
Summary
This guide will help you convert your existing designs from previous versions of XACTstep 5.X to XACTstep M1.X software.

Xilinx Families

XC3000A/L, XC3100A/L, XC4000E/L, XC4000EX/XL/XV, Spartan, XC5200, XC9500

Table of Contents
Introduction . 3
An Overview of the M1.X tools . 4
MAP Overview. 8
Place and Route using PAR . 12
TRCE Issues . 14
Full M1.X Conversion Flow . 15
Partial M1.X Conversion Flow. 16
Additional Flow Issues. 16
Design Constraints . 17
Migrating Cadence Designs . 22
Migrating Viewlogic Designs . 29
Migrating Mentor Graphics Designs 32
Migrating Synopsys VHDL/Verilog Designs 34
Migrating Foundation Designs .39

Introduction
This application note introduces the new XACTstep M1.X
tools and gives you flows on how to transition your existing
design from XACTstep 5.X to XACTstep M1.X. Since this is
a brief application note, it may not go into complete detail
on every tool; refer to the corresponding online documenta-
tion for complete details. Not everyone who has existing
designs should convert over to the new tools; this section
lists reasons both for and against converting. All new
designs should be started in M1.X. In this guide, XACTstep
v5.X software is referred to as 5.X and XACTstep vM1.X is
referred to as M1.X.

Why convert from 5.X to M1.X?

New device families

The M1.X tools support the new, higher density FPGAs not
availible at the release of XACT 5.X. The M1.X tools are
modular which allows easy revisions to support all future
FPGA and CPLD families. The current 5.X tools only sup-
port up through the XC4000E devices and will not be

revised to support either XC4000EX/XL/XV, Spartan, or
any other future device families.

Better software tools

Based on NeoCAD technology, these new software tools
are able to make faster and higher quality place and route
runs than the current 5.X tools. This means better perfor-
mance and utilization of your Xilinx programmable devices.
M1.X can often complete routing where 5.X could not. Also,
the UNIX version of the new place and route tool, PAR, has
the capability to run multiple workstation jobs, so that you
can utilize the power of all your workstations simulta-
neously.

New operating systems

The M1.X tools will support Windows 95 & NT 4.0, SunOS
4.X, SunOS 5.5/Solaris 2.5 and above, HP-UX 10.X, and
AIX 4.1. Currently 5.X does not support these operating
systems (except for SunOS 4.X) and there are no plans for
5.X to support these operating systems in the future.

Why not convert to M1.X?

Older families of Xilinx chips will not be supported in
the new tools

The XC2000, XC3000, and XC4000A/D/H families will not
be supported by M1.X; only XC3000A and newer families
will be supported in the new software. Please note that
these families (XC2000, XC3000, and XC4000A/D/H) are
being phased out and new designs should not target these
devices.

Older operating systems

Windows 3.X is no longer supported. If you are currently
unable to upgrade to Windows 95 or Windows NT, then
your best option is to use 5.X until you are able to upgrade.

Xilinx Software Conversion Guide
from XACT step v5.X
to XACT step vM1.X

April 1998 (Version M1.4) Application Note



April 1998 (Version M1.4) 3

Xilinx Software Conversion Guide
Designs in production

Designs that are complete or in production, or some
designs that are nearing completion, may not be good can-
didates for conversion.

Pre-unified libraries

Pre-unified library designs are not supported in the new
tools. There are no plans to support pre-unified libraries in
M1.X.

X-BLOX Designs

In most cases, X-BLOX designs should not be used with
the M1.X tools. If you want to use the M1.X tools, the best
option is to convert your X-BLOX designs to LogiBLOX.
This guide detailsl specific information on how to convert
designs from X-BLOX to LogiBLOX. The best option for
unconverted X-BLOX designs is to continue processing
them with the 5.X tools. While it is possible to use X-BLOX
with M1.X tools, taking the time to do the X-BLOX to Logi-
BLOX conversion will be easier for most users than
attempting to implement X-BLOX designs in M1.X. For
those who absolutely must use X-BLOX with M1.X, the Par-

tial M1.X Conversion Flow section describes a generic
approach to implementing X-BLOX designs in M1.X.

An Overview of the M1.X tools
The M1.X command lines have all changed from the 5.X
tools. This section discusses the new tools, the input files
supported, the commands used, and the output files writ-
ten. Figure 1 is a diagram showing how the tools are used
to implement and simulate your design.

New Commands
Implementation commands:

• LCA2NCD - Translates an existing 5.X physical design
implementation (.lca file) into an M1.X physical
implementation (.ncd file).

• CSTTRANS - Translates existing 5.X constraints into
M1.X constraints.

• DC2NCF - Translates Synopsys constraints into M1.X
constraints.

Figure 1: M1.X Implementation and Simulation Flows

M1

Top-Level

Flow

X7441cb

NMC

Physical Macro

Verilog

SDF 2.1

HDL

VHDL

SDF 2.1

XNF

v6

Simulation

Libraries

LogiBLOX GUI

Schematic Capture

NGD

UCFABEL

BIT

LogiBLOX Module

Compiler

NGDAnnoNGM

LCA

EDIF

2 0 0

JED PRG

MAP

JTAG

Programmer

Device

Programmer

VM6

CPLD Timing

Analyzer

LCA2NCD

TRACE

Hardware DebuggerPROMGen

BITGen

EPIC

PAR

Synthesis Simulation

EDIF 2 0 0 &

Constraints

XNF v6 &

Constraints

Guide File

GYD

NGA

Netlist Translation Out

M1

Top-Level

Flow

Schematic

Libraries

Synthesis

Libraries

Testbench

Stimulus

NCD & Constraints

NCD & Constraints
Guide File

NCD

CPLD Fitter

NGDBui ld NGDBui ld
4 April 1998 (Version M1.4)

• NGDBUILD - Translates and merges the various files
that make up the design into a generic logical
description of the design (.ngd file)

• MAP - Maps the generic logical description into a
physical design implementation of the design (.ncd file)
that is unplaced and unrouted

• PAR - Performs placement and routing on a physical
design implementation (.ncd file).

• BITGEN - Creates a bitfile from an .ncd file.
• PROMGEN - Creates a prom file from one or more

bitfiles.

Analysis Commands:
• TRCE - Performs timing analysis on physical design

implementation (.ncd file).
• NGDANNO - Extracts back annotated timing data from

the physical design implementation to a generic logical
design file (.nga file).

• NGD2XXX - Translates annotated logical design (.nga
file) to annotated netlist (EDIF, VERILOG, VHDL and
XNF).

Script Generation (Workstation only):
• XGEN - a utility for creating command line scripts. It

prompts for input and output file names and desired
features, then writes a script with the appropriate
command lines. Xgen is located in the userware/utilities
directory in the M1 installation area.

Because this note only covers design conversion, BITGEN,
PROMGEN, the Analysis Commands, and XGEN will not
be detailed here. Please see the online documentation for
more details on these programs

Translation of 5.X designs to M1.X with
LCA2NCD
This allows you to import an existing design into the M1.X
tools for use as a physical design. This can then be used to
guide the design or be placed and routed directly.

Input file for LCA2NCD:
• Logic Cell Array from 5.X (.lca)

Output files created by LCA2NCD:
• Mapped physical design implementation (.ncd)
• File to aid future guided mapping (.mdf).

Figure 2 shows the input and output files for LCA2NCD.
See Table 1 for details on the command line usage of
LCA2NCD.

Translation of 5.X constraints to M1.X with
CSTTRANS
CSTTRANS allows you to convert your existing constraint
files into an M1.X usable file. This file is known as a .ucf or
user constraints file. Please note that a floorplanner gener-
ated .cst file can not be used since the mapping in 5.X is
handled differently than in M1.X.

Input file for CSTTRANS:
• 5.X constraint file. (.cst)

Output files created by CSTTRANS:
• User constraints file (.ucf)

See Table 2 for details on the command line usage of CST-
TRANS.

Table 1

Figure 2: LCA2NCD Flow

LCA2NCD

X7473

NCD

Physical Circuit

Description

MDF

Decomposition

Hints

LCA

Physical Circuit

Description

LCA2NCD Usage
lca2ncd [-w] [-p] <infile> [<outfile>]

Options: Value Comments
<infile> Name of input .lca file.
<outfile> Name of output .ncd file.

-w Overwrite. Allows overwrite of an existing output file.
-p Placement only, i.e. don't preserve routing.
April 1998 (Version M1.4) 5

Xilinx Software Conversion Guide
Table 2

Translating a design using NGDBuild
NGDBuild translates input design netlists into a generic
logical description of the design. NGDBuild starts by deter-
mining the netlist type of the specified top level input
design. The “netlist launcher” calls the appropriate netlist
translator which creates an intermediate .ngo file from the
input netlist. For hierarchical designs, the appropriate
netlist translator is called for each module in the hierarchy.
A “make” feature compares file dates and only calls the
netlist translator for .ngo files that are out of date. NGDBuild
then merges the .ngo file(s) with any LogiBLOX compo-
nents and physical macros (.nmc files) referenced in the
design. Finally a logical Design Rule Check (DRC) is made.
Please refer to Table 3 for details on the command line
usage of NGDBuild

Input files supported by NGDBuild:
• XNF (v5.0 and above) format netlists (.xnf, .xtf)
• EDIF format netlists (.edif, .edn)
• Physical macros created by EPIC (.nmc)
• User constraints file (.ucf)
• Netlist constraints file (.ncf)
• Synopsys output files (.sxnf, .sedif)

Intermediate files created by NGDBuild:
• A .ngo is created for every netlist translated

Output file created by NGDBuild:
• A generic logical description of the design (.ngd)

Table 3

CSTTRANS Usage
csttrans <infile>[.cst] [-o <outfile>]

Options: Value Comments
<infile> Name of input .cst file.

-o <outfile> Name of output .ucf file.

Figure 3: NGDBuild Flow

X7710

NMC

Physical Macros

Referenced in Netlist

NGDBuild

NGD

Generic Database

(With Constraints)

Netlister

Launcher

UCF

User Constraints File

NCF

Netlist Constraints File

XNF 6.1

Netlist

EDIF 2 0 0

Netlist

NGDBuild Usage
ngdbuild [-p <parttype>] {-sd <searchpath>} {-sl <library>} [-ur <rules_file[.urf]>]
[-dd <output_dir>] [-r] [-nt timestamp|on|off] [-uc <ucf_file[.ucf]>] <design_name> [<ngd_file[.ngd]>]

Options: Value Comments
-p <parttype> Expand design for the given target part
-sd <source_dir> Add “source_dir” to the list of directories to search when resolving NGO/NMC file references
-sl <library> Add “library” to the list of libraries passed to the netlisters
-ur <rules_file> User rules file for netlister launcher
-dd <output_dir> Directory to place intermediate files
-nt <value> NGO file generation. Timestamp is the default.

Timestamp: Regenerate .ngo only when source netlist is newer than existing NGO file
On: Always reg8enerate .ngo file from source design netlists
Off: Do not regenerate .ngo files which already exist. Build .ngd file from existing .ngo files

-r Ignore location constraints
-uc <ucf_file> User constraints file

<design_name>

<ngd_file[.ngd]>
6 April 1998 (Version M1.4)

Mapping a design using MAP
MAP reads the logical design file (.ngd) and maps it into a
physical design (.ncd). The .ngd file also contains the logi-
cal constraints read by NGDBuild. The logical constraints
are converted to physical constraints and written to the
physical constraints file (.pcf). MAP also accepts an exist-
ing .pcf file as input as a means of inputting user defined
physical constraints.

Map re-writes the portion of the input .pcf file bordered by
the keywords "SCHEMATIC START ;" and "SCHE-
MATIC END ;" . Any user defined physical constraints
should be maintained outside this area. An example of this
would be I/O location constraints obtained from the .pad file
of a previous PAR run. In most cases, user defined con-
straints should be defined in the .ucf which deals in terms of
the logical design.

MAP also accepts a guide design (.ncd and .mdf) which is
used to closely replicate the results of a previous mapping
when design changes have been minor. The mapped .ncd

file consists of configured logic resources that are not yet
assigned to die locations unless constrained. Placement
and routing is assigned later by PAR. This guided flow can
be seen in Figure 4.

Please refer to Table 4 for details on the command line
usage of MAP.

Input files supported by MAP:
• A generic logical description of the design (.ngd)
• Physical constraints file (.pcf)
• Guide design (.ncd and .mdf)

Output files created by MAP:
• Mapped physical design implementation (.ncd)
• Physical constraints file (.pcf)
• MAP report file (.mrp)
• File to aid back annotation to logical model (.ngm)
• File to aid future guided mapping (.mdf)

Figure 4: MAP Flow

NGM

Back-Annotation

Control
MAP

NGD

Generic Database

X7204

NMC

Macro Definition

PCF

Physical Constraints

MDF

Decomposition Hints

MRP

MAP Report

Guide File

For

Guided

Mapping

NCD

Circuit Description -

Mapped to Desired Device
April 1998 (Version M1.4) 7

Xilinx Software Conversion Guide
Table 4

MAP Overview
Since MAP is so different and such a large part of the M1.X
tools, it warrants some special attention. This section cov-
ers details about MAP and differences between 5.X and
M1.X.

MAP inputs and outputs

Required Inputs:
• .ngd (top level design netlist from NGDBuild)

Optional Inputs:
• .pcf (physical constraints file)

Optional Guide files:
• .ncd (Native Circuit Design file from a previous revision

of the design)
• .mdf (MAP data file)

Outputs:
• .ncd (Native Circuit Design file-mapped physical design

database)
• .ngm (mapped ngd)
• .pcf (physical constraints file)
• .mdf (MAP data file)
• .mrp (MAP report file)

MAP Elements
• BEL: “basic elements”. The fundamental low level logic

building blocks of the FPGA - Includes Look Up Tables
(LUTs which include the F, G, and H function
generators), RAMs, FFs (FFX, FFY), carry logic, PADs,
etc.

• COMP: Higher order FPGA structural elements-CLBs,
IOBs, TBUFs, Decoders

MAP Usage
map [-b] [-c [<packfactor:0,100>]] [-cm <covermode>] [-f command_file] [-gf <guidefile>]
[-gm <guidemode>] [-ir] [-k] [-l] [-m] [-p <parttype>] [-oe <opteffort>] [-os <optstyle>]
[-p <parttype>] [-pr i|o|b] [-r] [-u] [-o <outfile[.ncd]>] <infile[.ngd]> [<prffile[.pcf]>]

Options: Value Comments
-b Reassign physical clock buffers (BUFGP/BUFGS) as appropriate (does not apply to

XC4000EX/XL/XV)
-c <packfactor> Pack unrelated logic into CLBs. <packfactor> indicates what percent of available CLB

resources to target. Range: 0 <= <packfactor> <= 100. The default is 97.
-cm area |speed|balanced Cover mode. Defines the approach used to map logic. Default is “area”.

Area: attempts to use the fewest number of function generators.
Speed: attempts to use the fewest levels of logic.
Balanced: attempts to strike a balance between speed and area.

-f <command_file> Read command line arguments from file <command_file>
-gf <guidefile> Guide from <guidefile>.ncd
-gm exact |leverage Guide mode. Default is “exact”.

Exact: Lock down all placement and routing.
Leverage: Use initial design {guided or not} as hint.

-ir Ignores relative placement of CLBs but preserves mapping of logic to a specific CLB
-k Map to 5 input functions
-l Disable logic replication
-o <outfile[.ncd]> Output filename. Default is the <infile.ncd>
-oe normal |high Logic optimization effort. Default is normal. Used for ABEL designs.
-os area|speed|best| none Logic optimization style. Default is no optimization.Used for ABEL designs.
-p <parttype> Map to part <parttype>
-pr i|o|b Pack internal flops/latches into input (I), output (o), or both (b) types of IOBs. Default

is to not merge registers into IOBs.
-r Disable register ordering
-u Do not remove unnecessary/disabled logic

<infile[.ngd]>

<prffile[.pcf]>
8 April 1998 (Version M1.4)

In the M1.X release, MAP manipulates design objects at
the COMP level, unlike PPR, which manipulated logic at
the BEL, or basic element level. This has major implications
for Timespecs and PAR. Due to this difference, .cst files
generated by the 5.X floorplanner cannot be used.

Please note that guiding Map with an NCD derived from an
LCA file to assist in migrating a design from 5.X to M1.X
may not be very successful. Low guide success can be
expected due to mapping differences between 5.X and
M1.X.

New Capabilities in M1.X

Ability to analyze design timing after mapping

The ability to run TRCE or Timing Analyzer after mapping
allows you to predict the probability that you can meet your
required design performance before any routing is done,
purely based on levels of logic along critical paths.

Percent Compression

This allows you to specify the percentage of the chip that
the logic should be compressed down to, using the -c
option.

The percentage is specified as an argument to -c. The
smaller the percentage value you specify, the smaller the
portion of the chip area MAP will use for the design. Low
compression values result in denser partitioning, but may
be harder to route, while logic mapped with higher com-
pression values will usually be easier to route because the
logic is dispersed more sparsely throughout the FPGA,
resulting in less routing congestion.

Support of XC4000EX/XL/XV-specific architectural
features
• Global Early Buffers
• Global Low-skew Buffers
• Fast Capture Latches
• CLB Latches (LD*)
• Output Multiplexer (OMUX)/2-Input Function Generator

dual capability)
- The OMUX/2-input LUT capability allows you to

implement certain two-input functions in an IOB by
instantiating the special library components
(OAND2, OOR2, etc.). You can also use the same
block as a multiplexer.

Logic Reduction and Optimization

In the M1.X flow, the logic reduction and trimming formerly
done by XNFPREP in 5.X is now done by MAP. The archi-
tectural optimization function of merging registers into I/O is
also now performed by MAP. Inferring clock buffers is no
longer done.

Optimizing for Area and/or Speed

MAP allows you to select between optimizing your design
for area, speed, or a balance between area and speed.

Current 5.X Features Not Supported by
MAP in M1.X

CLB Pin Locking Constraints

The pin lock property for schematic designs is not sup-
ported in the M1.X release. This property was used in 5.X
to force a specified net to be routed to a specific CLB pin.
To work around this, use the EPIC design editor to route the
given net to the desired CLB pin, then perform re-entrant
routing to complete routing the rest of the design.

Lack of support for CLB pin locking also means that .FFX
and .FFY constraints (locking down a flip flop to a particular
CLB flip flop) will not work either, since such constraints
would constrain the associated flip flop output pin to partic-
ular pins on the CLB. PAR will ignore these constraints if it
thinks it can do a better job.

Similarly, .F and .G constraints constraining combinational
logic to either an F or G function generator also will be
ignored by PAR, since constraining a signal to a particular
function generator also implies you are constraining it to a
particular set of pins.

XC4000E designs only: If you need to lock signals to cer-
tain pins, use the 5.X Core Tools instead.

Wide decoder support

MAP has no knowledge of the number of wide decoders
available on a device and cannot automatically split decod-
ers across multiple edges. If the wide decoder must be split
to fit the device, or the placer is unable to place a set of
wide decoders in your design, you must specify edge con-
straints to explicitly direct placement for all wide decoders
in your design. The software cannot handle decoder loca-
tion constraints when they are only applied to some decod-
ers.

Differences between 5.X PPR and M1.X
MAP
• In 5.X, PPR performed mapping, as well as place and

route functions. In M1.X, mapping is now performed by
a separate executable called MAP.

• No default part type is assumed by MAP. If a part type is
not specified, either in the .ngd file or on the command
line when you invoke MAP, MAP will issue an error
message and quit.

• M1.X support of new Timespec syntax, such as
OFFSET, PERIOD, and PRIORITY.

• MAP reads user specified constraints from a .ucf file
(user constraints file), which references the constrained
blocks using user names. It then writes out a .pcf file
(physical constraints file) to be used by the place and
April 1998 (Version M1.4) 9

Xilinx Software Conversion Guide
route tools. All references in the .pcf file are in terms of
physical component names. If a .pcf file already exists,
MAP also reads this in and re-writes the section
bordered by the keywords "SCHEMATIC START ;"
and "SCHEMATIC END ;" with constraint information
in the .ngd file which originated in the input netlist, from
the .ucf, and .ncf files. Any constraints outside this area
are retained.

• Overmapping designs. MAP overmaps (oversizes)
designs. This allows you to map a design file that
requires more logical resources than are actually

available on your target device. Use the MAP option -m
to do this. This allows you to estimate how many
resources the design uses without having to decide
which device to use.

• Ability to specify mapping optimization effort with -oe
option (high or normal)

• MAP and PAR both generate .ncd files, unlike in the 5.X
flow, where every program generates a file with a
distinct output name to prevent overwriting of
intermediate files. As a result, PAR requires that you
specify an output filename when you invoke it.

Table 5

Unsupported CLB Configurations in MAP
vM1.x
A number of user-specified logic combinations, although
valid, are not supported in the M1.4 Mapper. Problems may
be seen if users specify these logic combinations in their
designs using some combination of RLOC, LOC, or
BLKNM properties.

1. DI/SR PIN SUPPORT

The Mapper will not create the situation shown in Fig. 1,
where the H function generator is driven by all three combi-
national inputs H1, SR and DI. The Mapper will not imple-
ment this combination even when directed to do so by user
constraints. However, if either F or G function generators
are available, then the mapper will create a route through
buffer to drive H.

The DI pin cannot be used to drive the H-LUT when the H-
LUT is driven by three external (not driven by F or G) sig-
nals. The mapper supports configurations requiring two
external inputs, using either H1 and SR or H1 and DI. All

other uses of the DI pin, including as a register or RAM
input are supported.

Fig. 1. H-LUT driven by H1, SR and DI pins.

Command Line Equivalents
PPR NGDBuild Comments
cstfile=cstfilename.cst -uc constraintfile.ucf Constraint file
PPR MAP Comments
guide=designguide.lca -gf designguide.ncd MAP performs the equivalent of running PPR on a design with

the map_only option specified
X-BLOX MAP Comments
-merge_io=TRUE -pr [I|O|B] Merge registers into I/O. You can direct MAP to pack registers

into [I]nputs only, [O]utputs only, or to [B]oth inputs and outputs.
XNFPREP MAP Comments
-savesig -u Don't trim sourceless and loadless nets
[outputfilename] [-o outputfilename] With MAP, you must specify the name of the output file with a -o

option
parttype=<part_type> -p <part_type> Specifying part type
ignore_rlocs=TRUE -ir No exact equivalent. -ir ignores relative placement of CLBs, spec-

ified by RLOCs, but preserves mapping of logic to the same CLB

’

DI H1 SR

H

G

F

EC

EC

S/R
FFY

FFX
10 April 1998 (Version M1.4)

2. “Greedy pack” combinations

This situation is seen when trying mapping a DPRAM (dual
port RAM) block that drives logic directed into the H func-
tion generator. Map does not pack the 2 or 3-input LUT into
the H function generator in this case.

Fig. 2. F and G combinational outputs from the same
CLB drive 2 or 3-input LUT that could be packed into
the H position.

3. RAM and Carry Combinations

The mapper will not pack RAM symbols into either the F or
G function generators when carry logic is used.

For all the unsupported packs documented above, the only
workaround currently available is to create the desired CLB
configuration in EPIC, convert it into a physical macro, and
instantiate the physical macro (hard macro) into your
design.

Place and Route using PAR
After a design has undergone mapping (MAP program) or
translation (LCA2NCD program) into the .ncd format file, it
is ready for placement and routing. This phase is done by
PAR. PAR takes an .ncd file, places and routes the design,
and outputs the placed and routed .ncd file which can then
be processed by other M1.X programs.

Input to PAR
• .ncd, a mapped design
• .pcf, physical constraints file
• .ncd, a guide file for placing and routing the design

Output from PAR
• .ncd, a placed and routed design
• .par, general report for routed design
• .dly, delay report for routed design

Timing Driven

XACT Performance is an integrated static timing analysis
utility that is automatically used when timing constraints are
present in the design. Both placement and routing are exe-
cuted according to timing constraints that are specified up
front in the design process or manually added to the con-
straint file after mapping.

Placement

The PAR program places in two stages: a constructive
placement and an optimizing placement.

During the constructive placement, PAR places compo-
nents in sites based on factors such as constraints, length
of connections, and the available routing resources. This
placement also takes into account “cost tables” which
assign weighted values to each of the relevant factors.
There are 100 possible cost tables.

The optimizing placement is a fine tuning of the results of
the constructive placement. Optimizing is run at one of sev-
eral effort levels.

Routing

Routing is done in two stages: iterative routing and delay
reduction routing (also called cleanup). During iterative
routing, the router performs an iterative procedure to con-
verge on a solution that routes the design to completion or
minimizes unrouted nets. If timing constraints are present
in the constraint file (.pcf), the iterative routing phase will
also try to meet timing. During cleanup routing, the router
takes the result of iterative routing and reroutes some con-
nections to minimize the net delays within the device. There
are two types of cleanup routing passes available, a faster
cost-based cleanup routing and a more intensive delay-
based cleanup routing.

Additional PAR information

PAR operates at a component level with CLB, IOB, and
other components that have been created by the MAP pro-
gram.

PAR has one hundred different cost tables or placement
seeds available that can be used to attempt multiple place-
ment iterations.

An .ncd file can be unplaced and unrouted, placed and
routed, or at an intermediate stage. A partially routed .ncd
file can be resubmitted to PAR in a reentrant mode.

’

DI H1 SR

H

G

F

EC

EC

S/R
FFY

FFX

DPO

SPO

DUAL PORT RAM
April 1998 (Version M1.4) 11

Xilinx Software Conversion Guide
PAR supports two modes of guided place and route. Exact
mode considers the guide file a hard constraint. Leveraged
mode uses the guide file to influence the cost functions
used by place and route, and considers information in the
guide file to be suggestive rather than directive.

PAR Strategy

Easy Designs

A single placement cost table is used at moderate effort
level. Routing iterations are run until the design is com-
plete. For example:
par -ol 3 input.ncd output.ncd input.pcf

Difficult Designs

Multiple placement cost tables are attempted at a high
effort level and with a limited number of routing iterations
per cost table. The idea is to perform just enough routing to
determine how successful the placement is compared to
other cost tables.

A separate results file is written for each placement cost
table into a specified output directory. Each results file is
given a name derived from the placement effort level and
cost table numbers. For example:

par -l 5 -i 8 -n 0 input.ncd output.dir input.pcf

The best result of the first phase is identified in the results
file output.par. If the output.par file indicates that 5_3.ncd is
the best run based on the scores, then use this .ncd file in
reentrant mode. File 5_3.ncd would be the result of effort
level 5 and cost table 3. This partially routed design is sub-
mitted to PAR in reentrant mode in a more intense effort to
complete the design. A cycle of 20 routing iterations and 3
delay based clean-up passes is repeated until the design is
completed or stops making progress. For example:

par -i 20 -k -p -d 3 5_3.ncd output.ncd input.pcf

Turns Engine (Workstations only)

The turns engine manages multiple concurrent PAR place-
ment and routing passes which are run concurrently on
multiple workstations. Each pass uses a separate place-
ment cost table.

Figure 5: PAR Flow

PAR

NCD

Circuit Description

(Mapped)

X7205

Guide File

Input for Re-Entrant PAR

DLY

Delay Information

PAR

PAR Report

PAD

Pin Information

NCD

Circuit Description

(Placed/Routed)

PCF

Physical Constraints
12 April 1998 (Version M1.4)

Table 6

TRCE Issues
By default, the timing analysis tools of M1.X and 5.X will
analyze somewhat different classes of path types. This
affects not only the timing analysis for reporting purposes,
but also affects the timing-driven place and route tools. To
make the path tracing of M1.X be consistent with that found
in PPR, the following controls can be added into the .pcf
file:

DISABLE = ram_we_o;

DISABLE = io_o_i;
ENABLE = lat_d_q;

In the first case, M1.X will normally always include RAM
write enable to output times for path analysis. 5.X didn't do
this, so the DISABLE entry in the .pcf file will allow M1 to
emulate that behavior. The second case is similar, but
applies to IO pad output to input tracing. The third case,
turns on path tracing for paths that go through latches when
in the “transparent” mode - again, this will emulate 5.X
behavior.

PAR Usage:
par [-c <costpasses:0,20>] [-d|-e <delaypasses:0,100>] [-f <command_file>] [-gf <guidefile[.ncd]>]
[-gm exact|leverage] [-i <routepasses:0,2000>] [-k] [-l <level:1,5>] [-m < nodefile_name>]
[-n <iterations:0,100>] [-p] [-r] [-s <savebest:1,100>] [-t <costtable:1,100>] [-w] [-x] [-ub]
<infile[.ncd]> <outfile> [<preffile[.pcf]>]

Options: Value Comments
<infile> Name of input ncd file.
<outfile> Name of output ncd file or output directory. Use format “<outfile>.ncd” or

“<outfile>.dir”.
<preffile> Name of preference file.
-c 0 - 20 Run n cleanup passes of the router. Default: 1.
-d 0 - 100 Run n delay based cleanup passes of the router on unrouted designs. Default: 0
-e 0 - 100 Run n delay based cleanup passes of the router if design is 100% routed. Default: 0
-f <command_file> Read PAR command line arguments and switches from file.
-gf <guide_file[.ncd]> Use a guide file to place and route against. Keep matching block names. Keep match-

ing netnames/pins.
-gm exact |leverage Guide mode to be used; default is exact.

Exact: Lock down all placement and routing.
Leverage: Use initial design {guided or not} as hint.

-i 0 - 2000 Run n iterations of the router. Default: Run until router decides it will not complete with-
out diverging.

-k Skip constructive placement. Run optimize placement and then enter the router. Note:
Use -k -p to do reentrant routing

-l or -ol 1 - 5 Effort Level. Level 5 is maximum effort. Default: 5.
-pl 1 - 5 Placement effort level. Overrides any placement effort level specified by -l or -ol.
-rl 1 - 5 Router effort level. Overrides any router effort level specified by -l or -ol.
-m <nodefile_name> Multi task par run. File “<node list file>” contains a list of node names to run the jobs on
-n 0 - 100 Iterations at this level. Use “-n 0” to run until fully routed. See Note under “-a” option.

Default: 1
-p Don't run placement.
-r Don't run router.
-s 1 - 100 Save “n” best results for this run. Default: Save All.
-t 1 - 100 Start at this placer cost table entry. Default: 1.
-w Overwrite. Allows overwrite of an existing file (including input file). If specified output is

a directory, allows files in directory to be overwritten.
-x Ignore Timing preferences in preference file.
-ub Use bonded I/Os. Allow bonded I/O sites to be used for internal logic. This includes

I/Os which do not require the pad as well as allowing the router to route through the
I/O site
April 1998 (Version M1.4) 13

Xilinx Software Conversion Guide
One other control, reg_sr_q , is by default disabled in M1,
but is enabled in XDELAY. However, PPR did not trace this
path, and behaved like M1.X. So to emulate PPR behavior,
nothing needs to be done, but when trying to match
XDELAY results, one should further include:

ENABLE = reg_sr_q;

M1.X tools will include paths that include the setup time of
the CLB C pin to the clock K, via the S/R going low (inac-
tive). The data book parameter is TRCK. 5.X doesn't con-
sider these paths when doing timing analysis. This applies
to the XC4000E, EX, and XL CLB type. There is no "DIS-
ABLE" function available in the .pcf language to explicitly
handle this path element.

To make M1.X emulate the 5.X behavior, it is necessary to
place a TIG attribute (timing ignore) on the net that drives
the S/R control via the C input pin.

M1.X also looks at the timing for the release of a Flip Flop
reset before a subsequent clock while PPR does not. This
parameter shows up in TRCE as TRCK. It can be compen-
sated for by using a TIG attribute on the reset net.

This can be done in the .ucf file as well as the .pcf file.
Example .ucf file syntax:

NET net_name TIG ;
or

NET net_name TIG = TS07 ;

In the second example, timing though this net will only be
ignored for the specified timespec, TS07.

The same thing can be accomplished in the .pcf file. The
syntax in this case is the same as the .ucf file syntax.

Full M1.X Conversion Flow
This section provides a generic overview of how to convert
your existing designs to M1.X. Several sections of this
guide cover vendor-specific information such as how to
make your schematics M1.X-compatible. See the appropri-
ate section for vendor-specific information.

X-BLOX/MEMGEN Designs
LogiBLOX is a replacement for both X-BLOX and MEM-
GEN. M1.X is not able to directly process X-BLOX or MEM-
GEN designs. X-BLOX designs must be either converted to
LogiBLOX or processed into a netlist by the X-BLOX tool
prior to running the M1.X tools. This section examines the
conversion process. See the partial M1.X conversion flow
later in this guide for details on the second option, process-
ing the netlist.

In an X-BLOX design, the data type and bus width of a
module can be specified only at a single point in a data

path. During module expansion, X-BLOX propagates the
information through the entire data path. Since each Logi-
BLOX symbol is already sized with the bus_width attribute,
the BUS_DEF, CAST, SLICE, ELEMENT, and BUS_IFxx
symbols are no longer needed on a LogiBLOX schematic.
The bus_width and encoding of the LogiBLOX module is
explicitly defined.

X-BLOX can perform global design optimization such as
implementing flip-flops in IOBs and inserting global buffers.
This process is now handled by the MAP program. You can
specify in MAP the choice of input, output, or both as opti-
mization options.

For MEMGEN designs, some changes must be made in the
.mem file before the M1.X tools can process it. The follow-
ing changes must be made in the .mem file to convert it for
use with LogiBLOX:

• The radix must specified at the beginning of the file.
The # notation (e.g., 10#48#) to specify data value is no
longer supported.

• The depth value should be a multiple of 16; the
maximum value is 256.

• The PART and TYPE fields must be removed
• The underscore character “_” is illegal.

Please see the LogiBLOX Reference/User Guide online
documentation for more details on MEMGEN files.

Schematic Flow
To convert your schematic X-BLOX or MEMGEN design to
LogiBLOX, here are the basic steps:

1. Invoke the LogiBLOX tools and replace each of the X-
BLOX or MEMGEN logical components with an equiva-
lent LogiBLOX component. Non-logical components
such as CAST, BUS_IFxx, BUS_DEF, SLICE, and ELE-
MENT should be removed since LogiBLOX components
can be connected directly to normal buses in your
design. There is no function equivalent to these compo-
nents in LogiBLOX. Change INPUTS, OUTPUTS, and
BIDIR_IO modules to the appropriate LogiBLOX I/O
modules.

2. Convert the X-BLOX buses to regular buses using the
width that matches the width of the bus connections on
the LogiBLOX components.

3. The symbol attributes are mostly identical for both Logi-
BLOX and X-BLOX. However, the LOC[0] = P19,
LOC[1]=P20 becomes PAD_LOC = 0:P19.1:P20. The
edge constraints (L,LT,TL,T,TR,RT,R,RB,BR,B,BL,LB)
are no longer valid for the I/O modules.

HDL flow
For an HDL flow there are 3 options:

1. The HDL source code contains only behavioral code
and the synthesizer does not use X-BLOX modules:

No modification of the HDL source code are required,
14 April 1998 (Version M1.4)

the resulting synthesized netlist file is ready for M1.X
implementation.

2. The HDL source contains only behavioral code and the
synthesizer is inferring X-BLOX module:

The synthesized netlist file contains X-BLOX modules.
Basically these modules are specially optimized in term
of speed and density for FPGA architecture. If your syn-
thesizer is able to infer LogiBLOX modules instead of X-
BLOX modules, resynthesize the code after switching
the X-BLOX library to LogiBLOX. If not, there are two
choices:

• Process the synthesized netlist in 5.X flow, (xmake -n
design.xnf) to expand the X-BLOX modules. This
creates an .xtf file which can be processed in the M1.X
flow.

• Switch off the X-BLOX library and resynthesize the
design. The timing or density results might be worse
since some dedicated FPGA resources such as carry
logic or memory won’t be used. To improve the result,
modify the HDL source code by instantiating LogiBLOX
modules (see option 3).

3. The HDL source code contains instantiated MEMGEN
or X-BLOX modules. You have two choices:

• Process the synthesized netlist in 5.X flow, (xmake -n
design.xnf) to expand the MEMGEN or X-BLOX
module. This creates a .xtf file ready for the M1.X
implementation.

• Replace the MEMGEN or X-BLOX modules with
equivalent LogIBLOX modules. The LogiBLOX program
creates a simulation netlist (vhdl or verilog), an
implementation netlist (.ngo) file, and a template file
containing either a VHDL (.vhi) or a Verilog (.vei)
component instantiation. Cut and paste this template in
your HDL source code. They contain two pieces of
information. Pin names and comments detailing the
module attributes fill the component Instantiation
section with the signal name of the top level design.

XABEL Designs
For PC users, the XABEL flow is transparent; you do not
need to make any modifications on the existing design.
NGDBuild will process .abl files as needed.

For workstation users, the current version of XABEL will not
be updated to write EDIF files. To use XABEL the existing
symbol must point to the design.xnf file. NGDBuild will not
run ABL2XNF, so you must update any XABEL design
changes manually, using the 5.X tools. NGDBuild will
merge in any referenced .xnf files in the design. Functional
simulation will still be handled as before, using XSIMMAKE.
Timing simulation will be handled through the M1.X flow,
since the XABEL module can be handled as a black box.

Partial M1.X Conversion Flow
If, for some reason, you are unable to convert your designs
to LogiBLOX, here is an alternate flow. Since potential
problems may occur with this untested flow, Xilinx does not
recommend doing timing simulation with this flow. This flow
can be used if you do not have access to LogiBLOX.

Design Flow
Designs can still be processed through the old X-BLOX
tools to generate the expanded netlist. Here are the steps
to follow:

1. Translate the design from the specific vendor's (View-
logic, Synopsys, etc.) format to a .xnf/.sxnf file.

2. Run XMAKE with a target of “stop to review DRC” to
generate a .xtf file.

3. Use this file as the input to NGDBuild.

If you do not have the XACTstep 5.x tools available to you
anymore, or if you do not have a license for XBLOX, Xilinx
has provided the programs necessary to take a .xnf/.xff file
to a .xtf file. These programs (XNFMERGE, XNFPREP,
XBLOX (de-licensed)) have been placed in an archive on
our FTP site (ftp.xilinx.com) and can be executed either
individually or via a script (C-Shell, .bat) that has been pro-
vided. The script is called “xblox2m1”, and these are the
steps to follow:

Note: The “xblox2m1” archive on the FTP site does not contain
the various translators (WIR2XNF, SYN2XNF, etc).
You must have a .xnf or .xff file available for this
flow (.sxnf file cannot be used without executing
SYN2XNF).

1. Run XBLOX2M1 on the .xnf or .xff with the following
command line:

xblox2m1 -p <part_type> <design_name>

2. Use the resulting .xtf file as an input to NGDBuild.

Functional Simulation

Functional simulation should still work as before, using
XSIMMAKE or FNCSIM8, since none of the M1.X tools will
be involved.

Timing simulation

Timing simulation with unconverted X-BLOX designs may
present some unusual challenges. However, the specifics
are dependent on the individual interfaces. See the vendor-
specific sections of this guide for details on timing simula-
tion of unconverted X-BLOX designs. Please be aware that
X-BLOX timing simulation in M1.X is not a supported flow.
April 1998 (Version M1.4) 15

Xilinx Software Conversion Guide
Additional Flow Issues

Converting XNF/XTF file to M1.X
Some users may need to translate to XNF format and then
run the M1.X core tools on the XNF netlist. A few examples
of this might be:

• Unconverted X-BLOX/XABEL/MEMGEN designs.
• Proprietary netlist translators (Protel and certain other

third party interfaces).
• Certain synthesis tools that instantiate X-BLOX

components.

The recommended flow is to generate a design.xtf file. This
means the design has to be flattened by use of
XNFMERGE program, and if the design contains X-BLOX
or MEMGEN components, these components have to be
resolved. To do this, run XMAKE with a target of “Stop to
review DRC”. If you are using the Design Manager, trans-
late the design and then run the first step of the Flow
Engine, Optimize. This will produce the design.xtf file. Copy
this file to the new design directory and use it as the input to
the M1.X tools.

Guiding M1.X designs with existing
floorplanned 5.X designs
Since the M1.X software has a better place and route tool,
most users will not need to floorplan their designs. How-
ever, there may be those few cases where you need to
retain a current floorplan. This section will describe how to
take a floorplanned design and then import the LCA as
guide file for M1.X. In general, it is highly recommend that
you try the M1.X tools first without guiding or floorplanning.
This Floorplanner flow has not been exhaustively tested
and is thus not a recommended flow; it should only be used
as a last-case option. Please note that this would only work
in cases where the part is being supported by both 5.X and
M1.X tools.

Guiding from the existing floorplanned .lca file

1. Use the floorplanner to write out a design.cst file.
2. Run PPR design route=false cstfile=design.cst
3. Run LCA2NCD to import the design into the M1.X tools.
4. Use this ncd file as a PAR guide file: PAR -gf design.ncd

A detailed description of the LCA2NCD program can be
found in the Development System Reference Guide.

Licensing

Workstations

The M1.X workstation licensing works in a similar manner
to the 5.X version. The FlexLM license manager is still
used, only a different license file is required. The old and
new license files can be concatenated together and used
simultaneously.

PCs

The new M1.X software does not use a hardware key. The
software is licensed to your PC via your computers ethernet
address or C: drive serial number. (To use the 5.X software,
you will still need to use your existing Xilinx Key). Since the
new license manager is FlexLM, the license is distributed
across the network to the different computers. This enables
multiple users to run the software across the network.

Design Constraints
Many existing constraints will be handled automatically
through the M1.X tools. However, some constraints have
changed in the M1.X tools. The new constraint flows, using
the .ucf and .pcf files can be seen in figures 6 and 7.

See Table 7 for details of the constraint differences
between 5.X and M1.X. Table 9 gives an overall summary
of the M1.X constraints.

Attributes and constraint files

There are two types of attributes discussed in this section:

• Component attributes, which affect only the component
instances on which they are placed.

• Net attributes, which affect individual component
outputs or inputs and are represented by attributes
applied to nets.

The following conversion table describes the attributes
used in 5.X versus M1.X. Some of them are identical; the
syntax and the concept is the same in both 5.X and M1.X.
Some use a new syntax but keep the concept. Others are
now obsolete; they will be supported by the software until
M2 to foster compatibility with existing designs, but should
not be used in new designs. The remaining attributes are
not supported in M1.X at all; both the syntax and the con-
cept are obsolete.

There is a new symbol, CONFIG, that allows you to attach
various attributes such as PART and bitstream options.

The Set Delay Margins for I/O command in 5.X XDELAY is
not supported in M1.X. For users who wish to have extra
delay added to input and output paths that travel off-chip,
they should use the OFFSET constraint. The offset con-
straint are available for use in the .pcf, .ucf and .ncf files, but
are not available for use in a schematic. The OFFSET con-
straint specifies the arrival time of pad related signals rela-
tive to the given clock.

For a more detailed discussion of the M1.X constraints,
see:
• XACTstep Libraries guide October 1995 chapter 4.
• M1 4KEX Beta Libraries Guide (online documentation)
16 April 1998 (Version M1.4)

Figure 6: UCF Constraint Flow

X7423

NGDBuild

NGD

Generic Database

(Containing Constraints)

UCF

User Constraints FileDesign Netlist

Figure 7: PCF constraint Flow

5.X Attribute M1.X Attribute Comments
FPGA Constraints
BASE Identical XC3000A only
BLKNM Identical
CAP Obsolete XC4000H only

MAP

X7424

PCF

Physical Constraints

PAREPIC BitGenTRACE NGDAnno

NGD

Generic Database

(Containing Constraints)
April 1998 (Version M1.4) 17

Xilinx Software Conversion Guide
Table 7

CMOS Obsolete XC4000H only
CONFIG Identical
DECODE Identical
DIVIDE1_BY=... Identical XC5200 only
DIVIDE2_BY=... Identical XC5200 only
DOUBLE Identical
EQUATE_F EQUATE_G Identical
FAST Identical
FILE=filename Identical
HBLKNM Identical
HU_SET Identical
INIT Identical Cannot be placed into UCF; NCF and schematic only
LOC =Px Identical
LOC = B, ..LB (IO Edge, Half Edge) Limited Not supported for regular IO, supported only for BUFG and

edge decoder
LOC = CLB_R5C5.G (dot extension) Limited Supported only for MAP
LOC <> Not Supported
MAP: PLC, PUC,PLO, PUO Limited
MEDFAST, MEDSLOW Obsolete XC4000A only
Net flag: C,W,N Not Supported Use the Timespec
Net flag: L New: MAXSKEW
Net flag: S Identical
Net flag: X New: KEEP
Net flag: G, I, K Obsolete XC2000 only
Net flag: P Not Supported
NODELAY Identical
PART Identical Must be attached to CONFIG symbol
RES Obsolete XC4000H only
RLOC Identical
RLOC_ORIGIN Identical
RLOC_RANGE Identical
TNM Identical
TS: From To Identical
TS: C2S, P2P, C2P, P2S Not Supported
TTL Obsolete XC4000H only
USE_RLOC Identical
U_SET Identical

5.X Attribute M1.X Attribute Comments
EPLD Constraints
CLOCK_OPT=ON|OFF Not Supported “Use Global Nets” in GUI, or use BUFG=CLK for a specific

signal
DEF=PLD New: FILE=filena-

me
Supported in M1, obsolete in M2

5.X Attribute M1.X Attribute Comments
FPGA Constraints
18 April 1998 (Version M1.4)

Table 8

Constraint files
5.X uses only one type of constraint file: .cst. M1.X uses
two types of constraint files: the logical constraint, either
.ncf (netlist constraint file) or .ucf (user constraint file) and
the Physical Constraint File (.pcf). You can attach logical
constraints using attributes in the input design or with a
Netlist Constraints File (.ncf) or a User Constraints File
(.ucf). Constraints that are attached to elements in the
design prior to mapping and place and route

are referred to as logical constraints. Constraints can also
be attached to the elements in the physical design, i.e. the
design after mapping has been performed. These con-
straints are referred to as physical constraints and are
defined in the Physical Constraints File (pcf), which is cre-
ated during mapping. Table 8 describes only the logical
constraint file constraints because it is recommended to
place any user-generated constraints in the .ucf file, not in
the .ncf or .pcf file. These files are overwritten and changes
may be lost.

FOE_OPT=ON|OFF Not Supported “Use Global Nets” in GUI, or use BUFG=OE for a specific
signal

INIT=R|S Identical
LOC =pin_name|FBnn Identical
LOGIC_OPT=ON|OFF New: KEEP Use KEEP instead
LOWPWR=ALL Not Supported “Default Power Setting” in GUI
LOWPWR=ON|OFF New: PWR_MODE Supported in M1, obsolete in M2
MINIMIZE=ON|OFF New: NOREDUCE “Use Boolean Minimization” in GUI
MRINPUT Not Supported “Use MR Pin as Logic Input” in GUI
Net flag: F,H Not Supported Use the timespec, or LOC=<pin> for explicit FB/FFB
OPT=OFF New: KEEP
OPT=ON Not supported Default setting
OPT=UIM New: WIREAND
PART Identical
PLD=filename Identical
PRELOAD_OPT=ON|OFF Not Supported ”Change Preload Value” in GUI
REG_OPT=ON|OFF Not supported “Use IO registers” in GUI
ADD Obsolete
D_INVERT Obsolete
UIM_OPT New: WIREAND

5.X Attribute M1.X Attribute Comments
EPLD Constraints

5.X: cst file M1.X: ucf file Comments
Placement
Place instance $1I2/$1I3:CLB_R5C3; INST $1I2/$1I3 loc=clb_r5c3;
Place instance $1I2/$1I3:clb_r5c3 clb_r6c6; INST $1I2/$1I3 loc=clb_r5c3, clb_r6c6; list of CLBs
Place instance $1I2/$1I3:[clb_r5c3 clb_r6c6]; INST $1I2/$1I3 loc=clb_r5c3:clb_r6c6; Area
Place instance $1I2/$1I3:clb_r*c3; INST $1I2/$1I3 loc=clb_r*c3; Wildcard
Place block my_comp:clb_r*c3; INST my_comp loc=clb_r*c3; Wildcard
notplace instance $1I2/$1I3:CLB_R5C3; INST $1I2/$1I3 prohibit= clb_r5c3;
notplace instance *: clb_r5c3; INST * prohibit =clb_r5c3; Wildcard
Flip-Flop
place instance /top-12/fdrd: clb_r5c3; INST /top-12/fdrd loc= clb_r5c3;
place instance /top-12/fdrd: clb_r5c3.ffx; INST /top-12/fdrd loc= clb_r5c3.ffx; .ffx or .ffy or no extension
Ram and Rom
place instance /top-12/rq: clb_r5c3; INST /top-12/rq loc= clb_r5c3;
FMAP and HMAP
April 1998 (Version M1.4) 19

Xilinx Software Conversion Guide
Table 9

Place instance top/dec0011:CLB_R5C3; INST top/dec0011loc=clb_r5c3;
Place instance top/dec0011:CLB_R5C3.f; INST top/dec0011 loc=CLB_R5C3.f; Supported only for MAP
CLBMAP
place block top/cntq7: CB; INST top/cntq7 loc=CB;
CLB
notplace instance *: [clb_r1c1 clb_r5c7]; INST * prohibit=clb_r1c1: clb_r5c7;
I/O
place instance /top-102/data0_pad: p17; INST /top-102/data0_pad loc=p17;
place instance /top117/q13_pad: t; INST /top117/q13_pad loc= t; also edges and half edges
IOB
notplace instance *:p36 p37 p41; CONFIG prohibit= p36,p37,p41;
BUFT
place instance /top-72/rd0:TBUF_r1c5.1; INST /top-72/rd0 loc=TBUF_r1c5.1; .1 or .2 or no extension
Edge Decoder
place instance dec1/$1I1:T; INST dec1/$1I1 loc=T;
Global Buffer
place instance buf1: TL; INST buf1 loc= TL;
Flag Constraint
flag net C $1I3245/$SIG_6; Not Supported Use the timespec
Weight Constraint
weight net 50 $1I3245/$SIG_6; Not Supported Use the timespec
TIMESPEC constraint
TIMESPEC="TS01=FROM:ff_a:TO:acc_a=25ns"; TS01=FROM ff_a to acc_a 25;

5.X: cst file M1.X: ucf file Comments

Summary of the M1.X constraints Comments
BASE = {F | FG | FGM | IO} XC3000 only
BLKNM = name FPGA only
BUFG = {CLK | OE | SR | CE} New in M1.X
COLLAPSE CPLD only
CONFIG = tag value [tag value] XC3000 only
Configuration Constraints See Libraries guide for more details
DECODE
DIVIDE1_BY = {4 | 16 | 64 | 256} XC5200 only
DIVIDE2_BY = {2 | 8 | 32 | 128 | 1024 | 4096 | 16384 | 65536} XC5200 only
DOUBLE FPGA only
DROP_SPEC = TSidentifier New in M1.X
EQUATE_F = equation XC3000 only
EQUATE_G = equation XC3000 only
FAST
FILE = filename [.extension]
HBLKNM = name FPGA only
HU_SET = name FPGA only
IGNORE FPGA only. New in M1.X
INIT = {R | S | value}
INREG XC5200 only
IO CPLD only
KEEP New in M1.X
20 April 1998 (Version M1.4)

Table 10

Migrating Cadence Designs
The number of changes required to retarget a Cadence
design from 5.X to M1.X are significant, regardless of the
type of design you are trying to migrate because the M1.X
release coincides with major changes in Cadence design
methodology. However, a design which is drawn purely with
Unified Library components will require fewer changes than
a design that contains instantiated netlist modules, instanti-
ated HDL, or X-BLOX.

In light of the fact that X-BLOX designs may require more
work to convert, you may consider the option of using 5.X
instead to process your design. Unless you are targeting
the new XC4000EX/XL/XV or XC9500 families or have
moved to an operating system that is not supported by 5.X
(e.g., Solaris 2.5 or Windows NT 4.0), 5.X is still a viable
option for X-BLOX designs.

This section details the migration of Cadence designs from
5.X to M1.X. For more information about the Cadence
tools, please see the Cadence Interface/Tutorial Guide. For
more information on the M1.X core tools, refer to the Xilinx
online documentation.

Cadence Changes

Cadence 5.X Environment

The M1.X Xilinx/Cadence interface release coincides with a
major change in the Cadence database structure, which is
referred to by Cadence as their “5.X Environment”. The
main goal of the 5.X Environment is the standardization of
a common logical and physical structure for all designs
across all Cadence design tools. The common logical
structure shared across all Cadence tools is a hierarchical
lib/cell/view/file structure, where

LOC=location
MAP = {PLC | PUC | PLO | PUO} FPGA only
MAXDELAY = delay [units] FPGA only. New in M1.X
MAXSKEW = delay [units] FPGA only. New in M1.X
MEDDELAY XC4000EX only
Net flag: S
NODELAY
NOREDUCE CPLD only
OFFSET {IN | OUT} offset_time [units] {BEFORE | AFTER} [clk_net] New in M1.X
OPT_EFFORT {NORMAL | HIGH} FPGA only. New in M1.X
OPTIMIZE = {AREA | SPEED | BALANCE | OFF} FPGA only. New in M1.X
OUTREG XC5200 only
PART = name
PERIOD = period [units] [HIGH | LOW] [high_or_low_time hi_lo_units] New in M1.X
PROHIBIT = location: location | location..., location] FPGA only
PWR_MODE {LOW | STD} CPLD only
RLOC = RmCn[.extension] FPGA only
RLOC_ORIGIN = Rrow_numberCcolumn_number FPGA only
RLOC_RANGE = Rrow1#Ccol1#r: Rrow2#Ccol2# FPGA only
SLOW CPLD only
TIG = [TSidentifier] | TSidentifier1, TSidentifier2... Tsidentifiern FPGA only
Time Group Attributes See Libraries guide for more details
TNM = name | RAMS | PADS | LATCHES | FFS nameTPSYNC = name
TPSYNC=identifier FPGA only. New in M1.X
TPTHRU=identifier FPGA only. New in M1.X
TSidentifier See Libraries guide for syntax
U_SET = name
USE_RLOC = {TRUE | FALSE}
WIREAND CPLD only

Summary of the M1.X constraints Comments
April 1998 (Version M1.4) 21

Xilinx Software Conversion Guide
• A “view” is a collection of files that are related in that
they all contain information about one type of
representation, such as schematic, symbolic, HDL, or
layout.

• A “cell” is a collection of views that describe an
individual building block of a chip or system.

• A “library” is a collection of cells that are related either
in terms of
- describing components of a single design (a “design

library”) or
- describing common components potentially used in

many designs a “reference library”)

In the 5.X environment, Verilog is the base netlist format
from which all other netlists are derived.

Also, a new cds.lib library file is now required for specifying
libraries available to all 5.X compliant tools, including Con-
cept, and Composer (Composer is supported by Cadence).

Concept HDL Direct Methodology is required

HDL Direct design methodology is now standard and
required for all PIC (Programmable Integrated Circuit)
flows, including Xilinx. Begining with the PE 13.0 (Perfor
mance Engineering) release (also known as the 97c
release) the Concept has been re-designed to only include
the Concept-HDL methodlogy and the older format known
as SCALD is no longer offered.

HDL Direct gives users the ability to do functional simula-
tion of schematic designs directly, all that is required is
nominal post-processing to resolve design hierarchy. This
is done using the Concept2XIL netlister. The main features
are:

• Automatic generation of a Verilog netlist for a user
schematic or block automatically whenever it is saved.

• Use of Verilog as the base intermediate netlist format
from which all other formats are derived.

HDL Direct methodology is now required for all Concept
schematics in the M1.X flow. In the context of Xilinx
designs, this means that SCALD methodology is not sup-
ported, and users must convert their designs.

The main conversions users will need to make are:

1. Using SLICE components from the hdl_direct_lib library
instead of TAP and CTAP symbols to tap bits off busses.

2. Removing “\I” suffixes from interface signal names and
replacing these with INPORT, OUTPORT, and IOPORT
bodies from the hdl_direct_lib library to designate input,
output and bidirectional signals associated with a higher
level symbol body in hierarchical, multi-sheet designs.

3. Modification of signal and block names to conform to
Verilog naming conventions (no overlapping of signal
and block names, all names only beginning with alpha-
betic characters or $ signs).

HDL Direct is most conveniently activated by adding the fol-
lowing commands to a startup.concept file in your project
directory:

set hdl_direct_on
set hdl_checks on
set check_signames on
set check_net_names_hdl_ok on
set check_port_names_hdl_ok on
set check_symbol_names_hdl_ok on
runopl <installation_path_to_cadence>/
tools/fet/concept/hdl_direct/bin/autosym

HDL Direct and the associated naming checks are auto-
matically activated when Concept starts up when you set
the startup.concept file in this way.

SIZE property is no longer supported

In the M1.X translators and libraries, the SIZE property
(used for replicating instantiated symbols) is no longer sup-
ported due to adverse effects on simulation times. These
effects are associated with SIZE and the HDL Direct meth-
odology. Users must use the ITERATED INSTANCE meth-
odology for replicating symbol bodies in their designs,
which involves adding an index range (n-1..0) to the PATH
property of a symbol body, where n is the total number of
copies of a component desired. (A PATH property is a Con-
cept schematic instance name.)

For example, say the instance name of the FDCE compo-
nent is I1. If you want to replicate it to get a total of 4 flip-
flops, you must modify the PATH property and change it to
“I1(3..0)”, (basically adding an index range of 3 down to 0).

The ITERATED INSTANCE methodology is discussed in
detail in the Cadence HDL Direct User Guide. If you want to
process existing designs in M1.X, you must continue using
the XNF translator, CONCEPT2XNF.

New Netlisters--CONCEPT2XIL and XIL2CDS

In the M1.X interface, CONCEPT2XIL is used to translate a
Concept schematic to EDIF via HDL Direct generated Ver-
ilog. XIL2CDS generates the body and chips_prt files
needed to integrate the chip level design into a board level
schematic. For the PE 13.0 release CONCEPT2XIL and
XIL2CDS are built into the Concept interface. For earlier
releases of Concept, both netlisters must be obtained from
Cadence Design Systems. See http://www.xilinx.com/tech
docs/2766.htm and http://www.xilinx.com/techdocs/
2943.htm for details on obtaining these netlisters.

M1.X Libraries are required

HDL Direct requires that designs be entered using HDL
Direct compliant libraries. The M1.X Xilinx Concept and
Verilog libraries MUST be used for doing designs with the
M1.X Cadence translators Concept2XIL and XIL2CDS. You
may not use the 5.x Verilog libraries or Cadence Concept
libraries prior to those shipped with the Cadence 97A
release because they are incompatible.
22 April 1998 (Version M1.4)

M1.X HDL Direct compliant libraries can be identified by
the new naming conventions of

xce*
and
verilogxce*

Both primitives and macros are now merged into a single
library in Concept, in compliance with the Xilinx Unified
Library standard. For example, the XC4000X library for
Concept is named xce4000x, and the corresponding Ver-
ilog Unified Simulation Library is named verilogxce4000x.

All M1.X Concept libraries are located in $XILINX/
cadence/data . You must have a master.local file pointing
to the explicit location of all available Xilinx architecture
libraries in your project directory. A sample master.local file
is located in $XILINX/cadence/examples .

Pad symbols are drawn from the xcepads library. To be able
to use symbols like INPORTs and OUTPORTs, you must
also add the hdl_direct_lib reference to your global.cmd
setup file.

Sample global.cmd file:

master_library “./master.local”;
library “xce4000x”,

“xcepads”,
“hdl_direct_lib”,
“standard”;

use “design.wrk”;
root_drawing “unnamed”;

In M1.X, generic Xilinx SIMPRIM-based Verilog simulation
libraries are supplied as a standard part of the Xilinx Core
Tools for post - NGDBUILD, post - MAP and post - route
timing simulation.

Setting up your Xilinx/Cadence
environment
This section includes the installation of the Xilinx M1.X core
tools, the Xilinx M1.X Cadence interface, and Cadence
Concept and Verilog-XL. .

Note that the XACT environment variable is no longer used.
M1.X now uses the following Xilinx-specific variable:

setenv XILINX /tools/xilinx

The XILINX environment variable is set to the location of
the M1.X software.

Data files related to the Xilinx/Cadence interface are
located in $XILINX/cadence/data . This includes the xil-
inx.pff property filter file (which replaces concept2xnf.prop),
and the .pkg files used by XIL2CDS.

Your executable path needs to include the following directo-
ries:

set path = ($XILINX/bin/<platform> $path)

where <platform> is set to “sun” for Sun4 platforms, “sol” for
Solaris platforms, and “hp” for HP-UX platforms.

For Concept, the new Concept2XIL netlister, and XIL2CDS
(used for board level integration), you will need a cds.lib
setup file to point to the appropriate VAN (Cadence Verilog
Analyzer)-compiled libraries.

Example cds.lib contents:

define xce4000x_syn /tools/xilinx/
cadence/data/xce4000x_syn

Retargeting to an M1.X Concept Library
If you have a purely schematic design from 5.X and want to
import it into the M1.X environment, you must retarget your
design to the appropriate M1 Concept library, even if you
are still targeting the same family. The M1.X EDIF netlister,
Concept2XIL, is not compatible with the pre-M1.X SIZE’ed
libraries. Thus in all cases you will need to do the following
when you convert a design to M1.X:

1. Modify your existing master.local file in the design direc-
tory to include the paths to the new M1 libraries. A sam-
ple master.local is provided in $XILINX/cadence/
examples . If you do not have a an existing master.local
in your project directory, create one. The format is:

file_type = master_library;

“xce4000x”‘/tools/xilinx/cadence/data/xce4000ex/
xce4000x.lib’;

“xce4000e”‘/tools/xilinx/cadence/data/xce4000e/
xce4000e.lib’;

“xce9000”‘/tools/xilinx/cadence/data/xce3000/
xce9000.lib’;

“xcepads”‘/tools/xilinx/cadence/data/xcepads/
xcepads.lib’;

end.

2. Next, modify your global.cmd file to specify which of the
new M1 Concept libraries specified in the master.local file
that are needed to convert the design. For example, say
you need to convert an XC4000E design to, XC4000XL. In
this case, the libraries we need to add are “xce4000x” for
the architecture-specific components, “xcepads” for the
pad symbols, and “hdl_direct_lib” for those components
needed for HDL Direct compliance (slices, inports, out-
ports, ioports). The library naming convention for Cadence
releases 9404 to 9604 was xc* for the primitive library, and
xm* for the macro library for a given architecture named “*”.
For example, if * was “4000e”, we would have “xc4000e”,
and “xm4000e”. HDL Direct-compliant pads were in
“xpads_hdl”. In the M1.X Concept libraries, primitives and
macros are merged into a single library, “xce4000e”, and
pads are drawn from the unsized “xcepads” library.

master_library “./master.local”;

library “xce4000x”,

“xcepads”,
April 1998 (Version M1.4) 23

Xilinx Software Conversion Guide
“xc4000e”,

“xm4000e”,

“xpads_hdl”,

“hdl_direct_lib”,

“standard”;

use “my_design.wrk”;

root_drawing “my_design”;

3. To convert the design, you need to ignore the old libraries
with the “ignore” command, and activate the new libraries
with the “lib” command. Set the “sticky_off” parameter to
prevent irrelevant properties from being translated to the
converted design, including SIZE properties. Do a “get” to
read in components from the new target libraries, and
finally a “write” to save the new references.

ignore lib xc4000e
ignore lib xm4000e
ignore lib xpads_hdl
set sticky_off
lib xce4000e
lib xcepads
lib hdl_direct_lib
get
write

After saving the design, remove all references to the XACT
Concept libraries (“xc4000e”, “xm4000e”, and “xpads_hdl”)
from the global.cmd.

4. Use the ITERATED INSTANCE methodology to replicate
any components that were previously replicated with SIZE
properties.

5. Replace any XBLOX modules in the design with the
appropriate LogiBLOX counterpart. Since LogiBLOX is not
integrated into the Concept schematic editor, the LogiBLOX
module must be generated by running LogiBLOX in stand-
alone mode, and GENVIEW must be used to generate a
symbol BODY for the module. See the section on Convert-
ing X-BLOX designs for more details.

6. If the design was entered using SCALD methodology
conventions, you must convert it to comply with HDL Direct
methodology guidelines. This includes:

• Renaming any instance and net names that conflict or
overlap (symbols and nets may not share the same
names).

• Modifying Interface signal connections. In SCALD
methodology, signals that connect to a pin on an upper
level hierarchical symbol body are designated with a “\”
extension on the signal name and a FLAG body is
attached to the signal. Since in M1.X, the design must
comply with HDL Direct methodology, you must remove
all FLAG bodies and all “\” extensions on signal names,
and replace them with INPORT, OUTPORT, and
IOPORT bodies, depending on whether they are input,
output, or bidirectional signals, respectively.

• Replace all TAP and CTAP symbols used to tap bits off

buses with SLICE symbols from hdl_direct_lib.
• All signal and instance names must comply with Verilog

naming restrictions, and must be modified if needed.
Signal and instance names may only begin with
alphabetic characters or the $ sign. Legal characters
are: a-z, A-Z, 0-9, _, and $.

For more information, please see the Verilog-XL Reference
Manual and the HDL Direct User Guide.

Specifying part type on a schematic
The target device can be specified on the schematic by
attaching a “PART” property to the new CONFIG library
symbol. (In previous releases, this property was called
“PART_TYPE” and attached to a DRAWING body.) For
example, to designate a target device of XC4010E-3 in a
PQ208 package in the top-level schematic, place a CON-
FIG library symbol on the sheet, then add the following
property:

Name:PART
Value:XC4010E-3-PQ208

This “density-speed-package” designation is the recom-
mended format. Other acceptable property values would
include “4010E-3-PQ208”, “4010E-PQ208-3”, as well as
the 5.X style “4010EPQ208-3”. The 5.X style is discour-
aged, since the lack of a hyphen between the die type and
the package type can make this designation ambiguous.

Tapping Bits off Buses
When tapping bits off buses, or building buses out of unre-
lated signals, you must insert BUFFs (buffers) between the
unrelated signal and the name of the bit tapped off the bus
In addition, all signals tapped off busses should be tapped
off using a SLICE symbol from the HDL_DIRECT_LIB
library instead of TAPs or CTAPs from the STANDARD
library.

Example 1: When tapping a bit 1 off a bus named
A<1..0>, the name of the bit is A<1>, NOT A1. Any devi-
ation from this naming convention (for example, naming
it “A1”) is considered renaming the bit, and will require
that you insert a BUFF (buffer) symbol between the
tapped signal (A<1>) and the new name (in this case,
“A1”).

Example 2: Say you have two signals, one named
“CTRL”, and the other named “ENABLE”, and you wish
to combine these into a single two-bit bus called
A<1..0>, where A<1> = CTRL and A<0> = ENABLE.
You must insert a BUFF symbol between the signal
named “CTRL” and the A<1> bit that you tap off the bus,
and another BUFF between the signal named
“ENABLE” and A<0>.
24 April 1998 (Version M1.4)

The error you will get in both cases above if you do not add
the buffer will be an NGDBUILD “Duplicate port” error on an
“alias” cell.

Migrating X-BLOX designs
The M1.X core tools use LogiBLOX to synthesize high-level
functional modules formerly supported by X-BLOX. In the
LogiBLOX flow, modules are synthesized up front, one by
one during design entry instead of during design compila-
tion. This results in shorter design-compilation times. Logi-
BLOX also simplifies both functional and timing simulation
of X-BLOX designs by allowing you to use the same flow as
you would for purely gate-level designs.

Since X-BLOX modules are not supported during design
compilation in M1.X, designs must be fully synthesized
before they are introduced into the M1.X software. This can
be done in one of two ways.

Option 1: Convert X-BLOX modules to LogiBLOX

In this conversion, all X-BLOX components in the design
are removed and replaced with LogiBLOX components.
This needs to be done manually for each component.

Before you start to convert your design, be sure you save a
copy of it for reference, in case you need to revert to it dur-
ing the replacement process.

Since LogiBLOX is not integrated into the Concept sche-
matic editor, you must run it stand-alone to generate each
component. The steps are as follows:

1. Start up LogiBLOX by typing: “lbgui”.

2. Specify “Cadence” as the vendor.

3. Under Options, select “Structural Verilog netlist”. If you
are going to be instantiating the block into a Verilog
netlist rather than a schematic, select “Verilog template”
under the Component Declaration field. Click on “OK” to
generate the module and its associated structural Ver-
ilog netlist in your project directory.

4. The next step is to generate a symbol body for the new
module if you are incorporating the LogiBLOX module
into a Concept schematic. To do this, run GENVIEW
from the Concept schematic editor using the structural
.V netlist for the module as input. In the Concept com-
mand window, type:

genview -i new_block.v -v logic body verilog

This will add a new directory called “new_block” to your
project directory. GENVIEW copies the “new_block.v”
file from LogiBLOX to new_block/logic/, renaming it to
verilog.v.

5. Edit the verilog.v file and add the following line to the
module definition to signal Concept2XIL to stop travers-
ing the block at this level because there are no underly-
ing primitives:

parameter cds_action=”ignore”;,

Although this module by module conversion process can
require a great deal of work, the benefit will be a smoother
design translation, and easier functional simulation.

Since LogiBLOX components are synthesized immediately
once you have set the desired parameters for a module,
their bus-pin widths are determined up front. As a result,
data types do not need to be propagated as in the case with
X-BLOX. Since data-type and bus-width propagation is not
an issue in LogiBLOX, bus-translation components such as
BUS_DEF, BUS_IF, CAST, ELEMENT, and SLICE are not
required.

Be sure that all of the buses in your design have indices.
Just as with regular bus pins, the width of these buses must
equal the width of the LogiBLOX bus pins to which they are
connected.

This flow, although more involved up front, is highly recom-
mended to take advantage of the full feature set in M1.X,
especially if the design is in the beginning or intermediate
stages of development. Once the schematic is redrawn to
use LogiBLOX modules, the design can be easily imple-
mented and simulated. Unlike X-BLOX modules, LogiBLOX
modules can be simulated almost immediately in Verilog-
XL. After all X-BLOX components have been replaced in
the design and the design is saved (with HDL Direct active),
functional simulation can be performed after running
Concept2XIL with the -sim_only option to generate a simu-
lation netlist directly from your schematics:

concept2xil -sim_only -family xce4000x \
new_design

The one drawback is that simulation at this stage requires
that you create your test fixture file manually.

Option 2: Run your completed X-BLOX design through
M1.X

If you have an existing, complete X-BLOX design, or you
are only interested in doing a place and route using the new
M1.X tools, you can first follow the 5.X design flow to the
point where a design .xtf file is created by running XMAKE
-n. Take this design into NGDBuild, then run the M1.X
place-and-route tools as normal.

To functionally simulate a design, use the following flow:

ngdbuild -p new_design .xtf

ngd2ver -tf -ul new_design

For timing simulation, generate a routed design.nga with:

map new_design
par new_design routed_design
ngdanno routed_design .ncd
ngd2ver -tf -ul design .nga
April 1998 (Version M1.4) 25

Xilinx Software Conversion Guide
Note that, unlike the LogiBLOX flow, described in option 1,
simulation vectors used in functional simulation may not be
completely applicable to timing simulation. This is because
in the X-BLOX flow, NGDBuild compiles a flattened netlist,
whereas in the LogiBLOX flow, NGDBuild compiles a hier-
archical netlist.

Because of the limitations that this “half-and-half” flow
imposes upon simulation, this flow is recommended only
for complete or nearly complete designs that are to be eval-
uated under the M1.X tools. If the design will be subject to
many design iterations and compilations through the M1.X
tools, it is highly recommended that the design be updated
to use LogiBLOX modules as described in Option 1.

You may also specify the part type during the implementa-
tion flow in the M1.X core tools as a command line option.

Simulation
Functional simulation of pure schematic designs as well as
schematic designs containing LogiBLOX modules can now
be done directly after running Concept2XIL with the -
sim_only option when the design is entered using HDL
Direct methodology. Verilog Unified Library simulation prim-
itives in $XILINX/cadence/data/verilogxce* are
used for simulation of the schematic blocks, and Verilog
SIMPRIM libraries are used to simulate the LogiBLOX
modules.

Post-route timing simulation involves two steps: generating
a timing-annotated design.nga netlist with NGDANNO,
then running NGD2VER on the resulting structural Verilog
netlist. In this case the simulation model is expressed in
terms of generic simulation primitives (“SIMPRIMs”)
located in $XILINX/verilog/data instead of architec-
ture specific Unified Library components.

Integrating into Board Level Simulation

The new utility for integrating into board level simulation is
XIL2CDS. You must run NGD2VER with the -pf option to
generate the .pin file needed by XIL2CDS to generate the
symbol body for the FPGA:

ngd2ver -tf -ul -pf new_design

Then run XIL2CDS to generate the symbol body and
chips_prt file for the FPGA:

xil2cds new_design -lwbverilog -use
my_design.wrk -r . -family xce4000ex -mode all

New Global (Set)/Reset and Global Tri-state
Methodology

In the M1.4 release, the Concept and Verilog libraries and
NGD2VER netlister support a new, required methodology
for declaring and stimulating global set/reset (GSR), global

reset (GR), and global tri-state (GTS) signals. The method-
ology is a departure from the earlier M1.1/M1.2/M1.3.x and
the XACT flows.For the first time, it gives Cadence custom-
ers the novel ability to do HDL Direct functional simulation
of mixed mode HDL/Concept designs. AThis flow will allow
the same test fixture commands to simulate these global
signals in both functional and timing simulation with mini-
mal modification. The Verilog and Concept Unified libraries,
as well as the NGD2VER netlister have been modified to
support this new technique.

The new methodology applies to Verilog simulation of all
architectures supported in the M1 release, and requires
that you set the values appropriately for the following Ver-
ilog macros in your test fixture file, as appropriate to your
architecture:

GSR_SIGNAL (XC4000 and Spartan Families)

GR_SIGNAL (XC3000 and XC5200 Families)

PRLD_SIGNAL (XC9000 Family)

GTS_SIGNAL (XC4000, Spartan, and XC5200 Families)

Example: Declaring GSR

reg GSR;
`define GSR_SIGNAL test.uut.GSR

The exact value you use for GSR_SIGNAL varies slightly
depending on what step of the flow you are at, what archi-
tecture you are using, and whether your design has a
STARTUP block instantiated within it. If you design does
not contain a STARTUP block, the declarations above are
written to your test fixture template file by NGD2VER auto-
matically. See the Cadence Interface User Guide and Tuto-
rial in the M1.4 release for full details.
26 April 1998 (Version M1.4)

Figure 8: Cadence Flow Overview

X7747

Verilog-XL

Concept2XIL

NGDBuild

Design

Manager

Flow Engine

Unified Library Based

Functional Simulation

SIMPRIM-Based

Functional Simulation

HDL-Synthesis Design Flow

Supported by Cadence

NGD2VER -tf -ul

Synergy

Verilog-XL

MAP

PAR

NCDMRP

BIT

Post-Implementation

Timing Simulation

Supported

by Cadence

Post-Map

Timing

Simulation

Optional

Highly

Recommended

PINPKG Verilog SDF

Testbench Template

NGA

User-Specified

Verilog

Testbench

via HDL-Direct Synergy

Simulation

Library

Verilog

Unified

Simulation

Library

Chips_PRT

Concept

Body

Verilog

*.V files

Verilog

From Synergy

HDL Design

Post-synthesis

Simulation

Structural

Verilog Netlist

RTL Behavioral

Simulation

NGDAnnoBitGen

VLOG2XIL

EDF

Concept2XIL -sim_only

NGD2VER -tf -ul -pf

NGA

NGDAnno

NGD2VER -tf -ul

NGD

NCD

NGM

XIL2CDS

.V file .VF file

Verilog-XL

Edit

User-Specified

Verilog Testbench

Verilog

SIMPRIM

Library

Structural

Verilog Netlist

Edit

User-Specified

Verilog Testbench

Verilog

Verilog

SIMPRIM

Library

Verilog-XL

Testbench Template

Synergy

Synthesis

Library

Testbench Template

Structural

Verilog

Netlist

Edit

User-Specified

Verilog Testbench

Verilog

Verilog

SIMPRIM

Library

Verilog-XL

Recommended

Highly

Recommended

Schematic Entry

Design Flow

genview

Concept

LogiBLOX

To NGDBuild

Schematic

Design

Concept

Unified

Schematic

Library

Body fileNGO

.V
April 1998 (Version M1.4) 27

Xilinx Software Conversion Guide
Migrating Viewlogic Designs
There are very few changes required to bring a Viewlogic
design created with 5.X into the M1.X environment. This
section will document the steps that should be followed so
you can take advantage of these new tools.

Please keep in mind that the 5.X tools are still current and
fully supported. Unless you are targeting the new
XC4000EX family or have moved to an operating system
that 5.X does not support (e.g., Windows NT 4.0), these
tools are still a viable option for existing designs, especially
if you have designs containing X-BLOX or have a machine
running Windows 3.11.

This section of this document deals specifically with the
migration of Viewlogic designs from 5.X to M1.X. For more
information about the Viewlogic tools, please see the View-
logic Interface User Guide or check the Viewlogic on-line
help. For more information about the M1.X Core Tools, refer
to the Xilinx online documentation.

Set up your Viewlogic/Xilinx environment
This includes installation of the M1.X core tools, the M1.X
Viewlogic Interface, and a Viewlogic product. Supported
Viewlogic products include Workview Office 7.31 tools
(Windows 95 or NT 4.0) or greater or Powerview 6.0 tools
(SunOS 4.X, Solaris 5.5, HP-UX 10.1, or AIX 4.1) or
greater.

Update the Viewdraw.ini

The Viewdraw.ini file contains the listing of all the libraries
that can be accessed for a particular project. The Xilinx
Unified libraries are still used and the format will still be the
same, so there are only four changes to discuss.

• Since X-BLOX has been replaced by LogiBLOX, that
library must change. Note that the LogiBLOX library is
read-only, but not a megafile like the others, hence the
'r' instead of an 'm'.

• A new library called simprims is now required. The
M1.X tools will access this library when building a
simulation netlist. Add this library before the builtin and
xbuiltin libraries.

• The Viewlogic libraries on the workstation platforms are
now in Megafile format. Note the library types in the
“New Format” for the workstation shown below.

• The installation path for the Viewlogic libraries will be
within the Xilinx core tools rather than the Viewlogic
core tools. See the examples listed below.

Example Viewdraw.ini library setups

Sample library setups for an XC4000E design in both the
old (5.X) and new (M1.X) formats are shown below for both
PC and workstation. Modify your Viewdraw.ini in the project
directory to reflect these changes. Workview Office users
will make these changes in the Project Manager. The differ-
ences between the old and new formats have been high-
lighted.

PC Viewdraw.ini Libraries

Old Format:
DIR [p] . (primary)

DIR [m] c:\wvoffice\unified\xc4000e (xc4000e)

DIR [m] c:\wvoffice\unified\xblox (xblox)

DIR [m] c:\wvoffice\unified\builtin (builtin)

DIR [m] c:\wvoffice\unified\xbuiltin (xbuiltin)

New Format:
DIR [p] . (primary)

DIR [m] c:\ xilinx\viewlog\data \xc4000e (xc4000e)

DIR [r] c:\ xilinx\viewlog\data\logiblox (logiblox)

DIR [m] c:\xilinx\viewlog\data\simprims (simprims)

DIR [m] c:\ xilinx\viewlog\data \builtin (builtin)

DIR [m] c:\ xilinx\viewlog\data \xbuiltin (xbuiltin)
28 April 1998 (Version M1.4)

Workstation Viewdraw.ini Libraries

Once you have modified your library setup, you can load
your schematic into ViewDraw and begin working on your
design.

Changing the family type
If you have a design done in 5.X and just want to bring this
design into the M1.X environment, simply modify your
libraries as described above. However, if you need to
change the family, you must perform one more step. For
example, the M1.X tools do not support the XC4000 family,
so one option would be to move to the XC4000E family.
Another case would be a move from an existing XC4000E
design to the new XC4000EX family. In either case you will
need to use a DOS program called Altran. This is the View-
logic Alias Translator, and it will change all the references in
a particular library. The syntax is:

altran -l library old_alias =new_alias

So, to change all the schematics within the Primary library
from XC4000 to XC4000E, you type this:

altran -l primary XC4000=XC4000E

This will modify all the schematic files in the SCH directory
of your primary library. If you also refer to schematic sheets
from other user-defined libraries, you will have to run altran
for those library aliases as well. This will also modify the
Viewdraw.ini file. The path to the old library will be removed
and the path to the new library will be added.

Migrating X-BLOX designs
The M1.X tools support LogiBLOX, not X-BLOX, so you
have two migration options.

Change X-BLOX to LogiBLOX

All X-BLOX components must be removed from your sche-
matics before being compiled by the M1.X tools. There a
few things that need to be addressed when making this
conversion.

• Change all the functional X-BLOX components in your
design to the LogiBLOX equivalent. Unfortunately, you
have to manually step through the LogiBLOX GUI for
each unique component in your design. However, this is
a small price to pay up front for smooth design
translation, easy functional and timing simulation flows,
and simplified incremental design changes down the
road.
To make this transition easier, you can use one of these
two methods.
- Keep both LogiBLOX and X-BLOX libraries in your

Viewdraw.ini file while you are making the transition.
Before doing a final check on the schematics,
comment out the X-BLOX library to make sure
everything has been translated.

- Make a copy of your schematic as an “original” and
keep this version open while you update the “new”
version.

In either case, make sure you remove any old .xnf files
from your project directory so they are not accidentally
read in by NGDBuild.

• Because the LogiBLOX components are compiled
when they are created, X-BLOX components that
manipulate the bounds and encoding of buses, like
BUS_DEF, CAST, ELEMENT, and SLICE, will not be
needed.

• Make sure that all your buses have bounds. These
bounds must match the definitions of the LogiBLOX
components to which they are connected.

This flow is highly recommended because your schematics
are now fully supported in M1.X. It uses all the features of

Old Format:
DIR [p] . (primary)

DIR [r] /<vl_interface_path>/unified/xc4000e (xc4000e)

DIR [r] /<vl_interface_path>/unified/xblox (xblox)

DIR [r] /<vl_interface_path>/unified/builtin (builtin)

DIR [r] /<vl_interface_path>/unified/xbuiltin (xbuiltin)

New Format:
DIR [p] . (primary)

DIR [m] /<xilinx_path>/viewlog/data /xc4000e (xc4000e)

DIR [r] /<xilinx_path>/viewlog/data/logiblox (logiblox)

DIR [m] /<xilinx_path>/viewlog/data/simprims (simprims)

DIR [m] /<xilinx_path>/viewlog/data /builtin (builtin)

DIR [m] /<xilinx_path>/viewlog/data /xbuiltin (xbuiltin)
April 1998 (Version M1.4) 29

Xilinx Software Conversion Guide
LogiBLOX and it is easy to implement and simulate. XSIM-
MAKE is not part of the simulation flow in M1.X. If the
design contains only Unified Library and LogiBLOX compo-
nents (with the exception of RAM or ROM components),
you can simply run VSM on the design and go right into
ViewSim. If the design does contain RAM/ROM compo-
nents or any other uncompiled blocks (like XABEL mod-
ules, instantiated XNF components, CLB/IOB primitives,
etc.), you must translate the design through NGDBuild
before returning to ViewSim for simulation. Consult the
Viewlogic Interface User Guide for a complete description
of this flow.

Run complete X-BLOX designs through M1.X

If you have an existing, complete design with X-BLOX and
you would simply like to try a place and route using the new
M1.X tools, this can be easily accomplished. Follow the 5.X
design flow to the point where the .xtf file is created. Then
take this design to the M1.X toolset, starting with NGD-
Build. Run the M1.X tools as usual to optimize, place and
route this design.

You can functionally simulate using XSIMMAKE. For a tim-
ing simulation, you need to run a series of programs to pro-
duce a .VSM file that contains timing information. These
commands use routed.ncd as the placed and routed output
of PAR, and gives the name time_sim to the design to be
sent for timing simulation. The programs to be run are:

• NGDAnno -o time_sim.nga routed.ncd
(M1.X - backannotates a routed .ncd file to .ngd format)

• NGD2EDIF -v viewlog time_sim.nga
(M1.X - translates the ngd format to EDIF format)

• EDIFNETI time_sim.edn
(VL - translates a Viewlogic EDIF file to a Viewlogic .wir
file)

• VSM time_sim.1
(VL - Viewlogic's ViewSim netlister)

These steps will create the simulation netlist required for a
timing simulation in ViewSim. Load the .vsm file into
ViewSim and you are set. Note that all of these programs
are M1.X or Viewlogic (Powerview 6.0 or Workview Office
7.31). Once you enter the M1.X toolset, you should not
return to 5.X, as that flow has not been fully tested.

To view the annotation from the simulation, you must add
the simprims library from the M1.X Viewlogic interface.
Keep your Viewdraw.ini file in the old format, but add just
the simprims line from the new format. Open the sdesign
schematic that was created by XSIMMAKE. To annotate
values to this schematic, use this command in ViewSim:

SCHEMNAMsdesign

One final word about this timing simulation environment:
not all of the signals in your simulation schematic will have
values annotated to them, especially those in the X-BLOX
portions of your design. Remember, this design was cre-

ated and optimized in 5.X, then optimized and routed in
M1.X. There is no way to run XNFBA that will completely
back annotate this design. Expect to see messages from
the simulator like “Cannot find node or vector XBUS3”, and
expect some nets and buses on the schematic to be with-
out values. You should be able to assign and read values
for signals attached to pads, but everything else depends
on the optimization that was done in M1.X. If this is unac-
ceptable, the solution is to convert the design to LogiBLOX.

This flow is only recommended for completed designs for
evaluation with the M1.X tools or designs that are very
close to completion. If the design will be subject to many
design iterations that will be implemented with the M1.X
tools, then it is recommended that the design be upgraded
to LogiBLOX as described in the previous section.

Compile XABEL modules (workstation
only)
Because XABEL is not included with the M1.X software
packages on workstation platforms, you have to translate
your existing .abl files with ABL2XNF to create a .xnf file.
You will also run SYMGEN on the .xsf file to create a View-
logic symbol to be placed on your schematic.

You have to modify the attributes on this new symbol before
compiling the M1.X design. The symbol must refer to the
.xnf file rather than the .abl file because NGDBuild cannot
call ABL2XNF like XMAKE did. Within your Viewlogic
design entry tool, bring the symbol into an edit symbol win-
dow. The existing properties are:

LIBVER=2.0.0
DEF=XABEL
FILE= design .abl

Remove the first two properties completely, and modify the
third one to read:

FILE= design .xnf

If you make any changes to the .abl file, you will need to
recompile the design and rerun ABL2XNF. If the I/O have
changed, you will have to modify the symbol as well.

Change the Parttype declaration
There is a limitation in the Viewlogic EDIF writer that pre-
vents unattached attributes from being passed from the
schematic. So, if you have the parttype declared on your
top-level schematic as an unattached attribute like this:

PARTTYPE=4010EPQ208-3

you will have to attach the following attribute to a CONFIG
symbol instead. This symbol can be found in each architec-
ture's library and it works in the same way as TIMESPEC
30 April 1998 (Version M1.4)

and TIMEGROUP symbols. Place this symbol on your top-
level schematic, then add this attribute:

Name: PART
Value: 4010E-3-PQ208

Another option is to define the parttype when implementing
the design in the M1.X Core Tools.

Do not label nets 'VCC'

5.X recognizes the net label 'VCC' as an implicit high (even
though ViewSim never did). This is not the case for M1.X,
so the best fix is to attach these signals to VCC compo-
nents from the Unified family library (NOT from a builtin
library), or change the net label to 'VDD'.

Migrating Mentor Graphics Designs
The number of changes required to retarget a Mentor
Graphics design from 5.X to M1.X depends on the type of
design you are trying to migrate. A design which is drawn
purely with Unified-library components requires only a
handful of changes, while a design that contains instanti-
ated netlist modules, instantiated HDL, or X-BLOX can
require more.

Because X-BLOX or HDL designs may require a lot of tun-
ing to compile properly under M1.X, consider using 5.X
instead. Unless you are targeting the new XC4000EX or
XC9500 families or have moved to an operating system
that is not supported by 5.X (e.g., Solaris 2.5 or Windows
NT 4.0), 5.X is still a viable option for X-BLOX and HDL
designs.

This section details the migration of Mentor designs from
5.X to M1.X. For more information about the Mentor tools,
please see the Mentor Graphics Interface/Tutorial Guide.
For more information on the M1.X core tools, refer to the
Xilinx online documentation.

Setting up your Xilinx/Mentor Graphics
environment
This includes the installation of the M1.X core tools, the
M1.X Mentor Graphics interface, and a supported Mentor
Graphics product. Currently, the only supported design-
entry tool from Mentor Graphics is Design Architect B.1 or
later.

Note that the XACT environment variable is no longer used.
M1.X now uses the following Xilinx-specific variables

setenv XILINX /products/xilinx
setenv LCA $XILINX/mentor/data
setenv SIMPRIMS $LCA/simprims

The XILINX environment variable is set to the location of
the M1.X software.

Your executable path needs to include the following directo-
ries:

set path = ($XILINX/bin/sol $XILINX/mentor/bin/sol
$path)

(This applies to Solaris platforms. For SunOS platforms,
change “sol” to “sun”; for HP-UX platforms, change “sol” to
“hp”.)

Also, your MGC location map file (referenced by your
$MGC_LOCATION_MAPvariable) must include these Xilinx-
specific soft names:

$LCA
(blank line)
$SIMPRIMS
(blank line)

Note that, since the library-directory structure is the same
in M1.X as with 5.X, no other directories below $LCA need
to be specified.

Changing the family type
If you have a purely schematic design from 5.X and want to
import it into the M1.X environment without any family
changes, simply modify your environment as described
above and modify the design as before. However, you may
want or need to change the device family − for example, to
migrate from the XC4000 family (which is not supported in
M1.X) to the XC4000E family, or from the XC4000E family
to the XC4000EX family. In these cases, use the Convert
Design utility available in PLD_DA.

To use Convert Design, bring up the desktop pop-up menu
(right-mouse click on the gray desktop) in Design Architect,
then specify the name of the design you wish to retarget in
the dialog box. In the From Technology field, enter the
name of the source technology (e.g., XC4000 in the
XC4000-->XC4000E migration example); in the To Tech-
nology field, enter the name of the destination technology
(e.g., XC4000E). After clicking OK, Convert Design will
load all sheets of the specified schematic into Design Archi-
tect and update all Xilinx components to the new device
library.

For more information, please see Solution 798, “Retarget-
ing a design in Mentor Design Architect” in the Xilinx Solu-
tions Database at:

http://www.xilinx.com/techdocs/798.htm

Migrating X-BLOX designs
The M1.X core tools use LogiBLOX to synthesize high-level
schematic-based modules. In the LogiBLOX flow, modules
April 1998 (Version M1.4) 31

Xilinx Software Conversion Guide
are synthesized during design entry instead of design com-
pilation, providing faster design-compilation run times.
LogiBLOX also simplifies both functional and timing simula-
tion of BLOX designs by making these flows the same as
those for purely gate-level designs. Another advantage is
that timing simulation of BLOX designs allows graphical
annotation of simulation values to the original schematic,
something that 5.X does not offer.

Since BLOX-type modules are not synthesized during
design compilation, X-BLOX does not exist as part of the
M1.X core tools. Therefore, X-BLOX designs must be fully
synthesized before they are introduced into the M1.X soft-
ware. This can be done in one of two ways.

Option 1: Convert X-BLOX modules to LogiBLOX

In this conversion, all X-BLOX components in the design
are removed and replaced with LogiBLOX components.
This needs to be done manually for each component by
selecting LogiBLOX from the Xilinx Libraries Palette
(choose Libraries --> XILINX Libraries from the main menu
bar) to bring up the LogiBLOX GUI. Be sure you save a
copy of your design for reference, in case you need to
revert to it during the replacement process. Although this
process can require a great deal of work, it will afford you,
among other benefits, smoother design translation, easier
functional simulation, and a timing-simulation flow that
allows you to annotate simulation values onto your original
schematic.

As you are making this transition, there are a couple of
ways to check a design to insure that the X-BLOX compo-
nents have been fully removed. If you have the schematic
loaded into Design Architect, use the pop-up menu item
Select --> By Property --> Name-Value-Type. For Property
Name, use “DEF”, while for Property Value, use “BLOX”.
This will highlight all X-BLOX components in the schematic.
Another more extensive way to detect X-BLOX components
is to highlight your design directory in PLD Design Manager
and use the pop-up menu item Report --> References -->
For Design. This lists all the different directory references in
all components underneath the selected design directory.
Any references that begin with $LCA/xblox indicate the
presence of X-BLOX components.

Since LogiBLOX components are synthesized upon cre-
ation, their bus-pin widths are determined up front.
Because of this, data types do not need to be propagated
as is the case with X-BLOX. Since data-type and bus-width
propagation is not an issue in LogiBLOX, bus-translation
components such as BUS_DEF, BUS_IF, CAST, ELE-
MENT, and SLICE are not required.

Make certain that all of your buses have indices. Just as
with regular bus pins, the width of these buses must equal
the width of the LogiBLOX bus pins to which they are con-
nected.

This flow, although more involved up front, is highly recom-
mended to take advantage of the full feature set in M1.X,
especially if the design is in the beginning or middle stages
of development. Once the schematic is redrawn to use
LogiBLOX modules, the design can be easily implemented
and simulated. Simulation especially benefits from the use
of LogiBLOX, because these modules, unlike X-BLOX, can
be simulated in QuickSim. Functional simulation can be
performed simply by running PLD_DVE to generate a sim-
ulation viewpoint, then running PLD_QuickSim without
cross-probing. Timing simulation can be performed by run-
ning PLD_QuickSim with cross-probing on the design_lib/
design component. (Cross-probing is discussed in detail
later in this section.)

Option 2: Run your complete X-BLOX design through
M1.X

If you have an existing, complete X-BLOX design or would
like to try a place and route using the new M1.X tools, you
can first follow the 5.X design flow to the point when a
design.xtf file is created. Rename design.xtf to design.xnf.
Take this design into NGDBuild, then run the M1.X place-
and-route tools as normal.

To functionally simulate a design, use FNCSIM8 as before.
For timing simulation, generate a routed design.edn with:

ngdanno -o design .nga routed_design .ncd
ngd2edif -v mentor design .nga

After this, run PLD_EDIF2TIM on the design .edn file to get
a design_lib/design simulation model, then run
PLD_QuickSim on it. Note that, since the routed design has
expanded bus names but the original schematic does not,
you will not be able to use cross-probing to annotate simu-
lation values onto the original schematic as would be pos-
sible if using LogiBLOX. Note also that, unlike the
LogiBLOX flow, simulation vectors used in functional simu-
lation may not be completely applicable to timing simula-
tion. In the X-BLOX flow, NGDBuild compiles a pre-
flattened netlist, whereas in the LogiBLOX flow, NGDBuild
compiles a hierarchical netlist.

Because of the limitations that this “half-and-half” flow
imposes upon simulation, this flow is recommended only
for complete or nearly complete designs that are to be eval-
uated under the M1.X tools. If the design will be subject to
many design iterations and compilations through the M1.X
tools, it is highly recommended that the design be updated
to use LogiBLOX modules as described in Option 1.

Designating A Part Type On The Schematic
The target device can now be specified directly on the
schematic, whereas before, the part type had to be speci-
fied during the translation process (Men2XNF8). For exam-
ple, to designate a target device of XC4010E-3 in a PQ208
32 April 1998 (Version M1.4)

package in the top-level schematic, place a CONFIG library
symbol on the sheet, then add the following property:

Name:PART
Value:XC4010E-3-PQ208

This “density-speed-package” designation is the recom-
mended format. Other acceptable property values would
include “4010E-3-PQ208”, “4010E-PQ208-3”, as well as
the 5.X style “4010EPQ208-3”. The 5.X style is discour-
aged, since the lack of a hyphen between the die type and
the package type can make this designation ambiguous.

You may also specify the part type during the implementa-
tion flow in the M1.X core tools.

Simulation
Functional simulation of schematics, both in pure sche-
matic and LogiBLOX form, can now be done directly in
QuickSim without the need to run FNCSIM8, a process
which, on large designs, can take several hours. Instead,
you can simply run PLD_DVE to generate a simulation
viewpoint, then run PLD_QuickSim without cross-probing.
When QuickSim is run in this mode, the original schematic
netlist is simulated within QuickSim, waveforms are traced
within QuickSim, and simulation results are annotated onto
the original schematic in QuickSim.

Timing simulation involves two steps: compiling the timing-
annotated design.edn netlist with PLD_EDIF2TIM, then
running PLD_QuickSim on the resulting design_lib/design
component. This simulation model is expressed in simula-
tion primitives (“simprims”) instead of Unified components;
therefore, QuickSim alone is unable to annotate simulation
results onto the original schematic. PLD_QuickSim for tim-
ing simulation uses a process known as “cross-probing” to
simulate for timing. In this mode, QuickSim as well as DVE
are run concurrently to simulate a timing-annotated design.
The design_lib/design component is simulated in Quick-
Sim, waveforms are traced within QuickSim, but simulation
results are annotated onto the original schematic in DVE.
This is done by opening the simulation viewpoint for the
ORIGINAL schematic in DVE, then opening the schematic
sheet(s) from the original design. QuickSim and DVE then
communicate with each other: nets selected in the sche-
matic display in DVE are highlighted in DVE, and simulation
values generated by QuickSim are relayed back to DVE so
that DVE can annotate them onto the original schematic.

Migrating Synopsys (FPGA/DC
Compiler) VHDL/Verilog Designs
This section describes the new M1.X Synopsys design
flows and the changes necessary to process an existing
design written in VHDL or Verilog, through the M1.X envi-
ronment. The changes will be made mainly in your setup
files and in your script file.

You must have your $XILINX and your $SYNOPSYS envi-
ronment variables set to the locations of the Xilinx software
installation directory and the Synopsys software installation
directory respectively. The $XACT environment variable
that was used in 5.X is no longer used. Please refer to the
Release notes and the Installation notes for more informa-
tion on installing the software. For more information about
the Synopsys interface, please see the Synopsys Interface/
Tutorial Guide.

M1.X Synopsys to Xilinx Synthesis and
Implementation Design Flow
Figure 9 shows the new M1.X Synopsys to Xilinx synthesis
and implementation flow. The synthesis libraries have not
changed from the 5.X software, however, they are now
stored in the Synopsys Personality Module. (Personality
Modules - or PMs - are the names given to the collection of
data and binary files used to support a given CAE vendor or
FPGA/CPLD architecture.)

M1 Synopsys to Xilinx Back Annotation and
Timing Simulation Flow
Figure 9 shows the new M1 Synopsys to Xilinx back
annotation and timing simulation flow. Starting with the
structural VHDL (or Verilog) design, and the .sdf file
produced by NGD2VHDL (or NGD2VERILOG), the design
may then be simulated using Synopsys' VITAL VSS
Simulator. The design and its testbench much first be
analyzed using the VHDLAN command, and then loaded
into the VITAL Simulator. It is important to note that the
simulation libraries for M1.X are known as “SIMPRIMS”.
The .synopsys_vss.setup file now contains a reference to
these libraries.
April 1998 (Version M1.4) 33

Xilinx Software Conversion Guide
Figure 9: M1.X Synopsys to Xilinx Synthesis and Implementation Flow

.PCF .NCD.NGM

XDC

XDW

Design Compiler

.synopsys_dc.setup

Design Compiler

V3.4b+

FPGA Compiler

V3.4b+

DC2NCF

FPGAC ScriptDC Script Source HDL

.dc

XFPGA

XDW

.sxnf.sedif

NGDBUILD

NGD2VHDL NGD2VER

MAP

PAR

NGDANNO

To VHDL Simulators To Verilog Simulators

.NGD

TRCE

.NCD

.NGA

.VHD .SDF .VER

.UCF

From base PM

From target arch. PM

From other PMs

XPRIM.NGL

NGL's

XDC.NGL

X8048

FPGA Compiler

.synopsys_dc.setup
34 April 1998 (Version M1.4)

Figure 10: M1.X Synopsys to Xilinx Back Annotation and Timing Simulation Flow

DC2NCF - New M1.X Constraints Translator
The XSI design flow includes a new program, DC2NCF,
which translates timing constraint commands from Synop-
sys syntax into Xilinx syntax. The Xilinx version of the con-
straints are then read by the Netlist Launcher (NGDBuild)
and used during the map, place, and route processes. To
create a file that contains your constraints from the FPGA
or Design Compiler, use the write_script command and
redirect the results to a file. You should issue the
write_script command when your design's netlist is created
(typically at the end of your script file) to ensure that the two
files correspond. See figure 10 for a diagram of the
DC2NCF flow.

A new feature of DC2NCF is the ability to wildcard instance
names. If DC2NCF is run with the -w option, DC2NCF will
try to reduce the size of the produced NCF file by the use of
wildcarding instance and/or net names. This not only
reduces the NCF file size, but can generally reduce place
and route time as well. See the XSI (Xilinx Synopsys Inter
face) guide availible in the Xilinx on-line documantation.

The supported timing constraints that may be applied to
your design via the synthesis script are:

• set_input_delay
• set_output_delay
• set_max_delay
• create_clock

• set_false_path

Note that the equivalent of the constraints file (.cst) in 5.X is
a User Constraints File (.ucf) in M1.X. Please refer to the
User Documentation for details on the .ucf file. Please see
the release note and the XSI User’s Guide for more details
on using DC2NCF.

X8047

.VHD

.MRA

VHDLAN

.synopsys_vss.setup VHDLAN

VSS

V3.4b+VITAL

.VHD

.MRA

VHDLAN

.SDF

SIMPRIM

Testbench Backannotation netlist & timing from NGD2VHDL

VITAL source

code for

SIMPRIM

comps. SIMPRIM
April 1998 (Version M1.4) 35

Xilinx Software Conversion Guide
Modifications Required to your Setup and Script files

Changes needed In the .synopsys_dc.setup file for FPGA Compiler users

The .synopsys_dc.setup file requires the following changes for FPGA Compiler users. (Note that a sample
.synopsys_dc.setup is provided for you in $XILINX/synopsys/examples/template.synopsys_dc.setup . You may
copy this to your working directory and rename it to .synopsys_dc.setup.)

In all the tables shown below, the 5.X column represents the current settings in use for 5.X, and the M1.X column represents
the new settings for the M1.X software. You need to modify your setup files so that the changed entries match those in the
M1.X column.

• Add: xnfout_constraints_per_endpoint = 0. This is required because the timing constraint transport mechanism has
changed from the method used in 5.X; Timespecs are no longer supported via the .sxnf file. This command prevents
FPGA Compiler from including them in the netlist.

• Change: xblox to xdw. This is required because the name of the 5.X X-BLOX DesignWare library has been changed
from xblox to xdw, to avoid confusion with LogiBLOX. Therefore, you must change:

Figure 11: DC2NCF Flow

DC2NCF

Synopsys

Design Compiler

EDIF 2 0 0 Netlist

Synopsys

Tools

Xilinx

Development

System

X8018

Synopsys

FPGA Compiler

XNF Netlist

NCF

Netlist Constraints File

NGDBuild

DC

Synopsys Setup

5.X M1.X
(none) xnfout_constraints_per_endpoint = 0

5.X M1.X
define_design_lib xblox_4000e -path... define_design_lib xdw_4000e(ex) -path...
synthetic_library = {xblox_4000e.sldb standard.sldb} synthetic_library = {xdw_4000e(ex).sldb standard.sldb}
36 April 1998 (Version M1.4)

• Change the path to the new M1.X xdw_4000e(ex) library.

Changes needed in the .synopsys_dc.setup file changes for Design Compiler Users

The .synopsys_dc.setup file will require the following changes for Design Compiler users. In all the tables shown below, the
5.X column represents the current settings in use for 5.X, and the M1.X column represents the new settings for the M1.X
software. You will need to modify your setup files so that the changed entries match those in the M1.X column.

• Add: edifout_no_array = true

• Change: edifout_write_properties_list setting

5.X M1.X
define_design_lib xblox_4000e -path <XSI_5.2.1>/
synopsys/libraries/dw/lib/fpga/xc4000e

define_design_lib xdw_4000e(ex) -path <$XILINX>/
synopsys/libraries/dw/lib/xc4000e(ex)

5.X M1.X
(none) edifout_no_array = true

5.X M1.X
edifout_write_properties_list = "instance_number
port_location part"

edifout_write_properties_list = "instance_number
pad_location part"
April 1998 (Version M1.4) 37

Xilinx Software Conversion Guide
• Change: xblox to xdw. This is required because the name of the 5.X X-BLOX DesignWare library has been changed
from xblox to xdw, to avoid confusion with LogiBLOX. Therefore, you must change:

• Change the path to the new M1.X xdw_4000e(ex) library.

Changes needed in the .synopsys_vss.setup file for VSS users

The .synopsys_vss.setup file requires the following changes for VSS users. (Note that a sample .synopsys_vss.setup is
provided for you in $XILINX/synopsys/examples/template.synopsys_vss.setup . You may copy this to your
working directory and rename it to .synopsys_vss.setup.)

The library used for timing simulation purposes is a VITAL compliant library known as the “SIMPRIM” library. Your
.synopsys_vss.setup file must contain a reference to this SIMPRIM library. It is recommended that you remove any refer-
ences to other 5.X simulation libraries.

You must also include a reference to the LogiBLOX simulation package, so that designs with instantiated LogiBLOX modules
may be simulated.

Changes Needed In The Script Files
New template synthesis script files are provided for you in
the $XILINX/synopsys/examples directory. These
script files incorporate all changes required for the M1.X
flow. Copy the appropriate template script file to your work-
ing directory. You will need to view the file in an editor and
make necessary edits such as including your design file
name, modifying the example constraints to match the
requirements of your design, etc. Please see the README
file in $XILINX/synopsys/examples for a description of
the template script files.

Using 5.X MEMGEN memories with M1.X
1. If you have a MEMGEN ROM or RAM in your design and

you want to preserve it:

Keep the module.xnf file that MEMGEN created from
your module.mem file. NGDBuild will encounter a miss-
ing module in your design called module and will look
for a matching module.xnf file. If it finds design.xnf then

NGDBuild will translate it to an .ngo file (by calling
XNF2NGD) and merge it into the design. Keep the
module.mem file handy for future reference (to deter-
mine the contents of the ROM) as you will need it if you
ever need to modify its contents - step 2.

2. If you have a MEMGEN ROM or RAM in your design and
need to recreate it or edit its contents (or its initial con-
tents - in the case of 4KE RAM).

Start LogiBLOX by entering the command

lbgui

at the unix command line. Then select Synopsys as the
vendor in the setup window. Select “Memories” from the
module type drop-down box and click on the button for
the appropriate memory type: ROM, RAM, SYNC_RAM
or DP_RAM. Enter the name of the module.mem file in
the “MEM File” text-box and enter the same name (with-
out the .mem extension) in the module name text-box
(top-left.) Enter the ROM's depth and width in the corre-
sponding text-boxes. If you need to edit the ROM/

5.X M1.X
define_design_lib xblox_4000e -path... define_design_lib xdw_4000e(ex) -path...
synthetic_library = {xblox_4000e.sldb standard.sldb} synthetic_library = {xdw_4000e(ex).sldb standard.sldb}

5.X M1.X
define_design_lib xblox_4000e -path <XSI_5.2.1>
/synopsys/libraries/dw/lib/fpga/xc4000e

define_design_lib xdw_4000e(ex) -path <$XILINX>
/synopsys/libraries/dw/lib/xc4000e(ex)

5.X M1.X
XC4000e:$DS401/synopsys/libraries/sim/lib/xc4000e

XC5200: $DS401/synopsys/libraries/sim/lib/xc5200

XC3000: $DS401/synopsys/libraries/sim/lib/xc3000

SIMPRIM: $XILINX/synopsys/libraries/sim/lib/ simprims

UNISIM: $XILINX/synopsys/libraries/sim/lib/unisims

(none) LOGIBLOX: $XILINX/synopsys/libraries/sim/lib/ logiblox
38 April 1998 (Version M1.4)

RAM's contents, then click on the “Edit” button next to
the “MEM File” text box to invoke a text editor. Finally,
click on the “OK” button to recreate the memory.

LogiBLOX will create the following files: module.ngo −
the memory's implementation details, module.vhi or .vei
− an example VHDL or Verilog component declaration
and instantiation, module.vhd or .v − a behavioral simu-
lation model for the memory.
Replace the memory's existing component declaration
in your HDL with the example component declaration in
the module.vhi or .vei file. Also, replace the memory's
existing component instantiation in your HDL with the
example component instantiation in the module.vhi or
.vei file. Note that you will have to update the names of
the signals attached to the memory's pins.

Migrating Xilinx Foundation
Designs

Note: Foundation version F1.4 is a combination of Design
Entry Tools version 3.0 and Design
Implementation Tools version M1.x. Throughout
this application note, references to M1 or M1.x
apply to Foundation version F1.4, and references
to 6.x or “version 6” apply to Foundation version
6.0.1 (with or without the Service Pack).

There are very few changes required to bring a Foundation
design created with the 6.x tools into the M1.x environment.

Because X-BLOX designs may require significant effort to
convert, consider the option of using 6.x instead to process
these designs. Unless you are targeting a new family not
supported in 6.x or have moved to an operating system that
6.x does not support (e.g., Windows NT 4.0), 6.x is still a
viable option for X-BLOX designs. See the Introduction
section for more information about what types of designs
should not be converted to M1.

This section deals specifically with the migration of Founda-
tion designs from 6.x to M1. For more information about
the Foundation tools, please see the Foundation Quickstart
Guide or the Foundation online help. For more information
about the Xilinx M1 Core Tools, refer to the Xilinx online
documentation.

Converting Foundation Projects
The first time you open a project of type XACTstep6, a dia-
log box will appear with the following choices:

1. Convert: The Project Manager will automatically
change the project type to XACTstep M1.4 dialog box
appears where you can select a new target device (e.g.
XC4000EX) if desired.

2. .Enable XACTstep6: The Project Manager will not con-
vert this project, nor will it automatically convert any

other XACTstep6 projects from this point on. To convert
projects to the M1 flow, you must select File→Project
Type and manually change the project type to XACTstep
M1.

After converting a project to the XACTstep M1 type, you will
see the following changes in the Hierarchy Browser:

3. .The library names have changed slightly (e.g.
X4000EU becomes XC4000E), to avoid overwriting the
XACTstep 6.x libraries.

4. The XBLOXU library is removed.

5. A new library called SIMPRIMS is added. The M1 tools
will access this library when building a netlist for timing
simulation.

Migrating X-VHDL and ABEL Designs
Recompiling all ABEL and VHDL macros is recommended
for two reasons.

1. M1 uses an EDIF netlist interface instead of XNF.
Recompiling will create an EDIF file to replace the XNF.

2. The previous version of X-VHDL may have inferred X-
BLOX modules, which are not supported by the M1
tools. Recompiling will remove X-BLOX modules, and
can infer LogiBLOX modules instead.

Make sure you remove any old .xnf files from your project
directory so that they will not be inadvertently used by the
M1 tools. If your design contains ABEL, you must add the
XABELSIM library to your project. This library is used to
perform functional simulation of ABEL modules.

Migrating X-BLOX/MEMGEN Designs
The M1 tools do not support X-BLOX or MEMGEN. Both of
these tools have been replaced by LogiBLOX. You have
two migration options for these designs.

Option 1: Convert X-BLOX/MEMGEN
modules to LogiBLOX
All XBLOX and MEMGEN modules must be removed from
your design before the M1 tools can translate it.

1. Convert the project type to XACTstep M1. To be able to
view the X-BLOX modules in your schematics, you must
attach the XBLOXU library and add it to the project.

2. Select Tools→Library Manager.

3. Select Library→Attach.

4. Browse to the location of the XBLOXU library (typically
\ACTIVE\SYSLIB). Select the XBLOXU library and click
OK. If you no longer have the XBLOXU library on the
system you may copy it from either the Foundation CD
ROM or from the Xilinx website at ftp://ftp.xilinx.com/
pub/swhelp/foundation/xbloxu.zip .

5. Close the Library Manager.
April 1998 (Version M1.4) 39

Xilinx Software Conversion Guide
6. Select File→Project Libraries.

7. Select the XBLOXU library and click Add.

8. Close the Project Libraries dialog.

Now when you open your schematics, you will be able to
see the XBLOX modules and use them as a reference
when creating the LogiBLOX equivalents.

9. Replace each functional X-BLOX and MEMGEN module
in your design with an equivalent Logi-BLOX module.
Non-logical X-BLOX modules such as BUS_DEF,
BUS_IFxx, CAST, ELEMENT, and SLICE should be
removed since LogiBLOX modules can be connected
directly to normal buses in your design.

10.Add bounds to all your buses. Make sure the bus width
matches the width of the bus pin on the LogiBLOX mod-
ules.

Some X-BLOX module attributes differ slightly from the
equivalent LogiBLOX attribute, and the .mem file format for
MEMGEN modules has also changed slightly. Please see
the LogiBLOX Reference/User Guide online documentation
for more details.

Although conversion requires more effort up front, this flow
is highly recommended to take advantage of the full feature
set in M1.x, especially if the design is in the beginning or
middle stages of development. Once the schematic is
redrawn to use LogiBLOX, the design can be easily imple-
mented and simulated. Unlike X-BLOX, LogiBLOX mod-
ules can be simulated directly, eliminating the time-
consuming X-BLOX update required in 6.x.

Option 2: Run your optimized X-BLOX
design through M1
If you have an existing, complete design containing X-
BLOX and you would simply like to try a place and route
using the new M1 tools, you can use this flow provided you
still have the version 6.x Foundation libraries and the
XACTstep 6.x core tools installed.

1. Do not convert the project type to XACTstep M1. Leave
it as an XACTstep6 project type.

2. Attach the version 6.x libraries needed for the project
(XBLOXU and X4000EU or X5200U). See the previous
section, steps 1-7 for the procedure.

3. Follow the 6.x design flow through the Optimize stage,
where the .XTF file is created.

4. Rename design.xtf to design.xnf.

5. Open the M1 Design Manager and create a new project.
Select design.xnf as the source file.

6. Use the M1 tools to translate, optimize, place and route
this design.

Note: In step 4, you cannot start the M1 Design Manager
from the Foundation Project Manager, since the

project type is set to XACTstep6..

You can perform functional simulation by using the normal
6.x flow.

For timing simulation, use the M1 tools to create an XNF
netlist for timing simulation. Once you enter the M1 toolset,
you should not return to the 6.x tools, as that flow has not
been tested.

1. In the M1 Flow Engine Options, edit the Implementation
Template.

2. Click on the Interface tab. Under Simulation Data
Options, select XNF format.

3. Run the Flow Engine to produce the simulation netlist
(called time_sim.xnf).

4. In the Foundation Project Manager, select Tools→Simu-
lator. When the simulator comes up, select File→Load
Netlist. Select files of type *.XN*, and choose
time_sim.xnf.

5. Make sure the simulation mode is set to TM. The simu-
lation mode is displayed in the main simulator toolbox.
Click on the mode button until it reads Mode: TM.

Note: Not all of the signal names in your design will appear
in the simulation netlist, especially those in the X-
BLOX portions of your design. This design was
created and optimized in 6.x, then optimized again
and routed in M1. There is no way to run XNFBA
or NGDANNO that will completely back annotate
this design. You should be able to assign and read
values for signals attached to pads, but everything
else depends on the optimization that was done in
M1. The only workaround is to update the
schematic to M1 by using LogiBLOX.

This flow is only recommended for completed designs
for evaluation with the M1 tools or designs that are
very close to completion. If the design will be
subject to many design iterations that will be
implemented with the M1 tools, then it is
recommended that the design be converted to
LogiBLOX as described in the previous section.
40 April 1998 (Version M1.4)

The Programmable Logic CompanySM

© 1996 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.



Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778
Fax: 1 (800) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
(714) 727-0780

Englewood, Colorado
(303)220-7541

Sunnyvale, California
(408) 245-9850

Schaumburg, Illinois
(847) 605-1972

Nashua, New Hampshire
(603) 891-1098

Raleigh, North Carolina
(919) 846-3922

West Chester, Pennsylvania
(610) 430-3300

Dallas, Texas
(214) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
Aschheim, Germany
Tel: (49) 89-99-1549-01
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-349401
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (03) 3297-9191

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com
April 1998 (Version M1.4) 41

	Introduction
	Why convert from 5.X to M1.X?
	Why not convert to M1.X?

	An Overview of the M1.X tools
	New Commands
	Translation of 5.X designs to M1.X with LCA2NCD
	Translation of 5.X constraints to M1.X with CSTTRA...
	Translating a design using NGDBuild
	Mapping a design using MAP

	MAP Overview
	MAP inputs and outputs
	MAP Elements
	New Capabilities in M1.X
	Current 5.X Features Not Supported by MAP in M1.X
	Differences between 5.X PPR and M1.X MAP
	Unsupported CLB Configurations in MAP vM1.x
	3. RAM and Carry Combinations

	Place and Route using PAR
	PAR supports two modes of guided place and route. ...
	PAR Strategy

	TRCE Issues
	Full M1.X Conversion Flow
	X-BLOX/MEMGEN Designs
	Schematic Flow
	HDL flow
	XABEL Designs

	Partial M1.X Conversion Flow
	Design Flow

	Additional Flow Issues
	Converting XNF/XTF file to M1.X
	Guiding M1.X designs with existing floorplanned 5....
	Licensing

	Design Constraints
	Constraint files

	Migrating Cadence Designs
	Cadence Changes
	Setting up your Xilinx/Cadence environment
	Retargeting to an M1.X Concept Library
	Specifying part type on a schematic
	Tapping Bits off Buses
	Migrating X-BLOX designs
	Simulation

	Migrating Viewlogic Designs
	Set up your Viewlogic/Xilinx environment
	Changing the family type
	Migrating X-BLOX designs
	Compile XABEL modules (workstation only)
	Change the Parttype declaration

	Migrating Mentor Graphics Designs
	Setting up your Xilinx/Mentor Graphics environment...
	Changing the family type
	Migrating X-BLOX designs
	Designating A Part Type On The Schematic
	Simulation

	Migrating Synopsys (FPGA/DC Compiler) VHDL/Verilo...
	M1.X Synopsys to Xilinx Synthesis and Implementati...
	M1 Synopsys to Xilinx Back Annotation and Timing S...
	DC2NCF - New M1.X Constraints Translator
	Changes Needed In The Script Files
	Using 5.X MEMGEN memories with M1.X

	Migrating Xilinx Foundation Designs
	Converting Foundation Projects
	Migrating X-VHDL and ABEL Designs
	Migrating X-BLOX/MEMGEN Designs
	Option 1: Convert X-BLOX/MEMGEN modules to LogiBLO...
	Option 2: Run your optimized X-BLOX design through...

