# **XC4000EX Switching Characteristics**

### **Definition of Terms**

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

All specifications subject to change without notice.

#### **XC4000EX Absolute Maximum Ratings**

| Symbol           | Description                                        |                                   | Value                        | Units |  |
|------------------|----------------------------------------------------|-----------------------------------|------------------------------|-------|--|
| V <sub>CC</sub>  | Supply voltage relative to GND                     |                                   | -0.5 to +7.0                 | V     |  |
| V <sub>IN</sub>  | Input voltage relative to GND (Note 1)             |                                   | -0.5 to V <sub>CC</sub> +0.5 | V     |  |
| V <sub>TS</sub>  | Voltage applied to 3-state output (Note 1)         |                                   | -0.5 to V <sub>CC</sub> +0.5 | V     |  |
| V <sub>CCt</sub> | Longest Supply Voltage Rise Time from 1 V to 4 V   | Voltage Rise Time from 1 V to 4 V |                              |       |  |
| T <sub>STG</sub> | Storage temperature (ambient)                      |                                   | -65 to +150                  | °C    |  |
| T <sub>SOL</sub> | Maximum soldering temperature (10 s @ 1/16 in. = 1 | .5 mm)                            | +260                         | °C    |  |
| Тј               | Junction temperature                               | Ceramic packages                  | +150                         | °C    |  |
| ']               |                                                    | Plastic packages                  | +125                         | °C    |  |

Notes: 1. Maximum DC overshoot or undershoot

above V<sub>cc</sub> or below GND must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to Vcc + 2.0 V, provided this over- or undershoot lasts less than 20 ns.

 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

# **XC4000EX Recommended Operating Conditions**

| Symbol          | Description                                                             |             | Min  | Max             | Units           |
|-----------------|-------------------------------------------------------------------------|-------------|------|-----------------|-----------------|
|                 | Supply voltage relative to GND, $T_J = 0$ °C to +85°C                   | Commercial  | 4.75 | 5.25            | V               |
| V <sub>CC</sub> | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$ | Industrial  | 4.5  | 5.5             | V               |
| VIH             | High-level input voltage                                                | TTL inputs  | 2.0  | V <sub>CC</sub> | V               |
| ۷IH             |                                                                         | CMOS inputs | 70%  | 100%            | V <sub>CC</sub> |
| M.              | Low-level input voltage                                                 | TTL inputs  | 0    | 0.8             | V               |
| $V_{IL}$        |                                                                         | CMOS inputs | 0    | 20%             | V <sub>CC</sub> |
| Τ <sub>IN</sub> | Input signal transition time                                            |             | 250  | ns              |                 |

Notes: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C. Input and output measurement thresholds for TTL are 1.5 V. Input and output measurement thresholds for CMOS are 2.5 V. All timing parameters are specified for Commercial temperature range only.

| Symbol           | Description                                                                |                                                      | Min                  | Max  | Units |  |
|------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------|------|-------|--|
| V                | High-level output voltage @ I <sub>OH</sub> = -4.0 mA, V <sub>CC</sub> min | TTL outputs                                          | 2.4                  |      | V     |  |
| V <sub>OH</sub>  | High-level output voltage @ I <sub>OH</sub> = -1.0 mA                      | CMOS outputs                                         | V <sub>CC</sub> -0.5 |      | V     |  |
| M                | Low-level output voltage @ $I_{OL}$ = 12.0 mA, V <sub>CC</sub> min         | TTL outputs                                          |                      | 0.4  | V     |  |
| V <sub>OL</sub>  | (Note 1)                                                                   | CMOS outputs                                         |                      | 0.4  | V     |  |
| V <sub>DR</sub>  | Data Retention Supply Voltage (below which configura                       | Voltage (below which configuration data may be lost) |                      |      |       |  |
| I <sub>CCO</sub> | Quiescent FPGA supply current (Note 2)                                     | GA supply current (Note 2)                           |                      |      |       |  |
| ۱L               | Input or output leakage current                                            |                                                      | -10                  | +10  | μA    |  |
| C <sub>IN</sub>  | Input capacitance (sample tested)                                          | BGA, SBGA, PQ,<br>HQ, MQ packages                    |                      | 10   | pF    |  |
|                  |                                                                            | PGA packages                                         |                      | 16   | pF    |  |
| I <sub>RPU</sub> | Pad pull-up (when selected) @ V <sub>in</sub> = 0 V (sample teste          | ed)                                                  | 0.02                 | 0.25 | mA    |  |
| I <sub>RPD</sub> | Pad pull-down (when selected) @ V <sub>in</sub> = 5.5 V (sample            | tested)                                              | 0.02                 | 0.25 | mA    |  |
| I <sub>RLL</sub> | Horizontal Longline pull-up (when selected) @ logic Lo                     | )W                                                   | 0.3                  | 2.0  | mA    |  |

#### **XC4000EX DC Characteristics Over Recommended Operating Conditions**

Note 1: With up to 64 pins simultaneously sinking 12 mA.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all package pins at Vcc or GND.

### XC4000EX Global Buffer Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

|                                                                       | ;                | Speed Grade          | -4         | -3          | -2         | -1  | Units    |
|-----------------------------------------------------------------------|------------------|----------------------|------------|-------------|------------|-----|----------|
| Description                                                           | Symbol           | Device               | Max        | Max         | Max        | Max |          |
| From pad through Global Low Skew buffer, to any clock K               | T <sub>GLS</sub> | XC4028EX<br>XC4036EX | 9.2<br>9.8 | 7.5<br>7.9  | 6.4<br>7.1 |     | ns<br>ns |
| From pad through Global Early buffer, to any clock K in same quadrant | T <sub>GE</sub>  | XC4028EX<br>XC4036EX | 5.7<br>5.9 | 4.4<br>4.6  | 4.2<br>4.4 |     | ns<br>ns |
|                                                                       |                  |                      |            | Preliminary | /          |     | •        |

# **XC4000EX Longline and Wide Decoder Timing Guidelines**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted. Fewer than the specified number of pullup resistors can be used, if desired. Using fewer pullups reduces power consumption but increases delays. Use the static timing analyzer to determine delays if fewer pullups are used.

#### XC4000EX Horizontal Longline Switching Characteristic Guidelines

|                                                                                                                                                                           | S                 | peed Grade           | -4           | -3           | -2           | -1  | Units    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------|--------------|--------------|-----|----------|
| Description                                                                                                                                                               | Symbol            | Device               | Max          | Max          | Max          | Max | Units    |
| TBUF driving a Horizontal Longline                                                                                                                                        |                   |                      |              |              |              |     |          |
| I going High or Low to Horizontal Longline going High or Low, while T is Low. Buffer is constantly active.                                                                | T <sub>IO1</sub>  | XC4028EX<br>XC4036EX | 13.7<br>16.5 | 11.3<br>13.6 | 10.9<br>13.2 |     | ns<br>ns |
| T going Low to Horizontal Longline going from resis-<br>tive pull-up or floating High to active Low. TBUF con-<br>figured as open-drain or active buffer with I = Low.    | T <sub>ON</sub>   | XC4028EX<br>XC4036EX | 14.7<br>17.4 | 12.1<br>14.4 | 11.7<br>14.0 |     | ns<br>ns |
| T going High to Horizontal Longline going from Low to High, pulled up by two resistors. (Note 1)                                                                          | T <sub>PU2</sub>  | XC4028EX<br>XC4036EX |              |              |              |     | ns<br>ns |
| TBUF driving Half a Horizontal Longline                                                                                                                                   |                   | •                    |              |              |              |     |          |
| I going High or Low to half of a Horizontal Longline go-<br>ing High or Low, while T is Low. Buffer is constantly<br>active.                                              | T <sub>HIO1</sub> | XC4028EX<br>XC4036EX | 6.3<br>7.3   | 5.6<br>6.0   | 4.6<br>5.7   |     | ns<br>ns |
| T going Low to half of a Horizontal Longline going from resistive pull-up or floating High to active Low. TBUF configured as open-drain or active buffer with $I = Low$ . | T <sub>HON</sub>  | XC4028EX<br>XC4036EX | 7.2<br>8.2   | 6.4<br>6.8   | 5.4<br>6.5   |     | ns<br>ns |
| T going High to half of a Horizontal Longline going from Low to High, pulled up by four resistors. (Note 1)                                                               | T <sub>HPU4</sub> | XC4028EX<br>XC4036EX |              |              |              |     | ns<br>ns |
|                                                                                                                                                                           |                   |                      | Р            | relimina     | ry           |     |          |

Note: These values include a minimum load of one output, spaced as far as possible from the activated pullup(s). Use the static timing analyzer to determine the delay for each destination.

#### XC4000EX Wide Decoder Switching Characteristic Guidelines

|                                                       | Speed Gr           | ade                  | -4  | -3       | -2  | -1  | Units    |
|-------------------------------------------------------|--------------------|----------------------|-----|----------|-----|-----|----------|
| Description                                           | Symbol             | Device               | Max | Max      | Max | Max | Units    |
| Full length, two pull-ups, inputs from IOB I-pins     | T <sub>WAF2</sub>  | XC4028EX<br>XC4036EX |     |          |     |     | ns<br>ns |
| Full length, two pull-ups, inputs from internal logic | T <sub>WAF2L</sub> | XC4028EX<br>XC4036EX |     |          |     |     | ns<br>ns |
| Half length, two pull-ups, inputs from IOB I-pins     | T <sub>WAO2</sub>  | XC4028EX<br>XC4036EX |     |          |     |     | ns<br>ns |
| Half length, two pull-ups, inputs from internal logic | T <sub>WAO2L</sub> | XC4028EX<br>XC4036EX |     |          |     |     | ns<br>ns |
|                                                       |                    |                      |     | relimina | ry  |     |          |

Notes: These delays are specified from the decoder input to the decoder output.

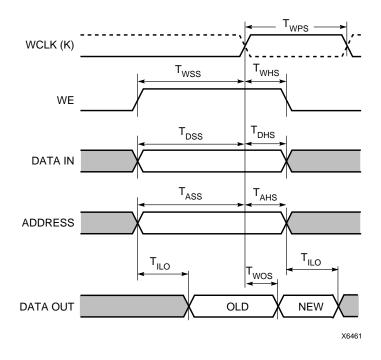
### XC4000EX CLB Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

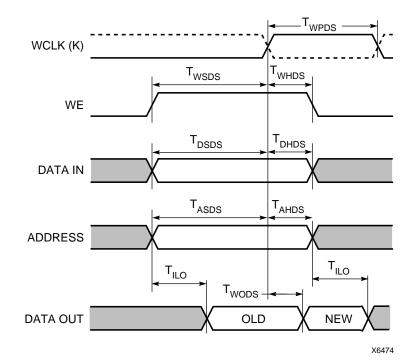
| Spe                                                              | ed Grade           | -      | 4    | -      | 3                                             | -      | 2    | -   | ·1  |       |
|------------------------------------------------------------------|--------------------|--------|------|--------|-----------------------------------------------|--------|------|-----|-----|-------|
| Description                                                      | Symbol             | Min    | Max  | Min    | Max                                           | Min    | Max  | Min | Max | Units |
| Combinatorial Delays                                             |                    |        |      |        |                                               |        |      |     | 1   |       |
| F/G inputs to X/Y outputs                                        | T <sub>ILO</sub>   |        | 2.2  |        | 1.8                                           |        | 1.5  |     | 1   | ns    |
| F/G inputs via H' to X/Y outputs                                 | T <sub>IHO</sub>   |        | 3.8  |        | 3.2                                           |        | 2.7  |     |     | ns    |
| F/G inputs via transparent latch to Q outputs                    | TITO               |        | 3.2  |        | 2.7                                           |        | 2.5  |     |     | ns    |
| C inputs via SR/H0 via H' to X/Y outputs                         | T <sub>HH0O</sub>  |        | 3.6  |        | 3.0                                           |        | 2.5  |     |     | ns    |
| C inputs via H1 via H' to X/Y outputs                            | T <sub>HH10</sub>  |        | 3.0  |        | 2.5                                           |        | 2.3  |     |     | ns    |
| C inputs via DIN/H2 via H' to X/Y outputs                        | T <sub>HH2O</sub>  |        | 3.6  |        | 3.0                                           |        | 2.5  |     |     | ns    |
| C inputs via EC, DIN/H2 to YQ, XQ output (bypass)                | T <sub>CBYP</sub>  |        | 2.0  |        | 1.6                                           |        | 1.4  |     |     | ns    |
| CLB Fast Carry Logic                                             |                    |        |      |        | <b>۱</b> ــــــــــــــــــــــــــــــــــــ |        |      | _   | 1   |       |
| Operand inputs (F1, F2, G1, G4) to COUT                          | T <sub>OPCY</sub>  |        | 2.5  |        | 2.2                                           |        | 1.9  |     |     | ns    |
| Add/Subtract input (F3) to COUT                                  | TASCY              |        | 4.1  |        | 3.6                                           |        | 3.1  |     |     | ns    |
| Initialization inputs (F1, F3) to COUT                           | TINCY              |        | 1.9  |        | 1.6                                           |        | 1.4  |     |     | ns    |
| CIN through function generators to X/Y outputs                   | T <sub>SUM</sub>   |        | 3.0  |        | 2.6                                           |        | 2.2  |     |     | ns    |
| C <sub>IN</sub> to C <sub>OUT</sub> , bypass function generators | T <sub>BYP</sub>   |        | 0.60 |        | 0.50                                          |        | 0.40 |     |     | ns    |
| Carry Net Delay, C <sub>OUT</sub> to C <sub>IN</sub>             | T <sub>NET</sub>   |        | 0.18 |        | 0.15                                          |        | 0.15 |     |     | ns    |
| Sequential Delays                                                |                    |        |      |        |                                               |        |      | -   |     |       |
| Clock K to Flip-Flop outputs Q                                   | Тско               |        | 2.2  |        | 1.9                                           |        | 1.7  |     |     | ns    |
| Clock K to Latch outputs Q                                       | T <sub>CKLO</sub>  |        | 2.2  |        | 1.9                                           |        | 1.7  |     |     | ns    |
| Setup Time before Clock K                                        |                    | _      |      |        |                                               |        |      | _   |     |       |
| F/G inputs                                                       | T <sub>ICK</sub>   | 1.3    |      | 1.1    |                                               | 1.1    |      |     |     | ns    |
| F/G inputs via H'                                                | TIHCK              | 3.0    |      | 2.5    |                                               | 2.2    |      |     |     | ns    |
| C inputs via H0 through H'                                       | THHOCK             | 2.8    |      | 2.3    |                                               | 2.0    |      |     |     | ns    |
| C inputs via H1 through H'                                       | T <sub>HH1CK</sub> | 2.2    |      | 1.8    |                                               | 1.8    |      |     |     | ns    |
| C inputs via H2 through H'                                       | T <sub>HH2CK</sub> | 2.8    |      | 2.3    |                                               | 2.0    |      |     |     | ns    |
| C inputs via DIN                                                 | TDICK              | 1.2    |      | 0.9    |                                               | 0.9    |      |     |     | ns    |
| C inputs via EC                                                  | T <sub>ECCK</sub>  | 1.2    |      | 1.0    |                                               | 0.9    |      |     |     | ns    |
| C inputs via S/R, going Low (inactive)                           | TRCK               | 0.8    |      | 0.7    |                                               | 0.6    |      |     |     | ns    |
| CIN input via F'/G'                                              | TCCK               | 2.2    |      | 1.8    |                                               | 2.1    |      |     |     | ns    |
| CIN input via F'/G' and H'                                       | Тснск              | 3.9    |      | 3.2    |                                               | 3.2    |      |     |     | ns    |
| Hold Time after Clock K                                          |                    |        |      |        |                                               |        |      | -   | -   |       |
| F/G inputs                                                       | Тскі               | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| F/G inputs via H'                                                | <u>Т</u> скін      | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| C inputs via SR/H0 through H'                                    | Тскнно             | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| C inputs via H1 through H'                                       | TCKHH1             | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| C inputs via DIN/H2 through H'                                   | T <sub>CKHH2</sub> | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| C inputs via DIN/H2                                              | TCKDI              | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| C inputs via EC<br>C inputs via SR, going Low (inactive)         | TCKEC              | 0<br>0 |      | 0<br>0 |                                               | 0<br>0 |      |     |     | ns    |
| Clock                                                            | I <sub>CKR</sub>   | 0      |      | 0      |                                               | 0      |      |     |     | ns    |
| Clock High time                                                  | Т <sub>СН</sub>    | 3.5    |      | 3.0    | 1                                             | 3.0    |      |     | 1   | ns    |
| Clock Low time                                                   | T <sub>CL</sub>    | 3.5    |      | 3.0    |                                               | 3.0    |      |     |     | ns    |
| Set/Reset Direct                                                 | 02                 |        |      |        | <u> </u>                                      |        |      |     | 1   |       |
| Width (High)                                                     | T <sub>RPW</sub>   | 3.5    |      | 3.0    |                                               | 3.0    |      |     |     | ns    |
| Delay from C inputs via S/R, going High to Q                     | T <sub>RIO</sub>   |        | 4.5  |        | 3.8                                           |        | 3.6  |     |     | ns    |
| Global Set/Reset                                                 |                    |        |      |        |                                               |        |      |     | 1   |       |
| Minimum GSR Pulse Width                                          | T <sub>MRW</sub>   |        | 13.0 |        | 11.5                                          |        | 11.5 |     |     | ns    |
| Delay from GSR input to any Q (XC4028EX)                         | T <sub>MRQ</sub>   |        | 22.8 |        | 19.0                                          |        | 19.0 |     |     | ns    |
| Delay from GSR input to any Q (XC4036EX)                         | T <sub>MRQ</sub>   |        | 24.0 |        | 21.0                                          |        | 21.0 |     |     | ns    |
| Toggle Frequency ) (for export control purposes)                 | F <sub>TOG</sub>   |        | 143  |        | 166                                           |        | 166  |     |     | MHz   |
|                                                                  |                    |        |      | Prelin | ninary                                        |        |      |     |     |       |

## XC4000EX CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.


| Single Port RAM                           | Spee         | d Grade                               | -            | 4           | -          | 3          | -          | 2          | -   | 1   | Units    |
|-------------------------------------------|--------------|---------------------------------------|--------------|-------------|------------|------------|------------|------------|-----|-----|----------|
|                                           | Size         | Symbol                                | Min          | Max         | Min        | Max        | Min        | Max        | Min | Max | Units    |
| Write Operation                           |              |                                       |              | •           |            | •          |            |            |     |     |          |
| Address write cycle time (clock K period) | 16x2<br>32x1 | T <sub>WCS</sub><br>T <sub>WCTS</sub> | 11.0<br>11.0 |             | 9.0<br>9.0 |            | 9.0<br>9.0 |            |     |     | ns<br>ns |
| Clock K pulse width (active edge)         | 16x2<br>32x1 | T <sub>WPS</sub><br>T <sub>WPTS</sub> | 5.5<br>5.5   |             | 4.5<br>4.5 |            | 4.5<br>4.5 |            |     |     | ns<br>ns |
| Address setup time before clock K         | 16x2<br>32x1 | T <sub>ASS</sub><br>T <sub>ASTS</sub> | 2.7<br>2.6   |             | 2.3<br>2.2 |            | 2.2<br>2.2 |            |     |     | ns<br>ns |
| Address hold time after clock K           | 16x2<br>32x1 | T <sub>AHS</sub><br>T <sub>AHTS</sub> | 0<br>0       |             | 0<br>0     |            | 0<br>0     |            |     |     | ns<br>ns |
| DIN setup time before clock K             | 16x2<br>32x1 | T <sub>DSS</sub><br>T <sub>DSTS</sub> | 2.4<br>2.9   |             | 2.0<br>2.5 |            | 2.0<br>2.5 |            |     |     | ns<br>ns |
| DIN hold time after clock K               | 16x2<br>32x1 | T <sub>DHS</sub><br>T <sub>DHTS</sub> | 0<br>0       |             | 0<br>0     |            | 0<br>0     |            |     |     | ns<br>ns |
| WE setup time before clock K              | 16x2<br>32x1 | T <sub>WSS</sub><br>T <sub>WSTS</sub> | 2.3<br>2.1   |             | 2.0<br>1.8 |            | 2.0<br>1.8 |            |     |     | ns<br>ns |
| WE hold time after clock K                | 16x2<br>32x1 | T <sub>WHS</sub><br>T <sub>WHTS</sub> | 0<br>0       |             | 0<br>0     |            | 0<br>0     |            |     |     | ns<br>ns |
| Data valid after clock K                  | 16x2<br>32x1 | T <sub>WOS</sub><br>T <sub>WOTS</sub> |              | 8.2<br>10.1 |            | 6.8<br>8.4 |            | 6.8<br>8.2 |     |     | ns<br>ns |
|                                           |              |                                       | Preliminary  |             |            |            |            |            |     |     |          |

Notes: Timing for the 16x1 RAM option is identical to 16x2 RAM timing. Applicable Read timing specifications are identical to Level-Sensitive Read timing.

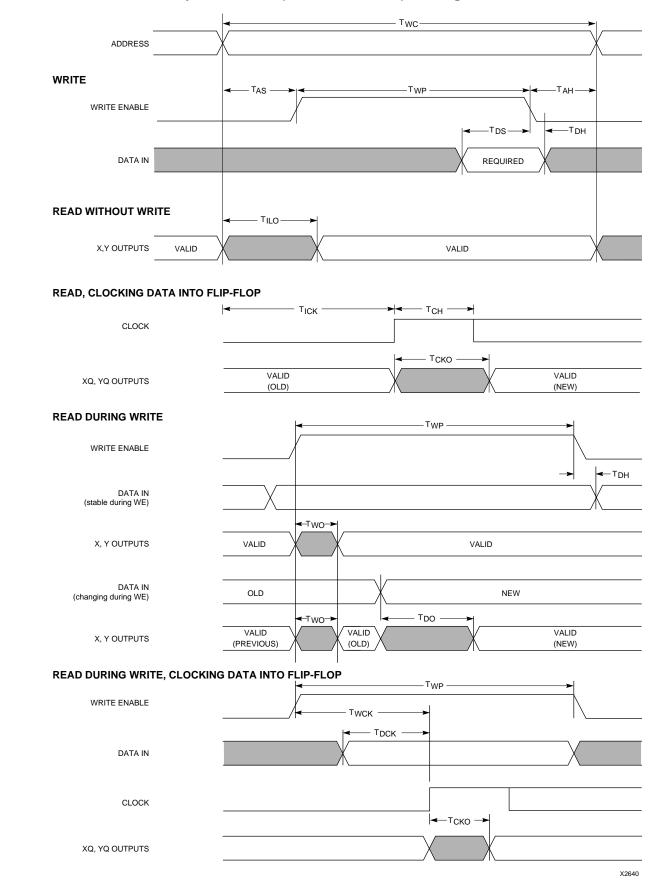

| Dual-Port RAM                             | Spee | ed Grade          | -           | 4   | -   | -3  | -   | 2   | -   | 1   | Units |
|-------------------------------------------|------|-------------------|-------------|-----|-----|-----|-----|-----|-----|-----|-------|
|                                           | Size | Symbol            | Min         | Мах | Min | Max | Min | Max | Min | Мах | Units |
| Write Operation                           |      |                   |             |     |     | 1   |     |     | •   |     | 1     |
| Address write cycle time (clock K period) | 16x1 | T <sub>WCDS</sub> | 11.0        |     | 9.0 |     | 9.0 |     |     |     | ns    |
| Clock K pulse width (active edge)         | 16x1 | T <sub>WPDS</sub> | 5.5         |     | 4.5 |     | 4.5 |     |     |     | ns    |
| Address setup time before clock K         | 16x1 | T <sub>ASDS</sub> | 3.1         |     | 2.6 |     | 2.5 |     |     |     | ns    |
| Address hold time after clock K           | 16x1 | T <sub>AHDS</sub> | 0           |     | 0   |     | 0   |     |     |     | ns    |
| DIN setup time before clock K             | 16x1 | T <sub>DSDS</sub> | 2.9         |     | 2.5 |     | 2.5 |     |     |     | ns    |
| DIN hold time after clock K               | 16x1 | T <sub>DHDS</sub> | 0           |     | 0   |     | 0   |     |     |     | ns    |
| WE setup time before clock K              | 16x1 | T <sub>WSDS</sub> | 2.1         |     | 1.8 |     | 1.8 |     |     |     | ns    |
| WE hold time after clock K                | 16x1 | T <sub>WHDS</sub> | 0           |     | 0   |     | 0   |     |     |     | ns    |
| Data valid after clock K                  | 16x1 | T <sub>WODS</sub> |             | 9.4 |     | 7.8 |     | 7.8 |     |     | ns    |
|                                           |      |                   | Preliminary |     |     |     |     |     |     |     |       |

Note: Applicable Read timing specifications are identical to Level-Sensitive Read timing.

# XC4000EX CLB RAM Synchronous (Edge-Triggered) Write Timing



# XC4000EX CLB Dual-Port RAM Synchronous (Edge-Triggered) Write Timing




#### XC4000EX CLB RAM Asynchronous (Level-Sensitive) Write and Read Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

|                                                        | Spe          | ed Grade                              | -            | 4          |            | 3          | -          | 2          | -   | 1   | 11       |
|--------------------------------------------------------|--------------|---------------------------------------|--------------|------------|------------|------------|------------|------------|-----|-----|----------|
| Description                                            | Size         | Symbol                                | Min          | Max        | Min        | Max        | Min        | Max        | Min | Max | Units    |
| Write Operation                                        |              | 1                                     |              |            |            |            |            |            |     |     |          |
| Address write cycle time                               | 16x2<br>32x1 | T <sub>WC</sub><br>T <sub>WCT</sub>   | 10.6<br>10.6 |            | 9.2<br>9.2 |            | 8.0<br>8.0 |            |     |     | ns<br>ns |
| Write Enable pulse width (High)                        | 16x2<br>32x1 | T <sub>WP</sub><br>T <sub>WPT</sub>   | 5.3<br>5.3   |            | 4.6<br>4.6 |            | 4.0<br>4.0 |            |     |     | ns<br>ns |
| Address setup time before WE                           | 16x2<br>32x1 | T <sub>AS</sub><br>T <sub>AST</sub>   | 2.8<br>2.9   |            | 2.4<br>2.5 |            | 2.0<br>2.0 |            |     |     | ns<br>ns |
| Address hold time after end of WE                      | 16x2<br>32x1 | T <sub>AH</sub><br>T <sub>AHT</sub>   | 1.7<br>1.7   |            | 1.4<br>1.4 |            | 1.4<br>1.4 |            |     |     | ns<br>ns |
| DIN setup time before end of WE                        | 16x2<br>32x1 | T <sub>DS</sub><br>T <sub>DST</sub>   | 1.1<br>1.1   |            | 0.9<br>0.9 |            | 0.8<br>0.8 |            |     |     | ns<br>ns |
| DIN hold time after end of WE                          | 16x2<br>32x1 | T <sub>DH</sub><br>T <sub>DHT</sub>   | 6.6<br>6.6   |            | 5.7<br>5.7 |            | 5.0<br>5.0 |            |     |     | ns<br>ns |
| Read Operation                                         |              | •                                     |              |            |            |            |            |            |     |     |          |
| Address read cycle time                                | 16x2<br>32x1 | T <sub>RC</sub><br>T <sub>RCT</sub>   | 4.5<br>6.5   |            | 3.1<br>5.5 |            | 3.1<br>5.5 |            |     |     | ns<br>ns |
| Data valid after address change<br>(no Write Enable)   | 16x2<br>32x1 | T <sub>ILO</sub><br>T <sub>IHO</sub>  |              | 2.2<br>3.8 |            | 1.8<br>3.2 |            | 1.5<br>2.7 |     |     | ns<br>ns |
| Read Operation, Clocking Data int                      | to Flip-F    | Тор                                   |              | 1          | I          | 1          | I          |            | •   | 1   |          |
| Address setup time before clock K                      | 16x2<br>32x1 | Т <sub>ІСК</sub><br>Т <sub>ІНСК</sub> | 1.5<br>3.2   |            | 1.2<br>2.6 |            | 1.2<br>2.6 |            |     |     | ns<br>ns |
| Read During Write                                      |              | 1                                     |              |            |            | 1          |            |            | •   | 1   |          |
| Data valid after WE goes active (DIN stable before WE) | 16x2<br>32x1 | T <sub>WO</sub><br>T <sub>WOT</sub>   |              | 6.5<br>7.4 |            | 5.7<br>6.5 |            | 4.9<br>5.6 |     |     | ns<br>ns |
| Data valid after DIN<br>(DIN changes during WE)        | 16x2<br>32x1 | T <sub>DO</sub><br>T <sub>DOT</sub>   |              | 7.7<br>8.2 |            | 6.7<br>7.2 |            | 5.8<br>6.2 |     |     | ns<br>ns |
| Read During Write, Clocking Data                       | into Fli     | p-Flop                                |              |            |            |            |            |            |     |     |          |
| WE setup time before clock K                           | 16x2<br>32x1 | Т <sub>WCK</sub><br>Т <sub>WCKT</sub> | 7.1<br>9.2   |            | 6.2<br>8.1 |            | 5.5<br>7.0 |            |     |     | ns<br>ns |
| Data setup time before clock K                         | 16x2<br>32x1 | Т <sub>DCK</sub><br>Т <sub>DCKT</sub> | 5.9<br>8.4   |            | 5.2<br>7.4 |            | 4.6<br>6.4 |            |     |     | ns<br>ns |
|                                                        |              |                                       |              |            | Prelin     | ninary     |            |            |     |     |          |

Note: Timing for the 16x1 RAM option is identical to 16x2 RAM timing.



# XC4000EX CLB RAM Asynchronous (Level-Sensitive) Timing Characteristics

# XC4000EX Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000EX devices unless otherwise noted.

### XC4000EX Output Flip-Flop, Clock to Out

|                                                         |                     | Speed Grade          | -4           | -3           | -2           | -1  | Units    |
|---------------------------------------------------------|---------------------|----------------------|--------------|--------------|--------------|-----|----------|
| Description                                             | Symbol              | Device               | Max          | Max          | Max          | Max | Units    |
| Global Low Skew Clock to TTL<br>Output (fast) using OFF | T <sub>ICKOF</sub>  | XC4028EX<br>XC4036EX | 16.6<br>17.2 | 13.7<br>14.1 | 12.4<br>13.1 |     | ns<br>ns |
| Global Early Clock to TTL Output (fast) using OFF       | T <sub>ICKEOF</sub> | XC4028EX<br>XC4036EX | 13.1<br>13.3 | 10.6<br>10.8 | 10.2<br>10.4 |     | ns<br>ns |
| OEE - Output Elip Elop                                  |                     | 1                    |              | Proliminar   |              |     |          |

OFF = Output Flip Flop

#### Preliminary

#### XC4000EX Output MUX, Clock to Out

|                                                          |                    | Speed Grade          | -4           | -3           | -2           | -1  | Units    |
|----------------------------------------------------------|--------------------|----------------------|--------------|--------------|--------------|-----|----------|
| Description                                              | Symbol             | Device               | Max          | Max          | Max          | Max | Units    |
| Global Low Skew Clock to TTL<br>Output (fast) using OMUX | T <sub>PFPF</sub>  | XC4028EX<br>XC4036EX | 15.9<br>16.5 | 13.1<br>13.5 | 11.8<br>12.5 |     | ns<br>ns |
| Global Early Clock to TTL Output (fast) us-<br>ing OMUX  | T <sub>PEFPF</sub> | XC4028EX<br>XC4036EX | 12.4<br>12.6 | 10.0<br>10.2 | 9.6<br>9.8   |     | ns<br>ns |
| OMUX = Output MUX                                        | •                  |                      | F            | Preliminar   | v            |     |          |

UIVIUX = 

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at TTL threshold with 35 pF external capacitive load.

Set-up time is measured with the fastest route and the lightest load. Hold time is measured using the farthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer to determine the setup and hold times under given design conditions.

# XC4000EX Output Level and Slew Rate Adjustments

The following table must be used to adjust output parameters and output switching characteristics.

|                          | Speed               | Speed Grade |     | -3         | -2  | -1  |       |
|--------------------------|---------------------|-------------|-----|------------|-----|-----|-------|
| Description              | Symbol              | Device      | Max | Max        | Max | Max | Units |
| For TTL output FAST add  | T <sub>TTLOF</sub>  | All Devices | 0   | 0          | 0   |     | ns    |
| For TTL output SLOW add  | T <sub>TTLO</sub>   | All Devices | 2.9 | 2.4        | 2.4 |     | ns    |
| For CMOS FAST output add | T <sub>CMOSOF</sub> | All Devices | 1.0 | 0.8        | 0.8 |     | ns    |
| For CMOS SLOW output add | T <sub>CMOSO</sub>  | All Devices | 3.6 | 3.0        | 3.0 |     | ns    |
| <b></b>                  | ·                   |             |     | Preliminar | у   |     |       |

# **XC4000EX Pin-to-Pin Input Parameter Guidelines**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000EX devices unless otherwise noted

# XC4000EX Global Low Skew Clock, Set-Up and Hold

|                                         |                  | Speed Grade | -4  | -3         | -2  | -1  | Units |
|-----------------------------------------|------------------|-------------|-----|------------|-----|-----|-------|
| Description                             | Symbol           | Device      | Min | Min        | Min | Min | Units |
| Input Setup Time, using Global Low Skew | T <sub>PSD</sub> | XC4028EX    | 8.0 | 6.8        | 6.8 |     | ns    |
| clock and IFF (full delay)              |                  | XC4036EX    | 8.0 | 6.8        | 6.8 |     | ns    |
| Input Hold Time, using Global Low Skew  | T <sub>PHD</sub> | XC4028EX    | 0   | 0          | 0   |     | ns    |
| clock and IFF (full delay)              |                  | XC4036EX    | 0   | 0          | 0   |     | ns    |
| IFF = Flip-Flop or Latch                |                  |             | F   | Preliminar | у   |     |       |

# XC4000EX Global Early Clock, Set-Up and Hold for IFF

|                                            |                   | Speed Grade | -4  | -3         | -2  | -1  | Units |
|--------------------------------------------|-------------------|-------------|-----|------------|-----|-----|-------|
| Description                                | Symbol            | Device      | Min | Min        | Min | Min | Units |
| Input Setup Time, using Global Early clock | T <sub>PSEP</sub> | XC4028EX    | 6.5 | 5.4        | 5.4 |     | ns    |
| and IFF (partial delay)                    |                   | XC4036EX    | 6.5 | 5.4        | 5.4 |     | ns    |
| Input Hold Time, using Global Early clock  | T <sub>PHEP</sub> | XC4028EX    | 0   | 0          | 0   |     | ns    |
| and IFF (partial delay)                    |                   | XC4036EX    | 0   | 0          | 0   |     | ns    |
| IFF = Flip-Flop or Latch                   |                   |             |     | Preliminar | у   |     |       |

Note: Set-up parameters are for BUFGE #s 3, 4, 7 and 8. Add 1.6 ns for BUFGE #s 1, 2, 5 and 6.

# XC4000EX Global Early Clock, Set-Up and Hold for FCL

|                                            | ;                  | Speed Grade | -4  | -3          | -2  | -1  | Units |
|--------------------------------------------|--------------------|-------------|-----|-------------|-----|-----|-------|
| Description                                | Symbol             | Device      | Min | Min         | Min | Min | Units |
| Input Setup Time, using Global Early clock | T <sub>PFSEP</sub> | XC4028EX    | 3.4 | 3.4         | 3.4 |     | ns    |
| and FCL (partial delay)                    | _                  | XC4036EX    | 4.4 | 4.2         | 4.2 |     | ns    |
| Input Hold Time, using Global Early clock  | T <sub>PFHEP</sub> | XC4028EX    | 0   | 0           | 0   |     | ns    |
| and FCL (partial delay)                    |                    | XC4036EX    | 0   | 0           | 0   |     | ns    |
| FCL = Fast Capture Latch                   |                    |             |     | Preliminary | y   |     |       |

Notes: For CMOS output levels, see the Output Level and Slew Rate Adjustments tables on page 10. Setup time is measured with the fastest route and the lightest load. Use the static timing analyzer to determine the setup time under given design conditions. Hold time is measured using the farthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer to determine the setup and hold times under given design conditions. Note:Set-up parameters are for BUFGE #s 3, 4, 7 and 8. Add 1.2 ns for BUFGE #s 1, 2, 5 and 6.

# **XC4000EX Input Threshold and Slew Rate Adjustments**

The following table must be used to adjust input parameters and input switching characteristics.

|                    | Speed Grade        |             | -4  | -3         | -2  | -1  |       |
|--------------------|--------------------|-------------|-----|------------|-----|-----|-------|
| Description        | Symbol             | Device      | Max | Max        | Max | Max | Units |
| For TTL input add  | T <sub>TTLI</sub>  | All Devices | 0   | 0          | 0   |     | ns    |
| For CMOS input add | T <sub>CMOSI</sub> | All Devices | 0.3 | 0.2        | 0.2 |     | ns    |
|                    |                    |             | F   | Preliminar | у   |     | 1     |

#### XC4000EX IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

|                                                       | S                  | peed Grade  | -4   | -3         | -2   | -1  | Units |
|-------------------------------------------------------|--------------------|-------------|------|------------|------|-----|-------|
| Description                                           | Symbol             | Device      | Min  | Min        | Min  | Min | Units |
| Clocks                                                |                    |             |      |            |      |     | •     |
| Delay from FCL enable (OK) active edge to IFF         | Токік              | All devices | 3.2  | 2.6        | 2.6  |     | ns    |
| clock (IK) active edge                                |                    |             |      |            |      |     |       |
| Propagation Delays                                    |                    |             | Max  | Max        | Max  | Max |       |
| Pad to I1, I2                                         | T <sub>PID</sub>   | All devices | 2.2  | 1.9        | 1.8  |     | ns    |
| Pad to I1, I2 via transparent input latch, no delay   | T <sub>PLI</sub>   | All devices | 3.8  | 3.2        | 3.0  |     | ns    |
| Pad to I1, I2 via transparent input latch,            | T <sub>PPLI</sub>  | XC4028EX    | 13.3 | 11.1       | 10.9 |     | ns    |
| partial delay                                         |                    | XC4036EX    | 14.5 | 12.1       | 11.9 |     | ns    |
| Pad to I1, I2 via transparent input latch, full delay | T <sub>PDLI</sub>  | XC4028EX    | 18.2 | 15.2       | 14.9 |     | ns    |
|                                                       |                    | XC4036EX    | 19.4 | 16.2       | 15.9 |     | ns    |
| Pad to I1, I2 via transparent FCL and input latch,    | T <sub>PFLI</sub>  | All devices | 5.3  | 4.4        | 4.2  |     | ns    |
| no delay                                              |                    |             |      |            |      |     |       |
| Pad to I1, I2 via transparent FCL and input latch,    | T <sub>PPFLI</sub> | XC4028EX    | 13.6 | 11.3       | 11.1 |     | ns    |
| partial delay                                         |                    | XC4036EX    | 14.8 | 12.3       | 12.1 |     | ns    |
| Propagation Delays                                    |                    |             |      |            |      |     | •     |
| Clock (IK) to I1, I2 (flip-flop)                      | T <sub>IKRI</sub>  | All devices | 3.0  | 2.5        | 2.4  |     | ns    |
| Clock (IK) to I1, I2 (latch enable, active Low)       | T <sub>IKLI</sub>  | All devices | 3.2  | 2.7        | 2.6  |     | ns    |
| FCL Enable (OK) active edge to I1, I2                 | T <sub>OKLI</sub>  | All devices | 6.2  | 5.2        | 5.0  |     | ns    |
| (via transparent standard input latch)                |                    |             |      |            |      |     |       |
| Global Set/Reset                                      |                    |             |      |            |      |     |       |
| Minimum GSR Pulse Width                               | T <sub>MRW</sub>   | All devices | 13.0 | 11.5       | 11.5 |     | ns    |
| Delay from GSR input to any Q                         | T <sub>RRI</sub>   | XC4028EX    | 22.8 | 19.0       | 19.0 |     | ns    |
| Delay from GSR input to any Q                         | T <sub>RRI</sub>   | XC4036EX    | 24.0 | 21.0       | 21.0 |     | ns    |
| FCL = Fast Capture Latch, IFF = Input Flip-Flop o     | r Latch            |             | F    | Preliminar | у    |     |       |

Notes: For CMOS output levels, see the Output Level and Slew Rate Adjustments table on page 10. For setup and hold times with respect to the clock input pin, see the Global Low Skew Clock and Global Early Clock Set-up and Hold tables on page 11.

#### **XC4000EX IOB Input Switching Characteristic Guidelines (Continued)**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

|                                         |                     | Speed Grade | -4   | -3          | -2   | -1  | Units |
|-----------------------------------------|---------------------|-------------|------|-------------|------|-----|-------|
| Description                             | Symbol              | Device      | Min  | Min         | Min  | Min |       |
| Setup Times                             | -                   |             |      |             |      |     |       |
| Pad to Clock (IK), no delay             | T <sub>PICK</sub>   | All devices | 2.5  | 2.0         | 2.0  |     | ns    |
| Pad to Clock (IK), partial delay        | T <sub>PICKP</sub>  | XC4028EX    | 10.8 | 9.0         | 9.0  |     | ns    |
|                                         |                     | XC4036EX    | 12.0 | 10.0        | 10.0 |     | ns    |
| Pad to Clock (IK), full delay           | T <sub>PICKD</sub>  | XC4028EX    | 15.7 | 13.1        | 13.1 |     | ns    |
|                                         |                     | XC4036EX    | 16.9 | 14.1        | 14.1 |     | ns    |
| Pad to Clock (IK), via transparent Fast | T <sub>PICKF</sub>  | All devices | 3.9  | 3.3         | 3.3  |     | ns    |
| Capture Latch, no delay                 |                     |             |      |             |      |     |       |
| Pad to Clock (IK), via transparent Fast | T <sub>PICKFP</sub> | XC4028EX    | 12.3 | 10.2        | 10.2 |     | ns    |
| Capture Latch, partial delay            |                     | XC4036EX    | 13.5 | 11.2        | 11.2 |     | ns    |
| Pad to Fast Capture Latch Enable (OK),  | T <sub>POCK</sub>   | All devices | 0.8  | 0.7         | 0.7  |     | ns    |
| no delay                                |                     |             |      |             |      |     |       |
| Pad to Fast Capture Latch Enable (OK),  | TPOCKP              | XC4028EX    | 9.1  | 7.6         | 7.6  |     | ns    |
| partial delay                           |                     | XC4036EX    | 10.3 | 8.6         | 8.6  |     | ns    |
| Setup Times (TTL or CMOS Inputs)        |                     |             |      | •           |      | -   |       |
| Clock Enable (EC) to Clock (IK)         | T <sub>ECIK</sub>   | All devices | 0.3  | 0.2         | 0.2  |     | ns    |
| Hold Times                              |                     |             |      | •           |      | •   |       |
| Pad to Clock (IK),                      |                     |             |      |             |      |     |       |
| no delay                                | TIKPI               | All devices | 0    | 0           | 0    |     | ns    |
| partial delay                           | T <sub>IKPIP</sub>  | All devices | 0    | 0           | 0    |     | ns    |
| full delay                              | T <sub>IKPID</sub>  | All devices | 0    | 0           | 0    |     | ns    |
| Pad to Clock (IK) via transparent Fast  |                     |             |      |             |      |     |       |
| Capture Latch,                          |                     |             |      |             |      |     |       |
| no delay                                | T <sub>IKFPI</sub>  | All devices | 0    | 0           | 0    |     | ns    |
| partial delay                           | T <sub>IKFPIP</sub> | All devices | 0    | 0           | 0    |     | ns    |
| full delay                              | T <sub>IKFPID</sub> | All devices | 0    | 0           | 0    |     | ns    |
| Clock Enable (EC) to Clock (IK),        |                     |             |      |             |      |     |       |
| no delay                                | TIKEC               | All devices | 0    | 0           | 0    |     | ns    |
| partial delay                           | TIKECP              | All devices | 0    | 0           | 0    |     | ns    |
| full delay                              | TIKECD              | All devices | 0    | 0           | 0    |     | ns    |
| Pad to Fast Capture Latch Enable (OK),  |                     |             |      |             |      |     |       |
| no delay                                | T <sub>OKPI</sub>   | All devices | 0    | 0           | 0    |     | ns    |
| partial delay                           | TOKPIP              | All devices | 0    | 0           | 0    |     | ns    |
|                                         | •                   | •           |      | Preliminary | /    |     |       |

Notes: For CMOS output levels, see the Output Level and Slew Rate Adjustments table on page 10. For setup and hold times with respect to the clock input pin, see the Global Low Skew Clock and Global Early Clock Set-up and Hold tables on page 11.

### XC4000EX IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values apply to all XC4000EX devices unless otherwise noted.

| Sp                                                                                                                                                         | eed Grade                                                                         | -                                  | 4                               | -                                  | 3                               | -                                  | 2                               | -   | 1   | Units                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|---------------------------------|------------------------------------|---------------------------------|------------------------------------|---------------------------------|-----|-----|----------------------------|
| Description                                                                                                                                                | Symbol                                                                            | Min                                | Max                             | Min                                | Max                             | Min                                | Max                             | Min | Max | Units                      |
| Propagation Delays                                                                                                                                         |                                                                                   |                                    |                                 |                                    | I                               | I                                  |                                 | •   |     |                            |
| Clock (OK) to Pad<br>Output (O) to Pad<br>3-state to Pad hi-Z (slew-rate independent)<br>3-state to Pad active and valid<br>Output MUX Select (OK) to Pad  | T <sub>OKPOF</sub><br>T <sub>OPF</sub><br>T <sub>TSHZ</sub><br>T <sub>TSONF</sub> |                                    | 7.4<br>6.2<br>4.9<br>6.2<br>6.7 |                                    | 6.2<br>5.2<br>4.1<br>5.2<br>5.6 |                                    | 6.0<br>5.0<br>4.1<br>5.0<br>5.4 |     |     | ns<br>ns<br>ns<br>ns<br>ns |
| Fast Path Output MUX Input (EC) to Pad<br>Slowest Path Output MUX Input (O) to Pad                                                                         | T <sub>OKFPF</sub><br>T <sub>CEFPF</sub><br>T <sub>OFPF</sub>                     |                                    | 6.2<br>7.3                      |                                    | 5.0<br>5.1<br>6.0               |                                    | 5.4<br>5.0<br>5.9               |     |     | ns<br>ns                   |
| Setup and Hold Times                                                                                                                                       |                                                                                   |                                    |                                 |                                    |                                 |                                    |                                 |     |     |                            |
| Output (O) to clock (OK) setup time<br>Output (O) to clock (OK) hold time<br>Clock Enable (EC) to clock (OK) setup<br>Clock Enable (EC) to clock (OK) hold | T <sub>OOK</sub><br>T <sub>OKO</sub><br>T <sub>ECOK</sub><br>T <sub>OKEC</sub>    | 0.6<br>0<br>0<br>0                 |                                 | 0.5<br>0<br>0<br>0                 |                                 | 0.5<br>0<br>0<br>0                 |                                 |     |     | ns<br>ns<br>ns<br>ns       |
| Clock                                                                                                                                                      |                                                                                   |                                    |                                 |                                    |                                 |                                    |                                 |     | 1   |                            |
| Clock High<br>Clock Low                                                                                                                                    | T <sub>CH</sub><br>T <sub>CL</sub>                                                | 3.5<br>3.5                         |                                 | 3.0<br>3.0                         |                                 | 3.0<br>3.0                         |                                 |     |     | ns<br>ns                   |
| Global Set/Reset                                                                                                                                           |                                                                                   | _                                  |                                 |                                    |                                 |                                    |                                 |     |     |                            |
| Minimum GSR pulse width<br>Delay from GSR input to any Pad (XC4028EX)<br>Delay from GSR input to any Pad (XC4036EX)                                        | T <sub>MRW</sub><br>T <sub>RPO</sub><br>T <sub>RPO</sub>                          | 13.0<br><b>30.2</b><br><b>31.4</b> |                                 | 11.5<br><b>25.2</b><br><b>27.2</b> |                                 | 11.5<br><b>25.0</b><br><b>27.0</b> |                                 |     |     | ns<br>ns<br>ns             |
|                                                                                                                                                            | '                                                                                 |                                    | •                               | Prelin                             | ninary                          |                                    |                                 |     |     |                            |

Notes: Output timing is measured at TTL threshold, with 35pF external capacitive loads.

For CMOS output levels, see the Output Level and Slew Rate Adjustments table on page 10

# **XC4000E Switching Characteristics**

#### **Definition of Terms**

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.<sup>1</sup>

#### **XC4000E Absolute Maximum Ratings**

| Symbol           | Description                                         |                              | Value        | Units |
|------------------|-----------------------------------------------------|------------------------------|--------------|-------|
| V <sub>CC</sub>  | Supply voltage relative to GND                      |                              | -0.5 to +7.0 | V     |
| V <sub>IN</sub>  | Input voltage relative to GND (Note 1)              | -0.5 to V <sub>CC</sub> +0.5 | V            |       |
| V <sub>TS</sub>  | Voltage applied to 3-state output (Note 1)          | -0.5 to V <sub>CC</sub> +0.5 | V            |       |
| T <sub>STG</sub> | Storage temperature (ambient)                       |                              | -65 to +150  | °C    |
| T <sub>SOL</sub> | Maximum soldering temperature (10 s @ 1/16 in. = 1. | 5 mm)                        | +260         | °C    |
| TJ               | Junction temperature                                | erature Ceramic packages     |              |       |
|                  |                                                     | Plastic packages             | +125         | °C    |

Note 1: Maximum DC overshoot or undershoot above Vcc or below GND must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to Vcc + 2.0 V, provided this over- or undershoot lasts less than 20 ns.

Note 2: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

#### **XC4000E Recommended Operating Conditions**

| Symbol          | Description                                                             |             | Min  | Max             | Units           |
|-----------------|-------------------------------------------------------------------------|-------------|------|-----------------|-----------------|
| V <sub>CC</sub> | Supply voltage relative to GND, $T_J = -0$ °C to +85°C                  | Commercial  | 4.75 | 5.25            | V               |
|                 | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$ | Industrial  | 4.5  | 5.5             | V               |
|                 | Supply voltage relative to GND, $T_C = -55^{\circ}C$ to $+125^{\circ}C$ | Military    | 4.5  | 5.5             | V               |
| V <sub>IH</sub> | High-level input voltage                                                | TTL inputs  | 2.0  | V <sub>CC</sub> | V               |
|                 |                                                                         | CMOS inputs | 70%  | 100%            | V <sub>CC</sub> |
| V <sub>IL</sub> | Low-level input voltage                                                 | TTL inputs  | 0    | 0.8             | V               |
|                 |                                                                         | CMOS inputs | 0    | 20%             | V <sub>CC</sub> |
| T <sub>IN</sub> | Input signal transition time                                            | •           |      | 250             | ns              |

Note: At junction temperatures above those listed as Recommended Operating Conditions, all delay parameters increase by 0.35% per °C.

Input and output Measurement thresholds are: 1.5V for TTL and 2.5V for CMOS.

1. Notwithstanding the definition of the above terms, all specifications are subject to change without notice.

| Symbol            | Description                                                               |                                                                  | Min                  | Max | Units |
|-------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|-----|-------|
| V <sub>OH</sub>   | High-level output voltage @ I <sub>OH</sub> = -4.0mA, V <sub>CC</sub> min | TTL outputs                                                      | 2.4                  |     | V     |
|                   | High-level output voltage @ I <sub>OH</sub> = -1.0mA, V <sub>CC</sub> min | CMOS outputs                                                     | V <sub>CC</sub> -0.5 |     | V     |
| V <sub>OL</sub>   | Low-level output voltage @ I <sub>OL</sub> = 12.0mA, V <sub>CC</sub> min  |                                                                  |                      | 0.4 | V     |
|                   |                                                                           | CMOS outputs                                                     |                      | 0.4 | V     |
| I <sub>CCO</sub>  | Quiescent FPGA supply current (Note 2)                                    | Commercial                                                       |                      | 3.0 | mA    |
|                   |                                                                           | Industrial                                                       |                      | 6.0 | mA    |
|                   |                                                                           | Military                                                         |                      | 6.0 | mA    |
| IL                | Input or output leakage current                                           |                                                                  | -10                  | +10 | μΑ    |
| CIN               | Input capacitance (sample tested)                                         | PQFP and MQFP                                                    |                      | 10  | pF    |
|                   |                                                                           | packages                                                         |                      |     |       |
|                   |                                                                           | Other packages                                                   |                      | 16  | pF    |
| I <sub>RIN*</sub> | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V (sample teste          | d pull-up (when selected) @ V <sub>IN</sub> = 0V (sample tested) |                      |     |       |
| I <sub>RLL*</sub> | Horizontal Longline pull-up (when selected) @ logic Lo                    | 0.2                                                              | 2.5                  | mA  |       |

### **XC4000E DC Characteristics Over Operating Conditions**

Note 1: With 50% of the outputs simultaneously sinking 12mA, up to a maximum of 64 pins.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all package pins at Vcc or GND, and the FPGA configured with a MakeBits Tie option.

Characterized Only.

# XC4000E Global Buffer Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature)

|                   | S               | Speed Grade | -4   | -3  | -2  | -1          |       |
|-------------------|-----------------|-------------|------|-----|-----|-------------|-------|
| Description       | Symbol          | Device      | Max  | Max | Max | Max         | Units |
| From pad through  | T <sub>PG</sub> | XC4003E     | 7.0  | 4.7 | 4.0 | 3.5         | ns    |
| Primary buffer,   | _               | XC4005E     | 7.0  | 4.7 | 4.3 | 3.8         | ns    |
| to any clock K    |                 | XC4006E     | 7.5  | 5.3 | 5.2 | 4.6         | ns    |
|                   |                 | XC4008E     | 8.0  | 6.1 | 5.2 | 4.6         | ns    |
|                   |                 | XC4010E     | 11.0 | 6.3 | 5.4 | 4.8         | ns    |
|                   |                 | XC4013E     | 11.5 | 6.8 | 5.8 | 5.2         | ns    |
|                   |                 | XC4020E     | 12.0 | 7.0 | 6.4 | 6.0         | ns    |
|                   |                 | XC4025E     | 12.5 | 7.2 | 6.9 | -           | ns    |
| From pad through  | T <sub>SG</sub> | XC4003E     | 7.5  | 5.2 | 4.4 | 4.0         | ns    |
| Secondary buffer, |                 | XC4005E     | 7.5  | 5.2 | 4.7 | 4.3         | ns    |
| to any clock K    |                 | XC4006E     | 8.0  | 5.8 | 5.6 | 5.1         | ns    |
|                   |                 | XC4008E     | 8.5  | 6.6 | 5.6 | 5.1         | ns    |
|                   |                 | XC4010E     | 11.5 | 6.8 | 5.8 | 5.3         | ns    |
|                   |                 | XC4013E     | 12.0 | 7.3 | 6.2 | 5.7         | ns    |
|                   |                 | XC4020E     | 12.5 | 7.5 | 6.7 | 6.5         | ns    |
|                   |                 | XC4025E     | 13.0 | 7.7 | 7.2 | -           | ns    |
|                   |                 |             |      |     |     | Preliminary |       |

#### **XC4000E Horizontal Longline Switching Characteristic Guidelines**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

The following guidelines reflect worst-case values over the recommended operating conditions.

|                                                                                                                                                                 | Spe              | eed Grade                                                                                           | -4                                                            | -3                                                           | -2                                                           | -1                                                                        |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|
| Description                                                                                                                                                     | Symbol           | Device                                                                                              | Max                                                           | Max                                                          | Max                                                          | Max                                                                       | Units                                              |
| TBUF driving a Horizontal Longline (LL):                                                                                                                        |                  | I                                                                                                   |                                                               | Į                                                            |                                                              |                                                                           |                                                    |
| I going High or Low to LL going High or<br>Low, while T is Low.<br>Buffer is constantly active.<br>(Note1)                                                      | T <sub>IO1</sub> | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E                | 5.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0        | 4.2<br>5.0<br>5.9<br>6.3<br>6.4<br>7.2<br>8.2<br>9.1         | 3.4<br>4.0<br>4.7<br>5.0<br>5.1<br>5.7<br>7.3<br>7.3         | 2.9<br>3.4<br>4.0<br>4.3<br>4.4<br>4.9<br>5.6                             | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| I going Low to LL going from resistive<br>pull-up High to active Low.<br>TBUF configured as open-drain.<br>(Note1)                                              | T <sub>IO2</sub> | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E     | 5.0<br>6.0<br>7.8<br>8.1<br>10.5<br>11.0<br>12.0<br>12.0      | 4.2<br>5.3<br>6.4<br>6.8<br>6.9<br>7.7<br>8.7<br>9.6         | 3.6<br>4.5<br>5.4<br>5.8<br>5.9<br>6.5<br>8.7<br>9.6         | 3.1<br>3.8<br>4.6<br>4.9<br>5.0<br>5.5<br>7.4                             | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| T going Low to LL going from resistive<br>pull-up or floating High to active Low.<br>TBUF configured as open-drain or active<br>buffer with I = Low.<br>(Note1) |                  | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E<br>All devices | 5.5<br>7.0<br>7.5<br>8.0<br>8.5<br>8.7<br>11.0<br>11.0<br>1.8 | 4.6<br>6.0<br>6.7<br>7.1<br>7.3<br>7.5<br>8.4<br>8.4<br>8.4  | 3.9<br>5.7<br>5.7<br>6.0<br>6.2<br>7.0<br>7.1<br>7.1<br>1.3  | 3.5<br>4.7<br>4.9<br>5.2<br>5.4<br>6.2<br>6.3<br>-<br>1.1                 | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns       |
| T going High to TBUF going inactive,<br>not driving LL                                                                                                          | T <sub>OFF</sub> | All devices                                                                                         | 1.8                                                           | 1.5                                                          | 1.3                                                          | 1.1                                                                       | ns                                                 |
| T going High to LL going from Low to<br>High, pulled up by a single resistor.<br>(Note 1)                                                                       | T <sub>PUS</sub> | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E                | 20.0<br>23.0<br>25.0<br>27.0<br>29.0<br>32.0<br>35.0<br>42.0  | 14.0<br>16.0<br>18.0<br>20.0<br>22.0<br>26.0<br>32.5<br>39.1 | 14.0<br>16.0<br>18.0<br>20.0<br>22.0<br>26.0<br>32.5<br>39.1 | 12.0<br>14.0<br>16.0<br>16.0<br>18.0<br>21.0<br>26.0<br>-                 | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| T going High to LL going from Low to<br>High, pulled up by two resistors.<br>(Note1)                                                                            | T <sub>PUF</sub> | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E     | 9.0<br>10.0<br>11.5<br>12.5<br>13.5<br>15.0<br>16.0<br>18.0   | 7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>13.0<br>14.8<br>16.5    | 6.0<br>6.8<br>7.7<br>8.5<br>9.4<br>11.7<br>14.8<br>16.5      | 5.4<br>5.8<br>6.5<br>7.5<br>8.0<br>9.4<br>10.5<br>–<br><b>Preliminary</b> | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |

Note 1: These values include a minimum load. Use the static timing analyzer to determine the delay for each destination.

#### XC4000E Wide Decoder Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

The following guidelines reflect worst-case values over the recommended operating conditions.

|                             | S                 | Speed Grade | -4   | -3   | -2   | -1          |       |
|-----------------------------|-------------------|-------------|------|------|------|-------------|-------|
| Description                 | Symbol            | Device      | Max  | Max  | Max  | Max         | Units |
| Full length, both pull-ups, | T <sub>WAF</sub>  | XC4003E     | 9.2  | 5.0  | 5.0  | 4.3         | ns    |
| inputs from IOB I-pins      |                   | XC4005E     | 9.5  | 6.0  | 6.0  | 5.1         | ns    |
|                             |                   | XC4006E     | 12.0 | 7.0  | 7.0  | 6.0         | ns    |
|                             |                   | XC4008E     | 12.5 | 8.0  | 8.0  | 6.5         | ns    |
|                             |                   | XC4010E     | 15.0 | 9.0  | 9.0  | 7.5         | ns    |
|                             |                   | XC4013E     | 16.0 | 11.0 | 11.0 | 8.6         | ns    |
|                             |                   | XC4020E     | 17.0 | 13.9 | 13.9 | 10.1        | ns    |
|                             |                   | XC4025E     | 18.0 | 16.9 | 16.9 | -           | ns    |
| Full length, both pull-ups, | T <sub>WAFL</sub> | XC4003E     | 12.0 | 7.0  | 7.0  | 5.5         | ns    |
| inputs from internal logic  |                   | XC4005E     | 12.5 | 8.0  | 8.0  | 6.4         | ns    |
|                             |                   | XC4006E     | 14.0 | 9.0  | 9.0  | 7.0         | ns    |
|                             |                   | XC4008E     | 16.0 | 10.0 | 10.0 | 7.5         | ns    |
|                             |                   | XC4010E     | 18.0 | 11.0 | 11.0 | 8.5         | ns    |
|                             |                   | XC4013E     | 19.0 | 13.0 | 13.0 | 10.0        | ns    |
|                             |                   | XC4020E     | 20.0 | 15.5 | 15.5 | 11.8        | ns    |
|                             |                   | XC4025E     | 21.0 | 18.9 | 18.9 | -           | ns    |
| Half length, one pull-up,   | T <sub>WAO</sub>  | XC4003E     | 10.5 | 6.0  | 6.0  | 5.1         | ns    |
| inputs from IOB I-pins      |                   | XC4005E     | 10.5 | 7.0  | 7.0  | 6.0         | ns    |
|                             |                   | XC4006E     | 13.5 | 8.0  | 8.0  | 6.5         | ns    |
|                             |                   | XC4008E     | 14.0 | 9.0  | 9.0  | 7.0         | ns    |
|                             |                   | XC4010E     | 16.0 | 10.0 | 10.0 | 7.5         | ns    |
|                             |                   | XC4013E     | 17.0 | 12.0 | 12.0 | 10.0        | ns    |
|                             |                   | XC4020E     | 18.0 | 15.0 | 15.0 | 11.8        | ns    |
|                             |                   | XC4025E     | 19.0 | 17.6 | 17.6 | -           | ns    |
| Half length, one pull-up,   | T <sub>WAOL</sub> | XC4003E     | 12.0 | 8.0  | 8.0  | 6.0         | ns    |
| inputs from internal logic  | THREE I           | XC4005E     | 12.5 | 9.0  | 9.0  | 7.0         | ns    |
|                             |                   | XC4006E     | 14.0 | 10.0 | 10.0 | 7.6         | ns    |
|                             |                   | XC4008E     | 16.0 | 11.0 | 11.0 | 8.4         | ns    |
|                             |                   | XC4010E     | 18.0 | 12.0 | 12.0 | 9.2         | ns    |
|                             |                   | XC4013E     | 19.0 | 14.0 | 14.0 | 10.8        | ns    |
|                             |                   | XC4020E     | 20.0 | 16.8 | 16.8 | 12.6        | ns    |
|                             |                   | XC4025E     | 21.0 | 19.6 | 19.6 | -           | ns    |
| <u></u>                     |                   |             | -    | •    | •    | Preliminary |       |

Notes: These delays are specified from the decoder input to the decoder output.

Fewer than the specified number of pullup resistors can be used, if desired. Using fewer pullups reduces power consumption but increases delays. Use the static timing analyzer to determine delays if fewer pullups are used.

### **XC4000E CLB Switching Characteristic Guidelines**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

| Speed Grade                               | )                  | -   | 4   | -   | 3   | -   | 2   | -      | 1      | Units |
|-------------------------------------------|--------------------|-----|-----|-----|-----|-----|-----|--------|--------|-------|
| Description                               | Symbol             | Min | Max | Min | Max | Min | Max | Min    | Max    | Units |
| Combinatorial Delays                      |                    |     |     |     |     |     |     |        |        |       |
| F/G inputs to X/Y outputs                 | T <sub>ILO</sub>   |     | 2.7 |     | 2.0 |     | 1.6 |        | 1.3    | ns    |
| F/G inputs via H to X/Y outputs           | T <sub>IHO</sub>   |     | 4.7 |     | 4.3 |     | 2.7 |        | 2.2    | ns    |
| C inputs via SR through H to X/Y outputs  | T <sub>HH0O</sub>  |     | 4.1 |     | 3.3 |     | 2.4 |        | 1.9    | ns    |
| C inputs via H to X/Y outputs             | T <sub>HH10</sub>  |     | 3.7 |     | 3.6 |     | 2.2 |        | 1.6    | ns    |
| C inputs via DIN through H to X/Y outputs | T <sub>HH2O</sub>  |     | 4.5 |     | 3.6 |     | 2.6 |        | 1.9    | ns    |
| CLB Fast Carry Logic                      |                    |     |     |     |     |     |     |        |        |       |
| Operand inputs (F1, F2, G1, G4) to COUT   | T <sub>OPCY</sub>  |     | 3.2 |     | 2.6 |     | 2.1 |        | 1.7    | ns    |
| Add/Subtract input (F3) to COUT           | TASCY              |     | 5.5 |     | 4.4 |     | 3.7 |        | 2.5    | ns    |
| Initialization inputs (F1, F3) to COUT    | T <sub>INCY</sub>  |     | 1.7 |     | 1.7 |     | 1.4 |        | 1.2    | ns    |
| CIN through function generators to        | T <sub>SUM</sub>   |     | 3.8 |     | 3.3 |     | 2.6 |        | 1.8    | ns    |
| X/Y outputs                               |                    |     |     |     |     |     |     |        |        |       |
| CIN to COUT, bypass function generators   | T <sub>BYP</sub>   |     | 1.0 |     | 0.7 |     | 0.6 |        | 0.5    | ns    |
| Sequential Delays                         |                    |     |     |     |     |     |     |        |        |       |
| Clock K to outputs Q                      | Т <sub>СКО</sub>   |     | 3.7 |     | 2.8 |     | 2.8 |        | 1.9    | ns    |
| Setup Time before Clock K                 |                    |     |     | •   |     |     |     |        |        |       |
| F/G inputs                                | Т <sub>ІСК</sub>   | 4.0 |     | 3.0 |     | 2.4 |     | 1.8    |        | ns    |
| F/G inputs via H                          | TIHCK              | 6.1 |     | 4.6 |     | 3.9 |     | 2.8    |        | ns    |
| C inputs via H0 through H                 | Тнноск             | 4.5 |     | 3.6 |     | 3.5 |     | 2.4    |        | ns    |
| C inputs via H1 through H                 | T <sub>HH1CK</sub> | 5.0 |     | 4.1 |     | 3.3 |     | 2.1    |        | ns    |
| C inputs via H2 through H                 | T <sub>HH2CK</sub> | 4.8 |     | 3.8 |     | 3.7 |     | 2.5    |        | ns    |
| C inputs via DIN                          | T <sub>DICK</sub>  | 3.0 |     | 2.4 |     | 2.0 |     | 1.0    |        | ns    |
| C inputs via EC                           | Т <sub>ЕССК</sub>  | 4.0 |     | 3.0 |     | 2.6 |     | 2.0    |        | ns    |
| C inputs via S/R, going Low (inactive)    | T <sub>RCK</sub>   | 4.2 |     | 4.0 |     | 4.0 |     | 1.5    |        | ns    |
| C <sub>IN</sub> input via F/G             | Тсск               | 2.5 |     | 2.1 |     |     |     |        |        | ns    |
| C <sub>IN</sub> input via F/G and H       | Тснск              | 4.2 |     | 3.5 |     |     |     |        |        | ns    |
|                                           |                    |     | •   | •   | •   | •   |     | Drolin | ninary |       |

Preliminary

## XC4000E CLB Switching Characteristic Guidelines (continued)

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns that are taken at device introduction, prior to any process improvements. For more detailed, more precise, and more up-to-date information, use the values provided by the XACT timing calculator and used in the simulator. These values can be printed in tabular format by running LCA2XNF -S.

The following guidelines reflect worst-case values over the recommended operating conditions. They are expressed in units of nanoseconds and apply to all XC4000E devices unless otherwise noted.

| Speed Grad                                             | de                 | -    | 4    | -    | 3    | -    | 2    | -      | 1      | Units |
|--------------------------------------------------------|--------------------|------|------|------|------|------|------|--------|--------|-------|
| Description                                            | Symbol             | Min  | Max  | Min  | Max  | Min  | Max  | Min    | Max    | Units |
| Hold Time after Clock K                                |                    |      |      |      |      | 1    |      |        | !      |       |
| F/G inputs                                             | Тскі               | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| F/G inputs via H                                       | T <sub>CKIH</sub>  | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via H0 through H                              | T <sub>CKHH0</sub> | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via H1 through H                              | T <sub>CKHH1</sub> | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via H2 through H                              | T <sub>CKHH2</sub> | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via DIN                                       | T <sub>CKDI</sub>  | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via EC                                        | T <sub>CKEC</sub>  | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| C inputs via SR, going Low (inactive)                  | T <sub>CKR</sub>   | 0    |      | 0    |      | 0    |      | 0      |        | ns    |
| Clock                                                  |                    |      | •    |      | •    |      |      |        |        |       |
| Clock High time                                        | T <sub>CH</sub>    | 4.5  |      | 4.0  |      | 4.0  |      | 3.0    |        | ns    |
| Clock Low time                                         | T <sub>CL</sub>    | 4.5  |      | 4.0  |      | 4.0  |      | 3.0    |        | ns    |
| Set/Reset Direct                                       |                    |      |      |      |      |      |      |        |        |       |
| Width (High)                                           | T <sub>RPW</sub>   | 5.5  |      | 4.0  |      | 4.0  |      | 3.0    |        | ns    |
| Delay from C inputs via S/R,                           | T <sub>RIO</sub>   |      | 6.5  |      | 4.0  |      | 4.0  |        | 3.0    | ns    |
| going High to Q                                        |                    |      |      |      |      |      |      |        |        |       |
| Master Set/Reset (Note 1)                              |                    |      | •    | •    | •    | •    |      |        |        |       |
| Width (High or Low)                                    | T <sub>MRW</sub>   | 13.0 |      | 11.5 |      | 11.5 |      | 10.0   |        | ns    |
| Delay from Global Set/Reset net to Q                   | T <sub>MRQ</sub>   |      | 23.0 |      | 18.7 |      | 17.4 |        | 15.0   | ns    |
| Global Set/Reset inactive to first active clock K edge | T <sub>MRK</sub>   |      |      |      |      |      |      |        |        |       |
| Toggle Frequency (Note 2)                              | F <sub>TOG</sub>   |      | 111  |      | 125  |      | 125  |        | 166    | MHz   |
|                                                        |                    |      |      |      |      |      |      | Prelin | ninary |       |

Note 1: Timing is based on the XC4005E. For other devices see the XACT timing calculator.

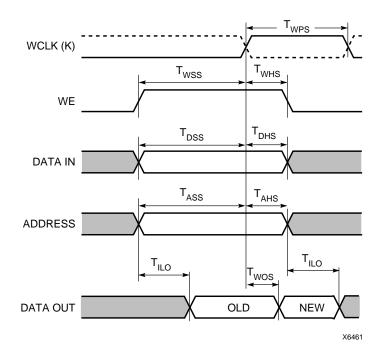
Note 2: Export Control Max. flip-flop toggle rate.



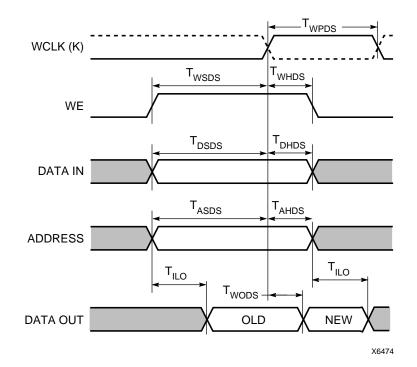
### XC4000E CLB Edge-Triggered (Synchronous) RAM Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

| Single Port RAM                           | Spee         | d Grade                               | -            | 4            | -            | 3            | -:           | 2            | -'         | 1          | Units    |
|-------------------------------------------|--------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|----------|
|                                           | Size         | Symbol                                | Min          | Max          | Min          | Max          | Min          | Max          | Min        | Max        | Units    |
| Write Operation                           |              | •                                     |              |              |              |              |              |              |            |            |          |
| Address write cycle time (clock K period) | 16x2<br>32x1 | T <sub>WCS</sub><br>T <sub>WCTS</sub> | 15.0<br>15.0 |              | 14.4<br>14.4 |              | 11.6<br>11.6 |              | 8.0<br>8.0 |            | ns<br>ns |
| Clock K pulse width (active edge)         | 16x2<br>32x1 | T <sub>WPS</sub><br>T <sub>WPTS</sub> | 7.5<br>7.5   | 1 ms<br>1 ms | 7.2<br>7.2   | 1 ms<br>1 ms | 5.8<br>5.8   | 1 ms<br>1 ms | 4.0<br>4.0 |            | ns<br>ns |
| Address setup time before clock K         | 16x2<br>32x1 | T <sub>ASS</sub><br>T <sub>ASTS</sub> | 2.8<br>2.8   |              | 2.4<br>2.4   |              | 2.0<br>2.0   |              | 1.5<br>1.5 |            | ns<br>ns |
| Address hold time after clock K           | 16x2<br>32x1 | T <sub>AHS</sub><br>T <sub>AHTS</sub> | 0<br>0       |              | 0<br>0       |              | 0<br>0       |              | 0<br>0     |            | ns<br>ns |
| DIN setup time before clock K             | 16x2<br>32x1 | T <sub>DSS</sub><br>T <sub>DSTS</sub> | 3.5<br>2.5   |              | 3.2<br>1.9   |              | 2.7<br>1.7   |              | 1.5<br>1.5 |            | ns<br>ns |
| DIN hold time after clock K               | 16x2<br>32x1 | T <sub>DHS</sub><br>T <sub>DHTS</sub> | 0<br>0       |              | 0<br>0       |              | 0<br>0       |              | 0<br>0     |            | ns<br>ns |
| WE setup time before clock K              | 16x2<br>32x1 | T <sub>WSS</sub><br>T <sub>WSTS</sub> | 2.2<br>2.2   |              | 2.0<br>2.0   |              | 1.6<br>1.6   |              | 1.5<br>1.5 |            | ns<br>ns |
| WE hold time after clock K                | 16x2<br>32x1 | T <sub>WHS</sub><br>T <sub>WHTS</sub> | 0<br>0       |              | 0<br>0       |              | 0<br>0       |              | 0<br>0     |            | ns<br>ns |
| Data valid after clock K                  | 16x2<br>32x1 | T <sub>WOS</sub><br>T <sub>WOTS</sub> |              | 10.3<br>11.6 |              | 8.8<br>10.3  |              | 7.9<br>9.3   |            | 6.5<br>7.0 | ns<br>ns |
|                                           |              |                                       |              |              |              |              |              | · · · · · ·  | Dualin     | -          |          |


Preliminary

Notes: Timing for the 16x1 RAM option is identical to 16x2 RAM timing. Applicable Read timing specifications are identical to Level-Sensitive Read timing.

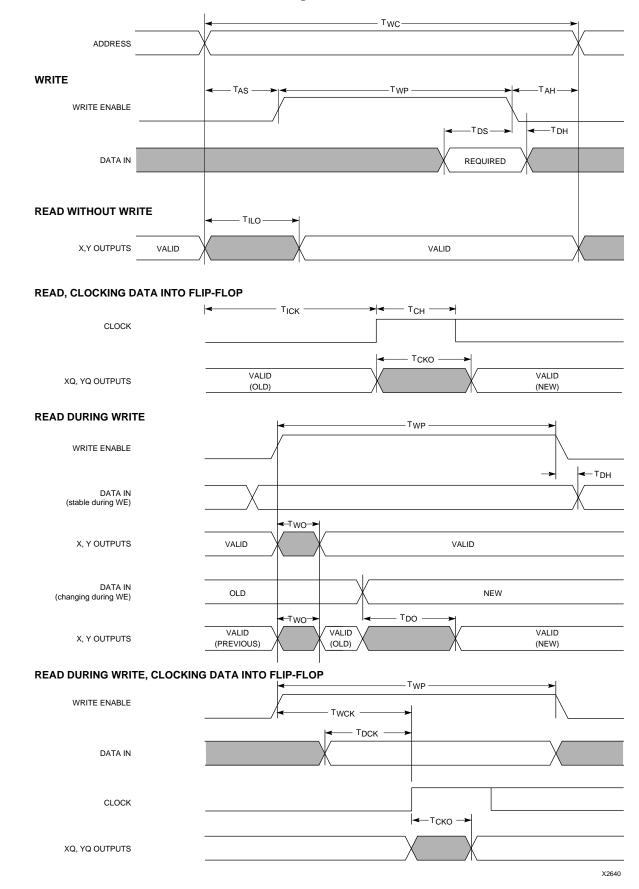

| Dual-Port RAM                             | Spee | ed Grade          | -    | 4    |     | -3   | -        | 2    | -      | 1      | Units |
|-------------------------------------------|------|-------------------|------|------|-----|------|----------|------|--------|--------|-------|
|                                           | Size | Symbol            | Min  | Мах  | Min | Max  | Min      | Max  | Min    | Max    | Units |
| Write Operation                           |      |                   |      |      |     |      | <u>.</u> |      |        |        |       |
| Address write cycle time (clock K period) | 16x1 | T <sub>WCDS</sub> | 15.0 |      | 9.0 |      | 11.6     |      | 8.0    |        | ns    |
| Clock K pulse width (active edge)         | 16x1 | T <sub>WPDS</sub> |      | 1 ms | 4.5 | 1 ms | 5.8      | 1 ms | 4.0    |        | ns    |
| Address setup time before clock K         | 16x1 | T <sub>ASDS</sub> | 7.5  |      | 2.5 |      | 2.1      |      | 1.5    |        | ns    |
| Address hold time after clock K           | 16x1 | T <sub>AHDS</sub> | 2.8  |      | 0   |      | 0        |      | 0      |        | ns    |
| DIN setup time before clock K             | 16x1 | T <sub>DSDS</sub> | 0    |      | 2.5 |      | 1.6      |      | 1.5    |        | ns    |
| DIN hold time after clock K               | 16x1 | T <sub>DHDS</sub> | 2.2  |      | 0   |      | 0        |      | 0      |        | ns    |
| WE setup time before clock K              | 16x1 | T <sub>WSDS</sub> | 0    |      | 1.8 |      | 1.6      |      | 1.5    |        | ns    |
| WE hold time after clock K                | 16x1 | T <sub>WHDS</sub> | 2.2  |      | 0   |      | 0        |      | 0      |        | ns    |
| Data valid after clock K                  | 16x1 | T <sub>WODS</sub> | 0.3  | 10.0 |     | 7.8  |          | 7.0  |        | 6.5    | ns    |
|                                           |      | 1                 |      |      |     |      |          |      | Prelin | ninary |       |

Note: Applicable Read timing specifications are identical to Level-Sensitive Read timing.

# XC4000E CLB RAM Synchronous (Edge-Triggered) Write Timing



# XC4000E CLB Dual-Port RAM Synchronous (Edge-Triggered) Write Timing




#### XC4000E CLB Level-Sensitive RAM Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

|                                                        | Spe          | ed Grade                              | -          | 4            | -          | 3          | -          | 2          | -          | 1          | Units    |
|--------------------------------------------------------|--------------|---------------------------------------|------------|--------------|------------|------------|------------|------------|------------|------------|----------|
| Description                                            | Size         | Symbol                                | Min        | Max          | Min        | Max        | Min        | Max        | Min        | Max        | Units    |
| Write Operation                                        |              |                                       |            |              |            | 1          | 1          |            |            |            |          |
| Address write cycle time                               | 16x2<br>32x1 | T <sub>WC</sub><br>T <sub>WCT</sub>   | 8.0<br>8.0 |              | 8.0<br>8.0 |            | 8.0<br>8.0 |            | 8.0<br>8.0 |            | ns<br>ns |
| Write Enable pulse width (High)                        | 16x2<br>32x1 | T <sub>WP</sub><br>T <sub>WPT</sub>   | 4.0<br>4.0 |              | 4.0<br>4.0 |            | 4.0<br>4.0 |            | 4.0<br>4.0 |            | ns<br>ns |
| Address setup time before WE                           | 16x2<br>32x1 | T <sub>AS</sub><br>T <sub>AST</sub>   | 2.0<br>2.0 |              | 2.0<br>2.0 |            | 2.0<br>2.0 |            | 2.0<br>2.0 |            | ns<br>ns |
| Address hold time after end of WE                      | 16x2<br>32x1 | T <sub>AH</sub><br>T <sub>AHT</sub>   | 2.5<br>2.0 |              | 2.0<br>2.0 |            | 2.0<br>2.0 |            | 2.0<br>2.0 |            | ns<br>ns |
| DIN setup time before end of WE                        | 16x2<br>32x1 | T <sub>DS</sub><br>T <sub>DST</sub>   | 4.0<br>5.0 |              | 2.2<br>2.2 |            | 0.8<br>0.8 |            | 0.8<br>0.8 |            | ns<br>ns |
| DIN hold time after end of WE                          | 16x2<br>32x1 | T <sub>DH</sub><br>T <sub>DHT</sub>   | 2.0<br>2.0 |              | 2.0<br>2.0 |            | 2.0<br>2.0 |            | 2.0<br>2.0 |            | ns<br>ns |
| Read Operation                                         |              |                                       |            | 1            |            | 1          | 1          |            |            |            | •        |
| Address read cycle time                                | 16x2<br>32x1 | T <sub>RC</sub><br>T <sub>RCT</sub>   | 4.5<br>6.5 |              | 3.1<br>5.5 |            | 2.6<br>3.8 |            | 2.6<br>3.8 |            | ns<br>ns |
| Data valid after address change<br>(no Write Enable)   | 16x2<br>32x1 | T <sub>ILO</sub><br>T <sub>IHO</sub>  |            | 2.7<br>4.7   |            | 1.8<br>3.2 |            | 1.6<br>2.7 |            | 1.6<br>2.7 | ns<br>ns |
| Read Operation, Clocking Data inte                     | o Flip-Fl    | ор                                    |            | 1            | I          | 1          | 1          |            |            |            | •        |
| Address setup time before clock K                      | 16x2<br>32x1 | T <sub>ICK</sub><br>T <sub>IHCK</sub> | 4.0<br>6.1 |              | 3.0<br>4.6 |            | 2.4<br>3.9 |            | 2.4<br>3.9 |            | ns<br>ns |
| Read During Write                                      |              | I                                     |            | 1            |            | 1          | 1          |            |            |            | •        |
| Data valid after WE goes active (DIN stable before WE) | 16x2<br>32x1 | T <sub>WO</sub><br>T <sub>WOT</sub>   |            | 10.0<br>12.0 |            | 6.0<br>7.3 |            | 4.9<br>5.6 |            | 4.9<br>5.6 | ns<br>ns |
| Data valid after DIN<br>(DIN changes during WE)        | 16x2<br>32x1 | T <sub>DO</sub><br>T <sub>DOT</sub>   |            | 9.0<br>11.0  |            | 6.6<br>7.6 |            | 5.8<br>6.2 |            | 5.8<br>6.2 | ns<br>ns |
| Read During Write, Clocking Data                       | into Flip    | -Flop                                 |            |              |            |            | 1          |            |            |            |          |
| WE setup time before clock K                           | 16x2<br>32x1 | Т <sub>WCK</sub><br>Т <sub>WCKT</sub> | 8.0<br>9.6 |              | 6.0<br>6.8 |            | 5.1<br>5.8 |            | 5.1<br>5.8 |            | ns<br>ns |
| Data setup time before clock K                         | 16x2<br>32x1 | Т <sub>DCK</sub><br>Т <sub>DCKT</sub> | 7.0<br>8.0 |              | 5.2<br>6.2 |            | 4.4<br>5.3 |            | 4.4<br>5.3 |            | ns<br>ns |
|                                                        | 1            | 1                                     | 1          | 1            | 1          | 1          | 1          | I          | Prelin     | ninarv     |          |

Note: Timing for the 16x1 RAM option is identical to 16x2 RAM timing.



# **XC4000E CLB Level-Sensitive RAM Timing Characteristics**

#### XC4000E Guaranteed Input and Output Parameters (Pin-to-Pin, TTL I/O)

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000E devices unless otherwise noted.

|                                                    | Spe                         | ed Grade                                                                                                           | -4                                                           | -3                                                           | -2                                                           | -1                                                    | Unite                                        |
|----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|
| Description                                        | Symbol                      | Device                                                                                                             |                                                              |                                                              |                                                              |                                                       | Units                                        |
| Global Clock to Output<br>(fast) using OFF         | T <sub>ICKOF</sub><br>(Max) | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E                               | 12.5<br>14.0<br>14.5<br>15.0<br>16.0<br>16.5<br>17.0<br>17.0 | 10.2<br>10.7<br>10.7<br>10.8<br>10.9<br>11.0<br>11.0<br>12.6 | 8.7<br>9.1<br>9.2<br>9.3<br>9.4<br>10.2<br>10.8              | 5.8<br>6.2<br>6.4<br>6.6<br>6.8<br>7.2<br>7.4         | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Global Clock to Output<br>(slew-limited) using OFF | Т <sub>IСКО</sub><br>(Max)  | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E                    | 16.5<br>18.0<br>18.5<br>19.0<br>20.0<br>20.5<br>21.0<br>21.0 | 14.0<br>14.7<br>14.7<br>14.8<br>14.9<br>15.0<br>15.1<br>15.3 | 11.5<br>12.0<br>12.0<br>12.1<br>12.2<br>12.8<br>12.8<br>13.0 | 7.8<br>8.2<br>8.4<br>8.6<br>8.8<br>9.2<br>9.4<br>-    | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Input Setup Time, using IFF<br>(no delay)          | T <sub>PSUF</sub><br>(Min)  | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E                    | 2.5<br>2.0<br>1.9<br>1.4<br>1.0<br>0.5<br>0<br>0             | 2.3<br>1.2<br>1.0<br>0.6<br>0.2<br>0<br>0<br>0               | 2.3<br>1.2<br>1.0<br>0.6<br>0.2<br>0<br>0<br>0               | 1.5<br>0.8<br>0.6<br>0.2<br>0<br>0<br>0<br>-          | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Input Hold Time, using IFF<br>(no delay)           | Т <sub>РНF</sub><br>(Min)   | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E                    | 4.0<br>4.6<br>5.0<br>6.0<br>6.0<br>7.0<br>7.5<br>8.0         | 4.0<br>4.5<br>4.7<br>5.1<br>5.5<br>6.5<br>6.7<br>7.0         | 4.0<br>4.5<br>4.7<br>5.1<br>5.5<br>5.5<br>5.7<br>5.9         | 1.5<br>2.0<br>2.5<br>2.5<br>3.0<br>3.5                | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Input Setup Time, using IFF<br>(with delay)        | T <sub>PSU</sub><br>(Min)   | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E                    | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>9.5<br>9.5                | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.6  | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.8<br>6.8         | 5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0  | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns       |
| Input Hold Time, using IFF<br>(with delay)         | T <sub>PH</sub><br>(Min)    | XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4013E<br>XC4020E<br>XC4025E<br>D-Flop or Latch | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0<br>-<br><b>Preliminary</b> | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |

### XC4000E IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000E devices unless otherwise noted.

|                                  | Speed              | d Grade     | -   | 4    | -   | 3    | -   | 2    | -      | 1      | Units |
|----------------------------------|--------------------|-------------|-----|------|-----|------|-----|------|--------|--------|-------|
| Description                      | Symbol             | Device      | Min | Max  | Min | Max  | Min | Max  | Min    | Max    | Units |
| Propagation Delays (TTL Inputs)  |                    |             |     |      |     | 1    |     |      |        |        |       |
| Pad to I1, I2                    |                    |             |     |      |     |      |     |      |        |        |       |
| Pad to I1, I2 via transparent    | T <sub>PID</sub>   | All devices |     | 3.0  |     | 2.5  |     | 2.0  |        | 1.4    | ns    |
| latch, no delay                  |                    |             |     |      |     |      |     |      |        |        |       |
| with delay                       | T <sub>PLI</sub>   | All devices |     | 4.8  |     | 3.6  |     | 3.6  |        | 2.8    | ns    |
|                                  | T <sub>PDLI</sub>  | XC4003E     |     | 10.4 |     | 9.3  |     | 6.9  |        | 6.4    | ns    |
|                                  |                    | XC4005E     |     | 10.8 |     | 9.6  |     | 7.4  |        | 6.5    | ns    |
|                                  |                    | XC4006E     |     | 10.8 |     | 10.2 |     | 8.1  |        | 6.9    | ns    |
|                                  |                    | XC4008E     |     | 10.8 |     | 10.6 |     | 8.2  |        | 7.0    | ns    |
|                                  |                    | XC4010E     |     | 11.0 |     | 10.8 |     | 8.3  |        | 7.3    | ns    |
|                                  |                    | XC4013E     |     | 11.4 |     | 11.2 |     | 9.8  |        | 8.4    | ns    |
|                                  |                    | XC4020E     |     | 13.8 |     | 12.4 |     | 11.5 |        | 9.0    | ns    |
|                                  |                    | XC4025E     |     | 13.8 |     | 13.7 |     | 12.4 |        | -      | ns    |
| Propagation Delays (CMOS Inputs) |                    |             |     |      |     | •    |     |      |        |        |       |
| Pad to I1, I2                    | T <sub>PIDC</sub>  | All devices |     | 5.5  |     | 4.1  |     | 3.7  |        | 1.9    | ns    |
| Pad to I1, I2 via transparent    | 1120               |             |     |      |     |      |     |      |        |        |       |
| latch, no delay                  | T <sub>PLIC</sub>  | All devices |     | 8.8  |     | 6.8  |     | 6.2  |        | 3.3    | ns    |
| with delay                       | T <sub>PDLIC</sub> | XC4003E     |     | 16.5 |     | 12.4 |     | 11.0 |        | 6.9    | ns    |
|                                  |                    | XC4005E     |     | 16.5 |     | 13.2 |     | 11.9 |        | 7.0    | ns    |
|                                  |                    | XC4006E     |     | 16.8 |     | 13.4 |     | 12.1 |        | 7.4    | ns    |
|                                  |                    | XC4008E     |     | 17.3 |     | 13.8 |     | 12.4 |        | 7.4    | ns    |
|                                  |                    | XC4010E     |     | 17.5 |     | 14.0 |     | 12.6 |        | 7.8    | ns    |
|                                  |                    | XC4013E     |     | 18.0 |     | 14.4 |     | 13.0 |        | 9.0    | ns    |
|                                  |                    | XC4020E     |     | 20.8 |     | 15.6 |     | 14.0 |        | 9.5    | ns    |
|                                  |                    | XC4025E     |     | 20.8 |     | 15.6 |     | 14.0 |        | -      | ns    |
| Propagation Delays               |                    |             |     |      |     |      |     |      |        |        |       |
| Clock (IK) to I1, I2 (flip-flop) | T <sub>IKRI</sub>  | All devices |     | 5.6  |     | 2.8  |     | 2.8  |        | 2.7    | ns    |
| Clock (IK) to I1, I2             |                    |             |     |      |     |      |     |      |        |        |       |
| (latch enable, active Low)       | T <sub>IKLI</sub>  | All devices |     | 6.2  |     | 4.0  |     | 3.9  |        | 3.2    | ns    |
| Hold Times (Note 1)              |                    |             |     |      |     | •    |     |      |        |        |       |
| Pad to Clock (IK), no delay      | T <sub>IKPI</sub>  | All devices | 0   |      | 0   |      | 0   |      | 0      |        | ns    |
| with delay                       | T <sub>IKPID</sub> | All devices | 0   |      | 0   |      | 0   |      | 0      |        | ns    |
| Clock Enable (EC) to Clock (IK), |                    |             |     |      |     |      |     |      |        |        |       |
| no delay                         | TIKEC              | All devices | 1.5 |      | 1.5 |      | 0.9 |      | 0      |        | ns    |
| with delay                       | TIKECD             | All devices | 0   |      | 0   |      | 0   |      | 0      |        | ns    |
|                                  |                    | 1 1         |     |      |     |      |     |      | Prelin | ninary |       |

Note 1: Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input pin, see the pin-to-pin parameters in the Guaranteed Input and Output Parameters table.

Note 2: Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pullup (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

#### **XC4000E IOB Input Switching Characteristic Guidelines (continued)**

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

|                                                                                               |                        | Speed G                                                  | rade                                                                                                | -                                                                   | 4    | -                                                                | 3   | -                                                              | 2   | -                                                         | 1      | Units                                              |
|-----------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|------------------------------------------------------------------|-----|----------------------------------------------------------------|-----|-----------------------------------------------------------|--------|----------------------------------------------------|
| Descriptio                                                                                    | on                     | Symbol                                                   | Device                                                                                              | Min                                                                 | Max  | Min                                                              | Max | Min                                                            | Max | Min                                                       | Max    | Units                                              |
| Setup Times (TTL                                                                              | Inputs)                |                                                          |                                                                                                     |                                                                     |      |                                                                  |     |                                                                |     |                                                           |        |                                                    |
| Pad to Clock (IK),                                                                            | no delay<br>with delay | T <sub>PICK</sub><br>T <sub>PICKD</sub>                  | All devices<br>XC4003E<br>XC4005E<br>XC4006E                                                        | 4.0<br>10.9<br>10.9<br>10.9                                         |      | 2.6<br>8.2<br>8.7<br>9.2                                         |     | 2.0<br>6.0<br>6.1<br>6.2                                       |     | 1.5<br>4.8<br>5.1<br>5.8                                  |        | ns<br>ns<br>ns<br>ns                               |
|                                                                                               |                        |                                                          | XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E                                                 | 11.1<br>11.3<br>11.8<br>14.0<br>14.0                                |      | 9.6<br>9.8<br>10.2<br>11.4<br>11.4                               |     | 6.3<br>6.4<br>7.9<br>9.4<br>10.0                               |     | 5.8<br>6.0<br>7.6<br>8.2<br>–                             |        | ns<br>ns<br>ns<br>ns<br>ns                         |
| Setup Time (CMO                                                                               | S Inputs)              |                                                          | •                                                                                                   |                                                                     | •    | •                                                                |     |                                                                |     |                                                           |        |                                                    |
| Pad to Clock (IK),                                                                            | no delay<br>with delay | T <sub>PICKC</sub><br>T <sub>PICKDC</sub>                | All devices<br>XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4025E | 6.0<br>12.0<br>12.3<br>12.8<br>13.0<br>13.5<br>16.0<br>16.0         |      | 3.3<br>8.8<br>9.7<br>9.9<br>10.3<br>10.5<br>10.9<br>12.1<br>12.1 |     | 2.4<br>6.9<br>8.0<br>8.1<br>8.2<br>8.3<br>10.0<br>12.1<br>12.1 |     | 2.4<br>5.3<br>5.6<br>6.3<br>6.3<br>6.5<br>7.9<br>8.1      |        | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| (TTL or CMOS)                                                                                 |                        |                                                          |                                                                                                     |                                                                     |      |                                                                  |     | 1                                                              |     |                                                           |        |                                                    |
| Clock Enable (EC)<br>(IK), no delay<br>with delay                                             |                        | T <sub>ECIK</sub><br>T <sub>ECIKD</sub>                  | All devices<br>XC4003E<br>XC4005E<br>XC4006E<br>XC4008E<br>XC4010E<br>XC4013E<br>XC4020E<br>XC4022E | 3.5<br>10.4<br>10.4<br>10.4<br>10.4<br>10.7<br>11.1<br>14.0<br>14.0 |      | 2.5<br>8.1<br>8.5<br>9.1<br>9.5<br>9.7<br>10.1<br>11.3<br>11.3   |     | 2.1<br>4.3<br>5.6<br>6.7<br>6.9<br>7.1<br>9.0<br>10.6<br>11.0  |     | 1.5<br>4.3<br>5.0<br>6.0<br>6.0<br>6.5<br>8.0<br>9.0<br>- |        | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Global Set/Reset (                                                                            |                        |                                                          |                                                                                                     |                                                                     |      |                                                                  |     |                                                                |     |                                                           |        |                                                    |
| Delay from GSR ne<br>through Q to I1,<br>GSR width<br>GSR inactive to firs<br>Clock (IK) edge | I2<br>t active         | T <sub>RRI</sub><br>T <sub>MRW</sub><br>T <sub>MRI</sub> |                                                                                                     | 13.0                                                                | 12.0 | 11.5                                                             | 7.8 | 11.5                                                           | 6.8 | 10.0                                                      | 6.8    | ns<br>ns                                           |
|                                                                                               |                        |                                                          |                                                                                                     |                                                                     |      |                                                                  |     |                                                                |     | Prelin                                                    | ninary |                                                    |

Note 1: Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input pin, see the pin-to-pin parameters in the Guaranteed Input and Output Parameters table.

Note 2: Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pullup (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Note 3: Timing is based on the XC4005E. For other devices see the XACT timing calculator.

### XC4000E IOB Output Switching Characteristic Guidelines

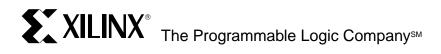
Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000E devices unless otherwise noted.

| Speed                                     | Grade               | -   | 4    | -   | 3    | -:  | 2    | -'     | 1      | Units |
|-------------------------------------------|---------------------|-----|------|-----|------|-----|------|--------|--------|-------|
| Description                               | Symbol              | Min | Max  | Min | Max  | Min | Max  | Min    | Max    | Units |
| Propagation Delays<br>(TTL Output Levels) |                     |     |      |     |      |     |      |        |        |       |
| Clock (OK) to Pad, fast                   | T <sub>OKPOF</sub>  |     | 7.5  |     | 6.5  |     | 4.5  |        | 3.0    | ns    |
| slew-rate limited                         | T <sub>OKPOS</sub>  |     | 11.5 |     | 9.5  |     | 7.0  |        | 5.0    | ns    |
| Output (O) to Pad, fast                   | T <sub>OPF</sub>    |     | 8.0  |     | 5.5  |     | 4.8  |        | 3.2    | ns    |
| slew-rate limited                         | T <sub>OPS</sub>    |     | 12.0 |     | 8.5  |     | 7.3  |        | 5.2    | ns    |
| 3-state to Pad hi-Z                       | T <sub>TSHZ</sub>   |     | 5.0  |     | 4.2  |     | 3.8  |        | 3.0    | ns    |
| (slew-rate independent)                   |                     |     |      |     |      |     |      |        |        |       |
| 3-state to Pad active                     |                     |     |      |     |      |     |      |        |        |       |
| and valid, fast                           | T <sub>TSONF</sub>  |     | 9.7  |     | 8.1  |     | 7.3  |        | 6.8    | ns    |
| slew-rate limited                         | T <sub>TSONS</sub>  |     | 13.7 |     | 11.1 |     | 9.8  |        | 8.8    | ns    |
| Propagation Delays                        |                     |     | •    |     |      |     |      |        |        |       |
| (CMOS Output Levels)                      |                     |     |      |     |      |     |      |        |        |       |
| Clock (OK) to Pad, fast                   | T <sub>OKPOFC</sub> |     | 9.5  |     | 7.8  |     | 7.0  |        | 4.0    | ns    |
| slew-rate limited                         |                     |     | 13.5 |     | 11.6 |     | 10.4 |        | 7.0    | ns    |
| Output (O) to Pad, fast                   | T <sub>OPFC</sub>   |     | 10.0 |     | 9.7  |     | 8.7  |        | 4.0    | ns    |
| slew-rate limited                         | T <sub>OPSC</sub>   |     | 14.0 |     | 13.4 |     | 12.1 |        | 6.0    | ns    |
| 3-state to Pad hi-Z                       | T <sub>TSHZC</sub>  |     | 5.2  |     | 4.3  |     | 3.9  |        | 3.9    | ns    |
| (slew-rate independent)                   |                     |     |      |     |      |     |      |        |        |       |
| 3-state to Pad active                     |                     |     |      |     |      |     |      |        |        |       |
| and valid, fast                           | T <sub>TSONFC</sub> |     | 9.1  |     | 7.6  |     | 6.8  |        | 6.8    | ns    |
| slew-rate limited                         | T <sub>TSONSC</sub> |     | 13.1 |     | 11.4 |     | 10.2 |        | 8.8    | ns    |
|                                           |                     |     |      |     |      |     |      | Prelin | ninary |       |

Note 1: Output timing is measured at pin threshold, with 50pF external capacitive loads (incl. test fixture). Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. For the effect of capacitive loads on ground bounce, see the "Additional XC4000 Data" section of the Programmable Logic Data Book.

Note 2: Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pullup (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

### XC4000E IOB Output Switching Characteristic Guidelines (continued)


Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values apply to all XC4000E devices unless otherwise noted.

| Speed                                                        | Grade                                | -    | 4    | -    | 3    | -    | 2   | -      | 1      | Unito |
|--------------------------------------------------------------|--------------------------------------|------|------|------|------|------|-----|--------|--------|-------|
| Description                                                  | Symbol                               | Min  | Max  | Min  | Max  | Min  | Max | Min    | Max    | Units |
| Setup and Hold                                               |                                      |      |      | •    | •    | •    | 1   |        |        |       |
| Output (O) to clock (OK) setup time                          | Тоок                                 | 5.0  |      | 4.6  |      | 3.8  |     | 2.3    |        | ns    |
| Output (O) to clock (OK)<br>hold time                        | Токо                                 | 0    |      | 0    |      | 0    |     | 0      |        | ns    |
| Clock Enable (EC) to<br>clock (OK) setup                     | Т <sub>ЕСОК</sub>                    | 4.8  |      | 3.5  |      | 2.7  |     | 2.0    |        | ns    |
| Clock Enable (EC) to<br>clock (OK) hold                      | T <sub>OKEC</sub>                    | 1.2  |      | 1.2  |      | 0.5  |     | 0      |        | ns    |
| Clock                                                        |                                      |      |      |      | ı    | ,    | 1   |        |        |       |
| Clock High                                                   | Тсн                                  | 4.5  |      | 4.0  |      | 4.0  |     |        | 3.0    | ns    |
| Clock Low                                                    | T <sub>CL</sub>                      | 4.5  |      | 4.0  |      | 4.0  |     |        | 3.0    | ns    |
| Global Set/Reset (Note 3)                                    |                                      |      |      | 1    | 1    |      | 1   |        |        |       |
| Delay from GSR net to Pad                                    | T <sub>RPO</sub>                     |      | 15.0 |      | 11.8 |      | 8.7 |        | 7.0    | ns    |
| GSR width<br>GSR inactive to first active<br>clock (OK) edge | T <sub>MRW</sub><br>T <sub>MRO</sub> | 13.0 |      | 11.5 |      | 11.5 |     |        |        | ns    |
|                                                              |                                      |      |      |      |      |      |     | Prelin | ninary |       |

Note 1: Output timing is measured at pin threshold, with 50pF external capacitive loads (incl. test fixture). Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. For the effect of capacitive loads on ground bounce, see the "Additional XC4000 Data" section of the Programmable Logic Data Book.

Note 2: Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pullup (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Note 3: Timing is based on the XC4005E. For other devices see the XACT timing calculator.



#### **Headquarters**

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 U.S.A.

Tel: 1 (800) 255-7778 or 1 (408) 559-7778 Fax: 1 (800) 559-7114

Net: hotline@xilinx.com Web: http://www.xilinx.com

#### **North America**

Irvine, California (714) 727-0780

# Englewood, Colorado (303)220-7541

Sunnyvale, California (408) 245-9850

Schaumburg, Illinois (847) 605-1972

Nashua, New Hampshire (603) 891-1098

Raleigh, North Carolina (919) 846-3922

West Chester, Pennsylvania (610) 430-3300

Dallas, Texas (214) 960-1043

#### Europe

Xilinx Sarl

Jouy en Josas, France Tel: (33) 1-34-63-01-01 Net: frhelp@xilinx.com

Xilinx GmbH Aschheim, Germany Tel: (49) 89-99-1549-01 Net: dlhelp@xilinx.com

Xilinx, Ltd. Byfleet, United Kingdom Tel: (44) 1-932-349401 Net: ukhelp@xilinx.com

#### Japan

Xilinx, K.K. Tokyo, Japan Tel: (03) 3297-9191

#### Asia Pacific

Xilinx Asia Pacific Hong Kong Tel: (852) 2424-5200 Net: hongkong@xilinx.com

© 1996 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Programmable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copyright or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its products. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302; 4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619; 4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.