clock;
end

Loop
 wait for 25 ns;
 clock <= not (clock);
end loop;

Print “Text.” to screen $display(“Text.”); report “Text.”
Print value of signal to screen
whenever the value changes

$monitor(“%t”, $realtime, “%b”, clock,, “%b”,
my_signal);

Apply a binary value 1010 to an
input bus X.

X = 4’b1010; X <= “1010”;

Creation of a for loop 0 to 10. for(x=0; x < 10; x=x+1)
begin
 <actions>
end

for x in 0 to 9 loop
 <actions>
end loop;

Write “X = <value>” to an output
file

$dumpfile (“filename.dmp”);
$dumpvars (X);

variable TEMP;
write (TEMP, “X = “);
write (TEMP, X);
writeline (filename, TEMP);

Wait until X is logic one. wait (X == 1’b1); wait until X = ‘1’;
Wait until X transitions to a logic
one.

@(posedge X); wait on X;

If-Else construct always @ (X)
begin
 if (X = 1)
 Y = 1’b0;
 else
 Y = 1’b1;
end

process (X)
 if (X = ‘1’) then
 Y = ‘0’;
 else
 Y = ‘1’;
 end if;
end process;

Case construct always @(X or A)
 case (X)
 2’b00 : Y = 1’b0;
 2’b01 : Y = 1’b1;
 default : Y = A;
 endcase

process (X, A)
begin
 case X is
 when “00” => Y = ‘0’;
 when “01” => Y = ‘1’;
 when others => Y = A;
 end case;
end process;

Example instantiation of an
OFD

OFD U1 (.Q(D_OUT), .D(D_IN),
 .C(CLOCK));

U1: OFD port map
(Q => D_OUT, D => D_IN,
C => CLOCK);
14 XAPP 108 May 21, 1998 (Version 1.0)

Table 5: Xilinx Alliance Series HDL Simulation Library Information

Library Simulation
Location of Source Code Compilation of Libraries Required

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL

UNISIM
(XC4000
Family)

Behavioral and
Post-Synthesis

$XILINX/
verilog/src/
UNI4000E
or
UNI4000X

$XILINX/
vhdl/src/
unisims

Not required for
Verilog-XL. See
vendor documenta-
tion for other simu-
lators

Yes.

Typical Compilation order:
VCFG4K.vhd is optional:
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd
unisim_VCFG4K.vhd

UNISIM
(XC5200 Family)

Behavioral and
Post-Synthesis

$XILINX/
verilog/src/
UNI5200

$XILINX/
vhdl/src/
unisims

Not required for
Verilog-XL. See
vendor documenta-
tion for other simu-
lators

Yes.

Typical compilation order:
unisim_VCOMP52K.vhd
unisim_VPKG.vhd
unisim_VITAL.vh
unisim_VITAL52K.vhd
unisim_VCFG52K.vhd

LOGIBLOX
(Device Inde-
pendent)

Behavioral and
Post-Synthesis

None
$XILINX/
vhdl/src/
logiblox

None

Yes.

Typical compilation order:
mvlutil.vhd
mvlarith.vhd
logiblox.vhd

SIMPRIM
(Device Inde-
pendent)

Post-NGDBUILD
Post-MAP
Timing

(for A1.4)
$XILINX/
verilog/data $XILINX/

vhdl/src/
simprims

Not required for
Verilog-XL. See
vendor documenta-
tion for other simu-
lators

Yes.

Typical compilation order:
simprim_Vcomponents.vhd
simprim_Vpackage.vhd
simprim_VITAL.vhd

(for A1.5)
$XILINX/ver-
ilog/spc/sim-
prims
XAPP 108 May 21, 1998 (Version 1.0) 15

	Introduction
	Overview of HDL Simulation Flow
	HDL Code Entry
	Coding Style
	Behavioral Code
	Instantiation of Components
	LogiBLOX

	RTL (Pre-synthesis) Simulation
	Testbench
	Clocking the Design
	UNISIM Library
	VHDL Global Set/Reset and Tri-State
	ROC (Reset On Configuration)
	ROCBUF (Reset On Configuration Buffer)
	TOC (Tri-state On Configuration)
	TOCBUF (Tri-state On Configuration Buffer)
	STARTBUF (Startup Buffer)
	Verilog Global Set/Reset and Tri-State
	LogiBLOX

	Synthesizing the Design
	Post-Synthesis Simulation
	After Synthesis
	After Design Translation (Post NGDBUILD)
	After Map

	Placement and Routing of the Design
	Timing Simulation
	SDF
	Back Annotation
	Setup and Hold Times
	Boundary Scan and Readback
	Decreasing Simulation Times

	Downloading to the Device
	Conclusion

