
Cadence Interface/Tutorial Guide — 0401494 Printed in U.S.A.

Cadence
Interface/
Tutorial Guide

Title Page

Introduction

Getting Started

Design Entry

Functional Simulation

Design Implementation

Timing Simulation

Design and Simulation
Techniques

Manual Translation

Tutorial

Glossary

Program Options

Processing Designs with
LogiBLOX

Synopsys/Verilog Design
Flow

Files

XILINX.PFF Property Filter
File Format

Cadence Interface/Tutorial Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480;
5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.

R

Terms and Conditions

Preface

About This Manual
This manual explains how to use the Xilinx/Cadence Interface soft-
ware with Cadence Concept and Verilog-XL.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Development System Reference
Guide.

Other publications you can consult for related information are the
Cadence manuals, Concept Schematic User Guide and Xilinx FPGA
Designer (Concept) User Guide.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” describes the Xilinx/Cadence design
flow, Xilinx-supplied libraries, Xilinx architecture support, and
major features.

• Chapter 2, “Getting Started,” explains how to set up Xilinx and
Cadence files and environment variables.

• Chapter 3, “Design Entry,” describes Cadence design entry in
relation to the Xilinx software.

• Chapter 4, “Functional Simulation,” explains how to perform
functional simulation of your designs using Cadence’s Verilog-
XL simulator.
Cadence Interface/Tutorial Guide — 0401494 iii

Cadence Interface/Tutorial Guide
• Chapter 5, “Design Implementation,” explains how to use
CONCEPT2XIL to translate your design into an EDIF file.

• Chapter 6, “Timing Simulation,” describes how to prepare for
timing simulation using the NGD2VER command. The chapter
then explains how to conduct timing simulation using the
Cadence Verilog-XL software.

• Chapter 7, “Design and Simulation Techniques,” describes
various design and simulation techniques.

• Chapter 8, “Manual Translation,” summarizes how to do design
implementation, functional simulation, and timing simulation
from the UNIX command line.

• Chapter 9, “Schematic Design Tutorial,” guides you through a
typical field-programmable gate array (FPGA) and complex
programmable logic device (CPLD) design process from sche-
matic entry to completion of a functioning device.

• Appendix A, “Glossary,” describes the basic terminology for the
Xilinx/Cadence interface.

• Appendix B, “Program Options,” describes Xilinx and Cadence
command line programs that pertain to the Xilinx/Cadence inter-
face.

• Appendix C, “Processing Designs with LogiBLOX Components,”
explains how to translate LogiBLOX modules for use within the
Cadence Concept editor.

• Appendix D, “Synopsys/Verilog Design Flow,” provides a flow
chart that illustrates how to process designs described in Verilog
HDL using Synopsys and simulate them with the Cadence
Verilog-XL simulator.

• Appendix E, “Files,” contains annotated testbench templates.

• Appendix F, “XILINX.PFF Property Filter File Format,” describes
the structure of the xilinx.pff file.
iv Xilinx Development System

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.
Cadence Interface/Tutorial Guide — 0401494 v

Cadence Interface/Tutorial Guide
• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click on the red-underlined text to
open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click on the blue-underlined text to
open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.
vi Xilinx Development System

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking on the
figure.
Cadence Interface/Tutorial Guide vii

Cadence Interface/Tutorial Guide
viii Xilinx Development System

Contents

Table of Contents
Preface
About This Manual .. iii
Manual Contents ... iii

Conventions
Typographical.. v
Online Document .. vi

Chapter 1 Introduction

Architecture Support ... 1-1
Platform Support ... 1-1
Features .. 1-2

Xilinx/Cadence Interface .. 1-2
Libraries ... 1-3
Schematic and Verilog Design Entry 1-4
Direct Generation of Structural Verilog Netlist from Concept
Schematics .. 1-4
Standard EDIF Netlist .. 1-4
Concept.. 1-4
Verilog-XL .. 1-4
CONCEPT2XIL .. 1-5
XIL2CDS .. 1-5
NGD2VER.. 1-5
Simulation of Synopsys Designs.. 1-5
Automatic Library Specification.. 1-6
Waveform Viewer Support ... 1-6
LogiBLOX... 1-6
Timing Constraints ... 1-6
Synergy Support .. 1-6

Design Flows... 1-7
Files... 1-10
Cadence Interface/Tutorial Guide — 0401494 ix

Cadence Interface/Tutorial Guide
Tutorials .. 1-11
Online Help ... 1-11
Design Approaches... 1-11

Schematic Entry... 1-11
Verilog HDL Entry (Synergy).. 1-12
Mixed-mode Entry, Top Level Schematic 1-13
Mixed-Mode Entry, Top Level HDL (Verilog) 1-14

Chapter 2 Getting Started

Required Software .. 2-1
Setting Up Your Environment.. 2-2

Required Environment Variables (All Platforms)...................... 2-2
Concept Environment Setup .. 2-3

Concept Environment Variables ... 2-4
Concept Setup Library Files ... 2-4

Verilog Environment Setup .. 2-7
Dynatext Environment Variables.. 2-8

Invoking Concept .. 2-8
Exiting Concept ... 2-8

Chapter 3 Design Entry

Concept... 3-2
Requirements For HDL Direct Compliance................................... 3-3
Using the Xilinx Concept Unified Schematic Libraries 3-5

FPGA and CPLD Libraries... 3-6
PAD Library.. 3-6

Renamed Components ... 3-6
Verilog/Concept HDL Direct Naming Conventions........................ 3-7
VCC and GND Components ... 3-8
Using the LogiBLOX Libraries... 3-8
Specifying Xilinx Properties and Constraints in Concept 3-9

Adding Xilinx Properties... 3-9
Rules and Restrictions For Using Xilinx Properties in Concept 3-10

SIZE Property ... 3-11
CONCEPT2XIL Property Filter File 3-11
Xilinx Properties Without Values... 3-13
Xilinx Properties on Pads.. 3-13
Supported Xilinx Properties .. 3-14
Obsolete Xilinx Properties .. 3-14
Entering Timing Specifications in Schematics 3-14
Creating New Groups from Existing Groups....................... 3-15
x Xilinx Development System

Contents
Attaching Signal Names.. 3-15
Creating Bus Taps .. 3-15
Using the BSCAN Symbol... 3-18
Using the STARTUP Symbol .. 3-19
Using the CONFIG Symbol to Specify Part Type.......................... 3-19
Using HDL Direct Methodology... 3-20
Creating Bodies for Non-Schematic Design Blocks 3-20

Creating a Body for a Verilog Netlist.. 3-21
Generating a Body for a Schematic ... 3-22
Generating a Body for an XNF, NGO, or EDIF
File ... 3-22

Verilog HDL Design Entry ... 3-22
Translating Your Design.. 3-23

Chapter 4 Functional Simulation

Introduction ... 4-1
Unified Library Based Functional Simulation 4-2

Pure Concept Schematic Without LogiBLOX Elements........... 4-3
Creating HDL Views for the Design/ Netlisting the Design . 4-3
Creating a Testbench File... 4-4
Running the Functional Simulation 4-5
Adding SimWave Support to the Testbench File 4-7
Global Reset ... 4-8

Pure Concept Schematic Designs With LogiBLOX.................. 4-8
Mixed Mode Designs ... 4-8

Running the Simulation... 4-9
Global Reset ... 4-11

SIMPRIM Library Based Functional Simulation 4-11
Using NGD2VER ... 4-13
Running a Verilog Functional Simulation 4-14
Global Reset .. 4-14

Chapter 5 Design Implementation

Converting the Concept Design to an EDIF File 5-3
Implementing the Design .. 5-5

Chapter 6 Timing Simulation

Post-Map Timing Simulation (FPGAs) .. 6-1
Mapping and Back-Annotation... 6-3
Running NGD2VER ... 6-4
Running the Verilog Timing Simulation.................................... 6-5
Cadence Interface/Tutorial Guide xi

Cadence Interface/Tutorial Guide
Global Reset .. 6-8
Post-Implementation Timing Simulation.. 6-8

Running NGD2VER ... 6-9

Chapter 7 Design and Simulation Techniques

Replicating Components in a Design (SIZE)................................. 7-1
Retargeting a Design to a Different Family 7-2
Merging Design Files from Other Sources 7-4
XC4000 Flip-flop Initialization.. 7-5

IOB Flip-flop Initialization ... 7-5
CLB Flip-flop Initialization .. 7-5

XC9500 Flip-flop Initialization.. 7-5
IOB Flip-flop Initialization ... 7-5
Macrocell Flip-flop Initialization .. 7-5

Setting Global Set/Reset and Tri-state Signals (FPGAs).............. 7-6
Setting Global Set/Reset.. 7-6

Designs with No STARTUP Block 7-8
Designs With STARTUP block (XC4000E/L/EX/XL/XV and XC5200
Devices Only) ... 7-11

Setting Global Tri-state (XC4000 and XC5200 Outputs Only). 7-15
Designs with No STARTUP Block 7-17
Designs With STARTUP block (XC4000E/L/EX/XL/XV and XC5200
Devices Only) ... 7-18

Setting Global PRLD (CPLD Designs) .. 7-21
Unified Library Functional Simulation 7-21
Post-NGDBuild and Post-Implementation Timing Simulation .. 7-22

Oscillator Functions (OSC, OSC4, OSC5).................................... 7-22

Chapter 8 Manual Translation

Functional Simulation.. 8-1
Unified Library Based Functional Simulation 8-1

Schematic Designs Without LogiBLOX Elements 8-1
SIMPRIM Library Based Functional Simulation 8-2

Mixed Mode Designs .. 8-2
Design Implementation ... 8-3

Schematic Designs (FPGA) ... 8-3
Schematic Designs (CPLD) ... 8-4
HDL Top Level Designs ... 8-5
Pure HDL Designs ... 8-5

Timing Simulation.. 8-6
Post-Map Timing Simulation (FPGAs Only)............................. 8-6
xii Xilinx Development System

Contents
Post-Implementation Timing Simulation 8-6

Chapter 9 Schematic Design Tutorial

Introduction ... 9-2
Required Background Knowledge... 9-3
Design Flow .. 9-3
Software Installation.. 9-4

Required Software ... 9-4
Before Beginning the Tutorial .. 9-4

Standard Directory Structure .. 9-5
Tutorial Directory and Files... 9-5

Copying the Tutorial Files ... 9-7
Setting Up for Concept.. 9-7
Using HDL Direct .. 9-9
Starting Concept ... 9-10

Using the Mouse in Concept.. 9-11
Left Mouse Button... 9-11
Middle Mouse Button .. 9-11
Right Mouse Button .. 9-12

Strokes... 9-12
Selecting Commands from the Menu Bar 9-13
Entering Commands from the Keyboard.................................. 9-13
Cancelling Commands... 9-13
Manipulating the Screen .. 9-13
Saving a Design Directory ... 9-14
Quitting Concept .. 9-14

Completing the Calc Design.. 9-14
Design Description... 9-14
Targeting XC9500 Devices .. 9-16
Creating Schematics for ANDBLK2 Symbol 9-16

Opening a Schematic ... 9-16
Adding the First Component to a Schematic 9-16
Placing Additional Components.. 9-18
Copying a Component .. 9-18
Moving a Component.. 9-19
Adding and Labeling Buses in a Schematic 9-20
Adding Wires and SLICEs to a Schematic 9-21
Adding Values to SLICE Symbols 9-23
Adding Ports ... 9-25
Saving the Schematic ... 9-26

Creating Schematics for ORBLK2 Symbol 9-28
Creating the ANDBLK2 Symbol ... 9-29
Cadence Interface/Tutorial Guide xiii

Cadence Interface/Tutorial Guide
Creating the Symbol Outline... 9-29
Adding Text... 9-30

Creating the ORBLK2 Symbol ... 9-31
Editing the ALU1 Schematic .. 9-31
Placing User-Created Components ... 9-32
Adding Nets, Buses, Ports and Labels 9-35

FD4CE and AND5B2 .. 9-35
ANDBLK2 and ORBLK2 ... 9-36

Adding Labels to Components... 9-37
Saving the ALU1 Schematic .. 9-40
Exploring Xilinx Library Elements .. 9-40
Viewing a Xilinx Soft Macro Schematic.................................... 9-41
Viewing a Xilinx RPM (XC4000E Family Only) 9-41
Opening the Calc Schematic ... 9-44
Using the XC4000E Oscillator ... 9-44

Controlling FPGA/CPLD Layout from the Schematic.................... 9-45
Assigning Pin Locations... 9-45
Designating FAST Pads... 9-47
Using the I/O Flip-Flops ... 9-48
Saving the Calc Schematic .. 9-49

Modifying the Design for non-XC4000E/EX Devices 9-49
Targeting the Design for the XC9500 Family........................... 9-49
Targeting the Design for the 3000A and 5200 Family 9-51
RAM Stack Implementation ... 9-51
Using the Device-Independent Register File 9-52
Removing the XC4000E Oscillator .. 9-53

Using LogiBLOX.. 9-55
Creating a LogiBLOX Module .. 9-55
Creating a Symbol for the LogiBLOX Module 9-58

Other Special Components ... 9-60
The STARTUP Block (Optional, XC4000E/EX and XC5200 only) 9-60
Adding the CONFIG Symbol (Optional) 9-61

Using a Constraints File .. 9-63
Performing Functional Simulation ... 9-64

Using CONCEPT2XIL.. 9-64
Creating a Verilog Test Fixture .. 9-65

Timescale ... 9-65
Test Fixture Module Declaration... 9-66

Displaying Values .. 9-66
Opening a Waveform Database for SimWave 9-67
Defining a Clock... 9-68
Asserting the Global Set/Reset.. 9-69
xiv Xilinx Development System

Contents
Assigning Values to the Inputs... 9-71
Invoking the Verilog-XL simulator .. 9-73
Using SimWave ... 9-75
Invoking SimWave ... 9-75
Changing the View in SimWave... 9-76
Splitting Up and Bundling a Bus in SimWave 9-77

Using CONCEPT2XIL for Implementation 9-79
Using the Xilinx Design Manager .. 9-80
Performing Timing Simulation ... 9-86

Invoking Verilog-XL for Timing Simulation 9-86
Examining Routed Designs with EPIC .. 9-87
Verifying the Design Using a Demonstration Board...................... 9-87

Creating and Downloading the Bitstream 9-88
Making Incremental Design Changes ... 9-88

Making an Incremental Schematic Change 9-89
Translating the Incremental Design ... 9-90
Verifying the Change in the Demonstration Board................... 9-91

Command Summaries .. 9-92
Functional Simulation for XC4000E Family Designs 9-92
Basic Translation for XC4000E Family Designs 9-92
Timing Simulation for XC4000E Family Designs 9-93
Incremental Translation for XC4000E Family Designs 9-93

Further Reading .. 9-93

Appendix A Glossary
body .. A-1
cds_action = “ignore”; ... A-1
cds.lib .. A-1
chips_prt.. A-1
CONCEPT2XIL ... A-1
Concept... A-2
Concept Setup Files.. A-2
Concept Unified Schematic Library... A-2
CPLD... A-2
EDIF .. A-2
EDIF2NGD.. A-2
genview ... A-3
global.cmd... A-3
HDL ... A-3
HDLConfig... A-3
HDL Direct... A-3
iterated instances .. A-4
Cadence Interface/Tutorial Guide xv

Cadence Interface/Tutorial Guide
logic drawing ... A-4
LogiBLOX.. A-4
MAP .. A-4
master.local... A-4
mixed mode design ... A-4
NGDAnno.. A-5
NGDBuild .. A-5
NGD2VER... A-5
PAR... A-5
SCALD .. A-5
SIR2EDF... A-6
SIZE .. A-6
Synergy ... A-6
testbench file ... A-6
Unified Library ... A-6
VAN... A-6
Verilog ... A-7
Verilog SIMPRIM Library... A-7
Verilog Unified Simulation Library ... A-7
Verilog-XL ... A-7
VLOG2XIL... A-7
.wrk file .. A-8
XIL2CDS ... A-8
Xilinx Design Manager .. A-8
XNF... A-8

Appendix B Program Options
CONCEPT2XIL ... B-1

Syntax .. B-1
Options... B-1

-cdslib filename .. B-1
-family family_name... B-2
-gcmd filename... B-2
-help.. B-2
-log filename ... B-2
-rundir dir_name... B-2
-sim_only .. B-2

Files ... B-2
Input Files ... B-2
Output Files .. B-2

Error and Warning Messages .. B-3
Error Message .. B-3
xvi Xilinx Development System

Contents
Error Message .. B-4
Error Message .. B-5

CPLD... B-5
DSGNMGR ... B-5
LBGUI ... B-6
NGDAnno.. B-6
NGDBuild .. B-6
NGD2VER... B-6

Syntax .. B-7
Options... B-7

-tf... B-7
-ul.. B-7
-pf.. B-8

Files ... B-8
Input Files ... B-8
Output Files .. B-8

PAR... B-9
VERILOG .. B-9

Syntax .. B-9
Options... B-10

+delay_mode_unit .. B-10
-f full_path_to_verilog_configuration_file.................................... B-10
-y full_path_to_library_name... B-10
+libtext+ .. B-10
+gui ... B-10

Files ... B-11
Input Files ... B-11
Output File .. B-12

XIL2CDS ... B-12
Syntax .. B-13
Options... B-13

-family architecture... B-13
-mode mode_type... B-13
-pkg pkg_file ... B-14
-lwbverilog... B-14

Files ... B-14
Input Files ... B-14
Output Files .. B-14

Appendix C Processing Designs with LogiBLOX Components
Generating the LogiBLOX module .. C-1
Creating a Symbol for the LogiBLOX module C-5
Cadence Interface/Tutorial Guide xvii

Cadence Interface/Tutorial Guide
Netlisting the Design for the Functional Simulation....................... C-6
Functional Simulation.. C-6

The testbench file... C-7
Global Reset .. C-7

Appendix D Synopsys/Verilog Design Flow

Appendix E Files
Testbench Template ... E-1
Sample Test Fixture - XC4000EX Unified Library Functional Simulation
(GSR and GTS simulation) ... E-4
Sample Test Fixture - XC4000EX Post-NGDBuild Simulation (GSR and
GTS simulation) .. E-6
Sample Test Fixture, No Startup Block in the Design E-8

Appendix F XILINX.PFF Property Filter File Format
xviii Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections:

• “Architecture Support” section

• “Platform Support” section

• “Features” section

• “Design Flows” section

• “Files” section

• “Tutorials” section

• “Online Help” section

• “Design Approaches” section

Architecture Support
You can use the Cadence interface with the XC3000A/L, XC3100A/L,
XC4000E/L, XC4000EX/XL/XV, XC5200, and XC9500 Xilinx architec-
tures.

Platform Support
The Cadence design tools are supported on Sun SPARC and HP
Series 9000 workstations.

See the following table for a listing of supported operating systems.

Table 1-1 Platforms Supported by Xilinx/Cadence Interface

Sun 4 Solaris HP Series 9000

SunOS 4.1.3
SunOS 4.1.4

Solaris 2.5 HP-UX 10.20
Cadence Interface/Tutorial Guide — 0401494 1-1

Cadence Interface/Tutorial Guide
Operating system versions listed in this table are based on the setups
required to run the Cadence 97A netlisters, CONCEPT2XIL and
XIL2CDS. On the HP-UX platform, only version 10.20 is supported.
On Solaris, only version 2.5 is supported.

You may use the Xilinx/Cadence interface with either the Cadence
release 97A or later.

Features
The following sections describe the major features available in this
release.

Xilinx/Cadence Interface
The following table summarizes software supplied by Cadence and
Xilinx.

Table 1-2 Xilinx and Cadence Software

Product
Supplied by

Xilinx

Supplied
by

Cadence

Concept Unified Schematic Library X

Verilog Unified Simulation Library X

Verilog SIMPRIM Library X

VAN-Analyzed Verilog Library X

Xilinx Core Tools X

Concept (schematic editor) X

Verilog-XL (Verilog simulator) X

Synergy (synthesis tool) X

CONCEPT2XIL X

XIL2CDS X
1-2 Xilinx Development System

Introduction
Libraries
The Xilinx/Cadence interface supports the Cadence 97A and 97B
software releases. However, to process Xilinx designs in conjunction
with the 97A and 97B releases, you will also need:

CONCEPT2XIL from Cadence to generate EDIF netlists from
Concept designs plus the following libraries from Xilinx:

• Concept Unified Libraries for schematic entry

• xce3000

• xce4000e (encompasses XC4000E/L)

• xce4000x (encompasses XC4000EX/XL/XV)

• xce5200

• xce9000

• xcepads

• VAN-Analyzed Verilog libraries (xc****_syn) for use by
CONCEPT2XIL to create EDIF netlists

• xce3000_syn

• xce4000e_syn (encompasses XC4000E/L)

• xce4000x_syn (encompasses XC4000EX/XL/XV)

• xce5200_syn

• xce9000_syn

• Verilog Unified Library simulation models for Verilog functional
simulation

• verilogxce3000

• verilogxce4000e (encompasses XC4000E/L)

• verilogxce4000x (encompasses XC4000EX/XL/XV)

• verilogxce5200

• verilogxce9000

• SIMPRIM-based Verilog simulation models for Verilog timing
simulation and post-NGDBuild functional simulation.
Cadence Interface/Tutorial Guide 1-3

Cadence Interface/Tutorial Guide
Schematic and Verilog Design Entry
The Xilinx/Cadence interface supports these design entry methodol-
ogies:

• Concept schematic entry

• Verilog HDL entry (Supported by Cadence)

Direct Generation of Structural Verilog Netlist from
Concept Schematics

You can generate a Xilinx Unified Library-based structural Verilog
netlist for your design directly from a Concept schematic using the
Concept HDL Direct design methodology. See the “Concept Setup
Library Files” section of the “Getting Started” chapter for details on
how to set up your system for HDL Direct.

Standard EDIF Netlist
The Xilinx core tools read a standard EDIF 2.0.0 netlist as input.
EDIF2NGD is the Xilinx tool that translates the EDIF file to a Xilinx
NGD (Native Generic Database) file. This netlisting capability makes
it easy for you to integrate third party design entry and simulation
tools. If you want to implement your design using the Xilinx soft-
ware, you must first generate a structural Verilog netlist for your
design directly from a Concept schematic using HDL Direct. (HDL
Direct must be set to On in Concept.) The resulting Verilog netlists are
then converted to a standard EDIF netlist using the CONCEPT2XIL
netlister.

Concept
Concept is one of the two schematic editors supported by Cadence;
Composer is the other schematic entry platform. The Xilinx/Cadence
interface for M1 supports only the Concept schematic editor.

Verilog-XL
Verilog-XL is Cadence’s Verilog HDL simulator. This simulator is
used in the Xilinx/Cadence design flow to verify the functionality of
your design. You can use Verilog-XL to perform Unified Library
based functional simulation and SIMPRIM-based functional simula-
1-4 Xilinx Development System

Introduction
tion. You may also use Verilog-XL for SIMPRIM-based timing simula-
tion. Timing simulation is performed using a structural Verilog netlist
and an SDF file created by NGD2VER. The SDF file contains the
timing data for the design.

This release supports the use of Verilog-XL to simulate behavioral
Verilog, as well as Verilog gate level netlists composed of SIMPRIM
elements. This release also supports gate-level simulation of Logi-
BLOX components. Gate level netlists are generated by NGD2VER.

CONCEPT2XIL
The command line program, CONCEPT2XIL, is the Cadence Concept
EDIF netlister. The CONCEPT2XIL program converts the Verilog (.V)
file produced by Concept to an EDIF (.EDF) file, which can then be
input to the Xilinx core implementation tools. CONCEPT2XIL is
shipped and supported by Cadence Design Systems.

XIL2CDS
XIL2CDS is a command line utility shipped by Cadence that allows
you to integrate your chip-level design into a board level schematic.

Contact Cadence for more information about XIL2CDS.

NGD2VER
NGD2VER generates a structural SIMPRIM library-based Verilog
netlist that points to the SIMPRIM library when the -ul option is spec-
ified. A design.tv testbench template file can also be created by speci-
fying the -tf option.You can use the template to create a testbench to
verify your design. If there is timing information available in a
mapped or routed NGA file, an SDF file is also generated.

Simulation of Synopsys Designs
The Xilinx/Cadence interface supports post-synthesis and timing
simulation of Synopsys designs entered in Verilog HDL through the
generic Verilog HDL netlister, NGD2VER, which is shipped with the
Xilinx core tools. For more information, refer to the “Synopsys/
Verilog Design Flow” appendix.
Cadence Interface/Tutorial Guide 1-5

Cadence Interface/Tutorial Guide
Automatic Library Specification
NGD2VER will generate the Verilog-XL `uselib statement in your
Verilog netlist referencing the SIMPRIM library when you specify the
-ul option.

Waveform Viewer Support
NGD2VER can add support for the Cadence SimWave Waveform
Viewer by writing out $shm_open and $shm_probe directives to your
Verilog netlist to create a Simulation History Manager (SHM) data-
base. The SHM directives are incorporated into the test fixture (.tv)
created by NGD2VER.

LogiBLOX
LogiBLOX is a Xilinx tool that you can use to create high-level func-
tional modules that can be incorporated into a schematic or an HDL-
based design. LogiBLOX is only supported in standalone mode for
the Cadence interface. After you create your modules, you must use
the Concept genview command to generate bodies for your modules.
See the “Processing Designs with LogiBLOX Components” appendix
for details.

Timing Constraints
You can specify timing constraints in your Concept schematic to
guide the place and route tools; timing constraints can be added as
properties. For details about timing constraints, refer to the “Using
Timing Constraints” chapter in the Development System Reference
Guide.

You can also place constraints in an external constraints file (*.ucf
extension) that EDIF2NGD can process. For details on user constraint
files, refer to the “The User Constraints (UCF) File” chapter in the
Development System Reference Guide.

Synergy Support
Synergy is Cadence’s synthesis tool. Synergy can synthesize designs
entered in either Verilog HDL or VHDL. The Xilinx interface to
Synergy is available only from Cadence Design Systems.
1-6 Xilinx Development System

Introduction
Design Flows
The design flow you use for performing design entry and simulation
depends on whether you use schematic design entry or HDL design
entry.

In either case, the easiest and most automatic way to implement your
design is to use the Xilinx Design Manager graphical interface. You
can also run the various programs in the design flow manually from a
UNIX command prompt. The programs in the FPGA design imple-
mentation flow are described in the “Program Options” appendix.
These commands are also described in detail in the Development
System Reference Guide.

The programs from the CPLD design flow are described in the CPLD
Schematic Design Guide and CPLD Synthesis Design Guide.

The Xilinx/Cadence interface supports the following design flows:

• Schematic entry with the Unified Libraries components, Logi-
BLOX components, or both;

• Schematic entry with Concept Unified Library schematic compo-
nents plus Xilinx-compliant EDIF or NGO blocks

The following two figures show the highlights of the design process
for: FPGA design and CPLD design. Note that many of the details in
both figures are the same except within the blocks labelled “Design
Manager Flow Engine” and “Schematic Entry Design Flow.”
Cadence Interface/Tutorial Guide 1-7

Cadence Interface/Tutorial Guide
Figure 1-1 Overall Cadence Design Flow — FPGA Design

X7747

Verilog-XL

Concept2XIL

NGDBuild

Design
Manager
Flow Engine

Unified Library Based
Functional Simulation

SIMPRIM-Based
Functional Simulation

HDL-Synthesis Design Flow
Supported by Cadence

NGD2VER -tf -ul

Synergy

Verilog-XL

MAP

PAR

NCDMRP

BIT

Post-Implementation
Timing Simulation

Supported
by Cadence

Post-Map
Timing
Simulation

Optional

Highly
Recommended

PINPKG Verilog SDF

Testbench Template

NGA

User-Created
Verilog

Testbench

via HDL-Direct Synergy
Simulation

Library

Verilog
Unified

Simulation
Library

Chips_PRT

Concept

Body

Verilog
*.V files

Verilog

From Synergy

HDL Design

Post-synthesis
Simulation

Structural
Verilog Netlist

RTL Behavioral
Simulation

NGDAnnoBitGen

VLOG2XIL

EDF

Concept2XIL -sim_only

NGD2VER -tf -ul -pf

NGA

NGDAnno

NGD2VER -tf -ul

NGD

NCD

NGM

XIL2CDS

.V file .VF file

Verilog-XL

Make a Copy
and Edit

Make a Copy
and Edit

User-Specified
Verilog Testbench

Verilog
SIMPRIM
Library

Structural
Verilog Netlist

Make a Copy
and Edit

User-Specified
Verilog Testbench

Verilog

Verilog
SIMPRIM
Library

Verilog-XL

Testbench Template

Synergy
Synthesis

Library

Testbench Template

Structural
Verilog
Netlist

User-Specified
Verilog Testbench

Verilog

Verilog
SIMPRIM
Library

Verilog-XL

Recommended

Highly
Recommended

Schematic Entry
Design Flow

genview

Concept

LogiBLOX

To NGDBuild

Schematic
Design

Concept
Unified

Schematic
Library

Body fileNGO

.V
1-8 Xilinx Development System

Introduction
Figure 1-2 Overall Cadence Design Flow — CPLD Design

Highly
Recommended

Schematic Entry
Design Flow

genview

Concept

Schematic
Design

Concept
Unified

Schematic
Library

Body file

X8069

Structural
Verilog Netlist

Verilog-XL

Concept2XIL

NGDBuild

Unified Library Based
Functional Simulation

SIMPRIM-Based Functional
Simulation

NGD2VER -tf -ul

PRG

Post-Implementation
Timing Simulation

Supported
by Cadence

Verilog-XL

PINPKG Verilog SDF Testbench Template

Testbench Template

Make a Copy
and Edit

Make a Copy
and Edit

User-Specified
Verilog Testbench

JED

NGA

Verilog-XL

User-Created
Verilog

Testbench

via HDL-Direct

Verilog
Unified

Simulation
Library

Chips_PRT

Concept

Body

Verilog
*.V files

.VF file.V file

EDF

Concept2XIL -sim_only

Verilog

NGD

XIL2CDS

NGD2VER -tf -ul -pf

CPLD Fitter

Design
Manager
Flow Engine

Verilog
SIMPRIM
Library

User-Specified
Verilog Testbench

Verilog
SIMPRIM
Library

HDL-Synthesis Design Flow
Supported by Cadence

Synergy

Verilog-XL

Synergy
Simulation

Library

Verilog

From Synergy

HDL Design

Post-synthesis
Simulation

Structural
Verilog Netlist

RTL Behavioral
Simulation

VLOG2XIL

Synergy
Synthesis

Library

Recommended

Highly
Recommended
Cadence Interface/Tutorial Guide 1-9

Cadence Interface/Tutorial Guide
Files
The following files are involved in the processing of a design through
the Cadence interface:

• CONCEPT2XIL creates an .EDF file, which is an EDIF netlist file.

• EDIF2NGD creates an .NGO file, which contains netlist informa-
tion in a proprietary data base format; it is a binary file.

• A .UCF file, an input file to NGDBuild, contains user-specified
constraints for the map, place, and route tools. This file contains
I/O locations and maximum timing delays.

• NGDBuild creates an .NGD file, which is a Native Generic Data-
base file; it contains a gate-level logical description of the design.

• MAP or PAR create an .NCD file, which is a Native Circuit
Design file; it contains a physical description of the design.

• NGDAnno creates an .NGA file, which contains physical timing
delay information.

• NGD2VER creates a .v file, .tv, .pin, and .SDF file if the input file
is a .NGA file when invoked with the -tf and -pf options.

The -tf option creates a .tv file, which is a Verilog test bench or
stimulus file template.

The -pf option creates a .pin file which contains pinout informa-
tion for a design. The -pf option cannot be used if the input to
NGD2VER is an NGD file. The .pin file correlates each signal in
the design to a pin on a particular Xilinx FPGA package.

The .v and .sdf files are always created when NGD2VER is run
with an NGA file input.

An .SDF file is a Standard Delay Format file containing delay
information.

• A .PKG file defines the pins on a Xilinx FPGA or CPLD package.
These files, which are supplied by Xilinx, are located in
$XILINX/cadence/data.
1-10 Xilinx Development System

Introduction
Tutorials
Xilinx recommends that you perform the tutorials provided in this
manual to become familiar with the basic concepts of design, verifica-
tion, and implementation.

Online Help
Online help is available in the Concept schematic editor by entering
help in the Concept command window. You can also access informa-
tion on Cadence tools (for example, Concept or Verilog-XL) in Open-
Book, Cadence’s online documentation system, which is shipped by
Cadence. To start up OpenBook, simply enter the command open-
book at the UNIX prompt.

Design Approaches
You can enter a design using schematics or a hardware description
language (HDL) such as Verilog.

Schematic Entry
This general procedure describes the schematic entry flow.

1. Enter your design using the Concept schematic editor.

Note: You must have Concept’s HDL Direct mode enabled. For
details, see the “Getting Started” chapter. With HDL Direct enabled,
Concept generates a Verilog netlist automatically when you save a
drawing.

2. Process the Verilog files that Concept produces with the
CONCEPT2XIL netlister using the -sim_only command line
option.

3. Functionally simulate your design using Verilog-XL.

4. Translate your design into EDIF format using CONCEPT2XIL.

5. Use NGDBuild in the Xilinx Design Manager or the command
line tool to convert the EDIF file to an NGD file.

6. Implement your design with the Xilinx Design Manager/Flow
Engine. (You can also use the command line versions of these
programs.)
Cadence Interface/Tutorial Guide 1-11

Cadence Interface/Tutorial Guide
If you perform a manual translation of your design, you can also
do a post-MAP simulation to obtain a rough timing simulation
before routing delays are added. Alternatively, you can run TRCE
after mapping to evaluate timing before net delays are added. For
an explanation of TRCE, see the “TRACE” chapter in the Develop-
ment System Reference Guide.

7. Perform timing simulation on the design using Verilog-XL and a
test bench stimulus file.

8. Download your design to the FPGA, or program the CPLD.

9. Optionally, use the XIL2CDS program to integrate your chip-
level design into a board level schematic.

Verilog HDL Entry (Synergy)
Verilog HDL entry flows are supported by Cadence Design Systems.

The steps you follow when using HDL to process a design are similar
to those you follow for schematic entry.

1. Create the design in Verilog.

2. Conduct an RTL (Register Transfer Level) behavioral simulation
of your design.

RTL level simulation allows you to verify or simulate a descrip-
tion at the system or chip level. At this level designers generally
describe the system or chip by using high-level RTL language
constructs.

3. Synthesize the design. With Synergy, the output is a .V file.

4. Translate your design into EDIF format using VLOG2XIL.

5. Use NGDBuild in the Xilinx Design Manager or the command
line tool to convert the EDIF file to an NGD file, and merge the
NGO files with the rest of the design.

6. Optionally, you may generate a post-synthesis Verilog netlist
using NGD2VER and perform a SIMPRIM-based functional
simulation.

7. Implement your design with the Xilinx Design Manager/Flow
Engine. You can also use the command line versions of the indi-
vidual tools to process the design.
1-12 Xilinx Development System

Introduction
If you use the command line flow, optionally, you can also
perform a post-map timing simulation of your design before
routing delays are added. Alternatively, you can run TRCE after
mapping to evaluate timing before net delays are added.

8. Perform timing simulation on the design using Verilog-XL and a
test bench stimulus file.

9. Download your design to the FPGA, or program the CPLD.

10. Optionally, use the XIL2CDS program to integrate your chip-
level design into a board level schematic.

Mixed-mode Entry, Top Level Schematic
1. Capture the top level schematic in Concept.

2. Make sure that each non-schematic block is processed to either an
NGO, XNF, or EDIF format file. If you have HDL blocks, these
must be synthesized first and translated to one of these three
formats.

3. Generate a Concept body for each non-schematic block, either
manually, or using the genview utility in Concept.

4. Instantiate the body into the appropriate sheet (page) of your
schematic design.

5. Save your design. (You must have Concept’s HDL Direct mode
enabled; for details, see the “Getting Started” chapter.)

6. Add the following line after the part list in your Verilog netlist:

parameter cds_action=”ignore”;

7. Translate your design into EDIF format using CONCEPT2XIL.

8. Use NGDBuild in the Xilinx Design Manager or the command
line tool to convert the EDIF file to an NGD file and merge the
NGO files with the rest of the design.

9. Optionally, generate an unrouted post-NGDBuild Verilog netlist
using NGD2VER and perform a SIMPRIM-based functional
simulation.

If you conduct a manual translation, you may also want to
perform a functional simulation to obtain a rough estimate of
delays in the unrouted design.
Cadence Interface/Tutorial Guide 1-13

Cadence Interface/Tutorial Guide
10. Implement your design with the Xilinx Design Manager/Flow
Engine, or perform these steps manually if you prefer.

If you perform a manual translation, you may also perform a
post-Map simulation to get an approximate estimate of delays in
the unrouted design.

11. Place and route (PAR) and conduct a back-annotation
(NGDAnno) on your design before performing timing simula-
tion.

12. Perform timing simulation on the design using Verilog-XL and a
test bench stimulus file.

13. Download your design to the FPGA, or program the CPLD.

14. Optionally, use the XIL2CDS program to integrate your chip-
level design into a board level schematic.

Mixed-Mode Entry, Top Level HDL (Verilog)
1. Edit the top level in Verilog

2. Instantiate each non-Verilog block in the design, and specify a
“preserve” property on each block that corresponds to a sche-
matic block.

3. Synthesize the design.

4. Write out a Verilog netlist for the design.

5. Translate your design into EDIF format with VLOG2XIL.

6. Implement your design with the Xilinx Design Manager/Flow
Engine, or perform these steps manually, if you prefer. If you
process your design manually, you can also do a post-MAP
timing simulation to obtain a rough idea of whether your timing
requirements can be met.

7. Perform timing simulation on the design using Verilog-XL.

8. Download your design to the FPGA or program the CPLD.
1-14 Xilinx Development System

Chapter 2

Getting Started

This chapter lists the required software and describes how to
configure your system to use the Cadence design tools for creating
and processing Xilinx designs. The Xilinx/Cadence Interface
supports the following Cadence programs: Concept and Verilog-XL.
For Synergy synthesis support, contact Cadence Design Systems.

This chapter contains the following sections:

• “Required Software” section

• “Setting Up Your Environment” section

• “Invoking Concept” section

• “Exiting Concept” section

Required Software
To enter designs using schematics and program Xilinx FPGAs and
CPLDs, you need the following software programs:

• Cadence Release 97A or later; see the “Platform Support” section
of the “Introduction” chapter for a list showing which version
you should use on your particular platform. Your installation of
Cadence should include the following components:

a) Concept

b) Verilog-XL

c) CONCEPT2XIL (EDIF netlister)—available from the Cadence
ftp site

d) XIL2CDS (for optional board-level integration)—available
from the Cadence ftp site

• Libraries supplied by Xilinx:
Cadence Interface/Tutorial Guide — 0401494 2-1

Cadence Interface/Tutorial Guide
a) For schematic entry: Concept Unified Libraries

b) For Verilog functional simulation: Verilog Unified Library
simulation models

c) For Verilog timing simulation: SIMPRIM-based Verilog simu-
lation models

• Xilinx Development System software; your installation of Xilinx
products must include at least the following executables:

a) EDIF2NGD

b) NGDBuild

c) MAP

d) PAR

e) TRCE (Optional for static timing analysis)

f) NGDAnno

g) NGD2VER

h) BitGen

For a description of Xilinx/Cadence platform support, refer to the
“Platform Support” section of the “Introduction” chapter.

Setting Up Your Environment
When you have finished the installation of the Xilinx software, verify
that your .cshrc or setup file contains lines similar to those outlined in
the following subsections.

Note: In the following variable settings, platform is sun (Sun4), sol
(Solaris), or hp (HP-UX).

Required Environment Variables (All Platforms)
Verify that the following variables are set up;

setenv XILINX path_to_Xilinx_root_dir

where path_to_Xilinx_root_dir is the location of the Xilinx software.

If you are using the Motif version of DynaText or the EPIC editor, you
must set an environment variable to access the set of Key bindings
used by a Motif application. You will find an XKeysymDB file has
2-2 Xilinx Development System

Getting Started
been installed into your $XILINX/bin/platform directory by the
Xilinx install. You must do the following to access this file:

setenv XKEYSYMDB $XILINX/bin/ platform/XKeysymDB

Failure to set up this environment variable will result in the following
types of messages being displayed when you attempt to start up the
DynaText viewer. The listed keys are not usable:

Warning: translation table syntax error: Unknown
keysym name: osfActivate

Warning: ... found while parsing ':
<Key>osfActivate:ManagerParentActivate()fDown

Set your LM_LICENSE_FILE variable to point to the Xilinx license
file (license.dat):

setenv LM_LICENSE_FILE path_to_Xilinx_license_file ;\
path_to_Cadence_license_file

Make sure the LD_LIBRARY_PATH is set up to point to the Xilinx
software. Add the path to your current path for Sun or Solaris.

setenv LD_LIBRARY_PATH \
${LD_LIBRARY_PATH}:$XILINX/bin/ platform

Note: The backslash (\) at the end of a line is a continuation character
indicating that the line wraps to the next line. If you use the backslash
character, it must be the last character on the line.

If you are using a Sparc station, set LD_LIBRARY_PATH as follows:

setenv LD_LIBRARY_PATH \
${LD_LIBRARY_PATH}:$XILINX/bin/ platform: \
/usr/openwin/lib

If you are using an HP workstation, set the SHLIB_PATH.

setenv SHLIB_PATH ${XILINX}/bin/hp:lib:/usr/lib

Concept Environment Setup
In addition, you must set your Concept environment variables in
your .cshrc shell or setup file and configure your Concept startup and
library files.
Cadence Interface/Tutorial Guide 2-3

Cadence Interface/Tutorial Guide
Concept Environment Variables

1. Set the CDS_INST_DIR environment variable to the location of
your Cadence installation directory in your .cshrc or setup file.

setenv CDS_INST_DIR location_of_Cadence_tools

Note: It is common to create a soft link called “tools” under
$CDS_INST_DIR, and to link it to the directory $CDS_INST_DIR/
tools. platform, where platform is “hppa” (for the HP), “sun4” (for
SunOS), or “sun4v” (for Solaris). For example, to create a link called
“tools” to your “tools.sun4” Cadence subdirectory (SunOS), use the
following commands:

cd $CDS_INST_DIR

ln -s tools.sun4 tools

If your Cadence installation directory does not have a link called
“tools”, you can either add the link yourself, or substitute
“tools.platform” wherever you see “tools” in the settings.

2. Add CDS_INST_DIR to your path in your .cshrc or setup file.

set path = ($CDS_INST_DIR/tools/bin \
$CDS_INST_DIR/tools/pic/picdesigner/bin \
$CDS_INST_DIR/tools/editor/lib $path)

Concept Setup Library Files

Before you begin design entry, verify that your Concept setup files
are set up properly. These four files include startup.concept, cds.lib,
global.cmd, and master.local. The files should be located in your current
working Concept directory. Xilinx has provided examples of each of
these files in $XILINX/cadence/examples.

1. Use a text editor to modify your startup.concept file so that you
are set up to run HDL Direct. Xilinx recommends that you add
the following lines to the file to enable HDL Direct.

set hdl_direct on
set hdl_checks on
set check_signames on
set check_net_names_hdl_ok on
set check_port_names_hdl_ok on
set check_symbol_names_hdl_ok on
set capslock_off
2-4 Xilinx Development System

Getting Started
HDL Direct will run automatically when you write your design.
Error and warning messages are written to the Concept HDL
Direct window and to the hdldir.log file.

These commands can also be set directly in Concept by entering
them in the Concept command window.

Xilinx also recommends that you include the command, set
capslock_off , in the startup.concept file.

set capslock_off

With this command, Concept maintains the case of the property
strings that you add to the design. This setting is important when
you define linked properties that reference other pre-defined
properties, as in linked timespecs. The referencing of pre-defined
timespec properties is case-sensitive. When HDL Direct writes
out these properties to the viewprp file for the specific Concept
drawing being saved, it will preserve the case of all properties
when the capslock key is set to “off”, maintaining case, to the
viewprps.prp file in the logic view (directory) for the appropriate
Concept drawing.

It is not required that you enter this command in the startup file.
However, if you do not enter the command, make sure that you
enter the command at the command line prompt in Concept
before you assign property values. If you do not enter the
capslock_off command first, the values will be converted to
upper case by default. This may cause problems when defining
new TIMEGRPS from existing groups declared in lower case.

2. Create a cds.lib file in your current working Concept directory
that points to the VAN-compiled library for the Xilinx architec-
ture you will be using. Concept and CONCEPT2XIL scripts
require cds.lib file configuration.

CONCEPT2XIL writes out an EDIF netlist for you based on
library components it reads out of the appropriate library in
cds.lib. The library it reads depends on the value you specify for
the -family option. Following is an example cds.lib file for the
xce4000x architecture.

define xce4000x_syn full_path_to_Xilinx_sofware/cadence/data/xce4000x_syn

In this example, xce4000x_syn is the VAN-compiled library for
XC4000EX devices.
Cadence Interface/Tutorial Guide 2-5

Cadence Interface/Tutorial Guide
3. Update your global.cmd file to point to the appropriate Xilinx
Concept libraries and define the default name of the SCALD
mapping file with the “use” command.

For more details about the global.cmd file, refer to the section
“Global.cmd file” in Chapter 2, The Editing Environment, in the
Concept Schematic User Guide. Following is an example file for the
an XC4000ex device:

master_library "./master.local" ;
library "xce4000x"

"hdl_direct_lib" ,
"xcepads" ,
"standard" ;

use "design.wrk" ;
root_drawing "unnamed" ;

Following is a brief description of each of the library elements:

• xce4000x
This text points to the architecture-specific Concept
XC4000EX/XL/XV library.

• hdl_direct_lib
This library contains various components to support HDL
Direct methodology, including inports and outports.

• xcepads
This text points to the generic Xilinx pad library.

• standard
The standard library contains standard Concept components
such as drawing and border symbols.

All four libraries are required.

When accessing a library, Concept searches through the libraries
following a “last read, first out” scheme. For the sample
global.cmd file, the libraries are searched in the following order:
standard, xcepads, hdl_direct_lib, and finally xce4000x.

The use command specifies the work or project library listing file
from which existing design names can be read and viewed in
Concept, and to which listings for new design blocks can be
written into from Concept. For example, use "design.wrk";
indicates that design.wrk is the work file:

FILE_TYPE = LOGIC_DIR;
2-6 Xilinx Development System

Getting Started
"DESIGN1" 'design1';
"DESIGN2" 'design2';

END.

design1 and design2 are the names of the design blocks for this
project.

4. Enter the references to any user libraries into the master.local file.
For more details about the master.local file, see the section
“master.local Abbreviations file” in Chapter 2, The Editing Envi-
ronment in the Concept Schematic User Guide. For M1, it is recom-
mended that you list all Xilinx architecture libraries for Concept
in the master.local file. Following is an example user library file
for M1 Xilinx designs.

file_type = master_library;

"xce9000" ' full_path_to_Xilinx_software/cadence/data/xce9000/xce9000.lib';
"xce5200" ' full_path_to_Xilinx_software/cadence/data/xce5200/xce5200.lib';
"xce4000x" ' full_path_to_Xilinx_software/cadence/data/xce4000e/xce4000x.lib';
"xce4000e" ' full_path_to_Xilinx_software/cadence/data/xce4000e/xce4000e.lib';
"xce3000" ' full_path_to_Xilinx_software/cadence/data/xce3000/xce3000.lib';
"xcepads" ' full_path_to_Xilinx_software/cadence/data/xcepads/xcepads.lib';

end.

The xce4000x supports the XC4000EX/XL/XV architectures. The
xce4000e supports the XC4000E/L architectures.

Verilog Environment Setup
Set up your Verilog environment so that you can perform functional
simulation.

• Set the Verilog environment variable, VERILOGEXE, to point to
the location of your Verilog executables.

setenv VERILOGEXE $CDS_INST_DIR/tools/\
verilog/bin/verilog

• Set VENVHOME to the location where the Verilog 2.0 hierarchy
is installed. This variable is used only to assist you with setting
the VENV_PATH and VENV_LD_LIB_PATH variables, and is
usually the same as CDS_INST_DIR.

setenv VENVHOME /tools/cadence97A

• Set VENV_PATH to the location of the Verilog executables.
Cadence Interface/Tutorial Guide 2-7

Cadence Interface/Tutorial Guide
setenv VENV_PATH "${VENVHOME}/\
tools/bin:${VENVHOME}/tools/dfII/bin”

• Set VENV_LD_LIB_PATH to the location of libraries used by
Verilog.

setenv VENV_LD_LIB_PATH ${VENVHOME}/\
tools/lib:${VENVHOME}/tools/verilog/lib

• Reset your PATH variable to add the Verilog executables.

set PATH="${VENV_PATH}:$PATH"

• Add the Verilog libraries to the LD_LIBRARY_PATH environ-
ment variable.

setenv LD_LIBRARY_PATH \
"${VENV_LD_LIB_PATH}:$LD_LIBRARY_PATH"

If you are using an HP platform, use the SHLIB_PATH instead of
LD_LIBRARY_PATH.

• (Optional) Set up the environment variable CDSDIR. This vari-
able is required by the Verilog Language Sensitive Editor (LSE).

setenv CDSDIR $CDS_INST_DIR/tools

Dynatext Environment Variables
Set up the EBTRC variable to point to the DynaText browser.

setenv EBTRC $XILINX/bin/ platform/ebtrc_CD

Invoking Concept
To enter Concept from the operating system command line, type
concept .

Exiting Concept
To exit Concept, select File → Quit . You may also enter “quit” in
the Concept command line window.
2-8 Xilinx Development System

Chapter 3

Design Entry

This chapter describes Cadence design entry in relation to the Xilinx
Development software. This chapter does not discuss in any detail
how to use the design tools Concept or Synergy. Design entry proce-
dures are described only for Xilinx-specific software, libraries, and
features.

For a detailed description of the Concept design entry tools and
procedures, refer to the Concept Schematic User Guide. For a list of the
manuals that describe the Synergy tool, see the “Verilog HDL Design
Entry” section in this chapter.

Before using the design entry tools, ensure that you have set up your
environment as described in the “Required Software” section of the
“Getting Started” chapter.

This chapter contains the following sections.

• “Concept” section

• “Requirements For HDL Direct Compliance” section

• “Using the Xilinx Concept Unified Schematic Libraries” section

• “Renamed Components” section

• “Verilog/Concept HDL Direct Naming Conventions” section

• “VCC and GND Components” section

• “Using the LogiBLOX Libraries” section

• “Specifying Xilinx Properties and Constraints in Concept”
section

• “Attaching Signal Names” section

• “Creating Bus Taps” section
Cadence Interface/Tutorial Guide — 0401494 3-1

Cadence Interface/Tutorial Guide
• “Using the BSCAN Symbol” section

• “Using the STARTUP Symbol” section

• “Using the CONFIG Symbol to Specify Part Type” section

• “Using HDL Direct Methodology” section

• “Creating Bodies for Non-Schematic Design Blocks” section

• “Verilog HDL Design Entry” section

• “Translating Your Design” section

Concept
Concept is a Cadence schematic entry tool. You can capture designs
for implementation in the XC3000A/L, XC3100A/L, XC4000E/L,
XC4000EX/XL/XV, XC5200, and XC9500 Xilinx architectures.

The Concept libraries include the following:

• Libraries for designing Xilinx FPGAs and CPLDs named xcexxxx

• LogiBLOX modules, which are generated by the lbgui (Logi-
BLOX GUI) standalone command for use with Concept, include
Verilog and NGO files. The Verilog modules generated by lbgui
are used as the input to the Concept genview command to create
body files. The NGO files created by lbgui are used to implement
the LogiBLOX module in your design.

• VAN-analyzed Verilog libraries for Concept HDL Direct Verilog
netlist generation support

For a complete description of how to use Concept, see the Concept
Schematic User Guide. Also see the Concept Getting Started Tutorial.

The following illustration shows the schematic entry flow using
Concept with the Xilinx-supplied Concept Unified Schematic
Libraries. Note that LogiBLOX is not supported for use with CPLDs.
3-2 Xilinx Development System

Design Entry
Figure 3-1 Schematic Entry Design Flow

Requirements For HDL Direct Compliance
The Xilinx/Cadence schematic design flow requires that SCALD
(Structured Computer Aided Logic Design) schematic designs be
converted to HDL Direct compliant.

Your SCALD schematic drawings must adhere to the following rules:

• SCALD BIT TAP symbols must be replaced with the HDL Direct
SLICE symbols.

• HDL Direct TAP symbols must be used in place of SCALD LSB
TAP and MSB TAP symbols.

• Instead of the SCALD convention of attaching an “\I” suffix to
interface signals, HDL Direct port symbols from hdl_direct_lib

X8062

via HDL-Direct

Verilog
*.V files

genview

Concept

LogiBLOX

To NGDBuild

To
Unified Library Based
Functional Simulation

Schematic
Design

Concept
Unified

Schematic
Library

Body file
NGO

.V
Cadence Interface/Tutorial Guide 3-3

Cadence Interface/Tutorial Guide
must be attached to the signals in a schematic which correspond
to pins on a symbol body at an upper-level of hierarchy in the
design. INPORTS should be attached to the inputs, OUTPORTS
to the outputs, and IOPORTS to the bidirectional signals of the
schematic.

• SIGN EXTEND and SLASH symbols must be replaced with the
equivalent wiring.

• The “\I” must be removed from all signal names.

• FLAG symbols must be removed from schematics.

• For signals that end with \G (which designates them as global
signals), remove the \G and place a forward slash (/) at the
beginning of the signal.

• Wires or signals must not be connected to pass-thru pins on pads.
Connect them only to the main pin. Use the “bubble_check off”
option with the SCALD compiler.

• NOT bodies must be replaced with wires.

• All signals and symbol names starting with numbers must be
renamed to valid Verilog identifiers. For example, replace
1MYSIGNAL with MYSIGNAL1.

• SUPPLY_0 and SUPPLY_1 are not supported. Use the GND and
VCC symbols from the appropriate Xilinx architecture library.

• The HDL Direct signal concatenation operator ampersand (&)
replaces the SCALD signal concatenation operator colon (:).

• The signal replication operator “\R number” and the REPLI-
CATE symbol must be replaced with a concatenation of the
required number of signals. The SCALD REPLICATE symbol
should be replaced in the same way.

• The HDL Direct ALIAS symbols replace the SCALD SYNONYM
symbols; however, ALIAS symbols are not supported by Xilinx.

• Signals and bodies may not share the same name.

• Property values must adhere to Verilog naming rules.

For more detailed and up-to-date information, refer to the
“Converting SCALD Schematics into HDL Direct Schematics” of the
“Using HDL Direct With SCALD Applications” chapter of the
Cadence manual, HDL Direct User Guide.
3-4 Xilinx Development System

Design Entry
Using the Xilinx Concept Unified Schematic
Libraries

Xilinx supplies the Concept Unified Schematic Libraries as part of the
Xilinx Development software release. To design Concept schematics
using Xilinx devices, you must install the Libraries. In addition, you
must also set up your Concept setup files to access these Libraries.
Refer to the “Concept Environment Setup” section of the “Getting
Started” chapter for details. To verify that Concept is installed and set
up so that you can access the Concept Unified Schematic Libraries,
perform the following steps.

1. Open Concept by entering the command concept at the prompt.

2. Select Add Part .

3. When the Component Browser dialog box displays, click the list
box to the right of the Library field. The list of libraries should
display the xce series parts (xce4000e, xce4000ex, etc.) including
the pads (xcepads).

To create a Xilinx FPGA or CPLD design with Concept, you can use
the XC3000A, XC4000E/L, XC4000EX/XL/XV, XC5200, or XC9000
libraries. The corresponding name for these Xilinx families in
Concept are xce3000, xce4000e (XC4000E/L), xce4000ex, xce4000x
(XC4000EX/XL/XV), xce5200, and xce9000. In addition, the xcepads
library contains the basic pads, such as IOPAD, IPAD, OPAD, and
UPAD. You can also use the LogiBLOX modules for designs targeting
Xilinx architectures that support LogiBLOX. Your design must
contain primitives and macros.

You can only use the libraries for one family when creating your
design. For example, you cannot use elements from both the XC4000
and the XC5200 libraries in a single design. Also components in these
libraries are no longer sizable. See the “SIZE Property” section.

You can specify design libraries by editing the global.cmd file. The
first line of the global.cmd file list of libraries begins with the
keyword, “library”:

library “lib_name”,[“lib_name”];

Lib_name is a library name like XC4000E. Specify multiple libraries by
using a comma (,) to separate each library name. Be sure that a semi-
Cadence Interface/Tutorial Guide 3-5

Cadence Interface/Tutorial Guide
colon (;) follows your last entry. Refer to the example in $XILINX/
cadence/examples.

FPGA and CPLD Libraries
The XC3000A, XC4000E/L, XC4000EX/XL/XV, and XC5200 libraries
are sets of primitives and macros that include all the basic Xilinx
FPGA components, such as logic gates and flip-flops. The XC9000
library is the set of primitives and macros for Xilinx CPLDs. You can
find descriptions of all FPGA and CPLD elements in the Xilinx
Libraries Guide.

PAD Library
The PAD library contains the basic Xilinx pad (IPAD, IOPAD, OPAD,
and UPAD) primitives, called “xcepads.”

If you want to place properties on a pad, instead you must attach the
properties to the corresponding I/O buffer. If you place properties on
PAD symbols, these properties will be ignored during the netlisting
process—that is, they will be omitted from your design.

Renamed Components
To conform to naming restrictions in Concept and to prevent overlap
with built-in Verilog primitives, the following Xilinx library compo-
nents have been renamed in the Concept and Verilog Unified
libraries.

Table 3-1 Renamed Components

Xilinx
Component

Name

Cadence
Component

Name
Component Description

Applicable
Families

BUF BUFF General purpose non-
inverting buffer

XC3000
XC4000E/L
XC4000EX/XL/XV
XC5200
XC9000

PULLDOWN PULLDOWN1 Resistor to GND for input
PADs

XC4000E/L
XC4000EX/XL/XV
XC5200
3-6 Xilinx Development System

Design Entry
A translation table located at $XILINX/cadence/data/cadence.ttl
maps the Concept component names to the Xilinx component names
for these library components.

In addition, several of the component names have changed in the
new M1 Xilinx Concept Unified Libraries for consistency with the
Xilinx Unified Library conventions. The following table summarizes
these name changes.

Verilog/Concept HDL Direct Naming Conventions
Verilog requires that several rules be followed for user-specified
names in Xilinx designs. Additionally, the Xilinx/Cadence interface
requires that you use HDL Direct methodology: therefore, you must
adhere to these rules when naming objects in your Concept sche-
matics. The rules are defined as follows for Verilog naming:

• A name in Verilog is a sequence of letters, digits, dollar signs ($),
and the underscore (_) symbol. More specifically, only the
following characters are legal in Verilog names:

a-z, A-Z, 0-9, _, and $

PULLUP PULLUP1 Resistor to VCC for input
PADs, open-drain, and
tristate outputs

XC3000
XC4000E/L
XC4000EX/XL/XV
XC5200
XC9000

Old Name New Name

ILD1 ILD_1

ILDI1 ILDI_1

ILDX1 ILDX_1

ILDXI1 ILDXI_1

Table 3-1 Renamed Components

Xilinx
Component

Name

Cadence
Component

Name
Component Description

Applicable
Families
Cadence Interface/Tutorial Guide 3-7

Cadence Interface/Tutorial Guide
• You may not use a digit or $ as a first character of a name. The
name must begin with a letter or an underscore. If you enter your
design in Concept, the first character must be a letter.

• Upper and lower case letters are interpreted as different charac-
ters (unless the upper case option is used when compiling).

• Names can be a total of up to 1024 characters long.

Examples of valid names:

adder
bus_b
_signal1
n$777
clockin

• Verilog keywords cannot be used as user-specified names. This
includes Verilog reserved words like “input”, “output”, and
“module”.

• Concept allows block names and signal names to be identical, but
in Verilog, block names and signal names cannot be the same.

For more information, refer to section 2.5 in the Verilog-XL Reference
Manual.

VCC and GND Components
For the Xilinx Development software, the VCC and GND compo-
nents are located in the device family libraries instead of the PAD
libraries.

Using the LogiBLOX Libraries
LogiBLOX is a graphical interactive tool from Xilinx for creating
high-level functional modules, such as counters, shift registers, multi-
plexers, and memories. Memory module creation is a key feature of
LogiBLOX. For a description of the LogiBLOX memory modules,
refer to the “Module Descriptions” chapter in the LogiBLOX Refer-
ence/User Guide.

LogiBLOX includes both a library of generic modules and a set of
tools for customizing them. The modules you create with LogiBLOX
can be used in designs generated with Cadence’s Concept schematic
3-8 Xilinx Development System

Design Entry
editor. For details, refer to the “Processing Designs with LogiBLOX
Components” appendix.

Specifying Xilinx Properties and Constraints in
Concept

This section describes various rules and restrictions for using Xilinx
properties and constraints within Concept. This section also explains
where you can obtain detailed information on how to add properties
in Concept.

Note: The terms “properties” and “attributes” are used interchange-
ably.

Adding Xilinx Properties
If you are not familiar with how to add properties within Concept,
refer to the section “Using Properties” in Chapter 3, Creating a Design
in the Cadence document, Concept Schematic User Guide.

Following is a brief description of how to add a property to a compo-
nent in Concept.

1. Within Concept, click on the Attribute button on the left-hand
side of the editor window.
Cadence Interface/Tutorial Guide 3-9

Cadence Interface/Tutorial Guide
Figure 3-2 Attributes Form

2. Click on the object to which you want to add a property.

3. When the Attribute Form displays, click the Add button in the
lower right hand corner.

4. Scroll down to the bottom of the attribute list and enter the Name
and Value in the new fields.

Note: Properties must always be entered as NAME-VALUE pairs.

The buttons in the third column of the Attribute Form indicate
what will be displayed in the schematic window—the property
NAME only, VALUE only, or BOTH. The default is set to VAL,
that is, only the value of the property displays on the schematic.
For clarity, Xilinx recommends that you display both the NAME
and the VALUE of the property.

5. Click Done when you have finished adding properties.

Rules and Restrictions For Using Xilinx Properties in
Concept

The following subsections describe rules, limitations, and restrictions
for using Xilinx properties.
3-10 Xilinx Development System

Design Entry
SIZE Property

The SIZE property is not supported for this release. This property has
been removed from all the components in the libraries. When placing
an array of bodies, you must use Iterated Instances instead.

To use iterated instances, you must either add the PATH property to a
new body, or edit the existing PATH property on a body that has
already been saved to the design:

PATH=body_name(n:m)

where body_name is the name of the body you want to replicate, and
(n:m) represents the range of indices over which you want to replicate
the symbol. For example, if n=3 and m=0, you are replicating the
body four times (0 through 3).

For high-level functional modules, including registers, counters,
adders, and memory, you can also use the LogiBLOX utility.

See the “Understanding Iterated Instances” section in the “Schematic
Guidelines” chapter in the Cadence manual, HDL Direct User Guide
for more information.

CONCEPT2XIL Property Filter File

If a Xilinx property is entered on a schematic but not listed in the
property filter file ($XILINX/cadence/data/xilinx.pff), the property
will not be included in the EDIF file after CONCEPT2XIL translation.
The xilinx.pff file is located in $XILINX/cadence/data.

The xilinx.pff property filter file also contains entries for the
predefined TIMESPECS TS01 through TS10 and the predefined
TIMEGRPS GRP01 through GRP10. If you need additional TSidenti-
fier or TIMEGRP properties, you must add them to the property filter
file.

To customize your own xilinx.pff file, perform the following steps:

1. Copy the xilinx.pff file from $XILINX/cadence/data to your
design directory.

cp $XILINX/cadence/data/xilinx.pff
your_design_directory

Note: The xilinx.pff file that you want to use should be placed in the
directory from which you want to run the CONCEPT2XIL command.
Cadence Interface/Tutorial Guide 3-11

Cadence Interface/Tutorial Guide
The xilinx.pff file located in the directory in which you run
CONCEPT2XIL takes precedence over the xilinx.pff file located in
$XILINX/cadence/data.

2. Edit the xilinx.pff file to include new properties. If your path is
set up properly, the next time you start up Cadence, the xilinx.pff
file in your Cadence working directory is used as the primary
file.

For more information on the format of the xilinx.pff property
filter file, see the “XILINX.PFF Property Filter File Format”
appendix.

When you enter a new property in the xilinx.pff file, you must
ensure that you have the proper format. Since the set
capslock_off variable is set up in the startup.concept file, you
must enter property names in lower case. Following are exam-
ples of correct and incorrect entries:

The first column corresponds to the name of the property, while
the second column corresponds to the output format of the prop-
erty when written out to the EDIF netlist.

This is what you will see in the .EDF netlist written by
CONCEPT2XIL:

(property ts01 (string "dc2s=20ns")
(property TS03 (string "from:pads:to:pads:30ns")

In the schematic file, logic.1.1, you may see the following:

FORCEPROP 2 LAST TS01 dc2s=20ns
FORCEPROP 2 LAST TS02 DP2P=30ns
FORCEPROP 2 LAST TS03 from:pads:to:pads:30ns
FORCEPROP 2 LAST TS04 from:ffs:to:pads:20ns
FORCEPROP 2 LAST TS05 from:pads:to:ffs:20ns

ts01: “ts01” String NORMAL; {Timespec}

TS02: “ts02” String NORMAL;

ts03: “TS03” String NORMAL;

TS04: “TS04” String NORMAL;

TS05: “TS05” String NORMAL;
3-12 Xilinx Development System

Design Entry
TS02, TS04, and TS05 are missing from the .edf file because these
entries are incorrectly entered in the xilinx.pff file, that is, their
names are entered in upper case instead of lower case.

For the property to be translated to EDIF, its name must be in
lower case in the first column of xilinx.pff. If it is in upper case, it
will not get translated because the netlister will not find a match
in the xilinx.pff file with what is written out to the logic drawing
(schematic file)

The second column of the xilinx.pff file determines how the prop-
erty will look when it is written to the .EDF file.

• If it is upper case in the 2nd column, it will get written out in
upper case in the .EDF file.

• If it is lower case in the 2nd column, it will get written out in
lower case in the .EDF file.

Xilinx Properties Without Values

In Concept, all properties are entered with the following syntax:

property_name=value

The Xilinx properties, such as COLLAPSE, DECODE, DOUBLE,
FAST, ID, KEEP, MEDDELAY, NODELAY, NOREDUCE, SLOW,
USE_RLOC, and WIREAND are inherently associated with a value of
TRUE or FALSE, and are defined as Boolean properties in the
xilinx.pff file. Set these Boolean properties to a value of TRUE, for
example, FAST=TRUE.

Xilinx Properties on Pads

In Concept, pads are comment bodies; they only exist for documenta-
tion purposes.

Xilinx properties on PADS will not be translated into the EDIF netlist
when running CONCEPT2XIL. As a workaround, you must use LOC
properties attached to the corresponding I/O buffers. The type of
LOC properties you must specify on I/O buffers depends on the
Package type. For example, normally LOC=P17 implies Pin 17, but
for Pin and Ball Grid arrays (PG and BGA packages), a pin mnemonic
such as B3 or T1 is used. Refer to the “Attributes, Constraints, and
Carry Logic” chapter in the Xilinx Libraries Guide.
Cadence Interface/Tutorial Guide 3-13

Cadence Interface/Tutorial Guide
Supported Xilinx Properties

For a complete description of the Xilinx properties that are supported
in this release, refer to the “Attributes/Logical Constraints” section
in the Libraries Guide.

Obsolete Xilinx Properties

The following table lists Xilinx properties that were valid in previous
software versions but are no longer supported in the new design
flow.

Entering Timing Specifications in Schematics

The Cadence netlist writer program (CONCEPT2XIL) converts all
property names to lower case letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase letters. To
ensure references from one constraint to another are processed
correctly, observe these guidelines:

Property Description

INPUT_LOAD Internal property used by xcdsprep

OUTPUT_LOAD Internal property used by xcdsprep

OUTPUT_MODE=CAP Not supported in this release

OUTPUT_MODE=RES Not supported in this release

PARAM=C, G, I, K, L, N,
SC, W

Not supported in this release

PIN Used by xnfmerge

PROHLOC Replaced by the new attribute PROHIBIT

PR_PARAMS=S Replaced by the property S=TRUE

PR_PARAMS=X Replaced by the property KEEP=TRUE

SLEW_RATE=FAST Replaced by the property FAST=TRUE

SLEW_RATE=SLOW Replaced by the property SLOW=TRUE

VHDL_MODE Internal property used by xcdsprep

User defined properties
other than user-defined
TSPEC and TNM prop-
erties.

Not supported in this release
3-14 Xilinx Development System

Design Entry
• A TSidentifier name should contain only upper case letters on a
Concept schematic (TSMAIN, for example, but not TSmain or
TSMain).

• If a TSidentifier name is referenced in a property value, it must be
entered in upper case letters. For example, the TSID1 in the
second constraint below must be entered in upper case letters to
match the TSID1 name in the first constraint.

TSID1 = FROM: gr1: TO: gr2: 50;
TSMAIN = FROM: here: TO: there: TSID1: /2;

Creating New Groups from Existing Groups

The Cadence netlist writer program (CONCEPT2XIL) converts all
property names to lower case letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to upper case letters.
To ensure references from one constraint to another are processed
correctly, observe these guidelines:

• Group names should contain only upper case letters on a
Cadence schematic (MY_FLOPS, for example, but not my_flops
or My_flops).

• If a group name appears in a property value, it must also be
expressed in upper case letters. For example, the GROUP3 in the
first constraint example must be entered in upper case letters to
match the GROUP3 in the second constraint.

TIMEGRP GROUP1 = gr2: GROUP3;
TIMEGRP GROUP3 = FFS: except: grp5;

Attaching Signal Names
If you do not attach signal names to signals in Concept, HDL Direct
will not work properly. Ensure that you attach signal names to all
schematic signals.

Creating Bus Taps
When tapping signals off a bus in Concept, unless you maintain the
same name for the bits you tap off as the name of the parent bus, the
taps will not be interpreted properly by NGDBuild. For example, if a
bus is named “foo<2..0>”, the only allowed names of the bits tapped
off of the bus are foo<2>, foo<1>, and foo<0>. Any deviation from
Cadence Interface/Tutorial Guide 3-15

Cadence Interface/Tutorial Guide
these names requires that you insert a buffer between the bit tapped
off the bus and the new name.

The typical error message issued by NGDBuild/EDIF2NGD when
bits are renamed in the process of tapping them off the bus is:

Fatal_Error: Duplicate based:basedport.c port xx in
cell alias_bit

The error indicates that the bits tapped off the bus are considered to
have been renamed.

In the following figure, the bus taps are legitimate configurations
within Concept, but will not be processed correctly by NGDBuild.

Figure 3-3 Unacceptable Bus Tap Naming For NGDBuild

The next figure illustrates how to use angle brackets to modify the
previous bus taps for use with NGDBuild.

X7839

Q3

Q<3..0>

3

Q2 2

Q1 1

Q0

= CTAP

0 0

1

2

3Q3

Q<3..0>

Q2

Q1

Q0

= SLICE
3-16 Xilinx Development System

Design Entry
Figure 3-4 One Correct Method of Creating NGDBuild-Legal
Bus Taps

The next figure illustrates another unacceptable method for tapping
three nets with different names into a bus. Although this method is
valid in Concept, NGDBuild will not process this configuration prop-
erly.

Figure 3-5 Unacceptable Bus Tap Naming

X7840

Q<3>

Q<3..0>

3

Q<2> 2

Q<1> 1

Q<0>

= CTAP

0

= SLICE

Q<3>

Q<3..0>

3

Q<2> 2

Q<1> 1

Q<0> 0

X7926

control<2..0>

sync_ctrl 2

async_ctrl 1

enable 0
Cadence Interface/Tutorial Guide 3-17

Cadence Interface/Tutorial Guide
The next figure illustrates how you can modify the tapped bits of the
bus in the “Unacceptable Bus Tap Naming” figure by inserting a
non-inverting buffer (BUFF) between the bus bit and the new name.

Figure 3-6 Another Correct Method of Creating NGDBuild-
Legal Bus Taps

For information on how to set up bus taps, see the following sections
in Chapter 3, Creating a Design, in the Cadence manual, Concept Sche-
matic User Guide.

• “Using Bus Taps” section

• “Tips on Bus Taps” section

• “Using Other Bus Taps” section

Using the BSCAN Symbol
The BSCAN symbol indicates that boundary scan logic should be
enabled after the FPGA configuration is complete. It also provides
optional access to some special features of the XC4000E/L,
XC4000EX/XL/XV, and XC5200 boundary scan logic.

If you are using the XC4000E/L, XC4000EX/XL/XV, or XC5200
device family, you can also use the BSCAN design element in your

X7927

control<2..0>

sync_ctrl BUFF

BUFF

BUFF

2

async_ctrl 1

enable 0
3-18 Xilinx Development System

Design Entry
design. For details, see the “BSCAN” section of the Xilinx Libraries
Guide.

Note: There is no simulation modelling for Boundary Scan.

Using the STARTUP Symbol
The Xilinx STARTUP macro gives you external control of Global Set/
Reset (GSR) for 4000E, 4000EX/XL/XV and Global Reset (GR) for
XC5200, global tri-state control (referenced as GTS in the Verilog
files), and the user configuration clock. Instantiating a STARTUP
symbol in your design allows you to control these functions from an
external pin. Its use is optional; however, regardless of whether you
use the STARTUP symbol in your design or not, you should trigger
Global Set/Reset and global tri-state control in your testbench file
during simulation. Refer to “Setting Global Set/Reset and Tri-state
Signals (FPGAs)” section of the “Design and Simulation Techniques”
chapter.

If you are using the XC4000E/L, XC4000EX/XL/XV, or XC5200
device family, you can use the STARTUP macro with your design. For
details, see the “STARTUP” section in the Xilinx Libraries Guide.

Using the CONFIG Symbol to Specify Part Type
Properties attached to the CONFIG symbol dictate how the imple-
mentation tools should process the design.

In Concept, properties must be attached to a body; they cannot be
attached to a “Schematic” or ‘Sheet”. To specify global properties
such as part type, you must attach them to the CONFIG symbol.

To specify the Xilinx part type in your schematic, you designate the
part type as a PART property on the CONFIG symbol in the top-level
schematic. The PART information is passed from the EDIF file to
NGDBuild and MAP. This means that you do not need to run
NGDBuild or MAP with the -p option unless you want to override
the PART information included in the CONFIG symbol.

To add the PART property to the CONFIG symbol, perform the
following steps.

1. Within Concept, select Add Part.
Cadence Interface/Tutorial Guide 3-19

Cadence Interface/Tutorial Guide
2. When the Library Browser dialog box displays, click the button
to the left of the Library field and select the Xilinx architecture-
specific library (xce4000x, for example).

3. Select CONFIG from the list of components and place this
symbol in the schematic.

4. Display the attributes currently attached to the CONFIG symbol
by clicking on the Attribute button and then clicking on the
CONFIG symbol.

5. Click ADD. Enter the PART designation in the Name field. Enter
the Xilinx part name in the Value field (for example,
4028EXPG299-3). Other forms allowed are as follows:

XC4028EX-3-PG299
XC4028EX-PG299-3
4028EX-PG299-3
4028EX-3-PG299

The part name can be entered with or without the speed grade. If
no speed grade is specified, then a default value is used. Refer to
the “Attributes, Constraints, and Carry Logic” chapter in the
Xilinx Libraries Guide for more information on specifying part
type.

Using HDL Direct Methodology
When you use Xilinx/Concept, you must enable the HDL Direct
option to ensure that your design is written out properly for the
CONCEPT2XIL netlister.

When you add the appropriate lines to your startup.concept file
before you start Concept, HDL Direct will run automatically when
you save your design. Refer to the “Concept Setup Library Files”
section of the “Getting Started” chapter in the Concept Schematic User
Guide for details. Also see the section on “Requirements for HDL
Direct Compliance” in the HDL Direct User Guide.

Creating Bodies for Non-Schematic Design Blocks
You must also create a body for each non-schematic block that is
contained within your schematics. If you do not create and instantiate
a body for a non-schematic block in your schematic, it will not be
properly netlisted by CONCEPT2XIL or NGDBuild. The following
3-20 Xilinx Development System

Design Entry
sections describe how to create a body for your non-schematic blocks
using Concept’s genview utility.

For details on how to create symbols using genview, refer to the
“Generating Design Views”, “Using Genview for Top-Down Design”,
and “Using Genview for Bottom-Up Design” sections in the
“Creating Blocks” chapter of the Concept Schematic User Guide.

Creating a Body for a Verilog Netlist
To incorporate a Verilog netlist into your design schematic, you need
to create a body for that block. Follow these steps to create a body for
each block.

Copy the Verilog netlist for your subblock into the project directory,
and type the following in the command line window within Concept:

genview -i module_name.v -v logic body verilog

This tells Concept to generate a body view for a module named
module_name from the Verilog netlist, and to copy the associated
Verilog netlist to a file named verilog.v in the logic view for this
module. Genview also adds a reference to this new block in your .wrk
file. This reference to the new block in your .wrk file allows you to
access this body file for use in your schematic.

module_name.v may be a Verilog .v file generated by LogiBLOX for
functional simulation. See the “Processing Designs with LogiBLOX
Components” appendix for details.

Once the module has been generated, you must also edit the resulting
verilog.v file in the logic subdirectory of the new module directory,
and add the definition, parameter cds_action=”ignore”; after
the module declaration.

Example:

module mycount (load, up_dn, clk_en, clock,
async_ctrl, term_cnt, d_in, q_out

);

parameter cds_action=”ignore”; // <---- Add this line

 input load;

 input up_dn;

 input clk_en;
Cadence Interface/Tutorial Guide 3-21

Cadence Interface/Tutorial Guide
 input clock;

 input async_ctrl;

 output term_cnt;

 input [3:0] d_in;

 output [3:0] q_out;

The addition of this parameter definition is a required step. The
cds_action=”ignore” parameter tells CONCEPT2XIL that it should
not try to look for additional design hierarchy beyond this block,
because there are no underlying schematics for the block.

You now have a body for your logic block that you can use.

Generating a Body for a Schematic
To generate a body from a schematic:

1. Within Concept, edit the schematic.

edit schematic_name

2. Type genview in the command window.

A body drawing is automatically created for your schematic.

Generating a Body for an XNF, NGO, or EDIF
File

You can manually create a body for an XNF, NGO, or EDIF file using
the Concept badd command. For details, refer to the section,
“Creating a Block Diagram” in Chapter 5, Creating Blocks of the
Cadence manual, Concept Schematic User Guide.

Verilog HDL Design Entry
Verilog HDL Synthesis using Cadence Synergy is supported by
Cadence Design Systems. For a complete description of Synergy, refer
to the following Cadence manuals:

• Synergy HDL SmartBlocks Interface User Guide

• Synergy HDL Synthesizer and Optimizer Modeling Style Guide

• Synergy HDL Synthesizer and Optimizer Tutorial
3-22 Xilinx Development System

Design Entry
• Synergy Libraries Development Guide

• Synergy SmartBlocks Data Book

The following figure shows the design flow for Synergy. For details,
contact Cadence.

Figure 3-7 HDL Synthesis Design Flow

Verilog HDL Synthesis flows using Synopsys are shown in the
“Synopsys/Verilog Design Flow” appendix and discussed in detail in
the Xilinx Synopsys (XSI) Interface/Tutorial Guide.

Translating Your Design
Once you have completed and saved your design schematics, you
will automatically have an HDL Direct-generated Verilog netlist for
every block in your design. The next step is to use the CONCEPT2XIL
program with the -sim_only option to configure these Verilog netlists
so that you can perform a functional simulation. Refer to the “Func-
tional Simulation” chapter for details.

After completing functional simulation, use CONCEPT2XIL to
prepare your design for use with the Xilinx design implementation

X8064

Synergy

Verilog-XL

Synergy
Synthesis

Library

Synergy
Simulation

Library

Verilog

EDIF

HDL Design

Post-synthesis
Simulation

RTL Behavioral
Simulation

VLOG2XIL
Cadence Interface/Tutorial Guide 3-23

Cadence Interface/Tutorial Guide
tools. Refer to the “Converting the Concept Design to an EDIF File”
section of the “Design Implementation” chapter for details.
3-24 Xilinx Development System

Chapter 4

Functional Simulation

This chapter contains the following sections:

• “Introduction” section

• “Unified Library Based Functional Simulation” section

• “SIMPRIM Library Based Functional Simulation” section

Introduction
This chapter explains how to perform functional simulation on your
designs using Verilog-XL. Functional simulation provides an effective
means of identifying logic errors in your design before the design is
implemented in a Xilinx device. Since timing information for the
design is not available in a functional simulation, you should conduct
your functional simulation using unit delays. Doing functional simu-
lation before routing your design saves debugging time later in the
design process by verifying that your design is functionally correct.

This chapter describes two types of functional simulation.

• Unified Library Based Functional Simulation

This simulation is performed on the output Verilog (.V) files from
Concept HDL Direct and the Verilog configuration file (.VF) for a
purely schematic design, following a post-processing step by
CONCEPT2XIL. See the “Unified Library Based Functional
Simulation” figure.

• SIMPRIM-Based Functional Simulation

This simulation is performed on .v and .tv (option -tf for
NGD2VER) files created by NGD2VER on the NGD file output
from NGDBuild. SIMPRIM-based functional simulation can be
performed on any type of design. (On mixed mode designs, it is
Cadence Interface/Tutorial Guide — 0401494 4-1

Cadence Interface/Tutorial Guide
the only method available.) See the “SIMPRIM-Based Functional
Simulation” figure.

You can usually perform both types of simulation on either FPGA or
CPLD designs.

Note: There is no simulation modelling for Boundary Scan.

Figure 4-1 Unified Library Based Functional Simulation

Unified Library Based Functional Simulation
This section describes Unified Library based functional simulation
for pure Concept schematic designs and Concept designs with Logi-
BLOX modules.

From Concept
via HDL-Direct

Verilog
*.V files

X8063

Verilog-XLUser-Created
Verilog

Testbench

Verilog
Unified

Simulation
Library

.VF file.V file

Concept2XIL -sim_only
4-2 Xilinx Development System

Functional Simulation
Pure Concept Schematic Without LogiBLOX
Elements

The functional simulation of a pure schematic design requires that
HDL Direct be enabled when you save the various schematic blocks
in your design. With HDL Direct enabled, a Verilog HDL view is
automatically generated for a schematic or symbol body when you
save it. You then run CONCEPT2XIL with the -sim_only option to
resolve the design hierarchy and generate the required design.vf
Verilog configuration file and design.v file containing the required
global modules.

Steps:

1. Enable HDL Direct

2. Save schematic

3. Run the command:
concept2xil -sim_only -family architecture design_name

4. Create testbench file manually

5. Simulate design

Creating HDL Views for the Design/ Netlisting the
Design

When you save a schematic in Concept with HDL Direct enabled,
Concept creates a directory for the schematic with an underlying
logic/ directory. The logic/ directory contains a Verilog HDL view for
that block of your design. You must then run CONCEPT2XIL -
sim_only to generate the required files for functional simulation.

Following is the CONCEPT2XIL syntax:

concept2xil -family technology -sim_only design_name

The -family option specifies the library that should be used (for
example, xce4000x). To target the Xilinx XC4000EX, XC4000XL and
XC4000XV architectures, specify "xce4000x" as the target library.

The -sim_only option tells CONCEPT2XIL to generate only the files
needed for functional simulation.

The CONCEPT2XIL program generates the following two files in the
Xilinx run directory (default is xilinx.run)
Cadence Interface/Tutorial Guide 4-3

Cadence Interface/Tutorial Guide
• design.vf, a Verilog configuration file

• design.v

The configuration file, design.vf, contains information on the location
of the Verilog netlists for each block of the design.

The design.v file defines the following modules which, although not
supported by CONCEPT2XIL, are nevertheless written out by the
embedded Cadence EDIF netlist writer:

• alias_bit — a module that is used by HDL Direct if you rename a
net. This happens most often when you tap bits off a bus in
conjunction with a TAP, SLICE, or MERGE body. Note that alias
bits are not supported by the EDIF netlister. Because alias bits are
not supported, if you rename a net (for instance when you tap a
bit off a bus and do not keep the same bus name), you must sepa-
rate the original net name and the new net name in your sche-
matic by inserting a buffer (BUFF) component between the new
and existing nets.

• alias_vector — defines a module that is used if you rename buses.
Bus renaming is usually done in conjunction with a SLICE or
MERGE body. Alias vectors are not supported by the M1 EDIF
netlister.

Creating a Testbench File

You will also need to create a testbench file in a text editor for your
functional simulation, usually named design.stim.

Note: The term "testbench" and "test fixture" are used interchange-
ably.

In the M1.4 Verilog interface, a new methodology is used to support
the global (set/) reset and global tri-state signals in the FPGAs, and
global reset in the CPLDs. The procedure for driving these global
signals is described in detail in the “Setting Global Set/Reset and Tri-
state Signals (FPGAs)” section of the “Design and Simulation Tech-
niques” chapter. Most of what is required is implemented automati-
cally when you use the testbench template generated by NGD2VER;
however, if you are performing Unified Library functional simulation
directly from CONCEPT2XIL, a testbench template does not get
generated automatically. You may either create the testbench file
manually, or, as a workaround, process your design through
4-4 Xilinx Development System

Functional Simulation
NGDBuild, then run NGD2VER -tf -ul on the design.ngd file to
generate a template that you can use for your testbench.

Example:

ngdbuild -p 4028ex-3-pg299 design

ngd2ver -tf -ul design.ngd

For an example of a testbench file, see the “Sample Test Fixture -
XC4000EX Unified Library Functional Simulation (GSR and GTS
simulation)” section of the “Files” appendix.

Running the Functional Simulation

To functionally simulate the design with Verilog-XL, you must:

• Specify the full pathname of

a) a copy of the testbench file named design.stim

b) the design Verilog netlist (design.v)

c) the Verilog configuration file (design.vf)

It is usually simpler to navigate to the directory in which these
files reside and run the simulation locally.

• It is also recommended that you specify the +delay_mode_unit
option to do a unit delay simulation. This prevents race condi-
tions if there are any feedback loops in your design.

Following is the syntax:

verilog +delay_mode_unit design.stim \
full_path_to_design_name.v \
-f full_path_to_design_name.vf

(The “\”at the end of a line indicates that the line following the
current one can be typed on the same command line.)

If available, it is recommended that you specify the +gui option to
invoke the Verilog Environment. (+gui is supported beginning in the
97A release.)

In the following figure, the Verilog-XL Control Window (VCW)
displays when you use the +gui option.
Cadence Interface/Tutorial Guide 4-5

Cadence Interface/Tutorial Guide
Figure 4-2 Part of the Verilog Environment

A convenient way of running a Verilog simulation is to create a script
containing a command line with all the required options. To run the
simulation, simply invoke the script.

Example:

For a design named “calc”, targeting an XC4000EX component, say
you generate a Verilog netlist called “calc.v” with CONCEPT2XIL
and create a testbench file called “calc.stim”. Assume your simulation
library is located in the directory, $XILINX/cadence/data/
verilogxce4000x.
4-6 Xilinx Development System

Functional Simulation
To run a functional simulation, you would navigate to the xilinx.run
directory and run the simulation using this command line:

verilog +delay_mode_unit calc.stim calc.v \
-f calc.vf

To specify the simulation library, $XILINX/cadence/data/
verilogxce4000x, you can either add the following `uselib directive to
your .v file.

`uselib dir = explicit_path_to_Xilinx/cadence/data/
verilogxce4000x libext=.v

or you can specify the library path as a-y command line option to
Verilog -XL.

Adding SimWave Support to the Testbench File

Your simulation waveforms are displayed by a waveform display
application that is separate from Verilog-XL. Given the appropriate
directives, Verilog-XL writes the waveform data to a simulation
history directory (design.shm). The waveform viewer application
(usually SimWave) reads this data from the simulation history data-
base and displays the waveforms.

If you wish to view your simulation waveforms graphically while
performing your functional simulation, you must add an “initial”
block to the testbench file containing directives to create a simulation
history database for the waveform viewer.

Note: NGD2VER will add this “initial” block to a stimulus template
file (designf.tv) when invoked with the -tf option. For pre-NGDBuild
functional simulation flows, this block must be added to your test-
bench manually.

Sample "initial" block adding Simulation History Manager support:

initial
begin

$shm_open(“calc.shm”);
$shm_probe(“AS”);

end

The $shm_open command creates the database directory, “calc.shm”.
$shm_probe(“AS”) directs the simulation history manager to probe
all signals, thus making them available for viewing in the waveform
viewer.
Cadence Interface/Tutorial Guide 4-7

Cadence Interface/Tutorial Guide
To invoke SimWave, enter the following command:

simwave &

For a complete description of SimWave, refer to the “Using
SimWave” section of the “Schematic Design Tutorial” chapter.

Global Reset

Global reset should always be toggled at the beginning of a simula-
tion to ensure that all flip-flops and latches initialize to a known state.
See the “Setting Global Set/Reset and Tri-state Signals (FPGAs)”
section of the “Design and Simulation Techniques” chapter for infor-
mation on toggling global reset for XC3000A/L, XC3100A/L,
XC4000/E/EX/XL/XV, XC5200, and XC9500 devices.

Pure Concept Schematic Designs With LogiBLOX
Refer to the “Processing Designs with LogiBLOX Components”
appendix for detailed information.

Mixed Mode Designs
Mixed mode designs can be functionally simulated using a slightly
different flow. If the top level of your design is a schematic, each non-
schematic block (from Synopsys or other third party tool) must be
available in, or processed down to XNF, .NGO, or .EDF format. Each
non-schematic block must also be represented with its own body (or
symbol) in the design schematics. The steps are as follows:

1. Process all non-schematic blocks to XNF, .NGO or .EDF format
using the appropriate translation tool. For example, a Synopsys
block must be processed down to XNF format.

2. Run NGDBuild to merge the schematics with the non-schematic
blocks.

ngdbuild -p part_type design_name

The –p option specifies the Xilinx device or architecture into
which your design will be implemented. The –p option may
specify an architecture only (for example, XC4000EX), a complete
part specification (device, package, and speed-- for example,
xc4028ex-pg299-3), or a partial specification (device and package
only--for example, XC4028EX)
4-8 Xilinx Development System

Functional Simulation
The input design_name may be an XNF or EDIF 2.0.0 netlist. If the
input netlist is in a format that the Netlister Launcher recognizes,
the Netlister Launcher reads in the netlist, determines the format
of the input netlist, and then invokes the appropriate netlist
reader, EDIF2NGD or XNF2NGD.

3. Run NGD2VER to generate the functional simulation netlist.

ngd2ver -tf -ul design_name

The -tf option generates a testbench template file (.tv) for you
containing an instantiation of your design as well as support for
the Cadence Simulation History Manager.

Make a copy of this testbench file, name it (designf.stim), and use
it as a starting point for your simulation stimulus. For an example
of a testbench file, see the “Sample Test Fixture - XC4000EX Post-
NGDBuild Simulation (GSR and GTS simulation)” section of the
“Files” appendix.

The -ul option directs NGD2VER to write out a `uselib directive
which tells Verilog-XL where to load the SIMPRIM based simula-
tion libraries when compiling the simulation.

See the “Design and Simulation Techniques” chapter for informa-
tion on driving the global signals GSR, GR, GTS and PRLD.

Running the Simulation

To functionally simulate the design with Verilog-XL, you must:

• Specify the full pathname of

a) a copy of the testbench file (designf.stim)

b) the design Verilog netlist (designf.v)

It is usually simpler to first navigate to the directory where these
files reside and run the simulation locally.

• It is also recommended that you specify the +delay_mode_unit
option to do a unit delay simulation. This option prevents race
conditions if there are any feedback loops in your design.

Following is the syntax:

verilog +delay_mode_unit design_namef.stim \
full_path_to_design_namef.v
Cadence Interface/Tutorial Guide 4-9

Cadence Interface/Tutorial Guide
(The “\”at the end of a line indicates that the line following the
current one can be typed on the same command line.)

If available, it is recommended that you specify the +gui option to
invoke the Verilog Environment.

In the following figure, the Verilog-XL Control Window (VCW)
displays when you use the +gui option.

Figure 4-3 Verilog-XL Control Window

A convenient way of running the simulation is to create a script
containing a command line with all the required options. To run a
simulation, simply invoke the script.

Example:
4-10 Xilinx Development System

Functional Simulation
For a design named “calc”, targeting an XC4000EX component, say
you generate a Verilog netlist called “calcf.v” with NGD2VER,
and create a testbench file called “calcf.tv”.

ngd2ver -tf -ul calc.ngd calcf

Copy the testbench template file "calcf.tv" to a file named "calcf.stim".

To run a functional simulation, you would navigate to the xilinx.run
directory and enter the following command:

verilog +delay_mode_unit calcf.stim calcf.v

To invoke SimWave, enter the following command:

simwave &

For a complete description of SimWave, refer to the “Using
SimWave” section of the “Schematic Design Tutorial” chapter.

Global Reset

Global reset should always be toggled at the beginning of a simula-
tion to ensure that all flip-flops and latches initialize to a known state.
See the “Setting Global Set/Reset and Tri-state Signals (FPGAs)”
section of the “Design and Simulation Techniques” chapter for infor-
mation on toggling global reset for XC3000A/L, XC3100A/L,
XC4000/E/EX/XL/XV, XC5200, and XC9500 devices.

The XC3000A/L architecture always contains a GR (Global Reset)
port for SIMPRIMS-based functional simulation. However, for
Unified library-based functional and timing simulation, GR is hidden
for this architecture. Therefore, you cannot use the same testbench file
for Unified library simulation and SIMPRIM-based simulation.

SIMPRIM Library Based Functional Simulation
SIMPRIM-based functional simulation requires an NGD file as a
starting point. You can use NGDBuild to generate an NGD file from
the CONCEPT2XIL EDIF file generated by the CONCEPT2XIL
command:

ngdbuild - p XCxxxx design.edf

where xxxx corresponds to an architecture, for example, 4000EX,
3000, or part type (for example, 4028ex-pg299-3).
Cadence Interface/Tutorial Guide 4-11

Cadence Interface/Tutorial Guide
For details on how to use the command line version of NGDBuild,
see the “NGDBuild” chapter of the Design System Reference Guide.

For details on using the Design Manager to run NGDBuild, see the
“Using the Design Manager” chapter in the Design Manager/Flow
Engine Reference/User Guide.

Once you have created an NGD file, you can conduct a SIMPRIM-
Based functional simulation. The following diagram illustrates the
design flow.

Figure 4-4 SIMPRIM-Based Functional Simulation

The basic simulation steps are as follows:

1. Use NGD2VER to create a structural Verilog netlist file and a test-
bench stimulus template.

2. Copy the testbench stimulus template (designf.tv) to a file named
"designf.stim" and use this copy as your user-specified testbench
file. For an example of a testbench template file, see the “Sample
Test Fixture - XC4000EX Post-NGDBuild Simulation (GSR and
GTS simulation)” section of the “Files” appendix.

3. Run the Verilog-XL simulator in unit delay mode using the
Xilinx-supplied Verilog SIMPRIM Library.

X8066

Structural
Verilog Netlist

NGD2VER -tf -ul

Testbench Template

Make a Copy
and Edit

User-Specified
Verilog TestbenchVerilog-XL

Verilog

Verilog
SIMPRIM
Library

NGD
4-12 Xilinx Development System

Functional Simulation
verilog +delay_mode_unit design_namef.stim
full_path_to_design_namef.v

Using NGD2VER
The NGD2VER program translates your NGD file to a Verilog HDL
netlist which describes the design in terms of Xilinx simulation prim-
itives. This Verilog netlist corresponds to an unmapped design which
contains no timing information. You must use NGD2VER with the -tf
and -ul options to create the appropriate files for use with the
Cadence Verilog-XL simulator.

The following syntax translates your design to a Verilog file:

ngd2ver -tf -ul infile.ngd outfile

• The -tf option generates a testbench template file. The output test-
bench template/file has a .tv extension. For an example of a test-
bench template file, see the annotated template in the “Sample
Test Fixture - XC4000EX Post-NGDBuild Simulation (GSR and
GTS simulation)” section of the “Files” appendix.

• The –ul option causes NGD2VER to write a `uselib directive
pointing to the appropriate simulation library. This directive is
written to the output Verilog file (.v). The path is written as
shown below:

`uselib dir= path_to_Xilinx/verilog/data libext=.vmd

where path_to_Xilinx is the location of the Xilinx software.

If you do not specify the –ul option, the `uselib line will not be
written into the Verilog file. The alternative to specifying the
`uselib directive in your .v file is to specify the -y option when
you invoke Verilog-XL and to specify the path to the simulation
library (or libraries) as its argument.

• infile.ngd is the input NGD. If you enter a file name with no
extension, NGD2VER will look for a file with an .nga extension
having the name you specified. If you wish to translate an NGD
file, you must enter the .ngd extension.

• outfile indicates the file name to which the output of NGD2VER
will be written. Default is infile.v (infile is the root name of the
input file).
Cadence Interface/Tutorial Guide 4-13

Cadence Interface/Tutorial Guide
To prevent overwriting an existing Verilog netlist generated by HDL
Direct, it is recommended you specify the name of the post-
NGDBuild Verilog functional simulation netlist as "infilef.v":

ngd2ver -tf -ul infile.ngd infilef

The output Verilog netlist will be named infilef.v, and the testbench
template file, infilef.tv.

Running a Verilog Functional Simulation
Edit a copy of the testbench stimulus template and add your stimulus
to it to create a user-specified testbench file.

To run the Verilog simulation, use the procedure described in the
“Running the Simulation” section of the “Mixed Mode Designs”
section described earlier in this chapter. Use the filenames designf.v
and designf.stim as the inputs to your simulation.

Global Reset
The XC3000A/L architecture always contains a GR (Global Reset)
port for SIMPRIMS-based functional simulation. However, for
Unified library-based functional and timing simulation, GR is hidden
for this architecture. Therefore, you cannot use the same testbench file
for Unified library simulation and SIMPRIM-based simulation.
4-14 Xilinx Development System

Chapter 5

Design Implementation

This chapter contains the following sections:

• “Converting the Concept Design to an EDIF File” section

• “Implementing the Design” section

Once you complete functional simulation, you are ready to imple-
ment your design using the Xilinx core tools. The primary netlist
format supported by the Xilinx core tools is EDIF 2.0.0, so you must
first convert your design into an EDIF (.EDF) file using the
CONCEPT2XIL command line script.

Note: XNF format netlists are also currently supported by the Xilinx
Development implementation tools. However, support for XNF
netlists will be phased out in future releases.

After you have created an EDIF file, you can then use either the
NGDBuild command or the Xilinx Design Manager to generate an
NGD file. You are then ready to implement your design. Implementa-
tion can be performed by the Xilinx Design Manager. See the Design
Manager/Flow Engine Reference/User Guide for details. You may also
use the Xilinx command line versions of the individual tools to imple-
ment your design from a UNIX shell. Refer to the Development System
Reference Guide for details on FPGA designs. For CPLD designs, refer
to the CPLD Schematic Design Guide.

Xilinx implementation tools first translate the design into a flattened
or hierarchical netlist, then optimize, place, and route the design. The
tools annotate delay data for timing simulation and generate physical
(bitstream) design data for downloading. See the “FPGA Design
Implementation” figure for an overview of the process for FPGAs.
See the “CPLD Design Implementation” figure for an overview of
the process for CPLDs.
Cadence Interface/Tutorial Guide — 0401494 5-1

Cadence Interface/Tutorial Guide
Figure 5-1 FPGA Design Implementation

NGDBuild

To
Timing Simulation

To
SIMPRIM-Based
Functional Simulation

MAP

PAR

NCD

NCDMRP

NGM

BIT NGA

NGDAnnoBitGen

NGD2VER -tf -ul -pf

NGD

X8065
5-2 Xilinx Development System

Design Implementation
Figure 5-2 CPLD Design Implementation

This chapter describes how to convert your Concept Verilog file into
an EDIF file using CONCEPT2XIL. The chapter also provides specific
references to the command line design implementation tools for
FPGAs and CPLDs.

Converting the Concept Design to an EDIF File
Once your Concept schematic is complete, you must convert the
Verilog file (.V) that it outputs into an EDIF file before you can use the
Xilinx design implementation tools. To translate the Verilog file, you
must run the CONCEPT2XIL command line utility. The design flow
for this conversion is shown in the following figure:

NGDBuild

PRGJED

NGA

To
Timing Simulation

To SIMPRIM-Based
Functional Simulation

Design Manager
Flow Engine

X7834

NGD

CPLD Fitter

NGD2VER -tf -ul -pf
Cadence Interface/Tutorial Guide 5-3

Cadence Interface/Tutorial Guide
Figure 5-3 CONCEPT2XIL Design Flow

Following is the syntax for the CONCEPT2XIL command:

concept2xil [-cdslib lib_map_filename]
[-gcmd command_filename] [-help] [-log log_filename]
[-rundir run_directory] -family technology design_name

• -cdslib lib_map_filename indicates the name of the library map file,
which points to a technology-specific VAN-compiled Verilog
library or libraries whose Verilog names are of the form,
xcexxx_syn. The default is cds.lib. This parameter is optional.

• -gcmd command_filename specifies the name of the global.cmd
command file, which indicates the Concept libraries available to
the netlister. The default is global.cmd. This parameter is
optional.

via HDL-Direct Verilog
*.V files

X8077

Concept2XIL

To
Design Manager

Flow Engine

EDF

.VF file.V file
5-4 Xilinx Development System

Design Implementation
• -help allows you to obtain more information on CONCEPT2XIL
and its options.

• -log log_filename specifies the name of the log file. The default is
concept2xil.log. This parameter is optional.

• -rundir run_directory specifies the name of the directory in which
CONCEPT2XIL is run. The default is xilinx.run. This parameter
is optional.

• -family technology specifies the target architecture. Valid technolo-
gies are xce3000, xce4000e, xce4000x, xce5200, and xce9000. This
parameter is optional.

• design_name is the input design name.

Here is an example:

concept2xil -family xce4000x block

Note: The CONCEPT2XIL command also generates a .v file and a .vf
file as well as an EDIF (.edf) file. It will overwrite any existing .v and
.vf files with the same name in the destination directory. Be sure that
you do not overwrite any existing files that you want to preserve.

Once you have generated an EDIF file, you can use the Xilinx design
tools to implement your design.

Implementing the Design
This section does not discuss the following design implementation
tools, NGDBuild, Map, PAR, BitGen, NGDAnno, and CPLD Fitter
(CPLD). The command line options for each of these tools can be
found in the Xilinx manual, Development System Reference Guide, with
the exception of the CPLD command, which is discussed in the
“Fitter Command and Option Summary” appendix of the CPLD Sche-
matic Design Guide.

You can find the following commands in the Development System
Reference Guide:

• NGDBuild -- “NGDBuild” chapter

• Map -- “MAP—The Technology Mapper” chapter

• PAR (Place and Route) -- “PAR—Place and Route” chapter

• BitGen -- “BitGen” chapter
Cadence Interface/Tutorial Guide 5-5

Cadence Interface/Tutorial Guide
• NGDAnno -- “NGDAnno” chapter

You can also use the Xilinx Design Manager to implement your
design. Refer to the “Using the Design Manager” chapter in the
Xilinx manual, Design Manager/Flow Engine Reference/User Guide.
5-6 Xilinx Development System

Chapter 6

Timing Simulation

Timing simulation verifies a placed and routed design by using
worst-case routing and block delay information. The delay informa-
tion is extracted from the routed design and passed to the back-anno-
tated simulation netlist so it can be used during timing simulation.
Timing simulation reduces the need for hardware debugging by
determining whether or not the design works under worst-case
conditions.

Timing simulation is also a useful tool for determining the device
speed grade required for a particular application. Timing simulation
verifies design functionality by using delay information from the
routed NCD file created during design implementation.

This chapter describes how to prepare for timing simulation using
the NGD2VER command and then conduct timing simulation within
the Cadence simulation environment using Verilog-XL. It also
describes how to load SimWave to view the simulation signals in a
waveform format.

This chapter contains these sections.

• “Post-Map Timing Simulation (FPGAs)” section

• “Post-Implementation Timing Simulation” section

Note: There is no simulation modelling for Boundary Scan.

Post-Map Timing Simulation (FPGAs)
An optional simulation that you may perform for FPGAs is post-map
timing simulation. The post-MAP simulation gives you a rough idea
of whether your timing requirements can be met before delays due to
routing are added.
Cadence Interface/Tutorial Guide — 0401494 6-1

Cadence Interface/Tutorial Guide
Note: After mapping, Xilinx strongly recommends that you either
perform a Static Timing Analysis using TRCE, or conduct a post-map
simulation. A Static Timing Analysis can often be conducted faster
than a simulation and is especially useful for first-time designs. Refer
to the Xilinx Development System Reference Guide for information on
running static timing analysis. On the other hand, if you already have
a testbench file for post-NGDBuild functional simulation, you can use
that testbench file for post-MAP and post-implementation timing
simulation with some minor modifications.

The following figure provides a flow chart of post-map simulation.
6-2 Xilinx Development System

Timing Simulation
Figure 6-1 Post-Map Timing Simulation

Mapping and Back-Annotation
To perform a post-map simulation, you must have previously
mapped and back-annotated your design. To perform mapping and
back-annotation, use the MAP and NGDAnno commands as follows:

mapdesign.ngd

ngdanno design.ncd design.ngm

NGA

NCD

NGDAnno

MAP

NGD2VER -tf -ul

Testbench Template

Structural
Verilog
Netlist

X7760

Make a Copy
and Edit

User-Specified
Verilog Testbench

Verilog

Verilog
SIMPRIM
Library

Verilog-XL
Cadence Interface/Tutorial Guide 6-3

Cadence Interface/Tutorial Guide
For details on mapping and back-annotation, see the following chap-
ters in the Development System Reference Guide.

• “MAP—The Technology Mapper” chapter

• “NGDAnno” chapter

Back-annotation is the method by which physical design information,
including timing delays, is distributed back to the logical design for
simulation.

In the Xilinx Development System, back-annotation for FPGA
designs is performed as described below.

• The NGDAnno program distributes delays, setup and hold
times, and pulse widths found in the physical NCD design file
onto the logical design view represented in the NGD file. Phys-
ical component locations for PADs are also combined with the
information in the NGD file.

The output of NGDAnno is an NGA (Generic Annotated) file
containing the logical design with annotations.

• The annotated design NGA file is used as an input to the netlist
writer NGD2VER, which translates the back-annotated informa-
tion into a Verilog netlist for simulation.

Running NGD2VER
The NGD2VER program translates your design into a Verilog HDL
file containing a netlist description of the design in terms of Xilinx
simulation primitives (SIMPRIMS). The Verilog file is then used to
perform a simulation with the Cadence Verilog-XL simulator. You
must use NGD2VER with the -tf and -ul options to create the appro-
priate files for use with the Cadence Verilog-XL simulator.

NGD2VER also generates an SDF (Standard Delay Format) version
2.1 file containing delays obtained from the fully-implemented input
file. NGD2VER will only generate an SDF file if the input is an NGA
file, which contains timing information.

The SDF file produced is intended solely for use with the Verilog file
generated by NGD2VER. Do not attempt to use the SDF file in
conjunction with the original design or the product of another netlist
writer.

Recommended procedure:
6-4 Xilinx Development System

Timing Simulation
ngd2ver -tf -ul design.nga

cp design.tv designt.stim

Edit designt.stim and add your test vectors.

The following syntax translates your design to a Verilog file:

ngd2ver [-tf] -ul infile[.nga] [outfile.v]

• The -tf option generates a testbench template file. The file has a
.tv extension. Xilinx recommends that you copy this testbench
template to a file named designt.stim, then edit this .stim file and
add your simulation vectors.

For an example of a testbench template file, see the annotated
example in the “Sample Test Fixture - XC4000EX Post-NGDBuild
Simulation (GSR and GTS simulation)” section of the “Files”
appendix.

• The –ul option causes NGD2VER to write a `uselib library direc-
tive into the output Verilog file. The path will be written as
shown below to point to the Verilog SIMPRIM library:

`uselib dir= $XILINX/verilog/data libext=.vmd

where $XILINX is the location of the Xilinx software, and
$XILINX/verilog/data is the location of the Verilog SIMPRIM
library.

• infile is the input NGA file. If you enter a file name with no exten-
sion, NGD2VER will automatically look for a file with the name
you specified plus an .NGA extension.

• outfile indicates the filename to which the output of NGD2VER
will be written. Default is infile.v (infile being the same root name
as the input file).

See the “Setting Global Set/Reset and Tri-state Signals (FPGAs)”
section of the “Design and Simulation Techniques” chapter for
information on driving the global signals GSR, GR, GTS and
PRLD.

Running the Verilog Timing Simulation
Make sure you edit a copy (designt.stim) of the testbench stimulus
template to create a user-specified testbench file.
Cadence Interface/Tutorial Guide 6-5

Cadence Interface/Tutorial Guide
cp design.tv designt.stim

edit designt.stim

See the “Files” appendix for an example of a testbench template. The
example is only a template; it does not contain test vectors.

To simulate the design with Verilog-XL, you must:

Specify the full pathname of

• the design Verilog netlist (designt.v)

• a copy of the testbench file (designt.tv) named designt.stim

Following is the syntax:

verilog full_path_to_design_namet.stim full_path_to_design_namet.v

If available, it is recommended that you specify the +gui option to
invoke the Verilog Environment.

In the following figure, the Verilog-XL Control Window (VCW)
displays when you use the +gui option.
6-6 Xilinx Development System

Timing Simulation
Figure 6-2 The Verilog Environment (+gui)

A convenient way of running a Verilog simulation is to create a script
containing a command line with all the required options. To run a
simulation, simply invoke the script.

Example:

For a design named “calc” targeting an XC4000EX component, say
you generate a Verilog netlist called “calct.v” and create a testbench
file called “calct.tv”. Make a copy of “calct.tv” named “calct.stim”
and add your stimulus to this file.

To run a timing simulation, you would use this command line:

verilog xilinx.run/calct.stim xilinx.run/calct.v
Cadence Interface/Tutorial Guide 6-7

Cadence Interface/Tutorial Guide
To invoke SimWave, enter the following command:

simwave &

For a complete description of SimWave, refer to the “Using
SimWave” section of the “Schematic Design Tutorial” chapter.

Global Reset
Global reset should always be toggled at the beginning of a simula-
tion to ensure that all flip-flops and latches initialize to a known state.
See the “Setting Global Set/Reset and Tri-state Signals (FPGAs)”
section of the “Design and Simulation Techniques” chapter for infor-
mation on toggling global reset for XC3000A/L, XC3100A/L,
XC4000/E/EX/XL/XV, XC5200, and XC9500 devices.

Post-Implementation Timing Simulation
You can perform a post-implementation timing simulation on both
FPGA and CPLD designs. For FPGAs, you must have first mapped,
routed, and back-annotated your design. For CPLDs, you must have
run the design through the CPLD fitter.

Note: Post-implementation timing simulation for FPGAs is also
referred to as post-route timing simulation.

The following figure illustrates the design flow for post-implementa-
tion timing simulation.
6-8 Xilinx Development System

Timing Simulation
Figure 6-3 Post-Implementation Timing Simulation

Running NGD2VER
The NGD2VER program translates your design into a Verilog HDL
file containing a netlist description of the design in terms of Xilinx
simulation primitives. The Verilog file is then used to perform a simu-
lation with the Cadence Verilog-XL simulator. You must use
NGD2VER with the -tf and -ul options to create the appropriate files
for use with the Cadence Verilog-XL simulator.

The following syntax translates your design to a Verilog file:

ngd2ver [-tf] -ul -pf infile[.nga] [outfile.v]

• The -tf option generates a testbench file. The file has a .tv exten-
sion. You must make a copy of this testbench template and edit it
by adding your simulation vectors, For an example of a testbench
template file, see the annotated example in the “Sample Test
Fixture - XC4000EX Post-NGDBuild Simulation (GSR and GTS
simulation)” section of the “Files” appendix.

• The –ul option causes NGD2VER to write a `uselib library direc-
tive into the output Verilog file. The path will be written as
shown below to point to the Verilog SIMPRIM library:

MAP

NCD

NGDAnno

X8067

NCD

PAR

From
Design Manager
Flow Engine

NGD2VER -tf -ul

Supported
by Cadence Verilog-XL

PINPKG Verilog SDF Testbench Template

Edit

XIL2CDS User-Specified
Verilog Testbench

Verilog
SIMPRIM
Library

Chips_PRT

Concept

Body
Cadence Interface/Tutorial Guide 6-9

Cadence Interface/Tutorial Guide
`uselib dir= $XILINX/verilog/data libext=.vmd

where $XILINX is the location of the Xilinx software and
$XILINX/verilog/data is the location of the Verilog SIMPRIM
library.

• The –pf option will write out a pin file—a Cadence signal-to-pin
mapping file. NGD2VER will generate a PIN file if the input file
contains routed external pins and you have specified a –pf
command line option. The file will have a .pin extension. The file
is used as an input to XIL2CDS. Specifying this option is required
only if you need to run XIL2CDS.

• infile is the input NGA file. If you enter a file name with no exten-
sion, NGD2VER will automatically look for a file with the name
you specified plus an .NGA extension.

• outfile indicates the filename to which the output of NGD2VER
will be written. Default is infile.v (infile being the same root name
as the input file).

NGD2VER also generates an SDF (Standard Delay Format) file
containing delays obtained from the fully-implemented input file.
NGD2VER will only generate an SDF file if the input is an NGA file
which contains timing information. The SDF file generated by
NGD2VER is based on SDF version 2.1.

Note: The SDF file produced is intended solely for use with the
Verilog file generated by NGD2VER. Do not attempt to use the SDF
file in conjunction with the original design or the product of another
netlist writer.

The .PIN, .PKG, . SDF and .V files output files are used by the
Cadence command, XIL2CDS to generate a 1) a chips_prt file, which
contains physical information about the component, and 2) a body
file, which is a Concept symbol file. XIL2CDS enables you to integrate
your chip-level design into a board level schematic.
6-10 Xilinx Development System

Chapter 7

Design and Simulation Techniques

This chapter describes various design and simulation techniques. The
sections in the chapter are as follows.

• “Replicating Components in a Design (SIZE)” section

• “Retargeting a Design to a Different Family” section

• “Merging Design Files from Other Sources” section

• “XC4000 Flip-flop Initialization” section

• “XC9500 Flip-flop Initialization” section

• “Setting Global Set/Reset and Tri-state Signals (FPGAs)” section

• “Setting Global PRLD (CPLD Designs)” section

• “Oscillator Functions (OSC, OSC4, OSC5)” section

Replicating Components in a Design (SIZE)
In the Xilinx Development System release libraries, the SIZE property
is no longer supported due to potential performance reductions in
simulation time associated with SIZE in the context of HDL Direct
methodology requirements.

To replicate bodies in your design, you must use the Iterated Instance
methodology. To use iterated instances, edit the PATH property asso-
ciated with the body (this property is assigned by Concept when you
save the design) and attach an index range (n:m) to the path value:

PATH=body_name(n:m)

where body_name is the instance name of the body you want to repli-
cate and (n:m) represents the range of indices over which you want to
replicate the symbol. For example, to replicate a body four times with
an index range 0 to 3, set n=3 and m=0:
Cadence Interface/Tutorial Guide — 0401494 7-1

Cadence Interface/Tutorial Guide
PATH=P14(3:0)

For high-level functional modules, including registers, counters,
adders, and memory, you can also use the LogiBLOX utility to
generate modules of the desired size.

See the “Understanding Iterated Instances” section in the “Schematic
Guidelines” chapter in the Cadence manual, HDL Direct User Guide
for more information.

Retargeting a Design to a Different Family
You can retarget your designs from one device family to another,
provided both your source (original) and target designs include only
Unified Library components. Since most of the symbols in the
Unified Libraries have the same footprint and naming across all
device families, you can easily convert your designs without doing
extensive design re-entry.

In the following example, you retarget your design to an XC5200
device. The original design is an XC4000E device.

Follow these steps to convert your designs:

1. Start Concept and open your design.

2. Enter the following Concept commands in the command line
window:

ignore xce4000e
library xce5200
get
write

The ignore command removes a specified library from the active
search list.

The library command adds the specified library to the search list.

When specified with no arguments, the get command reads in
the object references in the design and displays the design using
components from the currently active libraries.

When specified with no arguments, the write command writes or
saves the active design view to disk. In this case, the active view
is the logic, or schematic view, logic.1.1.
7-2 Xilinx Development System

Design and Simulation Techniques
Alternatively, you can convert the design to the target family by
first changing your global.cmd file to point to the target family
library, then reading in the design and saving it with the new
library references.

Sample global.cmd file:

library “xce5200”,
“xcepads”,
“hdl_direct_lib”,
“standard” ;

use “design.wrk” ;

Note that both device architecture libraries must be defined in
either your master.lib or master.local file.

When accessing a library, Concept searches through the libraries
using a “last read, first out” protocol. For the sample global.cmd
file, the libraries are searched in the following order: standard,
hdl_direct_lib, xcepads, and finally xce5200.

The use command specifies the SCALD library map file to be
used for the design.

After the conversion process, the symbols that are common to
both the source (XC4000E, in this case) and target families should
maintain their relative location and pin position in the target
design schematic. This is due to the uniformity in size, shape and
naming of symbols in the Unified Libraries across all device
architectures or families. Pins on these symbols should also retain
their connectivity to the nets they were originally attached to in
the source design.

3. Next, you must manually replace symbols that are not common
to your source and target families with equivalent logic. For
example, if a GCLK was used earlier in an XC3000A design and is
then retargeted for use in an XC4000E device, the GCLK symbol
must be manually replaced with a BUFGP, BUFG, or BUFGS.

4. You must also manually replace components that are macros in
the source (or target) library, but primitives in the other. For
example, an AND5 is a primitive in the XC4000E family, but a
macro in the XC5200 library. If you are converting an XC4000E
design to the XC5200 family, you must manually replace all
instances of AND5s in the target design after you have completed
Cadence Interface/Tutorial Guide 7-3

Cadence Interface/Tutorial Guide
the initial library retargeting step described in Step 2. Use the
“replace” command in Concept to make your replacements.

Example:

select the AND5 symbol
replace and5

5. For an XC4000E/L/EX/XL/XV to XC5200 conversion, you must
also replace all XC4000 wide decoder macros (DECODExxx) with
XC5200 DECODExxx macros.

In the case of an XC4000 to XC5200 conversion, components
which must be manually replaced are listed in the following
table:

Merging Design Files from Other Sources
You can enter specific blocks of your design in some form other than
Concept schematics, such as HDL, or other third party format.
However, whatever form of entry you use for a design block, you
must convert into one of the following formats before you can incor-
porate it into your Concept schematic: NGO, V, XNF or EDIF. Incor-
porating a .V (Verilog) behavioral description into your Concept
schematic is supported by Cadence only.

To incorporate these netlist files into your schematic, you must create
a body for the netlist file and place it on your schematic as you would
any other component. For a description of how to generate a body for
a design block, refer to “Creating Bodies for Non-Schematic Design
Blocks” section of the “Design Entry” chapter.

Table 7-1 XC4000E/L/EX/XL/XV and XC5200 Components
Requiring Manual Replacement

and5 and5b1 and5b2 and5b3 and5b4 and5b5

nand5 nand5b1 nand5b2 nand5b3 nand5b4 nand5b5

or5 or5b1 or5b2 or5b3 or5b4 or5b5

nor5 nor5b1 nor5b2 nor5b3 nor5b4 nor5b5

ifd ild1 ofd ofdt cy4 fdpe

bufgs bufgp
7-4 Xilinx Development System

Design and Simulation Techniques
XC4000 Flip-flop Initialization
The following subsections describe IOB and CLB flip-flop initializa-
tion.

IOB Flip-flop Initialization
To set the initial value of XC4000E/L/EX/XV/XL IOB flip-flops at
power-up, follow these instructions:

Set the IOB flip-flops to power-up either High or Low on power-up
by attaching the appropriate INIT property (INIT=1 or INIT=0) to
each IOB flip-flop in your schematic. The default value of INIT is 0.
When you activate the global reset signal (GSR) during simulation,
the IOB flip-flops will initialize to this assigned value.

CLB Flip-flop Initialization
To set the initial value of XC4000E/L/EX/XV/XL CLB flip-flops at
power-up, follow these instructions:

To get a flip-flop which will initialize to 0 at power-up, select a flip-
flop macro or primitive with an asynchronous RESET input (FDCE,
for example, has an asynchronous reset input called “CLR”).

To get a flip-flop which will initialize to 1 at power-up, select a flip-
flop macro or primitive with an asynchronous SET input (FDPE, for
example, has an asynchronous preset pin called “PRE”).

XC9500 Flip-flop Initialization
The following subsections describe XC9500 flip-flop initialization.

IOB Flip-flop Initialization
XC9500 devices do not contain IOB flip-flops.

Macrocell Flip-flop Initialization
To set the initial value of XC9500 macrocell flip-flops at power-up in
your simulation, follow these instructions:
Cadence Interface/Tutorial Guide 7-5

Cadence Interface/Tutorial Guide
For Unified Library and post-NGDBuild functional simulation, you
must explicitly drive the macrocell flip-flops High or Low in your test
fixture file.

For timing simulation, set the macrocell flip-flops to power-up either
High or Low on power-up by attaching the appropriate INIT prop-
erty (“S” for “SET” and “R” for “RESET”) to each macrocell flip-flop
in your schematic. The default value of INIT is R (Reset). When you
activate the global preload signal (PRLD) during a timing simulation,
the macrocell flip-flops will initialize to the assigned value.

Setting Global Set/Reset and Tri-state Signals
(FPGAs)

The way you set the global set/reset, global reset and global tri-state
signals depends on what flow you are using (Cadence Concept HDL
Direct, or other), the part type you are using, and whether your
design contains a STARTUP component (XC4000E/L/EX/XL/XV
and XC5200 devices only). The various approaches are described in
the following subsections.

Setting Global Set/Reset
At the beginning of an FPGA design simulation, you must toggle the
global set/reset signal (GSR in XC4000E/L/EX/XL/XV designs), or
the GR global reset signal in XC5200 or XC3000A/L and XC3100A/L
designs; toggling the global set/reset emulates the power-on reset of
the FPGA. If this action is not performed, the flip-flops and latches in
your simulation may not function correctly.

The global set/reset net is present in the implemented design
whether or not you instantiate the STARTUP block in your design.
The function of the STARTUP is to give you the option to control the
global reset net from an external pin.

If you wish to select the global set/reset pulse width so that it reflects
the actual amount of time it takes for the chip to go through the reset
process when power is supplied to it (Tmrw), refer to The Program-
mable Logic Data Book for the device you are simulating for this infor-
mation.

The general procedure for specifying global set/reset or global reset
during a pre-NGDBuild Verilog Unified Library simulation involves
7-6 Xilinx Development System

Design and Simulation Techniques
defining the global reset signals with one of the following Verilog
macros: GSR_SIGNAL or GR_SIGNAL. This is necessary because
these global nets do not exist in the Concept Unified Libraries, and as
a result, also do not exist in a netlist generated directly from Concept
schematics which have only been processed by running
CONCEPT2XIL with the -sim_only option. In addition, you must also
declare the global set/reset signal either as a Verilog wire or reg. Your
choice of wire or reg depends on whether the design contains a
STARTUP component.

Note: In the Xilinx M1.4 release, the Verilog Unified Library is only
used in pre-NGDBuild simulation of Cadence Concept or Concept/
Synergy mixed mode designs immediately after running
CONCEPT2XIL with the -sim_only option. Simulation at all other
points of the flow utilizes the Verilog SIMPRIM Libraries.

For pre-NGDBuild Unified Library functional simulation, you must
set the value of the appropriate Verilog macro (GSR_SIGNAL or
GR_SIGNAL) to the name of the GSR or GR net, qualified by the
appropriate scope identifiers. (GSR_SIGNAL and GR_SIGNAL are
used in the Verilog Unified Libraries to emulate the global reset
signals.) The scope identifiers are made up of some combination of
the test module scope, and the design instance scope. The scope qual-
ifiers are required because the scope information is needed when the
GSR_SIGNAL and GR_SIGNAL macros are interpreted by the
Verilog Unified Library simulation models to emulate a global reset
signal.

The net name you specify, and whether you specify the net as a
Verilog reg or a wire, depends on whether or not you have instanti-
ated a STARTUP block in the design.

1. If no STARTUP block is present in the design, it is recommended
that you name the global (set/)reset net test.GSR or test.GR
(remember that Verilog is case-sensitive!), and the signal should
be declared as a Verilog reg data type.

2. If there is a STARTUP block in the design and the GSR pin is
connected to a net, the value of GSR_SIGNAL should be set to the
net connected to the GSR pin on the STARTUP symbol.

The signal you actually toggle at the beginning of the simulation
will be the port or signal in the design that is used to control
global set/reset. This is usually an external input port in the
Cadence Interface/Tutorial Guide 7-7

Cadence Interface/Tutorial Guide
Verilog netlist, but may also be a wire if global reset is controlled
by logic internal to your design.

3. When invoking Verilog-XL to run the simulation, it is recom-
mended that the testbench file be specified before the Verilog
netlist for the design in order that the simulation work properly.

Example, Unified Library simulation:

verilog design.stim design.v -f design.vf

Example, post-NGDBuild functional simulation:

verilog design.stim designf.v

4. It is recommended that the name of the main module in the test-
bench file be named “test” to be consistent with name of the test-
bench module that will be written out downstream in the design
flow by NGD2VER when you do post-NGDBuild, post-MAP, or
post-route simulation. If this naming consistency is maintained,
you should be able to use the same testbench file for simulation at
all stages of the design flow with minimal modification.

Note: For Unified Library functional simulation, you must always
define the appropriate Verilog macro (GSR_SIGNAL or GR_SIGNAL)
for the global set/reset signal. (This macro is not used in timing simu-
lation when there is a STARTUP block in the design.)

Note: The GSR signal in XC4000E/L/EX/XL/XV devices and the GR
signal in XC5200 devices is active High, whereas the GR signal
(XC3000A/L and XC3100A/L designs) signal is active Low.

Note: For post-NGDBuild and post-route timing simulation, the test-
bench template (.tv file) produced by running NGD2VER with the -tf
option already contains most of the code described previously (and
illustrated in the following examples) for defining and toggling GSR
or GR. However, in the case where you have a user signal controlling
the STARTUP block, you must manually edit the testbench template
file generated by NGD2VER to specify the user control signal
connected directly to the GSR or GR pin on the STARTUP block
symbol as GSR_SIGNAL (4K) or GR_SIGNAL (5K).

Designs with No STARTUP Block

When there is no STARTUP block in the design, you can use the same
testbench file with little or no modification at all stages of the design
flow if you follow these guidelines:
7-8 Xilinx Development System

Design and Simulation Techniques
Example 1: XC4000E/L/EX/XL/XV Unified Library Functional
Simulation (No STARTUP Block)

The following illustrates how you can drive the GSR signal in a
Verilog-XL testbench file at the beginning of a pre-NGDBuild Unified
Library functional simulation.

Note: The terms “testbench” and “test fixture” are used synony-
mously throughout this manual.

You should reference the global set/reset net as “GSR” in an
XC4000E/L/EX/XL/XV design when there is no STARTUP block in
the design, and the Verilog macro defining the global net must be
called “GSR_SIGNAL”, since this is how it is modeled in the Verilog
Unified Simulation Library:

• Within the testbench file, GSR should be declared as a Verilog
register within the “test” module:

module test;
reg GSR;

• Set a macro called GSR_SIGNAL to test.GSR (the name of the
global set/reset signal, qualified by the name of the testbench
module) using the `define compiler directive.

`define GSR_SIGNAL test.GSR;

GSR should be toggled High, then Low in an “initial” block:

module test;

reg GSR;
`define GSR_SIGNAL test.GSR;

initial
begin

GSR = 1; // reset the device
#100 GSR = 0;

In this example, the active High GSR signal in the XC4000E/L/
EX/XL/XV device is activated by driving it High. 100 ns later, it
is deactivated by driving it Low. (100 ns is an arbitrarily chosen
value.)

Alternatively, you may reference the macros instead of the “GSR”
signal name in the initial block:
Cadence Interface/Tutorial Guide 7-9

Cadence Interface/Tutorial Guide
initial
begin

‘GSR_SIGNAL = 1; // reset the device
#100 ‘GSR_SIGNAL = 0;

You may use the same test fixture for simulating at other stages of
the design flow when there is no STARTUP block in the design.

Example 2: XC5200 Unified Library Functional Simulation (No
STARTUP Block)

For pre-NGDBuild Unified Library functional simulation, the active
High GR net in XC5200 devices should be simulated in the same
manner as GSR for XC4000E/L/EX/XL/XV. Substituting GR for
GSR, and GR_SIGNAL for GSR_SIGNAL gives:

module test;

reg GR;
`define GR_SIGNAL test.GR;

initial
begin

 `GR_SIGNAL = 1; // reset the device
#100 `GR_SIGNAL = 0;

You may also use the same test fixture for simulating your design at
other stages of the design flow when there is no STARTUP block in
the design.

Example 3: XC3000A/L and XC3100A/L Unified Library
Functional Simulation (No STARTUP Block)

Asserting global reset in XC3000A/L and XC3100A/L designs is
almost identical to the procedure for asserting global reset in XC5200
designs, except that GR in XC3000A/L and XC3100A/L devices is
active Low. (Also note that the STARTUP block is not supported on
XC3000A/L and XC3100A/L devices):

module test;

reg GR;
`define GR_SIGNAL test.GR;
initial

begin
7-10 Xilinx Development System

Design and Simulation Techniques
`GR_SIGNAL = 0; // reset the device
#100 `GR_SIGNAL = 1;

Note: The Global Reset (GR) signal in the XC3000A/L architecture is
modelled differently in Unified Library functional simulation netlists
and SIMPRIM library based netlists generated by NGD2VER. In the
Verilog Unified Library, GR is modelled as a wire within a global
module, while in a SIMPRIM-based netlist, it is always modelled as
an external port. As a result, you cannot use the same testbench file to
do both Unified library simulation and SIMPRIM-based simulation.

Designs With STARTUP block (XC4000E/L/EX/XL/XV
and XC5200 Devices Only)

Asserting global set/reset when the STARTUP block is specified in
the design is similar to asserting global set/reset without a STARTUP
block in the design. There are two differences, however. The first
difference is that the ` define statement must now specify the name of
the net attached to the GSR pin (XC4000E/L/EX/XL/XV devices) or
GR pin (XC5200 devices) on the STARTUP block.

`define GSR_SIGNAL net_connected_to_GSR_pin

The other difference is that the signal you toggle is now either the
external input signal or internal signal that controls the
“net_connected_to_GSR_pin” (or “net_connected_to_GR_pin”) on the
STARTUP block. If the signal is a user-specified external input as
shown in the following figure, it will appear in your Verilog netlist as
an input port, and can be driven as follows:

initial
begin

GSR_user_control_signal = 1;
#100 GSR_user_control_signal = 0;
Cadence Interface/Tutorial Guide 7-11

Cadence Interface/Tutorial Guide
If the signal is an internal net, use the Verilog force command to toggle
it, being sure to specify the appropriate scope qualifier for the design
instance (usually “uut”):

initial
begin

force uut.GSR_user_control_signal = 1;
#100 force uut.GSR_user_control_signal = 0;

Example 1: XC4000E/L/EX/XL/XV

Unified Library Simulation (With STARTUP)

The following is an example of how to drive the global set/reset
signal in a Verilog-XL test fixture file at the beginning of a pre-
NGDBuild Unified Library functional simulation when there is a
STARTUP block in an XC4000E/L/EX/XL/XV design.

In the following illustration, a signal called “mygsr” is the
GSR_user_control_signal. In this case “mygsr” is an external user
signal that controls GSR. “mygsr” sources an IBUF, which in turn
sources a signal called “gsrin”. “gsrin” represents the
net_connected_to_GSR_pin — the pin that directly sources the GSR
pin of the STARTUP block:

• The design allows you to control global set/reset in the
device by driving the external input port, “mygsr”. In the
test fixture file, “mygsr” will appear as a Verilog reg within
the “test” module:

module test;
reg mygsr;

• In addition, for XC4000E/L/EX/XL/XV designs, a Verilog
macro called GSR_SIGNAL must be declared to make the
connection between the user logic and the global GSR net
7-12 Xilinx Development System

Design and Simulation Techniques
embedded in the Unified Library models. This is done by
using a `define directive to set GSR_SIGNAL to the
following:

test_module_name.design_instance_name.gsr_pin_signal

gsr_pin_signal corresponds to the name of the signal
connected to the GSR pin on the STARTUP block (in this case,
“gsrin”. The scope qualifier in this case also includes the
name of the design instance (“uut”) in anticipation that the
net will appear as an internal net of the design in the post-
NGDBuild, post-Map and post-route simulations further
down in the flow:

`define GSR_SIGNAL test.uut.gsrin ;

• The global set/reset control signal should be toggled High,
then Low in an “initial” block:

module test;
reg mygsr;

`define GSR_SIGNAL test.uut.gsrin;

initial
begin

mygsr = 1; // reset the device
#100 mygsr = 0;

Post-NGDBuild Functional, Post-Map Timing, and Post-
Route Timing Simulation (With STARTUP Block)

For post-NGDBuild functional simulation, post-Map timing
simulation, and post-route timing simulation, the procedure is
identical to Unified Library functional simulation, except that
you must omit the `define statement for GSR_SIGNAL as shown.
This must be done because the net connections will already exist
in the post-NGDBuild design. Leaving in the Verilog macro defi-
nition will cause a conflict with these connections. In the
following example the macro definition has been commented out
to avoid this conflict.

module test;
reg mygsr;

// `define GSR_SIGNAL test.uut.gsrin;
Cadence Interface/Tutorial Guide 7-13

Cadence Interface/Tutorial Guide
initial
begin

mygsr = 1; // reset the device
#100 mygsr = 0;

Example 2: XC5200

Unified Library Functional Simulation Designs with
STARTUP Block

For an XC5200 design containing a STARTUP block (similar to
the previous Example 1 for XC4000 designs), the net controlling
GR should be stimulated in the same manner as for the
XC4000E/L/EX/XL/XV.

Substitute GR_SIGNAL for GSR_SIGNAL, mygr for mygsr, and
gr_in for gsr_in in Example 1 to obtain the test fixture fragment
for stimulating GR in a Verilog Unified Library simulation.

module test;
reg mygr;

`define GR_SIGNAL test.uut.gr_in;

initial
begin

mygr = 1; // reset the device
#100 mygr = 0;

Post-NGDBuild Functional, Post-Map Timing, and Post-
Route Timing Simulation (With STARTUP Block)

For post-NGDBuild functional simulation, post-Map timing
simulation, and post-route timing simulation, the procedure is
identical to Unified Library functional simulation, except that
you must omit the `define statement for GR_SIGNAL. This must
be done because the net connections will already exist in the post-
7-14 Xilinx Development System

Design and Simulation Techniques
NGDBuild design, and leaving in the macro definition would
cause a conflict with these connections. In the following example
the Verilog macro definition has been commented out to avoid
this conflict.

module test;
reg mygr;

// `define GR_SIGNAL test.uut.gr_in;

initial
begin

mygr = 1; // reset the device
#100 mygr = 0;

Example 3: XC3000A/L and XC3100A/L designs

STARTUP is not supported in XC3000A/L and XC3100A/L designs.
Follow the procedure for XC3000A/L and XC3100A/L designs
without STARTUP blocks.

Setting Global Tri-state (XC4000 and XC5200 Outputs
Only)

XC4000E/L/EX/XL/XV devices also have a global control signal
(GTS) that tri-states all output pins. This capability allows you to
isolate the actual XC4000E/L/EX/XL/XV part during board level
testing. You can also tri-state the FPGA device outputs during board
level simulation to assist in simulation debug. In most cases,
however, GTS is usually deactivated so that the outputs are active.

Although the STARTUP component also gives you the option of
controlling the global tri-state net from an external pin, more often
than not it is only used for controlling global reset. When this is the
case, the GTS pin may be left unconnected at the design entry phase.
In this case it will float to its inactive state level. The global tri-state
net GTS is present in an implemented design whether or not a
STARTUP block has been instantiated. If desired, GTS can be explic-
itly deactivated by driving it Low in your test fixture file, or
connecting the GTS pin to GND in your input design.

The general procedure for specifying GTS is similar to that used for
specifying the global set/reset signals GSR and GR: define the global
tri-state signal with the Verilog macro, GTS_SIGNAL. This is neces-
sary because this global net is not modelled in a netlist generated
Cadence Interface/Tutorial Guide 7-15

Cadence Interface/Tutorial Guide
directly from Concept schematics which have only been processed by
running CONCEPT2XIL with the -sim_only option. In addition, you
must also declare the global tri-state signal either as a Verilog wire or
reg. Your choice of wire or reg depends on whether the design contains
a STARTUP component.

The specific net name you specify, and whether you specify the net as
a Verilog reg or a wire, depends on whether or not you have instanti-
ated a STARTUP block in the design, and whether you have
connected a signal to the STARTUP GTS pin.

1. If no STARTUP block is present in the design, it is recommended
that you name the global tri-state net test.GTS (remember that
Verilog is case-sensitive!), and declare the signal as a Verilog reg
data type.

2. If there is a STARTUP block in the design and the GTS pin is
connected to a net, the value of GTS_SIGNAL should be set to the
name of the net connected to the GTS pin on the STARTUP
symbol. The signal you actually toggle at the beginning of the
simulation will be the port or signal in the design that is used to
control global tri-state. This is usually an external input port in
the Verilog netlist, but may alternatively be a wire if global tri-
state is controlled by internal logic in your design.

3. It is recommended that the name of the main module in the test-
bench file be named “test” to be consistent with the name of the
test fixture module that will be written out downstream in the
design flow by NGD2VER when you do post-NGDBuild, post-
Map (optional) and post-route simulation. If this naming consis-
tency is maintained, you should be able to use the same test
fixture file for simulation at all stages of the design flow with
minimal modification.

Note: For Unified Library functional simulation, you must always
define the appropriate Verilog macro (GTS_SIGNAL).

Note: The GTS signal in XC4000E/L/EX/XL/XV devices and
XC5200 devices is active High. This macro is not used in timing simu-
lation when there is a STARTUP block in the design and the GTS pin
is connected up.

Note: For post-NGDBuild and post-route timing simulation, the test-
bench template (.tv file) produced by running NGD2VER with the -tf
option already contains most of the code described above (and illus-
7-16 Xilinx Development System

Design and Simulation Techniques
trated below) for defining and driving GTS. However, in the case
where you have a user signal controlling the STARTUP block, you
must manually edit the test fixture template file generated by
NGD2VER to specify the user control signal for GTS.

Designs with No STARTUP Block

When there is no STARTUP block in the design, you can use the same
test fixture file with little or no modification if you follow these guide-
lines in the following examples:

Example: XC4000E/L/EX/XL/XV and XC5200 Unified Library
Functional Simulation (No STARTUP Block)

The following is an example of how you can drive the GTS signal in a
Verilog-XL test fixture file at the beginning of a pre-NGDBuild
Unified Library functional simulation. The global tri-state net is
called “GTS” in an XC4000E/L/EX/XL/XV or XC5200 design when
there is no STARTUP block in the design. The Verilog macro defining
the global net must be called “GTS_SIGNAL”, since this is the name
of the predefined macro used to model the global tri-state signal in
the M1 Verilog Unified Library simulation models:

• Within the test fixture file, GTS should be declared as a Verilog
register within the “test” module:

module test;
reg GTS;

• Set a macro called GTS_SIGNAL to test.GTS (the name of the
global tri-state signal, qualified by the name of the test fixture
module), using the `define compiler directive.

`define GTS_SIGNAL test.GTS;

GTS should be driven Low in an “initial” block:

module test;

reg GTS;
`define GTS_SIGNAL test.GTS;

initial
begin

GTS = 0;
Cadence Interface/Tutorial Guide 7-17

Cadence Interface/Tutorial Guide
In this example, the active High GTS signal is deactivated by
driving it Low to activate the outputs of the design.

Alternatively, you can reference the GTS_SIGNAL macro instead:

initial
begin

`GTS_SIGNAL = 0;

Designs With STARTUP block (XC4000E/L/EX/XL/XV
and XC5200 Devices Only)

Asserting global tri-state when the STARTUP block is specified in the
design is similar to asserting global tri-state without a STARTUP block
in the design. There are two differences, however. The first difference
is that if the GTS pin on the STARTUP block is connected, the `define
statement must now set GTS_SIGNAL to the name of the net attached
to the GTS pin on the STARTUP block.

`define GTS_SIGNAL net_connected_to_GTS_pin

The other difference when the GTS pin on the STARTUP block is
connected is that the signal you drive is now either the external input
port or internal signal that controls the “net_connected_to_GTS_pin”
on the STARTUP block. If it is an external input, it will appear in your
Verilog netlist as an input port. To tri-state your outputs, drive this
signal High; to activate your outputs, drive it Low:

initial
begin

GTS_user_control_signal = 1;
#100 GTS_user_control_signal = 0;

Example 1: XC4000E/L/EX/XL/XV and XC5200

Unified Library Functional Simulation (With STARTUP, GTS
Pin Connected)

In the following figure, the design contains a STARTUP block,
and the GTS pin on STARTUP is connected to an external input
called mygts:
7-18 Xilinx Development System

Design and Simulation Techniques
The external input, “mygts”, is declared as a Verilog register and
a ` define directive setting GTS_SIGNAL to the name of the net
connected to the GTS pin is required to connect the user logic to
the global GTS model in the Unified Library simulation models
for output buffers (OBUF, OBUFT, etc.). Your test fixture should
look something like this:

module test;
reg mygts;

`define GTS_SIGNAL test.uut.gts_in;
.
.
.

initial
begin

mygts = 1; // if you wish to tri-state the
// device;

#100 mygts = 0; // deactivate GTS

Post-NGDBuild Simulation of GTS (With STARTUP, GTS pin
connected)

For post-route timing simulation, the procedure is identical,
except that you must omit the `define statement for
GTS_SIGNAL because it will cause contention with the GTS net
driver.

module test;
reg mygtsr;

// `define GTS_SIGNAL test.uut.gtsin

initial
begin

mygts = 1; // if you wish to tri-state the
Cadence Interface/Tutorial Guide 7-19

Cadence Interface/Tutorial Guide
// device;
#100 mygts = 0; // deactivate GTS

Example 2: XC4000E/L/EX/XL/XV and XC5200

Unified Library Simulation (With STARTUP, GTS Pin NOT
Connected)

For Unified Library functional simulation, define a wire called
GTS, and set the GTS_SIGNAL macro to test.GTS. Toggle
GTS_SIGNAL as shown:

module test;
wire GTS;

 `define GTS_SIGNAL test.GTS

initial
begin

force `GTS_SIGNAL = 1; // if you wish to
// tri-state the
// device;

#100 force `GTS_SIGNAL = 0; // deactivate GTS

Post-NGDBuild Simulation of GTS (With STARTUP, GTS Pin
Unconnected)

For post-NGDBuild functional simulation, the actual net exists
and must be further qualified by the design instance scope,
“uut”:

module test;
// wire GTS;

 // `define GTS_SIGNAL test.GTS

`define GTS_SIGNAL test.uut.GTS

initial
begin

force ‘GTS_SIGNAL = 1; // if you wish to
// tri-state the
// device;

#100 force `GTS_SIGNAL = 0; // deactivate
GTS

For post-route timing simulation, you can use the same test
bench, unaltered.
7-20 Xilinx Development System

Design and Simulation Techniques
Setting Global PRLD (CPLD Designs)
Before you simulate a CPLD design, you must force the global reset,
or “PreLoad” signal (PRLD) signal. Forcing the global preload signal
emulates the power-on initialization of the CPLD. If you do not force
global preload, the flip-flops and latches will have undefined initial
states. The PRLD signal is active High, and should be forced High,
then Low to properly initialize the flip-flops in your design at the
beginning of a simulation.

If you wish to select the PRLD pulse width so that it reflects the actual
amount of time it takes for the chip to go through the reset process
when power is supplied to it (Twmr for XC9500 devices), refer to The
Programmable Logic Data Book for the device you are simulating for
this information.

Unified Library Functional Simulation
To simulate PRLD in Verilog-XL using the M1 Unified Library simu-
lation models, define a reg called “PRLD” and set a Verilog macro
called “PRLD_SIGNAL to “test.PRLD” as follows:

module test;
reg PRLD;
` define PRLD_SIGNAL test.PRLD;

Toggle this newly defined signal in an initial block:

initial
begin

PRLD = 1; // reset the device
#100 PRLD = 0;

Alternatively, you may reference the PRLD_SIGNAL macro in your
initial block:

initial
begin

` PRLD_SIGNAL = 1; // reset the device
#100 ` PRLD_SIGNAL = 0;
Cadence Interface/Tutorial Guide 7-21

Cadence Interface/Tutorial Guide
Post-NGDBuild and Post-Implementation Timing
Simulation

To simulate the global PRLD signal in a Verilog post-NGDBuild
or post-implementation timing simulation, you can re-use the
same test fixture as the one you create for Unified Library func-
tional simulation.

Oscillator Functions (OSC, OSC4, OSC5)
The OSC (X3000A/L), OSC4 (XC4000E/L/EX/XL/XV) and OSC5
(XC5200) oscillator components do not have Verilog simulation
models associated with them. In the case of the OSC, the clock signal
frequency is derived from an external crystal-controlled oscillator. On
the other hand, both the OSC4 and OSC5 are internal oscillators
which are useful in applications where timing is not critical.

To simulate these oscillators, you must reference the net attached to
the output of the oscillator component. Toggle this net at the desired
frequency in your Verilog test fixture using a force command within
an always block.

Example: Given an oscillator output net called “osclk” attached to an
oscillator symbol (OSC, OSC4, or OSC5), and assuming a timescale
unit of 1ns, use the following “always” block to emulate an oscillator
with a 10 Mhz clock frequency:

always #100 force osclk = ~osclk;
7-22 Xilinx Development System

Chapter 8

Manual Translation

You can access the programs required to simulate and implement
your design in command line mode. This chapter summarizes the
design implementation, functional simulation, and timing simulation
procedures from the UNIX command line for different types of
designs. Program syntax and options are discussed in the “Program
Options” appendix.

This chapter contains the following sections:

• “Functional Simulation” section

• “Design Implementation” section

• “Timing Simulation” section

Functional Simulation
This section briefly describes the steps for running Unified Library
Based and SIMPRIM-based functional simulation.

Unified Library Based Functional Simulation
Unified Library-based functional simulation can only be performed
on pure schematic designs without LogiBLOX elements.

Schematic Designs Without LogiBLOX Elements

1. Enable HDL Direct in Concept.

2. Save schematic in Concept.

3. Run concept2xil -sim_only. The syntax of the command is:

concept2xil -family technology -sim_only design_name
Cadence Interface/Tutorial Guide — 0401494 8-1

Cadence Interface/Tutorial Guide
This command creates a .v and .vf file in the xilinx.run directory
unless specified otherwise using the -rundir option

4. Run the functional simulation using Verilog-XL.

verilog +delay_mode_unit full_path_to_design_name.v \
-f full_path_to_design_name.vf design_name.stim

SIMPRIM Library Based Functional Simulation
SIMPRIM-based functional simulation requires an NGD file as an
input. You can use NGDBuild to generate an NGD file from an EDIF,
XNF, or NGO file.

1. Submit the design to NGDBuild.

ngdbuild -p part_type design_name

The part_type with the -p option does not need to be specified if
there is a PART specified in the schematic in the CONFIG block.

2. Use NGD2VER to create a structural Verilog netlist and a test-
bench stimulus template. Specify the output netlist name as
design_namef to avoid overwriting any Unified Library simula-
tion netlists.

ngd2ver -tf -ul design_name.ngd design_namef.v

3. Make a copy of the testbench stimulus template and name it
designf.stim. Edit the copy of the testbench file to create a user-
specified testbench file.

4. Run the Verilog-XL command.

verilog +delay_mode_unit full_path_to_designf.stim \
full_path_to_designf.v

(The “\”at the end of a line indicates that the line following the
current one must be typed on the same command line.)

Mixed Mode Designs

Functional simulation of mixed-mode schematic designs containing
SXNF, XNF, or EDIF subblocks can be performed using the Xilinx
architecture-independent Verilog SIMPRIM simulation libraries.
More generally, SIMPRIM library functional simulation can be
8-2 Xilinx Development System

Manual Translation
performed on any type of design regardless of the design entry
method. The procedure is as follows:

1. Generate an XNF or EDF netlist for each non-schematic block
using the appropriate translation tool. For example, a Synopsys
block must be written out in SXNF or SEDIF format.

2. Run NGDBuild to merge the schematics with the non-schematic
blocks.

ngdbuild -p part_type design_namef

3. Proceed to Step 2 of the “SIMPRIM Library Based Functional
Simulation” section.

Design Implementation
This section explains how to implement schematic designs for FPGAs
and CPLDs.

Schematic Designs (FPGA)
1. Convert the Concept design from Cadence to EDIF with

CONCEPT2XIL.

Here is an example:

concept2xil [-cdslib lib_map_filename] -family
technology design_name

The EDIF (.EDF) file is written to a xilinx.run directory by
default.

Refer to the “Converting the Concept Design to an EDIF File”
section of the “Design Implementation” chapter for details.

2. Navigate to the xilinx.run directory and submit the design to
NGDBuild. NGDBuild reads a file in EDIF or XNF format,
reduces all the components in the design to Xilinx primitives,
runs a logical design rule check on the design, and writes an
NGD file as output.

ngdbuild -p technology design_name

For example:

ngdbuild -p xc4000ex test
Cadence Interface/Tutorial Guide 8-3

Cadence Interface/Tutorial Guide
or

ngdbuild -p 4028exhq240-3

The -p part type does not need to be specified if it has already
been specified in the schematic.

3. Map the logic to the components in the FPGA by typing the
following syntax:

map -p partname design_name.ngd

For example:

map -p 4028exhq240-3 test.ngd

The -p part type does not need to be specified if it has already
been specified in the schematic or as an option to NGDBuild.

4. Place and route the design:

par test.ncd testt.ncd

The first file is created by the MAP utility, and PAR creates the
other one.

5. Proceed to the “Post-Implementation Timing Simulation”
section.

6. Run BitGen. The BitGen program produces a bitstream for Xilinx
FPGA device configuration. After the FPGA design has been
completely routed, it is necessary to configure the device so that
it can execute the desired function. This is done using the
bitstream generated by BitGen, Xilinx’s bitstream generation
program. BitGen takes a fully routed NCD (Circuit Description)
file as its input and produces a configuration bitstream—a binary
file with a .bit extension.

Schematic Designs (CPLD)
When using CPLDs, the procedure for implementing pure schematic
designs, designs with XNF, EDIF, or NGO elements, and mixed-mode
schematic-at-top designs is the same. Follow these steps.

1. Convert the Concept design from Cadence to EDIF with
CONCEPT2XIL:

Here is an example:
8-4 Xilinx Development System

Manual Translation
concept2xil [-rundir run_directory] -family technology
design_name

Refer to the “Converting the Concept Design to an EDIF File”
section of the “Design Implementation” chapter for details.

2. Submit the design to the CPLD fitter.

cpld -p partname design_name

3. Proceed to the “Post-Implementation Timing Simulation”
section.

HDL Top Level Designs
1. Synthesize the HDL modules in your design treating any non-

HDL subblocks as black boxes and write out an EDIF or XNF file
from the synthesis tool.

2. Any instantiated subblocks should be processed down to EDIF,
XNF, or NGD format. Merge all the EDIF, XNF, and NGO files
for the submodules with the top level XNF or EDIF file by
running NGDBuild.

ngdbuild -p part_number design_name

For example:

ngdbuild -p XC4000E test (where test is the root name for
the EDIF or XNF file)

or

ngdbuild -p 4028exhq240-3 test

3. Proceed to the “Post-Implementation Timing Simulation”
section.

Pure HDL Designs
1. Synthesize the HDL file and create an EDIF or XNF file for the

synthesized design.

2. Convert the EDIF or XNF file to an NGD file by using ngdbuild:

ngdbuild -p technology design_name

or

ngdbuild -p part_number design_name
Cadence Interface/Tutorial Guide 8-5

Cadence Interface/Tutorial Guide
For example:

ngdbuild -p XC4000E test (where test is the root name for
the EDIF or XNF file)

or

ngdbuild -p 4028exhq240-3

3. Proceed to the “Post-Implementation Timing Simulation”
section.

Timing Simulation
This section explains how to conduct post-map and post-implemen-
tation timing simulations.

Post-Map Timing Simulation (FPGAs Only)
Before performing a post-map timing simulation, you must have a
mapped and back-annotated netlist for your design. Then perform
the following steps.

1. Run NGDAnnno to obtain a back-annotated netlist.

ngdanno design design_m [design.ngm]

2. Use NGD2VER to create a structural Verilog netlist and a test-
bench stimulus template.

ngd2ver [-tf] -ul design_m. [nga]

The -tf option is only needed if you did not generate a testbench
template during functional simulation.

3. Make a copy of the testbench stimulus template and edit it to
create a user-specified testbench file.

4. Invoke Verilog-XL with the following command.

verilog full_path_to_designt.stim full_path_to_designt.v

Post-Implementation Timing Simulation
For FPGAs, you must have mapped, routed and back-annotated your
design. For CPLDs, you must have run the design through the CPLD
fitter.
8-6 Xilinx Development System

Manual Translation
1. For FPGAs, use NGDAnno to back-annotate your design.
Assuming the routed NCD file is called “designt”, enter the
following command:

ngdanno designt design.ngm

If your design is for a CPLD, use the NGA file output from the
CPLD Fitter as an input to the NGD2VER command in the next
step.

2. Use NGD2VER to create a structural Verilog netlist and a test-
bench stimulus template.

ngd2ver -tf -ul [-pf] design_name.nga design_namet.v

The -pf option is only required if you plan to integrate the design
into a board-level schematic.

The output is renamed to design_namet to avoid overwriting any
simulation netlists generated for Unified Library functional
simulation. Refer to the “Running NGD2VER” section of the
“Timing Simulation” chapter.

3. Make a copy of the testbench template, naming it designt.stim and
add your test vectors to the copy. The copy will be your testbench
file.

4. Submit the design to the Cadence Verilog-XL simulator to
conduct a timing simulation.

verilog full_path_to_designt.stim full_path_to_designt.v
Cadence Interface/Tutorial Guide 8-7

Cadence Interface/Tutorial Guide
8-8 Xilinx Development System

Chapter 9

Schematic Design Tutorial

This chapter contains the following sections:

• “Introduction” section

• “Required Background Knowledge” section

• “Design Flow” section

• “Software Installation” section

• “Copying the Tutorial Files” section

• “Setting Up for Concept” section

• “Using HDL Direct” section

• “Starting Concept” section

• “Completing the Calc Design” section

• “Controlling FPGA/CPLD Layout from the Schematic” section

• “Modifying the Design for non-XC4000E/EX Devices” section

• “Using LogiBLOX” section

• “Other Special Components” section

• “Using a Constraints File” section

• “Performing Functional Simulation” section

• “Using CONCEPT2XIL for Implementation” section

• “Using the Xilinx Design Manager” section

• “Performing Timing Simulation” section

• “Examining Routed Designs with EPIC” section

• “Verifying the Design Using a Demonstration Board” section
Cadence Interface/Tutorial Guide — 0401494 9-1

Cadence Interface/Tutorial Guide
• “Making Incremental Design Changes” section

• “Command Summaries” section

• “Further Reading” section

Introduction
This chapter guides you through a typical Field Programmable Gate
Array (FPGA) and Complex Programmable Logic Device (CPLD)
design procedure from schematic entry to completion of a func-
tioning device. It uses a design called Calc, a 4-bit processor with a
stack. In the first part of the tutorial, you use Concept, the Cadence
design entry tool, to create the schematics and symbols for the Calc
design. Next you use Verilog-XL, the Cadence Verilog HDL simu-
lator, to perform a functional simulation on the design. In the third
step, you use the Xilinx Design Manager to implement the design.
Finally, you verify the design’s timing by again using Verilog-XL. The
simple design example used in this tutorial demonstrates many
system features that you can apply to more complex FPGA and
CPLD designs as well.

Note: Although this tutorial describes creating and processing FPGA
designs, you can apply most of the steps to CPLD designs.

This tutorial includes instructions on the following:

• Installing the tutorial files

• Targeting the tutorial design (Calc) to a XC4000E or an XC9500
device

• Using Concept

• Completing the ALU1 block in the Calc design

• Adding the STARTUP block to tie signals to the global reset

• Adding device information in the Calc design

• Exploring Xilinx library elements

• Exploring the XC4000E oscillator

• Controlling device layout from the schematic

• Modifying the Calc design for a non-XC4000E/EX device

• Converting the design to an EDIF file using CONCEPT2XIL
9-2 Xilinx Development System

Schematic Design Tutorial
• Performing functional simulation on the Calc design in Verilog-
XL

• Implementing the design using Design Manager

• Configuring the Xilinx Design Manager/Flow Engine

• Performing timing simulation on the routed Calc design in
Verilog-XL

• Examining routed designs with the Editor for Programmable ICs
(EPIC)

• Verifying the Calc design on a demonstration board

• Making incremental design changes

• Command summaries

Required Background Knowledge
This tutorial assumes that you have a basic understanding of the
following:

• UNIX operating system

• Motif Windows. Cadence applications conform to the Motif
window style.

Design Flow
See the “Introduction” chapter for the design flow when using the
Cadence interface for describing the general steps for creating a
design using the Cadence interface.

An incremental design methodology is described in this tutorial. In
incremental design, the design is processed completely through the
flow at least once; a small change is then made to the design; and the
design is processed again. Place and route information from the
previous design processing cycle is used to constrain subsequent
cycles of the same design. When this method is used, timing informa-
tion in a design remains relatively stable through many processing
cycles. Also, place and route time is usually reduced since much of
the processing has already been done in previous cycles.

The tutorial design can be targeted for an XC4000E or XC9500 device.
You can use a Xilinx demonstration board to test the functionality of
Cadence Interface/Tutorial Guide 9-3

Cadence Interface/Tutorial Guide
your design. Make sure your demonstration board and software
support your selected device. To determine compatibility, refer to the
release notes that came with your software package.

In this tutorial the following conventions are used to refer to the
various device families:

• XC3000 family: includes XC3000A, XC3000L, and XC3100A,
XC3100L devices

• XC4000 family: includes XC4000E, XC4000EX, XC4000L,
XC4000XL, and XC4000XV devices

• XC5200 family: includes XC5200

• XC9500 family: includes XC9500

Software Installation

Required Software
The following versions of software are required to perform this tuto-
rial:

• Cadence 9604 or later, including Concept, Verilog-XL, as well as
the program needed to write EDIF netlists (concept2xil) from
Cadence.

• Xilinx/Cadence Interface Version M1

• Xilinx Development System Version M1

Before Beginning the Tutorial
Before beginning the tutorial, set up your workstation to use Cadence
and Xilinx Development System software as follows:

1. Verify that your system is properly configured. Consult the
release notes that came with your software package for more
information.

2. Install the following sets of software:

• Xilinx Development System Version M1

• Xilinx/Cadence Interface Version M1
9-4 Xilinx Development System

Schematic Design Tutorial
• Cadence 9604 or later, including Concept, Verilog-XL, as well
as the program needed to write EDIF netlists (concept2xil).
CONCEPT2XIL requires that you have a valid Concept
license only.

3. Verify the installation, using the “Setting Up Your Environment”
section of the “Getting Started” chapter as a guide.

Standard Directory Structure

When a schematic is saved in Concept, a directory is created in the
project directory with the same name as the schematic. This directory
contains body files, logic files, and HDL Direct generated Verilog text
files. HDL Direct will create a structural Verilog netlist of the sche-
matic sheet, which the Xilinx toolset requires for translation.

Note: In this tutorial, file names and directory names are in lower
case and the design example is referred to as Calc.

Tutorial Directory and Files

You will complete the Calc design in this tutorial. During the tutorial
installation, the $XILINX/cadence/tutorial directory is created;
design directories are created; and the tutorial files needed to
complete the design are copied to the calc_sch directory. Some of the
files you need to complete the tutorial design are not copied, because
you will create these files in the tutorial. However, solutions directo-
ries with all input and output files are provided. They are located in
the $XILINX/cadence/tutorial directory and are listed in the
following table:

The solution directories contain the design files for the completed
tutorial, including schematics and the bitstream file. To conserve disk
space, some intermediate files are not provided, except in the
calc_4ke directory, which is complete. Different intermediate files are

Table 9-1 Solutions Directories

Directory Description

calc_sch Schematic (Concept) tutorial directory

calc_4ke Schematic solution directory for XC4003E-PC84

calc_9k Schematic solution directory for XC95xxx-PC84

calc_blx Schematic solution directory using LogiBLOX
Cadence Interface/Tutorial Guide 9-5

Cadence Interface/Tutorial Guide
created for different device families. Do not overwrite any files in the
solutions directories.

The calc_sch directory contains the incomplete copy of the tutorial
design. The installation program copies a few intermediate files to the
calc_sch tutorial directory, and you will create the remaining files
when you go through the tutorial. As described in a later step, you
will copy the calc_sch directory to another area and will work
through the tutorial in this new area. The following table lists and
describes the directories and files in the calc_4ke solution directory.

Table 9-2 Directories and Files in calc_4ke

Directory or
File Name

Description

calc Top-level design directory

control Design directory for control module

statmach Design directory for state controller module

alu1 Design directory for ALU1 module

alu_blox LogiBLOX version of ALU1 design component

muxblk2 Design component for arithmetic function in ALU1

andblk2 Design component for arithmetic function in ALU1

orblk2 Design component for arithmetic function in ALU1

xorblk2 Design component for arithmetic function in ALU1

muxblk5 Design component for multiplexer arithmetic
outputs in ALU1

muxlbk2a Design component for multiplexer operator func-
tion in control

stack Design component for stack

seg7dec Design component for 7-segment decoder

debounce Design component for debounce circuit

osc_3k Design component interface to RC circuit on
demonstration boards; generates clock

xilinx.run Default run directory for CONCEPT2XIL

calcf.stim Test fixture for use in Verilog-XL simulation

calc.edf EDIF netlist files created by CONCEPT2XIL
9-6 Xilinx Development System

Schematic Design Tutorial
Note: The terms “testbench” and “test fixture” are used synony-
mously throughout this manual.

Copying the Tutorial Files
Perform the following steps to make a working copy of the tutorial
files:

1. At the UNIX prompt, create a local directory that will serve as the
location of the working copy of the tutorial files.

2. Copy the files from $XILINX/cadence/tutorial/calc_sch to your
local directory, as well as the subdirectories. For example, you
might enter:

cp -r $XILINX/cadence/tutorial/calc_sch local_tutorial_directory

Setting Up for Concept
Concept requires several files to be present in the design directory.
The $XILINX/cadence/tutorial/calc_sch directory will contain these
files, but you must modify some of them for your environment.

• global.cmd

concept2xil
.log

CONCEPT2XIL log file

calc.ngo Native Generic Object created by EDIF2NGD

calc_4ke.ucf User Constraints File

calc.ngd Native Generic Design created by NGDBuild

calc.mrp Mapping report created by MAP

calc.pcf Physical Constraints File created by MAP

calc.ncd Native Circuit Description created by MAP

calc_r.ncd Routed NCD file created by PAR

calc_r.twr Timing report created by Trace (TRCE)

time_sim.v Structural Verilog netlist of Calc for simulation

time_sim.sdf Standard Delay Format file for timing simulation

Table 9-2 Directories and Files in calc_4ke

Directory or
File Name

Description
Cadence Interface/Tutorial Guide 9-7

Cadence Interface/Tutorial Guide
You will need a global.cmd that references the proper libraries.
Here is an example global.cmd:

master_library "./master.local" ;
library "xce4000e" ,

"xcepads",
"hdl_direct_lib",
“standard” ;

use "my_design.wrk" ;
root_drawing "my_design" ;

• The actual path to each library is defined in the master.local
file. The master_library line, (the first line in the global.cmd
file), points to this local library file, which is located in the
design directory.

• Also note that one of the entries in the “library” listing
should point to the library supporting the Xilinx architecture
you are using. In the example above, this corresponds to the
xce4000e library, which supports the Xilinx XC4000E/L archi-
tectures.

• Note the presence of the “hdl_direct_lib” library; SLICE,
INPORT, OUTPORT, and IOPORT bodies required for HDL
Direct compliance are provided here. SLICEs should be used
in place of taps and ctaps in the “standard” library for
tapping bits off a bus, and INPORT, OUTPORT, and IOPORT
bodies are used on interface signals in a logic drawing that
connects to a higher level symbol body.

• The “xcepads” library contains the Xilinx pad symbols.

• The “use” line points to a file (typically with a .wrk exten-
sion) that Concept can use to store information about your
design.

• master.local

This file contains the actual UNIX paths to the libraries refer-
enced in global.cmd. It does not need to contain the path to
libraries that are local. The following is an example master.local
file for a 4000E design:

file_type = master_library;
"xce4000e" '/xlx/cadence/data/xce4000e/xce4000e.lib';
"xcepads" '/xlx/cadence/data/xcepads/xcepads.lib';
end.
9-8 Xilinx Development System

Schematic Design Tutorial
Other Cadence supplied Concept libraries (such as the HDL
Direct library) do not need to be referenced here, assuming there
is an entry in the $CDS_INST_DIR/lib/master.lib file pointing to
those libraries. Do not use variables (such as $XILINX) in this file;
absolute path names are required.

For the Calc design, you must modify master.local to point to
location_of_Xilinx_software/cadence/data/xce4000e/xce4000e.lib.

• design.wrk

The actual filename for this file may vary, but the extension is
always ‘.wrk’. This file contains the correlation between the
names of the various schematics and the UNIX directory in
which they are stored. This file is automatically created by
Concept if it is referenced in a “use” line in the global.cmd. No
alterations are necessary.

• cds.lib

This file is required by CONCEPT2XIL, and it must point to the
location that contains VAN-compiled (Verilog Analyzer-
Compiled) library files for the compiler. As an example, here is a
sample cds.lib file for a 4000E design:

define xce4000e_syn /xlx/cadence/data/xce4000e_syn

The format for entries in this file is:

define target_tech_syn path_to_XILINX/cadence/data/
target_tech_syn

where target_tech is xce3000, xce4000e, xce4000x, xce5200, or
xce9000.

Using HDL Direct
The M1 release of Xilinx tools does not support SCALD methodology
when entering designs. One of the implications of this is that the
HDL Direct library component counterparts must be used in place of
any “standard” library components whenever one exists. Further-
more, HDL Direct must be enabled whenever a schematic sheet is
saved. It is best to put the following commands in your
startup.concept file to activate HDL Direct every time Concept is
invoked:
Cadence Interface/Tutorial Guide 9-9

Cadence Interface/Tutorial Guide
set hdl_direct on
set hdl_checks on
set check_signames on
set check_net_names_hdl_ok on
set check_port_names_hdl_ok on
set check_symbol_names_hdl_ok on
set capslock_off
runopl installation_path_to_cadence/tools/fet/concept/
hdl_direct/bin/autosym

When processing designs entered using SCALD methodology, refer
to Appendix C of the Concept User Guide (from Cadence) for guide-
lines on converting these designs for HDL Direct compliance.

Also note that in this release, the SIZE property is not supported. Iter-
ated instances should be used instead (which essentially consists of
adding a bus index to the PATH attribute of the symbol body
instance). Refer to the Cadence HDL Direct User Guide for more infor-
mation on iterated instances.

Starting Concept
To open the Calc design in Concept, simply type

concept &

on the UNIX command line, in the design directory. Resize the
Concept window to cover the entire screen.
9-10 Xilinx Development System

Schematic Design Tutorial
Figure 9-1 Top-Level Schematic for Calc

Using the Mouse in Concept

Left Mouse Button

Use the left mouse button to operate on individual items, and to start
and terminate wires at the nearest grid intersection. For instance, if
you wanted to terminate a wire at the nearest grid point in the sche-
matic, then you would use the left mouse button.

Middle Mouse Button

Use the middle mouse button to operate on groups, and to modify
the action of the Wire and Add commands. For example, pressing the
middle mouse button while the Wire command is active will cause
the wire to be routed directly, instead of orthogonally. In the case of
the Add command, the middle mouse button causes the object to be
added to rotate.

Using the middle mouse button when a group of objects has been
selected causes the operation to be performed on the entire group, not
just the nearest individual object. For example, if Select is used to
highlight several objects, and Delete is then selected, the middle
mouse button will delete the entire highlighted group.
Cadence Interface/Tutorial Guide 9-11

Cadence Interface/Tutorial Guide
Right Mouse Button

Use this button to attach wires to the nearest pin or wire (as opposed
to the left mouse button, which will attach to the nearest grid
point).The right mouse button will also pan across the schematic if
held down while moving the mouse.

Strokes
Use the left or middle mouse button to perform actions known as
strokes. You can use strokes as shortcuts to perform common tasks.
Perform a stroke by pressing and holding the middle mouse button
while moving the mouse to draw a line with a specific shape. For
instance, the stroke with the shape “Z” will zoom in. When appli-
cable, strokes are used in this tutorial. You can view all the default
strokes in the Stroke Editor by entering sted $CDS/tools/fet/concept/
concept.strokes at the UNIX prompt.

Figure 9-2 STED Default Strokes, page1

Figure 9-3 STED Default Strokes, page2
9-12 Xilinx Development System

Schematic Design Tutorial
Figure 9-4 STED Default Strokes, page3

Selecting Commands from the Menu Bar
Use the left mouse button to select commands from the menu bar at
the left of the screen, which is called the Command Menu.

Entering Commands from the Keyboard
You can type commands in the Concept Message Window. The
Message Window is located at the bottom of the screen. For example,
a schematic sheet can be opened by typing the command “edit
sheet_name” in the window.

Cancelling Commands
When you select a command, it is highlighted in the Command
Window and echoed to the Message Window. You can cancel
commands by selecting the “;” button in the Command Window,
typing “;” in the Message Window, or selecting a new command.

Manipulating the Screen
To zoom in on a specific area of the screen, select the Zoom command
in the Command Window, and use the mouse to create a box around
the area you want to zoom on.To view the entire schematic, press F2
or enter the stroke shape “W”. (You can also perform the command
by entering “zoom fit” in the Message Window.)
Cadence Interface/Tutorial Guide 9-13

Cadence Interface/Tutorial Guide
Saving a Design Directory
To save the current logic or body drawing, select File → Write in the
Command Menu. Alternatively, you may enter “wr” or “write” in the
Concept Message Window at the bottom of the Concept screen.

Quitting Concept
To exit out of Concept, select File → Quit in the Command Menu.

Completing the Calc Design
To complete the tutorial design, you need to add a few design objects
to the Calc schematic using Concept.

If you need to stop the tutorial at any time, be sure to save the work
you have done by first selecting File → Write from the Command
Menu. A window appears that reports the results of HDL Direct.
After reviewing the contents of this window, press Return inside that
window to close it. If it reports errors, you may ignore them and
write it out anyway, if you wish.

Design Description
The top-level schematic of the Calc tutorial design has been created
for you. Each of the blocks in the schematic, such as CONTROL or
ALU1, is linked to a second-level module that describes its logic.
Additionally, any second-level module can contain another block that
references a third-level drawing, and so on. This organization is
known as a hierarchical structure.

In this tutorial, you add three symbols to the ALU1 block schematic
to complete it. First, you create the ANDBLK2 and ORBLK2 symbols
and their underlying schematics and then add them to the schematic.
Additionally, you add the FD4RE symbol from the Unified Libraries
to the ALU1 block. After the ALU1 block is finished, you add the
STARTUP block to the top-level Calc schematic to tie the device’s
global reset network to a device pin. To complete design entry, you
add a CONFIG block, which lists a set of instructions that dictate how
the implementation tools should process the design.

The Calc design is a four-bit processor with a stack. The processor
performs functions between an internal register and either the top of
the stack or data input from external switches. The results of the
9-14 Xilinx Development System

Schematic Design Tutorial
various operations are stored in the register and displayed in hexa-
decimal on a seven-segment display. The top value in the stack is
displayed in binary on a bar LED. A count of the items in the stack is
displayed as a “gauge” on another bar LED.

The design consists of the following functional blocks:

• ALU1

The arithmetic functions of the processor are performed in this
block.

• CONTROL

The opcodes are decoded into control lines for the stack and
ALU1 in this module.

• STACK

The stack is a four-nibble storage device. It is implemented using
synchronous RAM in the XC4000E design. You can substitute the
RAM4_9K module, which uses flip-flops, in place of the
RAM16X4S macro in the STACK schematic to implement the
stack in an XC9500 or other non-XC4000E device.

• DEBOUNCE

This circuit debounces the “execute” switch, providing a one-
shot output.

• SEG7DEC

This block decodes the output of the ALU1 for display on the 7-
segment decoder.

• CLOCKGEN

CLOCKGEN uses an internal oscillator circuit in XC4000E
devices to generate the clock signal. In XC9500 designs, it is
replaced by an input pad and a clock buffer.

Note: The XC3000 and XC5200 FPGA families also have on-board
oscillators. See the CLKGEN3K and CLKGEN5K components
included in the calc_sch directory to see how the oscillators in these
families are used.

• BARDEC

BARDEC shows how many items are on the stack on a “gauge”
of four LEDs.
Cadence Interface/Tutorial Guide 9-15

Cadence Interface/Tutorial Guide
• SWITCH7

SWITCH7 is a user-defined module consisting of seven input
flip-flops used to latch the switch data.

Before proceeding, close (quit) the Calc schematic window. If a dialog
box appears asking if you want to save any changes, choose NO.

Targeting XC9500 Devices
If you wish to target an XC9500 part, you may proceed with this tuto-
rial (even though it is set up for a 4000E part). There will be a discus-
sion later in this tutorial on what is needed to convert the design for a
XC9500 instead of the XC4000E.

Creating Schematics for ANDBLK2 Symbol
You will need to create schematics and symbols for ANDBLK2 and
ORBLK2. The schematics can then be referenced in a higher-level
schematic by instantiating the corresponding symbol bodies.

Opening a Schematic

To open a new schematic sheet for ANDBLK2, type “edit andblk2” in
the Message Window.

Adding the First Component to a Schematic

1. From the Command Menu, select Add Part. The Component
Browser appears. See figure below.
9-16 Xilinx Development System

Schematic Design Tutorial
Figure 9-5 Component Browser Menu

2. Select components from the correct library for the device you are
targeting (xce4000e for this tutorial). There are several libraries
defined in the Component Browser; to select the library you wish
to add components from, use the left mouse button on the
Component Browser button next to “Library:”, as seen in the
following figure. Select the xce4000e library.

3. Scroll down and select AND2.

4. The outline of a 2-input AND gate appears in the schematic
window.

5. Move the symbol outline roughly to the center of the schematic
entry window and then click the left mouse button to place the
object.
Cadence Interface/Tutorial Guide 9-17

Cadence Interface/Tutorial Guide
Figure 9-6 Placing a Component

Placing Additional Components

To select another component of the same type, click the middle
mouse button (while you are still in “Add Part” mode) anywhere in
the schematic window. Then position the component, and use the left
button to place it on the sheet. Using this method, select and place a
second AND2 symbol.

Copying a Component

Use the Copy command to add more components by copying a
component that already appears on the schematic.

1. Select the Select command in the Command Menu with the left
mouse button.

2. Move the mouse above and to the left of the two symbols on the
sheet, and click the left mouse button.

3. Move the mouse below and to the right of the two symbols. A
white box appears surrounding the two symbols.

4. Click the mouse button again to select the objects inside the box.
All selected items should now be highlighted. Note that if you
zoom or pan across your schematic at this point, all selected
components will be deselected.

5. Select the Copy command in the Command Menu.
9-18 Xilinx Development System

Schematic Design Tutorial
6. Click the middle mouse button to copy the entire highlighted
group (left mouse button would only copy the nearest compo-
nent, and not the entire group). Place the two copied gates above
the original two and click the left mouse button. If necessary, use
the right mouse button to pan across the schematic (hold it down
while moving mouse).

7. Press F2 to view the entire schematic (or use stroke “W”). The
schematic now looks like the following figure.

Figure 9-7 Component Placements for ANDBLK2

Moving a Component

If you make a mistake when placing a component, you can use the
menu commands to move the component.

1. Select the Move command in the Command Window, and click
on the component to be moved with the left mouse button.

2. Move the component to the desired location, and again click the
left mouse button.
Cadence Interface/Tutorial Guide 9-19

Cadence Interface/Tutorial Guide
Adding and Labeling Buses in a Schematic

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. It is not necessary to physically
connect a bus to the nets that make up the bus. There are several sche-
matics in the Calc design that have short bus segments that are not
connected to anything. This is done to establish pin connectivity to a
bus pin on the symbol corresponding to the schematic. A bus must
exist on the schematic if you wish to use a bus pin to represent a set of
signals.

In Concept, a bus is put on the schematic as a wire. When a label with
a bus index is attached to the wire, Concept will automatically
change the wire to a bus (it is redrawn as a heavier line).

Add buses to the schematic as follows:

1. Select Wire from the Command Menu, or enter “wire” in the
Message Window.

2. Draw a wire by clicking the left mouse button to specify the
starting point, moving the mouse to a new position, and then
clicking the button again to make a bend in the wire or to connect
it to a pin. Terminate the wire by clicking the mouse button in the
same place twice. Add the three buses shown in the following
figure (add wires where you see a bus in the figure; they will be
converted to buses in the next step). You may want to zoom the
schematic view out before adding the buses.

If you make a mistake, select Delete in the Command Menu and
click on the wire to be removed.

3. After adding the three buses, select Signame in the Command
Menu.

4. Click on the leftmost wire (labeled A<3..0> in the figure). A small
red box should appear next to the wire. In the Message Window,
type “A<3..0>” and hit Return to label the bus.

5. Use a procedure similar to the previous step to label the other
wires “B<3..0>” and “Q<3..0>”.
9-20 Xilinx Development System

Schematic Design Tutorial
Figure 9-8 ANDBLK2 Schematic with Buses

Adding Wires and SLICEs to a Schematic

Next, wires must be added to attach the appropriate pins on the gates
to the buses. You may want to enlarge the view of the components to
make it easier to draw the nets.

In order to connect a wire to a bus, a SLICE should be added from the
hdl_direct_lib. The SLICE can connect a bus to a wire.

1. Select Add Part in the Command Menu. The Component
Browser should come up.

2. Click the left mouse button on the button to the right of
“Library:” in the Component Browser. Select hdl_direct_lib.
Scroll down the menu to select SLICE with the left mouse button.

Note: Do not use the TAP from the older SCALD standard library;
HDL Direct compliance requires that you use the appropriate corre-
sponding hdl_direct components in place of SCALD components
wherever applicable.
Cadence Interface/Tutorial Guide 9-21

Cadence Interface/Tutorial Guide
3. Move the cursor into the schematic window, and click the middle
mouse button to rotate the SLICE symbol. Click the mouse until
the SLICE achieves the orientation shown in the following figure
(for the A<3..0> bus). Then, place the SLICE so the left diagonal
side touches the bus, and the right horizontal side is in line with
one of the AND2 pins. Click the left mouse button to place.

Note: It is not necessary that the SLICE should be in any particular
orientation, except that the diagonal portion should be connected to
the bus.

Click the left or middle mouse button after placing the SLICE to
select a new SLICE. Note this is a copy of the previous SLICE, so
there is no need to rotate it. Place this SLICE below the previous
SLICE, so it aligns with the next AND2’s top pin.

4. Place the remaining 2 SLICEs for the A<3..0> bus, and add 4
SLICEs for the B<3..0> bus and Q<3..0> bus. You may perform
this step either by continuing to click the left or middle mouse
button (assuming you have not left Add Part mode), or by
selecting SLICE each time in the Component Browser. Another
method is to type “add slice” in the Message window.
9-22 Xilinx Development System

Schematic Design Tutorial
Note the following figure shows a different orientation for the
Q<3..0> SLICE. Simply click the middle mouse button until this
orientation is achieved.

If you make a mistake, you may select either Delete or Move.

5. Select “wire” from the Command Menu or enter “wire” in the
message window.

6. Move the cursor to the top input pin of the top AND2 gate, then
click the left mouse button.

7. Move the cursor to the left of the SLICE at the top of the leftmost
bus, so that the wire connects to the output of the SLICE. Click
the left mouse button to terminate the wire.

8. Add the remaining nets as shown in the following figure.

Figure 9-9 ANDBLK2 with All Wires and Buses Connected

Adding Values to SLICE Symbols

At this point, all buses in the ANDBLK2 schematic have been labeled.
However, for the nets that have been ripped off the bus via the SLICE
symbol, there needs to be an attribute attached to the SLICE to indi-
Cadence Interface/Tutorial Guide 9-23

Cadence Interface/Tutorial Guide
cate which bit of the bus the net represents. The current default value
is “?”; this will need to be changed to a number within the bus
bounds.

You may change these values by individually changing the BN
attribute on each SLICE, or by using the “bustap” command to
change this attribute on a set of SLICEs, all at once.To change each
value individually:

1. Select Change in the Command Menu. Use the left mouse button
to select the top SLICE of A<3..0>. The “?” (default undefined BN
value) should turn red, and a cursor should appear beside it. Hit
the right cursor followed by the BackSpace key to delete the
current value, and type in “0” followed by Return. The SLICE
should now appear as in the figure below. If you accidently select
any elements besides the SLICE you wish to edit, select the “;”
key in the command menu and reselect Change.

Figure 9-10 Adding an Attribute to a SLICE

2. Repeat this procedure for all SLICEs for the A<3..0> bus only.
Label from top to bottom, with “0” on top and going sequentially
to “3” on the bottom. Reference the “Using the Bustap
command” figure.

The label sizes are increased as shown in the “Using the Bustap
command” figure.
9-24 Xilinx Development System

Schematic Design Tutorial
3. Although we can use the same procedure to add values to the
SLICEs of the other two buses, we can alternatively use another
command called “bustap”. Type “bustap 0 3” in the Message
Window.

Figure 9-11 Using the Bustap command

4. Position the mouse cursor above the first “?” on the top SLICE of
the B<3..0> bus, and click the middle mouse button. Position the
mouse below the last “?” on the bottom SLICE of the B<3..0> bus,
as shown in the figure.

5. Click the middle mouse button again. You should see all the “?”
change to numbers, beginning from 0 and going to 3.

6. Use either Change or bustap to modify the SLICEs on the Q<3..0>
bus.

Adding Ports

Port symbols must be added to nets and buses to define the connec-
tivity between a schematic and its associated symbol. For the
ANDBLK2 schematic, all three buses need ports. Input signals are
given INPORTs and output signals are given OUTPORTs.

Add ports to the schematic as follows:
Cadence Interface/Tutorial Guide 9-25

Cadence Interface/Tutorial Guide
1. Select Add Part mode from the Command Menu, and select the
hdl_direct_lib library in the Component Browser.

2. Scroll down to select the INPORT symbol.

3. Position the INPORT so that the symbol pin’s right side touches
the A<3..0> bus’s left end. Click the left mouse button to place.

4. Place another INPORT at the end of the B<3..0> input bus, on the
left side of the window.

5. Next select an OUTPORT symbol from the library and place it at
the end of the output bus. Instead of selecting it from the Compo-
nent Browser, try typing “add outport” in the Message Window.

6. Press F2 to view the entire schematic. The schematic appears as in
the following figure.

Figure 9-12 Adding Ports

Saving the Schematic

The schematic is now complete. Check and save the schematic as
follows:
9-26 Xilinx Development System

Schematic Design Tutorial
1. Select File → Write in the Command Menu. If errors occur,
recheck the schematic against the figure below. You may use the
command “error” to have Concept show on the schematic itself
what errors exist in the drawing. Once Concept has finished
checking the schematic, it will automatically call HDL Direct to
write out the Verilog netlist. You should see a separate Xterm pop
up, and this check must complete successfully also. If not, then
you must correct the schematic (the Concept command “error”
does not point out errors found in the HDL Direct window).

Figure 9-13 Completed ANDBLK2 Schematic

2. Once all schematic errors have been corrected, write the design
again if necessary.
Cadence Interface/Tutorial Guide 9-27

Cadence Interface/Tutorial Guide
Figure 9-14 Successful Write with HDL Direct

Creating Schematics for ORBLK2 Symbol
The ORBLK2 schematic is similar to the ANDBLK2 schematic. To
create schematics for the ORBLK2 symbol, you can use the
ANDBLK2 schematic and simply replace the four AND2 gates with
OR2 gates.

1. Press the F2 key to unselect everything on the ANDBLK2 sche-
matic and to view the entire schematic.

2. Enter in the Message Window the command “replace or2”. This
will cause any component selected to be replaced by the OR2
symbol.

3. Click on the four AND2 gates with the left mouse button. They
should be converted to OR2 gates.

4. Enter the command “write orblk2” in the Message Window. This
should cause the schematic to be saved under the new name
“orblk2”.
9-28 Xilinx Development System

Schematic Design Tutorial
Figure 9-15 Completed ORBLK2 Schematic

Creating the ANDBLK2 Symbol
The following subsections explain how to create the ANDBLK2
symbol.

Creating the Symbol Outline

1. Enter the command “edit andblk2.body” in the Message
Window. Previously, when you typed in the command “edit”,
you did this to create or modify a schematic. When you type
“edit component_name”, it is understood that you mean “edit
component_name.logic.” The “logic” extension references the sche-
matic, whereas the “body” extension references the symbol.

2. A blank grid should appear, with the name of the symbol and an
origin “X” in the center. We can now begin to draw the symbol’s
body with the “wire” command. Select “wire” in the Command
Menu.

3. Draw an enclosed shape (usually a rectangle) around the origin.
Make it large enough to have 2 inputs on the left side and 1
output on the right side.
Cadence Interface/Tutorial Guide 9-29

Cadence Interface/Tutorial Guide
4. Add wire stubs to represent the symbol pins. Each pin should be
a wire segment that begins on the outline of the main body, and
points away from the body. Each pin should also begin and end
on a grid point. For the andblk2 symbol, it is best to place the two
input pins on the left and one output pin on the right. You should
have a total of three pins.

5. Enter the command “dot” in the Message Window. Position the
mouse over the dangling end of a pin, and click to place the dot.
Place a dot at the end of all other pins.

6. Select the command “signame”. Click on the upper left dot, and
type in the string “A<3..0>”. This should now appear on the
drawing. The name of the pin must exactly match the name of the
signal connected to the INPORT or OUTPORT symbol. Do the
same for the lower left pin (B<3..0>) and the right pin (Q<3..0>).

Adding Text

1. Adding signal names (signames) to the pins correlates the pins to
the underlying schematic, but these signames are not visible on
the symbol when it is used. To add a visible label to the pin, use
the command “note”. After this command has been entered, type
in the string “A<3..0>”, and position it near the top left pin, and
inside the symbol.

2. If the text is too large for your taste, type in the command “set
size 0.5” to halve the size of the text. Note this will not reduce the
size of existing text; if you wish to replace the existing text with
smaller text, you must delete it and re-enter it with the “note”
command after you have entered “set size 0.5”.

3. Place the text “B<3..0>” and “Q<3..0>” by their respective pins.
Also add the name of the symbol ANDBLK2 to the body drawing
by attaching it to the body as another NOTE at the top of the
symbol.
9-30 Xilinx Development System

Schematic Design Tutorial
Figure 9-16 Completed ANDBLK2 Symbol

4. Once you are satisfied with the drawing, do a “write”.

5. To return to the normal text size, enter “set size 1”.

Creating the ORBLK2 Symbol
The next step is to create the symbol for ORBLK2, as shown in the
following figure. Since ORBLK2 is similar to ANDBLK2, use the
ANDBLK2 symbol and modify the text.

1. Select the Change mode. Select the text ANDBLK2, and convert it
to ORBLK2. No other modifications should be necessary.

2. Enter in the command “write orblk2.body”. This command will
cause Concept to save the modified schematic under the new
name.

Editing the ALU1 Schematic
So far you have created symbols for ANDBLK2 and ORBLK2. You
have also created underlying schematics for these symbols. The next
step is to place the symbols in the ALU1 block schematic.

1. Enter “edit calc” in the Message Window (remember that this is
the same as “edit calc.logic”).
Cadence Interface/Tutorial Guide 9-31

Cadence Interface/Tutorial Guide
2. If the Component Browser is already up, select the calc.wrk
library and click on the ALU1 component. Select the logic view
(ALU.LOGIC.1.1). The ALU1 schematic should now appear. If
the Component Browser had been previously closed, then you
must type “edit” once to bring it up.

Note: We could have entered “edit alu1” instead (replacing both step
1 and step 2), but this demonstrates that the mouse can be used to
descend hierarchy when in the “edit” mode. This will only work if
the Component Browser is up; if it is not, then you must type edit
once to bring up the Component Browser.

Placing User-Created Components
The ANDBLK2 and ORBLK2 symbols can now be placed on the sche-
matic as shown in the figure below. The symbols can be placed using
the same procedure used to place the AND2 gate from the Xilinx
libraries when you created the ANDBLK2 schematic.

1. Use the Zoom button to zoom into the empty area near the center
of the schematic, between the XORBLK2 and ADSU4 symbols.

2. Select Add Part. From the Component Browser, select the
calc.wrk library, and scroll down to choose the ANDBLK2
component. All user-created components come from the
design.wrk library (or whatever file was referenced in the “use”
line in the global.cmd file). Alternatively, we could have entered
“add andblk2” in the Message Window.

3. Move the cursor to the correct location as shown in the figure
below.
9-32 Xilinx Development System

Schematic Design Tutorial
Figure 9-17 Adding ANDBLK2 and ORBLK2 to ALU Schematic

4. Press the left mouse button to place the component.

5. Follow the same procedure to add the ORBLK2 symbol. Refer to
the ALU1 schematic in the preceding figure for proper place-
ment. If you make a mistake when placing a component, enter
Move mode and select the component to move it.

The next step in the tutorial is to add the FD4RE and AND5B2
components to the ALU1 schematic. The FD4RE component is avail-
able in the xce4000e Xilinx Unified Libraries and consists of four flip-
flops with a clock enable. The AND5B2 component is a five-input
AND gate with two inputs inverted (or “bubbled,” hence the “b” in
the component name).
Cadence Interface/Tutorial Guide 9-33

Cadence Interface/Tutorial Guide
Note: These components are available in all libraries, including those
for the XC4000E and XC9500 devices.

1. Use F2 to display the entire ALU1 schematic. Use the Zoom
button to zoom into the open area in the lower right-hand corner.

2. Select Add Part from the Command Window.

3. Select the appropriate family library (xce4000e or xce9000) in the
Component Browser.

4. Choose FD4RE from the menu. Move the cursor into the sche-
matic window; an outline of the FD4RE component appears.

5. Move the component to lower right corner of the schematic,
approximately to the location shown in the figure below.

6. Press the left mouse button to place the component.

7. Repeat steps 4 through 6 to place the AND5B2 component next to
the FD4RE as shown in the following figure. Note that you may
instead use the command “add and5b2”, if you wish.

Figure 9-18 Adding FD4RE and AND5B2 to ALU Schematic
9-34 Xilinx Development System

Schematic Design Tutorial
Adding Nets, Buses, Ports and Labels

FD4CE and AND5B2

Next complete the addition of the FD4RE and AND5B2 symbols by
adding nets, buses, and labels as follows:

1. Add the necessary nets and buses to complete connections for
FD4RE and AND5B2 as you did for the previous schematic. The
following figure displays the labeled nets and buses for FD4RE
and AND5B2.

2. Add ports to the nets and buses attached to the FD4RE and
AND5B2, as shown in the following figure. INPORTs should be
attached to nets and buses corresponding to ALU1 inputs, and
OUTPORTs to ALU1 outputs.

Note: You should always use the IPAD/OPAD symbols for your
external FPGA/CPLD ports; INPORT and OUTPORT are used for
connections to different levels of hierarchy in your design.

3. To add net names to nets, remember to use Signame in the
Command Window, and type in the name of the signal. The red
box over the net should be replaced with your net name after you
press Return.

Figure 9-19 Nets, Buses, and Ports for FD4RE and AND5B2
Cadence Interface/Tutorial Guide 9-35

Cadence Interface/Tutorial Guide
Warning: Whenever you take an existing schematic and add or
remove INPORTs or OUTPORTs, or IPADs or OPADs, HDL Direct
will report:

Error #171: Port exists in entity declaration
but not in the schematic. The entity declaration
may need to be updated.

Would you like to overwrite the entity declara-
tion calc_9k/calc/entity/vhdl.vhd with a new
entity declaration derived from this schematic?
[y/n]

Answer “y” to this query. This is not an actual error. If you want to be
sure everything is OK, then do another “write”. You should get no
error messages this time.

ANDBLK2 and ORBLK2

Next, complete the addition of ANDBLK2 and ORBLK2 to the ALU1
schematic.

1. Add the necessary buses to complete connections to ANDBLK2
and ORBLK2. The following figure displays the labeled nets and
buses for ANDBLK2 and ORBLK2.

2. Use the following figure to name the added buses by using the
same Signame command from the previous section. You only
need to label the output buses of the two components, since the
inputs to these components are connected to pre-labeled buses.
9-36 Xilinx Development System

Schematic Design Tutorial
Figure 9-20 Nets, Buses and Labels for ANDBLK2 and ORBLK2

Adding Labels to Components
It is important to add labels to components. Error and warning
messages often reference component labels, and labels also appear in
simulation netlists. Also, net names at lower levels of hierarchy are
referenced using the following format:

...component_label/component_label/net_label

In the ALU1 schematic, labels have already been added to the
MUXBLK2, XORBLK2, and MUXBLK5 blocks.

To add a label to the ORBLK2 instance, follow these steps.

1. Press the Attributes button in the Command Menu.

2. Use the left mouse button to select the ORBLK2 symbol. The
following dialog box should appear.
Cadence Interface/Tutorial Guide 9-37

Cadence Interface/Tutorial Guide
Figure 9-21 Attribute Form

3. In the field under Value and to the right of Path, replace the “?”
value (or whatever string is in this field) with the value
“ORBLK2”.

4. Select Done to close the Attribute Form.

5. You may use the Move command to position the text as shown in
the following figure. Click the left mouse button to select and to
place the text.

6. Label the ANDBLK2 symbol the same way using the label
ANDBLK2, as shown in the following figure.

7. Give the FD4RE component the label ALUVAL.
9-38 Xilinx Development System

Schematic Design Tutorial
Figure 9-22 Adding Component Labels to ALU1 Schematic

The completed ALU1 schematic is shown in the following figure.
Cadence Interface/Tutorial Guide 9-39

Cadence Interface/Tutorial Guide
Figure 9-23 Completed ALU1 Schematic

Saving the ALU1 Schematic
Write the schematic. If errors occur, resolve them and then write the
schematic again.

Exploring Xilinx Library Elements
The Xilinx libraries contain three types of elements. Primitives are
basic logic elements such as the AND2 and OR2 gates that you previ-
ously placed in ANDBLK2 and ORBLK2. Soft macros are schematics
created by combining primitives and other soft macros. Relationally
Placed Macros (RPMs) are soft macros that contain placement infor-
mation. RPMs are currently only available in the XC4000 family
library.
9-40 Xilinx Development System

Schematic Design Tutorial
All three types of library elements are placed on a schematic in
exactly the same way.

Viewing a Xilinx Soft Macro Schematic
Soft macro schematics include schematics such as you might make
for your own designs. In fact, you can load one of these schematics
and use the “write new_filename” command to save it under another
name, and then edit this new schematic to customize it to your needs.

Open the schematic underneath the FD4RE symbol as follows:

1. Enter the command “edit”. Remember you will need to type it
again if the Component Browser was previously closed (it is OK
to iconize it).

2. Select FD4RE with the left mouse button. As shown in the
following figure, FD4RE consists of four fdre symbols.

3. Enter “ret” to return to the previous schematic.

Figure 9-24 FD4RE Schematic from XC4000E Library

Viewing a Xilinx RPM (XC4000E Family Only)
Note: The following description of RPMs contains detailed informa-
tion on the XC4000E architecture. Refer to The Programmable Logic
Cadence Interface/Tutorial Guide 9-41

Cadence Interface/Tutorial Guide
Data Book for more information on the XC4000E CLB structure and
fast carry logic.

If your design is not targeted for the XC4000E family, read this
section, but do not perform any of the commands. Continue the tuto-
rial with the “Opening the Calc Schematic” section.

The ALU1 contains a component from the Xilinx library, ADSU4,
which is a four-bit wide adder/subtracter. If your design is targeted
for the XC4000E library, this schematic is implemented as a Relation-
ally Placed Macro (RPM). If your design is not targeted for the
XC4000E library, ADSU4 is implemented without this placement
information.

Like schematic of soft macros, RPM schematics are schematics such
as you might make for your own designs. To modify an existing
Xilinx RPM schematic, save the schematic and associated symbol to a
different name, then edit this new schematic to customize it to your
needs.

Elements placed in the ADSU4 RPM schematic include CY4 compo-
nents and FMAPs. The CY4 symbol gives you the ability to specify
fast carry logic functionality from the schematic. Fast carry logic is a
hardware feature in XC4000E parts that allows very fast arithmetic-
type functions.

The FMAPs map logic functions to function generators in Config-
urable Logic Blocks (CLBs), which are arranged in a rectangular grid
in the die. Both the CY4 symbols and FMAP symbols in ADSU4 have
RLOC attributes. RLOCs are attached to the symbols that assign rela-
tive locations to the CLBs. You can use carry symbols as well as
FMAPs and other mapping components in your own schematics.
However, knowledge of them is not necessary to use Xilinx Library
RPMs. Only expert users should create macros containing carry logic
and FMAPs. For a description of these components, see the Xilinx
Libraries Guide.

Push into the ADSU4 schematic as follows:

1. Enter “edit adsu4” (or “edit” and use the mouse).

2. Use the Zoom button (or stroke “Z”) to zoom into the upper
portion of the schematic as shown in the following figure.

3. Select the Attribute button.

4. Select the FMAP component in the upper right corner.
9-42 Xilinx Development System

Schematic Design Tutorial
Figure 9-25 Upper Portion of the ADSU4 RPM Schematic

5. The Attribute Form window appears displaying the attributes on
the symbol, as shown in the “Upper Portion of the ADSU4 RPM
Schematic” figure. The RLOC attribute is set to R0C0.G, indi-
cating that this function is mapped to the G function generator of
the upper-left corner (row zero, column zero) CLB in the RPM.
RPM origins reference the upper left-hand corner of the macro.
(You can also call up the Attribute Form with the stroke that
looks like a lowercase cursive “a”.)

6. Close the window to return to the ADSU4 schematic window.

7. Hold down the right mouse button to pan around the schematic
and look at the RLOCs (or use the arrow keys). Note that logic is
mapped to three CLBs, designated as R0C0, R1C0, and R2C0.
Therefore, this RPM uses three CLBs that are arranged in a
column. Information on the number of CLBs used and the shape
of the logic block is available for each RPM in the Xilinx Libraries
Guide. Note that these locations are relative, not absolute. The
macro is not being constrained to be placed in the uppermost
CLB in the left most column. Regardless of the RPM’s absolute
location, the logic associated with the FMAP with the location
R0C0 is always at the top, R1C1 is in the CLB directly below, and
so on.
Cadence Interface/Tutorial Guide 9-43

Cadence Interface/Tutorial Guide
8. Close the ADSU4 schematic and return to the ALU1 schematic,
using the “ret” command.

Opening the Calc Schematic
Close all open schematic or symbol windows except for the top-level
Calc schematic window. If the Calc window is closed, open it. The
Calc schematic appears on the screen.

Using the XC4000E Oscillator
If your design is not targeted for the XC4000E family, read this
section, but do not perform any of the commands.

The XC4000E family devices contain an on-chip clock generator,
which makes it unnecessary to use an external circuit for this
purpose. The on-board clock circuitry is not precise, but is suitable for
designs that do not need a highly accurate clock, such as the Calc
design.

Figure 9-26 CLOCKGEN Schematic

The CLOCKGEN schematic contains an XC4000E library part, OSC4.
This symbol represents the on-chip oscillator that generates nominal
clock frequencies of 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. The
Calc design uses the 15-Hz output from this component when
9-44 Xilinx Development System

Schematic Design Tutorial
targeted for XC4000E family designs. The clock output from OSC4 is
buffered through a BUFG global clock buffer to minimize clock skew.

XC4000E family devices have eight on-chip clock buffers, one BUFGP
(primary global buffer) and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for
other purposes, BUFGPs are best used to route externally-generated
clock signals. BUFGSs have more flexibility, and can be used to route
any large fan-out net, even if it is internally sourced. A BUFG symbol
can represent either type of buffer, and allows the implementation
software to choose the type of global buffer that is best in each situa-
tion. BUFG also facilitates design retargeting to other Xilinx device
families, since it can represent any type of global buffer in any family.
The BUFG in the Calc design is substituted for a BUFGS during
design implementation, because the clock is generated internally by
the on-chip oscillator. See the Xilinx Libraries Guide and the Program-
mable Logic Data Book for more information on global clock buffers for
Xilinx devices.

Controlling FPGA/CPLD Layout from the Schematic
This section discussed FPGA/CPLD schematic layout.

Assigning Pin Locations
It is highly recommended that you let the automatic placement and
routing program, PAR, define the pinout. Pre-assigning locations to
the I/Os can sometimes degrade the performance of the place and
route tools. However, it is usually necessary, at some point, to lock the
pinout of a design so that it can be integrated into a board design. The
initial pinout should be defined by running the place and route tools
without pin assignments, then locking down the I/O placement so
that it reflects the locations chosen by the tools. As a general rule,
inputs should be placed on the left side of the die, and outputs on the
right. I/O in the tutorial schematics must be assigned pin locations so
that the Calc design can function in the Xilinx demonstration boards.
Because the design is fairly simple, these pin assignments do not
adversely affect the ability of PAR to place and route the design
completely.

Pin locations are specified by attaching a LOC property to the net
attached to the pad. LOC properties should not be attached directly
to I/O pads.
Cadence Interface/Tutorial Guide 9-45

Cadence Interface/Tutorial Guide
Add the LOC property to the OBUF associated with the 7-Segment
Display F signal on the Calc schematic as follows:

1. Display the Calc schematic (“edit calc”).

2. Enter into the Attribute mode.

3. Select the OBUF to the right of the pad attached to net F. Refer to
the following figure. The Attribute Form should appear.

4. Select Add in the Attribute form. In the resulting blank Name
field, type “LOC”. In the Value field, type P50.

Figure 9-27 Attribute Form for Adding a LOC

5. Click on Done to execute the command.

6. Use the Move command to move the “P50” text to a position
closer to the OBUF.

For simplicity, the other pin locations for the Calc design have been
placed in a data file known as a constraint file, which is described in a
later section. You can leave the other location values undefined. Valid
pin locations vary depending on the package. PLCC, HQFP, and
other “numeric-only” package pins are designated with a P followed
by the pin number, such as P17. PGA and other grid-array package
pins use alphanumerics such as A12. The Programmable Logic Data
Book lists the pinouts of each FPGA and CPLD for each package that
Xilinx supplies.
9-46 Xilinx Development System

Schematic Design Tutorial
Figure 9-28 Assigning a Location to an Output Net

Designating FAST Pads
Output slew rate can be modified by assigning a FAST attribute to the
output buffer, as shown in the following figure. The default slew rate
is SLOW. “Fast” pads have different timing specifications and draw
more current than “slow” (slew-rate-limited) pads. Slow pads are
used by default. See The Programmable Logic Data Book for timing spec-
ifications for the various slew rate modes.

Add a FAST attribute to the LED output display drivers attached to
the STACKLED (3:0) bus as follows:

1. Press F2 to display the entire Calc schematic.

2. Enter the Attribute mode.

3. Click the left mouse button on the OBUF4 symbol attached to the
STACKLED (3:0) bus.

4. In the Attribute Form, click on the Add button, and enter “FAST”
in the resulting Name field and “TRUE” in the Value field. Click
on the button under Display (to the left of the “TRUE” test you
just entered) until it displays “Name”.
Cadence Interface/Tutorial Guide 9-47

Cadence Interface/Tutorial Guide
5. Press Done to execute the command.

6. Move the text to be near the OBUF4 symbol, as shown in the
following figure. Since the property is attached to the OBUF4
symbol, it affects all four of the LED outputs.

Figure 9-29 Designating a FAST Pad

Using the I/O Flip-Flops
Xilinx XC3000A and XC4000E devices have two flip-flops in each
Input Output Block (IOB), an input flip-flop and an output flip-flop.
You can also configure input flip-flops as latches and output flip-flops
as 3-state. You access these elements using the library components
IFD, ILD, OFD, and OFDT, as well as other higher-level macros that
contain these components. For more information on these library
elements, consult the Xilinx Libraries Guide.

IOB flip-flops are used whenever possible to free up internal CLB
resources. In the Calc design, IOB flip-flops are used to register the
switch inputs. As shown in the figure below, the SWITCH7 macro
attached to the input bus SW<6:0> in the lower-left area of the sche-
matic has an underlying schematic that consists of seven IFD (input
9-48 Xilinx Development System

Schematic Design Tutorial
flip-flip D-type) Xilinx primitives. If similar flip-flops, such as FDs,
had been used instead, the flip-flops in the IOBs would be wasted
and would occupy valuable CLB resources.

Figure 9-30 SWITCH7 Schematic Using Input Flip-Flops

Saving the Calc Schematic
Before continuing, save the changes made to Calc by doing a “write”,
as shown earlier in this tutorial.

Modifying the Design for non-XC4000E/EX Devices
At this point in the tutorial, you have created or edited the following
four schematic files: calc, alu1, andblk2, and orblk2. The design, at
this point, is suitable for use only in an XC4000E or XC4000EX device.
This is because these devices have several advanced features not
found in other Xilinx device families. Two of these advanced features
are the on-chip memory built into the XC4000E CLB and wide-edge
decoders.

Targeting the Design for the XC9500 Family
The incomplete calc_sch design is configured for an XC4003E-PC84
part. If you want to target a demonstration board with this device, go
Cadence Interface/Tutorial Guide 9-49

Cadence Interface/Tutorial Guide
to the “RAM Stack Implementation” section. If you are targeting the
tutorial design for an XC95108-PC84 (no demonstration board avail-
able) or other device family, you must convert the design to reference
the XC9500 library instead of the XC4000E library.

The procedure provided below allows you to change every Xilinx
component in the Calc design from the XC4000E library to the
XC9500 library. Since the designs were created using the Unified
Libraries, the parts in the XC4000E and XC9500 libraries have iden-
tical footprints and pinouts. This allows you to easily retarget designs
to a different device family, provided only library parts common to
the two families are used. You must manually replace any library
parts that are not common to both families. This example shows a
situation where this may happen.

Note: Although an XC4000E-to-XC9500 conversion is shown here,
this procedure may be used to retarget from any family to any other
family.

To retarget the Calc design to the XC9500 family:

1. Exit from Concept by entering “quit” in the Message Window.

2. Open the global.cmd file, and change the “xce4000e” reference to
“xce9000”.

3. Open the master.local file, and replace all “xce4000e” references
with “xce9000”. If your Xilinx tools were installed in /xilinx, for
example, then the following would be a valid master.local:

file_type = master_library;
"xce9000" '/xilinx/cadence/data/xce9000/xce9000.lib';
"xcepads" '/xilinx/cadence/data/xcepads/xcepads.lib';
end.

4. Modify the cds.lib file to have “xce9000” references. If your Xilinx
tools are installed in /xilinx, for example, then the following
would be a valid cds.lib:

define xce9000_syn /xilinx/cadence/data/xce9000_syn

5. Open Concept once more. You may see in the Message Window
such warnings as:

The default property PINTYPE (with value IN) is
no longer on the body OBUF.
9-50 Xilinx Development System

Schematic Design Tutorial
You may ignore these warnings; when you write the schematic
again, these warnings should disappear.

Targeting the Design for the 3000A and 5200 Family
If you wish to target the XC3000A, XC3100A, or XC5200 family, you
may follow the above procedure for the XC9500 family to retarget the
design. Simply substitute “xce3000” or “xce5200” where you see
“xce9000” in the procedure above.

RAM Stack Implementation
The RAM stack is implemented using a 16x4 RAM macro from the
XC4000E library. Although the stack is 4x4, RAM and ROM are only
available in 16x1 or 32x1 increments, so only one fourth of the
memory addresses are used. A stack four times as deep could be
implemented using only two CLBs. An equivalent flip-flop
implementation would require 64 flip-flops or 32 CLBs. In this case,
with a stack only four words deep, using the static memory feature of
the XC4000E CLB still reduces the stack from eight CLBs to two CLBs.

To view the XC4000E stack implementation, follow these steps:

1. Make sure the top-level “Calc” schematic is displayed, and type
in “edit”. Select the STACK symbol with the mouse. Alterna-
tively, you can enter “edit stack”.

2. On the stack schematic is a RAM16X4S component, which repre-
sents four 16x1 synchronous RAMs. Select this component while
in “edit” mode to view its schematic.

The schematic for RAM16X4S is shown below.
Cadence Interface/Tutorial Guide 9-51

Cadence Interface/Tutorial Guide
Figure 9-31 RAM16X4S, XC4000E Implementation

Using the Device-Independent Register File
The device-independent stack is implemented by replacing the
RAM16X4S with a register file that emulates a synchronous RAM
with a set of flip-flops and multiplexers. This implementation can be
used for any Xilinx device, even one from the XC4000E family.

If you are targeting an XC4000E device, you may skip this section to
take advantage of the RAM feature of the XC4000E.

Make the stack a device-independent schematic as follows:

1. Return to the stack schematic (using “ret”). Enter the command
“replace ram4_9k”.

2. Use the left mouse button to select the RAM16X4S.
9-52 Xilinx Development System

Schematic Design Tutorial
3. The RAM16X4S is replaced with the device-independent
RAM4_9K as shown below. Note that the label RAM_BLOCK has
been removed by Concept. Change the PATH property on this
component in the same manner as was done to the components
in the ALU1 schematic.

Figure 9-32 Replacing RAM with REG_9K

4. The unused A3 pin that exists on RAM16X4S does not exist on
RAM4_9K. Although the detached GND symbol and net are
trimmed during the implementation process, you can clean up
the schematic by deleting them. To do this, click on the Delete
button and then click on the GND symbol and net.

5. Write the updated stack schematic.

Removing the XC4000E Oscillator
If you are targeting the Calc design to an XC9500 or other device
outside the XC4000 family, you must also remove the CLOCKGEN
circuitry, which includes the OSC4 component, and replace it with an
external source.

Note: The XC3000 and XC5200 families also have internal, on-chip
oscillators. See the CLKGEN3K and CLKGEN5K components to see
how these are used. You may choose to replace the CLOCKGEN
Cadence Interface/Tutorial Guide 9-53

Cadence Interface/Tutorial Guide
component with one of these alternative macros with the “replace”
command, instead of following the instructions below.

1. On the Calc schematic (“edit calc”), enter into Delete mode and
select the CLOCKGEN component with the left mouse button.

2. Add components, nets, and labels as shown below. The IPAD
symbol may be selected from the library xcepads, while the
BUFG symbol may be selected from the xce4000e library.

3. Write the Calc schematic.

Since the CLK signal is now sourced by a pad, it must be gener-
ated externally.

Figure 9-33 Device-Independent Clock Source
9-54 Xilinx Development System

Schematic Design Tutorial
Using LogiBLOX
LogiBLOX is a tool that allows you to quickly synthesize modules for
common functions such as adders, counters, and multiplexers. It
allows you to create components of arbitrary bus width (e.g., a 17-bit
adder) and automatically uses the best architectural resources for a
particular target device family. In this optional section, you replace
the ADSU4 component in the ALU1 schematic with a LogiBLOX
adder. If you choose to leave the ALU1 schematic in its original form,
read this section but do not make any changes.

Note: With the M1 release of the Xilinx toolset, some special steps
must be taken to integrate LogiBLOX symbols into the Concept sche-
matic. In later releases, the flow for adding LogiBLOX symbols will
be smoother and will not require all the steps that are described
below.

Creating a LogiBLOX Module
To replace the ADSU4 symbol with a LogiBLOX module:

1. Bring the ALU1 schematic into view (edit alu1).

2. Select Delete mode, then select the ADSU4 component to delete
the symbol from the schematic.

3. From your UNIX prompt, with your M1 environment set up and
within the design’s Project Directory, enter the command:

lbgui &

This should invoke the LogiBLOX GUI. If you are running Logi-
BLOX for the first time from this directory, then you will get a
Setup menu, as shown in the figure below.
Cadence Interface/Tutorial Guide 9-55

Cadence Interface/Tutorial Guide
Figure 9-34 LogiBLOX Setup Menu

4. Specify the parameters for the LogiBLOX module:

a) Select “cadence” as the vendor and B<I> as the bus notation
format.

b) Select your Project Directory by clicking on the Project Direc-
tory tab on the Setup popup and either typing in the location
of your project, or using the Browse button to navigate to the
desired directory

c) Select the Device Family (for example, XC4000E) by clicking
on the Device Family tab, then on the arrow button to select
the desired device family from the list of supported device
families.

d) Click on Options and select the desired simulation model
(usually Structural Verilog). The Verilog netlist is generated
to support functional simulation. It will also be used to
generate the symbol body for the LogiBLOX module. Make
sure that the NGO file is selected as the Implementation
Netlist. The Component Declaration option is not used when
you are doing a top level schematic.
9-56 Xilinx Development System

Schematic Design Tutorial
Figure 9-35 LogiBLOX setup

e) Click on OK to accept these settings. The LogiBLOX Module
Selector appears.

5. The LogiBLOX Module Selector appears. Set the options in this
dialog box as shown in the figure. You are making a non-regis-
tered adder/subtracter module of four bits. Name the compo-
nent “addsub4”.
Cadence Interface/Tutorial Guide 9-57

Cadence Interface/Tutorial Guide
Figure 9-36 Using the LogiBLOX Module Selector

6. Click OK. LogiBLOX will take a minute or so to generate a
Verilog netlist and an NGO file for this new module. This NGO
file will need to be present when you do the implementation in
M1.

Creating a Symbol for the LogiBLOX Module
Since this tutorial is schematic based, it will be necessary to create a
symbol for the LogiBLOX module. You must create the symbol
manually from within Concept using the genview command.
9-58 Xilinx Development System

Schematic Design Tutorial
1. Make sure the .v file for your LogiBLOX module is located in
your Project directory. Enter the following command in the
Concept message window to generate the body:

genview -i logiblox_module_name.v -v logic body
verilog

Assuming you used the suggested name of addsub4, the
command would be:

genview -i addsub4.v -v logic body verilog

This tells Concept to generate a body view for a module named
addsub4 from the Verilog netlist, and to put it in the logical view
for this module.

2. Once the module has been generated, you must edit the resulting
verilog.v file in the addsub4/logic/ subdirectory of the new
module directory, and add the following directive after the
module declaration:

parameter cds_action = “ignore”;

3. In Concept, in the ALU1 schematic, add the ADDSUB4 module
(“add addsub4”) and connect it as shown in the figure below.

Figure 9-37 Adding the ADDSUB4 LogiBLOX Component
Cadence Interface/Tutorial Guide 9-59

Cadence Interface/Tutorial Guide
Other Special Components
To complete the Calc design, a STARTUP symbol is added to make
the logic resetable. Also, adding a CONFIG symbol allows the Xilinx
part number to be specified on the schematic.

The STARTUP Block (Optional, XC4000E/EX and
XC5200 only)

The STARTUP block allows different aspects of a design to be
controlled globally. In this example, STARTUP will be used to
connect an external signal to the global set/reset net built into the
XC4000 family and XC5200 architectures. This global net connects to
all flip-flops in the device and sets or resets them asynchronously. (Set
or reset is determined at the flip-flop level.) An advantage to using
this built-in resource is that no routing resources are wasted tying a
system-wide reset signal to all flip-flops in the design. For more infor-
mation on STARTUP, see the Xilinx Libraries Guide.

The STARTUP symbol is used here to implement a system-wide reset
signal called NOTGBLRESET. This signal is active-low; therefore,
when NOTGBLRESET is low, the Calc circuitry is reset.

1. In the Calc schematic, add the components, nets, and labels as
shown below. IPAD is in the xcepads library, and IBUF, INV, and
STARTUP may be taken from the Xilinx device library (xce4000e
or other family). Alternatively, you can enter the command “add
ibuf” to add the IBUF, and similar commands to add the
STARTUP, INV, and IPAD.
9-60 Xilinx Development System

Schematic Design Tutorial
Figure 9-38 Adding the STARTUP Symbol

An inverter is added to the signal path since the GSR pin on
STARTUP is active-high. Also, since GSR is implicitly connected
to all reset logic throughout the device, GBLRESET is connected
only to the GSR pin on the STARTUP block.

Note: If you target an XC5200 device, connect your chip-wide reset
signal to the GR pin on the STARTUP module.

2. Write the Calc design.

Adding the CONFIG Symbol (Optional)
The CONFIG symbol is used to tell the place-and-route software how
to process the design. In this example, it will be used to specify the
part number for this device.

To add the CONFIG symbol:

1. From the Calc schematic, either enter the command “add config”,
or select the part from the xce4000 library (or other Xilinx device
library). Place this symbol in the lower-right hand corner of the
Calc schematic.

2. Enter into Attribute mode and select the CONFIG symbol.
Cadence Interface/Tutorial Guide 9-61

Cadence Interface/Tutorial Guide
3. In the Attribute Form, click on Add, and enter the Name as
“PART_TYPE”, and the Value as “XC4003E-4-PC84” and click
OK. This specifies an XC4003E device with -4 speed grade
(approximately 4 nanoseconds delay through a CLB) in an 84-pin
PLCC.

The PART value may take one of the following two formats:

[XC] part_number-speed-package
[XC] part_number-package-speed

Therefore, the following values for the PART property are all
legal:

XC4003E-4-PC84 (recommended)
XC4003E-PC84-4
4003E-4-PC84
4003E-PC84-4

Note: If using a different device, type that device number into the
Property Value field instead, e.g., XC95108-20-PC84

4. Move the property text to be within the CONFIG symbol as
shown below.

Figure 9-39 Adding the CONFIG Symbol

5. Write the Calc schematic.
9-62 Xilinx Development System

Schematic Design Tutorial
Using a Constraints File
Using a constraints file, you can supply constraints information in a
textual form rather than putting it on a schematic. Sometimes this
method is more efficient than putting constraints on a schematic. An
example of a constraints file is shown in the figure below. The figure
shows the user constraints file, calc_4ke.ucf, that is supplied with this
tutorial. The constraints file syntax is the same for all device families.
Since you only specified one pin location for one of the many inputs
and outputs on the Calc schematic, you must use a constraints file to
place the rest.

The place and route software must be instructed to read and apply
the .ucf file when the design is read into the Xilinx Design Manager.
The procedure for doing this is detailed later in the “Using the Xilinx
Design Manager” section.

CALC_4KE.UCF
User constraints file for CALC, XC4003E-PC84
If the F pin is not constrained on the schematic,
remove the comment (#) from NET F LOC=P50;

NET switch<7> LOC=P19 ;
NET switch<6> LOC=P20 ;
NET switch<5> LOC=P23 ;
NET switch<4> LOC=P24 ;
NET switch<3> LOC=P25 ;
NET switch<2> LOC=P26 ;
NET switch<1> LOC=P27 ;
NET switch<0> LOC=P28 ;

NET a LOC=P49 ;
NET b LOC=P48 ;
NET c LOC=P47 ;
NET d LOC=P46 ;
NET e LOC=P45 ;
NET f LOC=P50 ;
NET g LOC=P51 ;
NET ofl LOC=P41 ;

NET gauge<3> LOC=P61 ;
NET gauge<2> LOC=P62 ;
Cadence Interface/Tutorial Guide 9-63

Cadence Interface/Tutorial Guide
NET gauge<1> LOC=P65 ;
NET gauge<0> LOC=P66 ;

NET stackled<3> LOC=P57 ;
NET stackled<2> LOC=P58 ;
NET stackled<1> LOC=P59 ;
NET stackled<0> LOC=P60 ;

Remove the NOTGBLRESET line if STARTUP
is not used in the schematic

NET notgblreset LOC=P56;

Performing Functional Simulation
Functional simulation is performed before design implementation to
verify that the schematic that you have designed is logically correct.
All components in the Calc design, even the non-schematic Logi-
BLOX module, have built-in simulation models so little pre-
processing is necessary.

Using CONCEPT2XIL
The CONCEPT2XIL program is used to both translate the design for
implementation and to create a simulatable Verilog netlist. The latter
is only possible after running CONCEPT2XIL if the design contains
schematic components only. If the design has any “black boxes” with
no underlying schematics, such as VHDL code that has been synthe-
sized and compiled down to a .ngo file, then functional simulation is
only possible after the program NGDBuild has been executed
(NGDBuild will be executed during implementation in any case). The
Calc schematic does not contain any non-schematic blocks, so
proceed directly to simulation.

From the UNIX prompt, in the main design directory, enter the
command:

concept2xil -sim_only -family xce4000e calc

If you are compiling this for another family, substitute the appro-
priate family name for “xce4000e” (i.e., xce9000, xce5200, xce3000, or
xce4000x for the 9500,5200,3000A,or 4000EX, respectively).
9-64 Xilinx Development System

Schematic Design Tutorial
The -sim_only option will cause CONCEPT2XIL not to create an
EDIF file (.edf), which it normally would do so the Xilinx Design
Implementation Tools can implement the design.

After CONCEPT2XIL has completed, a xilinx.run directory is created
by default, which contains all the output files (except
concept2xil.log). The generated output files are a .v file (Verilog file
that declares the global GSR and GTS signals for a 4000E(X) part), and
a .vf file (list of paths to all the Verilog files that comprise the design).

The Verilog files that the .vf file point to were either created by HDL
Direct, or are part of the Xilinx-supplied Verilog library of compo-
nents for all the Xilinx primitives and macros (located in $XILINX/
cadence/data/family. Here are a few entries from a sample .vf file:

/home/jeremy/m1/cadence_m1tut/calc/logic/verilog.v
/home/jeremy/m1/cadence_m1tut/alu1/logic/verilog.v
/xilinxM1/cadence/data/xce4000e/adsu4/logic/verilog.v
/home/jeremy/m1/cadence_m1tut/andblk2/logic/verilog.v
/xilinxM1/cadence/data/xce4000e/fd4re/logic/verilog.v

Later, when Verilog-XL is executed, the “-f” option will be used to
have Verilog-XL read in all the verilog.v files referenced by calc.vf.

Creating a Verilog Test Fixture
Now that CONCEPT2XIL has created the necessary files, a Verilog
test fixture must be created to properly force the inputs for the simu-
lation. A sample test fixture is included in the tutorial (calcf.stim)
directory, which will be modified for the functional simulation. Here
is an analysis of the various parts of the test fixture:

Timescale

A `timescale directive should be included near the top of the file. The
`timescale directive will declare the time unit to be used, followed by
the precision. Smaller precisions will result in longer runtimes, but
can provide more accurate results. The following is a typical `times-
cale directive:

`timescale 1 ns/1 ps

Note: Using a smaller precision than 1 ps in a timing simulation is
not usually necessary, since the delay numbers given in the .sdf file
are not more precise than that. In functional simulation, it is essen-
Cadence Interface/Tutorial Guide 9-65

Cadence Interface/Tutorial Guide
tially irrelevant (except for longer simulation run times) so long as it
is more precise than the time unit (1 ns).

Test Fixture Module Declaration

Here is a test fixture module declaration that can be used with Calc:

module test;

 wire ofl;
reg notgblreset;
wire a, b, c, d, e, f, g;
wire [3:0] gauge;
wire [3:0] stackled;
reg [7:0] switch;

calc uut (.ofl (ofl) , .notgblreset (notgblreset) ,
.g (g) , .f (f), .e (e) , .d (d) , .c (c) , .b (b) ,
.a (a), .gauge (gauge) , .stackled (stackled) ,
.switch (switch));

The test fixture itself is considered the top-level module (module
test;), and the design is considered a component to be instantiated
(calc uut (...)). All the inputs and outputs of the Calc module will be
connected to signals in the test fixture with the same name (although
it could be a different name). The inputs of the Calc module (switch
and notgblreset) will be connected to signals in the test fixture of type
“reg”, since they will be driven by the test fixture stimuli and should
hold their values until driven differently. Outputs will go to signals of
type “wire”.

The “calc uut” line is the instantiation of the Calc design. The string
“uut” is an instance name (any name will do, so long as it conforms to
Verilog naming conventions). The string .ofl (ofl) can be generalized
to mean .port_name (signal_name), where port_name is the name of the
I/O port in the Calc module, and signal_name is the name of the
signal in the test fixture that it connects to.

Displaying Values
The output signal values of the Verilog-XL simulator can be
displayed in the UNIX xterm window that you invoked Verilog-XL
from, and/or it can be saved in a waveform database to be displayed
in SimWave later on.
9-66 Xilinx Development System

Schematic Design Tutorial
If you want to have the signal values displayed in the xterm window,
then it is necessary to use a $monitor statement, which will define a
list of signals to be displayed. For example,

$monitor("%t",$realtime,, "%b", uut.clk,,
notgblreset,, "%b", uut.stacken,, "%b",
uut.push,, "%b", uut.exec,, "%h",
uut.aluval[3:0],, "%h", uut.stackout[3:0],, ,,
"%b", switch[7],, "%b", switch[6:0]);

can be used for the Calc design. The $monitor statement will output
the signal values whenever there is an event on one of the listed
signals (one of the signals toggles). The $realtime function returns the
system time as a real number; the way system time is displayed is via
the $timeformat function. A typical $timeformat statement is:

$timeformat(-9,3,"ns",12);

which means to display the system time in units of 1E-9, to 3 decimal
digits precision, to end with the string “ns”, and to display at least 12
digits.

The sample Calc test fixture file also uses several $display statements,
to serve as a header for your output.

Opening a Waveform Database for SimWave
If you are using SimWaves to display the output waveforms, then
you will need to have the test fixture write out a waveform database
(.shm file), which SimWave can read in later on. The way this can be
done is by the use of the $shm_open statement. The syntax is

$shm_open(“path_to_calc_dir/xilinx.run/
calc.shm”);

You may use any directory and filename you wish to write to. Also be
sure to include the quotation marks.

In addition, you will need a $shm_probe statement, which indicates
which signals will be written to the database. An example
$shm_probe statement might be:

$shm_probe("AS")

The “AS” argument means that all signals in the test fixture and all
instantiations below it (including Calc) will be included in the data-
base, except for the internal signals of library cells.
Cadence Interface/Tutorial Guide 9-67

Cadence Interface/Tutorial Guide
Defining a Clock
Since most designs have an external clock signal coming in, it is
useful to have a block in the test fixture that generates the pulses
without having to manually toggle the clock signal back and forth.

Theoretically, it is not necessary to create a clock for the Calc sche-
matic, since it already has the OSC4 component (inside CLOCKGEN)
generating a 15Hz signal. However, one problem with this is that the
OSC4 component also has a 8MHz pin, and therefore the OSC4
Verilog model will have to simulate the toggling of the 8MHz pin
(even though the Calc schematic does not use it). What this means is
that it will take an extraordinary amount of time for Verilog-XL to
simulate a 15Hz clock signal (the osc4.v module, located in $XILINX/
cadence/data/verilogxce4000e, has a ‘timescale precision of 100ps,
so to make it to the first edge of the 15Hz clock, which is at 3.33E10 ps
(.0333 seconds), would require 3.33E10 / 100 = 333 million simulation
events).

Therefore, a clock will be defined in the test fixture that clocks much
slower, and this clock will force its values onto the CLK net, over-
riding the OSC4 clock. The typical way to define a clock is to use a
“always” block:

always begin

#10 clock = ~clock;

Do not use this example in the Calc test fixture; it is only an general
example. What this statement means is to assign “clock” the value of
itself negated, but only after waiting 10 time units (assuming ‘times-
cale 1ns, this would mean 10 ns). So if clock is initially 0, then after
10ns clock will be assigned ~clock, which is 1. Since this is in an
always block, it will continuously loop around until simulation is
halted. Notice, however, the above analysis assumed the initial value
is 0; you must include a statement inside an “initial” block that will
define the value at time 0ns.

initial begin

clock = 0;

The above assumes there is a port “clock” on the design, but that is
not the case in our Calc design (because OSC4 generates the clock
internal to the device). Because of this, you need the following in the
test fixture:
9-68 Xilinx Development System

Schematic Design Tutorial
always begin
force uut.clk = 0;

#50 force uut.clk = 1
#50 ;

end

The “always” block will immediately force uut.clk to 0, and then it
will force uut.clk to 1 after 50ns. It will then pause for 50ns before
looping around to force uut.clk back to 0. This will create a clock of
period 100ns, that begins with 0 at 0ns and has its first rising edge at
50ns.

There are two points that need to be made about the statement “#50
force uut.clk = temp;”. The first is that the keyword “force” is neces-
sary because “force” will always override the current value on a
signal. Since OSC4 is still driving the signal, the “force” command
will prevent contention on the signal. The second point to be made is
the syntax “uut.clk” is required. If the signal to be referenced does not
exist in the test fixture (or the module that the assignment is being
made in), then you must specify the hierarchy of the signal by refer-
encing the instance name it is contained in, followed by a period and
the signal name.

Asserting the Global Set/Reset
In a netlist for a 4000E(X) design that uses STARTUP, the Global Set
and Reset (“GSR”) net that leads to every flip-flop is connected to the
STARTUP block implicitly. Toggling the signal that controls the GSR
pin is needed to begin simulation and to simulate resetting the
device. Even if your design does not utilize the STARTUP block, the
GSR line should be pulsed once at the beginning of simulation to
simulate the initial behavior of the device.

In the Unified Library functional simulation, you must connect the
logic that controls the GSR pin to the underlying global GSR net by
using a `define directive:

`define GSR_SIGNAL testfixture. design. signal_on_GSR_pin

Here testfixture is the name of the test fixture module, design is the
instance name of the instantiated design, and signal_on_GSR_pin is
the net name that sources the STARTUP GSR pin.

For the Calc design, we would have:
Cadence Interface/Tutorial Guide 9-69

Cadence Interface/Tutorial Guide
‘define GSR_SIGNAL test.uut.gblreset

Note we did not use “notgblreset”; the signal that actually hooks up
to the STARTUP GSR pin must be used, not the signal that comes in
from the IPAD. If you use the signal that comes in from the IPAD, the
polarity of GSR in simulation will be reversed from what you would
expect, since there is an inverter between the signal NOTGBLRESET
and the GSR pin.

However, if the STARTUP block is not used, you must directly drive
the GSR. You may again use the `define directive to define a GSR
signal, even though it does not explicitly exist in the schematic or
HDL code. To do this, you would define a dummy "reg test.GSR"
(assuming the test fixture module name is "test", which is a name we
recommend if you want to reuse the test fixture with post-NGDBuild
simulation). You then need to use the `define to hook it up to the
verilog models, and drive "test.GSR" in your stimulus.

‘define GSR_SIGNAL test.GSR
reg GSR

.....

.....

initial begin
test.GSR=1;

#300 test.GSR=0;

//assign inputs now

• For the 5200 family (which has a STARTUP symbol available),
use

‘define GR_SIGNAL testfixture.design.signal_on_GR_pin

instead. If this is for the Calc design, and you are using the
STARTUP as discussed in previous sections, then
signal_on_GR_pin should be “gblreset”. If you are not using
STARTUP, then you must define a dummy signal, as discussed
before.

• For the 9500 family, use:
9-70 Xilinx Development System

Schematic Design Tutorial
‘define PRLD_SIGNAL test.PRLD
reg PRLD; //no 9K STARTUP, so use this dummy
.....

.....

initial begin

test.PRLD=1;

#300 test.PRLD=0;

//assign inputs now

• For the 3000A family, use:

‘define GR_SIGNAL test.GR
reg test.GR;

and use a similar procedure as described above for the 9500. Note
GR on a 3000A is active-low.

Assigning Values to the Inputs
In the test fixture, a series of stimuli must be added to all the inputs.
Typically, this series is placed in an “initial” block, and timing
controls are placed to specify when the inputs are to change. If one or
more of the inputs is periodic (i.e., the clock), then you may instead
put that signal in an “always” block, as described above for the clock
signal.

The following is a series of assignments that will work with the Calc
design (comments are in after “//”):

initial begin

 notgblreset = 0 ;
switch[7]=1 ;
switch[6:0]=0;

 #200 //time=200

 notgblreset = 1 ;
switch[6:0] = 7'b1100001; //h61

 #500 //time=700

 switch[7]=0;
switch[6:0] = 7'b0001101; //h0d
Cadence Interface/Tutorial Guide 9-71

Cadence Interface/Tutorial Guide
 #200 //time=900

 switch[7]=1;

 #300 //time=1200

 switch[7]=0;
switch[6:0] = 7'b1111011; //h7b

 #200 //time=1400

 switch[7]=1;

 #400 //time=1800

 switch[7]=0;
switch[6:0] = 7'b0111111; //h3f

 #200 //time=2000

 switch[7]=1;

 #300 //time=2300

 switch[7]=0;
switch[6:0] = 7'b1111011; //h7b

 #200 //time=2500

 switch[7]=1;

 #300 //time=2800

 switch[7]=0;
switch[6:0] = 7'b1010000; //h50

 #200

 switch[7]=1;

#200 $finish;
9-72 Xilinx Development System

Schematic Design Tutorial
 end

We begin by forcing the “notgblreset” signal low, then we assert it
high once more after 200ns. Remember that in the Calc design the
“notgblreset” net goes through an inverter, which makes the GSR
active low, but in the 4000E(X) family GSR is normally active high.

The “switch” signal is the main input (it will input the opcode and
the data), and it is assigned various values to test it various functions.
Please see the Hardware Debugger Guide for a complete description of
the Calc design, if you wish to understand what the function is of the
“switch” settings. The signal “switch[7]” is specified independently
only for clarity, since it has a separate function (execute).

Also, remember that time is cumulative when you use the (#xxx)
notation (the sequence “ #20 statement1; #30 statement2; “ would
mean “execute statement1 at 20ns, execute statement2 at 50ns).

At the end of the block, you can put a $finish or a $stop. A $finish will
cause Verilog-XL to terminate. A $stop will cause Verilog-XL to termi-
nate simulation from the test fixture, but it will go into “interactive
mode”. See your Cadence documentation on using interactive mode.

Invoking the Verilog-XL simulator
Once the test fixture has been created and CONCEPT2XIL has been
executed, you may go into the Verilog-XL simulator. From the
xilinx.run directory, invoke the UNIX command line:

verilog calcf.stim calc.v -f calc.vf

The files calc.v and calc.vf should have been created by
CONCEPT2XIL. The calcf.stim file must be user-generated (a copy
exists in the tutorial design directory; copy it to the xilinx.run direc-
tory to use it).

Once the above command line is entered, the following should be
displayed (only first portion of simulation is shown):

Highest level modules:

alias_vector

alias_bit

test
Cadence Interface/Tutorial Guide 9-73

Cadence Interface/Tutorial Guide
T c n s p e a s s sssssss

 i l o t u x l t w wwwwwww

 m o t a s e u a i iiiiiii

 e c g c h c v c t ttttttt

 k b k a k c ccccccc

 l e l o h hhhhhhh

 r n [u [[[[[[[[

 e t 7 6543210

 s] []]]]]]]]

 e

 t]

 0.000ns 0 0 0 0 0 0 x 1 0000000

 50.000ns 1 0 0 0 0 0 x 1 0000000

 100.000ns 0 0 0 0 0 0 x 1 0000000

 150.000ns 1 0 0 0 0 0 x 1 0000000

 200.000ns 0 1 0 0 0 0 x 1 1100001

 250.000ns 1 1 0 0 0 0 x 1 1100001

 300.000ns 0 1 0 0 0 0 x 1 1100001

 350.000ns 1 1 0 0 0 0 x 1 1100001

 400.000ns 0 1 0 0 0 0 x 1 1100001

 450.000ns 1 1 0 0 0 0 x 1 1100001

 500.000ns 0 1 0 0 0 0 x 1 1100001

The header (Time, clock, notgblreset, etc.) was specified in the test
fixture with $display statements. The “clock” corresponds to uut.clk,
which is now being overridden with “force” statements in the test
fixture. The simulation outputs are stacken, push, exec, aluval[3:0],
and stackout[3:0]. Undefined states are marked with a “x”; some of
the “x”s seen here are due to the RAM16X4 module being unwritten
to. Values are written to the RAM16X4 later in the simulation.
9-74 Xilinx Development System

Schematic Design Tutorial
Using SimWave
Cadence has shipped the cWaves waveform viewer up to and
including its 9604 release; starting with the 9702 release, it will
replace it with SimWave. This tutorial will use SimWave to display
the waveforms.

Invoking SimWave
To invoke SimWave, enter at the UNIX prompt (in the xilinx.run
directory, or wherever the .shm file is stored):

simwave &

This should bring up the SimWave GUI. To add signals to display:

1. Click on File → Database → Load .

2. Select “calc.shm” in the Directories field. If you executed
SimWave from a different directory than xilinx.run, you should
browse to the directory. Select OK.

3. From the SimWave GUI, select Edit → Add Signals .

4. Double-click the instance “test” in the Instance window. If you
are using your own test fixture, this will be the instance name of
your top-level test fixture module.

5. All the signals that occur inside the test fixture should now be
displayed in the Signals window. Click on the “notgblreset”
signal.

6. Click on the Display Signals button on the toolbar (it has a picture
of a waveform, and is next to Close).You should see the wave-
form for this signal appear in the SimWave display. The label
shown for this signal is “test.notgblreset”, which is the full hierar-
chial name of the signal (note that part of the label may not be
shown in the display). Highlight the “switch” bus in the Signals
window, and again click on the Display Signals button. You
should now see this signal displayed below “notgblreset”.
Cadence Interface/Tutorial Guide 9-75

Cadence Interface/Tutorial Guide
Figure 9-40 SimWave Browser/Display Tool

If you see only flat lines, as shown in the figure above, then do a
View → Zoom Fit in the main SimWave GUI.

7. Double-click on “uut” in the Instances window (or whatever the
instance name is of the “calc” module in the test fixture). All the
signals inside the top-level schematic of Calc should be shown in
the Signals window. To select several signals at once, hold down
the Control key and highlight the following signals in the Signals
window: aluval], stackout, clk, exec, push, and stacken. Click on
Display Signal, as before. If you wish, you may add other signals.

8. Close the Browser/Display Tool by clicking on Close.

Changing the View in SimWave
The waveforms shown in the display may be difficult to read. For one
thing, you might want to zoom out and see the entire waveform.
Also, the timescale shown at the bottom of the display is now in pico-
seconds, which is more difficult to deal with. It would also be easier
to read the waveforms if the signals were arranged differently.

1. From the main SimWave GUI, select View → Zoom Fit . There
should now be eight waveforms displayed, shown from 0 ps to
approximately 3200000 ps (assuming you used the given test
fixture).
9-76 Xilinx Development System

Schematic Design Tutorial
2. To change the Time Scale, click on the button on the upper right
corner of the GUI (under Help). Select “nanoseconds”.

Figure 9-41 Changing the Displayed Time Scale in SimWave

3. To change the order in which the signals are displayed, you can
select the waveform name, click on the right mouse button→Cut,
select the waveform name you wish to place the signal above,
and do a right mouse button→Paste.

Order the waveforms in the following sequence, from top to
bottom: clk, stacken, push, exec, aluval, stackout, and switc].

Splitting Up and Bundling a Bus in SimWave
The Calc design uses switch[6:0] as an opcode and data, but it uses
switch[7] as an execute switch to be toggled. Therefore, it is easier to
display switch[6:0] separately from switch[7].

1. In the SimWave Browser, again descend to test.uue as before.
Select the down arrow beside “switch” in the Signals display to
view the bus bits. Highlight “switch[6]”, and while holding
down the Shift key, highlight “switch[0]”. “Switch[6]” through
“switch[0]” should now be highlighted.

2. Click on the Create Bus icon on the toolbar (beside Display
signals; has picture of truck with binary digits on it). The window
should now have an expansion.

3. Click on the right arrow in the new window. Enter in the name on
the Bus (“switch[6:0]” for instance), and select Create Bus. The
SimWave GUI should now display the new bus. See the figure
below.
Cadence Interface/Tutorial Guide 9-77

Cadence Interface/Tutorial Guide
Figure 9-42 Splitting up the Switch[7:0] Bus in SimWave

4. Highlight the individual “switch[7]” bit, and add that to the
display

5. To delete the original “switch[7:0]” bus from the display, high-
light the waveform name in the main GUI and do a right mouse
button→Delete.
9-78 Xilinx Development System

Schematic Design Tutorial
I

Figure 9-43 Final SimWave Display of Waveforms

6. Select File → Database → Save to save your setup. This will
not save the waveforms themselves; they are still in the .shm file.

Using CONCEPT2XIL for Implementation
Once your design is verified to be functionally correct, you use
CONCEPT2XIL to translate your Concept design into a Xilinx-ready
EDIF netlist. Running CONCEPT2XIL is always the first step in
implementing a design. Whenever you make changes to your sche-
matic, you must run CONCEPT2XIL again so that the Xilinx software
can process those changes.

The command line for using CONCEPT2XIL is:

concept2xil -family target_technology design_name

where target_technology is xce4000e, xce4000x, xce3000, xce5200, or
xce9000. Notice this command line is the same as the command line
that is used for creating a functional simulation Verilog netlist, except
that the -sim_only option is not present. You do not have to use the -
sim_only option for CONCEPT2XIL even if you plan to simulate; this
option merely stops CONCEPT2XIL from creating an EDIF (.edf) file,
so it can execute faster.
Cadence Interface/Tutorial Guide 9-79

Cadence Interface/Tutorial Guide
CONCEPT2XIL will again put its output in xilinx.run by default (use
the -rundir option to change), and it will use the files cds.lib and
global.cmd to find the proper libraries (use the -cdslib and -gcmd
options to change). For the Calc design, enter the following command
in the main design directory:

concept2xil -family xce4000e calc

Upon completion, an .edf file will be created, along with the .v and .vf
files needed for simulation (identical to what was created earlier for
functional simulation). A log file called concept2xil.log will also be
created in the design directory.

Using the Xilinx Design Manager
The Xilinx Design Manager is a graphical design-flow and project
manager. The Xilinx Design Manager takes your design, represented
by the EDIF file from CONCEPT2XIL, and implements it in an FPGA
or CPLD. You can also use the Xilinx Design Manager to generate
timing information that you can import into Verilog-XL.

This section gives a brief overview of the design implementation
flow. For a more in-depth discussion of the flow, including advanced
implementation options, see the Development System Reference Guide.

1. At the UNIX prompt, within the xilinx.run directory, enter the
command:

dsgnmgr &

2. Go to File → New Project..., and click on Browse to find your
Input Design. Select the calc.edf file. Click on OK.
9-80 Xilinx Development System

Schematic Design Tutorial
Figure 9-44 Xilinx Design Manager

Each project has associated with it objects known as “versions”
and “revisions.” Versions represent logic changes in a design (for
example, adding a new block of logic, replacing an AND gate
with an OR gate, or adding a flip-flop); revisions represent
different executions of the design flow on a single design version,
usually with new implementation options (for example, higher
place and route effort, a change in part type, or experimentation
with new bitstream options). In the next stage, you make a new
version and revision on which you run the implementation
design flow.

3. In the Xilinx Design Manager, select Utilities →Template
Manager. Select New..., and give a name such as “calc”. Select the
Implementation Templates button. Select Customize in the
Template Manager, and in the Program Name field, enter
NGD2VER. In the Program Options field, enter -ul. The ul option
will cause a `uselib directive to be written out in the output .v file,
which will be needed in simulation. Select Close to exit the
Template Manager.

4. Within the Xilinx Design Manager, select Design → Implement,
which gives you the Implement dialog box, with fields for part
type, design version, and revision as shown.
Cadence Interface/Tutorial Guide 9-81

Cadence Interface/Tutorial Guide
Figure 9-45 Implementation Dialog Box

5. If you chose not to use the CONFIG symbol in the earlier section,
you will need to specify the part type manually.

Click the Select button to display a pull-down listing of available
devices. Choose a Family of XC4000E, a Device of XC4003E, a
Package of PC84, and a Speed Grade of -4. Click OK. The part
number is inserted into the Part field in the Implement dialog
box.

6. Click on Options. The Options dialog box appears.
9-82 Xilinx Development System

Schematic Design Tutorial
Figure 9-46 Options Dialog Box

7. Click Browse by the User Constraints field. Select the calc_4ke.ucf
file from the design directory, then Click OK.

8. Under Program Option Templates, select “calc” from the pull-
down menu for Implementation. This will cause the “calc”
template options to be used in addition to the options selected in
the GUI.

9. Under Optional Targets, make sure the following are selected:
Cadence Interface/Tutorial Guide 9-83

Cadence Interface/Tutorial Guide
• Produce Timing Simulation Data: This generates a back-
annotated Verilog netlist that can be imported into the
Cadence tools.

• Produce Configuration Data: This generates a programming
bitstream suitable for downloading into the Xilinx device.

• Produce Post Layout Timing Report: This generates a timing
report file based on how the design is actually routed.

You can also select the following option:

• Produce Logic Level Timing Report: This generates a prelimi-
nary (pre-place and route) timing report based on the
number of logic levels in each signal path. Since it is gener-
ated before the place-and-route layout step, it does not
contain information on device routing. Looking at this report
before place and route can be useful for seeing how much
“routing slack” you have in a design.

10. Under Program Option Templates Implementation, select Edit
Template. The XC4000 Implementation Options dialog box
appears.

11. Select the Interface tab. In the Interface pane, look under Simula-
tion Data Options and verify that Format is set to Verilog and that
Correlate Simulation Data to Input Design is selected.

12. Click OK to return to the Options window. Click OK to return to
the Implementation dialog box.

13. Verify that the version is “ver1” and the revision is “rev1” then
click Run. The Flow Engine comes up as shown in the following
figure.
9-84 Xilinx Development System

Schematic Design Tutorial
Figure 9-47 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate: convert the design EDIF file into an NGD (Native
Generic Design) file

• Map: group basic elements (“bels”) such as flip-flops and
gates into logic blocks (“comps”); also generate a logic-level
timing report if desired

• Place & Route: place comps into the device, and route signals
between them

• Timing: generate timing simulation data and an optional
post-layout timing report

• Configure: generate a bitstream suitable for downloading
into and configuring a device

14. When the implementation completes, an Implementation Status
box appears with:

Implementing revision ver1->rev1 completed
successfully.
Cadence Interface/Tutorial Guide 9-85

Cadence Interface/Tutorial Guide
Click on View Logfile to display the logfile from Flow Engine.
The report is displayed in vi. To exit the viewer, type :q! and
press Return. Click OK in the Implementation Status dialog to
return to the Xilinx Design Manager.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

Performing Timing Simulation
Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. In this section, we will
again invoke Verilog-XL and SimWave to display the timing data.

Invoking Verilog-XL for Timing Simulation
In your xilinx.run directory you should now see three files called
“time_sim”. This .v file contains a complete Verilog netlist of the Calc
design, which has been broken down to the Xilinx SIMPRIM library
primitives. The .sdf file contains all the net delays, and is necessary if
you want a non-unit delay timing simulation. NGD2VER (called by
Design Manager) also created a .tv file, which is a test fixture
template. Although you could modify this template to add your own
input stimuli, in most cases you should able to re-use the functional
simulation test fixture you created earlier (calcf.stim in this tutorial).
However, before doing so, you must comment out the line that speci-
fies the GSR_SIGNAL macro in your calcf.stim file. This must be
done because the Verilog netlist for a post-NGDBuild or routed
design already models the connection to the GSR net, and the defini-
tion will cause contention problems during your simulation. In the
Calc tutorial design, the specific line in calcf.stim that needs to be
commented out is:

`define GSR_SIGNAL test.uut.gblreset.

1. Enter in the UNIX command line:

verilog calct.stim time_sim.v

The .sdf file will be read in automatically, since there is a
“$sdf_annotate” command inside the time_sim.v file.
9-86 Xilinx Development System

Schematic Design Tutorial
2. The output should be similar to what was encountered in func-
tional simulation, except that the displayed times will not always
be on 50ns increments.

3. Invoke SimWave, and go to File → Restore Setup. Enter in the
name of the .wrf file you created when you saved the setup under
functional simulation (calc.wrf). The resulting waveforms should
look similar, but there is now precise timing information.

Examining Routed Designs with EPIC
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9500 device, skip to the “Making Incremental
Design Changes” section

At this point in the tutorial, the design process is complete. If you
would like to see how the design has been implemented by the Xilinx
software, you can take a graphic look at your placed and routed
design using the Editor for Programmable Integrated Circuits, or
EPIC. You can access EPIC from the Xilinx Design Manager.

EPIC provides several useful functions, such as:

• Manual editing of a routed design

• Probe insertion during in-circuit verification (?)

• Static timing analysis

Figure 9-48 EPIC Icon

EPIC is explained in a separate tutorial. See the “EPIC Tutorial”
chapter of the EPIC Reference/User Guide. Before starting this tutorial,
be sure to select the ver1 → rev1 revision of the design in the project
view.

Verifying the Design Using a Demonstration Board
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9500 device, skip to the “Making Incremental
Design Changes” section
Cadence Interface/Tutorial Guide 9-87

Cadence Interface/Tutorial Guide
Creating and Downloading the Bitstream
A bitstream has been created during the Configure stage in Flow
Engine. At this point, you are ready to download the bitstream using
a parallel download cable or the more versatile XChecker cable
connected to your workstation. The XC4000E version of the Calc
design is suitable for download into an FPGA demonstration board
available from Xilinx.

Downloading is accomplished with the Hardware Debugger. To
invoke Hardware Debugger, you select Tools → Hardware Debugger
from the menu bar, or click the Hardware Debugger icon on the
toolbar. If you are using an XChecker cable, you can also use the
Hardware Debugger to read back information from the device to
verify both the configuration as well as the state of memories and
registers within the device.

Figure 9-49 Hardware Debugger Icon

Hardware Debugger is explained in a separate tutorial. See the
“CALC Tutorial” chapter of the Hardware Debugger Reference/User
Guide. Before starting this tutorial, be sure to select the ver1 → rev1
revision of the design in the project view.

Making Incremental Design Changes
After initially placing and routing a design, it is often necessary to go
back to the schematic and make slight modifications to the original
design. When this situation occurs, much of the place and route infor-
mation from the previous design iteration can be “recycled,” as much
of it is unchanged. This process is known as incremental design, and
the NCD file (containing partition, placement, and routing informa-
tion) from the prior place and route run is used as a guide.

Since much of the place and route information is extracted from the
guide file, the place and route time is greatly reduced. The reuse of
place and route information also results in more stable timing over a
number of guided place and route iterations. Once a section of your
design passes your timing requirements, guided design ensures that
9-88 Xilinx Development System

Schematic Design Tutorial
it will pass in the future, even if other parts of the design are modi-
fied.

In this section of the tutorial, you make a small change to the sche-
matic and reprocess the design using the guide options available in
the Xilinx Flow Engine.

Note: A small design change is the addition, removal, or replacement
of only a small amount of logic in the design; the exact amount is
dependent on the size of the design. If radical changes are made to a
design, especially to existing portions of the design, it can be disad-
vantageous to guide the design.

Making an Incremental Schematic Change
Make a simple change to the Calc schematic that will be visible
immediately on the demonstration board. For example, assume that
the reset opcode is no longer needed and needs to be removed form
the design. This can be done by grounding the ‘R’ pins that are inputs
to the FDRE and FD4RE macros in the ALU1 schematic. The logic
that generated the original reset signal, and the logic it drove, is auto-
matically optimized out of the netlist by the MAP program.

Open Concept and load the Calc schematic.

1. Open the ALU1 schematic (edit alu1).

2. Zoom in on the lower right quadrant of the schematic.

3. Enter into Delete mode.

4. Delete the AND5B2 component that generates the GRESET net
feeding the FDRE and FD4RE. Delete the dangling nets that are
leftover, also.

5. Connect a ground symbol to the dangling QRESET net. The GND
symbol can be found in the Add Part → xce4000e of the Xilinx
Library menu. See the figure below.

6. Write the schematic.

7. Exit Concept, and retranslate using CONCEPT2XIL.
Cadence Interface/Tutorial Guide 9-89

Cadence Interface/Tutorial Guide
Figure 9-50 Grounding the Reset Logic

Translating the Incremental Design
Translate the guided Calc design by turning on the guide options in
Flow Engine. The following instructions demonstrate an alternative
method of running Flow Engine that offers more control over the
implementation flow.

1. In the Xilinx Design Manager, select calc, then choose Design →
New Version.

2. The New Version dialog box appears with the Name field auto-
matically filled in as “ver2”. You may also add a comment to the
new version. This comment appears in the project view next to
the version number. Click OK.

Note: You can add a comment to any version or revision in the
project view by selecting that version or revision, then selecting Right
Mouse Button → Properties.

3. Select the newly created “ver2” in the project view, then select
Design → New Revision.
9-90 Xilinx Development System

Schematic Design Tutorial
4. The New Revision dialog box appears with the Name field auto-
matically filled in as “rev1” and the Part field automatically filled
in as “XC4003E-4-PC84”. You may add a comment to the new
revision if you wish. Click OK.

5. Select the newly created “rev1” in the project view, then select
Tools → Flow Engine. Alternatively, you can click the Flow
Engine icon in the Toolbox.

Figure 9-51 Flow Engine Icon

6. Flow Engine appears; however, unlike the procedure you used in
the first revision, the implementation flow does not start auto-
matically. This allows you to step forward and even backward
through the implementation flow by individual stages, using the
audio-player-like buttons at the bottom of the Flow Engine
window, or the selections underneath the Flow menu.

Select Setup → Options from the menu bar. The Options dialog
box appears as before.

7. Go through the different options as before and verify that the
settings you gave in the previous revision have been carried over
into this revision.

8. In the Guide Design field, select Last. This sets the previous revi-
sion of the placed and routed design. In this case, it has the same
effect as selecting ver1 → rev1.

9. Click OK to return to Flow Engine.

10. Run the implementation as before by clicking the “play” button
(on the far left) at the bottom on the Flow Engine window.

11. When all steps have completed successfully, select Flow → Close
to exit Flow Engine.

Verifying the Change in the Demonstration Board
Verify that the change was performed by downloading the new
bitstream to the demonstration board, as you did previously. As
before, see the “CALC Tutorial” chapter of the Hardware Debugger
Cadence Interface/Tutorial Guide 9-91

Cadence Interface/Tutorial Guide
Reference/User Guide for more information. Before running through
this tutorial, make sure that the ver2 → rev1 revision is selected in the
project view.

Command Summaries
Although this tutorial uses the Cadence Design Manager and the
Xilinx Design Manager to process the Calc design, you can also
manually run the individual programs that these graphical tools run.

This section details command sequences that you can use to perform
the translations the Xilinx Design Manager performs in this tutorial.
The commands are written as you would type them at the system
prompt or in a batch file. You may also see a summary of these
system commands by using the Utilities → Command History and
Utilities → Command Preview selections in Design Manager or
Flow Engine. Once you are in the Command History or Command
Preview dialog box, select the display Mode to Command Line to see
the detailed system commands, including command-line options,
used by Flow Engine. You can cut and paste from these Command
dialog boxes into your text editor to create batch files.

Note: The commands listed here are slightly different from the
commands in the Command History and Command Preview
windows. The commands listed here show how you would typically
execute the Xilinx programs from the system prompt, outside of the
Xilinx Design Manager framework. The commands listed in the
Command History and Command Preview windows reflect how
Flow Engine executes Xilinx programs to fit into the Xilinx Design
Manager framework.

Functional Simulation for XC4000E Family Designs
concept2xil -sim_only -family xce4000e calc

verilog +delay_mode_unit calcf.stim calc.v -f
calc.vf

Basic Translation for XC4000E Family Designs
ngdbuild -p XC4000E -uc calc_4ke.ucf calc.edf

calc.ngd
map -p XC4003E-4-PC84 -o calc_map.ncd -oe normal

calc.ngd calc.pcf
9-92 Xilinx Development System

Schematic Design Tutorial
trce calc_map.ncd -a -o calc_map.twr
par -w -l 4 calc_map.ncd calc.ncd calc.pcf
trce calc.ncd -a -o calc.twr
ngdanno calc.ncd calc_map.ngm
ngd2ver -tf -w -ul calc.nga time_sim.v
bitgen calc.ncd -l -w -f bitgen.ut

Timing Simulation for XC4000E Family Designs
verilog calct.stim time_sim.v
simwave &

Incremental Translation for XC4000E Family Designs
mv calc.ncd calc_guide.ncd
mv calc.mdf calc_guide.mdf
ngdbuild -p XC4000E -uc calc_4ke.ucf calc.edf

calc.ngd
map -p XC4003E-4-PC84 -o calc_map.ncd -oe normal

-gf calc_guide.ncd calc.ngd calc.pcf
trce calc_map.ncd -a -o calc_map.twr
par -w -l 4 -gf calc_guide.ncd calc_map.ncd

calc.ncd calc.pcf
trce calc.ncd -a -o calc.twr
ngdanno calc.ncd calc_map.ngm
ngd2ver -tf -w -ul calc.nga time_sim.v
bitgen calc.ncd -l -w -f bitgen.ut

Further Reading
The Concept tutorial is provided to give you the information neces-
sary to begin a Xilinx design using Cadence software. It is important
to note that a tool as broad and complex as Concept cannot be fully
explained in a single tutorial. There are many different ways to use
the commands in Concept, and there are also many ways to
customize the application. It is strongly recommended that you read
the Cadence Concept documentation as well as the Xilinx Cadence
Interface/Tutorial Guide.
Cadence Interface/Tutorial Guide 9-93

Cadence Interface/Tutorial Guide
9-94 Xilinx Development System

Appendix A

Glossary

This glossary describes the basic terminology for the Xilinx/Cadence
interface.

body
A Concept symbol. The format of a body file name is body.
version.sheet_number. Example: body.1.1 is version 1, sheet 1 of a
Concept symbol.

cds_action = “ignore”;
Verilog parameter definition that must be added to the verilog.v file
generated for a LogiBLOX or other non-schematic block to indicate to
CONCEPT2XIL that there are no other underlying levels of hierarchy
associated with a given block.

cds.lib
A library mapping file pointing to the VAN-compiled Verilog
libraries used by CONCEPT2XIL and Concept.

chips_prt
Concept parts file. The file contains physical information about a
board level part.

CONCEPT2XIL
CONCEPT2XIL is the Concept schematic-to-EDIF netlister; it calls
several other products, such as HDLConfig, VAN, and SIR2EDIF.
CONCEPT2XIL is implemented as a C-shell script. CONCEPT2XIL
Cadence Interface/Tutorial Guide — 0401494 A-1

Cadence Interface/Tutorial Guide
uses Verilog as an intermediate format. The impact to Xilinx
customers is that if a particular design construct is not supported by
the Xilinx Verilog libraries, it will not get translated into the EDIF
netlist.

Concept
Cadence schematic editor used mainly by board level designers.

Concept Setup Files
These four files include startup.concept, cds.lib, global.cmd, and
master.local. These files set up your Concept environment. The
design.wrk file is also necessary. The use command in the global.cmd
file defines the .wrk file name.

Concept Unified Schematic Library
Xilinx supplies the Concept Unified Library for use with the Concept
schematic design tool. The library contains the Xilinx device families
and associated primitives and macros.

CPLD
A Complex Programmable Logic Device. Also the command “cpld”
command that invokes the CPLD fitter. See the CPLD Schematic
Design Guide for details.

EDIF
Electronic Design Interchange Format. An industry-standard netlist
format.

EDIF2NGD
EDIF2NGD, a Xilinx translation tool, converts an EDIF 2.0.0 netlist to
a Xilinx NGO file. The EDIF file includes the hierarchy of the input
schematic. The output NGO file is a binary database describing the
design in terms of the components and hierarchy specified in the
input design file.
A-2 Xilinx Development System

Glossary
For a description of the EDIF2NGD syntax and options, see the Devel-
opment System Reference Guide.

genview
A program that ships with the Cadence Concept schematic editor.
Genview creates a symbol/body from a Concept schematic, a Verilog
netlist, or a user-specified port list. This command is used for the
Cadence/LogiBLOX interface for body generation using structural
Verilog netlists from the LogiBLOX GUI.

global.cmd
A Concept setup file containing aliases to the Xilinx and Cadence
libraries available for your design.

HDL
Hardware Description Language. A language that describes circuits
in textual code. The two most widely accepted HDLs are VHDL and
Verilog. HDL may be used to describe a design in a technology-inde-
pendent manner using a high-level of abstraction. When used in this
way, implementation of a design requires that you first synthesize the
design to a gate-level description using a synthesis tool.

HDLConfig
Concept’s HDLConfig traverses a design’s hierarchy and generates a
design configuration that points to the cellviews for all the blocks in a
design. In the 97A release, HDLConfig reads the global.cmd and
hdldirect.dat files.

HDL Direct
Cadence Concept methodology for generating simulatable Verilog
code directly from schematics. HDL Direct creates a Verilog output
file for a schematic design. Required methodology for the Xilinx
Development System interface.
Cadence Interface/Tutorial Guide A-3

Cadence Interface/Tutorial Guide
iterated instances
A Concept methodology for replicating bodies which involves
adding an index range to the value of the PATH property for a given
instance. Use this methodology to replicate bodies in designs.

logic drawing
A Concept schematic. The format of a logic drawing file name is
logic.version.sheet_number. Example: logic.1.2 is version 1, sheet 2 of a
Concept schematic.

LogiBLOX
LogiBLOX is a Xilinx tool that you can use to create high-level
modules for insertion into a schematic or an HDL-based design. Logi-
BLOX is only supported in standalone mode for the Cadence inter-
face. LogiBLOX is not supported for CPLDs.

MAP
MAP is a Xilinx tool that maps the logic in your design to the
resources of the FPGA design.

For a description of the MAP syntax and options, see the Development
System Reference Guide.

master.local
A SCALD library mapping file which list the explicit paths to user
libraries. Aliases to each user library are defined in this file. Libraries
defined in master.local are available to your design if you include a
“master_library” directive in your global.cmd file pointing to
master.local.

mixed mode design
Mixed Mode refers to designs that contain both schematic and non-
schematic blocks.
A-4 Xilinx Development System

Glossary
NGDAnno
NGDAnno is Xilinx’s back-annotation utility.

For a description of the NGDAnno syntax and options, see the Devel-
opment System Reference Guide.

NGDBuild
NGDBuild, a Xilinx utility, reads a file in EDIF or XNF format,
reduces all the components in the design to Xilinx SIMPRIM primi-
tives, runs a logical design rule check on the design, and writes an
NGD file as output.

NGD2VER
NGD2VER translates your design into a Verilog HDL file that
contains a netlist description of the design in terms of a generic, archi-
tecture-independent Xilinx simulation primitives. In other words,
NGD2VER expands the design in terms of SIMPRIMs. The input files
to NGD2VER can be an NGD file used for post-NGDBuild functional
simulation or an NGA file that is used for timing simulation.

PAR
PAR is Xilinx’s place and route tool.

For a description of the PAR syntax and options, see the Development
System Reference Guide.

SCALD
A Concept old-style design methodology describing the logical
design of an electronic circuit. SCALD (Structured Computer Aided
Logic Design) identifies a language for specification of a logic design
around which Concept and its related tools work. The language orig-
inated in the Lawrence Livermore Lab.

Concept has been upgraded to work concurrently around an HDL-
centric language (that is, Verilog or VHDL) through the HDL Direct
tool, while still supporting the SCALD-based flow.
Cadence Interface/Tutorial Guide A-5

Cadence Interface/Tutorial Guide
SIR2EDF
SIR2EDF is Cadence’s generic SIR (Structural Intermediate Represen-
tation) to EDIF conversion tool. SIR2EDF is one of three subprograms
invoked automatically when you invoke CONCEPT2XIL.

SIZE
A Concept property used for replicating symbols. Not supported in
Xilinx Development System Verilog libraries.

Synergy
Cadence’s synthesis engine. Currently supports 2K, 3K, 4K, 4KE, 5K,
7K device families. Supported by Cadence.

testbench file
A testbench file contains simulation commands that drive a simula-
tion and exercise your design. Typically this file is separate from the
actual design netlist. (The terms “testbench” and “test fixture” are
used interchangeably.)

The Verilog-XL simulator uses a testbench file to conduct simulation.
The Xilinx NGD2VER command -tf option creates a testbench
template file that can be copied and edited for use as an actual test-
bench file. The testbench file contains test vectors to drive a simula-
tion.

Unified Library
Xilinx library standard that emphasizes standardization of compo-
nent naming and physical appearance of all schematic symbols across
all FPGA and CPLD architectures.

VAN
VAN is the Cadence Verilog Analyzer. VAN is one of the 3 subpro-
grams invoked automatically when you run CONCEPT2XIL. VAN
parses and analyzes Verilog netlists.
A-6 Xilinx Development System

Glossary
Verilog
An industry-standard HDL developed by Cadence Design Systems.
Recognizable as a file with a .v extension.

The term “verilog” is used in four contexts--to refer to an HDL, a
command, the Verilog-XL simulator, or Verilog files.

Verilog is an HDL that is used both for design entry and simulation.

To invoke the Verilog-XL simulator, you typically type the command
“verilog”.

The simulator is used for RTL/behaviorial functional and timing
simulation.

With HDL Direct turned on, Concept generates Verilog files for use
with the CONCEPT2XIL command.

Verilog SIMPRIM Library
Xilinx supplies SIMPRIM-based Verilog simulation libraries for
Verilog timing simulation and post-NGDBuild functional simulation.
The SIMPRIM library modules are generic, technology-independent.
This library is located in the $XILINX/verilog/data tree.

Verilog Unified Simulation Library
Xilinx supplies the Verilog Unified Simulation Library for post-
CONCEPT2XIL HDL Direct functional simulation.

Verilog-XL
Cadence’s Verilog HDL simulator.

VLOG2XIL
VLOG2XIL is an EDIF netlister that translates a Verilog netlist from
Synergy into EDIF. This netlist is supported by Cadence Design
Systems.
Cadence Interface/Tutorial Guide A-7

Cadence Interface/Tutorial Guide
.wrk file
SCALD library mapping file for your design. Lists the design blocks
in the project directory. Updated by Concept when a new block is
created.

XIL2CDS
XIL2CDS is a Cadence back-end tool that generates data files used to
integrate a Xilinx FPGA or CPLD into a board level schematic and
board level simulation.

XIL2CDS translates the .PIN, .V, and .SDF files from NGD2VER to
two other files: 1) a chips_prt file 2) a body file for the FPGA or CPLD.

The body or symbol can be instantiated into a board level schematic,
while the chips_prt file can be used to document information about
the FPGA/CPLD.

Note: Ensure that you use the most updated version of the Xilinx
.PIN file for ball grid and pin grid arrays. Copy the latest version as
follows:

cp $XILINX/cadence/data/xilinx.pga.pin
$CDS_INST_DIR/share/libary/xilinx/data/
xilinx.pga.pin

Xilinx Design Manager
The Xilinx Design Manager is Xilinx’s design implementation tool. It
is invoked by entering dsgnmgr at the UNIX command line.

XNF
Xilinx Netlist Format.
A-8 Xilinx Development System

Appendix B

Program Options

This appendix describes Xilinx and Cadence command line programs
that pertain to the Xilinx/Cadence interface. The primary programs,
such as NGD2VER, CONCEPT2XIL, XIL2CDS, and VERILOG are
described in detail. Xilinx programs are referenced with interbook
links.

CONCEPT2XIL
The command line program, CONCEPT2XIL, is the Cadence Concept
EDIF netlister. The CONCEPT2XIL program converts the Verilog (.V)
file produced by the Concept HDL Direct option to an EDIF (.EDF)
file, which can then be input to the Xilinx design implementation
tools. CONCEPT2XIL is shipped and supported by Cadence Design
Systems.

Syntax
concept2xil [-sim_only] [-cdslib filename] [-gcmd filename] [-
help] [-log filename] [-rundir dirname] -family technology
design_name

Options
This subsection describes the options to the CONCEPT2XIL
command.

-cdslib filename

The -cdslib filename option indicates the name of the library map
file. The default is cds.lib. This parameter is optional.
Cadence Interface/Tutorial Guide — 0401494 B-1

Cadence Interface/Tutorial Guide
-family family_name

This option specifies the target library, for example xce4000x. The
xce4000x library can be used to target designs being imple-
mented in the XC4000EX/XL/XV device architectures.

-gcmd filename

The -gcmd filename option specifies the name of the command
file, if any. The default is global.cmd. This parameter is optional.

-help

This option prints a usage message. It allows you to obtain more
information on CONCEPT2XIL and its options. It is optional.

-log filename

This option specifies the name of the log file. The default is
concept2xil.log. This parameter is optional.

-rundir dir_name

The -rundir dirname option specifies the name of the directory in
which CONCEPT2XIL is run. The default is xilinx.run. This
parameter is optional.

-sim_only

This option generates a Verilog design configuration for Unified
library functional simulation only; no EDIF is generated.

Files
This subsection describes CONCEPT2XIL input and output files.

Input Files

The input files are the structural Verilog netlist (.V) files that are
generated by the HDL Direct option in Concept when each
design block is saved.

Output Files

There are three output files from CONCEPT2XIL.
B-2 Xilinx Development System

Program Options
• Verilog (.V) file

This Verilog file defines the following modules.

alias_bit — defines a module that is used if you rename nets
tapped off a bus. This is usually done in conjunction with a
TAP, SLICE or MERGE body. Note that alias bits are not
supported by the Xilinx Development System EDIF netlister.
Because alias bits are not supported, if you rename a net (for
instance when you tap a bit off a bus and do not keep the
same bus name), you must keep the original net name and
the new net name separate in your schematic by inserting a
buffer component between the new and existing nets.

alias_vector — defines a module that is used if you rename
buses. This is usually done in conjunction with a SLICE or
MERGE body. Alias vectors are NOT supported by the M1
EDIF netlister.

• Verilog configuration (.VF) file

This configuration file contains information on the location of
the Verilog netlists for each block of the design.

• EDIF file

The EDIF file is used by the Xilinx NGDBuild program.

CONCEPT2XIL will overwrite any existing .v and .vf files with
the same name in the destination directory. Ensure that you do
not overwrite any existing files that you want to preserve.

Error and Warning Messages
This following subsections discuss error and warning messages
generated by CONCEPT2XIL.

Error Message

No acceptable view exists for cell primitive_name in
library path_to_library.

If this is the only error message in the log file, ignore it. Any other
error messages that display with this message will describe the
problem.
Cadence Interface/Tutorial Guide B-3

Cadence Interface/Tutorial Guide
Error Message

The following error message may display when you run
CONCEPT2XIL.

. . . Architecture not found in your design library

This message should be preceded by a cell name.

Following is an example:

Occurrence p1$9p -> calc_lib.synonym.hdl:
Error! Architecture not found in your design library

The occurrence name (p1$9p) is the value of the PATH property in
your Concept schematic. The expansion of the cell name, in terms of
the analyzed Verilog, is library.cell.view. The netlister searches for the
cell and view in the Concept Unified Schematic library. When the
netlister cannot find the cell, it looks in your design library (calc_lib
in the example error message).

If you get this type of error message, perform the following steps.

1. Verify that the libraries defined in your cds.lib physically exist at
the path given in the cds.lib file.

2. Verify that the referenced cell exists in the library you are
targeting and that the cell is defined in your cds.lib file.

3. Verify that the cell in the library you are targeting has an "hdl"
view (subdirectory). If it does not, write the cell to generate this
view with HDL Direct enabled. If it is a Xilinx library, contact
Xilinx for a patch.

4. Verify that the .sir file in the hdl subdirectory of the library cell is
the same version as those written to rundir/design_lib/cell/hdl.

The .sir files appear as: vlog004u.sir

The version is 004 in this case.

You will also receive this error message if you fail to enter the param-
eter cds_action=”ignore” statement in the verilog.v file in the logic/
subdirectory of a LogiBLOX module after generating the symbol for
the module. See the “Creating a Symbol for the LogiBLOX module”
section in the “Processing Designs with LogiBLOX Components”
appendix for details.
B-4 Xilinx Development System

Program Options
Error Message

The following error message may also display when running
CONCEPT2XIL.

Initializing environment ...
Error! Cell name not specified

This error message can be found in the CONCEPT2XIL.log file.

Example:

concept2xil -family xce4000x mydesign

For this example, the error message displays if mydesign is not present
in the current working directory or if mydesign is not an entry in
design.wrk (the work file specified by the global.cmd file).

CPLD
The cpld command invokes the CPLD design implementation soft-
ware (the Fitter). The command is run in a UNIX command window.
Your current working directory must be set to the project directory
which contains your design source netlist files before invoking cpld.
For a complete description, see the “Fitter Command and Option
Summary” appendix in the CPLD Schematic Design Guide.

DSGNMGR
This command invokes the Xilinx Design Manager, Xilinx’s design
implementation interface. The dsgnmgr syntax can take the following
three forms:

dsgnmgr

dsgnmgr project

dsgnmgr -design design.edif

When you use the first form of the command, the Design Manager
appears with no project loaded. In this context, a project means a
Xilinx project.

When you use the second form of the command, the Design Manager
appears but with the specified project loaded or opened. The project
is a fully specified file name with a .prj extension. It is a file created by
the Design Manager and contains the project information for a Xilinx
project.
Cadence Interface/Tutorial Guide B-5

Cadence Interface/Tutorial Guide
When you use the third form of the command, the Design Manager
finds the specified design file. A design in this context is a netlist file
such as an EDIF file. If the design does not already have a Xilinx
project associated with it, the Design Manager creates a project and
appears with this project loaded. If the design does already have a
Xilinx project associated with it, the Design Manager appears with
that project loaded.

For a complete description, see the “Getting Started” chapter in the
Design Manager/Flow Engine Reference/User Guide.

LBGUI
This command invokes the LogiBLOX Graphical User Interface.

NGDAnno
The NGDAnno program distributes delays, setup and hold times,
and pulse widths found in the physical NCD design file onto the
logical design view represented in the NGD file. Physical component
locations for PADs are also combined with the information in the
NGD file. For a complete description, see the “NGDAnno” chapter in
the Development System Reference Guide.

NGDBuild
The NGDBuild program performs all of the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD file describing
the logical design (the design in terms of logic elements such as AND
gates, OR gates, decoders, and RAMs). The NGD file resulting from
an NGDBuild run contains both a logical description of the design
reduced to Xilinx NGD (Native Generic Database) primitives and a
description in terms of the original hierarchy expressed in the input
netlist. The output NGD file can be mapped to the desired device
family. For a complete description, see the “NGDBuild” chapter in
the Development System Reference Guide.

NGD2VER
The NGD2VER program translates your design into a Verilog HDL
file containing a netlist description of the design in terms of Xilinx
simulation primitives. The Verilog file is then used to perform a simu-
B-6 Xilinx Development System

Program Options
lation with the Verilog-XL Cadence simulator. For functional simula-
tion and post-map timing simulation, you must use NGD2VER with
the -tf and -ul options to create the appropriate files for use with the
Cadence Verilog-XL simulator. NG2VER can be used to perform post-
NGDBuild functional simulation, post-Map timing simulation, and
post-route timing simulation. For post-implementation simulation,
you must also use the -pf option to create a.PIN file if you wish to
integrate your design into a Concept board level simulation.

Syntax
For post-NGDBuild functional simulation, use the following syntax.

ngd2ver -tf -ul infile.ngd outfile.v

For post-map timing simulation, use the following syntax.

ngd2ver -tf -ul infile.nga outfile.v

For post-implementation timing simulation, use the following syntax.

ngd2ver -tf -u l -pf infile.nga outfile.v

Options
This subsection describes the NGD2VER options.

-tf

The -tf option generates a test fixture file. The file has a .tv exten-
sion, and it is a ready-to-use template test fixture Verilog file
based on the input NGD or NGA file. For examples of testbench
files, see the annotated templates in the “Files” appendix.

-ul

The –ul option causes NGD2VER to write a Cadence `uselib
directive pointing to the appropriate Verilog simulation library
into the output Verilog file. The path will be written as shown
below:

`uselib dir=$XILINX/verilog/data libext=.vmd

where $XILINX is the location of the Xilinx software.
Cadence Interface/Tutorial Guide B-7

Cadence Interface/Tutorial Guide
This option is recommended if you are using the Cadence
Verilog-XL simulator. If you do not enter a –ul option, the `uselib
line will not be written into the Verilog file.

The alternative is to specify the path to your simulation library
on the Verilog command line with the -y option.

-pf

The –pf option will write out a pin file—a Cadence signal-to-pin
mapping file required by XIL2CDS. NGD2VER will generate a
PIN file if the input file contains routed external pins and you
have specified a –pf command line option. The file will have a
.pin extension.

Files
This subsection describes NGD2VER input and output files.

Input Files

Input to NGD2VER can be either of the following files:

• NGA—a back-annotated logical design file containing Xilinx
simulation primitives. If you enter a file name with no exten-
sion, NGD2VER will look for a file with an .nga extension
and the name you specified. An NGA file is the required
input for a post-map or post-implementation timing simula-
tion.

• NGD—a logical design file containing Xilinx simulation
primitives. An NGD file is the required input for a SIMPRIM-
based functional simulation.

Output Files

Output from NGD2VER consists of the following files:

• Verilog file—a structural Verilog netlist containing the netlist
information obtained from the input NGD or NGA file.

• SDF file—an SDF (Standard Delay Format) file containing
delays obtained from the input file. NGD2VER will only
generate an SDF file if the input is an NGA file which
B-8 Xilinx Development System

Program Options
contains timing information. The SDF file generated by
NGD2VER is based on SDF version 2.1.

The SDF file produced is intended solely for use with the
Verilog file generated along with it by NGD2VER.

• TV file—a testbench template file created if you enter the –tf
option on the NGD2VER command line. This option is
recommended when using NGD2VER with the Xilinx/
Cadence interface.

• PIN file—a Cadence signal-to-pin mapping file. NGD2VER
will generate a PIN file if the input file contains routed
external pins and you have specified a –pf command line
option.

All output files will have the same root name as the NGD or NGA file
unless you specify otherwise.

PAR
PAR takes an NCD file, places and routes the design, and outputs an
NCD file which is used by the bitstream generator (BitGen). For a
complete description, see the “PAR—Place and Route” chapter in the
Development System Reference Guide.

VERILOG
This command invokes the Verilog-XL simulator to perform func-
tional and timing simulation. For a complete description of this
command, see the Cadence manual, Verilog-XL User Guide.

Syntax
The syntax varies depending on which simulation is run.

For Unified Library based functional simulation, use the following
syntax:

verilog +gui +delay_mode_unit \
design.stim full_path_to_design.v \
-f full_path_to_design.vf

For SIMPRIM-based functional simulation, use the following syntax:

verilog +delay_mode_unit designf.stim full_path_to_designf.v
Cadence Interface/Tutorial Guide B-9

Cadence Interface/Tutorial Guide
For timing simulation, use the following syntax:

verilog full_path_to_designt.stim full_path_to_designt.v

(The “\”at the end of a line indicates that the line following the
current one can be typed on the same command line.)

Options
This subsection describes the Verilog command options.

+delay_mode_unit

Xilinx recommends that you specify the +delay_mode_unit
option when performing a functional simulation to specify all
delays as unit delays in your simulation. This prevents race
conditions if there are any feedback loops in your design. This
option is not used for timing simulations.

-f full_path_to_verilog_configuration_file

The -f option reads the Verilog configuration file (.vf). This option
is only used for Unified Library based functional simulation.

-y full_path_to_library_name

The -y option requires the full path name to the directory of the
simulation library you want to use. The +libtext+ extension must
be specified also when you use the -y option. This extension spec-
ifies a library in the simulation library module. If you need to
explicitly specify the SIMPRM Verilog library modules, the
appropriate extension is .vmd. This option is not required.

+libtext+

This option selects the library file extensions that will be used.
For the functional and timing simulations described in this
manual, this option is either.v or .vmd .

+gui

Optional. This option invokes the Verilog Environment.
B-10 Xilinx Development System

Program Options
Files
This subsection describes Verilog-XL input and output files.

Input Files

Input files include the following files for these simulations:

Unified Library Based Functional Simulation

• Verilog (.V) file—this file is required for Unified Library
based functional simulation. The file, which is generated
using the -sim_only option with CONCEPT2XIL, defines the
following modules:

alias_bit — defines a module that is used if you rename nets
tapped off a bus. This is usually done in conjunction with a
TAP, SLICE or MERGE body. Note that alias bits are not
supported by the M1 EDIF netlister. Because alias bits are not
supported, if you rename a net (for instance when you tap a
bit off a bus and do not keep the same bus name), you must
keep the original net name and the new net name separate in
your schematic by inserting a buffer component between the
new and existing nets.

alias_vector — defines a module that is used if you rename
buses. This is usually done in conjunction with a SLICE or
MERGE body. Alias vectors are NOT supported by the M1
EDIF netlister.

• Verilog configuration file — the configuration file, design.vf,
contains information on the location of the Verilog netlist for
each block of the design. The file is generated by the -
sim_only option of the CONCEPT2XIL command. The file is
used when conducting Unified Library based functional
simulation in conjunction with HDL Direct.

• Testbench file (.tv)—a user-specified test fixture file that you
can create from a testbench template. A copy of the testbench
file (.stim) is used during functional and timing simulations.

SIMPRIM-Based Functional Simulation

• A structural Verilog HDL file containing the netlist informa-
tion obtained from the input NGA file. This file is generated
Cadence Interface/Tutorial Guide B-11

Cadence Interface/Tutorial Guide
by NGD2VER and used in SIMPRIM-based functional simu-
lation, post-map timing simulation, and post-implementa-
tion timing simulation.

• Testbench file (.tv)—a user-specified test fixture file that you
can create from the testbench template generated from
NGD2VER. A copy of the testbench file (.stim) is used during
functional and timing simulations.

Timing Simulation

• A structural Verilog HDL file containing the netlist informa-
tion obtained from the input NGA file. This file is generated
by NGD2VER and used in SIMPRIM-based functional simu-
lation, post-map timing simulation, and post-implementa-
tion timing simulation.

• SDF file—an SDF (Standard Delay Format) file containing the
delays for the design. This file is required for timing simula-
tion only. NGD2VER automatically writes a directive,
$sdf_annotate, to your Verilog netlist specifying the appro-
priate .sdf file to use in conjunction with that netlist. The SDF
file is based on SDF version 2.1.

The SDF file is intended solely for use with the Verilog file
generated along with it by NGD2VER.

• Testbench file (.tv)—a user-specified test fixture file that you
can create from the testbench template generated from
NGD2VER. A copy of the testbench file (.stim) is used during
functional and timing simulations.

Output File

The output file name is verilog.log. Verilog-XL writes a record of
all simulation commands and outputs associated with the
$display and $monitor commands specified in your test fixture
file. Any error or warning messages issued by Verilog-XL are also
written to the log.

XIL2CDS
XIL2CDS is a Cadence-supported utility that integrates a Xilinx
FPGA or CPLD into a board level schematic for board level simula-
tion and routing. The command generates a symbol body for the
B-12 Xilinx Development System

Program Options
FPGA/CPLD that can be instantiated into a board level schematic,
and a chips_prt file that can be used to document information about
the FPGA/CPLD. For a complete description of this command,
contact Cadence Design Systems.

Ensure that you use the most updated version of the Xilinx .PIN file
for ball grid and pin grid arrays. Copy the latest version as follows:

cp $XILINX/cadence/data/xilinx.pga.pin \
$CDS_INST_DIR/share/libary/xilinx/data/ \
xilinx.pga.pin

Syntax
The following syntax illustrates how to create the chips_prt and body
output files.

xil2cds verilog_filename -family architecture -mode mode_type -
pkg pkg_type -lwbverilog

Options
This section describes the main XIL2CDS options.

-family architecture

This option instructs XIL2CDS to use the package and pin files
for the family specified by the architecture name. This option is
useful for block mode designs that do not have a PART property
specifying the target device.

Valid architecture values are: 3000, 4000E, 4000X, 5200, 7000,
9000. The Xilinx XC4000EX/XL/XV are considered as a 4000X
component. For example, enter “4000X” for the XC4000XL. The
4000L architecture is part of the 4000E architecture.

-mode mode_type

This option specifies the type of package pins to include in the
output files. Values that you can use are as follows:

pkg - Include only the user pins and programming pins.

sp - Include user, programming and special mode pins.

all - Include all pins.
Cadence Interface/Tutorial Guide B-13

Cadence Interface/Tutorial Guide
user - Include only user pins.

The default is pkg .

-pkg pkg_file

This option specifies which package file XIL2CDS should use.
The default is to use the package file corresponding to the target
device you have specified. Package files are located in the
$XILINX/cadence/data directory.

-lwbverilog

This option creates the output files, chips_prt and body.1.1 for the
FPGA or CPLD.

Files
This subsection describes XIL2CDS input and output files.

Input Files

The input files for the XIL2CDS command are as follows.

• Routed Verilog netlist—the .V file generated by NGD2VER

• Cadence XIL2CDS package file—this file contains data that is
used to create a body. The package files are located in the
$XILINX/cadence/data directory

• PIN files —a Cadence signal-to-pin mapping file which may
be generated by NGD2VER.

• SDF File —Standard Delay Format file. Contains the design
delay data.

Output Files

The output files for the XIL2CDS command are as follows.

• Chips_PRT—the physical part file for the Xilinx device

• Body—the symbolic representation of the Xilinx device
B-14 Xilinx Development System

Appendix C

Processing Designs with LogiBLOX
Components

LogiBLOX is a utility that gives designers access to a library of auto-
matically generated, high level functional modules to use in sche-
matic-based or HDL designs. For Cadence designs, LogiBLOX
generates both a functional simulation model for the block, as well as
an NGO module that is ready to be implemented as part of the
overall design. Possible modules include adders, counters, accumula-
tors, and memories. Currently LogiBLOX supports only the
XC3000A/L, XC3100A/L, XC4000/E/EX/L/XL/XV and XC5200
architectures.

Because LogiBLOX is not integrated into the Concept schematic
editor, it must be run standalone. After the LogiBLOX module has
been generated, you must create a symbol/body for the LogiBLOX
module to integrate it into a schematic. For Verilog designs, Logi-
BLOX can be directed to generate a Verilog template that you can
follow to instantiate the LogiBLOX into your Verilog design.

This chapter has the following sections.

• “Generating the LogiBLOX module” section

• “Creating a Symbol for the LogiBLOX module” section

• “Netlisting the Design for the Functional Simulation” section

• “Functional Simulation” section

Generating the LogiBLOX module
For schematic based designs that also contain LogiBLOX compo-
nents, you currently must run LogiBLOX in standalone mode to
generate the required .MOD and .v (behavioral Verilog) files. You can
Cadence Interface/Tutorial Guide — 0401494 C-1

Cadence Interface/Tutorial Guide
then use the Concept genview command to generate a symbol body
for the LogiBLOX module, and add the module to your schematic.

To generate the LogiBLOX module:

1. Start up LogiBLOX in standalone mode.

lbgui

A Setup popup appears if you are running LogiBLOX for the first
time.

2. Specify the parameters for the LogiBLOX module:

a) Select “cadence” as the vendor and B<1> as the bus notation
format.

b) Select your Project Directory (usually your working design
directory) by clicking on the Project Directory tab on the
Setup popup and either typing in the location of your project,
or using the Browse button to navigate to the desired direc-
tory

c) Select the Device Family (for example, XC4000EX) by clicking
on the Device Family tab, then on the arrow button to select
the desired device family from the list of supported device
families.

d) Click on Options and select the desired simulation model
(usually Structural Verilog). The Verilog netlist is generated
C-2 Xilinx Development System

Processing Designs with LogiBLOX Components
to support functional simulation. It will also be used to
generate the symbol body for the LogiBLOX module. Make
sure that the NGO file is selected as the Implementation
Netlist. The Component Declaration option is not used when
you are doing a top level schematic.

e) Click on OK to accept these settings. The LogiBLOX Module
Selector appears.
Cadence Interface/Tutorial Guide C-3

Cadence Interface/Tutorial Guide
3. Enter a name for your module in the Module Name field. Select
the Module Type by clicking on the down arrow button next to
the Module Type field and selecting a module type from the list.

4. Select a bus width by clicking on the down arrow button next to
the Bus Width field.

5. Set the other parameters as desired, then click OK to generate the
block and associated files. The LogiBLOX GUI Messages window
appears.
C-4 Xilinx Development System

Processing Designs with LogiBLOX Components
6. Click on Cancel when LogiBLOX has completed its run.

Creating a Symbol for the LogiBLOX module
If you are doing a schematic-based design, you will need to generate
a symbol for your LogiBLOX module. You must create the symbol
manually from within Concept using the genview command.

1. Make sure the .v file for your LogiBLOX module is located in
your current directory. Start up Concept, then enter the following
command in the Concept command window to generate the
body:

genview -i logiblox_module_name.v -v logic body \
verilog

This tells Concept to generate a body view for a module named
logiblox_module_name from the Verilog netlist, and to put it in the
logical view for this module.

2. Once the module has been generated, you must edit the resulting
verilog.v file in the logic/ subdirectory of the new module direc-
tory, and add the following directive after the module declara-
tion:

parameter cds_action = “ignore”;

Example:

If your LogiBLOX module is named “mycount”, genview would
do the following:

a) Create an entry in your.wrk file for the module.

b) Create a directory called “mycount” in your project directory.
Cadence Interface/Tutorial Guide C-5

Cadence Interface/Tutorial Guide
c) Create a subdirectory called “logic” under mycount and copy
the LogiBLOX-generated mycount.v to mycount/logic/
verilog.v.

d) Create a symbol for the LogiBLOX module, mycount/
body.1.1. Instantiate and connect up the new symbol in your
design and save your design.

module mycount (load, up_dn, clk_en, clock,
async_ctrl, term_cnt, d_in, q_out);

parameter cds_action=”ignore”; // <---- Add this line

 input load;

 input up_dn;

 input clk_en;

 input clock;

 input async_ctrl;

 output term_cnt;

 input [3:0] d_in;

 output [3:0] q_out;

....

3. Copy the .NGO file for the Logiblox module to your design
implementation directory (usually xilinx.run).

Netlisting the Design for the Functional Simulation
To generate a netlist for functional simulation, type the following
command line:

concept2xil -family family_name -sim_only design_name

Family_name is the architecture.

Functional Simulation
To conduct HDL Direct Verilog Unified Library simulation manually,
create a testbench file as described in the “Functional Simulation”
chapter with the desired test vectors. Then invoke the simulation as
follows:
C-6 Xilinx Development System

Processing Designs with LogiBLOX Components
verilog +delay_mode_unit calcf.stim calc.v -f
calcf.vf

The testbench file
After Verilog-XL has finished compiling your simulation commands
you can view the waveforms for the signals in your design. Your
simulation waveforms can be displayed by a waveform display
application that is separate from Verilog-XL. Given the appropriate
directives, Verilog-XL writes the waveform data to a simulation
history directory (design.shm). The waveform viewer application
(usually Simwave) reads this data from the simulation history data-
base and displays the waveforms.

If you wish to view your simulation waveforms graphically while
performing your functional simulation, you must add an “initial”
block to the testbench file containing directives to create a simulation
history database for the waveform viewer.

Note: NGD2VER will add the “initial” block to a stimulus template
file (design.tv) by default. For pre-NGDBuild functional simulation
flows, this block must be added to your testbench manually.

Sample “initial” block adding Simulation History Manager support:

initial

begin

$shm_open(“/home/user/cadence/calc/xilinx.run/ \

calc.shm”);

$shm_probe(“AS”);

end

The $shm_open command creates the database directory, “calc.shm”.
$shm_probe(“AS”) directs the simulation history manager to probe
all signals, thus making them available for viewing in the waveform
viewer.

Global Reset
Global reset should always be toggled at the beginning of a simula-
tion to ensure that all flip-flops and latches initialize to a known state.
See the “Setting Global Set/Reset and Tri-state Signals (FPGAs)”
section of the “Design and Simulation Techniques” chapter for infor-
Cadence Interface/Tutorial Guide C-7

Cadence Interface/Tutorial Guide
mation on toggling global reset for XC3000A/L, XC3100A/L,
XC4000/E/EX/L/XL/XV, XC5200, and XC9500 devices.
C-8 Xilinx Development System

Appendix D

Synopsys/Verilog Design Flow

With Xilinx design tools, you can translate Synopsys synthesized
gate-level netlists for use with Cadence’s Verilog-XL simulator. See
the “Synopsys/Verilog Design Flow” figure.

NGDBuild will accept two types of Synopsys netlists, SXNF and
SEDIF. The .SXNF netlist is generated by the Synopsys FPGA
compiler and the .SEDIF netlist is created by the Synopsys Design
Compiler. Once you have created one of the Synopsys netlists from a
behavioral design, NGDBuild can translate the netlist into an NGD
file or NGA file for use with the NGD2VER command. This
command with its options generates the required files to run Verilog-
XL simulation.
Cadence Interface/Tutorial Guide — 0401494 D-1

Cadence Interface/Tutorial Guide
Figure D-1 Synopsys/Verilog Design Flow

Structural
Verilog Netlist

NGDBuild

SIMPRIM-Based Functional
Simulation

NGD2VER -tf -ulMAP

TRCE

Optional

PAR

Testbench Stimulus

Make a Copy
and Edit

User-Specified
Verilog TestbenchVerilog-XL

Verilog

NGD

NCD

NGDAnno

NCD

NGD2VER -tf -ul -pf

NGA

Verilog
SIMPRIM
Library

X7762

Timing Simulation

Post-Map
Timing
Simulation

PIN Verilog SDF

NGA

NGDAnno

NGD2VER -tf -ul

Verilog-XL

Make a Copy
and Edit

User-Specified
Verilog TestbenchVerilog

SIMPRIM
Library

Testbench Stimulus

Testbench Stimulus

Structural
Verilog
Netlist

Make a Copy
and Edit

User-Specified
Verilog Testbench

Verilog

Verilog
SIMPRIM
Library

Verilog-XL

Behavioral (RTL) Verilog
.V

Synopsys Design
CompilerSynopsys FPGA Compiler

Synthesized
Gate-Level Netlist

SXNF Synthesized
Gate-Level Netlist

SEDIF
D-2 Xilinx Development System

Appendix E

Files

This section contains an annotated test fixture template as well as
three sample test fixtures illustrating how the global GSR and GTS
signals are specified and exercised in 1) Unified Library functional
simulation, 2) post-NGDBuild SIMPRIM functional simulation, 3)
post-map timing simulation, and 4) post-implementation SIMPRIM
timing simulation.

Note: The terms “testbench” and “test fixture” are used synony-
mously throughout this manual.

Testbench Template
// NGD2VER VERILOG Test Fixture Template
// Design file: calc.ngd
// Date:Sat May 17 00:07:34 1997

// ATTENTION: This file was created by NGD2VER and may therefore be
// overwritten by subsequent runs of NGD2VER. Xilinx recommends that you
// copy this file to a new name, or 'paste' this text into another file,
// to avoid accidental loss of data.

// The timescale directive specifies the default time unit used for the
// simulation. In this case, it is 1ns, with a precision of 1 ps (.001ns)

`timescale 1 ns/1 ps

// The module, "test", is the testbench module. Within it, we first see
// a listing of all the OUTPUTs of the design, which are declared as
// "wires" (ofl, a, b, c, d, e, f, g, gauge[3:0], stackled[3:0], and
// switch[7:0]. These are followed by the inputs, which are declared with
Cadence Interface/Tutorial Guide — 0401494 E-1

Cadence Interface/Tutorial Guide
// data type, "reg", for "register". In this case, the only input is an
// 8-bit bus named "switch[7:0]".

// An instance of the design, "calc", is also instantiated within the
// "test" module, with an instance name of "uut".

module test;
wire ofl;
reg notgblreset;
wire g;
wire f;
wire e;
wire d;
wire c;
wire b;
wire a;
wire [3:0] gauge;
wire [3:0] stackled;
reg [7:0] switch;

// To properly simulate your design containing a Startup component,
// be sure to do the following at the beginning of your simulation:
//
// 1. Toggle your GSR port to initialize all registers.
//
// 2. Deactivate your global tri-state (GTS) control signal.
//

calc uut (.ofl (ofl) , .notgblreset (notgblreset) , .g (g) , .f (f)
, .e (e) , .d (d) , .c (c) , .b (b) , .a (a) , .gauge (gauge)
, .stackled (stackled) , .switch (switch));

// The "timeformat" system task specifies how time information for the
// $display and $monitor commands is to be formatted when displayed by
// Verilog-XL. The first number represents the "unit" value, the second,
// the precision number, followed by the suffix string to be displayed (in
// this case, "ns"),and lastly, the minimum width of the field for the
// string (12 characters, in this example).Reference: Verilog-XL
// Reference Manual.

 initial begin
$timeformat(-9,3,"ns",12);
E-2 Xilinx Development System

Files
// Support for the Cadence waveform viewer is added here by calling the
// $shm_open task, which directs Verilog-XL to create a Simulation History
// Manager (SHM) database called "routed.shm". The waveform viewer
// (SIMWAVES) displays the waveform information that has been
// written to .shm database.

// The $shm_probe ("AS") system task tells the Verilog-XL simulator
// which signal changes are to be recorded in the Simulation History
// Manager database. In this case, "AS" specifies that ALL signal changes
// are to be recorded.

$shm_open("/export/vol1/m1.0/testing/m1tutorial/newsch/xilinx.run/
calcf.shm");

$shm_probe("AS");
end

// The "initial" block here displays the transitions of all the external
// signals of the design in vertical columnar format.

initial begin
$display(" T ongfedcbaggggssssssssssss");
$display(" i fo aaaattttwwwwwwww");
$display(" m lt uuuuaaaaiiiiiiii");
$display(" e g ggggcccctttttttt");
$display(" b eeeekkkkcccccccc");
$display(" l [[[[llllhhhhhhhh");
$display(" r 3210eeee[[[[[[[[");
$display(" e]]]]dddd76543210");
$display(" s [[[[]]]]]]]]");
$display(" e 3210 ");
$display(“ t]]]] “);

// The $monitor system task specifies the format by which all signal
// changes will appear when displayed in text format. In this example,
// "gauge", "stackled", and "switch" are displayed in bus format.

$monitor("%t",$realtime,, ofl, notgblresetg, f, e, d, c, b, a, "%b",
gauge, "%b", stackled, "%b", switch);

 end

initial begin
#100

notgblreset = 0 ;
switch = 0 ;
Cadence Interface/Tutorial Guide E-3

Cadence Interface/Tutorial Guide
// ########## USER-SPECIFIED test vectors can be added here #############
// ########## USER-SPECIFIED test vectors can be added here #############
// ########## USER-SPECIFIED test vectors can be added here #############
// ######### USER-SPECIFIED test vectors can be added here #############

#1000 $stop;

#1000 finish;
end

endmodule

Sample Test Fixture - XC4000EX Unified Library
Functional Simulation (GSR and GTS simulation)

This text fixture is for a design called count_invstartup containing a
STARTUP block with only the GSR pin connected to a pad via a
signal called “mygsr”. The net connected to the GSR pin is “gsrin”.

// NGD2VER VERILOG TestFixture Template
// Design file: count_startup.ngd
// Date:Thu May 15 21:15:11 1997

// ATTENTION: This file was created by NGD2VER and may therefore be
// overwritten by subsequent runs of NGD2VER. Xilinx recommends that you
// copy this file to a new name, or 'paste' this text into another file,
// to avoid accidental loss of data.

`timescale 1 ns/1 ps

module test;

 reg mygsr;
reg clock;
wire [15:0] q;
wire [7:0] qpp;

// To properly simulate your design containing a Startup component,
// be sure to do the following at the beginning of your simulation:

// 1. Toggle your GSR port to initialize all registers.
// 2. Deactivate your global tri-state (GTS) control signal.

`define GSR_SIGNAL test.uut.gsrin
E-4 Xilinx Development System

Files
// For HDL Direct / Unified Library simulation, you may optionally create
// a GTS control signal and connect it to the GTS_SIGNAL declared
// in the Unified Library simulation models.

wire GTS;
`define GTS_SIGNAL test.GTS

 count_invstartup uut (.mygsr (mygsr) , .clock (clock) , .q (q) , .qpp
(qpp)

);

initial begin

 $timeformat(-9,3,"ns",12);
$shm_open("count_star.shm");
$shm_probe("AS");

 end

 initial begin

 $display(" T mGGcqqqqqqqqqqqqqqqqqqqqqqqq");

 $display(" i ySTl[[[[[[[[[[[[[[[[pppppppp");

 $display(" m gRSo1111119876543210pppppppp");

 $display(" e s c543210]]]]]]]]]][[[[[[[[");

 $display(" r k]]]]]] 76543210");

 $display("]]]]]]]]");

 $monitor("%t",$realtime,, mygsr, `GSR_SIGNAL, `GSR_SIGNAL, clock,
"%b", q, "%b", qpp);

 // $monitor("%t",$realtime,, mygsr, `GSR_SIGNAL, `GTS_SIGNAL, clock,
"%b", q, "%b", qpp);

 end

always #20 clock = ~clock;

 initial begin

 mygsr = 0 ;
clock = 1 ;
force `GTS_SIGNAL = 0;

 #100
Cadence Interface/Tutorial Guide E-5

Cadence Interface/Tutorial Guide
 mygsr = 1 ;

 #3000 $stop;

 // #1000 $finish;

 end

endmodule

Sample Test Fixture - XC4000EX Post-NGDBuild
Simulation (GSR and GTS simulation)

This text fixture is for the design, count_invstartup, containing a
STARTUP block with only the GSR pin connected to a pad via a
signal called “mygsr”. The net connected to the GSR pin is “gsrin”.

In this example, the GTS pin on the STARTUP block is not connected.

This sample test fixture can be used for the following types of simula-
tions.

• post-NGDBuild SIMPRIM library based functional simulation

• post-map functional simulation

• post-implementation timing simulation

// NGD2VER VERILOG TestFixture Template
// Design file: count_invstartup.ngd
// Date:Thu May 15 21:15:11 1997

// ATTENTION: This file was created by NGD2VER and may therefore be
// overwritten by subsequent runs of NGD2VER. Xilinx recommends that you
// copy this file to a new name, or 'paste' this text into another file,
// to avoid accidental loss of data.

`timescale 1 ns/1 ps

module test;

 reg mygsr;

 reg clock;
E-6 Xilinx Development System

Files
 wire [15:0] q;

 wire [7:0] qpp;

 // To properly simulate your design containing a Startup component,
// be sure to do the following at the beginning of your simulation:

// 1. Toggle your GSR port to initialize all registers.

 //

 // 2. Deactivate your global tri-state (GTS) control signal.

 //

//`define GSR_SIGNAL test.uut.gsrin
// Comment out this definition

// wire GTS;
// `define GTS_SIGNAL test.GTS

 `define GTS_SIGNAL test.uut.GTS

 count_invstartup uut (.mygsr (mygsr) , .clock (clock) , .q (q) , .qpp
(qpp)

);

 initial begin

 $timeformat(-9,3,"ns",12);

 $shm_open("count_star.shm");

 $shm_probe("AS");

 end

 initial begin

 $display(" T mGGcqqqqqqqqqqqqqqqqqqqqqqqq");

 $display(" i ySTl[[[[[[[[[[[[[[[[pppppppp");

 $display(" m gRSo1111119876543210pppppppp");

 $display(" e s c543210]]]]]]]]]][[[[[[[[");
Cadence Interface/Tutorial Guide E-7

Cadence Interface/Tutorial Guide
 $display(" r k]]]]]] 76543210");

 $display("]]]]]]]]");

 $monitor("%t",$realtime,, mygsr, test.uut.GSR, `GTS_SIGNAL, clock,
"%b", q, "%b", qpp);

 end

 always #20 clock = ~clock;

 initial begin

 mygsr = 0 ;

 clock = 1 ;

 force `GTS_SIGNAL = 0;

 #100

 mygsr = 1 ;

 #3000 $stop;

 // #1000 $finish;

 end

endmodule

Sample Test Fixture, No Startup Block in the Design
When a design does not contain a STARTUP block, the same test
fixture can usually be used for Unified Library functional simulation,
post-NGDBuild functional simulation, as well as timing simulation.

// NGD2VER VERILOG TestFixture Template
// Design file: count_top.ngd
// Date:Fri May 16 18:59:39 1997

// ATTENTION: This file was created by NGD2VER and may therefore be
// overwritten by subsequent runs of NGD2VER. Xilinx recommends that you
// copy this file to a new name, or 'paste' this text into another file,
// to avoid accidental loss of data.

`timescale 1 ns/1 ps
E-8 Xilinx Development System

Files
module test;

 reg clock;

 wire [15:0] q;

 wire [7:0] qpp;

 reg GSR;

 `define GSR_SIGNAL test.GSR

 reg GTS;

 `define GTS_SIGNAL test.GTS

 count_top uut (.clock (clock) , .q (q) , .qpp (qpp));

 initial begin

 $timeformat(-9,3,"ns",12);

 $shm_open("count_topf.shm");

 $shm_probe("AS");

 end

 initial begin

 $display(" T GGcqqqqqqqqqqqqqqqqqqqqqqqq");

 $display(" i STl[[[[[[[[[[[[[[[[pppppppp");

 $display(" m RSo1111119876543210pppppppp");

 $display(" e c543210]]]]]]]]]][[[[[[[[");

 $display(" k]]]]]] 76543210");

 $display("]]]]]]]]");

 $monitor("%t",$realtime,, `GSR_SIGNAL, `GTS_SIGNAL, clock, "%b", q,
"%b", qpp);

 end
Cadence Interface/Tutorial Guide E-9

Cadence Interface/Tutorial Guide
 always #20 clock = ~clock;

 initial begin

 clock = 0 ;

 `GSR_SIGNAL = 1;

 `GTS_SIGNAL = 0;

 #100

 `GSR_SIGNAL = 0;

 #3000 $stop;

 // #1000 $finish;

 end

endmodule
E-10 Xilinx Development System

Appendix F

XILINX.PFF Property Filter File Format

The xilinx.pff property filter file, located in $XILINX/cadence/data,
specifies what properties SIR2EDF (called by CONCEPT2XIL) should
write out to the EDIF netlist from your Concept schematic. The
xilinx.pff file also specifies what the format of these properties should
look like when they are written out to the EDIF netlist.

The xilinx.pff file has sections for symbol, pin, and net properties.
Each section begins with a property section header record of the
form, $xxx_PROP.

For symbol properties this header record is:

$SYM_PROP

This header is followed by a list of properties that may be legally
placed on symbols in Concept.

Similarly, for pin properties, the header record for the pin property
section is called:

$PIN_PROP

For net properties:

$NET_PROP

Each section also ends with a property section END record:

$END.

Comments are specified with curly braces:

{ This is a comment in the property format file. }

You must provide a property specification record for every property
that you want SIR2EDF to recognize and write out to the output EDIF
file. The syntax of the property specification record is as follows:
Cadence Interface/Tutorial Guide — 0401494 F-1

Cadence Interface/Tutorial Guide
property_name: "property_format" property_cast property_type;

property_name— is the name of the property as it will be used in
your design;

property_format— depicts the appearance and format of the prop-
erty when it is written to the EDIF file (this specification is case-sensi-
tive);

property_cast— is the data type of the property value. Valid cast
types are:

• Boolean (valid property values are TRUE or FALSE)

• Integer (valid property values are integers)

• Real (valid property values are real numbers)

• String (valid property values are alphanumeric strings);

property_type— the SIR2EDF type of the property, which is used by
SIR2EDF to determine how the property should be handled. The only
valid SIR2EDF property type for Xilinx properties is NORMAL.

Example:

loc: “LOC” String NORMAL;

In the example, the “loc” property (found in the $SYM_PROP symbol
properties section) has a property_name of “loc”. When written out
to the EDIF file, it will be written out to the EDIF file as “LOC=value”,
where “LOC” is in upper case, and ”value” is some alphanumeric
string.

As with all Xilinx properties, the SIR2EDF type is “NORMAL”.

Example :

keep: “KEEP” Boolean NORMAL;

In this example, the property, “keep” from the $NET_PROPS section
is a Boolean property which can be attached to a net. Its value must
be specified as either TRUE or FALSE in the input design. When
written out to the EDIF file, it will appear as “KEEP=TRUE”.

The standard xilinx.pff property filter file shipped with the M1
Cadence Concept interface is located in $XILINX/cadence/data and
is listed below.
F-2 Xilinx Development System

XILINX.PFF Property Filter File Format
Note: The properties which are commented with the notation, “{For
lblox_syn}” are only provided to support netlisting of Cadence
Synergy Verilog designs which target LogiBLOX library components.

Note: Properties labelled as “{Not entered by user}” are generated by
internally by Xilinx tools only.

XILINX.PFF File:

{Concept2xil property formatfile-4/19,1996,}

{Referenced rev1.2 of UVC and Attribute Description}

$SYM_PROP

ASYNC_VAL: “ASYNC_VAL” String NORMAL; {For lblox_syn}

ASYNC_COUNT: “ASYNC_COUNT” String NORMAL; {For lblox_syn}

SYNC_COUNT: “SYNC_COUNT” String NORMAL; {For lblox_syn}

BUS_WIDTH: “BUS_WIDTH” String NORMAL; {For lblox_syn}

COUNT_TO: “COUNT_TO” String NORMAL; {For lblox_syn}

C_VALUE: “C_VALUE” String NORMAL; {For lblox_syn}

DECODEMASK: “DECODEMASK” String NORMAL; {For lblox_syn}

DEF: “DEF” String NORMAL; {For lblox_syn}

DELAY: “DELAY” String NORMAL; {For lblox_syn}

DEPTH: “DEPTH” String NORMAL; {For lblox_syn}

DIVIDE_BY: “DIVIDE_BY” String NORMAL; {For lblox_syn}

DUTY_CYCLE: “DUTY_CYCLE” String NORMAL; {For lblox_syn}

ENCODING: “ENCODING” String NORMAL; {For lblox_syn}

FLOAT_VAL: “FLOAT_VAL” String NORMAL; {For lblox_syn}

INPUT_BUSSES: “INPUT_BUSSES” String NORMAL; {For lblox_syn}

IN_TYPE: “IN_TYPE” String NORMAL; {For lblox_syn}

INVMASK: “INVMASK” String NORMAL; {For lblox_syn}

PAD_LOC: “PAD_LOC” String NORMAL; {For lblox_syn}

MEMFILE: “MEMFILE” String NORMAL; {For lblox_syn}
Cadence Interface/Tutorial Guide F-3

Cadence Interface/Tutorial Guide
MODTYPE: “MODTYPE” String NORMAL; {For lblox_syn}

OPTYPE: “OPTYPE” String NORMAL; {For lblox_syn}

OUT_TYPE: “OUT_TYPE” String NORMAL; {For lblox_syn}

REGISTERED: “REGISTERED” String NORMAL; {For lblox_syn}

REG_OUT: “REG_OUT” String NORMAL; {For lblox_syn}

SHIFT_TYPE: “SHIFT_TYPE” String NORMAL; {For lblox_syn}

SLEWRATE: “SLEWRATE” String NORMAL; {For lblox_syn}

STYLE: “STYLE” String NORMAL; {For lblox_syn}

SYNC_VAL: “SYNC_VAL” String NORMAL; {For lblox_syn}

add: “ADD” String NORMAL; {Not entered by user.}

alu: “ALU” String NORMAL; {Not entered by user.}

base: “BASE” String NORMAL; {3k only}

blknm: “BLKNM” String NORMAL;

bufg: “BUFG” String NORMAL; {7k,9k}

clock_out: “CLOCK_OUTPUT” Boolean NORMAL; {4KXV only}

config: “CONFIG” String NORMAL;

cymode: “CYMODE” String NORMAL; {Not entered by user.}

decode: “DECODE” Boolean NORMAL;

d_invert: “D_INVERT” String NORMAL; {Not entered by user.}

divide1_by: “DIVIDE1_BY” Integer NORMAL;

divide2_by: “DIVIDE2_BY” Integer NORMAL;

double: “DOUBLE” Boolean NORMAL;

drive: “DRIVE” Integer NORMAL; {4KXV only}

eqn: “EQN” String NORMAL; {Not entered by user.}

equate_f: “EQUATE_F” String NORMAL;

equate_g: “EQUATE_G” String NORMAL;

fast: “FAST” Boolean NORMAL;

file: “FILE” String NORMAL;

grp01: “GRP01” String NORMAL; {Timegroup}

grp02: “GRP02” String NORMAL;
F-4 Xilinx Development System

XILINX.PFF Property Filter File Format
grp03: “GRP03” String NORMAL;

grp04: “GRP04” String NORMAL;

grp05: “GRP05” String NORMAL;

grp06: “GRP06” String NORMAL;

grp07: “GRP07” String NORMAL;

grp08: “GRP08” String NORMAL;

grp09: “GRP09” String NORMAL;

grp010: “GRP010” String NORMAL;

hblknm: “HBLKNM” String NORMAL;

hu_set: “HU_SET” String NORMAL;

init: “INIT” String NORMAL;

libver: “LIBVER” String NORMAL; {Not entered by user.}

io: “IO” Boolean NORMAL;

loc: “LOC” String NORMAL;

lowpwr: “LOWPWR” String NORMAL;

map: “MAP” String NORMAL;

meddelay: “MEDDELAY” Boolean NORMAL;

minim: “MINIM” String NORMAL;

nodelay: “NODELAY” Boolean NORMAL;

opt: “OPT” String NORMAL;

optimize: “OPTIMIZE” String NORMAL;

opt_effort: “OPT_EFFORT” String NORMAL;

osc: “OSC” String NORMAL; {5k only}

part: “PART” String NORMAL;

prohibit: “PROHIBIT” String NORMAL;

pwr_mode: “PWR_MODE” String NORMAL;

reg: “REG” String NORMAL; {Not entered by user.}

rloc: “RLOC” String NORMAL;

rloc_origin: “RLOC_ORIGIN” String NORMAL;

rloc_range: “RLOC_RANGE” String NORMAL;
Cadence Interface/Tutorial Guide F-5

Cadence Interface/Tutorial Guide
slow: “SLOW” Boolean NORMAL;

tig: “TIG” String NORMAL;

tnm: “TNM” String NORMAL;

ts01: “TS01” String NORMAL; {Timespec}

ts02: “TS02” String NORMAL;

ts03: “TS03” String NORMAL;

ts04: “TS04” String NORMAL;

ts05: “TS05” String NORMAL;

ts06: “TS06” String NORMAL;

ts07: “TS07” String NORMAL;

ts08: “TS08” String NORMAL;

ts09: “TS09” String NORMAL;

ts10: “TS10” String NORMAL;

u_set: “U_SET” String NORMAL;

use_rloc: “USE_RLOC” Boolean NORMAL;

wireand: “WIREAND” Boolean NORMAL;

inreg: “INREG” String NORMAL; {5k ONLY}

outreg: “OUTREG” String NORMAL; {5k ONLY}

bsreadback: “BSREADBACK” String NORMAL; {For Config Symbol Only}

bsreconfig: “BSRECONFIG” String NORMAL; {For Config Symbol Only}

configrate: “CONFIGRATE” String NORMAL; {For Config Symbol Only}

crc: “CRC” String NORMAL; {For Config Symbol Only}

donepin: “DONEPIN” String NORMAL; {For Config Symbol Only}

doneactive: “DONEACTIVE” String NORMAL; {For Config Symbol Only}

gsrinactive: “GSRINACTIVE” String NORMAL; {For Config Symbol Only}

inputs: “INPUTS” String NORMAL; {For Config Symbol Only}

lengthcount: “LENGTHCOUNT” String NORMAL; {For Config Symbol Only}

m0pin: “M0PIN” String NORMAL; {For Config Symbol Only}

m1pin: “M1PIN” String NORMAL; {For Config Symbol Only}

m2pin: “M2PIN” String NORMAL; {For Config Symbol Only}
F-6 Xilinx Development System

XILINX.PFF Property Filter File Format
oscillator: “OSCILLATOR” String NORMAL; {For Config Symbol Only}

oscclk: “OSCCLK” String NORMAL; {For Config Symbol Only}

outputs: “OUTPUTS” String NORMAL; {For Config Symbol Only}

outputsactive: “OUTPUTSACTIVE” String NORMAL; {For Config Symbol Only}

progmode: “PROGMODE” String NORMAL; {For Config Symbol Only}

progpin: “PROGPIN” String NORMAL; {For Config Symbol Only}

readabort: “READABORT” String NORMAL; {For Config Symbol Only}

readback: “READBACK” String NORMAL; {For Config Symbol Only}

readcapture: “READCAPTURE” String NORMAL; {For Config Symbol Only}

readclk: “READCLK” String NORMAL; {For Config Symbol Only}

startupclk: “STARTUPCLK” String NORMAL; {For Config Symbol Only}

startupmode: “STARTUPMODE” String NORMAL; {For Config Symbol Only}

synctodone: “SYNCTODONE” String NORMAL; {For Config Symbol Only}

userstring: “USERSTRING” String NORMAL; {For Config Symbol Only}

$END.

$PIN_PROP

tig: “TIG” String NORMAL;

tnm: “TNM” String NORMAL;

tspec: “TSPEC” String NORMAL;

$END.

$NET_PROP

bufg: “BUFG” String NORMAL; {7k,9k}

collapse: “COLLAPSE” Boolean NORMAL;

cymode: “CYMODE” String NORMAL;

decode: “DECODE” Boolean NORMAL;

divide1_by: “DIVIDE1_BY” Integer NORMAL;

divide2_by: “DIVIDE2_BY” Integer NORMAL;

double: “DOUBLE” Boolean NORMAL;

fast: “FAST” Boolean NORMAL;

hblknm: “HBLKNM” String NORMAL;
Cadence Interface/Tutorial Guide F-7

Cadence Interface/Tutorial Guide
hu_set: “HU_SET” String NORMAL;

init: “INIT” String NORMAL;

io: “IO” Boolean NORMAL;

keep: “KEEP” Boolean NORMAL;

loc: “LOC” String NORMAL;

maxdelay: “MAXDELAY” String NORMAL;

maxskew: “MAXSKEW” String NORMAL;

noreduce: “NOREDUCE” Boolean NORMAL;

offset: “OFFSET” String NORMAL;

opt: “OPT” String NORMAL;

period: “PERIOD” String NORMAL;

pwr_mode: “PWR_MODE” String NORMAL;

slow: “SLOW” Boolean NORMAL;

tig: “TIG” String NORMAL;

tpsync: “TPSYNC” String NORMAL;

tpthru: “TPTHRU” String NORMAL;

tspec: “TSPEC” String NORMAL;

tnm: “TNM” String NORMAL;

wireand: “WIREAND” Boolean NORMAL;

f: “F” Boolean NORMAL; {Net Flag Attributes}

s: “S” Boolean NORMAL; {Net Flag Attributes}

h: “H” Boolean NORMAL; {Net Flag Attributes}

p: “P” Boolean NORMAL; {Net Flag Attributes}

x: “X” Boolean NORMAL; {Net Flag Attributes}

$END.
F-8 Xilinx Development System

figures/x7425.epsi 2
figures/x7426.epsi 2
figures/figicon.rs @ 72 dpi vii
figures/tblicon.rs @ 150 dpi vii
figures/cpyicon.rs @ 150 dpi vii
figures/footnote.rs @ 150 dpi vii
figures/x7747.epsi 1-8
figures/x8069.epsi 1-9
figures/x8062.epsi 3-3
figures/properties.rs @ 150 dpi 3-10
figures/x7839.epsi 3-16
figures/x7840.epsi 3-17
figures/x7926.epsi 3-17
figures/x7927.epsi 3-18
figures/x8064.epsi 3-23
figures/x8063.epsi 4-2
figures/veriloggui.rs @ 120 dpi 4-6
figures/veriloggui.rs @ 120 dpi 4-10
figures/x8066.epsi 4-12
figures/x8065.epsi 5-2
figures/x7834.epsi 5-3
figures/x8077.epsi 5-4
figures/x7760.epsi 6-3
figures/veriloggui.rs @ 120 dpi 6-7
figures/x8067.epsi 6-9
figures/gsrstartup.rs @ 150 dpi 7-11
figures/mygsr.ras @ 150 dpi 7-12
figures/startup5k.rs @ 150 dpi 7-14
figures/startupgts.rs @ 150 dpi 7-19
figures/calc.rs 9-11
figures/sted0.rs 9-12
figures/sted1.rs 9-12
figures/sted2.rs 9-13
figures/compbrws.rs 9-17
figures/place1.rs 9-18
figures/place4.rs 9-19
Mentor Graphics Interface/Tutorial Guide

Mentor Graphics Interface Guide
figures/addbus.rs 9-21
figures/addnet.rs 9-22
figures/allnets.rs 9-23
figures/attslice.rs 9-24
figures/bustap.rs 9-25
figures/addports.rs 9-26
figures/andblk2.rs 9-27
figures/hdldir.rs 9-28
figures/orblk2s.rs 9-29
figures/symcompl.rs 9-31
figures/addblock.rs 9-33
figures/addfd4re.rs 9-34
figures/netfd4re.rs 9-35
figures/netandor.rs 9-37
figures/attform.rs 9-38
figures/addlabel.rs 9-39
figures/alu.rs 9-40
figures/fd4re.rs 9-41
figures/adsu4.rs 9-43
figures/clockgen.rs 9-44
figures/attloc.rs 9-46
figures/addloc.rs 9-47
figures/addfast.rs 9-48
figures/switch7.rs 9-49
figures/ram16x4s.rs 9-52
figures/replram.rs 9-53
figures/newclock.rs 9-54
figures/lbgui.rs 9-56
figures/lbgui_options.rs 9-57
figures/modsel.rs 9-58
figures/placeblx.rs 9-59
figures/startup.rs 9-61
figures/config.rs 9-62
figures/swbrowser.rs @ 120 dpi 9-76
figures/swtscle.rs @ 120 dpi 9-77
figures/swbbus.rs @ 120 dpi 9-78
Xilinx Development System

figures/swwave.rs @ 120 dpi 9-79
figures/dsgnmgr.rs 9-81
figures/impldia.rs 9-82
figures/feopt.rs 9-83
figures/floweng.rs 9-85
figures/epicon.rs 9-87
figures/hdicon.rs 9-88
figures/gndreset.rs 9-90
figures/flowicon.rs 9-91
figures/lbgui.rs @ 150 dpi C-2
figures/lbgui_options.rs @ 150 dpi C-3
figures/lbgui_modsel.rs @ 150 dpi C-4
figures/lbgui_msgs.rs @ 150 dpi C-5
figures/x7762.epsi D-2
Mentor Graphics Interface/Tutorial Guide

Mentor Graphics Interface Guide
Xilinx Development System

	Title Page
	Terms and Conditions
	Preface
	About This Manual
	Manual Contents

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Architecture Support
	Platform Support
	Features
	Xilinx/Cadence Interface
	Libraries
	Schematic and Verilog Design Entry
	Direct Generation of Structural Verilog Netlist fr...
	Standard EDIF Netlist
	Concept
	Verilog-XL
	CONCEPT2XIL
	XIL2CDS
	NGD2VER
	Simulation of Synopsys Designs
	Automatic Library Specification
	Waveform Viewer Support
	LogiBLOX
	Timing Constraints
	Synergy Support

	Design Flows
	Files
	Tutorials
	Online Help
	Design Approaches
	Schematic Entry
	Verilog HDL Entry (Synergy)
	Mixed-mode Entry, Top Level Schematic
	Mixed-Mode Entry, Top Level HDL (Verilog)

	Getting Started
	Required Software
	Setting Up Your Environment
	Required Environment Variables (All Platforms)
	Concept Environment Setup
	Concept Environment Variables
	Concept Setup Library Files

	Verilog Environment Setup
	Dynatext Environment Variables

	Invoking Concept
	Exiting Concept

	Design Entry
	Concept
	Requirements For HDL Direct Compliance
	Using the Xilinx Concept Unified Schematic Librari...
	FPGA and CPLD Libraries
	PAD Library

	Renamed Components
	Verilog/Concept HDL Direct Naming Conventions
	VCC and GND Components
	Using the LogiBLOX Libraries
	Specifying Xilinx Properties and Constraints in Co...
	Adding Xilinx Properties
	Rules and Restrictions For Using Xilinx Properties...
	SIZE Property
	CONCEPT2XIL Property Filter File
	Xilinx Properties Without Values
	Xilinx Properties on Pads
	Supported Xilinx Properties
	Obsolete Xilinx Properties
	Entering Timing Specifications in Schematics
	Creating New Groups from Existing Groups

	Attaching Signal Names
	Creating Bus Taps
	Using the BSCAN Symbol
	Using the STARTUP Symbol
	Using the CONFIG Symbol to Specify Part Type
	Using HDL Direct Methodology
	Creating Bodies for Non-Schematic Design Blocks
	Creating a Body for a Verilog Netlist
	Generating a Body for a Schematic
	Generating a Body for an XNF, NGO, or EDIF File

	Verilog HDL Design Entry
	Translating Your Design

	Functional Simulation
	Introduction
	Unified Library Based Functional Simulation
	Pure Concept Schematic Without LogiBLOX Elements
	Creating HDL Views for the Design/ Netlisting the ...
	Creating a Testbench File
	Running the Functional Simulation
	Adding SimWave Support to the Testbench File
	Global Reset

	Pure Concept Schematic Designs With LogiBLOX
	Mixed Mode Designs
	Running the Simulation
	Global Reset

	SIMPRIM Library Based Functional Simulation
	Using NGD2VER
	Running a Verilog Functional Simulation
	Global Reset

	Design Implementation
	Converting the Concept Design to an EDIF File
	Implementing the Design

	Timing Simulation
	Post-Map Timing Simulation (FPGAs)
	Mapping and Back-Annotation
	Running NGD2VER
	Running the Verilog Timing Simulation
	Global Reset

	Post-Implementation Timing Simulation
	Running NGD2VER

	Design and Simulation Techniques
	Replicating Components in a Design (SIZE)
	Retargeting a Design to a Different Family
	Merging Design Files from Other Sources
	XC4000 Flip-flop Initialization
	IOB Flip-flop Initialization
	CLB Flip-flop Initialization

	XC9500 Flip-flop Initialization
	IOB Flip-flop Initialization
	Macrocell Flip-flop Initialization

	Setting Global Set/Reset and Tri-state Signals (FP...
	Setting Global Set/Reset
	Designs with No STARTUP Block
	Designs With STARTUP block (XC4000E/L/EX/XL/XV and...

	Setting Global Tri-state (XC4000 and XC5200 Output...
	Designs with No STARTUP Block
	Designs With STARTUP block (XC4000E/L/EX/XL/XV and...

	Setting Global PRLD (CPLD Designs)
	Unified Library Functional Simulation
	Post-NGDBuild and Post-Implementation Timing Simul...

	Oscillator Functions (OSC, OSC4, OSC5)

	Manual Translation
	Functional Simulation
	Unified Library Based Functional Simulation
	Schematic Designs Without LogiBLOX Elements

	SIMPRIM Library Based Functional Simulation
	Mixed Mode Designs

	Design Implementation
	Schematic Designs (FPGA)
	Schematic Designs (CPLD)
	HDL Top Level Designs
	Pure HDL Designs

	Timing Simulation
	Post-Map Timing Simulation (FPGAs Only)
	Post-Implementation Timing Simulation

	Schematic Design Tutorial
	Introduction
	Required Background Knowledge
	Design Flow
	Software Installation
	Required Software
	Before Beginning the Tutorial
	Standard Directory Structure
	Tutorial Directory and Files

	Copying the Tutorial Files
	Setting Up for Concept
	Using HDL Direct
	Starting Concept
	Using the Mouse in Concept
	Left Mouse Button
	Middle Mouse Button
	Right Mouse Button

	Strokes
	Selecting Commands from the Menu Bar
	Entering Commands from the Keyboard
	Cancelling Commands
	Manipulating the Screen
	Saving a Design Directory
	Quitting Concept

	Completing the Calc Design
	Design Description
	Targeting XC9500 Devices
	Creating Schematics for ANDBLK2 Symbol
	Opening a Schematic
	Adding the First Component to a Schematic
	Placing Additional Components
	Copying a Component
	Moving a Component
	Adding and Labeling Buses in a Schematic
	Adding Wires and SLICEs to a Schematic
	Adding Values to SLICE Symbols
	Adding Ports
	Saving the Schematic

	Creating Schematics for ORBLK2 Symbol
	Creating the ANDBLK2 Symbol
	Creating the Symbol Outline
	Adding Text

	Creating the ORBLK2 Symbol
	Editing the ALU1 Schematic
	Placing User-Created Components
	Adding Nets, Buses, Ports and Labels
	FD4CE and AND5B2
	ANDBLK2 and ORBLK2

	Adding Labels to Components
	Saving the ALU1 Schematic
	Exploring Xilinx Library Elements
	Viewing a Xilinx Soft Macro Schematic
	Viewing a Xilinx RPM (XC4000E Family Only)
	Opening the Calc Schematic
	Using the XC4000E Oscillator

	Controlling FPGA/CPLD Layout from the Schematic
	Assigning Pin Locations
	Designating FAST Pads
	Using the I/O Flip-Flops
	Saving the Calc Schematic

	Modifying the Design for non-XC4000E/EX Devices
	Targeting the Design for the XC9500 Family
	Targeting the Design for the 3000A and 5200 Family...
	RAM Stack Implementation
	Using the Device-Independent Register File
	Removing the XC4000E Oscillator

	Using LogiBLOX
	Creating a LogiBLOX Module
	Creating a Symbol for the LogiBLOX Module

	Other Special Components
	The STARTUP Block (Optional, XC4000E/EX and XC5200...
	Adding the CONFIG Symbol (Optional)

	Using a Constraints File
	Performing Functional Simulation
	Using CONCEPT2XIL
	Creating a Verilog Test Fixture
	Timescale
	Test Fixture Module Declaration

	Displaying Values
	Opening a Waveform Database for SimWave
	Defining a Clock
	Asserting the Global Set/Reset
	Assigning Values to the Inputs
	Invoking the Verilog-XL simulator
	Using SimWave
	Invoking SimWave
	Changing the View in SimWave
	Splitting Up and Bundling a Bus in SimWave

	Using CONCEPT2XIL for Implementation
	Using the Xilinx Design Manager
	Performing Timing Simulation
	Invoking Verilog-XL for Timing Simulation

	Examining Routed Designs with EPIC
	Verifying the Design Using a Demonstration Board
	Creating and Downloading the Bitstream

	Making Incremental Design Changes
	Making an Incremental Schematic Change
	Translating the Incremental Design
	Verifying the Change in the Demonstration Board

	Command Summaries
	Functional Simulation for XC4000E Family Designs
	Basic Translation for XC4000E Family Designs
	Timing Simulation for XC4000E Family Designs
	Incremental Translation for XC4000E Family Designs...

	Further Reading

	Glossary
	body
	cds_action = “ignore”;
	cds.lib
	chips_prt
	CONCEPT2XIL
	Concept
	Concept Setup Files
	Concept Unified Schematic Library
	CPLD
	EDIF
	EDIF2NGD
	genview
	global.cmd
	HDL
	HDLConfig
	HDL Direct
	iterated instances
	logic drawing
	LogiBLOX
	MAP
	master.local
	mixed mode design
	NGDAnno
	NGDBuild
	NGD2VER
	PAR
	SCALD
	SIR2EDF
	SIZE
	Synergy
	testbench file
	Unified Library
	VAN
	Verilog
	Verilog SIMPRIM Library
	Verilog Unified Simulation Library
	Verilog-XL
	VLOG2XIL
	.wrk file
	XIL2CDS
	Xilinx Design Manager
	XNF

	Program Options
	CONCEPT2XIL
	Syntax
	Options
	-cdslib filename
	-family family_name
	-gcmd filename
	-help
	-log filename
	-rundir dir_name
	-sim_only

	Files
	Input Files
	Output Files

	Error and Warning Messages
	Error Message
	Error Message
	Error Message

	CPLD
	DSGNMGR
	LBGUI
	NGDAnno
	NGDBuild
	NGD2VER
	Syntax
	Options
	-tf
	-ul
	-pf

	Files
	Input Files
	Output Files

	PAR
	VERILOG
	Syntax
	Options
	+delay_mode_unit
	-f full_path_to_verilog_configuration_file
	-y full_path_to_library_name
	+libtext+
	+gui

	Files
	Input Files
	Output File

	XIL2CDS
	Syntax
	Options
	-family architecture
	-mode mode_type
	-pkg pkg_file
	-lwbverilog

	Files
	Input Files
	Output Files

	Processing Designs with LogiBLOX Components
	Generating the LogiBLOX module
	Creating a Symbol for the LogiBLOX module
	Netlisting the Design for the Functional Simulatio...
	Functional Simulation
	The testbench file
	Global Reset

	Synopsys/Verilog Design Flow
	Files
	Testbench Template
	Sample Test Fixture - XC4000EX Unified Library Fun...
	Sample Test Fixture - XC4000EX Post-NGDBuild Simul...
	Sample Test Fixture, No Startup Block in the Desig...

	XILINX.PFF Property Filter File Format

