
Mentor Graphics Interface/Tutorial Guide - October 1997 Printed in U.S.A.

Mentor
Graphics
Interface/
Tutorial Guide

Introduction

Getting Started

Schematic Designs

HDL Designs

Mixed Designs with VHDL
on Top

Mixed Designs with
Schematic on Top

Advanced Techniques

Manual Translation

Schematic Design Tutorial

Schematic-on-Top with
VHDL Tutorial

Title Page

Mentor Graphics Interface Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480;
5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.

R

Terms and Conditions

Preface

About This Manual
This manual explains how to use Version M1 of the Xilinx/Mentor
Graphics Interface software with Mentor Graphics® software
versions B.1, B.2, B.3, and B.4.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” describes the Mentor Graphics Design
Manager™ Interface, the Xilinx design flow, key features, inputs
and outputs, and the architectures with which they work.

• Chapter 2, “Getting Started,” describes how to configure your
system for the Mentor Graphics Design Manager, and how to
invoke and exit the Mentor Graphics Design Manager.

• Chapter 3, “Schematic Designs,” describes how to use the Mentor
Graphics Design Manager and Design Architect™ to design with
pure schematic designs. It covers, schematic design entry, func-
tional simulation, implementation, and timing simulation.

• Chapter 4, “HDL Designs,” describes how to use the Mentor
Graphics Interface to design with pure HDL designs. It covers,
HDL design entry, functional simulation, implementation, and
timing simulation.

• Chapter 5, “Mixed Designs with VHDL on Top,” describes how
to use the Mentor Graphics Interface to design with mixed sche-
matic and VHDL designs with VHDL on Top. It covers, design
entry, functional simulation, implementation, and timing simula-
tion.
Mentor Graphics Interface/Tutorial Guide— October 1997 iii

Design Manager/Flow Engine Reference/User Guide
• Chapter 6, “Mixed Designs with Schematic on Top,” describes
how to use the Mentor Graphics Interface to design with mixed
schematic and VHDL designs with schematic on top. It covers,
design entry, functional simulation, implementation, and timing
simulation.

• Chapter 7, “Advanced Techniques,” describes useful design and
simulation techniques that were not covered in the other sections
of this manual.

• Chapter 8, “Manual Translation,” describes how to manually
process your design from the operating system command line.

• Chapter 9, “Schematic Design Tutorial,” steps you through a
typical FPGA or CPLD design procedure from schematic entry to
completing a functioning device using the Mentor Graphics
Design Architect configured for Xilinx designs. It also steps you
through both a functional and a timing simulation of an FPGA or
CPLD design using the Mentor Graphics QuickSim II™.

• Chapter 10, “Schematic-on-Top with VHDL Tutorial,”guides you
through a typical FPGA and CPLD design procedure from sche-
matic entry with instantiated HDL to completion of a functioning
device using the Mentor Graphics Design Architect configured
for Xilinx designs.
iv Xilinx Development System

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.
Mentor Graphics Interface/Tutorial Guide - October 1997 v

Design Manager/Flow Engine Reference/User Guide
• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click on the red-underlined text to
open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click on the blue-underlined text to
open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.
vi Xilinx Development System

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking on the
figure.
Mentor Graphics Interface/Tutorial Guide vii

Design Manager/Flow Engine Reference/User Guide
viii Xilinx Development System

Contents

Table of Contents
Preface
About This Manual .. iii
Manual Contents ... iii

Conventions
Typographical.. v
Online Document .. vi

Chapter 1 Introduction

Architecture Support ... 1-1
Platform Support ... 1-2
Library Support.. 1-2
Features .. 1-2

Mentor Software Release Support... 1-2
Added HDL Support... 1-2

QuickHDL and QuickHDL PRO .. 1-3
VHDL Gate-Level Simulation Support 1-3
Verilog Gate-Level Simulation Support............................... 1-3
Links to the Xilinx Synopsys Interface (XSI) 1-3

Mentor Design Manager .. 1-4
Pld_da... 1-5
Pld_dve... 1-6
Pld_quicksim... 1-6
Editor .. 1-6
QuickPath ... 1-6
LogiBLOX GUI .. 1-7
Gen_Arch.. 1-7
SysArch .. 1-7
Pld_edif2sim ... 1-7
Pld_edif2tim .. 1-7
Pld_xnf2sim .. 1-7
Mentor Graphics Interface/Tutorial Guide — October 1997 ix

Mentor Graphics Interface Guide
Pld_men2edif.. 1-8
QuickHDL ... 1-8
QuickHDL PRO... 1-8
Pld_dsgnmgr... 1-8
Pld_sg... 1-8

New Models for LogiBLOX Modules .. 1-8
EDIF... 1-9
Cross-Probing .. 1-9
Timing Simulation .. 1-9
Schematic Generator ... 1-9
Timing Constraints ... 1-10

Design Flows... 1-10
Schematic Entry Design Flows .. 1-10
HDL Entry .. 1-14
Mixed Schematic and VHDL Flow with VHDL on Top 1-15
Mixed Schematic and VHDL Flow with Schematic on Top 1-16

Inputs .. 1-17
EDIF... 1-17
XNF.. 1-17

Outputs.. 1-17
Files... 1-18
Tutorials .. 1-19
Online Help ... 1-19

Chapter 2 Getting Started

Configuring Your System .. 2-1
Modifying Mentor Graphics Variables 2-2

Invoking the Design Manager ... 2-4
Invoking Applications in the Design Manager 2-4

Tools Window Icons.. 2-4
Navigator Window... 2-4

Exiting the Design Manager .. 2-4

Chapter 3 Schematic Designs

Design Flows... 3-1
Design Entry.. 3-1

Invoking Design Architect .. 3-1
Exiting Design Architect ... 3-3
Loading a Schematic ... 3-4
Creating the Design Component.. 3-5
Adding Components .. 3-5
x Xilinx Development System

Contents
Adding Xilinx library Components....................................... 3-5
Xilinx Libraries .. 3-5

Adding Properties .. 3-9
Properties ... 3-9
Adding Properties ... 3-10
Adding the Net Property to Nets ... 3-13
Modifying Property Values.. 3-13
Entering Timing Specifications ... 3-15
Creating New Groups from Existing Groups....................... 3-16

Functional Simulation.. 3-16
Simulating Pure Schematic Designs.. 3-17

Creating the Viewpoint.. 3-17
Simulating the Design... 3-19

Simulating Schematic Designs with LogiBLOX Elements........ 3-21
Simulating Schematic Designs with XNF Elements................. 3-21

Creating the Design Component .. 3-22
Converting the XNF File ... 3-22
Creating the Viewpoint.. 3-24
Simulating the Design... 3-24

Simulating Schematic Designs with EDIF Elements................ 3-24
Creating the Design Component .. 3-25
Converting the EDIF File .. 3-25
Simulating the Design... 3-27

Implementing Schematic Designs... 3-27
Converting the EDDM Design.. 3-27
Implementing the Design ... 3-29

Timing Simulation for Schematic Designs..................................... 3-35
Creating the EDDM Model and the Viewpoint 3-36
Simulating the Design .. 3-38
Cross-Probing .. 3-40
Performing a Timing Analysis .. 3-42

Chapter 4 HDL Designs

The Design Flow ... 4-1
HDL Design Entry ... 4-3

Overview of HDL Design Entry .. 4-3
HDL Design Entry Stages .. 4-4

Stage 1: RTL Behavioral Code Development..................... 4-5
Stage 2: Synthesis.. 4-6
LogiBLOX Design Entry.. 4-7

Unified Library Instantiated Components................................. 4-8
Functional Simulation.. 4-8
Mentor Graphics Interface/Tutorial Guide xi

Mentor Graphics Interface Guide
Pre-Synthesis Functional Simulation 4-9
Post-Synthesis Functional Simulation...................................... 4-11
Optional Post Synthesis Functional Simulation 4-13

Design Implementation ... 4-15
Timing Simulation.. 4-25

Compiling the SIMPRIM Libraries.. 4-25
Passing Timing Generics to Special Cells—ROC, OSC, OSC4, and
OSC5 ... 4-25
Compiling the Design... 4-27
Simulating the Design .. 4-28

Chapter 5 Mixed Designs with VHDL on Top

The Design Flow ... 5-1
Design Entry.. 5-2
Functional Simulation.. 5-8

Compiling the Design... 5-8
Simulating the Design .. 5-8
Optional Post-Synthesis Functional Simulation 5-10

Design Implementation ... 5-11
Timing Simulation.. 5-20

Compiling the SIMPRIM Libraries.. 5-20
Passing Timing Generics to Special Cells—ROC, OSC, OSC4, and
OSC5 ... 5-20
Compiling the Design... 5-22
Simulating the Design .. 5-23

Chapter 6 Mixed Designs with Schematic on Top

The Flow ... 6-1
Design Entry.. 6-2

VHDL Module Design Entry ... 6-3
Schematic Entry... 6-4

Functional Simulation.. 6-5
Functional Simulation Before Synthesis 6-5
Functional Simulation After Synthesis 6-7

Design Implementation ... 6-9
Converting the EDDM Design.. 6-9
Implementing the Design ... 6-11

Timing Simulation.. 6-11

Chapter 7 Advanced Techniques

Retargeting the Design to a Different Family 7-1
xii Xilinx Development System

Contents
Merging Design Files from Other Sources 7-4
Simulation Models... 7-4
Analyzing Nets from the Schematic .. 7-4
Setting Global Reset and 3-State Signals..................................... 7-5

FPGA Designs ... 7-5
CPLD Designs ... 7-6

Chapter 8 Manual Translation

Functional Simulation.. 8-1
Pure Schematic Designs.. 8-1
Schematic Designs with XNF Elements................................... 8-1
Schematic Designs with LogiBLOX Elements 8-2
Mixed Schematic and VHDL with Schematic-on-Top Designs 8-2

Before Synthesis... 8-2
After Synthesis.. 8-4

HDL-at-Top Designs .. 8-4
Pure HDL Designs ... 8-5

Design Implementation ... 8-5
Schematic Designs (FPGA) ... 8-5
Schematic Designs (CPLD) ... 8-6
HDL-at-Top Designs .. 8-7
Pure HDL Designs ... 8-8

Timing Simulation.. 8-9
Schematic Designs .. 8-9
Pure HDL Designs ... 8-10

EDIF Method... 8-10
VHDL/Verilog Method ... 8-11

Program Summary .. 8-11
CPLD ... 8-11
Dsgnmgr .. 8-11
EDIF2NGD... 8-12
Editor.. 8-12
Gen_Arch... 8-12
MAP ... 8-12
NGDAnno... 8-12
NGDBuild ... 8-13
NGD2EDIF... 8-13
PAR.. 8-13
Pld_da.. 8-13
Pld_dve .. 8-13
Pld_edif2sim .. 8-14
Pld_edif2tim ... 8-15
Mentor Graphics Interface/Tutorial Guide xiii

Mentor Graphics Interface Guide
Pld_men2edif ... 8-15
Pld_quicksim.. 8-16
Pld_xnf2sim ... 8-17
QuickHDL... 8-18
QuickHDL PRO.. 8-18
QuickPath .. 8-19
Qvhcom.. 8-19
Qvlcom... 8-19
SysArch.. 8-19
Pld_sg .. 8-19

Chapter 9 Schematic Design Tutorial

Introduction ... 9-2
Required Background Knowledge... 9-3
Design Flow .. 9-3
Software Installation.. 9-4

Required Software ... 9-4
Before Beginning the Tutorial .. 9-4
Installing the Tutorial.. 9-6

Standard Directory Structure .. 9-6
Tutorial Directory and Files... 9-6

Starting the Design Manager .. 9-9
Tools Window .. 9-10
Navigator Window.. 9-10
Command Palette .. 9-10

Copying the Tutorial Files ... 9-11
Starting Design Architect... 9-13

Using the Mouse in Design Architect 9-15
Left Mouse Button... 9-15
Middle Mouse Button (Strokes) .. 9-15
Right Mouse Button .. 9-15

Using the Function Keys .. 9-16
Selecting Commands from the Menu Bar 9-16
Selecting Commands from the Palette 9-16
Entering Commands from the Keyboard.................................. 9-17
Cancelling Commands... 9-17
Repeating Menu Commands ... 9-17
Manipulating the Screen .. 9-17

Targeting the Design for the XC9000 Family 9-17
Completing the Calc Design.. 9-20

Design Description... 9-20
Creating the ANDBLK2 Symbol ... 9-22
xiv Xilinx Development System

Contents
Opening a Symbol Window .. 9-22
Creating the Symbol Outline... 9-22
Adding Pins to the ANDBLK2 Symbol 9-22
Adding Text... 9-26
Modifying Text Size .. 9-27
Saving the ANDBLK2 Symbol .. 9-28

Creating the ORBLK2 Symbol ... 9-28
Creating Schematics for ANDBLK2 Symbol 9-30

Opening a Schematic Window.. 9-30
Adding the First Component to a Schematic 9-30
Placing Additional Components.. 9-32
Copying a Component .. 9-33
Moving a Component.. 9-34
Adding Buses to a Schematic... 9-35
Adding Nets to a Schematic ... 9-36
Completing the Net Connections .. 9-39
Increasing Text Size ... 9-40
Adding Ports ... 9-42
Labeling Ports... 9-43
Saving the Schematic ... 9-44

Creating Schematics for ORBLK2 Symbol 9-45
Editing the ALU Schematic .. 9-47
Placing User-Created Components ... 9-49
Placing Library Components.. 9-51
Adding Nets, Buses, Ports and Labels 9-52

FD4CE and AND5B2 .. 9-52
ANDBLK2 and ORBLK2 ... 9-53

Adding Labels to Components... 9-54
Saving the ALU Schematic .. 9-56
Exploring Xilinx Library Elements .. 9-56
Viewing a Xilinx Soft Macro Schematic.................................... 9-57
Viewing a Xilinx RPM (XC4000-Based Families Only) 9-57
Opening the Calc Schematic ... 9-61
Using the XC4000E Oscillator ... 9-61

Controlling FPGA/CPLD Layout from the Schematic.................... 9-62
Assigning Pin Locations... 9-62
Designating FAST Pads... 9-64
Using the I/O Flip-Flops ... 9-65
Saving the Calc Schematic .. 9-66

Modifying the Design for Non-XC4000E/EX Devices.................... 9-66
RAM Stack Implementation ... 9-66
Using the Device-Independent Register File 9-68
Mentor Graphics Interface/Tutorial Guide xv

Mentor Graphics Interface Guide
Removing the XC4000E Oscillator .. 9-69
Using LogiBLOX.. 9-71

Creating and Instantiating a LogiBLOX Module....................... 9-71
Other Special Components ... 9-74

The STARTUP Block (Optional: XC4000E/EX and XC5200 only) 9-74
Adding the CONFIG Symbol (Optional) 9-76

Using a Constraints File .. 9-77
Performing Functional Simulation ... 9-78

Using Pld_dve.. 9-79
Invoking Pld_quicksim ... 9-80
Viewing the Calc Schematic .. 9-81
Selecting Nets for Simulation... 9-82
Opening Trace and List Windows .. 9-84
Adding Traces Manually .. 9-85
Assigning Values to the Clock ... 9-87
Asserting Global Set/Reset (without STARTUP) 9-89
Asserting Global Set/Reset (with STARTUP) 9-90
Design Description... 9-92
Simulating the Circuit ... 9-92
Saving the Results ... 9-98
Using the Transcript... 9-100

Using Pld_men2edif .. 9-100
Examining Pld_men2edif Output Files..................................... 9-102

Using the Xilinx Design Manager .. 9-103
Performing Timing Simulation ... 9-109

Using Pld_edif2tim to Prepare a Timing Simulation................. 9-109
Examining the Pld_edif2tim.log File... 9-110
Using Pld_dve.. 9-111
Invoking QuickSim for Timing Simulation 9-112

Examining Routed Designs with EPIC .. 9-115
Verifying the Design Using a Demonstration Board...................... 9-116

Creating and Downloading the Bitstream 9-116
Making Incremental Design Changes ... 9-117

Making an Incremental Schematic Change 9-117
Translating the Incremental Design ... 9-119
Verifying the Change in the Demonstration Board................... 9-121

Command Summaries .. 9-121
XC4000E Command Summaries... 9-121

Functional Simulation ... 9-121
Basic Translation .. 9-122
Timing Simulation ... 9-122
Incremental Translation .. 9-122
xvi Xilinx Development System

Contents
XC9000 Command Summaries ... 9-122
Functional Simulation ... 9-122
Basic Translation .. 9-123
Timing Simulation ... 9-123
Incremental Translation .. 9-123

Further Reading .. 9-123

Chapter 10 Schematic-on-Top with VHDL Tutorial

Introduction ... 10-1
Required Background Knowledge... 10-3
Design Flow .. 10-3
Software Installation.. 10-4

Required Software ... 10-4
Before Beginning the Tutorial .. 10-4
Installing the Tutorial.. 10-5

Standard Directory Structure .. 10-5
Tutorial Directory and Files... 10-6

Starting the Design Manager .. 10-7
Copying the Tutorial Files ... 10-8
Starting Design Architect... 10-9
Completing the Calc Design.. 10-10

Design Description... 10-11
Adding the SEG7DEC Component .. 10-12

Compiling the VHDL Entity ... 10-12
Linking a VHDL Entity to the ALU Component 10-18

Compiling the VHDL Entity ... 10-18
Using a Constraints File .. 10-22
Performing Functional Simulation ... 10-24

Using Pld_dve.. 10-24
Invoking QuickHDL Pro.. 10-25
Viewing the Calc Schematic .. 10-28
Viewing and Navigating the VHDL Hierarchy 10-29
Completing the Functional Simulation 10-32

Using Pld_men2edif .. 10-34
Examining Pld_men2edif Output Files..................................... 10-36

Using the Xilinx Design Manager .. 10-36
Performing Timing Simulation ... 10-42

Using Pld_edif2tim to Prepare a Timing Simulation................. 10-42
Examining the Pld_edif2tim.log File... 10-43
Using Pld_dve.. 10-44
Invoking QuickSim for Timing Simulation 10-45

Examining Routed Designs with EPIC .. 10-48
Mentor Graphics Interface/Tutorial Guide xvii

Mentor Graphics Interface Guide
Verifying the Design Using a Demonstration Board...................... 10-48
Creating and Downloading the Bitstream 10-48

Command Summaries .. 10-49
XC4000E Command Summaries... 10-50

Functional Simulation ... 10-50
Basic Translation .. 10-50
Timing Simulation ... 10-50

Further Reading .. 10-50
xviii Xilinx Development System

Chapter 1

Introduction

This chapter describes the Mentor Graphics® Design Manager™
interface, a Mentor Graphics tool enhanced by the addition of Xilinx
features.

You can invoke all individual tools from the Xilinx-enhanced Design
Manager or from the shell.

This chapter contains the following sections:

• “Architecture Support” section

• “Platform Support” section

• “Library Support” section

• “Features” section

• “Design Flows” section

• “Inputs” section

• “Outputs” section

• “Files” section

• “Tutorials” section

• “Online Help” section

Architecture Support
You can use the Mentor interface with the following Xilinx architec-
tures:

• XC3000A/L

• XC3100A/L

• XC4000E/EX/L/XV/XL
Mentor Graphics Interface Guide — October 1997 1-1

Mentor Graphics Interface Guide
• XC5200

• XC9500/F

Note: You cannot mix old XC4000EX library components with
XC4000X library components. Use Convert Design to convert
XC4000EX designs to XC4000X before instantiating new XC4000X
library components.

Platform Support
The Mentor interface is supported on Sun SPARCstations using either
the Sun operating system version 4.1.3 and 4.1.4 or the Solaris oper-
ating system versions 2.4 and 2.5. It is also supported on HP worksta-
tions using the HPUX operating system versions 9.05 and 10.02.

Library Support
The following libraries are available in the Mentor interface:

• Unified Libraries, which contain the symbol models for sche-
matic entry and simulation

• SIMPRIM library, which contains the symbol models for timing
(EDDM) simulation

• VITAL VHDL SIMPRIM library for top-down timing simulation

• Verilog SIMPRIM library for top-down Verilog timing simulation

Features
The following sections describe the major features available in this
release.

Mentor Software Release Support
This interface supports the Mentor B.1, B.2, B.3, and B.4 software
releases.

Added HDL Support
This release offers a number of features that allow you to process a
design through a VHDL or Verilog netlist.
1-2 Xilinx Development System

Introduction
QuickHDL and QuickHDL PRO

This release supports the QuickHDL™ simulator, which simulates
behavioral VHDL, Verilog, VHDL-based, and Verilog-based gate-
level designs composed of SIMPRIM elements. In addition, LogiBlox
elements can be simulated at the behavioral level.

It also supports QuickHDL PRO™ for mixed mode simulations for
schematic-based and VHDL-based designs. QuickHDL PRO can
invoke QuickHDL to simulate VHDL-based elements, or
pld_quicksim to simulate Unified Libraries elements.

VHDL Gate-Level Simulation Support

This release supports VHDL simulation, including IEEE-standard
1076.4 VHDL libraries of SIMPRIM models. Xilinx implementation
tools output timing simulation VHDL netlists by using structural
VHDL models of SIMPRIM VHDL models and an SDF file.

Verilog Gate-Level Simulation Support

This release supports Verilog simulation, including Verilog libraries
for use with SIMPRIM models. Xilinx implementation tools output
timing Verilog netlists by using structural Verilog models with
SIMPRIM Verilog models and an SDF file.

Links to the Xilinx Synopsys Interface (XSI)

The Mentor interface can accept Synopsys synthesized netlists in the
form of SEDIF or SXNF files. It can also accept XNF and EDIF files
from other synthesizers that are compatible with the Xilinx core soft-
ware. These files can be directly submitted to the Xilinx Design
Manager for placement and routing of the design.

You can also simulate these EDIF or SXNF files by submitting them to
the pld_edif2sim or pld_xnf2sim utility, which creates EDDM compo-
nents for use with pld_quicksim.

In addition, after place and route, you can output VHDL and Verilog
netlists, which can be submitted to QuickHDL for simulation with
SDF files providing the back-annotation information.
Mentor Graphics Interface Guide 1-3

Mentor Graphics Interface Guide
Mentor Design Manager
The Mentor Graphics Design Manager is an easy-to-use interface that
represents applications and design files as icons. You can now
perform many tasks in the Design Manager window that were previ-
ously done at the operating system level. The Design Manager runs
in a window on your workstation display and makes it easy for you
to invoke applications and to manage designs, files, and directories.
The Design Manager lets you do these tasks by using graphical point-
and-click actions. You can run applications by selecting an applica-
tion icon, or a design object icon and a menu item.

Note: A design object consists of the files and directories that make
up your design.

 The Xilinx script, pld_dmgr, configures the Design Manager for the
creation, implementation, and simulation of Xilinx designs. This
manual describes only the Xilinx-configured Design Manager; refer
to Mentor Graphics documentation for a more comprehensive
description of the Mentor Design Manager.

The Design Manager includes a Tools window, a Navigator window,
and a Design Manager palette, as shown in the following figure:
1-4 Xilinx Development System

Introduction
Figure 1-1 Mentor Design Manager Window

The Tools window contains icons representing all the Mentor
Graphics and Xilinx applications that you need to execute the steps in
the design flow. The Navigator window contains design object icons,
including original schematics as well as files created during transla-
tion and simulation. This window makes it easy to access files in
different directories. The Design Manager palette provides easy
access to the most commonly used Design Manager menu items.

The remainder of this section briefly describes the icons in the Tools
window and the Mentor programs they represent. The tools with
names that begin with PLD are configured through scripts for
working with Xilinx designs.

Pld_da

Pld_da is Mentor’s Design Architect®, a schematic editor configured
for Xilinx designs. The Xilinx-configured Design Architect is identical
to the Mentor Graphics version except for the addition of a Xilinx
Mentor Graphics Interface Guide 1-5

Mentor Graphics Interface Guide
library of primitives, macros, and utilities such as Convert Design.
Refer to the “Design Entry” section of the “Schematic Designs”
chapter in this manual and the “Schematic Design Tutorial” chapter
in this Manual for more information on creating Xilinx designs with
Design Architect. For a more detailed description of Design Architect
commands and processes, refer to the Mentor Graphics Design Archi-
tect User’s Manual.

Pld_dve

Pld_dve is the Mentor Graphics Design Viewpoint Editor (DVE)
configured for Xilinx designs. When you invoke this application from
within the Mentor Design Manager, a dialog box appears and you are
asked to create either a simulation or custom viewpoint. Refer to the
“Functional Simulation” section of the “Schematic Designs” chapter
and the “Timing Simulation for Schematic Designs” section of the
“Schematic Designs” chapter in this manual for more information on
pld_dve. For detailed information on DVE, refer to the Mentor
Graphics Design Viewpoint Editor User’s and Reference Manual.

Pld_quicksim

Pld_quicksim is an interactive logic simulator that performs func-
tional or timing simulation on your designs. For more information on
pld_quicksim, refer to the “Functional Simulation” section of the
“Schematic Designs” chapter, the “Timing Simulation for Schematic
Designs” section of the “Schematic Designs” chapter, and the “Sche-
matic Design Tutorial” chapter in this manual. For a detailed descrip-
tion of pld_quicksim, refer to the Mentor Graphics QuickSim II User’s
Manual.

Editor

The Editor icon represents the Mentor Graphics Notepad editor.
Notepad is a full-featured, window-based text editor. For more infor-
mation on Notepad, refer to the Mentor Graphics Notepad User’s and
Reference Manual.

QuickPath

QuickPath™ performs static and slack timing analysis on designs.
For more information on QuickPath, refer to the “Timing Simulation
for Schematic Designs” section of the “Schematic Designs” chapter
1-6 Xilinx Development System

Introduction
and ™the “Schematic Design Tutorial” chapter in this manual. For a
detailed description of QuickPath, refer to the Mentor Graphics
QuickPath User’s and Reference Manual.

LogiBLOX GUI

This is a stand-alone Xilinx tool for generating VHDL and Verilog
models of LogiBlox components. Schematic models can be created by
invoking LogiBLOX from within pld_da under the Xilinx Libraries
Palette menu.

Gen_Arch

Gen_Arch creates a VHDL architecture from a Mentor schematic
(EDDM) component for use in mixed schematic and HDL simula-
tions within QuickHDL Pro.

SysArch

SysArch is the System Architect™, which creates system-level
designs and outputs synthesizable VHDL.

Pld_edif2sim

Pld_edif2sim is a utility that converts a Mentor, Synopsys, or other
Xilinx compatible EDIF file into a Mentor EDDM single-object simu-
lation model, VHDL netlist, or Verilog netlist. Pld_edif2sim is for
functional simulation only.

Pld_edif2tim

Pld_edif2tim is the Mentor EDIF netlist reader, which converts a
placed and routed EDIF netlist to a Mentor single-object EDDM file
that can be submitted to pld_quicksim for timing simulation.

Pld_xnf2sim

Pld_xnf2sim is a utility that converts an unrouted XNF file to a
Mentor EDDM single-object simulation model. This conversion can
only be done on chip-level XNF files with EXT records, not on lower
level modules embedded in a schematic. VHDL or Verilog simulation
models can also be generated. Pld_xnf2sim is for functional simula-
tion only.
Mentor Graphics Interface Guide 1-7

Mentor Graphics Interface Guide
Pld_men2edif

Pld_men2edif converts a Mentor schematic to a hierarchical EDIF
netlist that is ready for implementation.

QuickHDL

QuickHDL™ (qhsim) is Mentor’s simulator for behavioral VHDL,
Verilog, or VHDL-based and Verilog-based gate-level designs
composed of SIMPRIM elements.

QuickHDL PRO

QuickHDL PRO™ (qhpro) is Mentor’s simulator for mixed sche-
matic-based, VHDL-based, and Verilog-based designs. It can invoke
QuickHDL to simulate HDL-based elements, or pld_quicksim to
simulate Unified Schematic Library elements.

Pld_dsgnmgr

The Mentor Design Manager interface contains a Pld_dsgnmgr icon
for the Xilinx Design Manager. Pld_dsgnmgr is the Xilinx Design
Manager, which implements the design. You can access any indi-
vidual Xilinx tool from the Xilinx Design Manager.

Pld_sg

Pld_sg is the Mentor schematic generator (SG), which creates a sche-
matic from an EDDM single object netlist. You can be use this tool to
generate a schematic for the timing simulation netlist.

New Models for LogiBLOX Modules
You can enter a schematic using LogiBLOX symbols along with other
Unified Libraries elements. For schematics, invoke LogiBLOX from
within pld_da by using the Xilinx Libraries menu (Libraries →
Xilinx Libraries → Logiblox). In addition, EDDM simulation
models are automatically created for LogiBLOX symbols during
symbol creation.

For VHDL or Verilog LogiBlox models, invoke LogiBlox from the
pld_dmgr’s tool window, or from the popup session window within
pld_da.
1-8 Xilinx Development System

Introduction
EDIF
This release supports EDIF 2 0 0 for design implementation. Refer to
the Xilinx EDIF specification for supported constructs.

Cross-Probing
Cross-probing is a way of cross-referencing between the original
schematic and the timing simulation model after placement and
routing. Once a Mentor design is translated, expanded, mapped,
placed, and routed, you can extract the back-annotation information
and create a hierarchical EDIF netlist. After you convert this EDIF to
an EDDM model using pld_edif2tim, you submit it to pld_dve to
create a viewpoint and then to pld_quicksim for timing simulation.
The resulting data base preserves the design hierarchy, and although
it is created in terms of the SIMPRIM library, most of the original net
names are still available. You enable cross-probing by invoking
QuickSim with the -cp option. This option invokes pld_dve as well as
pld_quicksim. You then open the original design viewpoint in
pld_dve and view the desired design sheet. If you display the orig-
inal schematic in pld_dve, you can select nets on the original sche-
matic and view them in the QuickSim trace window.

For more details on cross-probing, see the following sections:

• “Cross-Probing” section of the “Schematic Designs” chapter

• “Performing Timing Simulation” section of the “Schematic
Design Tutorial” chapter

• “Invoking Pld_quicksim” section of the “Schematic Design Tuto-
rial” chapter.

Timing Simulation
This release supports back-annotated timing simulation after place-
ment and routing. Pld_edif2tim translates the routed EDIF file to an
EDDM single-object netlist.

Schematic Generator
The schematic generator is a utility that you can optionally use to
generate a hierarchical schematic from a back-annotated EDDM
model. This is not a required step since you can instead use cross-
Mentor Graphics Interface Guide 1-9

Mentor Graphics Interface Guide
probing with the back-annotated EDDM model and the original sche-
matic for simulation without generating a back-annotated schematic.
You can invoke the schematic generator from within the design
manager or from a shell by typing pld_sg. You must have a Mentor
schematic generator license in order to use this tool.

Timing Constraints
You can add timing constraints to the schematic as properties. You
can also place them in a UCF (user constraints file) that NGDBuild
can process. If a conflict arises between the timing information in the
EDIF file and in the constraints file, the information in the constraints
file prevails.

Design Flows
You use different PLD design flows for performing design entry,
implementation and simulation depending on whether you use sche-
matic design entry or HDL design entry.

In either case, the easiest and most automatic way is to use the appli-
cation icons in the Design Manager window. You can also run the
various programs in the design flow manually from the UNIX shell.
The shell commands are described in the “Manual Translation”
chapter.

The Mentor interface supports the following design flows:

• Schematic entry with the Unified Libraries components, Logi-
BLOX symbols, or both

• Schematic entry with Unified Library components with some
models expressed in Xilinx compliant EDIF or XNF

• Top-down HDL (Verilog/VHDL) design entry and synthesis

• Mixed schematic and VHDL design with VHDL on top

• Mixed schematic and VHDL design with schematic on top

Schematic Entry Design Flows
The schematic entry design flows are illustrated in the following
three figures:
1-10 Xilinx Development System

Introduction
Figure 1-2 Schematic Design Entry Including EDIF-Based and
LogiBLOX Modules

PLD_DMGR

PLD_DA

No

Yes

EDDM
single object
and symbol

X7566

PLD_DVE

LogiBLOX GUI

LogiBLOX
(optional)

EDIF with timing

Design
functionality

correct?

Design
contains

LogiBLOX
elements

PLD_MEN2EDIF

PLD_QuickSim

PLD_DSGNMGR

EDDM

No

Yes

YesDesign
timing

correct?

PLD_EDIF2TIM

PLD_DVE

PLD_QuickSim
(with cross-probing)

Design complete

EDDM
single object

EDIF

EDDM
single object

EDIF (optional)

EDIF
lower-level

module

PLD_EDIF2SIM
with EDIF for module

Create Mentor
symbol

with PLD_DA

Add property
File=EDIF
to symbol

Instantiate into
top-level

schematic
Mentor Graphics Interface Guide 1-11

Mentor Graphics Interface Guide
Figure 1-3 Design Entry with XNF Top-Level Module

No

Yes

X8025

EDIF with timing

Design
functionality

correct?

EDDM
single object and
simulation viewpoint

XNF
top-level module

PLD_QuickSim

PLD_DSGNMGR

PLD_XNF2SIM

No

Yes

YesDesign
timing

correct?

PLD_EDIF2TIM

PLD_DVE

PLD_QuickSim
(without cross-probing)

Design complete

EDDM
single object

with top-level XNF
1-12 Xilinx Development System

Introduction
Figure 1-4 Schematic Design Entry with XNF Module

PLD_DMGR

PLD_DA

No

Yes

X8026

EDIF with timing

Design
functionality

correct?

EDDM
single object

XNF
lower-level

module

XNF (optional)

PLD_QuickSim

PLD_DSGNMGR

EDDM

EDIF

No

Yes

YesDesign
timing

correct?

PLD_EDIF2TIM

PLD_DVE

PLD_QuickSim
(with cross-probing)

Design complete

EDDM
single object

PLD_EDIF2SIM
on top

PLD_MEN2EDIF

Create Mentor
symbol

with PLD_DA

Add property
File=

 to symbol

Instantiate into
top-level

schematic

XNF_pathname
Mentor Graphics Interface Guide 1-13

Mentor Graphics Interface Guide
HDL Entry
The following figure shows the design flow for VHDL and Verilog
design entry and synthesis for all supported technologies.

Figure 1-5 HDL (Verilog/VHDL) Design Entry and Synthesis

VHDL Verilog

No

Yes

X8235Design complete

Yes

QuickHDL

Synthesis*

Design
functionality

correct?

RTL
HDL

QuickHDL

QuickHDL

Editor or PLD_DA

PLD_DSGNMGR

* Do not synthesize
 architectures for
 LogiBLOX modules

Optional post-synthesis
gate-level simulation

Optional post-synthesis
gate-level simulation

SDF

Design
timing

correct?
No

LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

PLD_XNF2SIM

NGO

QuickHDL

VHDL Verilog

EDIF XNF

PLD_EDIF2SIM
on top-level EDIF

VHDL

on top-level XNF

Instantiated Unified
Library Componments

(optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL

VHDLVerilog VHDL

QuickHDL

VHDL Verilog

Post-synthesis
simulation using
Unified Library
components
1-14 Xilinx Development System

Introduction
Mixed Schematic and VHDL Flow with VHDL on Top
The design flow for design entry of a top-level VHDL design with a
schematic sub-module embedded within is illustrated in the
following figure.

Figure 1-6 Mixed Schematic and VHDL Design with VHDL on
Top

Synthesis**

EDIF XNF

RTL VHDL to be
synthesized

QuickHDL Pro

Design
correct?

Yes

VHDL for module

Text editor

PLD_DVE

GEN_ARCH

EDDM for
schematic module

PLD_DMGR

PLD_DA

PLD_MEN2EDIF*

EDIF for module

PLD_EDIF2SIM
ngo only

ngo for module

No

SDFRouted VHDL
in Simprims Functional VHDL

in Simprims

QuickHDL

PLD_XNF2SIM
on top level XNF

QuickHDL

Xilinx Design Manager

Functional VHDL
in Simprims

QuickHDL

PLD_EDIF2SIM
on top level EDIF

*Use bus delimiters that
your synthesis tool uses

**Do not compile architecture
for schematic instantiation

RTL functional simulation

Implementation and
timing simulation

Optional post-synthesis
gate level simulation

Optional post-synthesis
gate level simulation

X8234

VHDLVerilog VHDL

QuickHDL

Post-synthesis
simulation using
Unified Library
components
Mentor Graphics Interface Guide 1-15

Mentor Graphics Interface Guide
Mixed Schematic and VHDL Flow with Schematic on
Top

The design flow for design entry using a mixture of schematics,
VHDL, and Verilog is illustrated in the following figure.

Figure 1-7 Mixed Schematic and VHDL Design with Schematic
on Top

Design
correct?

PLD_DMGR Text editor

RTL VHDL
for module

Synthesis

EDIF
for module

XNF
for module

or

No

PLD_MEN2EDIF*

Top-level
EDIF

EDDM for design
with instantiated

VHDL module

PLD_DVE-s

QuickHDL Pro

Xilinx Design
Manager

Routed EDIF
in Simprims

PLD_EDIF2TIM Unrouted EDDM
in Simprims

PLD_EDIF2SIM
on top-level EDIF

PLD_QuickSim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

YesPLD_DA

Routed EDDM
in Simprims

PLD_DVE-s

PLD_QuickSim

qvhcom

Compiled VHDL
for module

X8028

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in PLD_DA for
HDL module

Import VHDL
1-16 Xilinx Development System

Introduction
Inputs
The Mentor interface accepts netlists in EDIF or XNF format.

EDIF
You can submit an EDIF Level 2 0 0 netlist based on a design using
Unified Libraries components. The following restrictions apply:

• Only the netlist and schematic types of EDIF are supported.

• Only one design per EDIF file is allowed.

• An EDIF file can contain one design component or multiple
components. The EDIF2NGD utility converts each file to an NGO
file. NGDBUILD uses a top-level NGO file, which refers to the
other NGO files, to create the NGD file.

XNF
The Mentor interface can accept one of the following XNF netlists:

• An XNF netlist created by third-party netlist writers that meet the
specifications of XNF version 6.1

• An XFF netlist created by XNFMerge version 6.1

• An XTF netlist created by XNFPrep version 6.1

An XNF netlist can represent all or part of a design. To be included in
the netlist of a schematic design, a component must be tagged with
the FILE property indicating the path name of the XNF file.

If a lower module is expressed in XNF, the top level must be run
through EDIF2SIM in order to create a simulation netlist. The lower-
level XNF file can not be run through XNF2SIM by itself since its lack
of EXT records prevents XNF2SIM from knowing which signals
should become module pins.

Outputs
The Mentor interface generates a back-annotated simulation netlist
file based on the following:

• QuickPart-based SIMPRIM models and a flat/hierarchical EDIF
netlist.
Mentor Graphics Interface Guide 1-17

Mentor Graphics Interface Guide
• VHDL-based SIMPRIM models, a structural VHDL netlist, and a
SDF delay file.

• Verilog-based SIMPRIM models, a structural Verilog netlist, and
a SDF delay file.

Files
The following Xilinx specific files are involved in processing a design
through the Mentor interface:

• The EDN file is a post-route EDIF netlist file that expresses timing
in SIMPRIM library elements instead of Unified Libraries
elements.

• The NCD file contains a representation of the physical design.

• The NGA file contains physical timing delay information.

• The NGD file contains a logical design hierarchy expressed in the
Xilinx implementation primitives.

• The NGM file contains a representation of the logical design. It
also contains optimization information.

• The NGO file contains netlist information in a proprietary data
base format; it is a binary file.

• The SDF file contains timing delay information.

• The V file contains the structural design based on Verilog-based
SIMPRIM models.

• The VHD file contains the structural design based on VHDL-
based SIMPRIM models.

• The XNF file is the Xilinx netlist format used prior to the use of
EDIF in the current release. In the current Mentor Interface flow,
XNF is only used as an import format option.

• The PCF file is the physical constraints file.

• The UCF file is the User Constraint File for specifying the user’s
timing and placement constraints for place and route.
1-18 Xilinx Development System

Introduction
Tutorials
It is highly recommended that you perform the tutorials provided in
this manual to become familiar with the basic concepts of PLD
design, verification, and implementation.

Online Help
The Mentor interface contains online help which is available from
each application’s dialog box. Help contains information about the
Mentor features offered in the interface but does not contain informa-
tion about the Xilinx features. The Mentor software is supplied with
the BOLD_Browser, a set of online manuals. This online manual is the
online help for the Xilinx features.
Mentor Graphics Interface Guide 1-19

Mentor Graphics Interface Guide
1-20 Xilinx Development System

Chapter 2

Getting Started

This chapter describes how to configure your system for the Mentor
Graphics Design Manager, and how to invoke and exit the Mentor
Graphics Design Manager. This chapter contains the following
sections:

• “Configuring Your System” section

• “Invoking the Design Manager” section

• “Exiting the Design Manager” section

Configuring Your System
Install the appropriate software and verify that your system is prop-
erly configured as described in the release notes that came with your
software package. When you have finished the installation, verify
that your .cshrc or setup file contains lines similar to the following:

setenv XILINX location_of_Xilinx_software
setenv LCA $XILINX/mentor/data
setenv SIMPRIMS $LCA/simprims
set path=($XILINX/bin/sol \
$XILINX/mentor/bin/sol $MGC_HOME/bin $path)

Note: Path names of directories will vary. (For example, $XILINX/
bin/sol would be $XILINX/bin/hp if you are running the Xilinx soft-
ware on an HP workstation.) For more information on paths and
environment variables, refer to the release notes that came with your
software package.

XILINX is the directory where all Xilinx software is located.

LCA is the directory which includes Mentor-Interface files such as
Xilinx libraries, translators, and scripts.
Mentor Graphics Interface Guide — October 1997 2-1

Mentor Graphics Interface Guide
SIMPRIMS is the directory where the Mentor SIMPRIM models are
located.

Modifying Mentor Graphics Variables
Make sure that the following Mentor Graphics specific variables are
set correctly:

• MGC_HOME

This should point to the Mentor Graphics software tree.

• MGC_GENLIB

This should point to the Mentor Graphics gen_lib library,
normally $MGC_HOME/gen_lib.

• MGLS_LICENSE_FILE

This variable must point to a valid FlexLM license file that lists
the Mentor Graphics license daemon and licensed software
features, as supplied by Mentor Graphics. A sample license file
may begin as follows:

SERVER tequiero 9542df17 1700
DAEMON mgcld /tools/mentor/lib/mgcld

/usr/local/data/mentor.opt
FEATURE falconfw_s 8.0 31-dec-1997 10 ...

• LD_LIBRARY_PATH

This variable is used by the Mentor Graphics Design DataPort
(DDP) routines that are accessed by some Xilinx programs. On a
SPARCstation with OpenWindows installed in /usr, this variable
is set as follows:

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$XILINX/bin/sol:/usr/openwin/lib

On HP workstations, leave out /usr/openwin/lib.

• MGC_LOCATION_MAP

This variable should point to a valid location map file.

Each component in a design contains a reference indicating
where it resides on the disk or network. All components in
designs created in the Mentor Graphics B.x environment refer-
ence the variable $LCA, while back-annotated timing models
2-2 Xilinx Development System

Getting Started
reference the variable $SIMPRIMS. It is also important that the
$LCA and $SIMPRIMS variables be instantiated, but not defined,
in the file pointed to by $MGC_LOCATION_MAP. With all these
elements, the location-map file should, at a minimum, look like:

MGC_LOCATION_MAP_1
(empty line)
$MGC_GENLIB
(empty line)
$LCA
(empty line)
$SIMPRIMS
(empty line)

The MGC_LOCATION_MAP_1 line indicates that this is a
version 1 location-map file. (You can also use the version
MGC_LOCATION_MAP_2, which adds features such as outside
file inclusion.) The three soft names with blank lines indicate that
the Mentor Graphics software should pull the associated values
from the parent environment.

Refer to the Mentor Graphics documentation for more informa-
tion on location maps.

• MGC_WD (Optional)

This variable should point to the working directory. You can have
this variable always point to your current directory by setting it
to “.”

Xilinx tools ignore the MGC_WD variable.

• LCA

In addition to instantiating it in the file pointed to by
MGC_LOCATION_MAP, the LCA environment variable should
point to the directory where the DS344 software is installed, typi-
cally $XILINX/mentor/data.

• SIMPRIMS

This points to the directory where Xilinx simulation models are
located. This should be set to $LCA/simprims.

Refer to the release notes for additional information on paths and
environment variables.
Mentor Graphics Interface Guide 2-3

Mentor Graphics Interface Guide
Invoking the Design Manager
To invoke the Design Manager from the operating system, type
pld_dmgr .

The Design Manager window appears, as shown in the “Mentor
Design Manager Window” figure of the “Introduction” chapter.

Invoking Applications in the Design Manager
You can use either an icon or the Navigator to invoke an application
from the Design Manager.

Tools Window Icons

To use an icon to open an application, double-click the left mouse
button on the icon in the Tools window.

A dialog box appears that allows you to set options, or the applica-
tion is executed.

Navigator Window

If you want to load a specific design, you can also use another
method of invoking an application.

1. Select the design object in the Navigator window with the left
mouse button, and press the right mouse button.

2. Select Open from the Navigator menu.

3. Select the appropriate application from the popup menu.

Only the applications that can be executed on the selected object will
be displayed in the popup menu.

A dialog box appears that allows you to set options, or the applica-
tion is executed.

Exiting the Design Manager
To exit the Design Manager, move the cursor to the title bar of the
Design Manger window, press the right mouse button, and select
Quit from the popup menu
2-4 Xilinx Development System

Chapter 3

Schematic Designs

This chapter describes how to use the Mentor Graphics Design
Manager and Design Architect to design with pure schematic
designs. It contains the following sections:

• “Design Flows” section

• “Design Entry” section

• “Functional Simulation” section

• “Implementing Schematic Designs” section

• “Timing Simulation for Schematic Designs” section

Design Flows
Three pure schematic design flows are shown in the “Schematic
Entry Design Flows” section of the “Introduction” chapter. This
chapter describes how to work with designs using the pure schematic
design flows.

Design Entry

Invoking Design Architect
You can use either the pld_da icon or the Navigator to invoke Design
Architect from the Design Manager.

To invoke Design Architect with the pld_da icon in the Tools
Window:

1. Double-click the left mouse button on the pld_da icon.

A Design Architect window similar to that shown in the “Design
Architect Window” figure appears but without displaying a sche-
Mentor Graphics Interface/Tutorial Guide — October 1997 3-1

Mentor Graphics Interface Guide
matic. You can use the Open Sheet icon in the Session Palette to
open a schematic sheet.

If you want to load a specific design, you can invoke Design Architect
from the Navigator as follows:

1. Select the design in the Navigator window and press the right
mouse button.

2. Select Open → pld_da from the Navigator pop-up menu.

A Design Architect window similar to that shown in the
following figure appears.
3-2 Xilinx Development System

Schematic Designs
Figure 3-1 Design Architect Window

Exiting Design Architect
To exit Design Architect, move the cursor to the title bar of the Design
Architect window, press the right mouse button, and select Quit
from the popup menu.
Mentor Graphics Interface/Tutorial Guide 3-3

Mentor Graphics Interface Guide
Loading a Schematic
If a design is not loaded into the schematic window, the Session
Palette (session_palette) appears on the right-hand side of the Design
Architect window. If one design is presently loaded and you want to
also load another design, click on the Session icon in the
schemataic_add_route Session Palette.

To load an existing schematic into the Design Architect window,
follow these steps.

1. Click on the Open Sheet icon in the Session Palette.

The Open Sheet dialog box appears, as shown in the following
figure.

Figure 3-2 Open Sheet Dialog Box

2. To find an existing design, type the path and name of the compo-
nent or schematic in the Component Name field, or click on
Navigator to find it.

Note: If the component has not yet been created, open pld_da in the
Tool Window. Then open a sheet from the Session Palette. In the
Open Sheet dialog box, assign the component a name and click OK.

3. In the Sheet field, type the name of the schematic sheet that you
want to display.

4. In the Open As field, select Editable .
3-4 Xilinx Development System

Schematic Designs
5. Click on OK.

The schematic sheet now appears in the Design Architect
window. The schematic number, name of the design, and sheet
number appear in the title bar. The Session Palette changes to the
Schematic Palette (schematic_add_route).

Creating the Design Component
When you save your schematic in Design Architect, the following
items are created:

• A design.mgc_component.attr file

• A design component directory

The design component directory may contain schematic files, symbol
files, and viewpoint files. The design directory and the
design.mgc_component.attr file together are known as a Mentor
component object.

Adding Components

Adding Xilinx library Components

1. To add a component from the Xilinx libraries, select
XILINX Libraries from the Libraries pull-down menu.

2. In the Schematic Palette, click on the desired technology library.

Note: You cannot mix old XC4000EX library components with
XC4000X library components. Use Convert Design to convert
XC4000EX designs to XC4000X before instantiating new XC4000X
library components.

3. Click on BY TYPE to select a category of element, or ALL PARTS
to select a specific element.

4. Click on the desired element, move the cursor to the desired loca-
tion on the schematic, and click on the left mouse button to place
it.

Xilinx Libraries

In Design Architect, the Xilinx Libraries menu contains the Unified
Libraries. The Unified Libraries are a collection of libraries that
Mentor Graphics Interface/Tutorial Guide 3-5

Mentor Graphics Interface Guide
conform to standards set for the appearance, function, and naming
conventions of the library elements. This standardization allows you
to easily convert from one Xilinx architecture to another. You should
use the primitives and the macros in the Unified Libraries to create
new designs. Refer to the XACT Libraries Guide for detailed informa-
tion on the Xilinx Libraries.

Primitives and Macros

The Xilinx Libraries contain the following types of components:

• Primitives: These are pads and basic logic elements, such as
gates, latches, flip-flops, buffers, and oscillators.

• Soft macros: These are schematics that contain primitives and
other soft macros. Soft macros have pre-defined functionality and
often have fixed mapping, placement, and routing to provide the
most efficient use of resources and the fastest speed.

LogiBLOX

LogiBLOX allows you to synthesize common data functions such as
addition, that are optimized for a particular family. Refer to the Logi-
BLOX User Guide for information on LogiBLOX components.

Using the Xilinx Libraries

The following procedure describes selecting a component from the
Unified Libraries and placing it in your schematic. Do not mix
components from different technologies (families).

From within Design Architect, select and place library components as
follows:

1. Select XILINX Libraries from the Libraries pull-down menu.
The schematic palette is replaced by the Xilinx libraries menu
palette.

2. Select the correct library for your design. A menu appears and
you can select BY TYPE or ALL PARTS. If you select By Type, a
list of the components organized into categories such as buffer,
counter, or flip_flop appears. If you select All Parts, all the
components are displayed in alphabetical order. Use the Page Up
and Page Down keys to move up and down the list of compo-
nents.
3-6 Xilinx Development System

Schematic Designs
3. Select a component from the library list.

4. Move the cursor into the schematic window. An outline of the
selected component appears.

5. Move the outline to the appropriate location and click the left
mouse button to place the component.

Bus Rippers

Bus rippers are Mentor Graphics-supplied special components that
connect nets to specific signals on a bus. You can obtain bus rippers
by selecting the rip component in the Logic submenu in the Unified
Libraries. These components are the same as rip components in the
MGC Digital Libraries gen_lib.

A bus ripper consists of two pins. The narrow end is the wire end and
the wide end is the bundle end. The wire end always connects to a net
or smaller bus, and the bundle end connects to a bus. The bus ripper
can tap all or a set of signals into a new bus. Refer to the following
figure for an example of a bus ripper.

Figure 3-3 Bus Ripper

In Mentor, there are two types of bus rippers, implicit and explicit.
An explicit ripper uses the RULE property to specify the index. The
RULE property lets you specify a name for the net. An implicit ripper
does not have a rule property and the name of the net must be the
same as the name of the bus.

To add a bus ripper to a bus, perform the following procedure:

X1599

SIGNALS (3:0)

CLK
0

CLR
1

Q
2

QB
3

STROBES (127:126)

3:2
Mentor Graphics Interface/Tutorial Guide 3-7

Mentor Graphics Interface Guide
1. If you don’t already have a bus in your system, add one and give
it a name such as ADDR (31:0).

2. Draw a net to the bus.

3. In the Choose Bus Bit dialog box that opens, specify the bit
number of the net that you want to rip.

Figure 3-4 Choose Bus Bit Dialog Box

4. Design Architect automatically inserts a ripper which by default
is implicit.

5. To specify a non-implicit ripper, open the Setup Ripper dialog
box by doing one of the following:

• Select the Setup → Ripper menu

• Select the Setup Ripper icon in the Schematic palette

Figure 3-5 Setup Ripper Dialog Box
3-8 Xilinx Development System

Schematic Designs
6. In the Setup Ripper dialog box, Select the Auto ripper mode and
click OK.

7. Specify the bit in the Choose Bus Bit dialog box and the bus name
if it is not already named.

An explicit ripper has a RULE property, which defines the bit or bits
being tapped from the bus. By default, the RULE property is set to R,
but you must change the property value to represent the bit or bits
you want tapped from the bus.

To change the property value, perform the following procedure:

1. Select the wire end of the bus ripper part whose RULE property
you want to change.

2. Access the Edit Window popup menu and select Properties
→ Modify .

3. Select the RULE property and enter the desired property value in
the Property Value box. For more information on bus rippers,
refer to the “Schematic Design Tutorial” chapter in this Manual
and the Design Architect User’s Manual.

Adding Properties
Although a few differences exist when comparing PLD designs to
other ASIC or board-level designs, PLD schematic design generally
involves the same techniques used when you design other technolo-
gies. Most of these differences involve adding Xilinx PLD-specific
attributes to schematic components. This information is used by the
design implementation software during placement and routing of
your design.

In Design Architect, adding Xilinx attributes is called property anno-
tation. Property annotation is used to add design information called
“properties” to schematics and symbols. These added properties
describe characteristics of a component that are not identifiable from
the schematic drawing alone. They provide information to the imple-
mentation tools during the processing of your schematic design.

Properties

This section describes the properties that are unique to Mentor or that
are required when working with Xilinx PLDs using Mentor.
Mentor Graphics Interface/Tutorial Guide 3-9

Mentor Graphics Interface Guide
Properties, or attributes, are instructions placed on symbols or nets in
an FPGA or CPLD schematic that allow you to control aspects of soft-
ware processing. They express information specific to each design,
unlike run-time options entered in the Xilinx Design Manager.

This section describes the properties that are unique to Mentor sche-
matics or that are required. The Xilinx Libraries Guide describes the
other attributes that you can place on a Mentor schematic.

PINTYPE

Add the PINTYPE property to a pin to identify it as input or output
for pld_dve. Pld_dve uses the PINTYPE property to determine the
pin directionality of all of the symbol’s pins. When adding PINTYPE
properties, select PINTYPE from the list of properties and type in ,
out , or ixo for input, output, or bidirectional, respectively, in the
value box.

INST

Use the INST property to uniquely identify an instantiation of a
component or symbol in a design. Design Architect assigns a default
INST property to the symbol of each instantiation (I$1, I$2, and so
forth), and the INST value is appended to the hierarchical path.

COMP

Use the COMP property to indicate that a simulation model exists for
a primitive. All Xilinx primitives have a COMP property.

Do not place the COMP property on user symbols since COMP indi-
cates that the symbol is a Xilinx library primitive.

CYMODE

Use the CYMODE property on the Carry Mode symbol to identify the
mode for the dedicated carry logic in an XC4000 CLB.

INTERNAL

Use the INTERNAL property to identify unbonded IOBs.

Adding Properties

Use the following procedure to add properties to instances, pins, or
nets.
3-10 Xilinx Development System

Schematic Designs
1. Select the instance, pin, or net.

If you are applying a property to an instance, select the instance.
Be sure nothing else is selected.

If you are applying a property to a net, select the vertex where the
output of a symbol connects to the net. Be sure you have selected
only that vertex; a single star should appear at that location.

2. Press the right mouse button.

The Instance popup menu should appear if you have selected an
instance. The Net popup should appear if you have selected a net
or a pin. If the Mixed Selection popup appears instead, you have
more than one design object selected. Choose Unselect →
All , then select the instance or net and try pressing the right
mouse button again.

3. Select the Properties → Add → Add Single Property
command from the popup menu.

The Add Property dialog box appears, as shown in the following
figure.
Mentor Graphics Interface/Tutorial Guide 3-11

Mentor Graphics Interface Guide
Figure 3-6 Add Property Dialog Box

4. In the Property Name box, type the name of the property, for
example, OPT, or click on it in the Existing Property Name list.

5. Type the value, for example, OFF, in the Property Value box.

Note: For some properties, the property name and the property value
are identical.

6. Because most properties take strings, select String in the Prop-
erty Type field.

7. In the Visibility field, select On if you want the property to be
visible.

8. In the field asking whether to attach the property to pins or
vertices, select Vertices if you are attaching it to a net or an
instance. Select Pins if you are attaching it to a pin.

Body, pin, and net properties are always added to vertices.

9. Select OK.
3-12 Xilinx Development System

Schematic Designs
The ADD PR prompt bar appears.

10. Position the cursor where you want to place the property, usually
above the component or net.

11. Click the left button to place the property.

Adding the Net Property to Nets

Use the Net property to label signals in your design. To add a Net
property, you can either follow the instructions in the “Adding Prop-
erties” section or follow these steps:

1. Select all of the nets that you want to name.

Unlike the procedure in the “Adding Properties” section, it is not
necessary to select a single vertex for each net.

2. Press the right mouse button.

The Net popup appears. If the Mixed Selection popup appears
instead, select Other Menus , then select Net Menu .

3. Select Name Nets from the popup menu.

The ADD PR bar appears.

4. Type the property value in the Property Value box.

5. Click OK.

6. Position the cursor where you want to place the property, usually
above the component or net.

7. Click the left mouse button to place the property.

8. Repeat the netname entry for each net you have selected.

Modifying Property Values

You can only modify property values, not property names.

To modify a property’s values, perform the following steps:

1. Select the entity whose property value you want to change.

2. Press the right mouse button to display the popup menu.

3. Select Properties → Modify .
Mentor Graphics Interface/Tutorial Guide 3-13

Mentor Graphics Interface Guide
A dialog box appears listing the properties of the selected object.
The following figure shows an example.

Figure 3-7 Modify Properties Dialog Box

4. Select the property that you want to modify.

5. Click on OK.

The Modify Property dialog box is displayed, as shown in the
following figure.
3-14 Xilinx Development System

Schematic Designs
Figure 3-8 Modify Property Dialog Box

6. Type the new value in the Value field.

7. Set any other options. Most of the time the default settings are
appropriate.

8. Click on OK.

Entering Timing Specifications

The Mentor netlist writer program (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to uppercase letters. To ensure
references from one constraint to another are processed correctly,
observe these guidelines:

• A TSidentifier name should contain only uppercase letters on a
Mentor Schematic (TSMAIN, for example, but not TSmain or
TSMain).

• If a TSidentifier name is referenced in a property value, it must be
entered in uppercase letters. For example, the TSID1 in the
Mentor Graphics Interface/Tutorial Guide 3-15

Mentor Graphics Interface Guide
second constraint below must be entered in uppercase letters to
match the TSID1 name in the first constraint.

TSID1 = FROM: gr1: TO: gr2: 50;
TSMAIN = FROM: here: TO: there: TSID1: /2;

Creating New Groups from Existing Groups

The Mentor netlist writer program (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to uppercase letters. To ensure
references from one constraint to another are processed correctly,
observe these guidelines:

• Group names should contain only uppercase letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My_flops).

• If a group name appears in a property value, it must also be
expressed in uppercase letters. For example, the GROUP3 in the
first constraint below must be entered in uppercase letters to
match the GROUP3 in the second constraint.

TIMEGRP GROUP1 = gr2: GROUP3;
TIMEGRP GROUP3 = FFS: except: grp5;

Functional Simulation
Functional simulation provides an effective means of identifying
logic errors in your design before it is implemented in a Xilinx device.
Since timing information for the design is not available, the simulator
tests the logic in the design using unit delays. Finding errors before
routing your design saves debugging time later in the design process.

You can functionally simulate XNF or EDIF based designs by using
pld_xnf2sim or pld_edif2sim to convert the designs to a Mentor
simulation model. The EDIF design must be Xilinx compatible and
expressed in Unified Library components. The following figure illus-
trates the design flow for these types of designs.
3-16 Xilinx Development System

Schematic Designs
Figure 3-9 Functional Simulation Flow Diagram

The “Performing Functional Simulation” section of the “Schematic
Design Tutorial” chapter in this manual provides a detailed example
of the steps involved in functional simulation.

Simulating Pure Schematic Designs
This section describes how to simulate purely schematic designs—
designs that are composed solely of elements from the Unified
Libraries and that have been entered through Design Architect.
Performing functional simulation on a pure schematic design consists
of creating a viewpoint in pld_dve from the schematic that you
created in Design Architect and using pld_quicksim to simulate the
design.

Creating the Viewpoint

After creating a schematic design with Design Architect and a Xilinx
library, the next step in the functional simulation flow is to configure
a viewpoint for the simulator. Without a correct simulation view-
point, you will not be able to simulate your design. The viewpoint
defines primitives and parameters for design evaluation and anal-
ysis.

Pld_dve invokes the Mentor Graphics Design Viewpoint Editor
(DVE) to configure a viewpoint for Xilinx designs.

X7569

PLD_DVE

PLD_QuickSim

EDDM
Schematic

Simulation
Viewpoint
Mentor Graphics Interface/Tutorial Guide 3-17

Mentor Graphics Interface Guide
Create the viewpoint for the top-level component that was created in
Design Architect.

1. To invoke DVE, double-click the left mouse button on the
pld_dve icon in the Design Manager Tools window.

Alternatively, you can select the top-level component in the Navi-
gator window and click the right mouse button to invoke
pld_dve.

The dialog box shown in the “Pld_dve Dialog Box” figure
appears. For a more detailed description of DVE, refer to the
Mentor Graphics Design Viewpoint Editor Users Manual and Refer-
ence Manual.

Figure 3-10 Pld_dve Dialog Box

2. Enter the design name in the Component Name field, or click on
Navigator to browse a list of design names. If you invoked
pld_dve from the Navigator window, the component is already
selected.
3-18 Xilinx Development System

Schematic Designs
If you click on the Navigator, you can select the component
name, and the corresponding viewpoint name will appear in the
Viewpoint Name field.

3. In the Select One field, select Simulation .

Select Custom if you want to open the selected viewpoint in DVE
so that you can interact with it rather than accept the pld_dve
default. Selecting custom invokes Mentor’s DVE and opens the
named viewpoint. You could use this to select a different model
for a specific sub-module.

4. In the Viewpoint Name field, you can enter the viewpoint name if
you do not want to use the default viewpoint.

5. In the PLD Technology field, select a technology.

6. Click on Invoke Stand-Alone DVE only if you want to invoke
DVE to interact with Mentor’s user interface instead.

This command brings up the DVE window to allow you to
customize the viewpoint. For information on customizing a view-
point, see the Mentor Graphics DVE user documentation.

7. Select OK to start pld_dve.

Pld_dve now generates a viewpoint with the same name as that
entered in the Viewpoint Name field. It is in the format
component_name/viewpoint_name.

You can also access pld_dve from a UNIX shell.

If you are converting a top-level XNF or EDIF netlist with
pld_xnf2sim or pld_edif2sim, the simulation viewpoint is created
for you automatically.

Simulating the Design

After creating the viewpoint, you can submit pure schematic designs
to pld_quicksim for functional simulation.

1. To invoke pld_quicksim, double-click the left mouse button on
the pld_quicksim icon in the Design Manager Tools window.

Alternatively, you can select the top-level component in the Navi-
gator window and click the right mouse button to invoke
pld_quicksim.
Mentor Graphics Interface/Tutorial Guide 3-19

Mentor Graphics Interface Guide
The PLD_QuickSim II dialog box, shown in the “PLD_QuickSim
II Dialog Box” figure, appears on the screen. For more detailed
information on the dialog box options, refer to the Mentor
Graphics QuickSim documentation.

Figure 3-11 PLD_QuickSim II Dialog Box

2. In the Design field, enter the design name. If you selected the
component in the Navigator window, the design name is already
set.

3. In the Select Desired Mode box, click on No Cross-Probing , if
it is not already selected (This is the default setting).

You can only select cross-probing for timing simulation for sche-
matic designs, not for functional simulation. See the “Cross-
Probing” section for more details about cross-probing.

4. In the Timing Mode field, select Unit for functional simulation.

5. In the Detail of “Unit” Timing Mode field, click on Hidden .

6. In the Simulator Resolution box, enter the smallest unit of time
that you want to be visible in the simulator.

The smallest resolution allowed for Xilinx designs is 0.1 ns.

7. Click on OK.
3-20 Xilinx Development System

Schematic Designs
Pld_quicksim now starts, and the QuickSim II window appears.
The QuickSim II window functions as a waveform viewer; you
can bring up the schematic and view the signals, or you can view
the waveforms generated by the simulation. Consult the Mentor
Graphics documentation for more information on how to view
waveforms in this window.

Simulating Schematic Designs with LogiBLOX
Elements

LogiBLOX creates a simulation model for LogiBLOX elements.
However, you must still create a viewpoint on the top-level design
with pld_dve before functionally simulating the design. Follow the
instructions in “Creating the Viewpoint” section of the “Simulating
Pure Schematic Designs” section in this chapter. Then submit the
design to pld_quicksim, following the procedure given in the “Simu-
lating the Design” section of the “Simulating Pure Schematic
Designs” section in this chapter.

Simulating Schematic Designs with XNF Elements
To functionally simulate a pre-route XNF design, follow the steps in
this section. The steps are illustrated in the following figure.

Figure 3-12 XNF Functional Simulation Flow

Top-Level XNF

PLD_XNF2SIM

PLD_QuickSim

EDDM
single object

X7838
Mentor Graphics Interface/Tutorial Guide 3-21

Mentor Graphics Interface Guide
Creating the Design Component

Create the top-level design component as described in the “Creating
the Design Component” section in this chapter. This provides an
“anchor” for the converted design.

Converting the XNF File

The next step is to convert the XNF file to a simulation model.

1. In your schematic, create a symbol for each XNF element in your
design.

2. Attach a FILE=xnf_file_pathname property to each symbol.

3. Double-click the left mouse button on the pld_xnf2sim icon in the
Design Manager Tools window.

The resulting dialog box is shown in the following figure.

Figure 3-13 PLD XNF to Mentor Convert Dialog Box
3-22 Xilinx Development System

Schematic Designs
Pld_xnf2sim uses all supporting XNF files from the directory in
which the top-level XNF input file was submitted.

4. If the required XNF files are not in that directory, click Yes in the
field asking “Select a group of XNF files from a list file?,” and
specify the path name of a file that lists the path names of all
needed XNF files. Each path name is specified on a separate line
in this file, for example:

/x/y/z/abc.xnf
/x/y/z/def.xnf

5. In the Synopsys XNF field, select No if the XNF does not come
from Synopsys.

6. In the Top-level XNF Input File field, type the name of your top-
level XNF file, or click on Navigator to find it.

7. In the Enter Name field, enter the name of the symbol that you
created in step 1, or click on Navigator to find it.

Note: If the symbol has not yet been created, a Mentor component is
created with an EDDM-single-object model. At this point, you can
use Design Architect to create a symbol for it. Click on Open Symbol
and specify the path name of this component. A symbol is automati-
cally created. Check the symbol, add the file=xnf_file_pathname prop-
erty, and save it if the XNF file represents the entire design (If it has
EXT statements for IO pins.). However, if the XNF does not contain
EXT statements, you must manually create the symbol and assign the
pins. In this case, the simulation model (EDDM_single_object)
created by pld_xnf2sim will not correspond with this symbol, and
functional simulation must be done by converting the entire design to
EDIF and submitting the EDIF to pld_edif2sim to create a top-level
component and use pld_quicksim to simulate. This top-level compo-
nent and all its submodules will be expressed in terms of SIMPRIM
primitives rather than the Unified Library components used for
design entry.

8. In the PLD Technology field, select the appropriate architecture.

9. Leave the Exit on Errors button enabled if you want the program
to exit when it encounters an unresolved block. Otherwise, click
on the Exit on Errors button and it changes to Continue (Ignore
Errors).

10. In the Select Desired Simulation Model field, select EDDM.
Mentor Graphics Interface/Tutorial Guide 3-23

Mentor Graphics Interface Guide
11. In the “Enter additional directories to search” field, enter all the
directory pathnames that the program should search to find
EDIF, XNF, and NGO files that define blocks in your design that
have the File property on them.

12. Click OK.

This procedure produces a single-object simulation model for the
specified symbol component.

Creating the Viewpoint

If you are converting a top-level XNF or EDIF netlist with
pld_xnf2sim or pld_edif2sim, the simulation viewpoint is created for
you automatically.

Simulating the Design

The rest of the simulation procedure is the same as that described in
the “Simulating the Design” section of the “Simulating Pure Sche-
matic Designs” section earlier in this chapter.

Simulating Schematic Designs with EDIF Elements
To functionally simulate a pre-route EDIF design, follow the steps in
this section. The steps are illustrated in the following figure.

Figure 3-14 EDIF Functional Simulation Flow

Top-Level EDIF

PLD_EDIF2SIM

PLD_QuickSim

EDDM
single object

X7837
3-24 Xilinx Development System

Schematic Designs
Creating the Design Component

Create the top-level design component as described in the “Creating
the Design Component” section in this chapter. This provides an
“anchor” for the converted design.

Converting the EDIF File

The next step is to convert the EDIF file to a simulation model.

1. In your schematic, create a symbol for each EDIF element in your
design.

2. Attach a FILE=edif_file_pathname property to each symbol.

3. Double-click the left mouse button on the pld_edif2sim icon in
the Design Manager Tools window.

The resulting dialog box is shown in the following figure.

Figure 3-15 PLD EDIF to Mentor Convert Dialog Box
Mentor Graphics Interface/Tutorial Guide 3-25

Mentor Graphics Interface Guide
Pld_edif2sim uses all supporting EDIF files from the directory in
which the top-level EDIF input file was submitted.

4. In the EDIF source field, select Mentor , Synopsys , or Other to
specify the source from which the EDIF was generated. Specify
Other if the EDIF comes from a vendor other than Mentor or
Synopsys. When selecting Other, you must ensure that the EDIF
is compatible with Xilinx EDIF.

5. In the Top-level EDIF Input File field, type in the name of your
top-level EDIF file, or click on Navigator to find it.

6. In the Enter Name field, enter the name of the symbol that you
created in step 1, or click on Navigator to find it.

Note: If the symbol has not yet been created, a Mentor component is
created with an EDDM-single-object model. At this point, you can
use Design Architect to create a symbol for it. Click on Open Symbol
and specify the path name of this component. A symbol is automati-
cally created. Check the symbol, add the file=edif_file_pathname prop-
erty, and save it.

7. In the PLD Technology field, select the appropriate architecture.

8. Leave the Exit on Errors button enabled if you want the program
to exit when it encounters an unresolved block. Otherwise, click
on the Exit on Errors button and it changes to Continue (Ignore
Errors).

9. In the Select Desired Output field, select EDDM.

10. In the “Enter additional directories to search” field, enter all the
directory pathnames that the program should search to find
EDIF, XNF, and NGO files that define blocks in your design that
have the File property on them.

11. Click OK.

This procedure produces a single-object simulation model for the
specified symbol component.

If you are converting an EDIF with pld_edif2sim, the simulation
viewpoint is created for you automatically.
3-26 Xilinx Development System

Schematic Designs
Simulating the Design

The rest of the simulation procedure is the same as that described in
the “Simulating the Design” section of the “Simulating Pure Sche-
matic Designs” section earlier in this chapter.

Implementing Schematic Designs
Once you complete functional simulation for schematic designs, you
are ready to implement your design. You perform implementation
with the Xilinx Design Manager, pld_dsgnmgr, which you invoke
from the Mentor Design Manager or from a UNIX shell.
Pld_dsgnmgr first translates the design into a flattened or hierar-
chical netlist, then optimizes, places, and routes the design. It creates
delay data for timing simulation and physical (bitstream) design data
for downloading.

Design entry of pure schematic designs, or schematic designs with
LogiBLOX elements, EDIF sub-modules, or XNF sub-modules
produces an EDDM file that you must convert to EDIF with the
pld_men2edif utility before implementing the design with
pld_dsgnmgr. The following figure shows the design flow involved
in implementing a design.

Figure 3-16 Design Implementation

Converting the EDDM Design
To convert your design to EDIF, follow these steps.

X7842EDN

PLD_MEN2EDIF

PLD_dsgnmgr

EDDM

EDIF
Mentor Graphics Interface/Tutorial Guide 3-27

Mentor Graphics Interface Guide
1. In the Mentor Design Manager, double-click the left mouse
button on the pld_men2edif icon.

The dialog box shown in the following figure appears.

Figure 3-17 Mentor to EDIF Netlist Dialog Box

2. In the Component Name field, enter the component name, or
click on Navigator to browse a list of design names.

3. In the From Viewpoint field, you can enter the viewpoint name if
you do not want to use the default viewpoint. Alternatively, in
step 2 you can select a viewpoint under the component.

4. Select the appropriate architecture for your design in the PLD
Technology field.

5. Select the appropriate Bus Dimension Separator Style.

This is important if you are merging components from other
design-entry tools into a single design. Choosing a bus-index
delimiter lets you insure that the bus-index delimiters that
pld_men2edif writes out are consistent with those of any other
design-entry tools with which you are interfacing. Mentor EDIF
uses parentheses. Synopsys EDIF uses angle brackets.

6. Click OK.
3-28 Xilinx Development System

Schematic Designs
Pld_men2edif now produces an EDIF file that you can submit to
the Xilinx Design Manager, pld_dsgnmgr. The output name is
component_name.edif.

Implementing the Design
The Xilinx Design Manager is a graphical design-flow and project
manager. The Xilinx Design Manager takes your design, represented
by the EDIF file from pld_men2edif, and implements it in an FPGA or
CPLD. You can also use the Xilinx Design Manager to generate
timing information that you can import into QuickSim or QuickHDL.

The Xilinx Design Manager, pld_dsgnmgr, can accept an EDIF file, or
if your design is a pure XNF design, it can accept an XNF file.

For a more in-depth discussion of the flow, including advanced
implementation options, see the Core Tools Reference Guide.

To implement your design follow these steps:

1. Within the Mentor Design Manager, select the EDIF icon for your
design in the Navigator, then select Right Mouse Button →
Open → pld_dsgnmgr . The Xilinx Design Manager appears as
shown in the “Xilinx Design Manager” figure. The tool automat-
ically creates a Xilinx project called your_design_name. Xilinx
project information is kept in a file called xproject/
your_design_name.prj by default.
Mentor Graphics Interface/Tutorial Guide 3-29

Mentor Graphics Interface Guide
Figure 3-18 Xilinx Design Manager

Each project is associated with objects known as “versions” and
“revisions.” Versions represent logic changes in a design (for
example, adding a new block of logic, replacing an AND gate
with an OR gate, or adding a flip-flop); revisions represent
different executions of the design flow on a single design version,
usually with new implementation options (for example, higher
place and route effort, a change in part type, or experimentation
with new bitstream options).

2. Within the Xilinx Design Manager, select Design → Implement .

The Implement dialog box opens as shown in the following
figure and displays fields for part type, design version, and revi-
sion.
3-30 Xilinx Development System

Schematic Designs
Figure 3-19 Implementation Dialog Box

3. The Xilinx Design Manager reads the part type from the design.

If you wish to specify the part type manually, click the Select
button to display a pull-down listing of available devices. Choose
a family, a device, a package, and a speed grade. Click OK. The
part number is inserted into the Part field in the Implement
dialog box.

4. Click on Options . The Options dialog box appears as shown in
the “Options Dialog Box” figure.

Note: The CPLD Options dialog box does not have a Configuration
Template section, nor does it have a Produce Logic Level Timing
Report checkbox.
Mentor Graphics Interface/Tutorial Guide 3-31

Mentor Graphics Interface Guide
Figure 3-20 Options Dialog Box

5. Click Browse next to the User Constraints field. Select the appro-
priate .ucf file from the design directory, then Click OK.

6. Under Optional Targets, make sure the following are selected:

• Produce Timing Simulation Data: This generates a back-
annotated EDIF netlist that can be imported into the Mentor
Graphics tools.

• Produce Configuration Data: This generates a programming
bitstream suitable for downloading into the Xilinx device.
3-32 Xilinx Development System

Schematic Designs
• Produce Post Layout Timing Report: This generates a timing
report file based on how the design is actually routed.

You can also select the following option (FPGAs only):

• Produce Logic Level Timing Report: This generates a prelimi-
nary (pre-place and route) timing report based on the
number of logic levels in each signal path. Since it is gener-
ated before the place-and-route layout step, it does not
contain information on device routing. Looking at this report
before place and route can be useful for seeing how much
“routing slack” you have in a design.

7. Select the Edit Template button on the right hand side of the
Implementation field. The Implementation Options dialog box
appears as shown in the following figure.

Figure 3-21 Changing EDIF Vendor Information
Mentor Graphics Interface/Tutorial Guide 3-33

Mentor Graphics Interface Guide
8. Select the Interface tab. In the Interface pane, look under
Simulation Data Options and verify that Format is set to EDIF
and that Correlate Simulation Data to Input Design is selected. In
the Vendor field, select Mentor.

9. Click OK to return to the Options window.

10. Click OK to return to the Implementation dialog box.

11. In the Xilinx Design Manager window, verify that you have
selected the current version and revision you wish to work on,
then click Run. The Flow Engine comes up as shown in the
following figure.

Figure 3-22 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate: Convert the design EDIF file into an NGD (Native
Generic Design) file.

• Map: Group basic elements (bels) such as flip-flops and gates
into logic blocks (comps). Also generate a logic-level timing
report if desired.

• Place&Route: Place comps into the device, and route signals
between them.
3-34 Xilinx Development System

Schematic Designs
• Timing: Generate timing simulation data and an optional
post-layout timing report.

• Configure: generate a bitstream suitable for downloading
into and configuring a device

12. When the implementation completes, an Implementation Status
box appears with:

Implementing revision ver1->rev1 completed
successfully.

Click on View Logfile to display the logfile from Flow Engine.
The report is displayed in vi. To exit the viewer, type :q! and
press Return. Click OK in the Implementation Status dialog to
return to the Xilinx Design Manager.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

For schematic-based designs, the Xilinx Design Manager produces an
EDN file, which is a post-route EDIF netlist file that expresses timing
and simulation in SIMPRIM library elements instead of Unified
Libraries elements. You can now submit the EDN file to pld_edif2tim
to create a simulation model for timing simulation. This is described
in the following section.

Timing Simulation for Schematic Designs
Timing simulation verifies design functionality by using delay infor-
mation from the EDIF, VHDL, or Verilog file created during design
implementation. It also describes how to perform a timing analysis
with Mentor’s QuickPath tool.

During design implementation, the Xilinx Design Manager can
produce an EDIF (EDN) file. For EDIF files, the process of timing
simulation consists of converting the EDIF netlist to a Mentor EDDM
model, creating a component and a viewpoint, and simulating the
design with pld_quicksim. The timing simulation process for EDIF
files is shown in the “Timing Simulation for Schematics” figure.

The “Performing Timing Simulation” section of the “Schematic
Design Tutorial” chapter illustrates the steps involved in timing
simulation.
Mentor Graphics Interface/Tutorial Guide 3-35

Mentor Graphics Interface Guide
This section describes how to use QuickSim to perform timing simu-
lation on designs described in EDIF.

Figure 3-23 Timing Simulation for Schematics

Creating the EDDM Model and the Viewpoint
The first step in performing a timing simulation on your design is to
use the pld_edif2tim utility to convert the EDIF netlist created by the
Xilinx Design Manager to a Mentor EDDM model. At the same time,
pld_edif2tim automatically creates a viewpoint which is subse-
quently processed by pld_dve -s to prepare it for timing simulation.

1. Double-click the left mouse button on the pld_edif2tim icon in
the Design Manager Tools window.

The dialog box shown in the following figure appears.

EDN

EDDM
(Single Object)

PLD_dsgnmgr

PLD_EDIF2TIM

PLD_DVE

PLD_QuickSim
with

cross-probing
X7571
3-36 Xilinx Development System

Schematic Designs
Figure 3-24 EDIF to Mentor Eddm Single Object Dialog Box

2. Enter the name of the EDN file in the EDIF Input File field, or
click on Navigator to browse the available files.

The component created from the EDN file is put into a design
library called my_design_lib. If you have already implemented
your design at least once, this directory already exists. If you
don’t wish to copy over it, move it to another directory before
proceeding.

3. Click on OK.

4. Invoke DVE, by double-clicking the left mouse button on the
pld_dve icon in the Design Manager Tools window.

The dialog box shown in the following figure appears.
Mentor Graphics Interface/Tutorial Guide 3-37

Mentor Graphics Interface Guide
Figure 3-25 Pld_dve Dialog Box

5. Enter the top-level component name created by pld_edif2tim in
the my_design_lib directory.

6. Use the Navigate button to navigate all the way down to the
“default” viewpoint and select the viewpoint.

7. Select the Simulation Button.

8. Select the appropriate technology from the PLD Technology box.

9. Click OK.

Simulating the Design
You can now submit the design to pld_quicksim for timing simula-
tion.

1. To invoke pld_quicksim, double-click the left mouse button on
the pld_quicksim icon in the Design Manger Tools window.

The pld_quicksim dialog box shown in the following figure
appears on the screen. For more detailed information on the
dialog box options, refer to the Mentor Graphics documentation.
3-38 Xilinx Development System

Schematic Designs
Figure 3-26 PLD_QuickSim II Dialog Box

2. In the Design field, enter the name of the top-level design created
by pld_edif2tim.

3. In the Select Desired Mode field, select Cross-Probing .

Normally, you select cross-probing for back-end EDDM designs
but not for front-end designs. You can only cross-probe back-end
designs that contain either pure schematic or schematics that
contain EDDM hierarchical models. You cannot cross-probe
designs written in HDL or that contain HDL models. See the
“Cross-Probing” section for more details about cross-probing.

Warning: In order for cross-probing to work, other sessions of Design
Viewpoint Editor and QuickSim must be closed. Otherwise, the inter-
process communication gets confused. This includes another user’s
session invoked by rlogin from another workstation.

4. Set the timing modes as desired.

5. Click on OK.

Pld_quicksim now simulates the design. The QuickSim graphical
user interface appears. If you selected cross-probing, DVE is
invoked as well.

6. In DVE, open the viewpoint of the front-end schematic design,
that is, the viewpoint submitted to pld_men2edif.
Mentor Graphics Interface/Tutorial Guide 3-39

Mentor Graphics Interface Guide
7. Open the sheet of the design, and select signals that you wish to
trace.

These signals are automatically added to the QuickSim trace
window. If you have a file that sets up your trace window and
stimulus, use that instead. Any signals selected in the trace
window select the same on the schematic on which they reside in
the DVE window. If such sheets have not been opened in DVE
yet, you must open them to see the selections.

Cross-Probing
Cross-probing is a way of cross-referencing between the original
schematic and the timing simulation model after placement and
routing. Once a Mentor design is translated, expanded, mapped,
placed, and routed, you can extract the back-annotation information
and create a hierarchical EDIF netlist. After you convert this EDIF to
an EDDM model using pld_edif2tim, you submit it to pld_dve to
create a viewpoint and then to pld_quicksim for timing simulation.
The resulting data base preserves the design hierarchy, and although
it is created in terms of the SIMPRIM library, most of the original net
names are still available. You enable cross-probing by invoking
QuickSim with the -cp option. This option invokes pld_dve as well as
pld_quicksim. You then open the original design viewpoint in
pld_dve and view the desired design sheet. If you display the orig-
inal schematic in pld_dve, you can select nets on the original sche-
matic and view them in the QuickSim trace window.

You may optionally create a schematic model using Mentor's sche-
matic generator (sg) from the Eddm model created by pld_edif2tim.
This schematic is only for viewing the backend schematic and is not
required for the Xilinx flow to work. With cross-probing, you can use
your original schematic for this purpose.

You should usually be able to reapply your original test vectors to the
new Eddm_single_object design model for timing and/or functional
simulation in QuickSim.

When you create the trace/list window in QuickSim, selecting signals
from the original selected test vectors should cause the corresponding
net on the original schematic sheet in pld_dve to be selected. If it is
unselected in the trace/list window, it is also unselected on the orig-
inal schematic.
3-40 Xilinx Development System

Schematic Designs
If a net is selected in the pld_dve schematic sheet window, the net is
automatically added to QuickSim trace window. If the net due to
optimization or other complexities has been eliminated in the post-
layout design, QuickSim issues an Error message of the type:

Error: $$add_traces returned error status at line 440
of file /tools/...

Error: Unable to resolve string '/ALU/I$10/C2' to a
signal or expression

No trace is displayed for this net.

When a net is selected on the original schematic sheet in pld_dve and
if the corresponding signal is already added to the trace/list window,
the net will not be added again; instead, it is highlighted in the trace/
list window.

Adding list windows in quicksim is your choice. List windows are
not automatically created. If you do create a list window, it is your
choice which signals to add to the list window. Opening a list
window does not automatically show or add the signals from the
trace window. However once you have added signals to the list
window, selecting such signals will interact with the original sche-
matic exactly the same way as the ones in trace window.

Warning: In order for cross-probing to work, other sessions of Design
Viewpoint Editor and QuickSim must be closed. Otherwise, the inter-
process communication gets confused. This includes another user’s
session invoked by rlogin from another workstation to your worksta-
tion.

Note: If you flatten your design during netlist generation, you loose
hierarchical aliases for signals that span multiple hierarchy levels;
only the name of the signal at its highest level is preserved.

While 100% backannotation is possible, certain limitations of simula-
tors, optimization process, and modelling of complex functions can
make 100% back annotation impossible.

For more details on cross-probing, see the following sections:

• “Performing Timing Simulation” section of the “Schematic
Design Tutorial” chapter

• “Invoking Pld_quicksim” section of the “Schematic Design Tuto-
rial” chapter.
Mentor Graphics Interface/Tutorial Guide 3-41

Mentor Graphics Interface Guide
Performing a Timing Analysis
Use the Mentor Graphics QuickPath tool to perform static and slack
timing analysis on schematic designs that have been prepared for
timing simulation. This tool enables you to identify critical paths and
evaluate modifications that can improve your circuit’s performance.
Use the timing analysis tool to determine possible changes to a circuit
so that you can optimize its performance. Refer to the Mentor
Graphics documentation for more information on QuickPath.

You can perform a timing analysis either before or after timing simu-
lation; however, you may want to perform the timing simulation first
to assure the design’s functionality, then use QuickPath to determine
the design’s critical path.

Note: Running QuickPath on PLD designs is optional.

1. To start QuickPath, double-click the left mouse button on the
QuickPath icon in the Design Manager Tools window.

The dialog box shown in the following figure appears on the
screen. For more information on the dialog box options, refer to
the Mentor Graphics documentation.
3-42 Xilinx Development System

Schematic Designs
Figure 3-27 QuickPath Dialog Box

2. Enter the name of the design in the Design field, or click on
Navigator to find the design.

3. Do not enter anything in the Symbol or Interface field unless the
top-level design contains more than one interface. If the top-level
design has more than one component interface table or symbol,
you can specify the source by entering the name in the appro-
priate field.

4. In the QuickPath Setup field, select Manual unless you have
saved a previous timing analysis environment and want to load
that file that contains it.
Mentor Graphics Interface/Tutorial Guide 3-43

Mentor Graphics Interface Guide
5. In the Simulator Resolution box, enter the smallest unit of time
that you want to be visible in the simulator.

The smallest resolution allowed for Xilinx designs is 0.1 ns.

6. In the Set the MIN Scale, Set the MAX Scale, Set the SETUP Scale,
and Set the HOLD Scale fields, click on No unless you want to
perform a “corner” analysis.

These fields set scaling values that govern the minimum propa-
gation delay, the maximum propagation delay, the setup time,
and the hold time, respectively. In a “corner” analysis, you use
these scaling values to perform two timing analyses. The first
analysis models a slow chip and the second models a fast chip. If
a chip with values at both extremes of the timing spectrum
successfully passes the timing analysis, it is likely that all chips
with values in between will also pass. These scaling values allow
you to look at the differences in timing due to the variations in
device process, voltage, and temperature.

7. Click on OK to start the timing analysis.

A session window with a menu bar, messages window, and
Setup/Analysis palette now opens.

Click on Open Sheet to display the top-level design, and then
proceed with the timing analysis.
3-44 Xilinx Development System

Chapter 4

HDL Designs

This chapter describes how to use the Mentor Graphics Interface to
design with pure HDL designs. It contains the following sections:

• “The Design Flow” section

• “HDL Design Entry” section

• “Functional Simulation” section

• “Design Implementation” section

• “Timing Simulation” section

The Design Flow
The following figure shows the design flow for VHDL and Verilog
design entry, functional simulation, synthesis, and timing simulation
for all supported technologies.
Mentor Graphics Interface/Tutorial Guide — October 1997 4-1

Mentor Graphics Interface Guide
Figure 4-1 HDL (Verilog/VHDL) Design Flow

VHDL Verilog

No

Yes

X8235Design complete

Yes

QuickHDL

Synthesis*

Design
functionality

correct?

RTL
HDL

QuickHDL

QuickHDL

Editor or PLD_DA

PLD_DSGNMGR

* Do not synthesize
 architectures for
 LogiBLOX modules

Optional post-synthesis
gate-level simulation

Optional post-synthesis
gate-level simulation

SDF

Design
timing

correct?
No

LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

PLD_XNF2SIM

NGO

QuickHDL

VHDL Verilog

EDIF XNF

PLD_EDIF2SIM
on top-level EDIF

VHDL

on top-level XNF

Instantiated Unified
Library Componments

(optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL

VHDLVerilog VHDL

QuickHDL

VHDL Verilog

Post-synthesis
simulation using
Unified Library
components
4-2 Xilinx Development System

HDL Designs
HDL Design Entry
This section describes the basic process of entering HDL designs. In
addition to this chapter, the HDL design entry techniques in this
section apply to the “Mixed Designs with VHDL on Top” chapter
and “Mixed Designs with Schematic on Top” chapter.

Overview of HDL Design Entry
Use a text editor, pld_da, System Architect, Renior, or other HDL
entry tool that is compatible with your synthesizer to create synthe-
sizable VHDL or Verilog. Pld_da can be better than a plain text editor
for editing your source. With pld_da you can submit the source to be
compiled as you edit it (see the mentor Design Architect User’s Guide
for details). When performing HDL design entry, observe the
following requirements:

• The synthesizers must create EDIF or XNF that is compatible
with Xilinx implementation tools.

• Xilinx-specific properties and timing constraints cannot be added
in a VHDL or Verilog description, but synthesizers do have the
capability of adding them to the output EDIF or XNF via
constraint setting options. These constraint settings must be
consistent with the current Xilinx implementation tools require-
ments. Otherwise, implementation can be controlled within the
implementation tools themselves or with a UCF (user constraint
file) file.

As an optional part of the Xilinx HDL design entry flow, you can
instantiate LogiBLOX modules in your VHDL or Verilog designs and
simulate the HDL output from LogiBLOX in your HDL simulators.
When using LogiBLOX modules in HDL design entry, observe the
following requirements:

• Create the NGO from LogiBLOX for later use in the implementa-
tion tool. LogiBLOX NGO files must be placed in your top level
directory or you must modify the macro search path in the Xilinx
Design Manager to include the location of NGO files.
Pld_edif2sim or pld_xnf2sim do not have the macro search path
functionality. You must have the LogiBLOX NGO files in the
same directory as your top-level EDIF or XNF.
Mentor Graphics Interface/Tutorial Guide 4-3

Mentor Graphics Interface Guide
• Your synthesizer must not read-in or synthesize the HDL
description of the LogiBLOX modules. These descriptions are for
simulation only. The modules must be treated as black boxes by
the synthesizer.

HDL Design Entry Stages
HDL design entry has two stages as shown in “HDL (Verilog/
VHDL) Design Entry and Synthesis” figure. The first stage is the
Register Transfer Level (RTL). At this level, the design behavior is
described in a high-level, non-technology-specific manner. Instantia-
tion of specific components is the exception. An example would be
RAMs or LogiBLOX modules. This design entry step is generally
followed by a functional simulation.

Figure 4-2 HDL (Verilog/VHDL) Design Entry and Synthesis

x8233

RTL Design Entry (stage 1)

Synthesis (stage 2)

Synthesis*

RTL
HDL

Editor or PLD_DA
LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

NGO

EDIF XNF

VHDL

Functional smulation can
be performed at this point

Post-synthesis
simulation using
Unified Library
components * Do not synthesize

 architectures for
 LogiBLOX modules

VHDLVerilog

QuickHDL

Instantiated Unified
Library Componments

(optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL
4-4 Xilinx Development System

HDL Designs
During design entry, you may check out the syntax correctness of
your code by compiling it for your synthesizer and/or QuickHDL
without doing either the synthesis or simulation.

You may find the syntax checkers are different. The synthesizer may
check for certain constructs it cannot synthesize like textio in VHDL,
but these constructs may be perfectly good for simulating function-
ality as you develop the circuit. Many synthesizers have pragma or
meta comments that allow you to keep this code in your HDL
description but tell the synthesizer to ignore it.

Also there may be significant differences in how thoroughly the
compilers check the code against the VHDL and Verilog IEEE-stan-
dards or even how they interpret certain sections.

It is good practice to do occasional compiles for both the synthesis
tool and QuickHDL as you develop large sections of your HDL code.

Once the RTL simulation is correct, the second stage of design entry is
to submit the RTL code to a synthesizer where the general function-
ality is synthesized and mapped to gates in a specific technology. At
this point you have the option of performing a second functional
simulation of the post-synthesis gate level description. However, this
step is not necessary since no additional timing information is avail-
able before place and route.

Once you are satisfied with the behavior of the circuit, you can send
the gate level output of the synthesizer to the implementation tool as
either an XNF or EDIF file.

Stage 1: RTL Behavioral Code Development

The first stage of HDL design entry is developing an RTL behavioral
description. Code created at the RTL entry is generally non-tech-
nology specific. Two exceptions worth noting are:

• Coding style favoring one technology strengths over another.

• Instantiating technology specific components.

Your coding style should take into account your targeted tech-
nology’s architecture specifics to achieve the best performance or
smallest size for your design.

For example, a style that infers latches unintentionally or even on
purpose would be just fine for a XC5200 or XC4000EX part but would
be a trouble spot with an XC3000. It is a problem for the XC3000
Mentor Graphics Interface/Tutorial Guide 4-5

Mentor Graphics Interface Guide
because it would be implemented as cross-coupled logic creating a
host of timing analysis issues. In a XC4000 it would take up valuable
resources since each latch could be implemented as a SRAM cell,
taking up a whole function generator. Synthesizers may vary in how
they implement latches in technologies that do not have explicit
latches. Some may use cross-coupled logic as in the XC4000E. Others
may use a RAM cell.

Another RTL coding style problem might be describing the function-
ality in a manner that infers lots of MUXES. A better choice in some
technologies would be to infer internal tri-states and use the high-
performance tri-state lines.

Some synthesizers may not have a means of inferring or targeting
high performance technology components like wide-edge decoders,
I/O muxes, or latches. In that case you may need to instantiate these
components to get your best chip performance.

In summary, observe the following RTL coding guidelines:

• Avoid using latches in technologies without specific architecture
components to support them like the XC5200 and XC4000EX
have.

• Infer tri-state buses instead of muxes for technologies with good
internal tri-state structures.

• Instantiate high performance architecture features if your synthe-
sizer cannot infer them.

Stage 2: Synthesis

The second stage of HDL design entry is synthesis of the RTL behav-
ioral description down to technology specific gates. Specific synthesis
design entry steps for Xilinx parts are highly dependent on which
synthesizer you use. Generally you can break synthesis design entry
into the following steps:

1. Tailor your RTL code for both the synthesizer and the Xilinx tech-
nology’s capabilities. For example, if your synthesizer can insert
the STARTUP component, you need not instantiate it.

When you simulate in QuickHDL with an instantiated startup
block, you get a warning because the startup module does not
have a simulation module. You may ignore this warning since the
startup block is only used to direct the implementation tool and
4-6 Xilinx Development System

HDL Designs
does not change the logical functionality of the circuit. The
waring looks something like this:

** Warning: Component startupblk is not bound.

2. Guide the synthesis process with timing and/or size require-
ments.

3. Guide the output process to select XNF or EDIF outputs to insert
I/O buffers, global buffers, STARTUP blocks, and to output
timing constraints either within the netlist itself or to a separate
file readable by Xilinx implementation tools. Make sure the
timing constraint style is the correct one for the current version of
Xilinx implementation tools.

You should read your synthesizer manual for specific details, espe-
cially the sections about targeting Xilinx devices. Be aware that any
one of these three steps can greatly affect the quality of synthesis
and/or implementation results.

LogiBLOX Design Entry

Some synthesizers are not capable of using Xilinx carry chains prop-
erly and tend to infer inefficient structures for adders, counters, etc.
Other synthesizers are able to infer incrementors or decrementors,
but do not use efficient logic for the control logic of the loadable
counter.

To guarantee optimal synthesis for certain modules in a Xilinx tech-
nology, you may use the LogiBLOX module generator and instantiate
the resulting module in your HDL code.

You may invoke the stand-alone Graphic User Interface of LogiBLOX
in the tool window of pld_dmgr by clicking on the pld_logiblox icon.
This is not the same Graphic User Interface you get in the Design
Architect Schematic Palette. The stand-alone version is for VHDL or
Verilog models only. Another way to invoke the stand-alone GUI is
from the Design Architect pop-up menu in the Session Window.

LogiBLOX requires two outputs for proper implementation in a HDL
design.

The first output is the HDL behavior description for simulating either
VHDL or Verilog. These HDL descriptions only support HDL func-
tional simulations. You should not send them to the synthesizer for
synthesis. The entities can be used for component instantiation
Mentor Graphics Interface/Tutorial Guide 4-7

Mentor Graphics Interface Guide
purposes, but the architectures should be treated as black-boxes
within the synthesizer. The following is an example of a LogiBLOX
component declaration and instantiation in VHDL:

--
-- Component Declaration
--
component RAM16X1

PORT(
A: IN std_logic_vector(3 DOWNTO 0);
DI: IN std_logic_vector(15 DOWNTO 0);
WR_EN: IN std_logic;
DO: OUT std_logic_vector(15 DOWNTO 0));

end component;

--
-- Component Instantiation
--
instance_name : RAM16X1 port map

(A => ,
DI => ,
WR_EN => ,
DO =>);

The second output is the NGO file. The implementation tools use this
file to pull the LogiBLOX module into the top-level design. Since
these NGO files are technology specific, you should generate a new
NGO file each time you select a new Xilinx architecture. The HDL
behavioral descriptions do not change.

Unified Library Instantiated Components
If you prefer, you may instantiate Unified Library components into
the RTL design. The components you use should be primitives
supported in the Xilinx family being targeted and also present in the
synthesis tool’s target library. For more information on Unified
Library components, see the Development System User Guide.

Functional Simulation
Pure HDL designs consist of a RTL VHDL or Verilog model. You can
optionally convert the synthesis output netlist to a gate-level HDL
model and functionally simulate it. The flow diagram for performing
4-8 Xilinx Development System

HDL Designs
functional simulation on pure HDL designs is shown in the following
figure.

Figure 4-3 Performing Functional Simulation on a Pure HDL
Design

Pre-Synthesis Functional Simulation
To perform a pre-synthesis functional simulation on a pure HDL
design follow these steps:

1. Create a working library with qhlib.

qhlib work

2. Map the library with qhmap.

qhmap work mywork

3. If you are using LogiBLOX modules, use qhmap to map to the
compiled LogiBLOX modules location.

x8232

QuickHDL

Synthesis*

RTL
HDL

* Do not synthesize
 architectures for
 LogiBLOX modules

RTL Functional Simulation

Optional post-synthesis
gate-level simulation

EDIF XNF

QuickHDL

PLD_EDIF2SIM
on top-level EDIF

QuickHDL

PLD_XNF2SIM
on top-level XNF

VHDL VerilogVHDL

QuickHDL

VHDL VerilogVHDL VHDL VerilogVHDL

Post-synthesis
simulation using
Unified Library
components
Mentor Graphics Interface/Tutorial Guide 4-9

Mentor Graphics Interface Guide
qhmap logiblox compiled_logiblox_area

Your system administrator can tell you the location of the
compiled version(s) of the LogiBLOX library. Instructions for
compiling are in the Mentor Graphics Installation section of the
Alliance Installation Guide. You may have to recompile the library
for each version of QuickHDL you use. The default directory for
the compiled LogiBLOX library is as follows:

$XILINX/mentor/data/vhdl/logiblox

4. If you are using Unified Library components, use qhmap to map
to the compiled Unified Library location by executing the appro-
priate line below for the device family that you are using.

For vhdl:

qhmap unisim $XILINX/mentor/data/vhdl/unisim

qhmap unisim_5k $XILINX/mentor/data/vhdl/unisim_5k

Map to unisim for the XC3000 and XC4000 series, or unisim_5k
for the XC5200 series.

For verilog:

qhmap uni3000 $XILINX/mentor/data/verilog/uni3000

qhmap uni4000x $XILINX/mentor/data/verilog/uni4000x

qhmap uni5200 $XILINX/mentor/data/verilog/uni5200

Map to uni3000 for the XC3000 series, uni4000x for the XC4000
series, or uni5200 for the XC5200 series.

Note: The above locations for the compiled libraries are the default
locations for a default software installation. However, your system
administrator can install them in other locations. Your system admin-
istrator can tell you the location of the compiled version(s) of the
Unified Library. Instructions for compiling are in the Mentor
Graphics Installation section of the Alliance Installation Guide. You
may have to recompile the library for each version of QuickHDL you
use.

5. Compile the HDL source files with qvhcom (VHDL) or qvlcom
(Verilog).

qvhcom [options] design_file(s)

qvlcom [options] design_file(s)
4-10 Xilinx Development System

HDL Designs
See the Mentor documentation for a description of the available
options.

6. Compile your testbench with qvhcom (VHDL) or qvlcom
(Verilog).

qvhcom [options] testbench_file(s)

qvlcom [options] testfixture_file(s)

7. Select the appropriate architecture configuration or module for
your testbench and select QHDL in the pld_dmgr tools window.

See the Mentor documentation for QuickHDL instructions.

8. After the RTL level simulation is correct, you may proceed to
synthesis and to implementation or optional post-synthesis func-
tional simulation.

Post-Synthesis Functional Simulation
To perform a post-synthesis functional simulation on a pure HDL
design follow these steps:

1. Create a working library with qhlib.

qhlib work

2. Map the library with qhmap.

qhmap work mywork

3. If you are using LogiBLOX modules, use qhmap to map to the
compiled LogiBLOX modules location.

qhmap logiblox compiled_logiblox_area

Your system administrator can tell you the location of the
compiled version(s) of the LogiBLOX library. Instructions for
compiling are in the Mentor Graphics Installation section of the
Alliance Installation Guide. You may have to recompile the library
for each version of QuickHDL you use. The default directory for
the compiled LogiBLOX library is as follows:

$XILINX/mentor/data/vhdl/logiblox

4. Since you are using Unified Library components, use qhmap to
map to the compiled Unified Library location by executing the
appropriate line below for the device family that you are using.
Mentor Graphics Interface/Tutorial Guide 4-11

Mentor Graphics Interface Guide
For vhdl:

qhmap unisim $XILINX/mentor/data/vhdl/unisim

qhmap unisim_5k $XILINX/mentor/data/vhdl/unisim_5k

Map to unisim for the XC3000 and XC4000 series, or unisim_5k
for the XC5200 series.

For verilog:

qhmap uni3000 $XILINX/mentor/data/verilog/uni3000

qhmap uni4000x $XILINX/mentor/data/verilog/uni4000x

qhmap uni5200 $XILINX/mentor/data/verilog/uni5200

Map to uni3000 for the XC3000 series, uni4000x for the XC4000
series, or uni5200 for the XC5200 series.

Note: The above locations for the compiled libraries are the default
locations for a default software installation. However, your system
administrator can install them in other locations. Your system admin-
istrator can tell you the location of the compiled version(s) of the
Unified Library. Instructions for compiling are in the Mentor
Graphics Installation section of the Alliance Installation Guide. You
may have to recompile the library for each version of QuickHDL you
use.

5. Compile the HDL source files with qvhcom (VHDL) or qvlcom
(Verilog).

qvhcom [options] design_file(s)

qvlcom [options] design_file(s)

See the Mentor documentation for a description of the available
options.

6. Compile your testbench with qvhcom (VHDL) or qvlcom
(Verilog).

qvhcom [options] testbench_file(s)

qvlcom [options] testfixture_file(s)

7. Select the appropriate architecture configuration or module for
your testbench and select QHDL in the pld_dmgr tools window.

See the Mentor documentation for QuickHDL instructions.
4-12 Xilinx Development System

HDL Designs
8. After the post-synthesis simulation is correct, you may proceed
to implementation.

Optional Post Synthesis Functional Simulation
You can optionally perform a post-synthesis functional simulation on
a pure HDL design, by following these steps:

1. Run pld_edif2sim on your top-level EDIF or pld_xnf2sim on
your top level XNF file from synthesis.

2. Specify either VHDL or Verilog output in the pld_edif2sim or
pld_xnf2sim dialog box.

3. Choose the Flat or Hierarchical option and click OK to create the
structural HDL netlist.

Figure 4-4 Pld_edif2sim Dialog Box
Mentor Graphics Interface/Tutorial Guide 4-13

Mentor Graphics Interface Guide
Figure 4-5 Pld_xnf2sim Dialog Box

4. Compile the HDL source file from pld_edif2sim or pld_xnf2sim.

Note: Before compiling, if you have not already done so, verify
that the VHDL or Verilog SIMPRIM libraries have been compiled.
Before performing timing simulation on an HDL-based design,
the VHDL or Verilog SIMPRIM libraries must be compiled with
qvhcom/qvlcom. Your system administrator should have
performed this during installation.

The path to the VHDL libraries should be:

$XILINX/mentor/data/vhdl/simprim

The path to the Verilog libraries should be:

$XILINX/mentor/data/verilog/simprim

If these compiled SIMPRIM Libraries do not exist, contact your
systems administrator. The Mentor Graphics Installation section
4-14 Xilinx Development System

HDL Designs
of the Alliance Installation Guide describes how to compile the
SIMPRIM libraries.

5. Use qhmap to add a SIMPRIM library listing in the quickhdl.ini
file:

qhmap simprim compiled_simprim_library_directory

The locations of the compiled simprim libraries
(compiled_simprim_library_directory) are normally as follows:

$XILINX/mentor/data/vhdl/simprim

$XILINX/mentor/data/verilog/simprim

6. Type the following on the UNIX command line:

qvhcom [options] design_name (VHDL)

qvlcom [options] design_name (Verilog)

See the Mentor documentation for information on how to use
qvhcom and qvlcom.

7. Select the appropriate architecture configuration or module for
your testbench.

8. After the post-synthesis simulation is correct, you may proceed
to implementation.

Design Implementation
Once you complete functional simulation for HDL designs, you are
ready to implement your design in an FPGA or CPLD. You perform
implementation with the Xilinx Design Manager, a graphical design-
flow and project manager. In the Mentor interface, the Xilinx Design
Manager is called pld_dsgnmgr. You invoke pld_dsgnmgr from the
Mentor Design Manager or from a UNIX shell.

The “HDL Design Implementation” figure shows the design flow for
implementing a design. The Xilinx Design Manager accepts your
design, represented by the XNF or EDIF file from the synthesis tool.
Design entry of pure HDL designs, or HDL designs with LogiBLOX
elements produces an EDIF or XNF file that you can submit to
pld_dsgnmgr. Pld_dsgnmgr first translates the design into a flattened
or hierarchical netlist, then optimizes, places, and routes the design.
You can also use the Xilinx Design Manager to generate SDF timing
information that you can import into QuickHDL along with your
Mentor Graphics Interface/Tutorial Guide 4-15

Mentor Graphics Interface Guide
VHDL or Verilog netlist. For a more in-depth discussion of the flow,
including advanced implementation options, see the Development
System User Guide.

Figure 4-6 HDL Design Implementation

To implement your design follow these steps:

1. Within the Mentor Design Manager, select the EDIF icon for your
design in the Navigator, then select Right Mouse Button →
Open → pld_dsgnmgr . The Xilinx Design Manager appears as
shown in the “Xilinx Design Manager” figure. The tool automat-
ically creates a Xilinx project called your_design_name. Xilinx
project information is kept in a file called xproj/
your_design_name.prj by default.

VHDL Verilog

X7570

PLD_DSGNMGR

SDF

EDIF XNF
4-16 Xilinx Development System

HDL Designs
Figure 4-7 Xilinx Design Manager

Each project is associated with objects known as versions and revi-
sions. Versions represent logic changes in a design (for example,
adding a new block of logic, replacing an AND gate with an OR
gate, or adding a flip-flop); revisions represent different execu-
tions of the design flow on a single design version, usually with
new implementation options (for example, higher place and
route effort, a change in part type, or experimentation with new
bitstream options).

2. Within the Xilinx Design Manager, select Design → Implement .

The Implement dialog box opens as shown in the following
figure and displays fields for part type, design version, and revi-
sion.
Mentor Graphics Interface/Tutorial Guide 4-17

Mentor Graphics Interface Guide
Figure 4-8 Implement Dialog Box

3. The Xilinx Design Manager reads the part type from the design.

If you wish to specify the part type manually, click the Select
button to display a pull-down listing of available devices. Choose
a family, a device, a package, and a speed grade. Click OK. The
part number is inserted into the Part field in the Implement
dialog box.

4. Click on Options. The Options dialog box appears as shown in
the “Options Dialog Box” figure.

Note: The CPLD Options dialog box does not have a Configuration
Template section, nor does it have a Produce Logic Level Timing
Report checkbox.
4-18 Xilinx Development System

HDL Designs
Figure 4-9 Options Dialog Box

5. Click the Browse button next to the User Constraints field. Select
the appropriate .ucf file from the design directory, then Click OK.

6. Under Optional Targets, make sure the following are selected:

• Produce Timing Simulation Data: This generates a SDF file
and a VHDL or Verilog netlist that you can import into
QuickHDL.

• Produce Configuration Data: This generates a programming
bitstream suitable for downloading into the Xilinx device.
Mentor Graphics Interface/Tutorial Guide 4-19

Mentor Graphics Interface Guide
• Produce Post Layout Timing Report: This generates a timing
report file based on how the design is actually routed.

You can also select the following option (FPGAs only):

• Produce Logic Level Timing Report: This generates a prelimi-
nary (pre-place and route) timing report based on the
number of logic levels in each signal path. Since it is gener-
ated before the place-and-route layout step, it does not
contain information on device routing. Looking at this report
before place and route can be useful for seeing how much
routing slack you have in a design.

7. Select the Edit Template button on the right hand side of the
Implementation field. The Implementation Options dialog box
appears as shown in the following figure.

Figure 4-10 Changing Simulation Data Option
4-20 Xilinx Development System

HDL Designs
8. Select the Interface tab. In the Interface pane, look under
Simulation Data Options and verify that Format is set to VHDL
or Verilog and that Correlate Simulation Data to Input Design is
selected. The Vendor field should change to generic since these
HDL outputs are not vendor specific.

9. Click OK to return to the Options window.

10. Click OK to return to the Implementation dialog box.

11. At this point you have the option to create a template testbench
for the timing VHDL or Verilog netlist. To do so, perform these
steps:

a) In the Xilinx Design Manager, select Utilities →
Template Manager to open the Template Manager dialog
box.

Figure 4-11 Template Manager Dialog Box

b) Select the implementation template that you wish to
customize.
Mentor Graphics Interface/Tutorial Guide 4-21

Mentor Graphics Interface Guide
c) Click on the Customize button to open the Customize dialog
box.

Figure 4-12 Customize Dialog Box

d) If you have Verilog, specify ngd2ver in the Program Name
box and -tf in the Program Options box.

e) If you have VHDL, specify ngd2vhdl in the Program Name
box and -tb in the Program Options box.

f) Click Set and then OK.

g) Click Close in the Template Manager dialog box.

Whenever you output VHDL or Verilog with this customized
implementation template, the testbench template file
your_design.tvhd is created for VHDL designs and
your_design.tv is created for Verilog designs.

12. The default hierarchy for VHDL or Verilog output files is flat
since the write function and simulations are generally faster. At
this point you have the option to retain the hierarchy to aid
debugging. To do so, follow these steps:
4-22 Xilinx Development System

HDL Designs
a) In the Xilinx Design Manager, select Utilities →
Template Manager to open the Template Manager dialog
box as shown in “Template Manager Dialog Box” figure.

b) Select the implementation template that you wish to
customize.

c) Click on the Customize button to open the Customize dialog
box as shown in the “Customize Dialog Box” figure.

d) If you have Verilog, specify ngd2ver in the Program Name
box and -r in the Program Options box.

e) If you have VHDL, specify ngd2vhdl in the Program Name
box and -r in the Program Options box.

f) Click Set and then OK.

g) Click Close in the Template Manager dialog box.

Whenever you output VHDL or Verilog with this customized
implementation template, the testbench template file
your_design.vhd is hierarchical for VHDL designs and
your_design.v is hierarchical for Verilog designs.

13. In the Xilinx Design Manager Implement dialog box, specify the
current version and revision you wish to work on, then click Run.

Figure 4-13 Implement Dialog Box

The Flow Engine opens as shown in the following figure.
Mentor Graphics Interface/Tutorial Guide 4-23

Mentor Graphics Interface Guide
Figure 4-14 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate: Converts the design EDIF or XNF file into an NGD
(Native Generic Design) file.

• Map: Groups basic elements (bels) such as flip-flops and
gates into logic blocks (comps). Also generates a logic-level
timing report if desired.

• Place&Route: Places comps into the device, and routes
signals between them.

• Timing: Generates timing simulation data and an optional
post-layout timing report.

• Configure: generates a bitstream suitable for downloading
into and configuring a device

When the implementation completes, an Implementation Status
box appears with:

Implementing revision ver1->rev1 completed
successfully.

14. Click on View Logfile to display the logfile from Flow Engine.
4-24 Xilinx Development System

HDL Designs
The report is displayed in vi.

15. To exit the viewer, type :q! and press Return.

16. Click OK in the Implementation Status dialog to return to the
Xilinx Design Manager.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

Timing Simulation
For HDL designs, the Xilinx Design Manager produces a V (Verilog)
file or a VHDL file expressed in SIMPRIMs and a corresponding SDF
file that contains the timing data. The SDF file for VHD and V files are
not interchangeable since the models they annotate follow different
modeling standards.

Compiling the SIMPRIM Libraries
Before performing timing simulation on an HDL-based design, the
VHDL or Verilog SIMPRIM libraries must be compiled with
qvhcom/qvlcom. Your system administrator should perform this
during installation. Perform these steps:

1. Verify that the libraries have been compiled.

The path to the VHDL libraries should be:

$XILINX/mentor/data/vhdl/simprim

The path to the Verilog libraries should be:

$XILINX/mentor/data/verilog/simprim

2. If these compiled SIMPRIM Libraries do not exist, contact your
systems administrator. The Mentor Graphics Installation section
of the Alliance Installation Guide describes how to compile the
SIMPRIM libraries.

Passing Timing Generics to Special Cells—ROC,
OSC, OSC4, and OSC5

If your designs do not have an external global set or reset port or a
user defined internal net driving the global set/reset net, then a ROC
(Reset on Configuration) cell is automatically added to your VHDL
Mentor Graphics Interface/Tutorial Guide 4-25

Mentor Graphics Interface Guide
netlist. This cell enables you to toggle the global set/reset net at the
beginning of simulation by defining the pulse width of the signal
pulse starting at time 0. By default, the pulsewidth is 0 which enables
simulation to proceed but does not reset the circuit. To properly simu-
late the reset behavior of the chip, the pulse width generic should be
set to a value within the range found in the Xilinx Databook for the
particular device.

You can modify the following configuration for the technology’s
specific pulse width and user’s testbench and compile it before you
compile the testbench.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure

FOR ALL:roc USE ENTITY work.roc(roc)v)
GENERIC MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

Verilog designs do not require ports to drive the global/set reset net
from a testbench. Therefore, Verilog designs do not contain the ROC
cell. The same signal name found in the front end can be used to
drive the signal in the back-annotated design. The signal must be
driven, or all flip-flops will initialize as X.

VHDL designs that contain oscillator cells like OSC, OSC4, or OSC5,
must have the clock period set with a configuration statement. By
default, the period is 0, disabling the oscillator. You should carefully
select the period from the range of viable periods found in the Xilinx
Databook for the particular technology. A specific period is not guar-
anteed because the cell is subject to process variations. You should
select the value that best meets your simulation requirements.

You can use the following configurations for either the OSC, OSC4, or
OSC5 cells by just changing the name of the cell and modifying the
pulse width to the correct value.

CONFIGURATION cfg_my_functional_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(my_design_rtl);
FOR my_design_rtl
4-26 Xilinx Development System

HDL Designs
FOR ALL:my_submodule USE ENTITY work.my_submodule(my_submodule_rtl);
FOR my_submodule_rtl

FOR all: osc4 USE ENTITY work.osc4(structure)
GENERIC MAP (period_8m => 125 NS);

END FOR;
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_testbench_functional;

You can drive Verilog designs by the signal name used to drive the
front-end simulation since the hierarchical name is preserved.

Compiling the Design
Before performing timing simulation on an HDL-based design, you
must compile your VHDL or Verilog modules with qvhcom/qvlcom.

1. Create a map and working library with qhlib and qhmap.

qhlib work time_sim_lib

qhmap work

You should compile to a different work library than the one used
for functional simulation to avoid data integrity mishaps.

2. Use QHMAP to add a SIMPRIM library listing in the QuickHDL
.ini file:

qhmap simprim compiled_simprim_area

The locations of the compiled simprim libraries
(compiled_simprim_area) are normally as follows:

$XILINX/mentor/data/vhdl/simprim

$XILINX/mentor/data/verilog/simprim

3. Type the following on the UNIX command line:

qvhcom [options] time_sim.vhd (VHDL)

qvlcom [options] tim_sim.v (Verilog)

Design_name is the name of the VHDL or Verilog file produced by
the Xilinx Design Manager. See the Mentor Graphics documenta-
tion for information on the options available.
Mentor Graphics Interface/Tutorial Guide 4-27

Mentor Graphics Interface Guide
4. Compile any required configurations for special cells like ROC
(reset on configuration) or OSC (see the “Passing Timing
Generics to Special Cells—ROC, OSC, OSC4, and OSC5” section
in this chapter).

qvhcom [options] configuration_file (VHDL)

qvlcom [options] configuration_file (Verilog)

5. Select the appropriate architecture configuration or module for
your testbench and select QHDL in the pld_dmgr tools window.

See the Mentor documentation for QuickHDL instructions.

This procedure creates HDL database files that you can submit to
QuickHDL.

Simulating the Design
Simulate with QuickHDL using qhsim. To include the timing infor-
mation in the SDF file, invoke qhsim with the -sdftyp option. Refer to
the Mentor documentation for information on available options. To
simulate a Verilog based design, invoke qhsim with the -L simprim
option to choose the Verilog simprim libraries models.
4-28 Xilinx Development System

Chapter 5

Mixed Designs with VHDL on Top

This chapter describes how to use the Mentor Graphics Interface to
design with mixed schematic and VHDL designs with VHDL on Top.
It contains the following sections:

• “The Design Flow” section

• “Design Entry” section

• “Functional Simulation” section

• “Design Implementation” section

• “Timing Simulation” section

The Design Flow
The design flow for a top-level VHDL design with a schematic sub-
module embedded within is illustrated in the following figure.
Mentor Graphics Interface/Tutorial Guide — October 1997 5-1

Mentor Graphics Interface Guide
Figure 5-1 Mixed Schematic and VHDL Design with VHDL on
Top

Design Entry
Enter your pure VHDL design as described in the “HDL Design
Entry” section of the “HDL Designs” chapter.

If you wish to insert a schematic module into your VHDL code,
Mentor QuickHDL Pro allows you to co-simulate your VHDL
portion in QuickHDL with your schematic portion in QuickSim II.

Synthesis**

EDIF XNF

RTL VHDL to be
synthesized

QuickHDL Pro

Design
correct?

Yes

VHDL for module

Text editor

PLD_DVE

GEN_ARCH

EDDM for
schematic module

PLD_DMGR

PLD_DA

PLD_MEN2EDIF*

EDIF for module

PLD_EDIF2SIM
ngo only

ngo for module

No

SDFRouted VHDL
in Simprims Functional VHDL

in Simprims

QuickHDL

PLD_XNF2SIM
on top level XNF

QuickHDL

Xilinx Design Manager

Functional VHDL
in Simprims

QuickHDL

PLD_EDIF2SIM
on top level EDIF

*Use bus delimiters that
your synthesis tool uses

**Do not compile architecture
for schematic instantiation

RTL functional simulation

Implementation and
timing simulation

Optional post-synthesis
gate level simulation

Optional post-synthesis
gate level simulation

X8027
5-2 Xilinx Development System

Mixed Designs with VHDL on Top
Your synthesizer requires you to treat the schematic module as a
black box. You must use pld_men2edif and pld_edif2sim to create a
NGO file for the schematic component so the Xilinx implementation
tools can merge it in the module during implementation.

Figure 5-2 Design Entry for a Mixed Schematic and VHDL
Design with VHDL on Top

To enter a mixed schematic and HDL design with VHDL on top,
perform the following procedure. The “Design Entry for a Mixed
Schematic and VHDL Design with VHDL on Top” figure shows the
flow diagram for this procedure.

1. Open pld_dmgr.

2. Open pld_da and generate EDDM for the schematic module.

3. Create the NGO file for implementation. To accomplish this, you
use pld_men2edif to convert the EDDM for schematic module to
EDIF and then use pld_edif2sim to create the NGO file. The
procedure for doing this is as follows:

Synthesis**

EDIF XNF

RTL VHDL to be
synthesized

VHDL for module

Text editor

PLD_DVE

GEN_ARCH

EDDM for
schematic module

PLD_DMGR

PLD_DA

PLD_MEN2EDIF*

EDIF for module

PLD_EDIF2SIM
ngo only

ngo fo module

*Use bus delimiters that
your synthesis tool uses

To create the NGO file
for Implementation

**Do not compile architecture
for schematic instantiation

X8079
Mentor Graphics Interface/Tutorial Guide 5-3

Mentor Graphics Interface Guide
a) Open pld_men2edif.

A dialog box opens as shown in the following figure.

Figure 5-3 Mentor to EDIF Netlister Dialog Box

b) Fill in the component name of the existing schematic based
module. The module must have a symbol for its top-level
netlist. There can be no chip-level I/Os.

c) Select a viewpoint that properly sets the schematic parame-
ters such that the EDIF is properly generated.

d) Select the Bus Dimension Separator Style that matches your
synthesizer. This is important; if your synthesizer uses one
bus style and the EDIF/NGO from your schematic uses
another style, the implementation tool does not merge the
schematic module with the rest of the design, thus leaving it
unexpanded.

e) Choose the technology.

f) Click OK.

g) Create the NGO from EDIF2SIM and XNF2SIM for later use
in the implementation tool. EDIF2SIM and XNF2SIM NGO
files must be placed in your top level directory or you must
5-4 Xilinx Development System

Mixed Designs with VHDL on Top
modify the macro search path in the Xilinx Design Manager
to include the location of the NGO files. EDIF2SIM or
XNF2SIM do not have the macro search path functionality.
You must have the EDIF2SIM and XNF2SIM NGO files in the
same directory as your top-level EDIF or XNF.

h) Open pld_edif2sim.

The dialog box opens as shown in the following figure.

Figure 5-4 Pld_edif2sim Dialog Box

i) Specify the source of the EDIF file as either a Mentor,
Synopsys, or Xilinx compatible EDIF. This step selects the
appropriate implementation libraries.

j) Enter the name for the EDIF file created above in step f that
will be used for the NGO file.
Mentor Graphics Interface/Tutorial Guide 5-5

Mentor Graphics Interface Guide
k) Enter the name of the NGO file based on the component
name used in the VHDL instantiation.

l) Select a Xilinx technology.

m) Select the NGO (only) output.

n) In the “Enter additional directories to search” field, enter all
the directory pathnames that the program should search to
find supporting EDIF, XNF, and NGO files.

o) Click OK to produce the NGO macro file of the schematic
component.

4. Use pld_dve to set the simulation viewpoint.

5. Open GEN_ARCH to generate the VHDL for module.

The dialog box opens as shown in the following figure.
5-6 Xilinx Development System

Mixed Designs with VHDL on Top
Figure 5-5 Create a VHDL Architecture from an EDDM
Component Dialog Box

6. Enter the EDDM component name for the schematic.

7. Indicate the directory where the VHDL source files from
GEN_ARCH are to be placed.

8. Specify the appropriate QuickHDL initialization file. See the
Mentor Graphics Documentation for details.

9. Enter the library name in which the compiled code will be
placed. You can place it in the work library.

10. Leave the other boxes blank and click OK to produce the required
output.
Mentor Graphics Interface/Tutorial Guide 5-7

Mentor Graphics Interface Guide
11. Use a Text Editor to create RTL VHDL to be synthesized for the
rest of the design. Include the component declaration and instan-
tiation for the schematic module.

12. Perform synthesis to generate EDIF or XNF for the whole design
with a black box for the schematic module.

Functional Simulation
VHDL-on-top designs consist of a VHDL based design referencing
EDDM components.

Compiling the Design
Before functionally simulating the mixed VHDL-based design,
perform the following steps:

1. Create a working library with qhlib.

qhlib work

2. Map the library with qhmap.

qhmap work work

3. If using LogiBLOX modules, use qhmap to map to the compiled
LogiBLOX modules location.

qhmap logiblox $XILINX/mentor/data/vhdl/logiblox

4. Compile the VHDL source files with qvhcom.

qvhcom [options] design_name

See the Mentor documentation for a description of the available
options.

Simulating the Design
To simulate VHDL-at-top designs, invoke QuickHDL Pro, which in
turn invokes QuickSim to simulate the Unified Libraries elements
and QuickHDL to simulate the VHDL-based blocks as needed.

1. Double-click the left mouse button on the QuickHDL Pro icon in
the Design Manager Tools window.
5-8 Xilinx Development System

Mixed Designs with VHDL on Top
Alternatively, you can select the top-level component in the Navi-
gator window and click the right mouse button to invoke
QuickHDL Pro.

The QHDL Pro dialog box appears, as shown in the “QHDL Pro
Dialog Box” figure.

2. In the Invoke On field, click on Configuration .

3. In the Name field, type the path name of the configuration from
Gen_Arch.

4. Click on Qhpro .

5. Click on OK to proceed with simulation.

For details on using QHDL Pro, refer to the Mentor Graphics Docu-
mentation.
Mentor Graphics Interface/Tutorial Guide 5-9

Mentor Graphics Interface Guide
Figure 5-6 QHDL Pro Dialog Box

Optional Post-Synthesis Functional Simulation
You can optionally re-simulate the design after synthesis to an EDIF
or XNF file to ensure that the design’s functionality remains optimal.
To do so, follow these steps:

1. Create the NGO from EDIF2SIM and XNF2SIM for later use in
the implementation tool. EDIF2SIM and XNF2SIM NGO files
must be placed in your top level directory or you must modify
the macro search path in the Xilinx Design Manager to include
the location of NGO files. EDIF2SIM or XNF2SIM do not have the
5-10 Xilinx Development System

Mixed Designs with VHDL on Top
macro search path functionality. You must have the EDIF2SIM
and XNF2SIM NGO files in the same directory as your top-level
EDIF or XNF.

2. If the synthesis tool created an EDIF file, submit the file to
pld_edif2sim, then submit it to QuickHDL.

3. If the synthesis tool created an XNF file, submit the file to
pld_xnf2sim, then submit it to QuickHDL.

Design Implementation
Once you complete the functional simulation and synthesis steps for
a VHDL-on-top design, you are ready to implement your design in
an FPGA or CPLD. You perform implementation with the Xilinx
Design Manager, a graphical design flow and project manager. In the
Mentor interface, the Xilinx Design Manager is called pld_dsgnmgr.
You invoke pld_dsgnmgr from the Mentor Design Manager or from a
UNIX shell.

Design entry of VHDL-on-top designs produces NGO files for sche-
matic modules and XNF or EDIF files for the synthesized portion of
the design. The following figure shows the design flow for imple-
menting such a mixed design.

Figure 5-7 Design Implementation

The Xilinx Design Manager takes in your design, represented by the
EDIF or XNF file from synthesis and the NGO file for the schematic
module from pld_edif2sim. It first translates the design into a flat-
tened or hierarchical netlist, then optimizes, places, and routes the

X7843VHDL SDF

PLD_dsgnmgr

XNF EDIFNGO
for Module
Mentor Graphics Interface/Tutorial Guide 5-11

Mentor Graphics Interface Guide
design. You can also use the Xilinx Design Manager to generate SDF
timing information that you can import into QuickHDL. For a more
in-depth discussion of the flow, including advanced implementation
options, see the Development System User Guide.

By default, the Xilinx Design Manager looks for the NGO files for the
schematic modules in the directory where it was invoked. You have
the option of putting all of the NGO files in another directory. To
direct the Xilinx Design Manager to look for the NGO files in another
directory, follow these steps:

1. In the Xilinx Design Manager window, select Utilities →
Template Manager .

2. Select the Family for implementation.

3. Select Implementation Templates.

4. Select the Template you wish to modify.

If you have not created your own template, you may modify the
default one.

5. Select Edit.

6. Select Interface.

7. Fill in the Macro Search Path box with the path to the NGO files.

8. Under simulation Data Options, select the VHDL Format as
shown in the following figure.
5-12 Xilinx Development System

Mixed Designs with VHDL on Top
Figure 5-8 Implementation Options Dialog Box

To implement your design follow these steps:

1. Within the Mentor Design Manager, select the EDIF icon for your
design in the Navigator, then select Right Mouse Button →
Open → pld_dsgnmgr . The Xilinx Design Manager appears as
shown in the “Xilinx Design Manager” figure. The tool automat-
ically creates a Xilinx project called your_design_name. Xilinx
project information is kept in a file called xproj/
your_design_name.prj by default.
Mentor Graphics Interface/Tutorial Guide 5-13

Mentor Graphics Interface Guide
Figure 5-9 Xilinx Design Manager

Each project is associated with objects known as versions and revi-
sions. Versions represent logic changes in a design (for example,
adding a new block of logic, replacing an AND gate with an OR
gate, or adding a flip-flop); revisions represent different execu-
tions of the design flow on a single design version, usually with
new implementation options (for example, higher place and
route effort, a change in part type, or experimentation with new
bitstream options).

2. Within the Xilinx Design Manager, select Design → Implement .

The Implement dialog box opens as shown in the following
figure and displays fields for part type, design version, and revi-
sion.
5-14 Xilinx Development System

Mixed Designs with VHDL on Top
Figure 5-10 Implementation Dialog Box

3. The Xilinx Design Manager reads the part type from the design.

If you wish to specify the part type manually, click the Select
button to display a pull-down listing of available devices. Choose
a family, a device, a package, and a speed grade. Click OK. The
part number is inserted into the Part field in the Implement
dialog box.

4. Click on Options. The Options dialog box appears as shown in
the “Options Dialog Box” figure.

Note: The CPLD Options dialog box does not have a Configuration
Template section, nor does it have a Produce Logic Level Timing
Report checkbox.
Mentor Graphics Interface/Tutorial Guide 5-15

Mentor Graphics Interface Guide
Figure 5-11 Options Dialog Box

5. Click the Browse button next to the User Constraints field. Select
the appropriate .ucf file from the design directory, then Click OK.

6. You may use your own template for implementation or configu-
ration. For instance, you might have an implementation where
the macro search path template has been set. If so, select the
proper template under Program Option Templates.

7. Under Optional Targets, make sure the following are selected:
5-16 Xilinx Development System

Mixed Designs with VHDL on Top
• Produce Timing Simulation Data: This generates a back-
annotated VHDL file that you can import into the Mentor
Graphics tools.

• Produce Configuration Data: This generates a programming
bitstream suitable for downloading into the Xilinx device.

• Produce Post Layout Timing Report: This generates a timing
report file based on how the design is actually routed.

You can also select the following option (FPGAs only):

• Produce Logic Level Timing Report: This generates a prelimi-
nary (pre-place and route) timing report based on the
number of logic levels in each signal path. Since it is gener-
ated before the place-and-route layout step, it does not
contain information on device routing. Looking at this report
before place and route can be useful for seeing how much
routing slack you have in a design.

8. Select the Edit Template button on the right hand side of the
Implementation field. The Implementation Options dialog box
appears as shown in the following figure.
Mentor Graphics Interface/Tutorial Guide 5-17

Mentor Graphics Interface Guide
Figure 5-12 Changing Simulation Data Option

9. Select the Interface tab. In the Interface pane, look under Simula-
tion Data Options and verify that Format is set to VHDL and that
Correlate Simulation Data to Input Design is selected. In the
Vendor field, select generic.

10. Click OK to return to the Options window.

11. Click OK to return to the Implementation dialog box.

12. In the Xilinx Design Manager window, verify that you have
selected the current version and revision you wish to work on,
then click Run. The Flow Engine comes up as shown in the
following figure.
5-18 Xilinx Development System

Mixed Designs with VHDL on Top
Figure 5-13 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate: Converts the design EDIF or XNF file into an NGD
(Native Generic Design) file.

• Map: Groups basic elements (bels) such as flip-flops and
gates into logic blocks (comps). Also generates a logic-level
timing report if desired.

• Place&Route: Places comps into the device, and routes
signals between them.

• Timing: Generates timing simulation data and an optional
post-layout timing report.

• Configure: generates a bitstream suitable for downloading
into and configuring a device

When the implementation completes, an Implementation Status
box appears with:

Implementing revision ver1->rev1 completed
successfully.
Mentor Graphics Interface/Tutorial Guide 5-19

Mentor Graphics Interface Guide
13. Click on View Logfile to display the logfile from Flow Engine
in the vi text editor.

14. To exit the viewer, type :q! and press Return.

15. Click OK in the Implementation Status dialog to return to the
Xilinx Design Manager.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

For VHDL-based designs, the Xilinx Design Manager produces a
VHDL file and a SDF file that expresses timing and simulation in
SIMPRIM library elements instead of Unified Libraries elements.

Timing Simulation
You can now submit the VHDL and SDF files to QuickHDL for
timing simulation. There is no longer a need to use QuickHDL Pro.

Compiling the SIMPRIM Libraries
Before performing timing simulation on an HDL-based design, the
VHDL SIMPRIM libraries must be compiled with qvhcom. Your
system administrator should perform this during installation.
Perform these steps:

1. Verify that the libraries have been compiled.

The path to the VHDL libraries should be:

$XILINX/mentor/data/vhdl/simprim

2. If these compiled SIMPRIM Libraries do not exist, contact your
systems administrator. The Mentor Graphics Installation section
of the Alliance Installation Guide describes how to compile the
SIMPRIM libraries.

Passing Timing Generics to Special Cells—ROC,
OSC, OSC4, and OSC5

If your designs do not have an external global set or reset port or a
user defined internal net driving the global set/reset net, then a ROC
(Reset on Configuration) cell is automatically added to your VHDL
netlist. This cell enables you to toggle the global set/reset net at the
beginning of simulation by defining the pulse width of the signal
5-20 Xilinx Development System

Mixed Designs with VHDL on Top
pulse starting at time 0. By default, the pulsewidth is 0 which enables
simulation to proceed but does not reset the circuit. To properly simu-
late the reset behavior of the chip, the pulse width generic should be
set to a value within the range found in the Xilinx Databook for the
particular device.

You can modify the following configuration for the technology’s
specific pulse width and user’s testbench and compile it before you
compile the testbench.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure

FOR ALL:roc USE ENTITY work.roc(roc)v)
GENERIC MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

Verilog designs do not require ports to drive the global/set reset net
from a testbench. Therefore Verilog designs do not contain the ROC
cell. The same signal name found in the front end can be used to
drive the signal in the back-annotated design. The signal must be
driven, or all flip-flops will initialize as X.

VHDL designs that contain oscillator cells like OSC, OSC4, or OSC5,
must have the clock period set with a configuration statement. By
default, the period is 0, disabling the oscillator. You should carefully
select the period from the range of viable periods found in the Xilinx
Databook for the particular technology. A specific period is not guar-
anteed because the cell is subject to process variations. You should
select the value that best meets your simulation requirements.

You can use the following configurations for either the OSC, OSC4, or
OSC5 cells by just changing the name of the cell and modifying the
pulse width to the correct value.

CONFIGURATION cfg_my_functional_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(my_design_rtl);
FOR my_design_rtl

FOR ALL:my_submodule USE ENTITY work.my_submodule(my_submodule_rtl);
FOR my_submodule_rtl
Mentor Graphics Interface/Tutorial Guide 5-21

Mentor Graphics Interface Guide
FOR all: osc4 USE ENTITY work.osc4(structure)
GENERIC MAP (period_8m => 125 NS);

END FOR;
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_testbench_functional;

You can drive Verilog designs by the signal name used to drive the
front-end simulation since the hierarchical name is preserved.

Compiling the Design
Before performing timing simulation on an HDL-based design, you
must compile your VHDL modules with qvhcom.

1. Create a map and working library with qhlib and qhmap.

qhlib work time_sim_lib

qhmap work

You should compile to a different work library than the one used
for functional simulation to avoid data integrity mishaps.

2. Use QHMAP to add a SIMPRIM library listing in the QuickHDL
.ini file:

qhmap simprim compiled_simprim_area

The locations of the compiled simprim libraries
(compiled_simprim_area) are normally as follows:

$XILINX/mentor/data/vhdl/simprim

3. Type the following on the UNIX command line:

qvhcom [options] time_sim.vhd

Design_name is the name of the VHDL file produced by the Xilinx
Design Manager. See the Mentor Graphics documentation for
information on the options available.

4. Compile any required configurations for special cells like ROC
(reset on configuration) or OSC (see the “Passing Timing
Generics to Special Cells—ROC, OSC, OSC4, and OSC5” section
in this chapter).
5-22 Xilinx Development System

Mixed Designs with VHDL on Top
qvhcom [options] configuration_file

5. Select the appropriate architecture configuration or module for
your testbench and select QHDL in the pld_dmgr tools window.

See the Mentor documentation for QuickHDL instructions.

This procedure creates HDL database files that you can submit to
QuickHDL.

Simulating the Design
Simulate with QuickHDL using qhsim. To include the timing infor-
mation in the SDF file, invoke qhsim with the -sdftyp option. Refer to
the Mentor documentation for information on available options.
Mentor Graphics Interface/Tutorial Guide 5-23

Mentor Graphics Interface Guide
5-24 Xilinx Development System

Chapter 6

Mixed Designs with Schematic on Top

This chapter describes how to use the Mentor Graphics Interface to
design with mixed schematic and VHDL designs with schematic on
top. It contains the following sections:

• “The Flow” section

• “Design Entry” section

• “Functional Simulation” section

• “Design Implementation” section

• “Timing Simulation” section

The Flow
The design flow for designs containing a mixture of schematics and
VHDL is illustrated in the following figure.
Mentor Graphics Interface/Tutorial Guide — October 1997 6-1

Mentor Graphics Interface Guide
Figure 6-1 Mixed Schematic and VHDL Design with Schematic
on Top

Design Entry
Design entry consists of two parts, VHDL module design entry and
schematic entry.

Design
correct?

PLD_DMGR Text editor

RTL VHDL
for module

Synthesis

EDIF
for module

XNF
for module

or

No

PLD_MEN2EDIF*

Top-level
EDIF

EDDM for design
with instantiated

VHDL module

PLD_DVE-s

QuickHDL Pro

Xilinx Design
Manager

Routed EDIF
in Simprims

PLD_EDIF2TIM Unrouted EDDM
in Simprims

PLD_EDIF2SIM
on top-level EDIF

PLD_QuickSim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

YesPLD_DA

Routed EDDM
in Simprims

PLD_DVE-s

PLD_QuickSim

qvhcom

Compiled VHDL
for module

X8028

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in PLD_DA for
HDL module

Import VHDL
6-2 Xilinx Development System

Mixed Designs with Schematic on Top
VHDL Module Design Entry
To enter the VHDL module of your design and to get it ready for
functional simulation and implementation, perform the following
steps:

1. Enter the VHDL portion of your design as described in the
“HDL Design Entry” section of the “HDL Designs” chapter.

2. When you have the RTL description for the module(s), create a
working directory for the VHDL description.

qhlib work

Note: If you map to a work library other than the default work
library, map the library with qhmap as follows:

qhmap work mywork

3. Compile the VHDL source files with qvhcom.

qvhcom [options] design_file(s) -qhpro_syminfo

4. In pld_da, use File → Generate → Symbol to import
VHDL and create a symbol for the VHDL module as shown in
the following figure.
Mentor Graphics Interface/Tutorial Guide 6-3

Mentor Graphics Interface Guide
Figure 6-2 Generate Symbol Dialog Box

5. On the symbol, add the file=xnf_file_pathname or
file=edif_file_pathname property with a value that specifies the
path to the XNF or EDIF file that will be synthesized from the
RTL description you created above.

6. Check and save the new symbol.

Refer to the Mentor documentation for details on using Generate
Symbol.

Schematic Entry
1. Enter the top-level and lower-level schematic portions as

described in the “Design Entry” section of the “Schematic
Designs” chapter.
6-4 Xilinx Development System

Mixed Designs with Schematic on Top
2. Instantiate the symbol created for the VHDL module on the top-
level design.

Functional Simulation
Mixed-model schematic-based designs can be composed of schematic
elements from the Unified Libraries, VHDL, XNF-based components,
or EDIF-based components. The VHDL-based components will later
have FILE=edif_path properties for implementation.

You can simulate the design either before or after you synthesize the
HDL module.

Functional Simulation Before Synthesis
The flow diagram for this procedure is shown in the “Performing
Functional Simulation Before Synthesis on Mixed-Model Schematic-
on -Top Designs” figure. Follow these steps to simulate your design
before you synthesize it:

1. Generate a symbol for the HDL module with pld_da.

2. Instantiate the symbol on the schematic.

3. Put FILE=xnf_file_pathname or FILE=edif_file_pathname property
on the symbol of the synthesized module.

4. Create a viewpoint for the top-level design using pld_dve:

pld_dve -s design_name technology [viewpoint_name]

5. Run QuickHDL Pro to simulate the design by typing the
following syntax:

qhpro [options] design_name

Alternate ways to invoke QuickHDL Pro are to double-click the
left mouse button on the QuickHDL Pro icon in the Design
Manager Tools window or to select the top-level component in
the Navigator window and click the right mouse button.

The QHDL Pro dialog box appears, as shown in the following
figure.
Mentor Graphics Interface/Tutorial Guide 6-5

Mentor Graphics Interface Guide
Figure 6-3 QHDL Pro Dialog Box

6. In this dialog box, click on EDDM Design in the Invoke On field.

7. In the Pathname field, type in the path name of the component.

8. Type the symbol name in the Symbol field only. This step is
optional.

9. Type the interface name in the Interface field only. This step is
optional.

10. Click OK to invoke the QuickHDL simulator and perform simula-
tion.
6-6 Xilinx Development System

Mixed Designs with Schematic on Top
11. After simulation, synthesize the HDL module with Synopsys’
Design Compiler, Synopsys’ FPGA Compiler, Exemplar Logic’s
Galileo, or another synthesizer that creates an EDIF or XNF file
for Xilinx.

Figure 6-4 Performing Functional Simulation Before Synthesis
on Mixed-Model Schematic-on -Top Designs

Functional Simulation After Synthesis
You can optionally re-simulate the design at this point to ensure that
the design’s functionality remains optimal. This method for simu-
lating your design does not require the use of QuickHDL pro. The
flow diagram for this procedure is shown in the “Performing Func-
tional Simulation After Synthesis on Mixed-Model Schematic-on -Top
Designs” figure.

If the synthesis tool created an EDIF file, you can include a symbol for
the module within the top level design with file=edif_file_name. Then

PLD_DMGR Text editor

RTL VHDL
for module

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in PLD_DA for
HDL module

Import VHDL

EDDM for design
with instantiated

VHDL module

PLD_DVE-s

QuickHDL Pro

PLD_DA

x8080
Mentor Graphics Interface/Tutorial Guide 6-7

Mentor Graphics Interface Guide
submit the whole design to pld_edif2sim, and then submit it to
pld_quicksim.

If the synthesis tool created an XNF file, you can include a symbol for
the module within the top level design with file=xnf_file_name. Then
submit the whole design to pld_edif2sim, and then submit it to
pld_quicksim.

Follow these steps to simulate by this method:

1. Synthesize the HDL module that is being included on the sche-
matic, and create an EDIF or XNF file from that synthesis.

2. Create a symbol for the HDL module with pld_da and add the
file=edif_file_name or file=xnf_file_name property to the symbol.
Instantiate the symbol on the top level design.

3. Run pld_men2edif on the top level design to create an EDIF for
the whole design. Make sure to specify the appropriate bus
delimiter to match the synthesized module.

4. Run pld_edif2sim to convert it to a Mentor EDDM single object:

pld_edif2sim edif_file symbol_component_name technology
{-m|-s} -eddm

Use -m if the synthesis was performed with a Mentor tool; use -s
if the synthesis was performed with a Synopsys tool.

5. Perform functional simulation with pld_quicksim:

pld_quicksim design_name[/ viewpoint_name]
6-8 Xilinx Development System

Mixed Designs with Schematic on Top
Figure 6-5 Performing Functional Simulation After Synthesis
on Mixed-Model Schematic-on -Top Designs

Design Implementation
After functional simulation, use a synthesis tool that creates a Xilinx
compatible EDIF or XNF file to synthesize certain blocks of the design
described in VHDL.

After synthesis, you must attach a FILE=design.edif or
FILE=design.xnf property to the VHDL-based block symbol in the
schematic before you submit the top-level EDDM design to
pld_men2edif.

Converting the EDDM Design
You convert the top-level EDDM design to EDIF with the
pld_men2edif utility. To convert your design to EDIF, follow these
steps.

PLD_DMGR Text editor

RTL VHDL
for module

Synthesis

EDIF
for module

XNF
for module

or

PLD_MEN2EDIF*

Top-level
EDIF

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in PLD_DA for
HDL module

Import VHDL

EDDM for design
with instantiated

VHDL module

Unrouted EDDM
in Simprims

PLD_EDIF2SIM
on top-level EDIF

PLD_QuickSim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

PLD_DA

x8081
Mentor Graphics Interface/Tutorial Guide 6-9

Mentor Graphics Interface Guide
1. In the Mentor Design Manager, double-click the left mouse
button on the pld_men2edif icon.

The dialog box shown in the following figure appears.

Figure 6-6 Mentor to EDIF Netlist Dialog Box

2. In the Component Name field, enter the component name, or
click on Navigator to browse a list of design names.

3. In the From Viewpoint field, you can enter the viewpoint name if
you do not want to use the default viewpoint. Alternatively, in
step 2 you can select a viewpoint under the component.

4. Select the appropriate architecture for your design in the PLD
Technology field.

5. Select the desired bus notation style.

Be careful to select the Bus Dimension Separator Style that
matches your synthesizer’s style. Otherwise busses between the
schematic portion and the HDL portion will not match up in the
implemented design.

6. Click on OK.
6-10 Xilinx Development System

Mixed Designs with Schematic on Top
pld_men2edif now produces an EDIF file that you can submit to
the Xilinx Design Manager, pld_dsgnmgr. The output name is
component_name.edif.

Implementing the Design
The Xilinx Design Manager, pld_dsgnmgr, can accept an EDIF file, or
if your design is a pure XNF design, it can accept an XNF file.

In the Mentor Design Manager, double-click the left mouse button on
the pld_dsgnmgr icon.

Since the implementation is essentially the same as for a pure sche-
matic design, follow the directions in the “Implementing Schematic
Designs” section of the “Schematic Designs” chapter.

Normally you need an EDIF file to bring back into the EDDM envi-
ronment. But you have the option of creating a VHDL or Verilog and
an SDF file instead of an EDIF file, which you can submit to
QuickHDL for timing simulation.

Timing Simulation
This is the same as the “Timing Simulation for Schematic Designs”
section of the “Schematic Designs” chapter. When reading this
section, be aware that cross-probing does not apply to the VHDL
component.
Mentor Graphics Interface/Tutorial Guide 6-11

Mentor Graphics Interface Guide
6-12 Xilinx Development System

Chapter 7

Advanced Techniques

This chapter discusses aspects of schematic entry and simulation that
you should be familiar with to use Design Architect and
pld_quicksim effectively.

This chapter contains the following sections:

• “Retargeting the Design to a Different Family” section

• “Merging Design Files from Other Sources” section

• “Simulation Models” section

• “Analyzing Nets from the Schematic” section

• “Setting Global Reset and 3-State Signals” section

Retargeting the Design to a Different Family
The Unified Libraries allow you to retarget your designs from one
device family to another if both your source and target designs only
include symbols from the Unified Libraries. Since most of the
symbols in the Unified Libraries have the same footprint and name
from one device family to another, you can easily convert your
designs across Xilinx device families.

The procedure described in the following section uses Xilinx’s
Convert Design utility in Design Architect to retarget your schematic.
It allows you to change every reference of every design object in your
design directory from the source design library to the target design
library. In your target design, the symbols that are common to the
source and target families maintain their relative location and pin
position in the schematic. Pins on these symbols retain their connec-
tivity to the nets they were attached to in the source design.
Mentor Graphics Interface/Tutorial Guide — October 1997 7-1

Mentor Graphics Interface Guide
You must manually replace symbols that are not common to your
source and target families with equivalent logic. For example, if a
GCLK was used in an XC3000A design that is retargeted for use in an
XC4000E device, you must manually replace the GCLK symbol with
a BUFGP, BUFG, or BUFGS, which is the XC4000E equivalent of a
GCLK.

Note: In the following procedures, XC4000 is used as the source
design device family, and XC5200 is used as the target design device
family. You can also retarget other device families.

To retarget a design to a different family, perform these steps:

1. Activate Design Architect by using either of the methods
described in the “Invoking Design Architect” section of the
“Schematic Designs” chapter. You do not have to open the sche-
matic.

2. On Design Architect’s desktop background (the area outside any
schematic or symbol windows) press the right mouse button and
select Convert Design .

The dialog box shown in the following figure appears.

Figure 7-1 Convert Design To New Technology Dialog Box
7-2 Xilinx Development System

Advanced Techniques
3. In the field asking “Select a group of designs from a list file?,”
click on yes or no .

• Click no if you want to retarget a single design. Convert
Design utility traverses the hierarchy of a given schematic
and converts the schematics of any hierarchical blocks found
on the top-level schematic.

• Click yes if you have a number of designs to retarget, and
their names are contained in a file, one design per line. This
file is useful if your design has many lower-level schematics.

Note: You can create a list file with the UNIX ls command. The ls
command lists all the MGC components within a single directory,
and the sed command strips the trailer from .mgc_compoennt.attr.
The result is directed to the list file.

ls *.mgc_component.attr |
sed s/.mgc_component.attr//g > listfile

4. In the Enter Design Name field, enter the design name or the
name of the file listing the designs to retarget.

5. In the Schematic Name field, enter the name of the schematic
model.

The default is Schematic.

6. Select the Verbose mode switch.

7. Leave the Check and Save Switch field set to its default setting,
manual checking, to allow you to find Xilinx components that do
not convert properly. Once you become familiar with Convert
Design’s operation, you can select this field to have Convert
Design automatically check and save the schematic.

8. In the From technology field, type the name of the device family
from which you are converting. This field is case-insensitive.

9. In the To Technology field, type the name of the device family to
which you are converting. This field is case-insensitive.

10. If you want the results of the conversion saved to a log file, type
the name of the log file in the Log File Name field. The default is
log_file.

11. Set a beep to sound for every un-matched symbol.

12. Click on OK to start the conversion.
Mentor Graphics Interface/Tutorial Guide 7-3

Mentor Graphics Interface Guide
Merging Design Files from Other Sources
You can enter part of your design in a form other than schematics,
such as text entry or a RAM or ROM description. You can also bring
in netlist files produced by interface software other than Mentor
Graphics. Whatever the form of entry, the starting point for inclusion
into a Mentor Graphics schematic design must be a netlist file in EDIF
format. EDIF netlist files must be located in the working directory.
Without the EDIF file, this portion of the design cannot be included;
with it, the origin of the logic becomes irrelevant. To incorporate the
EDIF file into your schematic, you must create a symbol for the file
and place it on your schematic as you would any other component.

Simulation Models
Most Xilinx simulation models are built with Mentor Graphics
QuickPart tables. Flip-flops and memory elements are modeled with
QuickPart tables and behavioral language models, while gates are
modeled with QuickPart tables. All delay information is passed to
Xilinx components through the routed EDIF, Verilog, or VHDL file.

Analyzing Nets from the Schematic
This section describes how to select and analyze nets within the
pld_quicksim simulator.

You can probe nets in pld_quicksim by opening a schematic sheet
and selecting a net. To trace the selected signal, follow these steps:

1. Select the (schematic view) Add → Traces → Selected
menu path.

A trace window is created with the selected signals.

2. You can list and monitor selected nets by selecting the (schematic
view) Add → Lists → Selected and (schematic view) Add
→ Monitors → Selected menu items.

After you have set up a list of signals, you can save the list in a file to
use in future pld_quicksim sessions. Refer to the pld_quicksim
manuals from Mentor Graphics for detailed information on using the
simulator and creating these files.
7-4 Xilinx Development System

Advanced Techniques
Setting Global Reset and 3-State Signals
The way you set Global Reset and 3-State signals depends on which
part type you are using. The methods are described below.

FPGA Designs
Before you simulate an FPGA design, you must force the
//globalsetreset (XC4000E designs) or the //globalreset (XC5200
designs) or the //globalresetb (XC3000 designs); otherwise, the flip-
flops and latches do not function correctly.

1. Select your design directory icon in the Navigator window and
select Right Mouse Button → Open → pld_quicksim to
enter the pld_quicksim simulator.

2. Select the File → Open Sheet menu item to display the
Design Architect schematic.

3. Select the Add Force menu from the pld_quicksim Stimulus
palette.

4. Fill in the dialog box with the //globalsetreset signal name, 25
for the first time, and 1 for the first value; n for the second time,
and 0 for the second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim user guide for details.

The reset width emulates a power-on reset at the beginning of
simulation. Globalsetreset is now forced High at n ns. If you want
to reset the flip-flops after n ns, toggle the globalsetreset Low and
High for the necessary pulse width specified in The Xilinx
Programmable Logic Data Book.

The previous procedure is slightly different for XC4000 IOBs and 3-
state I/O pins.

To set XC4000E/EX IOB flip-flops, follow these instructions:

1. Set the IOB flip-flops High or Low on power-up by using the
INIT property on the IOB flip-flops.

2. To activate the signal and begin simulation, set globalsetreset by
selecting the Add Force menu item from the pld_quicksim
Stimulus palette.
Mentor Graphics Interface/Tutorial Guide 7-5

Mentor Graphics Interface Guide
3. Fill in the dialog box with the //globalsetreset signal name, 25
for the first time and 1 for the first value; n for the second time
and 25 for the second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim user guide for details.

N is the specified minimum reset pulse width for the given speed
grade part of the design, specified in The Xilinx Programmable
Logic Data Book.

XC4000E/EX parts have a global input state to make all output pins
3-state, which allows the isolation of the XC4000E/EX part in board
test. To simulate the global 3-state signal, force the signal named
//globalthreestate High using the Add Force command. Forcing the
signal High holds all chip I/Os in a high-Z (3-state) state until
//globalthreestate is forced to zero.

CPLD Designs
Before you simulate a XC7000 or XC9000 CPLD design, you must
force the //prld, otherwise, the flip-flops do not function correctly.

1. Select your design directory icon in the Navigator window and
select Right Mouse Button → Open → pld_quicksim to
enter the pld_quicksim simulator.

2. Select the File → Open Sheet menu item to display the
Design Architect schematic.

3. Select the Add Force menu from the pld_quicksim Stimulus
palette.

4. Fill in the dialog box with the //prld signal name, 25 for the first
time, and 1 for the first value; n for the second time, and 0 for the
second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim user guide for details.

The reset width emulates a power-on reset at the beginning of
simulation. If you want to reset the flip-flops after n ns, toggle the
prld High and Low for the necessary pulse width specified in The
Xilinx Programmable Logic Data Book.
7-6 Xilinx Development System

Chapter 8

Manual Translation

You can access the programs required to simulate and implement
your design through the graphical user interface of the Mentor
Design Manager or through the UNIX command line.

The first half of this chapter discusses the program sequence for
performing functional simulation, design implementation, and
timing simulation from the UNIX command line for different types of
designs. The second half describes the syntax of the individual
programs.

This chapter contains the following sections:

• “Functional Simulation” section

• “Design Implementation” section

• “Timing Simulation” section

• “Program Summary” section

Functional Simulation

Pure Schematic Designs
1. Create a viewpoint using pld_dve:

pld_dve -s design_name technology [viewpoint_name]

2. Perform functional simulation with pld_quicksim:

pld_quicksim design_name[/ viewpoint_name]

Schematic Designs with XNF Elements
1. Create a symbol in pld_da for each XNF element in your design.
Mentor Graphics Interface/Tutorial Guide — October 1997 8-1

Mentor Graphics Interface/Tutorial Guide
2. To the symbols, add the FILE property with the path name of the
XNF file as the value.

3. Run pld_men2edif to convert the entire design into EDIF.

4. Run pld_men2sim on this EDIF file to create a design component
that represents the entire design:

pld_edif2sim edif_file component_name technology -m -eddm [-sd
dir]

Use -sd to search additional directories other than the one
containing the source EDIF file to find supporting EDIF, NGO, or
XNF files.

5. Perform functional simulation with pld_quicksim:

pld_quicksim design_name[/ viewpoint_name]

Schematic Designs with LogiBLOX Elements
Schematic designs with LogiBLOX elements already contain simula-
tion models, so you only need to create a viewpoint, then simulate.

1. Create a viewpoint using pld_dve:

pld_dve -s design_name technology [viewpoint_name]

2. Perform functional simulation with pld_quicksim:

pld_quicksim design_name[/ viewpoint_name]

Mixed Schematic and VHDL with Schematic-on-Top
Designs

You can simulate the design either before or after you synthesize the
HDL module.

Before Synthesis

Follow these steps to simulate your design before you synthesize it:

1. Compile the VHDL module into a work library. If using Mentor
version B.2 and up, use -qhpro -syminfo when compiling, other-
wise Generate Symbol in the Design Analyzer will fail.

2. Create a symbol for the HDL module with pld_da using File →
Generate → Symbol .
8-2 Xilinx Development System

Manual Translation
3. The Generate Symbol dialog box opens as shown in the
“Generate Symbol Dialog Box” figure.

4. In the Generate Symbol dialog box, choose Entity as the source
and specify the library logical name, entity name, and default
architecture.

5. Instantiate the symbol on the schematic.

6. Create a viewpoint using pld_dve:

pld_dve -s design_name technology [viewpoint_name]

7. Run QuickHDL PRO to simulate the design by typing the
following syntax:

qhpro [options] design_name

Figure 8-1 Generate Symbol Dialog Box
Mentor Graphics Interface/Tutorial Guide 8-3

Mentor Graphics Interface/Tutorial Guide
After Synthesis

To simulate your VHDL design after you synthesize it, follow these
steps:

1. Synthesize the HDL module that is being included on the sche-
matic, and create an EDIF file from that synthesis.

2. Create a symbol for the HDL module with pld_da.

3. If the synthesis output was an EDIF file, run pld_edif2sim to
convert it to a Mentor EDDM single object:

pld_edif2sim edif_file symbol_component_name technology
{-m|-s} -eddm [-sd dir1 ... -sd dirn]

Use -m if the synthesis was performed with a Mentor tool; use -s
if the synthesis was performed with a Synopsys tool.

4. Perform functional simulation with pld_quicksim:

pld_quicksim design_name[/ viewpoint_name]

Where design_name is the EDDM design created by pld_edif2sim.

HDL-at-Top Designs
EDDM models must be inserted in the top-level HDL file.

1. Create a work library.

2. Perform the following steps for any schematic based components
that need to be included in the top level VHDL:

a) Run pld_dve -s to create a viewpoint for each EDDM
component.

b) Make sure the EDDM has an underlying symbol associated
with it. If not create one using pld_da → File →
Generate Symbol . Specify Schematics as the source in the
dialog box.

c) Run gen_arch to create entity and architecture source files.

d) Instantiate this component into the top-level VHDL file.

3. Compile the VHDL source files with qvhcom:

qvhcom [options] design_name
8-4 Xilinx Development System

Manual Translation
See the Mentor documentation for a description of the available
options.

4. Run QuickHDL PRO to simulate the design by typing the
following syntax:

qhpro [options] design_name

For a description of the QuickHDL PRO options, see the Mentor
Graphics documentation.

Pure HDL Designs
1. Create a working library.

2. Compile the HDL source files with qvhcom:

qvhcom [options] design_name

See the Mentor documentation for a description of the available
options.

3. Simulate the design by running QuickHDL. Type the following
syntax:

qhsim [options] [- lib_name] [primary [architecture [primary]
...]

Design Implementation

Schematic Designs (FPGA)
The procedure for implementing pure schematic designs, designs
with XNF elements, designs with LogiBLOX elements, and mixed-
model schematic-at-top designs is the same. Follow these steps:

1. Convert the EDDM design to EDIF format with pld_men2edif:

pld_men2edif design_name technology [viewpoint_name]
[-b bus_delimiter]

2. Submit the design to NGDBuild, which reads a file in EDIF or
XNF format, reduces all the components in the design to Xilinx
primitives, runs a logical design rule check on the design, and
writes an NGD file as output.

ngdbuild -p technology design_name

For example:
Mentor Graphics Interface/Tutorial Guide 8-5

Mentor Graphics Interface/Tutorial Guide
ngdbuild -p xc4000ex test -sd dir

3. Map the logic to the components in the FPGA by typing the
following syntax:

map design_name.ngd -p partname

For example:

map -p 4000EXHQ240-3 test.ngd

4. Place and route the design:

par -w design_name.ncd design_name.ncd

The first file is created by the MAP utility, and PAR creates the
other one.

For example:

par -w test.ncd test.ncd (writes out test.ncd created
by map)

par -w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design:

ngdanno design_name.ncd design_name.ngm

6. Convert the design to an EDIF file:

ngd2edif -a -v mentor design_name.nga -w

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax:

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

Schematic Designs (CPLD)
When using CPLDs, the procedure for implementing pure schematic
designs, designs with XNF elements, and mixed-model schematic-at-
top designs is the same. Follow these steps:

1. Convert the EDDM design to EDIF format with pld_men2edif:
8-6 Xilinx Development System

Manual Translation
pld_men2edif design_name technology [viewpoint_name]

2. Submit the design to the CPLD fitter.

cpld -p partname design_name [-sd dir]

3. Convert the design to an EDIF file:

ngd2edif -a -v mentor design_name.nga -w

4. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax:

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

HDL-at-Top Designs
1. Synthesize the HDL modules in your design, and create an EDIF

or XNF file from that synthesis.

2. Convert the EDIF or XNF file to an NGD file by using ngdbuild:

ngdbuild -p technology design_name

For example:

ngdbuild -p XC4000E test (where test is the root name
for the EDIF or XNF file)

Note: Referenced Mentor EDDM models must have their corre-
sponding EDIF files created and residing in the same directory where
the top level EDIF or XNF file resides. If they reside in other directo-
ries, you must use the -sd option to specify additional directories to
search for such files.

3. Map the logic to the components in the FPGA by typing the
following syntax:

map design_name.ngd -p partname

For example:

map -p 4000EXHQ240-3 test.ngd

4. Place and route the design:

par -w design_name.ncd design_name.ncd
Mentor Graphics Interface/Tutorial Guide 8-7

Mentor Graphics Interface/Tutorial Guide
The first file is created by the MAP utility, and PAR creates the
other one.

For example:

par -w test.ncd test.ncd (writes out test.ncd created
by map)

par -w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design:

ngdanno design_name.ncd design_name.ngm

6. Convert the design to an EDIF file:

ngd2edif -a -v mentor design_name.nga -w

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax:

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

Pure HDL Designs
1. Synthesize the HDL file, and create an EDIF or XNF file from that

synthesis.

2. Convert the EDIF or XNF file to an NGD file by using ngdbuild:

ngdbuild -p technology design_name

For example:

ngdbuild -p XC4000E test (where test is the root name
for the EDIF or XNF file)

Note: Referenced Mentor EDDM models must have their corre-
sponding EDIF files created and residing in the same directory where
the top level EDIF or XNF file resides.

3. Map the logic to the components in the FPGA by typing the
following syntax:

map design_name.ngd -p partname
8-8 Xilinx Development System

Manual Translation
For example:

map -p 4000EXHQ240-3 test.ngd

4. Place and route the design:

par -w design_name.ncd design_name.ncd

The first file is created by the MAP utility, and PAR creates the
other one.

For example:

par -w test.ncd test.ncd (writes out test.ncd created
by map)

par -w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design:

ngdanno design_name.ncd design_name.ngm

6. Convert the design to an EDIF file:

ngd2edif -a -v mentor design_name.nga -w

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax:

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

Timing Simulation

Schematic Designs
The procedure for performing timing simulation on pure schematic
designs, designs with XNF elements, designs with LogiBLOX
elements, and mixed-model schematic-at-top designs is the same.
Follow these steps:

1. Use pld_edif2tim to create a Mentor EDDM model.

pld_edif2tim design_name.edn

1. Create a viewpoint using pld_dve:
Mentor Graphics Interface/Tutorial Guide 8-9

Mentor Graphics Interface/Tutorial Guide
pld_dve -s design_lib/design technology [viewpoint_name]

2. Run pld_quicksim to perform the timing simulation by using the
following syntax:

pld_quicksim -cp design_lib/ design_name

This command brings up DVE for cross-probing.

For example:

pld_quicksim -cp test_lib/test

3. Cross-probe between the original design and the new design.

4. Open the Viewpoint that was used to create the original design
EDIF netlist.

5. Open the schematic sheet in pld_dve.

6. Select the signals to trace in the pld_dve schematic.

Pld_quicksim automatically creates a trace window and adds the
selected signals to it. Use pld_dve’s schematic sheet window as if
it were the sheet in the pld_quicksim window.

Pure HDL Designs
You can create either an output EDIF file or output VHDL/Verilog
file from the Xilinx Design Manager (or Xilinx core tool scripts).

EDIF Method

1. Submit the design to pld_edif2tim, which converts an EDIF
netlist to a Mentor single-object EDDM file that can be submitted
to pld_quicksim for timing simulation. Use this syntax:

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the design
on which you can perform timing simulation.

2. Create a viewpoint with pld_dve:

pld_dve -s design_lib/ design_name technology

3. Simulate the timing with pld_quicksim:

pld_quicksim design_lib/ design_name
8-10 Xilinx Development System

Manual Translation
VHDL/Verilog Method

1. Compile the HDL source files with qvhcom:

qvhcom [options] design_name

See the Mentor documentation for a description of the available
options.

2. Simulate the timing with QuickHDL:

qhsim options [- lib_name] [primary [architecture [primary]
...]

Program Summary
This section briefly describes the UNIX command-line syntax of the
commands that activate the Mentor and Xilinx programs that you can
use to process your designs manually. They are listed in alphabetical
order.

CPLD
CPLD is a C-shell script for fitting into the XC7000 and XC9000 fami-
lies. For a description of the CPLD command syntax and options, see
the CPLD Schematic Design Guide or run the CPLD command with no
parameters.

Dsgnmgr
Dsgnmgr, the Xilinx Design Manager, is Xilinx’s design implementa-
tion tool.

The dsgnmgr syntax can take the following three forms:

dsgnmgr

dsgnmgr project

dsgnmgr -design design.edif

When you use the first form of the syntax, the Design Manager
appears with no project loaded. A project in this context means a
Xilinx project.

When you use the second form of the syntax, the Design Manager
appears but with the specified project loaded or opened. The project
is a fully specified file name with a .prj extension. It is a file created by
Mentor Graphics Interface/Tutorial Guide 8-11

Mentor Graphics Interface/Tutorial Guide
the Design Manager and contains the project information for a Xilinx
project.

When you use the third form of the syntax, the Design Manager finds
the design. A design in this context is a netlist file such as an EDIF
file. If the design does not already have a Xilinx project associated
with it, the Design Manager creates a project and appears with this
project loaded. If the design does already have a Xilinx project associ-
ated with it, the Design Manager appears with that project loaded.

EDIF2NGD
Edif2ngd converts an EDIF 2 0 0 netlist to a Xilinx NGO file. The EDIF
file includes the hierarchy of the input schematic. The output NGO
file is a binary database describing the design in terms of the compo-
nents and hierarchy specified in the input design file.

For a description of the edif2ngd syntax and options, see the Develop-
ment System Reference Guide.

Editor
The Notepad editor is a full-featured, window-based text editor. It is
only available in the graphical user interface of the Mentor tools.

Gen_Arch
Gen_Arch creates VHDL entity and architecture from a Mentor
(EDDM) component.

For a description of the Gen_Arch syntax and options, see the Mentor
Graphics documentation.

MAP
MAP is a Xilinx tool that maps the logic to the components in an
FPGA design.

For a description of the MAP syntax and options, see the Development
System Reference Guide.

NGDAnno
NGDAnno is Xilinx’s back-annotation utility.
8-12 Xilinx Development System

Manual Translation
For a description of the NGDAnno syntax and options, see the Devel-
opment System Reference Guide.

NGDBuild
NGDBuild reads a file in EDIF or XNF format, reduces all the compo-
nents in the design to Xilinx primitives, runs a logical design rule
check on the design, and writes an NGD file as output.

For a description of the NGDBuild syntax and options, see the Devel-
opment System Reference Guide.

NGD2EDIF
Ngd2edif converts a Xilinx NGD or NGA file to an EDIF 2 0 0 netlist.

For a description of the ngd2edif syntax and options, see the Develop-
ment System Reference Guide.

PAR
PAR is Xilinx’s place and route tool.

For a description of the PAR syntax and options, see the Development
System Reference Guide.

Pld_da
Pld_da is Design Architect, a schematic editor configured for Xilinx
designs. For a description of Design Architect, see the Mentor Graphics
Design Architect Users Manual.

Pld_dve
Pld_dve creates a simulation or custom viewpoint for a Xilinx design.

The pld_dve syntax is the following:

pld_dve [-s] design_name technology [viewpoint_name]

• -s creates a simulation viewpoint for pld_quicksim (chip-level/
board-level functional/timing). It is optional. If you do not use -s
but specify a viewpoint name, pld_dve opens in the interactive
mode and opens the specified viewpoint.

• design_name is the name of your Mentor design component.
Mentor Graphics Interface/Tutorial Guide 8-13

Mentor Graphics Interface/Tutorial Guide
• technology specifies the PLD architecture.

• viewpoint_name specifies the name of the design viewpoint to
generate. This is optional; pld_dve does not perform any custom-
ization on this viewpoint if -s is not specified.

When pld_dve creates a simulation viewpoint—that is, when you use
the -s option—and if the viewpoint contains COMP or FILE primi-
tives, pld_dve removes these primitives, then creates a viewpoint
that can be submitted to pld_quicksim.

Pld_edif2sim
Pld_edif2sim is a utility that converts a Mentor, Synopsys, or any
other Xilinx compatible EDIF file into a Mentor EDDM single object,
VHDL netlist, Verilog netlist, or NGO file.

The pld_edif2sim syntax is the following:

pld_edif2sim edif_file symbol_component_name | output_file_name
technology {-s|-o|-m} {-eddm|-vhdl|-verilog|-ngo}
{-hier|-flat} {-ignore_unexpanded} [-sd dir1 ... -sd
dirn] [-help]

• edif_file is the name of the EDIF file from Mentor, Synopsys, or
Data I/O.

• symbol_component_name is the name of the component. This is
used for the -eddm option.

• output_file_name is the name of the output VHDL or Verilog. This
is used for the -vhdl or -verilog options.

• technology specifies the PLD architecture.

• -ngo specifies that pld_edif2sim should produce a
design_name.ngo file only.

• -s indicates that the EDIF file is a Synopsys file.

• -o indicates that the EDIF file is any third party vendor’s EDIF
that is compatible with Xilinx.

• -m indicates that the EDIF file is a Mentor file.

• -eddm specifies that the EDIF file be converted to Mentor’s
EDDM single object.

• -vhdl specifies that the EDIF file be converted to a VHDL file.
8-14 Xilinx Development System

Manual Translation
• -verilog specifies that the EDIF file be converted to a Verilog file.

• -sd specifies additional directories to search to find any
supporting EDIF, XNF, or NGO files.

• -hier specifies that the VHDL/Verilog netlist is hierarchical.

• -flat specifies that the VHDL/Verilog netlist is flat (default is flat).

• -ignore_unexpanded specifies that if there are any unknown
primitives in the design, pld_edif2sim does not exit with an error
status; instead, it ignores this condition and goes on. By default, it
exits with an error message.

• -help allows you to obtain more information on pld_edif2sim and
its options. It is optional.

Pld_edif2tim
Pld_edif2tim is the Mentor EDIF netlist reader, which converts an
EDIF netlist to a Mentor single-object EDDM file that can be
submitted to pld_quicksim for timing simulation.

The pld_edif2tim syntax is the following:

pld_edif2tim edif_file [-r] [-help]

• edif_file is the name of the EDIF file.

• -r specifies that if design_lib already exists, it will be replaced.

• -help allows you to obtain more information on pld_edif2tim and
its options. It is optional.

Pld_men2edif
Pld_men2edif is the Mentor EDIF netlist writer, which creates a hier-
archical EDIF netlist from a Mentor schematic design.

The pld_men2edif syntax is the following:

pld_men2edif design_name technology [viewpoint_name]
[-b ' delimiter'] -circular [-help]

• design_name is the name of your Mentor design component.

• technology specifies the PLD architecture.

• viewpoint_name specifies the name of the design viewpoint to use.
It is optional. If a viewpoint does not exist, pld_men2edif will
Mentor Graphics Interface/Tutorial Guide 8-15

Mentor Graphics Interface/Tutorial Guide
create one. If you do not specify the viewpoint, it will use the
viewpoint called default.

• -circular overcomes the forward referencing problem that occurs
if a primitive in one library is referenced in another library before
its parent library is defined in EDIF. In this case the EDIF reader
fails to process the EDIF file. The -circular switch prevents this
problem.

• -b 'delimiter' specifies the bus dimension separator style as an
angle bracket, square bracket or paren.

delimiter is one of the following: Angle | Square | Paren

The -b option instructs the EDIF writer to convert the bus delim-
iters into the specified delimiter. If -b is not specified, '()' will be
used for bus delimiters by default.

• -help allows you to obtain more information on pld_men2edif
and its options. It is optional.

Pld_quicksim
Pld_quicksim is an interactive logic simulator that performs func-
tional or timing simulation on your designs.

The pld_quicksim syntax is the following:

pld_quicksim [-cp] design_name[/ viewpoint_name]

• -cp ensures that cross-probing is performed. It is optional. If you
specify this option, QuickSim invokes DVE to allow viewing the
front-end schematic for cross-probing. You must then open the
viewpoint on the original design that was used to create the EDIF
netlist.

• design_name is the name of your Mentor design directory.

• viewpoint_name specifies the name of the design viewpoint to use.
It is optional. If you specify a viewpoint name, it must be
preceded with a slash and appended to the design name, as in the
following example:

pld_quicksim test/myvpt

For a description of the other options available in pld_quicksim, see
the Mentor Graphics QuickSim Users and Reference Manuals.
8-16 Xilinx Development System

Manual Translation
To enable cross-probing between front-end and back-end designs in
timing simulations, specify -cp. In this case, the syntax is the
following:

pld_quicksim -cp test_lib/test

Pld_xnf2sim
Pld_xnf2sim is a utility that converts an XNF file to a Mentor EDDM
single object, VHDL netlist, or Verilog netlist.

The pld_xnf2sim syntax is the following:

pld_xnf2sim top-level_xnf_file [-list listfile]
symbol_component_name | output_file_name technology
{-ignore_unexpanded} [-s] {-eddm|-vhdl|-verilog}
{-hier|-flat} [-sd dir1 ... -sd dirn] [-help]

• top-level_xnf_file is the top-level XNF file.

• -list listfile allows you to list all the related XNF files to be
converted. It is optional. If you do not specify -list, all XNF files
located in the directory in which the top-level XNF file resides are
used as referenced by the top-level XNF file.

• symbol_component_name is the name of the Mentor component for
which a simulation model is to be created.

• output_file_name is the name of output VHDL or Verilog (for -
vhdl or -verilog option)

• technology specifies the PLD architecture.

• -s indicates that the XNF file is a Synopsys file. It is optional.

• -eddm specifies that the XNF file be converted to an EDDM
single object.

• -vhdl specifies that the XNF file be converted to a VHDL file.

• -verilog specifies that the XNF file be converted to a Verilog file.

• -hier specifies that VHDL/Verilog is hierarchical.

• -flat specifies that VHDL/Verilog is flat (This is the default).

• -ignore_unexpanded specifies that if there are any unknown
primitives in the design, pld_edif2sim does not exit with an error
status; instead, it ignores this condition and goes on. By default, it
exits with an error message.
Mentor Graphics Interface/Tutorial Guide 8-17

Mentor Graphics Interface/Tutorial Guide
• -sd specifies additional directories to search to find any
supporting EDIF, XNF, or NGO files.

XNF file(s) submitted to pld_xnf2sim must represent the entire
design, including the top-level IO ports (EXT statements). Feeding an
XNF file that only represents one part of a design (with no IO pads)
results in an invalid simulation model. You can use the following
procedure to run functional simulation on a schematic design that
consists of a partial XNF:

1. Create symbols representing the XNF files.

2. Add the FILE property with the value equal to the pathname of
the XNF file.

3. Instantiate these symbols on your schematic.

4. Create an EDIF file with pld_men2edif (using the top-level sche-
matic).

5. Feed this EDIF file to pld_edif2sim to create an EDDM model.

6. Simulate this EDDM model with pld_quicksim.

QuickHDL
QuickHDL (qhsim), is Mentor’s simulator for behavioral VHDL,
Verilog, VHDL-based, and Verilog-based gate-level designs
composed of Unified Libraries or SIMPRIM elements.

The QuickHDL syntax is the following:

qhsim options [- lib_name] [primary [architecture
[primary] ...]

For a description of the QuickHDL options, see the Mentor Graphics
documentation.

QuickHDL PRO
QuickHDL PRO (qhpro) is Mentor’s simulator for mixed-model sche-
matic, VHDL, and Verilog designs. It can invoke QuickHDL to simu-
late HDL-based elements, or QuickSim to simulate gate-level
schematics.

The QuickHDL PRO syntax is the following:

qhpro options design_name
8-18 Xilinx Development System

Manual Translation
For a description of the QuickHDL PRO options, see the Mentor
Graphics documentation.

QuickPath
QuickPath performs a static and slack timing analysis on designs. For
a description of the QuickPath syntax and options, see the Mentor
Graphics documentation.

Qvhcom
Qvhcom compiles the VHDL to be able to run QuickHDL (qhsim)
simulator.

qvhcom [options] design_name

See the Mentor documentation for a description of the available
options.

Qvlcom
Qvlcom compiles the Verilog files to be able to run QuickHDL
(qhsim) simulator.

qvlcom [options] design_name

See the Mentor documentation for a description of the available
options.

SysArch
SysArch is the System Architect, which creates system-level designs.
For a description of the SysArch syntax and options, see the Mentor
Graphics documentation.

Pld_sg
Pld_sg invokes the Mentor schematic generator (SG), which creates a
schematic from an EDDM model. You must have a Mentor schematic
generator license in order to use this tool. Usage is as follows:

pld_sg [options] [viewpoint_path]

See the Mentor documentation for a description of the available
options.
Mentor Graphics Interface/Tutorial Guide 8-19

Mentor Graphics Interface/Tutorial Guide
8-20 Xilinx Development System

Chapter 9

Schematic Design Tutorial

This chapter contains the following sections:

• “Introduction” section

• “Required Background Knowledge” section

• “Design Flow” section

• “Software Installation” section

• “Starting the Design Manager” section

• “Copying the Tutorial Files” section

• “Starting Design Architect” section

• “Targeting the Design for the XC9000 Family” section

• “Completing the Calc Design” section

• “Controlling FPGA/CPLD Layout from the Schematic” section

• “Modifying the Design for Non-XC4000E/EX Devices” section

• “Using LogiBLOX” section

• “Other Special Components” section

• “Using a Constraints File” section

• “Performing Functional Simulation” section

• “Using Pld_men2edif” section

• “Using the Xilinx Design Manager” section

• “Performing Timing Simulation” section

• “Examining Routed Designs with EPIC” section

• “Verifying the Design Using a Demonstration Board” section
Mentor Graphics Interface/Tutorial Guide—October 1997 9-1

Mentor Graphics Interface/Tutorial Guide
• “Making Incremental Design Changes” section

• “Command Summaries” section

• “Further Reading” section

Introduction
This chapter guides you through a typical field-programmable gate
array (FPGA) and complex programmable logic device (CPLD)
design procedure from schematic entry to completion of a func-
tioning device. It uses a design called Calc, a 4-bit processor with a
stack. In the first part of the tutorial, you use the Design Architect, the
Mentor Graphics design entry tool, to create the schematics and
symbols for the Calc design. Next you use pld_quicksim, the Mentor
Graphics simulator, to perform a functional simulation on it. In the
third step, you use the Xilinx Design Manager to implement the
design. Finally, you verify the design’s timing by again using
pld_quicksim. The simple design example used in this tutorial
demonstrates many system features that you can apply to more
complex FPGA and CPLD designs.

Note: Although this tutorial describes creating and processing FPGA
designs, you can apply most of the steps to CPLD designs.

This tutorial includes instructions on the following:

• Installing the tutorial files

• Using Mentor Graphics Design Manager

• Targeting the tutorial design (Calc) for an XC4000E or an XC9000
device

• Using Design Architect

• Completing the ALU block in the Calc design

• Adding the STARTUP block to tie signals to the global reset

• Adding device information in the Calc design

• Exploring Xilinx library elements

• Exploring the XC4000E oscillator

• Controlling device layout from the schematic

• Editing the Calc design for a non-XC4000E/EX device
9-2 Xilinx Development System

Schematic Design Tutorial
• Performing functional simulation on the Calc design in
pld_quicksim

• Converting the design to an EDIF file using pld_men2edif

• Implementing the design using pld_dsgnmgr

• Configuring the Xilinx Design Manager/Flow Engine

• Performing timing simulation on the routed Calc design in
pld_quicksim

• Examining routed designs with the Editor for Programmable ICs
(EPIC)

• Verifying the Calc design on a demonstration board

• Making incremental design changes

• Command summaries

Required Background Knowledge
This tutorial assumes that you have a basic understanding of the
following:

• UNIX operating system

• Motif Windows. Mentor Graphics applications conform to the
Motif window style.

Note: When you are instructed to close a window, it is important that
you exit from the window rather than iconize it.

Design Flow
See the “Design Flows” section of the “Introduction” chapter for the
design flow involved in using the Mentor Graphics interface. That
chapter also describes the general steps for creating a design using
the Mentor interface.

This tutorial describes an incremental design methodology. In incre-
mental design, you process the design, make a small change to the
design, and process the design again. You use place and route infor-
mation from the previous design processing cycle to constrain subse-
quent cycles of the same design. When you use this method, timing
information in a design remains relatively stable through many
Mentor Graphics Interface/Tutorial Guide 9-3

Mentor Graphics Interface/Tutorial Guide
processing cycles. Also, place and route time is considerably reduced
since much of the processing is done in previous cycles.

You can target the tutorial design for an XC4000E or XC9000 device.
You can use a Xilinx demonstration board to test the functionality of
your design. Make sure your demonstration board and software
support your selected device. To determine compatibility, refer to the
release notes that came with your software package.

This tutorial uses the following conventions to refer to the various
device families:

• XC3000 family—includes XC3000, XC3000A, XC3000L, XC3100,
and XC3100A devices

• XC4000 family—includes XC4000, XC4000E, XC4000EX,
XC4000L, and XC4000XL devices

• XC5200 family—includes XC5200 devices

• XC9000 family—includes XC9500 and XC9500F devices

Software Installation

Required Software
The following versions of software are required to perform this tuto-
rial:

• Mentor Graphics Version B.1 or later, including Mentor Design
Manger, Design Architect, QuickSim, QuickPath, as well as the
programs needed to read and write EDIF netlists (ENRead and
ENWrite), which require special licensing

• Xilinx/Mentor Graphics Interface Version M1

• Xilinx Development System Version M1

Before Beginning the Tutorial
Before beginning the tutorial, set-up your workstation to use Mentor
Graphics and XACT Development System software as follows:

1. Verify that your system is properly configured. Consult the
release notes that came with your software package for more
information.
9-4 Xilinx Development System

Schematic Design Tutorial
2. Install the following sets of software:

• Xilinx Development System Version M1

• Xilinx/Mentor Graphics Interface Version M1

• Mentor Graphics Version B.1 or later, including Mentor
Design Manger, Design Architect, QuickSim, QuickPath, as
well as the programs needed to read and write EDIF netlists
(ENRead and ENWrite), which require special licensing

3. Verify the installation, using the “Configuring Your System”
section of the “Getting Started” chapter as a guide.

4. Add a reference to $XILINX_TUTORIAL to your
MGC_LOCATION_MAP file.

Every symbol and schematic in your design contains references
which indicate where design objects reside on your disk or
network. The tutorial designs use variables in their reference
definitions so they can be easily relocated. All of the tutorial
designs use the variable $XILINX_TUTORIAL in their path refer-
ences. $XILINX_TUTORIAL must be defined in the file pointed
to by $MGC_LOCATION_MAP. For example, the design object
seg7dec in the $XILINX/mentor/tutorial/calc_sch directory uses
the path reference $XILINX_TUTORIAL/calc_sch/seg7dec to
define where it is located in the directory structure. If the tutorial
directories were copied to the path /home/bclinton/mentor/
xtutorial, the following two lines must be added to the file
pointed to by $MGC_LOCATION_MAP:

$XILINX_TUTORIAL
/home/bclinton/mentor/xtutorial

If you make a query to determine where the design object
“$XILINX_TUTORIAL/calc_sch/stack” is located, the Mentor
Graphics tools use this definition to determine that stack is at /
home/bclinton/mentor/xtutorial/calc_sch/stack.

With this definition added to the location map as defined in the
“Getting Started” chapter, the complete location-map file should,
at a minimum, look like:

MGC_LOCATION_MAP_1
(empty line)
$MGC_GENLIB
(empty line)
Mentor Graphics Interface/Tutorial Guide 9-5

Mentor Graphics Interface/Tutorial Guide
$LCA
(empty line)
$SIMPRIMS
(empty line)
$XILINX_TUTORIAL
/home/bclinton/mentor/xtutorial

Refer to the Mentor Graphics documentation for more informa-
tion on location maps.

Installing the Tutorial
You can optionally install the tutorial files when you install the
Xilinx/Mentor Graphics interface software. If you have already
installed the software, but are not sure whether you specified tutorial
installation, check your software installation for a $XILINX/mentor/
tutorial directory. This directory contains the tutorial files.

Standard Directory Structure

When you create a design object in Mentor Graphics, a directory is
created in the project directory with the same name as the design
object. This directory contains a schematic directory, symbol files,
viewpoint files, and part interfaces. The directory is identified as a
design object by the file, design_name.mgc_component.attr, that
resides at the same level as the directory which has the name. For
example, if you create a schematic named calc, a calc directory is
created, and at the same level the file, calc.mgc_component.attr, is
created. The calc directory contains all the files that describe calc.

Note: In this tutorial, file names and directory names are in lower
case and the design example is referred to as Calc.

Tutorial Directory and Files

You will complete the Calc design in this tutorial. During the tutorial
installation, the $XILINX/mentor/tutorial directory is created;
design object directories are created; and the tutorial files needed to
complete the design are copied to the calc_sch directory. Some of the
files you need to complete the tutorial design are not copied, because
you create these files in the tutorial. However, solutions directories
with all input and output files are provided. They are located in the
9-6 Xilinx Development System

Schematic Design Tutorial
$XILINX/mentor/tutorial directory and are listed in the following
table.

The solution directories contain the design files for the completed
tutorial, including schematics, intermediate files, and the bitstream
file. Different intermediate files are created for different device fami-
lies. Do not overwrite any files in the solutions directories.

The calc_sch directory contains the incomplete copy of the tutorial
design. The installation program copies a few intermediate files to the
calc_sch tutorial directory, and you create the remaining files when
you perform the tutorial. As described in a later step, you copy the
calc_sch directory to another area and perform the tutorial in this
new area. The following table lists and describes the directories and
files in the calc_4ke solution directory.

Table 9-1 Tutorial Design Directories

Directory Description

calc_sch Schematic (Design Architect) tutorial directory

calc_4ke Schematic solution directory for XC4003E-PC84

calc_9k Schematic solution directory for XC95108-PC84

calc_sot Schematic-on-top tutorial directory (uses XC4003E)

Table 9-2 Tutorial Directories/Files in the Calc_4ke Directory

Directory or File
Name

Description

calc Top-level design directory

control Design directory for control module

statmach Design directory for state controller module

alu Design directory for ALU module

muxblk2 Design component for arithmetic function in
ALU

andblk2 Design component for arithmetic function in
ALU

clockgen System-clock generator

orblk2 Design component for arithmetic function in
ALU
Mentor Graphics Interface/Tutorial Guide 9-7

Mentor Graphics Interface/Tutorial Guide
xorblk2 Design component for arithmetic function in
ALU

muxblk5 Design component for multiplexer arithmetic
outputs in ALU

muxlbk2a Design component for multiplexer operator
function in control

stack Design component for stack

seg7dec Design component for 7-segment decoder

debounce Design component for debounce circuit

calc.edif EDIF netlist files created by pld_men2edif

pld_men2edif.log pld_men2edif log file

calc.ngo Native Generic Object created by EDIF2NGD

calc_4ke.ucf User Constraints File

calc.bld Design database report generated by
NGDBUILD

calc.ngd Native Generic Design created by NGDBUILD

calc.mrp Mapping report generated by MAP

calc.pcf Physical Constraints File created by MAP

calc_map.ncd Native Circuit Description created by MAP

calc.par Place-and-Route report generated by PAR

calc.pad Pinout description generated by PAR

calc.ncd Routed NCD file created by PAR

calc.twr Timing report generated by Trace (TRCE)

calc.bit Configuration bitstream created by BITGEN

calc.edn Timing-model EDIF netlist created by
NGD2EDIF

calc_lib/calc QuickSim timing simulation model created by
pld_edif2tim

pld_edif2tim.log pld_edif2tim log file

Table 9-2 Tutorial Directories/Files in the Calc_4ke Directory

Directory or File
Name

Description
9-8 Xilinx Development System

Schematic Design Tutorial
In addition to the files listed above, there is a file called file-
name.mgc_component.attr associated with each design component
directory. This file identifies the corresponding directory as a Mentor
Graphics design component.

Starting the Design Manager
To start the Design Manager configured for Xilinx designs, type the
following at the operating system command line:

pld_dmgr

The Design Manager Window appears as shown in the following
figure.

Figure 9-1 Mentor Design Manager Window
Mentor Graphics Interface/Tutorial Guide 9-9

Mentor Graphics Interface/Tutorial Guide
The Design Manager window contains the following three sub-
windows:

• Tools Window

• Navigator Window

• Command Palette

Each sub-window is described below.

Mentor Graphics windows conform to Motif standards. You should
know how to move, close, and minimize (or iconize) the Motif
windows. When multiple windows are open, the active window has
a blue border and inactive windows have a grey-brown border. For
more information on Design Manager operation, refer to the Mentor
Graphics documentation.

Tools Window
The Tools window on the left contains icons representing all the
Mentor Graphics and Xilinx applications you need to execute the
steps in the tutorial. A description of these programs is given in the
“Features” section of the “Introduction” chapter.

Navigator Window
Use the Navigator window to move around the directory hierarchy
and select files, folders, and other types of design objects.

The Navigator has five buttons located at the bottom of the window,
three of which are most used. The two buttons on the left have up
and down arrows on them. Use these buttons to move up and down
the directory hierarchy. To move down the hierarchy with the down
arrow, you must first select the desired folder in the Navigator. The
rightmost button has four arrows on it, one pointing in each direc-
tion. When you select this button, a dialog box appears and you can
type in the path to the directory you want to display in the Navigator
window. Using this button is sometimes quicker and easier than
using the up and down arrows.

Command Palette
Use the Command Palette to access the most commonly used Design
Manager menu items.
9-10 Xilinx Development System

Schematic Design Tutorial
Copying the Tutorial Files
Mentor Graphics design objects contain absolute directory path refer-
ences. Since many of these paths are self-referencing, using the cp or
mv command in Unix to copy or move these design objects to new
directories can break those references. The Mentor Graphics Design
Architect allows design objects to be copied or moved across directo-
ries by adjusting path references within each design object as it is
relocated.

To demonstrate the Copy operation in Design Manager, perform the
following steps:

1. In the Navigator window, move to the directory where the tuto-
rial files were installed.

2. Select the calc_sch directory.

3. To see the references in this design, choose Right Mouse
Button → Report → Show References → For Design .

A List of Unique References underneath the calc_sot directory is
displayed. An example reference item might be:

$XILINX_TUTORIAL/calc_sot/alu/alu:mgc_symbol[6]

This indicates that an ALU symbol (version 6 under Mentor
Graphics’ versioning system) is referenced by the path
$XILINX_TUTORIAL/calc_sot/alu/alu.

All references in the design should contain either $LCA or
$XILINX_TUTORIAL.

4. Close the List of Unique References window.

5. With the calc_sch directory selected in the Navigator window,
choose Right Mouse Button → Edit → Copy.

A dialog box appears.

6. In the dialog box, type the directory path where you want the
working copy of the tutorial files copied. For example, if you
want to copy the files to /home/dum/tutor/mentor, enter /
home/dum/tutor/mentor/calc_sch. Click OK.

7. Use the Navigator to change directories to the location of the
working copy of calc_sch. In the example above, you would click
Mentor Graphics Interface/Tutorial Guide 9-11

Mentor Graphics Interface/Tutorial Guide
the “four-arrow” button at the bottom of the Navigator window,
then type /home/dum/tutor/mentor in the dialog box.

8. Select the calc_sch directory.

9. As before, choose Right Mouse Button → Report → Show
References → For Design . The example reference above
with the ALU symbol appears:

/home/dum/tutor/mentor/calc_sch/alu/alu:mgc_symbol[6]

10. Close the List of Unique References window.

11. Modify your MGC_LOCATION_MAP file so that the
$XILINX_TUTORIAL variable points to the directory where the
copy of calc_sch is located. In the example above, change the
$XILINX_TUTORIAL section of the file so that it reads:

$XILINX_TUTORIAL
/home/dum/tutor/mentor

12. Read the newly modified location map into Design Architect by
selecting MGC→ Location Map → Read Map from the menu
bar.

13. In the dialog box, type $MGC_LOCATION_MAP, then click OK.

The $XILINX_TUTORIAL soft name now points to the new tuto-
rial area. However, references in the calc_sch directory use /
home/dum/tutor/mentor instead of its new equivalent,
$XILINX_TUTORIAL. While this is legal, it is best in Mentor to
use soft names wherever possible.

14. To convert the hard name back into a soft name, select the
calc_sch directory and choose Right Mouse Button → Edit
→ Change → References .

15. In the Change References dialog box, enter for From: /home/
dum/tutor/mentor (or whatever directory is applicable to your
case). For To, enter $XILINX_TUTORIAL.
9-12 Xilinx Development System

Schematic Design Tutorial
Figure 9-2 Change References Dialog Box

16. Click OK.

The Change References process begins.

17. After the process is finished, you can do another Show Refer-
ences operation to verify that all references have been changed
properly.

Note: You can copy or move a design object without rewriting path
references by selecting Options → Convert References? No
from the Copy or Move dialog box.

Starting Design Architect
To open the Calc design in Design Architect, perform the following
steps:

1. Select MGC→ Location Map → Set Working Directory
from the menu bar.

A small dialog box appears at the bottom of the screen.

2. Type $XILINX_TUTORIAL/calc_sch in the Directory field of
the dialog box, then select OK or press return.
Mentor Graphics Interface/Tutorial Guide 9-13

Mentor Graphics Interface/Tutorial Guide
This sets the working directory to the directory where you work
on the tutorial.

3. Select the $XILINX_TUTORIAL/calc_sch/calc design object in
the Navigator window.

4. Select Right Mouse Button → Open → pld_da .

The Design Architect window appears and displays the Calc
design as shown in the figure below.

5. Resize the Design Architect window to cover the entire screen.

Figure 9-3 Top-Level Schematic for Calc
9-14 Xilinx Development System

Schematic Design Tutorial
Using the Mouse in Design Architect

Left Mouse Button

Use this button to select or de-select objects on a sheet. A selected
object has a white dashed outline. Hold down this button and drag
the mouse to select multiple objects.

Middle Mouse Button (Strokes)

Use the middle mouse button to perform actions known as strokes.
You can use strokes as shortcuts to perform common tasks. Perform a
stroke by pressing and holding the middle mouse button while
moving the mouse to draw a line with a specific shape. Design Archi-
tect converts the shape you draw to a number string to determine
which command to execute. The number is determined as shown in
the following figure:

Figure 9-4 Using Strokes, Example of “Z” stroke (1235789)

For example, a “Z” stroke represents the number 1235789. To deter-
mine the commands that the strokes represent, select Help → On
Strokes from the menu bar at the top of the screen. You can also
hold down the middle mouse button and draw the shape of a ques-
tion mark “?” to display the stroke help screen. When applicable, this
tutorial uses strokes and describes them using the numbering system
shown in the “Using Strokes, Example of “Z” stroke (1235789)”
figure.

Right Mouse Button

You can use the right mouse button to display different menus
depending on the object(s) selected on the schematic sheet. For

1 2 3

654

7 8 9
X7734
Mentor Graphics Interface/Tutorial Guide 9-15

Mentor Graphics Interface/Tutorial Guide
example, if a net is selected when you press the right mouse button,
the Net menu appears. You can access other menus, regardless of
what is selected, by using the “Other Menus” selection that appears
at the top of each menu.

Using the Function Keys
You can use the keyboard function keys to execute many Design
Architect commands. The boxes at the bottom of the Design Architect
window each contain up to four commands which you execute as
follows:

• To execute the top command, press the associated Function key.

• To execute the middle command, press the associated Function
key while holding down the Shift key.

• To execute the third command, press the associated Function key
while holding down the Control key.

• To execute the bottom command, press the associated Function
key while holding down the Alternate key.

Selecting Commands from the Menu Bar
Use the left mouse button to select commands from the menu bar at
the top of the screen.

Selecting Commands from the Palette
Use the left mouse button to select commands from the Command
Palette at the right side of the screen. The set of red buttons at the top
of the palette change the commands that are available in the palette.
The commands displayed in the palette vary depending on what type
of window is active in Design Architect. For example, if a symbol
editor window is active, commands such as Add Pin, Draw Rect-
angle, and other commands associated with creating symbols are
available in the palette. If there are no windows open in Design
Architect, commands such as OPEN SHEET or OPEN SYMBOL are
available.

You may need to scroll the palette to access some of the commands by
moving the cursor into the palette and using the PageUp and Page-
Down keys. You can also select Right Mouse Button → Show
Scroll Bars to display scroll bars.
9-16 Xilinx Development System

Schematic Design Tutorial
Entering Commands from the Keyboard
You can type commands anywhere in the Design Architect window.
A dialog box appears at the cursor location to capture the command
text. For example, you can open a schematic sheet by typing open
sheet in the Design Architect window.

Cancelling Commands
When you select a command, it is displayed in either a small rectan-
gular box in the lower-left area of the screen, or in a larger dialog box.
In either case, you can cancel commands by selecting the cancel
button in the box or by pressing the escape key.

Repeating Menu Commands
You can repeat commands that were executed by using either the
menu bar or the menus accessed through the right mouse button by
holding down the control key, moving the cursor to the appropriate
area, and pressing the right mouse button. For example, if Right
Mouse Button → Properties → Add was the last command
sequence performed, you can repeat this sequence by holding down
the control key and pressing the right mouse button with the cursor
in the window where the command was last executed. You can also
perform this function with the stroke 12369, which looks like an
upside-down “L”.

Manipulating the Screen
To zoom in on a specific area of the screen, hold down the F8 key and
move the mouse to create a box around the area you want to zoom
on. To view the entire schematic, hold down the shift key and press
F8. You can also perform these commands with the strokes 159 and
951, respectively. You can also zoom the schematic in or out with the
menu bar commands View → Zoom In and View → Zoom Out or
the strokes 357 and 753.

Targeting the Design for the XC9000 Family
The incomplete calc_sch design is configured for an XC4003E-PC84
part. If you want to target a demonstration board with this device, go
to the “Completing the Calc Design” section. If you are targeting the
Mentor Graphics Interface/Tutorial Guide 9-17

Mentor Graphics Interface/Tutorial Guide
tutorial design for an XC95108-PC84 (no demonstration board avail-
able) or other device family, you must convert the design to reference
the XC9000 library instead of the XC4000E library.

The procedure provided below allows you to change every Xilinx
component in the Calc design from the XC4000E library to the
XC9000 library. Since the designs were created using the Unified
Libraries, the parts in the XC4000E and XC9000 libraries have iden-
tical footprints and pinouts. This allows you to easily retarget designs
to a different device family, provided only library parts common to
the two families are used. You must manually replace any library
parts that are not common to both families. This example shows a
situation where this may happen.

Note: Although an XC4000E-to-XC9000 conversion is shown here,
this procedure may be used to retarget from any family to any other
family.

To retarget the Calc design to the XC9000 family:

1. Close the Calc schematic window by selecting Close from the
window’s control menu. This is the menu accessed by clicking on
the button in the upper left-hand corner of the window.

2. In the gray desktop area, choose Right Mouse Button →
Convert Design .

3. A dialog box appears as shown in the figure below. Fill in the
fields as shown and click OK.
9-18 Xilinx Development System

Schematic Design Tutorial
Figure 9-5 Convert Design Dialog Box

Convert Design begins by displaying a Hierarchy Window as it is
taking account of the design hierarchy. After this, the Calc sche-
matic and all lower-level design schematics are displayed while
Design Architect is retargeting design components.

4. After this process is completed, perform the following for each
schematic:

a) Select Check → Sheet from the menu bar. A window
appears containing the results of the design rule check.

b) After reviewing the contents of this window, close it and
reselect the schematic window.

c) Select File → Save from the menu bar to save the sche-
matic.

d) Close the schematic window and repeat the process for the
next schematic.

Note: Keep the top-level Calc design open, since you need it in the
next section. You can also save yourself the step of checking and
saving each design sheet by setting the Check & Save switch to Yes in
the Convert Design dialog box.

Warning: Although turning the Check & Save switch on makes the
Convert Design process more automatic, it is more dangerous since it
prevents you from inspecting a converted design before saving it.
Mentor Graphics Interface/Tutorial Guide 9-19

Mentor Graphics Interface/Tutorial Guide
Use this setting with caution, and turn it on only when you are
certain you wish to overwrite your original design.

Completing the Calc Design
To complete the tutorial design, you need to add a few design objects
to the Calc schematic using Design Architect.

If you need to stop the tutorial at any time, be sure to save your work
as follows:

1. Select Check → Sheet from the menu bar.

A window appears containing the results of the design rule
check.

2. After reviewing the contents of this window, close it and reselect
the schematic window.

Warning: It is important to check your design first before saving it.

3. Select File → Save from the menu bar to save the design.

4. Before proceeding to the next part of this tutorial, close (quit) the
Calc schematic window.

5. If a dialog box appears asking if you want to save any changes,
choose NO.

Design Description
The top-level schematic of the Calc tutorial design has been created
for you. Each of the blocks in the schematic, such as CONTROL or
ALU, is linked to a second-level module that describes its logic.
Additionally, any second-level module can contain another block that
references a third-level drawing, and so on. This organization is
known as a hierarchical structure.

In this tutorial, you add three symbols to the ALU block schematic to
complete it. First, you create the ANDBLK2 and ORBLK2 symbols
and their underlying schematics and then add them to the schematic.
Additionally, you add the FD4RE symbol from the Unified Libraries
to the ALU block. After the ALU block is finished, you add the
STARTUP block to the top-level Calc schematic to tie the device’s
global reset network to a device pin. To complete design entry, you
9-20 Xilinx Development System

Schematic Design Tutorial
add a CONFIG block, which lists a set of instructions that dictate how
the core tools should process the design.

The Calc design is a four-bit processor with a stack. The processor
performs functions between an internal register and either the top of
the stack or data input from external switches. The results of the
various operations are stored in the register and displayed in hexa-
decimal on a seven-segment display. The top value in the stack is
displayed in binary on a bar LED. A count of the items in the stack is
displayed as a “gauge” on another bar LED.

The design consists of the following functional blocks:

• ALU—The arithmetic functions of the processor are performed in
this block.

• CONTROL—The opcodes are decoded into control lines for the
stack and ALU in this module.

• STACK—The stack is a four-nibble storage device. It is imple-
mented using synchronous RAM in the XC4000E design. You can
substitute the RAM4_9K module, which uses flip-flops, in place
of the RAM16X4S macro in the STACK schematic to implement
the stack in an XC9000 or other non-XC4000E device.

Note: If RAM4_9K is used in a non-XC9000 device, it must be retar-
geted using Convert Design.

• DEBOUNCE—This circuit debounces the “execute” switch,
providing a one-shot output.

• SEG7DEC—This block decodes the output of the ALU for
display on the 7-segment decoder.

• CLOCKGEN—This block uses an internal oscillator circuit in
XC4000E devices to generate the clock signal. In XC9000 designs,
it is replaced by an input pad and a clock buffer.

Note: The XC3000 and XC5200 FPGA families also have on-board
oscillators. See the CLKGEN3K and CLKGEN5K components
included in the calc_sch directory to see how the oscillators in these
families are used.

• BARDEC—This block shows how many items are on the stack
on a “gauge” of four LEDs.

• SWITCH7—This block is a user-defined module consisting of
seven input flip-flops used to latch the switch data.
Mentor Graphics Interface/Tutorial Guide 9-21

Mentor Graphics Interface/Tutorial Guide
Creating the ANDBLK2 Symbol

Opening a Symbol Window

1. Use the left mouse button to select Open Symbol in the
Command Palette.

2. Type $XILINX_TUTORIAL/calc_sch/andblk2 in the Compo-
nent Name box.

3. Select OK.

A symbol editor window appears.

Creating the Symbol Outline

1. Zoom in until the grid space markers, represented by small
crosses, are visible in the symbol window.

2. Select ADD RECTANGLE from the palette.

3. Position the cursor in the upper left corner of the symbol window
and press the left mouse button.

4. While holding down the left mouse button, move the cursor
diagonally to the opposite corner of the symbol window to draw
a rectangle that is six grid squares high by eight grid squares
wide. Be sure to measure using the grid marks, and not the small
dots that define fractions of grid spacing.

Adding Pins to the ANDBLK2 Symbol

1. Select Add Pin from the palette.

The dialog box in the following figure appears.

2. Fill in the Dialog box exactly as shown in the following figure
and then select OK.
9-22 Xilinx Development System

Schematic Design Tutorial
Figure 9-6 Add Pin(s) Dialog Box for A(3:0) and B(3:0)

A small crosshair appears under the cursor, and a rectangular
box appears stating that the first pin, A(3:0), is to be placed.

3. Place pin B(3:0) as shown in the figure below by moving the
cursor to the position where the diamond appears in the figure
(one grid space to the left of the rectangle) and pressing the left
mouse button. Small purple diamonds indicate pins.

If you make a mistake before placing a pin, press the escape key
to cancel the command, then repeat the above steps. If you make
a mistake after placing a pin, press the F2 key to unselect every-
thing. Select the pin (diamond) and the line next to it and press
and hold CTRL-F2 to execute a move command. Move the pin to
the correct position and release the keys.
Mentor Graphics Interface/Tutorial Guide 9-23

Mentor Graphics Interface/Tutorial Guide
Figure 9-7 Adding Pins A(3:0) and B(3:0)

4. Select Add Pin from the palette and fill in the dialog box as
shown in the following figure, then select OK. Be sure to set the
name height to 1.0.
9-24 Xilinx Development System

Schematic Design Tutorial
Figure 9-8 Add Pin(s) Dialog Box for Q(3:0)

5. Place the pin Q(3:0) as shown in the figure below.

6. To adjust the positioning of the pin names, move the mouse over
the text, press and hold the F7 function, and move the mouse to
reposition the text. Release the F7 key to place the text at the new
location.
Mentor Graphics Interface/Tutorial Guide 9-25

Mentor Graphics Interface/Tutorial Guide
Figure 9-9 Adding Pin Q(3:0)

Adding Text

You can add comment text to a symbol to make it more easily identifi-
able on a schematic, or to annotate it without modifying its function.
To add text to the symbol, perform the following steps:

1. Select the red TEXT button at the top of the palette to display the
text editing icons.

2. Choose ADD TEXT from the palette.

A small rectangular dialog box appears in the lower left portion
of the window.

3. Type ANDBLK2 in the Text field of the dialog box, then press
return or select OK.

4. Move the cursor into the symbol editor window and place the
text directly above the symbol body by moving the mouse to the
proper position and pressing the left mouse button.

If you make a mistake while typing the text and the text has
already been placed, move the mouse over the text and press the
F7 key while holding down the shift key. A small dialog box
9-26 Xilinx Development System

Schematic Design Tutorial
appears at the bottom of the screen containing the selected text.
Modify the text in the dialog box. Select OK to change the text on
the symbol. You can use this method to modify any text on the
symbol, such as pin names.

Modifying Text Size

To modify symbol text size, perform the following steps:

1. Press the F2 key to unselect everything.

2. Use the left mouse button to select the text, ANDBLK2, at the top
of the symbol.

3. Select Right Mouse Button → Change Height → 1.5 X
pin spacing .

4. Place the cursor over the text and press and hold the F7 key.

5. While still holding down the F7 key, move the text so that it is
centered above the symbol body, as shown in the following
figure.

Figure 9-10 Completed ANDBLK2 Symbol
Mentor Graphics Interface/Tutorial Guide 9-27

Mentor Graphics Interface/Tutorial Guide
Saving the ANDBLK2 Symbol

To save the ANDBLK2 symbol, perform the following:

1. From the menu bar, select Check → With Defaults .

A text window appears containing the results of the design rule
check.

2. Check to see that the information displayed is the same as that in
the following figure. If you do not have the same output, correct
the symbol to eliminate the differences and then check the
symbol again.

Figure 9-11 Output from Check

3. Close the text window by selecting Close from the menu that
appears when the left mouse button is pressed in the box in the
upper left hand corner of the text window.

4. Select File → Save Symbol from the menu bar to save the
symbol.

Creating the ORBLK2 Symbol
The next step is to create the symbol for ORBLK2, as shown in the
following figure. Since ORBLK2 is similar to ANDBLK2, use the
ANDBLK2 symbol and modify the text as described below.

1. Move the cursor above the ANDBLK2 text.

2. Press the F7 key while holding down the shift key to select the
Change Text Value command.
9-28 Xilinx Development System

Schematic Design Tutorial
3. In the small dialog box that appears in the lower left corner, type
ORBLK2 in the New Text field, then select OK.

Figure 9-12 Completed ORBLK2 Symbol

4. If necessary, use the cursor and F7 key to move and center the
text, as described earlier.

5. From the menu bar, select Check → With Defaults .

A text window appears containing the results of the design rule
check. Since you are modifying the ANDBLK2 symbol, the text
still refers to ANDBLK2.

6. If any errors are reported in the Check text window, correct them
on the symbol and check the schematic again. Otherwise, close
the text window.

7. To save the symbol as ORBLK2, select File → Save Symbol
AS.

A dialog box appears.

Warning: It is important that you select the Save Symbol As
command instead of Save to prevent overwriting the original
ANDBLK2 file.
Mentor Graphics Interface/Tutorial Guide 9-29

Mentor Graphics Interface/Tutorial Guide
8. Enter $XILINX_TUTORIAL/calc_sch/orblk2 in the compo-
nent name field and enter orblk2 in the interface name field.

9. Select OK to execute the command.

This saves the symbol as ORBLK2.

10. Close the window containing the symbol.

A dialog box appears prompting you to save the changes to
ANDBLK2. Since the symbol for ANDBLK2 was saved prior to
modifying it for the ORBLK2 symbol, it is not necessary to save
changes to the ANDBLK2 symbol.

11. In the dialog box, select No.

Creating Schematics for ANDBLK2 Symbol
You have created symbols for ANDBLK2 and ORBLK2. The next step
is to create schematics for these blocks. You can then reference the
schematics in a higher-level schematic by placing the symbols.

Opening a Schematic Window

1. To open a schematic window, select OPEN SHEET from the
palette.

2. In the dialog box that appears, type $XILINX_TUTORIAL/
calc_sch/andblk2 in the Component Name field.

3. Select OK.

A blank schematic sheet appears.

Adding the First Component to a Schematic

1. From the menu bar, select Libraries → XILINX Libraries .

The Xilinx Libraries menu appears.

2. Use the Unified Libraries for new designs. The Obsolete Library
is provided for backward compatibility. Select Unified Lib
from the menu.

3. Select the correct library for the device you are targeting, either
XC4000E or XC9000.

If you select the wrong library, use the PageUp key to go to the
top of the Library Palette menu and click the left mouse button
9-30 Xilinx Development System

Schematic Design Tutorial
on the Back option. This moves the library menu back up the
hierarchy.

4. Choose BY TYPE from the palette.

This option organizes the library parts into categories. The ALL
PARTS option displays all the library parts at once. A menu
appears similar to that shown in the figure below.

Figure 9-13 XC4000E Library BY TYPE Menu

5. To move up and down in the menu, turn on the scroll bars by
moving the cursor into the menu window and selecting Right
Mouse Button → Show Scroll Bars . You can also move up
and down using the PageUp and PageDown keys.

6. Click the left mouse button on the Set As Default option. This
option allows you to return to this area and view of the library
menu by clicking on the Library icon in the Schematic Palette.

7. Choose the logic category from the BY TYPE menu.
Mentor Graphics Interface/Tutorial Guide 9-31

Mentor Graphics Interface/Tutorial Guide
8. Select and2 .

9. In the small dialog box that appears on the screen, move the
cursor into the schematic window.

The outline of a 2-input and gate appears.

10. Move the symbol outline to the location shown in the following
figure and then click the left mouse button to place the object.

Figure 9-14 Placing a Component

Placing Additional Components

After placing the and2, note that a picture of it appears in the small
window in the upper right area of the screen. The last library element
selected appears in this window. To select another component of the
same type, move the mouse inside this window, and click the left
mouse button. Then move the cursor to the schematic window, posi-
tion the component, and release the mouse button to place it on the
sheet.

1. Using this method, select and place a second and2 symbol as
shown in the following figure.
9-32 Xilinx Development System

Schematic Design Tutorial
Figure 9-15 Placing a Second Component

Copying a Component

Use the Copy command to add more components by copying a
component that already appears on the schematic.

1. Press the F2 function key to ensure that nothing is selected.

It is important to use the F2 key before selecting objects because
objects selected in previous steps are sometimes not deselected.

2. Move the mouse above and to the left of the two symbols on the
sheet.

3. While holding down the left mouse button, move the mouse
below and to the right of the two symbols.

A white box appears surrounding the two symbols.

4. Release the mouse button to select the objects.

5. Select Right Mouse Button → Copy. Alternatively, use stroke
3214789, a stroke in the form of a “C”, to select the copy
command.
Mentor Graphics Interface/Tutorial Guide 9-33

Mentor Graphics Interface/Tutorial Guide
A small dialog box appears at the bottom of the screen.

6. Place the two copied gates above the original two using the left
mouse button. If necessary, use the 753 stroke to zoom out.

The dialog box disappears after you place the gates.

7. Press Shift - F8 to view the entire schematic.

The schematic now looks like the following figure.

Figure 9-16 Component Placements for ANDBLK2

Moving a Component

If you make a mistake when placing a component, you can use the
menu commands to move the component.

1. Use the F2 key to deselect.

2. Select the component by clicking on it with the left mouse button.

The component appears highlighted, indicating that it has been
selected.

3. Select Right Mouse Button → Move, or use the stroke 74159.
9-34 Xilinx Development System

Schematic Design Tutorial
A small dialog box appears.

4. Click the left mouse button to correctly place the component.

The dialog box disappears after the component is placed.

Adding Buses to a Schematic

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. It is not necessary to physically
connect a bus to the nets that make up the bus. There are several sche-
matics in the Calc design that have short bus segments that are not
connected to anything. This is done so that a bus pin can be used to
represent the bus on the symbol. A bus must exist on the schematic if
a bus pin is to be used for a set of signals.

Add buses to the schematic as follows:

1. After pressing the F2 key, select Right Mouse Button → Bus .

A small dialog box appears, and a white cross appears under the
cursor.

2. Draw a bus by clicking the left mouse button to specify the
starting point, moving the mouse to a new position, and then
clicking the button again to make a bend in the bus or to connect
it to a pin. Terminate the bus is by clicking the mouse button in
the same place twice. Add the three buses shown in the figure
below. You may want to zoom the schematic view out before
performing adding the buses.

If you make a mistake, press the F2 key to deselect everything on
the sheet. Then click on the bus segments you want to delete so
that they appear highlighted. Press the Delete key and then
redraw them correctly.

3. After adding the three buses, press the Escape key to exit the
bus adding mode.
Mentor Graphics Interface/Tutorial Guide 9-35

Mentor Graphics Interface/Tutorial Guide
Figure 9-17 ANDBLK2 Schematic with Buses

Adding Nets to a Schematic

Next, nets must be added to attach the appropriate pins on the gates
to the buses. You may want to enlarge the view of the components to
make it easier to draw the nets.

1. Press the F2 key.

2. Select Right Mouse Button → Wire from the ADD menu.

A small dialog box appears, and a white cross appears under the
cursor.

Note: If the ADD menu does not appear, it may be that something is
still selected, resulting in a different menu appearing on the screen. If
this happens, press the F2 key and repeat step one.

3. Move the cursor to the top input pin of the top and2 gate, then
click the left mouse button.
9-36 Xilinx Development System

Schematic Design Tutorial
4. Move the cursor to the left, so that the pointer is laying atop the
leftmost bus. (The wire should form a ninety-degree angle with
the bus.) Click the left mouse button twice to terminate the wire.

Figure 9-18 Connecting a Net

A bus ripper is inserted automatically between the wire and the
bus as shown in the “Connecting a Net” figure. A bus ripper
defines which bit of the bus is connected to the wire. Automati-
cally inserting bus rippers is referred to as autoripping.

If the bus ripper did not automatically get inserted, make sure
that you clicked on the pin first and then on the bus to attach a
net between the two. If the net is attached to the bus first, autorip-
ping does not occur. Also, check the Setup menu to make sure
that autoripping is turned on. “Set Autoripping Off” should be
displayed in the menu to indicate that autoripping is turned on.
If “Set Autoripping On” is displayed, select it to turn autoripping
on. Also, the $MGC_GENLIB environment variable must be set
correctly for the autoripping function.

A dialog box as shown in the “Label Bus Dialog Box” figure
below appears. This box allows you to label a net which has a bus
ripper connected to it. Labeling is the process of identifying a net
or a component by assigning a text string to it. It is recommended
Mentor Graphics Interface/Tutorial Guide 9-37

Mentor Graphics Interface/Tutorial Guide
that you label all nets on the schematic, to simplify debugging
and simulation. To specify the bus signals they are related to, all
nets that are attached to buses must have a number in paren-
theses at the end of their names. For example, a net that is bit zero
of bus A must be labeled A(0).

Figure 9-19 Label Bus Dialog Box

Fill out the fields as shown in this example, so that this first net is
labeled A(0). Note that you can label the bus as well as the net,
but you will do this later.

If the dialog did not appear as shown, choose SETUP RIPPER
from the palette and make sure that Ripper Mode is set to
“Implicit” and that Ripper Query is set to “On”. After setting
these parameters, select OK, then delete the net and start again
from step one.

5. After filling out the dialog box, you are asked to place the net
label, or net name, on the schematic. Place the label as shown in
the following figure and click the left mouse button.
9-38 Xilinx Development System

Schematic Design Tutorial
Figure 9-20 Adding and Placing a Net Name

6. Press the Escape key to exit the wire-adding mode.

Completing the Net Connections

Add the remaining nets to the schematic as follows:

1. Press the F3 key to execute the Add Wire command, or use the
downward stroke 258.

2. Add the remaining nets as shown in the “ANDBLK2 with All
Wires and Buses Connected” figure below.

Note: When a wire is properly attached to a symbol pin, the small
diamond that specifies the connection point for the pin disappears. If
any of the diamonds are still visible, delete the associated net and
reattach it.
Mentor Graphics Interface/Tutorial Guide 9-39

Mentor Graphics Interface/Tutorial Guide
Figure 9-21 ANDBLK2 with All Wires and Buses Connected

Increasing Text Size

At this point, all nets in the ANDBLK2 schematic have been labeled.
However, the text of these labels is quite small compared to the other
elements in the schematic.

To make the labels more readable:

1. Select all nets in the design by dragging with the left mouse
button over the A(x) and B(x) nets then releasing, then doing the
same with the Q(x) nets. In each case, a selection marquis appears
as shown in the “Selecting Nets” figure. This is an additive selec-
tion; elements selected previously remain selected. Note that the
marquis need only touch elements you wish to select; it need not
enclose these elements completely.

Note: If you accidently select any elements besides the nets (bus
rippers, buses, or gates), press F2 to unselect everything, then repeat
the selection procedure.
9-40 Xilinx Development System

Schematic Design Tutorial
Figure 9-22 Selecting Nets

2. To change the size of the net labels, choose Right Mouse
Button → Properties → Change Text Height → 1.0 x
Pin Spacing .

3. In the Change Property Height dialog box that appears as shown
below, type NET in the Property Name field as indicated to
increase the height of all NET properties on all selected elements.

Figure 9-23 Increasing Text Size

All net and bus labels are attached as a property called “NET”
with a value equivalent to the net or bus label.

The label sizes are increased as shown in the figure below.
Mentor Graphics Interface/Tutorial Guide 9-41

Mentor Graphics Interface/Tutorial Guide
Figure 9-24 Schematic with Larger Net Names

Adding Ports

You must add port symbols to nets and buses to define the connec-
tivity between a schematic and its associated symbol. For the
ANDBLK2 schematic, all three buses need ports. Input signals are
given PORTINs and output signals are given PORTOUTS.

Add ports to the schematic as follows:

1. If the appropriate Unified library is not displayed in the palette,
use the menu bar command Libraries → XILINX
Libraries to select it. Select the Unified Libraries and the
appropriate library for the part being used.

2. If the library is already visible, you may need to choose the BACK
option from the top of the Library Palette to move up to the
general library categories. Continue selecting BACK until the ALL
PARTS and BY TYPE selections are displayed.

3. Select BY TYPE, and then choose the io category.

4. Select the portin library part from the menu.
9-42 Xilinx Development System

Schematic Design Tutorial
5. Place the portin so that the white crosshair is exactly above the left
end of the upper input bus, on the left side of the window.

6. Place another portin at the end of the lower input bus, on the left
side of the window.

7. Select a portout symbol from the library and place it at the end of
the output bus.

8. Press Shift-F8 to view the entire schematic.

The schematic appears as in the following figure.

Figure 9-25 Adding Ports

Labeling Ports

Normally, you label nets and buses by selecting them, then executing
the menu selection Right Mouse Button → Name Nets as shown
later in this tutorial. However, the addition of the port symbols to the
buses has automatically assigned a default name of “NET” to each
bus. This simplifies the process since you can modify the existing
names rather than add new ones.

1. Press the F2 key to unselect everything on the schematic sheet.
Mentor Graphics Interface/Tutorial Guide 9-43

Mentor Graphics Interface/Tutorial Guide
2. Move the cursor so that it sits above the NET label on the output
bus.

3. Press Shift-F7 to choose the Text Change Value command.

A small dialog box appears.

4. In the New Value field, change the text to Q(3:0).

5. Press return or choose OK in the dialog box.

6. Repeat this procedure on the two remaining buses, giving them
names as shown in the following figure.

Figure 9-26 Labeling Buses

Saving the Schematic

The schematic is now complete. Check and save the schematic as
follows:

1. Select Check → Sheet .

The text window that appears should not contain any warnings
about unnamed or dangling net vertices, since all pins in the
schematic should be connected.
9-44 Xilinx Development System

Schematic Design Tutorial
2. If these or any other warnings or errors occur, recheck the sche-
matic against the following figure.

Figure 9-27 Completed ANDBLK2 Schematic

The check sheet window is also linked to the schematic window.
Any net, vertex, or instance names can be highlighted in the
check sheet window by clicking the left mouse button on it. The
corresponding net, vertex, or instance on the schematic is high-
lighted. This is useful for relating an error message in check sheet
to the schematic.

3. Once all schematic errors have been corrected, check the design
again if necessary, and close the check sheet text window.

4. Select File → Save Sheet from the menu bar to save the sche-
matic.

Creating Schematics for ORBLK2 Symbol
The ORBLK2 schematic is similar to the ANDBLK2 schematic. To
create schematics for the ORBLK2 symbol, you can use the
ANDBLK2 schematic and simply replace the four and2 gates with or2
gates as described in the following procedure.
Mentor Graphics Interface/Tutorial Guide 9-45

Mentor Graphics Interface/Tutorial Guide
1. Press the F2 key to unselect everything on the ANDBLK2 sche-
matic.

2. Display the BY TYPE library menu and select the logic category.

3. Press and hold the left mouse button and move the mouse to
create a rectangle to include part of all four and2 gates, as shown
in the following figure. It is not necessary to box the entire gate to
select it. Do not include any part of the attached nets in the rect-
angle.

Figure 9-28 Selecting Gates

4. When the rectangle is positioned correctly, release the left mouse
button to select all four and2 gates.

5. Select Right Mouse Button → Replace → From Library
Menu.

A message appears at the bottom of the screen requesting that
you select the replacement library part from the menu.

6. Use the PageUp and PageDown keys to scroll the component list.
Select the or2 component.

The four and2 gates are replaced with or2 gates. The ORBLK2
schematic is complete.
9-46 Xilinx Development System

Schematic Design Tutorial
7. Select Check → Sheet from the menu bar.

The check program refers to the ANDBLK2 schematic, since this
was modified to create the ORBLK2 schematic.

8. Close the text window containing the results of check sheet.

9. Select File → Save Sheet As .

10. In the dialog box that appears, type $XILINX_TUTORIAL/
calc_sch/orblk2 in the Component name field and leave all
other fields blank.

11. Press return to save the schematic.

Figure 9-29 Completed ORBLK2 Schematic

Editing the ALU Schematic
So far you have created symbols for ANDBLK2 and ORBLK2. You
have also created underlying schematics for these symbols. The next
step is to place the symbols in the ALU block schematic.

1. Close the only open window, which is the modified ANDBLK2
schematic, using the button in the upper left corner of the
window.
Mentor Graphics Interface/Tutorial Guide 9-47

Mentor Graphics Interface/Tutorial Guide
2. In the dialog box that appears asking whether to save the
changes to the schematic, select No, since the ANDBLK2 sche-
matic was saved earlier, but then modified for use as the ORBLK2
schematic.

3. Choose OPEN SHEET from the Session Palette.

4. Press the Navigator button to open a Navigator window.

5. If necessary, change directories to the $XILINX_TUTORIAL/
calc_sch directory using the up arrow to move up one directory
level and double-clicking folders to push into them. Then, select
the Calc design, which is represented by a folder with a “c” on it
and with the name “calc” next to it. The “c” specifies that it is a
component, and not just a directory.

6. Press return or select OK from the Navigator window.

The Component Name field of the OPEN SHEET dialog box is
automatically back-filled with “$XILINX_TUTORIAL/calc_sch/
calc”.

7. Press return or select OK from the OPEN SHEET dialog box.
The top level Calc design appears in a window. Press Shift - F8 to
view the entire schematic, if necessary.

8. Press F2 key to unselect everything on the schematic.

9. Select the ALU symbol.

10. The additions you need to make are all in the ALU schematic, so
choose File → Open Down from the menu bar using the left
mouse button.

The Open Down dialog box appears as shown in the following
figure.
9-48 Xilinx Development System

Schematic Design Tutorial
Figure 9-30 Open Down Dialog Box

11. In the Open Down dialog box, specify whether to modify the
symbol or the schematic for ALU by selecting schematic
sheet1 , with the left mouse button. The selected line appears
highlighted in the dialog box.

12. Press return or select OK.

A second schematic window appears containing the ALU sche-
matic.

Placing User-Created Components
You can now place the ANDBLK2 and ORBLK2 symbols on the sche-
matic as shown in the figure below. You place the symbols using the
same procedure you used to place the and2 gate from the Xilinx
libraries when you created the ANDBLK2 schematic.

1. Use the F8 key to zoom into the empty area near the center of the
schematic, between the XORBLK2 and ADSU4 symbols.

2. Press the F2 key to ensure that nothing is selected.
Mentor Graphics Interface/Tutorial Guide 9-49

Mentor Graphics Interface/Tutorial Guide
3. Choose Right Mouse Button → Instance → Symbol by
Path .

In the Add Instance dialog box that appears, use the Navigator
button to select the $XILINX_TUTORIAL/calc_sch/andblk2
component, or type the name in the Component Name field.

4. Press return or select OK to execute the command.

5. Move the cursor to the correct location as shown in the following
figure.

Figure 9-31 Adding ANDBLK2 and ORBLK2 to ALU Schematic

6. Press the left mouse button to place the component.

7. Follow the same procedure to add the ORBLK2 symbol. Refer to
the ALU schematic in the figure above for proper placement.
9-50 Xilinx Development System

Schematic Design Tutorial
8. If you make a mistake when placing a component, select it (after
pressing F2 key) and use Right Mouse Button → Move to
reposition it.

Placing Library Components
The next step in the tutorial is to add the fd4re and and5b2 compo-
nents to the ALU schematic. The fd4re component is available in the
Xilinx Unified Libraries and consists of four flip-flops with a clock
enable. The and5b2 component is a five-input AND gate with two
inputs inverted (“bubbled,” hence the “b”).

Note: These components are available in all libraries, including those
for the XC4000E and XC9000.

1. Use the Shift -F8 keys to display the entire ALU schematic.

1. Use the F8 key to zoom into the open area in the lower right-
hand corner.

2. Select Libraries → XILINX Libraries from the menu bar.

3. Select the Unified Libraries and the appropriate family library
using the left mouse button.

4. Choose BY TYPE → flip_flop → fd4re from the Library
menu.

5. Move the cursor into the schematic window.

An outline of the fd4re component appears.

6. Move the component to lower right corner of the schematic,
approximately to the location shown the “Adding FD4RE and
AND5B2 to ALU Schematic” figure.

7. Press the left mouse button to place the component.

8. Repeat steps two through six to place the and5b2 component next
to the fd4re as shown in the figure below.

When choosing the component from the library menu, use the
selection BY TYPE → logic → and5b2 .
Mentor Graphics Interface/Tutorial Guide 9-51

Mentor Graphics Interface/Tutorial Guide
Figure 9-32 Adding FD4RE and AND5B2 to ALU Schematic

Adding Nets, Buses, Ports and Labels

FD4CE and AND5B2

Next, complete adding the fd4re and and5b2 symbols by adding nets,
buses, and labels as follows:

1. Add the necessary nets and buses to complete connections for
fd4re and and5b2 as you did for the previous schematic.

The figure below displays the labeled nets and buses for fd4re
and and5b2.
9-52 Xilinx Development System

Schematic Design Tutorial
2. Add ports to the nets and buses attached to the fd4re and and5b2,
as shown in the figure below.

3. Change the default “NET” properties to the proper names using
the Shift-F7 key, as shown in the following figure.

4. To add net labels to nets not connected to ports or buses, select
the nets as described earlier, then select Right Mouse Button
→ Name Nets .

For each selected net, the schematic editor asks you for a net
label, then offers you the opportunity to place each label on the
schematic. The nets should be labeled as shown.

5. Increase the size of the label text as described earlier.

Figure 9-33 Nets, Buses, and Ports for FD4RE and AND5B2

ANDBLK2 and ORBLK2

Next, complete the addition of ANDBLK2 and ORBLK2 to the ALU
schematic.

1. Add the necessary buses to complete connections for ANDBLK2
and ORBLK2. The figure below displays the labeled nets and
buses for ANDBLK2 and ORBLK2.

2. Use the figure below to name the added buses by using the same
Right Mouse Button → Name Nets from the previous
Mentor Graphics Interface/Tutorial Guide 9-53

Mentor Graphics Interface/Tutorial Guide
section. You only need to label the output buses of the two
components, since the inputs to these components are connected
to pre-labeled buses.

Figure 9-34 Nets, Buses and Labels for ANDBLK2 and ORBLK2

Adding Labels to Components
It is important to add labels to components. Error and warning
messages often reference component labels, and labels also appear in
simulation netlists. Also, net names at lower levels of hierarchy are
referenced using the following format:

...component_label/component_label/net_label

In the ALU schematic, labels have already been added to the
MUXBLK2, XORBLK2, and MUXBLK5 blocks.

To add a label to the ANDBLK2 placement, follow these steps.

1. Press the F2 key to unselect everything.

2. Use the left mouse button to select the ORBLK2 symbol.

3. Select Right Mouse Button → Properties → Add.

A dialog box appears.
9-54 Xilinx Development System

Schematic Design Tutorial
4. In the window labeled “Existing Property Name”, choose the
INST property with the left mouse button. It appears high-
lighted.

5. In the Property Value field, type ORBLK2, then press return or
choose OK.

6. Move the text to position it as shown in the following figure and
click the left mouse button to place the text.

7. Label the ANDBLK2 symbol the same way using the label
ANDBLK2, as shown in the following figure.

8. Give the FD4RE component the label ALUVAL.

Figure 9-35 Adding Component Labels to ALU Schematic

The completed ALU schematic is shown in the following figure.
Mentor Graphics Interface/Tutorial Guide 9-55

Mentor Graphics Interface/Tutorial Guide
Figure 9-36 Completed ALU Schematic

Saving the ALU Schematic
Check the schematic. If errors occur, resolve them and then check and
save the schematic.

Exploring Xilinx Library Elements
The Xilinx libraries contain three types of elements. Primitives are
basic logic elements such as the and2 and or2 gates that you previ-
ously placed in ANDBLK2 and ORBLK2. Soft macros are schematics
created by combining primitives and other soft macros. Relationally
Placed Macros (RPMs) are soft macros that contain placement infor-
mation. RPMs are currently only available in the XC4000E library.

All three types of library elements are placed on a schematic in
exactly the same way.
9-56 Xilinx Development System

Schematic Design Tutorial
Viewing a Xilinx Soft Macro Schematic
Soft macro schematics are schematics such as you might make for
your own designs. In fact, you can load one of these schematics and
use the File Save As command to save it under another name, and
then edit this new schematic to customize it to your needs.

Open the schematic underneath the fd4re symbol as follows:

1. Press the F2 key to unselect everything.

2. Select fd4re with the left mouse button.

3. Select File → Open Down from the menu bar.

4. In the dialog box that appears, select the schematic sheet and
click OK.

As shown in the following figure, fd4re consists of four fdre
symbols.

Figure 9-37 FD4RE Schematic from XC4000E Library

Viewing a Xilinx RPM (XC4000-Based Families Only)
Note: The following description of RPMs contains detailed informa-
tion on the XC4000E architecture. Refer to The Programmable Logic
Mentor Graphics Interface/Tutorial Guide 9-57

Mentor Graphics Interface/Tutorial Guide
Data Book for more information on the XC4000E CLB structure and
fast carry logic.

If your design is not targeted for the XC4000E family, read this
section, but do not perform any of the commands. Continue the tuto-
rial with the “Opening the Calc Schematic” section (the next section).

Note: The XC5200 library also contains RPMs. If you have an XC5200
schematic, you may open the ADSU4 component as described here to
see how this RPM is implemented in that family.

The ALU contains a component from the Xilinx library, adsu4, which
is a four-bit wide adder/subtracter. If your design is targeted for the
XC4000E library, this schematic is implemented as a Relationally
Placed Macro (RPM). If your design is not targeted for the XC4000E
or XC4000EX library, adsu4 is implemented without this placement
information.

RPM schematics are schematics such as you might make for your
own designs. In fact, you can load one of these schematics and use
the File Save As command to save it under another name. You can
then edit this new schematic to customize it to your needs.

Elements placed in the ADSU4 RPM schematic include CY4 compo-
nents and FMAPs. The CY4 symbol gives you the ability to specify
fast carry logic functionality from the schematic. Fast carry logic is a
hardware feature in XC4000E parts that allows very fast arithmetic-
type functions.

The FMAPs map logic functions to function generators in Config-
urable Logic Blocks (CLBs), which are arranged in a rectangular grid
in the die. Both CY4 symbols and FMAP symbols have RLOC
attributes. RLOCs are attached to the symbols that assign relative
locations to the CLBs. You can use carry symbols as well as FMAPs
and other mapping components in your own schematics. However,
knowledge of them is not necessary to use RPMs. Only expert users
should create macros containing carry logic and FMAPs. For a
description of these components, see the XACT Libraries Guide.

Push into the ADSU4 schematic as follows:

1. Press F2 key.

2. Select ADSU4.

3. Open the schematic underneath adsu4.
9-58 Xilinx Development System

Schematic Design Tutorial
4. Use the F8 key (or stroke 159) to zoom into the upper portion of
the schematic as shown in the following figure.

Figure 9-38 Upper Portion of the ADSU4 RPM Schematic

5. Press F2 key to unselect everything.

6. Select the FMAP component in the upper right corner.

7. Select Report → Object → Selected → All .

A text window appears displaying the attributes on the symbol,
as shown in the following figure. The RLOC attribute is set to
R0C0.G, indicating that this function is mapped to the G function
generator of the upper-left corner (row zero, column zero) CLB in
the RPM. RPM origins are in the upper left-hand corner. (You can
also call up a report with the 1474123 stroke, which looks like a
lowercase “r”.)
Mentor Graphics Interface/Tutorial Guide 9-59

Mentor Graphics Interface/Tutorial Guide
Figure 9-39 RLOC Attribute on FMAP Component

8. Close the text window to return to the adsu4 schematic window.

9. Use the scroll bars on the sides of the window or double-click the
middle mouse button to pan around the schematic and look at
the RLOCs.

Note that logic is mapped to three CLBs, designated as R0C0,
R1C0, and R2C0. Therefore, this RPM uses three CLBs that are
arranged in a column. Information on the number of CLBs used
and the shape of the logic block is available for each RPM in the
XACT Libraries Guide. These locations are relative, not absolute.
9-60 Xilinx Development System

Schematic Design Tutorial
The macro is not defined as placed in the uppermost CLB in the
left most column. Regardless of the RPM’s absolute location, the
logic associated with the FMAP with the location R0C0 is always
at the top, R1C0 is in the CLB directly below, and so on.

10. Close the adsu4 schematic and return to the ALU schematic.

Opening the Calc Schematic
Close all open schematic or symbol windows except for the top-level
Calc schematic window. If the Calc window is closed, open it. The
Calc schematic appears on the screen.

Using the XC4000E Oscillator
If your design is not targeted for the XC4000E family, read this
section, but do not perform any of the commands.

The XC4000E family devices contain an on-chip clock generator,
which makes it unnecessary to use an external circuit for this
purpose. The on-board clock circuitry is not precise, but is suitable for
designs that do not need a highly accurate clock, such as the Calc
design.

Figure 9-40 CLOCKGEN Schematic
Mentor Graphics Interface/Tutorial Guide 9-61

Mentor Graphics Interface/Tutorial Guide
The CLOCKGEN schematic contains an XC4000E library part, OSC4.
This symbol represents the on-chip oscillator that generates nominal
clock frequencies of 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. The
Calc design uses the 15-Hz output from this component when
targeted for XC4000E family designs. The clock output from OSC4 is
buffered through a BUFG global clock buffer.

XC4000E family devices have eight on-chip clock buffers, one BUFGP
(primary global buffer) and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for
other purposes, BUFGPs are best used to route externally-generated
clock signals. BUFGSs have more flexibility, and can be used to route
any large fan-out net, even if it is internally sourced. A BUFG symbol
can represent either type of buffer, and allows the implementation
software to choose which type of global buffer is best in each situa-
tion. BUFG also facilitates design retargeting to other Xilinx device
families, since it can represent any type of global buffer in any family.
The BUFG in the Calc design is substituted for a BUFGS during
design implementation, because the clock is generated internally by
the on-chip oscillator. See the XACT Libraries Guide and the The Xilinx
Programmable Logic Data Book for more information on global clock
buffers for Xilinx devices.

Controlling FPGA/CPLD Layout from the Schematic

Assigning Pin Locations
It is highly recommended that you let the automatic placement and
routing program, PAR, define the pinout. Pre-assigning locations to
the I/Os can sometimes degrade the performance of the place and
route tools. However, it is usually necessary, at some point, to lock the
pinout of a design so that it can be integrated into a board design. You
should define the initial pinout by running the place and route tools
without pin assignments, then locking down the I/O placement so
that it reflects the locations chosen by the tools. I/O in the tutorial
schematics must be assigned pin locations so that the Calc design can
function in the Xilinx demonstration boards. Because the design is
fairly simple, these pin assignments do not adversely affect the ability
of PAR to place and route the design completely.

Pin locations are specified by attaching a LOC property to the net
attached to the pad. LOC properties should not be attached directly
9-62 Xilinx Development System

Schematic Design Tutorial
to I/O pads. Properties are not associated with nets, only with
vertices on nets. When attaching properties, if the center of a net is
selected, the entire net segment appears highlighted, indicating that
two net vertices are selected, one at each end of the net segment. If a
property is then attached to the net, it appears twice when placed,
indicating it has been attached to both net vertices associated with the
segment. While this is not illegal, it does clutter the schematic. To
prevent this, select only one vertex before attaching properties. To
select a net vertex, position the cursor exactly above the point where
the net attaches to the pin, or above the point where the net bends.
Otherwise, an entire net segment is selected. This operation is simpli-
fied because default pin locations are included with the I/O pins; for
example, the “PXX” on the OPAD symbols. You can modify the
existing property, rather than adding a new one.

Modify the LOC property on the pad associated with the
STACKLED(0) signal on the Calc schematic as follows:

1. Position the mouse over the “PXX” text to the right of the pad
attached to net F; this is the default location property attached to
the net. Refer to the following figure.

Figure 9-41 Assigning a Location to an Output Net

2. Without moving the mouse, press Shift-F7 .
Mentor Graphics Interface/Tutorial Guide 9-63

Mentor Graphics Interface/Tutorial Guide
3. In the dialog box that appears, modify the “PXX” text to read P50.

4. Click OK or press return to execute the command.

For simplicity, the other pin locations for the Calc design have been
placed in a data file known as a constraint file, which is described in a
later section. You can leave the other location values undefined. Valid
pin locations vary depending on the package. PLCC, HQFP, and
other “numeric-only” package pins are designated with a P followed
by the pin number, such as P17. PGA and other grid-array package
pins use alphanumerics such as A12. The Programmable Logic Data
Book lists the pinouts of each FPGA and CPLD for each package that
Xilinx supplies.

Designating FAST Pads
You can modify the output slew rate by assigning a FAST attribute to
the output buffer, as shown in the “Designating a FAST Pad” figure.
The default slew rate is SLOW. “Fast” pads have different timing
specifications and draw more current than “slow” (slew-rate-limited)
pads. Slow pads are used by default. See The Xilinx Programmable
Logic Data Book for timing specifications for the various slew rate
modes.

Add a FAST attribute to the led output display drivers attached to the
STACK(3:0) bus as follows:

1. Press Shift-F8 to display the entire Calc schematic.

2. Click the left mouse button on the OBUF4 symbol attached to the
stack (3:0) bus.

3. Select Right Mouse Button → Properties → Add.

4. In the dialog box that appears, type the word FAST in both the
Property Name and Property value fields. (This double entry is
applied to any property that does not take a value.)

5. Press return or select OK to execute the command.

6. Use the left mouse button to place the text near the OBUF4
symbol, as shown in the following figure.

Since the property is attached to the OBUF4 symbol, it affects all
four of the LED outputs.
9-64 Xilinx Development System

Schematic Design Tutorial
Figure 9-42 Designating a FAST Pad

Using the I/O Flip-Flops
Xilinx XC3000A and XC4000E devices have two flip-flops in each
Input Output Block (IOB). Each pad has an associated input flip-flop
and output flip-flop. You can also configure input flip-flops as latches
and output flip-flops as 3-state. You access these elements using the
library components IFD, ILD, OFD, and OFDT, as well as other
higher-level macros that contain these components. For more infor-
mation on these library elements, consult the Xilinx Libraries Guide.

IOB flip-flops are used whenever possible to free up internal CLB
resources. IOB flip-flops are used to register the switch inputs. As
shown in the figure below, the SWITCH7 macro attached to the input
bus SW(7:0) in the lower-left area of the schematic has an underlying
schematic that consists of seven IFD (input flip-flop D-type) Xilinx
primitives. If similar flip-flops, such as FDs, had been used instead,
the flip-flops in the IOBs would be wasted and would occupy valu-
able CLB resources.
Mentor Graphics Interface/Tutorial Guide 9-65

Mentor Graphics Interface/Tutorial Guide
Figure 9-43 SWITCH7 Schematic Using Input Flip-Flops

Saving the Calc Schematic
Before continuing, check and save the changes made to Calc, as
shown earlier in this tutorial.

Modifying the Design for Non-XC4000E/EX Devices
At this point in the tutorial, you have created or edited the following
four schematic files: calc, alu, andblk2, and orblk2. The design, at this
point, is suitable for use only in an XC4000E or XC4000EX device.
This is because these devices have several advanced features not
found in other Xilinx device families. Two of these advanced features
are the on-chip memory built into the XC4000E CLB and wide-edge
decoders.

RAM Stack Implementation
The RAM stack is implemented using a 16x4 RAM macro from the
XC4000E library. Although the stack is 4x4, RAM and ROM are only
available in 16x1 or 32x1 increments, so only one fourth of the
memory addresses are used. A stack four times as deep could be
implemented while still using only two CLBs. An equivalent flip-flop
9-66 Xilinx Development System

Schematic Design Tutorial
implementation would require 64 flip-flops or 32 CLBs. In this case,
with a stack only four words deep, using the static memory feature of
the XC4000E CLB still reduces the stack from eight CLBs to two CLBs.

To view the XC4000E stack implementation, follow these steps:

1. Make sure the STACK symbol is selected in the Calc schematic,
and select Right Mouse Button → Open Down .

2. Choose the schematic to modify and click on OK.

3. On the stack schematic is a RAM16X4S component, which repre-
sents four 16x1 synchronous RAMs. Select this component and
Open Down into its schematic.

The schematic for RAM16X4S is shown below.

Figure 9-44 RAM16X4S, XC4000E Implementation
Mentor Graphics Interface/Tutorial Guide 9-67

Mentor Graphics Interface/Tutorial Guide
Using the Device-Independent Register File
The device-independent stack is implemented by replacing the
RAM16X4S with a register file that emulates a synchronous RAM
with a set of flip-flops and multiplexers. This implementation can be
used for any Xilinx device, even one from the XC4000E family.

If you are targeting an XC4000E device, you may skip this section to
take advantage of the RAM feature of the XC4000E.

Make the stack a device-independent schematic as follows:

1. Return to the stack schematic and use the left mouse button to
select the RAM16X4S.

2. Select Right Mouse Button → Replace → Other .

3. In the Replace Instance dialog box that appears, fill out the fields
as indicated in the following figure and click OK.

Figure 9-45 Replace Instance Dialog Box

The RAM16X4S is replaced with the device-independent
RAM4_9K as shown below. Note that the label RAM_BLOCK has
been removed by Design Architect. Add an INST property to this
component in the same manner as was done to the components
in the ALU schematic.

Note: If you are targeting a device family other than the XC9000, be
sure to run Convert Design on the RAM4_9K schematic as described
before.
9-68 Xilinx Development System

Schematic Design Tutorial
Figure 9-46 Device Independent RAM4_9K

The unused A3 pin that exists on RAM16X4S does not exist on
RAM4_9K. Although the detached GND symbol and net are
trimmed during the implementation process, you can clean-up
the schematic by deleting them.

4. To clean-up the schematic, unselect everything by pressing F2,
then select Right Mouse Button → Delete → Selected (or
use the stroke 741236987, which looks like an uppercase “D”).

5. Check and save the updated stack schematic.

Removing the XC4000E Oscillator
If you are targeting the Calc design to the XC9000 family (or other
non-XC4000 family), you must remove the CLOCKGEN circuitry,
which includes the OSC4 component, and replace it with an external
source.

Note: The XC3000 and XC5200 families also have internal, on-chip
oscillators. See the CLKGEN3K and CLKGEN5K components to see
how these are used. You may choose to replace the CLOCKGEN
component with one of these alternative macros with the Replace
Mentor Graphics Interface/Tutorial Guide 9-69

Mentor Graphics Interface/Tutorial Guide
selection from the Instance pop-up menu, instead of following the
instructions below.

1. On the Calc schematic, press F2 to make sure nothing else is
selected.

2. Select the CLOCKGEN component with the left mouse button.

3. Delete it by selecting Right Mouse Button → Delete →
Selected (or use the stroke 741236987, which looks like an
uppercase “D”).

4. Add components, nets, and labels as shown in the following
figure. The IPAD symbol may be selected from the library menu
under BY TYPE → io , while the BUFG symbol may be selected
under BY TYPE → buffer .

5. Check and save the Calc schematic.

Since the CLK signal is now sourced by a pad, it must be gener-
ated externally.

Figure 9-47 Device-Independent Clock Source
9-70 Xilinx Development System

Schematic Design Tutorial
Using LogiBLOX
LogiBLOX is a tool that allows you to quickly synthesize modules for
common functions such as adders, counters, and multiplexers. It
allows you to create components of arbitrary bus width (e.g., a 17-bit
adder) and automatically uses the best architectural resources for a
particular target device family. In this optional section, you replace
the ADSU4 component in the ALU schematic with a LogiBLOX
adder. If you choose to leave the ALU schematic in its original form,
read this section but do not make save any changes.

Creating and Instantiating a LogiBLOX Module
To replace the ADSU4 symbol with a LogiBLOX module:

1. Bring the ALU schematic into view.

2. Select the ADSU4 component.

3. Select Right Mouse Button → Delete to delete the symbol
from the schematic.

4. Select Libraries → XILINX Libraries from the menu bar.

5. From the Xilinx Unified Libraries menu, select LogiBLOX .

The Create/Modify/Instantiate LogiBLOX Symbol dialog box
appears.

6. In the Symbol component field, type addsub4 .

This is the user-given component name for the new LogiBLOX-
generated module.

7. Under Instantiate symbol, choose YES.

This gives you the opportunity to place the component on the
schematic immediately after LogiBLOX exits.

8. For PLD Technology, select the family to which you are targeting
the design, e.g., XC4000E.

The dialog box should now appear as shown in the following
figure.
Mentor Graphics Interface/Tutorial Guide 9-71

Mentor Graphics Interface/Tutorial Guide
Figure 9-48 Instantiate LogiBLOX Dialog Box

9. Click OK to invoke the The LogiBLOX program.

In about 1 minute, the LogiBLOX Module Selector appears.

10. Set the options in this dialog box as shown in the following
figure.

You are making a non-registered adder/subtracter module of
four bits.
9-72 Xilinx Development System

Schematic Design Tutorial
Figure 9-49 Using the LogiBLOX Module Selector

11. Click OK.

Design Architect takes a minute or so to generate a symbol for
this new module.

12. When the module appears on your screen, place it in the space
left by the ADSU4.

Do not worry about lining up pins with nets right now.

13. Arrange the surrounding nets as shown in the figure.

14. Check and save the ALU schematic.
Mentor Graphics Interface/Tutorial Guide 9-73

Mentor Graphics Interface/Tutorial Guide
Figure 9-50 Adding the ADDSUB4 LogiBLOX Component

Other Special Components
In this section, you complete the Calc design by adding a STARTUP
symbol to make the logic resetable and a CONFIG symbol to specify
the Xilinx part number on the schematic.

The STARTUP Block (Optional: XC4000E/EX and
XC5200 only)

The STARTUP block allows you to globally control different aspects
of a design. This example uses STARTUP to connect an external
signal to the global set/reset net built into the XC4000 family and
XC5200 architectures. This global net connects to all flip-flops in the
device and sets or resets them asynchronously. (Set or reset is deter-
mined at the flip-flop level.) An advantage to using this built-in
resource is that no routing resources are wasted tying a system-wide
reset signal to all flip-flops in the design. For more information on
STARTUP, see the Xilinx Libraries Guide.
9-74 Xilinx Development System

Schematic Design Tutorial
The STARTUP symbol is used here to implement a system-wide reset
signal called NOTGBLRESET. This signal is active-low; therefore,
when NOTGBLRESET is low, the Calc circuitry is reset.

1. In the Calc schematic, add the components, nets, and labels as
shown in the following figure.

You may take IPAD and IBUF from the BY TYPE → io section of
the Xilinx Library, INV from BY TYPE → logic , and STARTUP
from BY TYPE → general .

Figure 9-51 Adding the STARTUP Symbol

An inverter is added to the signal path since the GSR pin on
STARTUP is active-high. Also, since GSR is implicitly connected
to all reset logic throughout the device, GBLRESET is connected
only to the GSR pin on the schematic.

Note: If you target an XC5200 device, connect your chip-wide reset
signal to the GR pin on the STARTUP module.

2. Check and save the Calc design.
Mentor Graphics Interface/Tutorial Guide 9-75

Mentor Graphics Interface/Tutorial Guide
Adding the CONFIG Symbol (Optional)
The CONFIG symbol tells the place-and-route software how to
process the design. This example uses CONFIG to specify the part
number for this device.

To add the CONFIG symbol, follow these steps.

1. From the Calc schematic use the BY TYPE → general menu to
call up the CONFIG symbol from the Xilinx Library.

2. Place this symbol in the lower-right hand corner of the Calc sche-
matic.

3. With the CONFIG symbol still highlighted, select Right Mouse
Button → Properties → Add → Add Single Property .

4. In the Add Property dialog box, enter the Property Name as
“PART” and the Property Value as “XC4003E-4-PC84” and click
OK.

This specifies an XC4003E device with -4 speed grade (approxi-
mately 4 nanoseconds delay through a CLB) in an 84-pin PLCC.

The PART value may take one of the following two formats:

[XC] part_number-speed-package
[XC] part_number-package-speed

Therefore, the following values for the PART property are all
legal:

XC4003E-4-PC84 (recommended)
XC4003E-PC84-4
4003E-4-PC84
4003E-PC84-4

Note: If using a different device, type that device number into the
Property Value field instead, e.g., XC95108-10-PC84

5. Place the property text within the CONFIG symbol as shown in
the following figure.
9-76 Xilinx Development System

Schematic Design Tutorial
Figure 9-52 Adding the CONFIG Symbol

6. Check and save the Calc schematic.

Using a Constraints File
Using a constraints file, you can supply constraints information in a
textual form rather than putting it on a schematic. Sometimes this
method is more efficient than putting constraints on a schematic.

It is necessary instruct the place and route software to read and apply
the .ucf file when the Xilinx Design Manager reads the design. The
procedure for doing this is detailed later in the “Using the Xilinx
Design Manager” section.

The calc_4ke.ucf user constraints file which is supplied with this tuto-
rial is shown below as an example of a constraints file. The
constraints file syntax is the same for all device families. Since you
only specified one pin location for one of the many inputs and
outputs on the Calc schematic, you must use a constraints file to place
the rest.
Mentor Graphics Interface/Tutorial Guide 9-77

Mentor Graphics Interface/Tutorial Guide
CALC_4KE.UCF
User constraints file for CALC, XC4003E-PC84
If the F pin is not constrained on the schematic,
remove the comment (#) from NET F LOC=P50;

NET SWITCH(7) LOC=P19;
NET SWITCH(6) LOC=P20;
NET SWITCH(5) LOC=P23;
NET SWITCH(4) LOC=P24;
NET SWITCH(3) LOC=P25;
NET SWITCH(2) LOC=P26;
NET SWITCH(1) LOC=P27;
NET SWITCH(0) LOC=P28;

NET A LOC=P49;
NET B LOC=P48;
NET C LOC=P47;
NET D LOC=P46;
NET E LOC=P45;
NET F LOC=P50;
NET G LOC=P51;
NET OFL LOC=P41;

NET GAUGE(3) LOC=P61;
NET GAUGE(2) LOC=P62;
NET GAUGE(1) LOC=P65;
NET GAUGE(0) LOC=P66;

NET STACKLED(3) LOC=P57;
NET STACKLED(2) LOC=P58;
NET STACKLED(1) LOC=P59;
NET STACKLED(0) LOC=P60;

Remove the NOTGBLRESET line if STARTUP
is not used in the schematic

NET NOTGBLRESET LOC=P56;

Performing Functional Simulation
You perform functional simulation before design implementation to
verify that the schematic that you have designed is logically correct.
All components in the Calc design, even the non-schematic Logi-
BLOX module, have built-in simulation models so little pre-
processing is necessary. However, every top-level design in Mentor
9-78 Xilinx Development System

Schematic Design Tutorial
Graphics must have a simulation viewpoint before you can use it in
QuickSim. The viewpoint describes how a design should be inter-
preted, including what components in the design are primitives, as
well as how components within the design hierarchy should be
modeled.

Using Pld_dve
You use the PLD Design Viewpoint Editor to generate a design view-
point to tell QuickSim how to interpret certain Xilinx-specific design
properties. Follow these steps to generate a viewpoint with pld_dve.

1. Select the calc design object from the appropriate directory in the
Navigator window.

2. Invoke pld_dve on the design by selecting Right Mouse
Button → Open → pld_dve .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.

Figure 9-53 Invoking Pld_dve for Functional Simulation

3. Select the appropriate PLD Technology from the listing, e.g.,
XC4000E, as shown in the figure above. (Leave other options set
to their defaults, as shown in the figure.)
Mentor Graphics Interface/Tutorial Guide 9-79

Mentor Graphics Interface/Tutorial Guide
4. Click OK to execute the pld_dve script.

5. Once pld_dve completes, dismiss the shell window in which it
executed.

Invoking Pld_quicksim
Invoke pld_quicksim for functional simulation on the Calc design
using the following method:

1. Select the Calc design object in the Navigator window.

2. Invoke pld_quicksim on the design by selecting Right Mouse
Button → Open → pld_quicksim .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.

Figure 9-54 Invoking Pld_quicksim for Functional Simulation

3. Under Select desired mode, select NO Cross-Probing
(Front-end) .

This runs pld_quicksim in functional simulation mode, which
uses information from the original schematic (as opposed to a
timing netlist generated by the Xilinx software) to model the
design.

4. Click OK to start QuickSim II.
9-80 Xilinx Development System

Schematic Design Tutorial
Viewing the Calc Schematic
When QuickSim starts, no windows are open. In this section, you
open a window and view the top-level schematic for the Calc design.
Displaying the schematic is convenient for viewing back-annotation
during the simulation.

1. To open a window containing the Calc schematic, select OPEN
SHEET from the palette.

This automatically opens the top-level sheet for Calc.

2. Move the window to the upper left corner of the QuickSim
window.

Figure 9-55 Top-Level Calc Schematic
Mentor Graphics Interface/Tutorial Guide 9-81

Mentor Graphics Interface/Tutorial Guide
Selecting Nets for Simulation
There are several ways to select the signals that you would like to
monitor. One way is to select the Right Mouse Button → Add →
Traces → Specified command, then type in the nets you want to
view in simulation. Another way is to select the nets on the sche-
matic. To select the signals, you may need to zoom and pan using the
scroll bars or using strokes.

To select the nets on the schematic follow these steps:

1. Using the F8 key, zoom in on the area pictured in the following
figure.

2. Position the cursor on the net labeled CLK, and press the left
mouse button.

The net appears highlighted, as in the figure below. Whenever
any portion of a net is selected in QuickSim, the entire net
appears highlighted. You can select additional nets using the
same procedure. If you make a mistake, click the left mouse
button a second time on the net or object to unselect it.
9-82 Xilinx Development System

Schematic Design Tutorial
Figure 9-56 Selecting the CLK Net for Display in Trace Window

3. Use the left mouse button to select the following nets: STACKEN,
PUSH.

4. Using the Shift-F8 key, view the entire schematic.

5. Select the net labeled EXEC (output of the DEBOUNCE compo-
nent) with the left mouse button.

One of the advantages of labeling all nets is now clear. When you
select an unlabeled net for simulation display, note that a default
name is used for the net, such as N$14. This name is not very
useful for debugging, especially since making changes to the
schematic may cause renumbering of net names.

6. You can also add buses to your list of signals to be monitored.
Use the left mouse button to select the buses labeled
ALUVAL(3:0) and STACKOUT(3:0).

7. Press the blue TRACE button in the palette to add all selected
signals to the Trace window.
Mentor Graphics Interface/Tutorial Guide 9-83

Mentor Graphics Interface/Tutorial Guide
Opening Trace and List Windows
To view the waveforms of the selected signals, you must open a
QuickSim Trace window.

To open a Trace window, perform these steps.

1. Select the blue button labeled TRACE in the palette with the left
mouse button.

A Trace window appears displaying the waveforms selected on
the schematic.

2. If necessary resize the Trace window to see all the signals at once.
Otherwise, move the cursor into the Trace window and use the
PageUp and PageDown keys to scroll through the signals in the
window.

Note that all the signals in the Trace window are highlighted.
Every window opened in QuickSim is dynamically linked to the
others. The selection of a net on the schematic sheet, for example,
is also reflected in the Trace window, and in any other window
that is open. This is useful, for example, if a setup violation
occurs. The instance name in the error message text is high-
lighted, and the related component on the schematic page also
appears highlighted.

Figure 9-57 Trace Window
9-84 Xilinx Development System

Schematic Design Tutorial
It is sometimes useful to obtain tabular output using a List window.
A List window displays signal values and highlights the points at
which a given signal value changes.

To open a List window, perform these steps.

1. Since the desired signals are already selected, select the blue LIST
button in the palette with the left mouse button.

The list window appears, with the signal names at the bottom.
The caret (‘^’) is an arrow pointing up to indicate the correct
column for each signal.

2. Move the List window to the upper right-hand corner of the
screen next to the Schematic window.

Figure 9-58 List Window

Adding Traces Manually
In the Calc design, inputs are entered via a set of eight switches,
SWITCH(7:0). The lower seven switches (SWITCH(6:0)) define the
opcode. The left-most switch (SWITCH(7)) is the execute switch.
Mentor Graphics Interface/Tutorial Guide 9-85

Mentor Graphics Interface/Tutorial Guide
When SWITCH(7) is toggled, the selected opcode on SWITCH(6:0) is
executed. It is useful to view SWITCH(6:0) and SWITCH(7) sepa-
rately in the Trace window.

Add these two traces to the Trace window as follows:

1. To add traces manually, the Stimulus Palette must be active. Click
on the red STIMULUS button in the palette. The icons in the
palette change.

2. Press the F2 key to unselect everything.

3. Select the Trace window with the left mouse button.

4. Choose Right Mouse Button → Add → Traces → Speci-
fied .

5. In the dialog box that appears, select the Named Signals button
with the left mouse button.

6. Fill in the dialog box as shown in the figure below.

7. Select OK or press Return.

The bus SWITCH(6:0) and the signal SWITCH(7) are added to the
Trace window.
9-86 Xilinx Development System

Schematic Design Tutorial
Figure 9-59 Adding Traces Manually

Assigning Values to the Clock
Define a clock for the circuit as follows:

1. Make sure that the Trace window is active (border appears blue).
If not, select the window using the left mouse button.

2. Press the F2 key to unselect everything, then select the CLK net in
the Trace window using the left mouse button.

3. Select ADD CLOCK in the palette.

4. Fill in the dialog box that appears as shown in the following
figure.
Mentor Graphics Interface/Tutorial Guide 9-87

Mentor Graphics Interface/Tutorial Guide
Figure 9-60 Adding a Clock Waveform

The dialog box selections give the clock a 100 ns period and a 50
percent duty cycle. At zero ns, the clock begins with a value of
zero. The Absolute option indicates that the times are absolute,
and not relative to the state of the simulator. For example, if you
had already been simulating, the state of the simulator may not
be at zero nanoseconds. If Absolute is selected, the times entered
in the dialog box are referenced from time zero. If Absolute is not
selected, the times entered in the dialog box are added to the
present time in the simulation.

Selecting a Fixed Force type indicates that the signal is driven as
if it were connected directly to VCC or GND. If Wired were
selected, the signal would be driven as if it were connected to a
pull-up or pull-down resistor. A Charge Force type represents a
default charge on a floating signal. Wired values are overridden
by Fixed values, and Charge values are overridden by both. In
general, for Xilinx designs always use a force type of Fixed unless
it is a bidirectional input, in which case a Wired force type should
be used.

5. Press return or select OK to add the force to CLK.
9-88 Xilinx Development System

Schematic Design Tutorial
Asserting Global Set/Reset (without STARTUP)
Note: This section applies to designs in which the STARTUP module
has not been instantiated. If you have an XC4000 family or XC5200
design that has the STARTUP module in it, go to the “Asserting
Global Set/Reset (with STARTUP)” section.

In every simulation, the first node you must assert is the global-reset
signal. This signal does not exist on your schematic, but does exist in
the device. This dedicated net is connected to every asynchronous
reset pin on every flip-flop (including IOB flip-flops) in an FPGA or
CPLD. The net is named differently and has a particular polarity
depending on the device family used as shown in the following table.

In each case, the global-reset net name is preceded by two forward
slashes, indicating that the net is a global signal in QuickSim. The
global-reset signal is part of the simulation models; you must toggle
it at the beginning of every simulation. If you do not pulse globalre-
setb low, all flip-flop outputs are unknown at all times during your
simulation.

In the following example, you set //prld, the XC9000 global-reset
signal, high at time 0 and low at 100 ns:

1. With the Trace window selected, press the blue Unselect All
button in the palette with the left mouse button.

2. Select the Add Force icon in the palette with the left mouse
button.

The Force Multiple Values dialog box appears.

3. Since a signal is not selected, the Signal name field is empty. Fill
in the dialog box as shown in the following figure. The signal is to
be forced low (asserted) at time zero and high at time 100ns.

Table 9-3 Net Names for the Global Set/Reset Signal

Device Family Net Name Polarity

XC3000 //globalresetb Active Low

XC4000 //globalsetreset Active High

XC5200 //globalreset Active High

XC7000 //prld Active High

XC9000 //prld Active High
Mentor Graphics Interface/Tutorial Guide 9-89

Mentor Graphics Interface/Tutorial Guide
Figure 9-61 Forcing the Global-Reset Signal (XC9000)

For other families, assert the appropriate signal with the appropriate
polarity. For example, in the XC3000 family, the global-reset signal is
//globalresetb, which must be forced low at time 0, and so on.

Asserting Global Set/Reset (with STARTUP)
Note: This section applies to designs in which the STARTUP module
has been instantiated. If you have a design without a STARTUP
module instantiated, follow the instructions in the “Asserting Global
Set/Reset (without STARTUP)” section.

The global-reset signal must be forced at the beginning of all XC4000
family and XC5200 simulations. It is an active-High signal that sets or
resets all flip-flops in the chip. Whether a flip-flop is set or reset
depends on whether it is an FDP or an FDC flip-flop, or on the value
of the flip-flop’s INIT attribute. The default configuration for all flip-
flops is to function as a reset flip-flop.

Unlike other families, the global-reset signal in the XC4000 family
and XC5200 family is not hard-wired to a package pin, and need not
appear on one at all. If you want access to the global-reset net from an
external pin, place the STARTUP component in your schematic and
attach an IPAD and IBUF to the GSR pin for XC4000 family designs,
or to the GR pin for XC5200 family designs. This pad becomes an
9-90 Xilinx Development System

Schematic Design Tutorial
active-High Global Set Reset signal in XC4000 family devices and an
active-High Global Reset signal in XC5200 family devices. You can
also use an internally generated signal to drive the GSR or GR pin of
the STARTUP component. There is also an active-High Global Three
State signal (GTS) that you can access in the same way. See the XACT
Libraries Guide for more information on the STARTUP symbol.

Since an external signal is connected to the global-reset net via the
STARTUP symbol, you must pulse this external signal to activate
global reset as opposed to the internal global-reset signal (explained
in the “Asserting Global Set/Reset (without STARTUP)” section.

1. With the Trace window selected, press the blue Unselect All
button in the palette with the left mouse button.

2. Select the Add Force icon in the palette with the left mouse
button.

A dialog box appears.

3. Normally, the net name //globalsetreset (XC4000) or //global-
reset (XC5200) would be added as the signal name. (The two
leading forward slashes would indicate that this is a global
signal.) However, since you have included the STARTUP symbol
in this design, you must instead pulse whatever signal is driving
the GSR pin on the STARTUP module. In this case, pulse the
NOTGBLRESET signal.

4. Fill in the dialog box as shown in the following figure. The
NOTGBLRESET signal is to be forced low (asserted) at time zero
and high at 100ns. Note that, because of the inverter in the path
from NOTGBLRESET to GSR or GR, this series of forces is equiv-
alent to pulsing globalsetreset or globalreset high.
Mentor Graphics Interface/Tutorial Guide 9-91

Mentor Graphics Interface/Tutorial Guide
Figure 9-62 Forcing Globalsetreset via Notgblreset (XC4000E)

Design Description
The Calc design is a simple four-bit processor with a stack. The
CONTROL module interprets the switch input and drives the control
lines of the ALU and STACK components. The ALU performs func-
tions between an internal register and either the top of the stack or
data read in from the external switches. Outputs include
ALUVAL(3:0), the current contents of the internal register, and
STACKOUT(3:0), the top value in the stack.

For a more detailed description of the Calc design, see the “Design
Description” section.

Simulating the Circuit
You are now ready to force the inputs to known values and simulate.

1. Press the blue Unselect All button in the palette.

2. Select the Add Force button in the palette with the left mouse
button.

3. Fill in the dialog box as shown in the figure below.

All numbers entered are interpreted as hex. This sets opcode
(SWITCH(6:0)) to perform the following actions:
9-92 Xilinx Development System

Schematic Design Tutorial
00: ADD 0h to register value (should produce a zero).
61: LOAD register with 1h.
0D: ADD Dh to register value (1 + D should produce F).
7B: PUSH register value to stack (top of stack=F).
50: CLEAR register value.

Figure 9-63 Forcing Values to SWITCH(6:0)

For these commands to be executed, you must provide stimulus to
SWITCH(7), the execute switch. Perform the following actions to
force SWITCH(7) correctly:

1. Press the blue Unselect All button in the palette.

2. Select the SWITCH(7) signal from the Trace window. It may be
necessary to use the PageDown key to scroll through the list of
signals in the Trace window.

3. Select the red WF EDITOR button from the top of the Palette. The
icons in the palette change.

4. Select the icon labeled EDIT WAVEFORM.
Mentor Graphics Interface/Tutorial Guide 9-93

Mentor Graphics Interface/Tutorial Guide
A new trace appears labeled forces@@/SWITCH(7). While the
SWITCH(7) trace represents the value of SWITCH(7) up to the
present time in simulation, the trace forces@@/SWITCH(7) repre-
sents all values that will ever be forced on the signal. During
simulation, this waveform can be edited to modify future values
of SWITCH(7).

A blue line appears extending from SWITCH(7) to indicate that it has
not been given a value. First, force SWITCH(7) to a known value at
time zero as follows:

1. Select the ADD icon in the palette.

2. Move the cursor into the Trace window.

A red vertical line appears under the cursor. The numbers in the
grey box reflect the value and time that are pointed to as the
cursor is moved.

3. Move the cursor close to the beginning of forces@@/SWITCH(7),
as shown in the figure below, and then press the left mouse
button.

This indicates that you want to change the value from the nearest
left edge (in this case, time zero is considered an edge) to the next
right edge. Since the signal makes no transitions, you can assign
the same value to the entire length of the signal.

4. Type a ‘1’ in the value field of the small dialog box and click OK.

This indicates that you want to change the signal value between
the two nearest edges to a one. The entire length of the signal
changes color from dark blue to light blue, and the line moves up,
indicating it will be driven to a one.
9-94 Xilinx Development System

Schematic Design Tutorial
Figure 9-64 Forcing SWITCH(7) to Initial Value

5. Press the Escape key to end the Add Event operation.

Now that SWITCH(7) has been given an initial value, you must
define when transitions occur on the signal as follows:

1. Select the TOGGLE icon from the palette.

2. Move the cursor to the Trace window.

A red vertical line appears with numbers indicating the value
and time of the signal at the position beneath the cursor.

3. Move the cursor to the forces@@/SWITCH(7) signal at time
700ns and press the mouse button, as shown in the figure below.

A high to low transition is added to the force waveform at time
700 ns.
Mentor Graphics Interface/Tutorial Guide 9-95

Mentor Graphics Interface/Tutorial Guide
Figure 9-65 Adding the First Toggle to SWITCH(7)

Note: It is sometimes difficult to position the cursor at exactly the
right value if you are zoomed in too close. If you zoom out, the
numbers get rounded to the nearest 1.0 ns, making it easy to place the
edges correctly. Use the stroke 753 to zoom out. If you still cannot
place the edges exactly, err to the left of the desired location. If you
make a mistake, select the CUT icon in the palette and click the left
mouse button on the incorrectly placed edge. The edge disappears.
Then, select TOGGLE to continue adding edges.

4. Without moving the cursor, use the right arrow key to scroll the
window forward in time. Each press of the right arrow key
advances the window (and, consequently, the position under the
cursor) by 50 ns. Add toggles at times 900, 1200, 1400, 1800, 2000,
2300, 2500, 2800, and 3000 ns. The waveform then appears as in
the figure below. Press Shift-F8 to view the entire waveform.

5. Press Escape to end the TOGGLE command
9-96 Xilinx Development System

Schematic Design Tutorial
Figure 9-66 SWITCH(7) Force Waveform

Now that your inputs and clock are defined, you are ready to run
the simulation.

6. Type run 3400 at any location in the QuickSim window, then
press return .

A window automatically appears containing the text. The results
should look similar to those in the following figure.

Figure 9-67 Output from Simulation (XC4000E design)
Mentor Graphics Interface/Tutorial Guide 9-97

Mentor Graphics Interface/Tutorial Guide
Saving the Results
If you were to exit QuickSim now, you would lose your waveform
data. You can save the waveform information in a waveform data-
base. To view the waveforms at a later time, you can use the File →
Load → Waveform DB command found in the menu bar.

1. Select the red STIMULUS button from the palette.

2. Select the SAVE WDB icon from the palette.

The Save Waveform DB dialog box appears.

3. Fill in the Save Waveform DB dialog box as shown in the
following figure.

This saves your results to the WaveForm Database, simrun1. This
database is created in the directory specified by the $MGC_WD
environment variable.

4. Press return or click OK.

Figure 9-68 Saving Results

It may be useful to save the stimulus so that it can be run again. To do
this perform the following steps:

1. Press the red STIMULUS button in the palette.
9-98 Xilinx Development System

Schematic Design Tutorial
2. Select the SAVE WDB icon from the palette.

The Save Waveform DB dialog box appears.

3. Fill in the Save Waveform DB dialog box as shown in the figure
below.

This saves the stimulus to the file, forces1. As with simrun1, this
file is created in the directory specified by $MGC_WD.

4. Press return or click OK to save the forces.

Figure 9-69 Saving Forces

After saving the results, reset the simulator to time zero as follows:

1. Press the blue RESET button in the palette.

2. In the dialog box that appears, select the State button so that it
highlights, and deselect any highlighted buttons.

This forces the simulator to reset without saving.

3. Press return or choose OK.

The Trace window results disappear, while the forces waveform
remains.
Mentor Graphics Interface/Tutorial Guide 9-99

Mentor Graphics Interface/Tutorial Guide
Using the Transcript
In addition to saving the results and forces, you can also save the
actual transcript for the QuickSim session. Every mouse click and key
press is recorded. This is sometimes useful for making macros to
perform complicated, repetitive tasks. The saved transcript can then
be replayed using the MGC→ Transcript → Replay command
found in the menu bar. Save the transcript as follows:

1. Select the MGC→ Transcript → Show Transcript command
from the menu bar.

A text window appears. In this text window are AMPLE
commands. AMPLE (Advanced Multi-Purpose Language) is a C-
like programming language used by all of the Mentor Graphics
tools.

2. Select Right Mouse Button → Export .

3. In the dialog box that appears, type the file name tran-
script.out in the text field of the dialog box.

This saves the transcript to that file.

It is usually necessary to edit the transcript to make it useful. For
example, if this transcript were re-run on the Calc design, it
would setup the simulation, run, save the results, reset the simu-
lator, and open a transcript window. Perhaps all you want it to do
is setup and run the simulation. You would then have to delete
the other commands from the transcript file before re-running it.
For example, the $show_transcript(); command at the end of the
transcript file could be deleted to keep the transcript window
from appearing. You would probably also want to delete the
$set_active_window(“Transcript”); command as well if you did
this. For more information on AMPLE, refer to the appropriate
Mentor Graphics documentation.

4. Select File → Quit to exit QuickSim.

Using Pld_men2edif
Once your design is verified to be functionally correct, you use
pld_men2edif, a tool in the Mentor Graphics Design Manager, to
translate your Mentor design into a Xilinx-ready EDIF netlist.
Running pld_men2edif is always the first step in implementing a
9-100 Xilinx Development System

Schematic Design Tutorial
design. Whenever you make changes to your schematic, you must
run pld_men2edif again so that the Xilinx software can process those
changes.

When you run pld_men2edif from the Mentor Design Manager, the
following dialog box appears:

Figure 9-70 Pld_men2edif Dialog Box

Here is an explanation of some of the fields and buttons in the
pld_men2edif dialog box.

• Component Name—Enter the name of the component that you
want to process here.

• From Viewpoint—If you are an advanced Mentor Graphics
designer who uses viewpoints to organize design models and
properties, enter the viewpoint name that you wish to use for this
EDIF translation. If you do not use or are not familiar with view-
points, leave this field blank and pld_men2edif will use a default
value.

• Forward Referencing of EDIF component libraries—This
option applies only in rare situations where design hierarchy has
been structured in such a way that circular or recursive references
exist. Normally, this option is set to Off.
Mentor Graphics Interface/Tutorial Guide 9-101

Mentor Graphics Interface/Tutorial Guide
• Output EDIF Bus Dimension Separator Style—This determines
how bus-index delimiters are written into the output EDIF file.
This is important if you are merging components from other
design-entry tools into a single design. Choosing a bus-index
delimiter lets you insure that the bus-index delimiters that
pld_men2edif writes out are consistent with those of any other
design-entry tools with which you are interfacing.

Since this design has been fully captured in Mentor Graphics,
you need not worry about what type of bus delimiters are used.
You may leave this setting on the default (PARENTH).

• PLD Technology—Select the architectural family from this list.

• HELP—If the HELP button is clicked, a short help listing is
produced by the pld_men2edif script.

Perform the following steps to create an EDIF netlist for Calc:

1. Double-click on the pld_men2edif icon in Design Manager.

2. For the Component Name, type $XILINX_TUTORIAL/
calc_sch/calc as shown above.

3. Select the architecture in the PLD Technology field, e.g., XC4000E.

4. Select OK.

This opens a new shell window where pld_men2edif runs and
reports its progress. When pld_men2edif has completed, the
following should appear at the bottom of the shell window:

pld_men2edif ended with return code 0
Done.

5. Dismiss the pld_men2edif shell window by typing Ctrl-C in it
or by selecting Close from the window’s control menu (accessed
through the button on the left side of the title bar).

Note: The output of pld_men2edif may be sent to the window from
which the pld_dmgr was originally invoked. This behavior is
dictated by the $MGC_TERMINAL_WINDOW environment vari-
able; see the Mentor Graphics documentation for more details.

Examining Pld_men2edif Output Files
In addition to the EDIF netlist, pld_men2edif also creates a
pld_men2edif.log file. This file contains a transcript of the processing
9-102 Xilinx Development System

Schematic Design Tutorial
done by pld_men2edif. If the program fails to generate an EDIF
netlist, any errors encountered are logged in this file.

Examine the pld_men2edif.log file for the Calc design as follows:

1. Select the Navigator window.

2. Choose Right Mouse Button → Update Window .

This updates the Navigator window to display the new files
created by pld_men2edif, including an EDIF file for Calc, and a
log file for pld_men2edif.

Figure 9-71 Files Created by Pld_men2edif

3. Select the LOG icon labeled pld_men2edif and choose Right
Mouse Button → Open → Editor .

A window appears displaying the log file.

4. When you are done viewing the log, close the window.

Note: You can change the display font in this window by selecting
View → Fonts .

Using the Xilinx Design Manager
The Xilinx Design Manager is a graphical design-flow and project
manager. The Xilinx Design Manager takes your design, represented
by the EDIF file from pld_men2edif, and implements it in an FPGA or
CPLD. You can also use the Xilinx Design Manager to generate
timing information that you can import into QuickSim or QuickHDL.

This section gives a brief overview of the design implementation
flow. For a more in-depth discussion of the flow, including advanced
implementation options, see the Development System Reference Guide.

1. Within the Mentor Design Manager, select the Calc EDIF icon
in the Navigator, then select Right Mouse Button → Open →
pld_dsgnmgr .
Mentor Graphics Interface/Tutorial Guide 9-103

Mentor Graphics Interface/Tutorial Guide
The Xilinx Design Manager appears as shown. The tool automat-
ically creates a Xilinx project called calc. Xilinx project informa-
tion is kept in a file called xproject/calc.prj by default.

Figure 9-72 Xilinx Design Manager

Each project has associated with it objects known as “versions”
and “revisions.” Versions represent logic changes in a design (for
example, adding a new block of logic, replacing an AND gate
with an OR gate, or adding a flip-flop); revisions represent
different executions of the design flow on a single design version,
usually with new implementation options (for example, higher
place and route effort, a change in part type, or experimentation
with new bitstream options). In the next stage, you make a new
version and revision on which you run the implementation
design flow.

2. Within the Xilinx Design Manager, select Design → Implement ,
which gives you the Implement dialog box, with fields for part
type, design version, and revision as shown in the following
figure.
9-104 Xilinx Development System

Schematic Design Tutorial
Figure 9-73 Implementation Dialog Box

In the current release of software, the Xilinx Design Manager
does not read the part type from the design.

Note: The PART property in the CONFIG symbol does get read prop-
erly when processed from the system prompt, if the “-p” command-
line option is omitted from NGDBUILD and MAP. (See the
“Command Summaries” section of this chapter.)

3. Click the Select button to display a pull-down listing of avail-
able devices.

4. Choose a Family of XC4000E, a Device of XC4003E, a Package of
PC84, and a Speed Grade of -4 .

5. Click OK.

The part number is inserted into the Part field in the Implement
dialog box.

6. Click on Options .

The Options dialog box appears.

Note: The CPLD Options dialog box does not have a Configuration
Template section, nor does it have a Produce Logic Level Timing
Report checkbox.
Mentor Graphics Interface/Tutorial Guide 9-105

Mentor Graphics Interface/Tutorial Guide
Figure 9-74 Options Dialog Box

7. Click Browse by the User Constraints field.

8. Select the calc_4ke.ucf file from the design directory, then
Click OK.

9. Under Optional Targets, make sure the following are selected:

• Produce Timing Simulation Data—This generates a back-
annotated EDIF netlist that can be imported into the Mentor
Graphics tools.

• Produce Configuration Data—This generates a program-
ming bitstream suitable for downloading into the Xilinx
device.

• Produce Post Layout Timing Report—This generates a
timing report file based on how the design is actually routed.

You can also select the following option (FPGAs only):
9-106 Xilinx Development System

Schematic Design Tutorial
• Produce Logic Level Timing Report—This generates a
preliminary (post-map, pre-place and route) timing report
based on the number of logic levels in each signal path. Since
it is generated after the mapping step but before the place-
and-route layout step, it does not contain information on
device routing. Looking at this report before place and route
can be useful for seeing how much “routing slack” you have
in a design.

10. Under Program Option Templates Implementation, select Edit
Template .

The XC4000 Implementation Options dialog box appears as
shown.

Figure 9-75 Changing EDIF Vendor Information

11. Select the Interface tab.

12. In the Interface pane, look under Simulation Data Options and
verify that Format is set to EDIF and that Correlate Simula-
tion Data to Input Design is selected.

13. In the Vendor field, select Mentor .
Mentor Graphics Interface/Tutorial Guide 9-107

Mentor Graphics Interface/Tutorial Guide
14. Click OK to return to the Options window.

15. Click OK to return to the Implementation dialog box.

16. Verify that the version is “ver1” and the revision is “rev1” then
click Run.

The Flow Engine comes up as shown in the figure.

Figure 9-76 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate—convert the design EDIF file into an NGD (Native
Generic Design) file

• Map—group basic elements (“bels”) such as flip-flops and
gates into logic blocks (“comps”); also generate a logic-level
timing report if desired

• Place&Route—place comps into the device, and route
signals between them

• Timing—generate timing simulation data and an optional
post-layout timing report

• Configure—generate a bitstream suitable for downloading
into and configuring a device
9-108 Xilinx Development System

Schematic Design Tutorial
When the implementation completes, an Implementation Status
box displays:

Implementing revision ver1->rev1 completed
successfully.

17. Click on View Logfile to display the logfile from the Flow Engine.

The report is displayed in vi.

18. To exit the viewer, type :q! and press Return .

19. Click OK in the Implementation Status dialog to return to the
Xilinx Design Manager.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

Performing Timing Simulation
Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. Also, since the delay-anno-
tated timing netlist is different from the original schematic design, the
timing simulation uses a process called cross-probing to allow you to
view simulation results on your schematic. In this section, you
perform a timing simulation of the Calc design by first preparing the
design using pld_edif2tim. Once this has been done, you run
pld_quicksim with cross-probing to trace waveforms and annotate
results onto your original schematic.

Using Pld_edif2tim to Prepare a Timing Simulation
Pld_edif2tim reads a routed EDN file and back-annotates the delays
to the schematic. This includes a number of steps, all of which are
automatically run by the pld_edif2tim script. This script is repre-
sented by the pld_edif2tim icon in pld_dmgr. The files necessary for
back-annotation have either been created in the Design Architect
tutorial or are included in the solution directories.

Use pld_edif2tim to prepare the design for timing simulation as
follows:

1. In pld_dmgr, use the Navigator to find and select the EDN
time_sim icon.
Mentor Graphics Interface/Tutorial Guide 9-109

Mentor Graphics Interface/Tutorial Guide
This represents the timing-annotated netlist generated by the
Xilinx Design Manager.

Note: There may be two similar looking types of icons, one marked
EDIF and the other marked EDN. An EDIF file represents a netlist
translated from the original schematic, while an EDN file represents a
netlist translated from a routed NCD file. Be sure you select an EDN
file to prepare for timing simulation.

2. Select Right Mouse Button → Open → pld_edif2tim .

A dialog box appears. Design Manager automatically fills in the
dialog box with the name of the EDN file.

3. Verify that the Replace existing routed design library field is set
to NO.

On subsequent executions of pld_edif2tim, you may set this to
YES if you are overwriting a previous timing model.

4. Press return or select OK to execute the command.

The script produces a shell and runs in it.

Examining the Pld_edif2tim.log File
Examine the pld_edif2tim.log file as follows:

1. In pld_dmgr, select Right Mouse Button → Update Window .

The window is updated with the files that pld_edif2tim gener-
ated.

2. Find the pld_edif2tim LOG file and select it with the left mouse
button.

3. Choose Right Mouse Button → Open → Editor to open the
file in the editor.

No errors or warnings should be reported. For a short summary
of the commands executed by pld_edif2tim during the timing
flow, see the “Command Summaries” section at the end of this
chapter. The timing flow is always the same since the starting
point is always a routed EDN file with delays.

4. When you have finished looking at the file, close the Editor
window.
9-110 Xilinx Development System

Schematic Design Tutorial
Using Pld_dve
As with functional simulation, the timing-annotated netlist must also
have a viewpoint associated with it.

1. In your design directory, you should now see a directory called
calc_lib. Double-click on this directory icon to descend into it.

2. Select the calc component (which should be at the very bottom on
the icon listing) with the left mouse button.

3. Invoke pld_dve on the simulation netlist component by selecting
Right Mouse Button → Open → pld_dve .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.

Figure 9-77 Invoking Pld_dve for Timing Simulation

4. Select the appropriate PLD Technology from the listing, e.g.,
XC4000E, as shown in the figure above. (Leave other options set
to their defaults, as shown in the figure.)

5. Click OK to execute the pld_dve script.

6. Once pld_dve completes, dismiss the shell window in which it
has executed.
Mentor Graphics Interface/Tutorial Guide 9-111

Mentor Graphics Interface/Tutorial Guide
Invoking QuickSim for Timing Simulation
1. With the timing-annotated calc component in the calc_lib direc-

tory still selected, invoke pld_quicksim by selecting Right
Mouse Button → Open → pld_quicksim .

A dialog box appears. The component name, Calc, is entered
automatically with a fully qualified path.

Figure 9-78 Invoking Pld_quicksim for Timing Simulation

2. Select desired mode as Cross-Probing .

This allows QuickSim to use the back-annotated timing model in
QuickSim, while allowing you to view the original schematic in
DVE. This process is necessary because your original schematic is
expressed in Unified libraries, while the back-annotated timing
model is generated using simulation primitives.

3. Select the Constraint option for Timing mode.

4. Select the Visible option for Detail of ‘Constraint’ timing mode.
9-112 Xilinx Development System

Schematic Design Tutorial
A new set of buttons appears in the dialog box.

5. Select Typ for Timing mode.

This specifies the use of the back-annotated timing information.

6. Select Messages for Constraint mode.

7. Leave the rest of the buttons set at their defaults, and press
return to start QuickSim.

For more information on these other options, refer to the Mentor
Graphics documentation on QuickSim. For most Xilinx simula-
tions, the above setup is appropriate.

The Design Viewpoint Editor (DVE) appears and gives an infor-
mational message reading,

To start the cross-probing process, ...

8. Click Close in this message window.

9. Resize the DVE window so that it is almost as large as the entire
screen.

The QuickSim window also appears.

10. Resize the QuickSim window so that it is almost as large as the
entire screen, allowing space for you to click on the DVE window
to make it active and display in the foreground.

11. Bring the DVE window to the foreground and select OPEN
DESIGN VIEWPOINT from the palette.

12. In the dialog box, enter the name of the original component in the
Component field, e.g., $XILINX_TUTORIAL/calc_sch/calc. (Do
not enter the name of the simulation model,
$XILINX_TUTORIAL/calc_sch/calc_lib/calc.)

13. Click OK to load the original viewpoint.

14. Select OPEN SHEET from the palette to open the top-level Calc
schematic.

15. To see the cross-probing process in action, click on the CLK net
attached to the CLOCKGEN component.

A few seconds after this net is selected in DVE, a Trace window
appears in QuickSim listing the CLK net.
Mentor Graphics Interface/Tutorial Guide 9-113

Mentor Graphics Interface/Tutorial Guide
16. Bring the QuickSim window to the foreground to see the Trace
window.

17. Select Transcript → Replay from the QuickSim menu bar.

18. From the dialog box, choose the calc_4ke.do file. (Depending
on your target device, select calc_3ka.do, calc_5k.do, or
calc_9k.do.)

This replays a transcript file similar to the one created earlier.
This transcript file opens the design; opens Trace and Monitor
windows with the correct signals; assigns stimulus to the signals;
and then runs the simulation. It should be obvious when you
look at the Trace output that real delay values are being used. It
may be useful to view the transcript file using the editor in
pld_dmgr or another editor.

The figure below shows how DVE and QuickSim may look like
running side by side.
9-114 Xilinx Development System

Schematic Design Tutorial
Figure 9-79 Cross-Probing with DVE and QuickSim

19. After examining the waveforms in timing simulation, close both
the QuickSim and DVE windows.

Examining Routed Designs with EPIC
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9000 device, skip to the “Making Incremental
Design Changes” section.

At this point in the tutorial, the design process is complete. If you
would like to see how the design has been implemented by the Xilinx
software, you can take a graphic look at your placed and routed
design using the Editor for Programmable Integrated Circuits, or
EPIC. You can access EPIC from the Xilinx Design Manager.
Mentor Graphics Interface/Tutorial Guide 9-115

Mentor Graphics Interface/Tutorial Guide
EPIC provides several useful functions, such as:

• Manual placement of a pre-routed design

• Manual editing of a routed design

• Static timing analysis

Figure 9-80 EPIC Icon

EPIC is explained in a separate tutorial. See the “EPIC Tutorial”
section of the EPIC Reference/User Guide. Before starting this tutorial,
be sure to select the ver1 → rev1 revision of the design in the project
view

Verifying the Design Using a Demonstration Board
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9000 device, skip to the “Making Incremental
Design Changes” section

Creating and Downloading the Bitstream
A bitstream has been created during the Configure stage in Flow
Engine. At this point, you are ready to download the bitstream using
a parallel download cable or the more versatile XChecker cable
connected to your workstation. The XC4000E version of the Calc
design is suitable for download into an FPGA demonstration board
available from Xilinx.

Downloading is accomplished with Hardware Debugger. To invoke
Hardware Debugger, you select Tools → Hardware Debugger
from the menu bar, or click the Hardware Debugger icon on the
toolbar. If you are using an XChecker cable, you can also use the
Hardware Debugger to read back information from the device to
verify both the configuration as well as the state of memories and
registers within the device.
9-116 Xilinx Development System

Schematic Design Tutorial
Figure 9-81 Hardware Debugger Icon

Hardware Debugger is explained in a separate tutorial. See the
“CALC Tutorial” section of the Hardware Debugger Reference/User
Guide. Before starting this tutorial, be sure to select the ver1 → rev1
revision of the design in the project view.

Making Incremental Design Changes
After initially placing and routing a design, it is often necessary to go
back to the schematic and make slight modifications to the original
design. When this situation occurs, much of the place and route infor-
mation from the previous design iteration can be “recycled,” since
much of it is unchanged. This process is known as incremental
design, and the NCD file (containing partition, placement, and
routing information) from the prior place and route run is used as a
guide.

Since much of the place and route information is extracted from the
guide file, the place and route time is greatly reduced. The reuse of
place and route information also results in more stable timing over a
number of guided place and route iterations. Once a section of your
design passes your timing requirements, guided design ensures that
it passes in the future, even if other parts of the design are modified.

In this section of the tutorial, you make a small change to the sche-
matic and reprocess the design using the guide options available in
the Xilinx Flow Engine.

Note: A small design change is the addition, removal, or replacement
of only a small amount of logic in the design; the exact amount is
dependent on the size of the design. If radical changes are made to a
design, especially to existing portions of the design, it can be disad-
vantageous to guide the design.

Making an Incremental Schematic Change
Make a simple change to the Calc schematic that is visible immedi-
ately on the demonstration board. For example, assume that the reset
opcode is no longer needed and needs to be removed from the
Mentor Graphics Interface/Tutorial Guide 9-117

Mentor Graphics Interface/Tutorial Guide
design. This can be done by grounding the ‘R’ pins that are inputs to
the FDRE and FD4RE macros in the ALU schematic. The logic that
generated the original reset signal, and the logic it drove, is automati-
cally optimized out of the netlist by the MAP program.

Open pld_da and load the Calc schematic as follows.

1. From pld_dmgr, select the $XILINX_TUTORIAL/calc_sch/
alu design object and choose Right Mouse Button → Open
→ pld_da .

Design Architect appears with the ALU schematic loaded.

2. Use the F8 key, or the stroke 159, to zoom in on the lower right
quadrant of the schematic.

3. Press the F2 key to make sure nothing is selected.

4. Select the AND5B2 component that generates the QRESET net
feeding the FDRE and FD4RE.

5. Press the Delete key to delete the component.

6. Connect a ground symbol to the dangling QRESET net.

The GND symbol can be found in the BY TYPE → general
section of the Xilinx Library menu. See the figure below.

7. Check and save the schematic.

8. Exit pld_da and return to pld_dmgr.
9-118 Xilinx Development System

Schematic Design Tutorial
Figure 9-82 Grounding the Reset Logic

Translating the Incremental Design
Translate the guided Calc design by turning on the guide options in
Flow Engine. The following instructions demonstrate an alternative
method of running Flow Engine that offers more control over the
implementation flow.

1. In the Xilinx Design Manager, select calc , then choose Design
→ New Version .

2. The New Version dialog box appears with the Name field auto-
matically filled in as ver2. You may also add a comment to the
new version. This comment appears in the project view next to
the version number. Click OK.

Note: You can add a comment to any version or revision in the
project view by selecting that version or revision, then selecting
Right Mouse Button → Properties .

3. Select the newly created ver2 in the project view, then select
Design → New Revision .
Mentor Graphics Interface/Tutorial Guide 9-119

Mentor Graphics Interface/Tutorial Guide
The New Revision dialog box appears with the Name field auto-
matically filled in as rev1 and the Part field automatically filled
in as XC4003E-4-PC84 . You may add a comment to the new
revision if you wish.

4. Click OK to close the dialog box.

5. Select the newly created “rev1” in the project view, then select
Tools → Flow Engine . Alternatively, you can click the Flow
Engine icon in the Toolbox.

Figure 9-83 Flow Engine Icon

Flow Engine appears. However, unlike the procedure you used
in the first revision, the implementation flow does not start auto-
matically. This allows you to step forward and even backward
through the implementation flow by individual stages, using the
audio-player-like buttons at the bottom of the Flow Engine
window, or the selections underneath the Flow menu.

6. Select Setup → Options from the menu bar.

The Options dialog box appears as before.

7. Go through the different options as before and verify that the
settings you gave in the previous revision have been carried over
into this revision.

8. In the Guide Design field, select Last.

This sets the previous revision of the placed and routed design.
In this case, it has the same effect as selecting ver1 → rev1 .

9. Click OK to return to Flow Engine.

10. Run the implementation as before by clicking the play button
(on the far left) at the bottom on the Flow Engine window.

11. When all steps have completed successfully, select Flow →
Close to exit Flow Engine.
9-120 Xilinx Development System

Schematic Design Tutorial
Verifying the Change in the Demonstration Board
Verify that the change was performed by downloading the new
bitstream to the demonstration board, as you did previously. As
before, see the “CALC Tutorial” section of the Hardware Debugger
Reference/User Guide for more information. Before running through
this tutorial, make sure that the ver2 → rev1 revision is selected in
the project view.

Command Summaries
Although this tutorial uses the Mentor Graphics Design Manager and
the Xilinx Design Manager to process the Calc design, you can also
manually run the individual programs that these graphical tools run.

This section details command sequences that you can use to perform
the translations the Xilinx Design Manager performs in this tutorial.
The commands are written as you would type them at the system
prompt or in a batch file. You may also see a summary of these
system commands by using the Utilities → Command History
and Utilities → Command Preview selections in Design
Manager or Flow Engine. Once you are in the Command History or
Command Preview dialog box, select the display Mode to Command
Line to see the detailed system commands, including command-line
options, used by Flow Engine. You can cut and paste from these
Command dialog boxes into your text editor to create batch files.

Note: The commands listed here are slightly different from the
commands in the Command History and Command Preview
windows. The commands listed here show how you would typically
execute the Xilinx programs from the system prompt, outside of the
Xilinx Design Manager framework. The commands listed in the
Command History and Command Preview windows reflect how
Flow Engine executes Xilinx programs to fit into the Xilinx Design
Manager framework.

XC4000E Command Summaries

Functional Simulation

pld_dve -s calc xc4000e
pld_quicksim calc
Mentor Graphics Interface/Tutorial Guide 9-121

Mentor Graphics Interface/Tutorial Guide
Basic Translation

pld_men2edif calc xc4000e
ngdbuild -p XC4000E -uc calc_4ke.ucf calc.edif

calc.ngd
map -p XC4003E-4-PC84 -o calc_map.ncd -oe normal

calc.ngd calc.pcf
trce calc_map.ncd -a -o calc_map.twr
par -w -l 4 calc_map.ncd calc.ncd calc.pcf
trce calc.ncd -a -o calc.twr
ngdanno calc.ncd calc_map.ngm
ngd2edif -v mentor -w calc.nga calc.edn
bitgen calc.ncd -l -w

Timing Simulation

pld_edif2tim calc.edn
pld_dve -s calc_lib/calc xc4000e
pld_quicksim calc_lib/calc -cp -tim typ -consm

messages

Incremental Translation

mv calc.ncd calc_guide.ncd
mv calc_map.mdf calc_guide.mdf
pld_men2edif calc xc4000e
ngdbuild -p XC4000E -uc calc_4ke.ucf calc.edif

calc.ngd
map -p XC4003E-4-PC84 -o calc_map.ncd -oe normal

-gf calc_guide.ncd calc.ngd calc.pcf
trce calc_map.ncd -a -o calc_map.twr
par -w -l 4 -gf calc_guide.ncd calc_map.ncd

calc.ncd calc.pcf
trce calc.ncd -a -o calc.twr
ngdanno calc.ncd calc_map.ngm
ngd2edif -v mentor -w calc.nga calc.edn
bitgen calc.ncd -l -w

XC9000 Command Summaries

Functional Simulation

pld_dve -s calc xc9000
pld_quicksim calc
9-122 Xilinx Development System

Schematic Design Tutorial
Basic Translation

pld_men2edif calc xc9000
cpld -p XC95108-10-PC84 calc

Timing Simulation

ngd2edif -v mentor -w calc.nga calc.edn
pld_edif2tim calc.edn
pld_dve -s calc_lib/calc xc9000
pld_quicksim calc_lib/calc -cp -tim typ -consm

messages

Incremental Translation

cpld -p XC95108-10-PC84 -pinlock calc

Further Reading
The Schematic Design Tutorial is provided to give you the informa-
tion necessary to begin a Xilinx design using Mentor Graphics soft-
ware. It is important to note that tools as broad and complex as
Design Architect and QuickSim cannot be fully explained in a single
tutorial. There are many different ways to use the commands in these
tools, and there are also many ways to customize these applications.
It is strongly recommended that you read the Mentor Graphics
Design Architect and QuickSim documentation as well as the Xilinx
Mentor Graphics Interface/Tutorial Guide.
Mentor Graphics Interface/Tutorial Guide 9-123

Mentor Graphics Interface/Tutorial Guide
9-124 Xilinx Development System

Chapter 10

Schematic-on-Top with VHDL Tutorial

This chapter contains the following sections:

• “Introduction” section

• “Required Background Knowledge” section

• “Design Flow” section

• “Software Installation” section

• “Starting the Design Manager” section

• “Copying the Tutorial Files” section

• “Starting Design Architect” section

• “Completing the Calc Design” section

• “Using a Constraints File” section

• “Performing Functional Simulation” section

• “Using Pld_men2edif” section

• “Using the Xilinx Design Manager” section

• “Performing Timing Simulation” section

• “Examining Routed Designs with EPIC” section

• “Verifying the Design Using a Demonstration Board” section

• “Command Summaries” section

• “Further Reading” section

Introduction
This chapter guides you through a typical field-programmable gate
array (FPGA) and complex programmable logic device (CPLD)
Mentor Graphics Interface/Tutorial Guide — October 1997 10-1

Mentor Graphics Interface/Tutorial Guide
design procedure from schematic entry with instantiated HDL to
completion of a functioning device. It uses a design called Calc, a 4-
bit processor with a stack. In the first part of the tutorial, you use the
Design Architect, the Mentor Graphics design entry tool, to link HDL
entities to Mentor symbols and instantiate those symbols into the
Calc design. Next, you use QuickHDL Pro, the Mentor Graphics sche-
matic/HDL simulator, to perform a functional simulation on it. In the
third step, you use the Xilinx Design Manager to implement the
design. Finally, you verify the design’s timing by using pld_quicksim.
The simple design example used in this tutorial demonstrates many
system features that you can apply to more complex FPGA and
CPLD designs.

Note: Although this tutorial describes creating and processing FPGA
designs, you can apply most of the steps to CPLD designs. Unlike the
“Schematic Design Tutorial” chapter, this tutorial focuses completely
on FPGAs. For information on retargeting a design to a different
device family, see the “Targeting the Design for the XC9000 Family”
section of the “Schematic Design Tutorial” chapter.

This tutorial includes instructions on the following:

• Installing the tutorial files

• Using Mentor Graphics Design Manager

• Using Mentor Graphics Design Architect

• Completing the SEG7DEC and ALU blocks in the Calc design

• Performing functional simulation on the Calc design in
QuickHDL Pro

• Converting the design to an EDIF file using pld_men2edif

• Implementing the design using pld_dsgnmgr

• Configuring the Xilinx Design Manager/Flow Engine

• Performing timing simulation on the routed Calc design in
pld_quicksim

• Examining routed designs with the Editor for Programmable ICs
(EPIC)

• Verifying the Calc design on a demonstration board

• Command summaries
10-2 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Required Background Knowledge
Note: This tutorial focuses specifically on the procedures for
importing VHDL modules into Design Architect schematics. Refer to
the “Schematic Design Tutorial” chapter for information on basic
object-management procedures in Design Manager, schematic-entry
procedures in Design Architect, or Xilinx-specific concepts such as
CONFIG, STARTUP, and incremental design.

This tutorial assumes that you have a basic understanding of the
following:

• UNIX operating system

• Motif Windows. Mentor Graphics applications conform to the
Motif window style.

• Basic knowledge of Mentor Graphics tools, such as editing MGC
location maps, manipulating design objects and launching appli-
cations in Design Manager, and adding and working with design
elements in Design Architect. If you are not familiar with these
procedures, see the “Schematic Design Tutorial” chapter.

Note: When you are instructed to close a window, it is important that
you exit from the window rather than iconize it.

Design Flow
See the “Design Flows” section of the “Introduction” chapter for the
design flow involved in using the Mentor Graphics interface. That
chapter also describes the general steps for creating a top-level sche-
matic design with instantiated VHDL modules using the Mentor
interface.

Note: To instantiate Verilog modules into a schematic in Design
Architect, you must first encapsulate them within a VHDL entity. You
then encapsulate the VHDL entity into the schematic.

The tutorial design is targeted for an XC4000E device. You can use a
Xilinx demonstration board to test the functionality of your design.
Make sure your demonstration board and software support your
selected device. To determine compatibility, refer to the release notes
that came with your software package.
Mentor Graphics Interface/Tutorial Guide 10-3

Mentor Graphics Interface/Tutorial Guide
Software Installation

Required Software
The following versions of software are required to perform this tuto-
rial:

• Mentor Graphics Version B.1 or later, including Mentor Design
Manger, Design Architect, QuickSim, QuickPath, as well as the
programs needed to read and write EDIF netlists (ENRead and
ENWrite), which require special licensing

• A third-party FPGA/CPLD synthesis tool, such as FPGA
Compiler (Synopsys), Synergy (Cadence Design Systems), or
Galileo (Exemplar Logic)

• Xilinx/Mentor Graphics Interface Version M1

• Xilinx Development System Version M1

Before Beginning the Tutorial
Before beginning the tutorial, set up your workstation to use Mentor
Graphics and XACT Development System software as follows:

1. Verify that your system is properly configured.

Consult the release notes that came with your software package
for more information.

2. Install the following sets of software:

• XACT Development System Version M1

• Xilinx/Mentor Graphics Interface Version M1

• Mentor Graphics Version B.1 or later, including Mentor
Design Manger, Design Architect, QuickSim, QuickPath, as
well as the programs needed to read and write EDIF netlists
(ENRead and ENWrite), which require special licensing

• A third-party FPGA/CPLD synthesis tool, such as FPGA
Compiler (Synopsys), Synergy (Cadence Design Systems), or
Galileo (Exemplar Logic)

3. Verify the installation, using the “Configuring Your System”
section of the “Getting Started” chapter as a guide.
10-4 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
4. Add a reference to $XILINX_TUTORIAL to your
MGC_LOCATION_MAP file.

All of the tutorial designs use the variable $XILINX_TUTORIAL
as part of their path references. For example, the design object alu
in the $XILINX/mentor/tutorial/calc_sot directory uses the path
reference $XILINX_TUTORIAL/calc_sot/alu to define where it is
located in the directory structure.

With this definition added to the location map as defined in the
“Getting Started” chapter, the complete location-map file should,
at a minimum, look like:

MGC_LOCATION_MAP_1
(empty line)
$MGC_GENLIB
(empty line)
$LCA
(empty line)
$SIMPRIMS
(empty line)
$XILINX_TUTORIAL
/home/bclinton/mentor/xtutorial

This assumes the Xilinx tutorial files have been placed under
/home/bclinton/mentor/xtutorial. For example, the full path to
the schematic-on-top tutorial would be /home/bclinton/
mentor/xtutorial/calc_sot

Refer to the “Schematic Design Tutorial” chapter or the Mentor
Graphics documentation for more information on location maps.

Installing the Tutorial
The tutorial files are optionally installed when you install the Xilinx/
Mentor Graphics interface software. If you have already installed the
software, but are not sure whether you specified tutorial installation,
check your software installation for a $XILINX/mentor/tutorial
directory. This directory contains the tutorial files.

Standard Directory Structure

When a design object is created in Mentor Graphics, a directory is
created in the project directory with the same name as the design
object. This directory contains a schematic directory, symbol files,
Mentor Graphics Interface/Tutorial Guide 10-5

Mentor Graphics Interface/Tutorial Guide
viewpoint files, and part interfaces. The directory is identified as a
design object by the file, design_name.mgc_component.attr, that
resides at the same level as the directory which has the name. For
example, if a schematic named calc is created, a calc directory is
created, and at the same level the file, calc.mgc_component.attr, is
created. The calc directory contains all the files that describe calc.

Note: In this tutorial, file names and directory names are in lower
case and the design example is referred to as Calc.

Tutorial Directory and Files

You will complete the Calc design in this tutorial. During the tutorial
installation, the $XILINX/mentor/tutorial directory is created;
design object directories are created; and the tutorial files needed to
complete the design are copied to the calc_sot directory. Some of the
files you need to complete the tutorial design are not copied, because
you create these files in the tutorial. However, solutions directories
with all input and output files are provided. They are located in the
$XILINX/mentor/tutorial directory and are listed in the following
table:

The solution directories contain the design files for the completed
tutorial, including schematics, intermediate directories, and the
bitstream file. Different intermediate files are created for different
device families. Do not overwrite any files in the solutions directories.

The calc_sot directory contains the incomplete copy of the tutorial
design. The installation program copies a few intermediate files to the
calc_sot tutorial directory, and you create the remaining files when
you perform the tutorial. In a later step, you copy the calc_sot direc-
tory to another area and perform the tutorial in this new area. Each
design component directory has associated with it a file called file-
name.mgc_component.attr. This file identifies the corresponding
directory as a Mentor Graphics design component.

Table 10-1 Tutorial Design Directories

Directory Description

calc_sch Schematic (Design Architect) tutorial directory

calc_4ke Schematic solution directory for XC4003E-PC84

calc_9k Schematic solution directory for XC95108-PC84

calc_sot Schematic-on-top tutorial directory (uses XC4003E)
10-6 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Starting the Design Manager
To start the Design Manager that is configured for Xilinx designs,
type the following at the operating system command line:

pld_dmgr

The Design Manager Window appears as shown in the following
figure.

Figure 10-1 Mentor Design Manager Window

Note: This tutorial assumes you are familiar with basic Design
Manager procedures. For more information on these procedures, see
the “Schematic Design Tutorial” chapter.
Mentor Graphics Interface/Tutorial Guide 10-7

Mentor Graphics Interface/Tutorial Guide
Copying the Tutorial Files
The schematic-on-top Calc tutorial files are located in the $XILINX/
mentor/tutorial/calc_sot directory. To use the Copy operation in
Design Manger to copy these files to a local area, perform the
following steps:

1. In the Navigator window, move to the directory where the tuto-
rial files were installed.

2. Select the calc_sot directory.

3. To see the references in this design, Choose Right Mouse
Button → Report → Show References → For Design .

A List of Unique References underneath the calc_sot directory is
displayed. An example reference item might be:

$XILINX_TUTORIAL/calc_sot/alu/alu:mgc_symbol[6]

This indicates that an ALU symbol (version 6 under Mentor
Graphics’ versioning system) is referenced by the path
$XILINX_TUTORIAL/calc_sot/alu/alu.

All references in the design should contain either $LCA or
$XILINX_TUTORIAL.

4. Close the List of Unique References window.

5. With the calc_sot directory selected in the Navigator window,
choose Right Mouse Button → Edit → Copy.

6. In the dialog box that appears, type the directory path where you
want to copy the working copy of the tutorial files.

For example, to copy the files to /home/dum/tutor/mentor,
enter the following:

/home/dum/tutor/mentor/calc_sot

7. To keep the design references intact, select Options → Convert
References? No from the Copy dialog box.

Normally, you allow Design Manager to update design refer-
ences when you copy a design directory. In this case, however,
you should leave the $XILINX_TUTORIAL reference intact. To
make sure the proper directory is referenced, modify the
MGC_LOCATION_MAP accordingly after you copy the tutorial
design.
10-8 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
8. Click OK to exit the Options dialog box.

9. Click OK again to exit the Copy dialog box and start the Copy
process.

10. Use the Navigator to change directories to the location of the
working copy of calc_sot. (In the example above, you would click
the four-arrow button at the bottom of the Navigator
window, then type /home/dum/tutor/mentor/calc_sot in
the dialog box.)

11. Modify your MGC_LOCATION_MAP file so that the
$XILINX_TUTORIAL variable points to the directory where the
copy of calc_sot is located. In the example above, change the
$XILINX_TUTORIAL section of the file so that it reads:

$XILINX_TUTORIAL
/home/dum/tutor/mentor

12. Read the newly modified location map into Design Architect by
selecting MGC→ Location Map → Read Map from the menu
bar.

13. In the dialog box that opens, type:

$MGC_LOCATION_MAP

14. Click OK.

The $XILINX_TUTORIAL soft name now points to the new tuto-
rial area.

Starting Design Architect
To open the Calc design in Design Architect, perform the following
steps:

1. Select MGC→ Location Map → Set Working Directory
from the menu bar. A small dialog box appears at the bottom of
the screen.

2. Type $XILINX_TUTORIAL/calc_sot in the Directory field of
the dialog box, then select OK or press return. This sets the
working directory to the directory where you work on the tuto-
rial.

3. Select the $XILINX_TUTORIAL/calc_sot/calc design object
in the Navigator window.
Mentor Graphics Interface/Tutorial Guide 10-9

Mentor Graphics Interface/Tutorial Guide
4. Select Right Mouse Button → Open → pld_da .

The Design Architect window appears and displays the Calc
design as shown in the following figure.

Figure 10-2 Top-Level Schematic for Calc

5. Resize the Design Architect window to cover the entire screen.

Completing the Calc Design
To complete the tutorial design, you need to link VHDL entities to
symbols in the schematic using QVHcom and Design Architect.

If you need to stop the tutorial at any time, be sure to save your work
as follows:

1. Select Check → Sheet from the menu bar.

A window appears containing the results of the design rule
check.
10-10 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
2. After reviewing the contents of this window, close it and reselect
the schematic window.

Warning: It is important to check your design first before saving it.

3. Select File → Save from the menu bar to save the design.

Design Description
The Calc design is a four-bit processor with a stack. The processor
performs functions between an internal register and either the top of
the stack or data input from external switches. The results of the
various operations are stored in the register and displayed in hexa-
decimal on a seven-segment display. The top value in the stack is
displayed in binary on a bar LED. A count of the items in the stack is
displayed as a “gauge” on another bar LED.

In this tutorial, you create a new symbol for the SEG7DEC compo-
nent from its associated seg7dec.vhd description, then instantiate that
symbol onto the Calc schematic. You then link an existing ALU
symbol to its associated alu.vhd description. A CONFIG block and a
STARTUP block have already been added to the Calc design as well.
For more information on using CONFIG and STARTUP, see the
“Schematic Design Tutorial” chapter.

The design consists of the following functional blocks:

• ALU—The arithmetic functions of the processor are performed in
this block. This block is defined by the VHDL file alu.vhd.

• CONTROL—The opcodes are decoded into control lines for the
stack and ALU in this module.

• STACK—The stack is a four-nibble storage device. It is imple-
mented using synchronous RAM in the XC4000E design.

• DEBOUNCE—This circuit debounces the “execute” switch,
providing a one-shot output.

• SEG7DEC—This block decodes the output of the ALU for
display on the 7-segment decoder. You generate the symbol for
this module from its behavioral VHDL description in
seg7dec.vhd.

• CLOCKGEN—This block uses an internal oscillator circuit in
XC4000E devices to generate the clock signal.
Mentor Graphics Interface/Tutorial Guide 10-11

Mentor Graphics Interface/Tutorial Guide
• BARDEC—This block shows how many items are on the stack
on a “gauge” of four LEDs.

• SWITCH7—This is a user-defined module consisting of seven
input flip-flops used to latch the switch data.

Note: Basic Xilinx design concepts such as assignment of pin proper-
ties, use of STARTUP and CONFIG, and incremental design method-
ology as well as details about Xilinx device architecture are not
covered in this chapter. For more information on these topics, see the
“Schematic Design Tutorial” chapter.

Adding the SEG7DEC Component
On the Calc schematic, notice a space near the upper-right corner of
the schematic between the ALUVAL(3:0) bus and the inputs to seven
OBUF elements that feed LED outputs A through G. This is where the
SEG7DEC symbol must be placed.

This component has a VHDL file, seg7dec.vhd, that describes its
behavior. In this exercise, you compile the seg7dec.vhd file for simu-
lation, generate a symbol for it, then instantiate the entity into the
Calc schematic so that it may be simulated and built into the imple-
mented device.

Compiling the VHDL Entity

To compile the VHDL file for SEG7DEC, follow these steps:

1. Take a look at the src/seg7dec.vhd file with the text editor you
normally use.

This entity includes a case statement that decodes a four-bit
number into a set of seven signals suitable for display on a seven-
segment LED display. The src/seg7dec.vhd file is as follows:

process (Q)
begin

case Q is
when "0000" => DISPLAY <= "0000001";
when "0001" => DISPLAY <= "1001111";
when "0010" => DISPLAY <= "0010010";
when "0011" => DISPLAY <= "0000110";
when "0100" => DISPLAY <= "1001100";
when "0101" => DISPLAY <= "0100100";
when "0110" => DISPLAY <= "0100000";
10-12 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
when "0111" => DISPLAY <= "0001101";
when "1000" => DISPLAY <= "0000000";
when "1001" => DISPLAY <= "0000100";
when "1010" => DISPLAY <= "0001000";
when "1011" => DISPLAY <= "1100000";
when "1100" => DISPLAY <= "0110001";
when "1101" => DISPLAY <= "1000010";
when "1110" => DISPLAY <= "0110000";
when others => DISPLAY <= "0111000";

end case;
end process;

2. Close the src/seg7dec.vhd file.

3. To create a VHDL work library where compiled entities will
reside, type the following at the system prompt from within the
$XILINX_TUTORIAL/calc_sot directory:

qhlib work

A library directory called “work” now exists in the tutorial
project directory.

4. Map this directory to “work” so that the VHDL compilation
programs can recognize it:

qhmap work work

You should now have a new file in your tutorial directory called
quickhdl.ini, which contains the following library entry:

[Library]
work = work

This allows the VHDL-simulation programs to recognize this as
the working directory.

5. Compile the src/seg7dec.vhd file with the QVHCOM command:

qvhcom -qhpro_syminfo src/seg7dec.vhd

The -qhpro_syminfo option tells QVHCOM to write out informa-
tion needed by the Design Architect Symbol Generator.

6. With the Calc schematic still open in Design Architect, select
Miscellaneous → Generate Symbol from the menu bar.

7. In the Generate Symbol dialog box that appears, select Choose
Source → Entity .
Mentor Graphics Interface/Tutorial Guide 10-13

Mentor Graphics Interface/Tutorial Guide
The dialog box fields change as shown in the Generate Symbol
dialog box.

Figure 10-3 Generate Symbol Dialog Box

8. In the Generate Symbol dialog box, make sure the fields are set as
shown in the following table:

Table 10-2 Generate Symbol Settings for SEG7DEC

Field Value

QVHDL InitFIle $XILINX_TUTORIAL/calc_sot/quickhdl.ini

Lib. Logical Name work

Entity Name seg7dec

Deflt. Architecture [”behavior”, “QVHDL arch”, [“qvhpro”]]
10-14 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Note: You can select the architecture setting from a list by click on the
Choose Arch button. Since only one architecture has been compiled
for the SEG7DEC entity, you may also leave this field blank.

9. Click OK.

After a few moments, the Symbol Editor appears with the newly
created SEG7DEC component. Note the properties attached to
this symbol and its pins. These properties allow the underlying
entity and the upper-level schematic portion to be simulated
concurrently in QuickHDL Pro.

Note: If you get the error “Entity source work_library/_parsed.vhd
does not exist,” make sure you specified the -qhpro_syminfo option
on the QVHcom command line.

10. Add “SEG7DEC” text to the symbol as shown. (If you do not
know the procedure for this, refer to the instructions in the
“Schematic Design Tutorial” chapter.)

Place Comp. in Dir. $XILINX_TUTORIAL/calc_sot

Pin Spacing 2

Shape Arguments [2,2]

Sort Pins? Yes

Replace existing? No

Activate symbol? No

Table 10-2 Generate Symbol Settings for SEG7DEC

Field Value
Mentor Graphics Interface/Tutorial Guide 10-15

Mentor Graphics Interface/Tutorial Guide
Figure 10-4 Generated SEG7DEC Symbol

All symbols that have an associated non-schematic model must
have a FILE property attached to them so that the Xilinx netlister
(NGDBUILD) can incorporate these portions of the design into
the implemented design. The value of this property is the actual
filename of the submodule netlist. This filename can have one of
several different extensions, based on the netlist format it uses.

The presynthesized SEG7DEC module included with this tutorial
was generated by Synopsys’ Design Compiler, which uses SEDIF.

Table 10-3 Common FILE Property Extensions

Extension Netlist Format

.edif Generic Xilinx-compatible EDIF 2.0

.xnf Generic XNF (Xilinx Netlist Format) 6.x

.sedif Synopsys Xilinx-compatible EDIF 2.0

.sxnf Synopsys XNF 6.x
10-16 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
11. Select the body of the SEG7DEC symbol and add the following
property:

Name: FILE
Value: seg7dec.sedif

12. Check and Save the symbol.

Now that a symbol exists for this component, you can instantiate
it onto the top-level Calc schematic.

13. With the Calc schematic window active, click CHOOSE SYMBOL
from the Schematic Palette and select the seg7dec component.

14. Instantiate this component between the ALUVAL(3:0) bus and
the nets that lead to the outputs A-F as shown below.

Figure 10-5 Adding the SEG7DEC Symbol

15. Add the instance name SEGMENTS to the SEG7DEC symbol.
(Add property INST, value SEGMENTS.)

16. Check and Save the Calc schematic. Leave the schematic open.
Mentor Graphics Interface/Tutorial Guide 10-17

Mentor Graphics Interface/Tutorial Guide
Linking a VHDL Entity to the ALU Component
VHDL can also be associated with a pre-existing symbol. The
following procedure links the alu.vhd entity with the ALU symbol,
which has already been instantiated on the Calc schematic.

As with SEG7DEC, ALU has a VHDL file, alu.vhd, that describes its
behavior. In this exercise, you compile the alu.vhd file for simulation,
link the compiled model to the existing ALU symbol, then update the
instantiated entity in the Calc schematic so that it may be simulated
and built into the implemented device.

Compiling the VHDL Entity

To compile the VHDL file for ALU, follow these steps.

1. Take a look at the alu or seg7dec.vhd file with the text editor you
normally use.

This entity includes a four-bit data register, several multi-bit gate
functions (AND, OR, and XOR), and an adder-subtractor. To
model the device’s system-wide global set/reset, an additional
port, GBLRESET, has been added from the schematic-based ALU
design. (See the “Schematic Design Tutorial” chapter.) This
signal is brought into the process block that controls the four-bit
data register:

VHDL ALU Register Description:

process (CLK, GBLRESET)
begin

if (GBLRESET='1') then
QIN <= "0000";
OFL <= '0';

elsif (CLK'event and CLK='1') then
if (CE='1') then

if (QRESET='1') then
QIN <= "0000";
OFL <= '0';

else
QIN <= MUX;
OFL <= OVER;

end if;
end if;

end if;
end process;
10-18 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
The GBLRESET signal is written as an explicit asynchronous
clear. This allows you to connect the registers in the ALU entity to
the system-wide global-set/reset signal from the schematic. In an
all-schematic design, the system-wide global-set/reset net does
not need to be connected, since it is implicitly connected to all
flip-flops in a device, both for simulation and implementation.
For simulation purposes, however, this signal needs to be explic-
itly connected to all flip-flops in all VHDL modules. The Xilinx
Core Tools recognize this as a redundant connection and subse-
quently trim it out of the implemented design.

2. When you are finished perusing the ALU VHDL description,
close the file.

Since a work directory already exists for compiling VHDL
modules, you can go directly to compiling the ALU entity.

3. Compile the src/alu.vhd file with the QVHCOM command:

qvhcom -explicit -qhpro_syminfo src/alu.vhd

The “-explicit” option allows QVHCOM to tolerate multiply-
defined standard functions. This is required because the equality
operator (“=”) is defined in both the ieee.std_logic_1164 and
ieee.std_logic_unsigned packages, both of which are called out in
the alu.vhd file.

4. With the Calc schematic still open in Design Architect, select the
ALU symbol.

5. Open down into the symbol by selecting Right Mouse Button
→ Open Down .

6. Select symbol:alu .

7. Click OK.

The Symbol Editor appears.

If you performed the Schematic Design Tutorial with the all-sche-
matic-based Calc design, you should notice that the ALU symbol
has an extra pin, GBLRESET, that corresponds to the extra VHDL
port mentioned above.

8. From the menu bar, select File → Import VHDL Entity .

The Import VHDL Entity dialog box appears.
Mentor Graphics Interface/Tutorial Guide 10-19

Mentor Graphics Interface/Tutorial Guide
Figure 10-6 Import VHDL Entity Dialog Box

9. Set the following values in the dialog box:

Note: You can select the architecture setting from a list by clicking on
the Choose Arch button. Since only one architecture has been
compiled for the ALU entity, you may also leave this field blank.

10. Click OK.

In the Symbol Editor, the ALU symbol’s body and pins are anno-
tated with properties similar to those that Generate Symbol
attached to the SEG7DEC symbol. These properties allow the
underlying entity and the upper-level schematic portion to be
simulated concurrently in QuickHDL Pro.

Note: If you get the error “Entity source work_library/_parsed.vhd
does not exist,” make sure you specified the -qhpro_syminfo option
on the QVHCOM command line.

Table 10-4 Import VHDL Entity Settings for ALU

Field Value

QVHDL InitFIle $XILINX_TUTORIAL/calc_sot/quickhdl.ini

Lib. Logical Name work

Entity Name seg7dec

Deflt. Architecture [”behavior”, “QVHDL arch”, [“qvhpro”]]
10-20 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Figure 10-7 ALU Symbol with VHDL-Import Properties

Since the ALU module is also a non-schematic element, you must
attach a FILE property to it so the Xilinx netlister (NGDBUILD)
can incorporate this portion of the design into the implemented
netlist. The ALU netlist included with this tutorial was synthe-
sized by Exemplar’s Galileo Logic Explorer, and thus uses
generic XNF.

11. Select the body of the ALU symbol and add the following prop-
erty:

Name: FILE
Value: alu.xnf

12. Check and Save the symbol.

Since the symbol has now changed, you must reflect the change
in the top-level Calc schematic.

13. With the Calc schematic window active, select the ALU symbol,
then select Right Mouse Button → Update → Auto .
Mentor Graphics Interface/Tutorial Guide 10-21

Mentor Graphics Interface/Tutorial Guide
This updates the ALU instantiation with the new symbol proper-
ties.

The GBLRESET pin on the ALU symbol must be attached to the
global set/reset signal from the top-level design. This signal is
the one connected to the GSR input on the STARTUP block. In the
case of Calc, this net is also called GBLRESET.

14. Attach a new net to the GBLRESET pin and name it GBLRESET.

Figure 10-8 Updating the ALU Symbol

15. Check and Save the Calc schematic.

16. Exit Design Architect.

Using a Constraints File
Using a constraints file, you can supply constraints information in a
textual form. An example of a constraints file is shown below. The
example shows the user constraints file, calc_4ke.ucf, that is supplied
10-22 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
with this tutorial. The constraints file syntax is the same for all device
families.

Note: You may also place location constraints directly on the sche-
matic. For more information, see the “Schematic Design Tutorial”
chapter.

The place and route software must be instructed to read and apply
the .ucf file when the design is read into the Xilinx Design Manager.
The procedure for doing this is detailed later in the “Using the Xilinx
Design Manager” section.

Example Constraints File:

CALC_4KE.UCF
User constraints file for CALC, XC4003E-PC84
Uses angle brackets, as per PLD_MEN2EDIF option

NET SWITCH<7> LOC=P19;
NET SWITCH<6> LOC=P20;
NET SWITCH<5> LOC=P23;
NET SWITCH<4> LOC=P24;
NET SWITCH<3> LOC=P25;
NET SWITCH<2> LOC=P26;
NET SWITCH<1> LOC=P27;
NET SWITCH<0> LOC=P28;

NET A LOC=P49;
NET B LOC=P48;
NET C LOC=P47;
NET D LOC=P46;
NET E LOC=P45;
NET F LOC=P50;
NET G LOC=P51;
NET OFL LOC=P41;

NET GAUGE<3> LOC=P61;
NET GAUGE<2> LOC=P62;
NET GAUGE<1> LOC=P65;
NET GAUGE<0> LOC=P66;

NET STACKLED<3> LOC=P57;
NET STACKLED<2> LOC=P58;
NET STACKLED<1> LOC=P59;
NET STACKLED<0> LOC=P60;
Mentor Graphics Interface/Tutorial Guide 10-23

Mentor Graphics Interface/Tutorial Guide
NET NOTGBLRESET LOC=P56;

Performing Functional Simulation
Functional simulation is performed before design implementation to
verify that the schematic that you have designed is logically correct.
All components in the Calc design have built-in simulation models so
little pre-processing is necessary. However, every top-level schematic
design in Mentor Graphics must have a simulation viewpoint before
you can simulate it in QuickHDL Pro. The viewpoint describes how a
design should be interpreted, including what components in the
design are primitives, as well as how components within the design
hierarchy should be modeled.

Note: The following instructions refer to two related but different
programs: QuickHDL and QuickHDL Pro. QuickHDL is Mentor
Graphics’ HDL-only simulator, while QuickHDL Pro is a co-simula-
tion tool that runs both QuickHDL to simulate the HDL portions of a
design and QuickSim to simulate the schematic portions. QuickHDL
Pro runs a process known as a FlexSim backplane through which the
two “solvers” (QuickHDL and QuickSim) communicate with each
other.

Also note that the instructions that follow do not have detailed infor-
mation on basic QuickSim operations such as selecting nets and
displaying Trace and List windows. For information on these proce-
dures, please refer to the “Schematic Design Tutorial” chapter.

Using Pld_dve
To use the PLD Design Viewpoint Editor to generate a design view-
point to tell QuickSim (as run by QuickHDL Pro) how to interpret
certain Xilinx-specific design properties, follow these steps.

1. Select the calc design object from the appropriate directory in the
Navigator window.

2. Invoke pld_dve on the design by selecting Right Mouse
Button → Open → pld_dve .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.
10-24 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Figure 10-9 Invoking Pld_dve for Functional Simulation

3. Select the XC4000E PLD Technology from the listing as shown in
the figure above. (Leave other options set to their defaults, as
shown in the figure.)

4. Click OK.

The pld_dve script executes.

5. Once pld_dve completes, dismiss the shell window in which it
executed.

Invoking QuickHDL Pro
To invoke QuickHDL Pro for functional simulation on the Calc
design, follow these steps:

1. Select the Calc design object in the Navigator window.

2. Invoke QuickHDL Pro on the design by selecting Right
Mouse Button → Open → QHDL_Pro.

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.
Mentor Graphics Interface/Tutorial Guide 10-25

Mentor Graphics Interface/Tutorial Guide
3. Since the top-level Calc design is a schematic (EDDM model),
verify that EDDM Design is the design set to Invoke on.

Figure 10-10 Invoking QuickHDL Pro for Functional Simulation

Note the OPTIONS category buttons. These buttons allow you to
set options for QuickHDL Pro, as well as for each of the two
simulation “solvers” (QuickHDL and QuickSim). Each button
brings up its own set of options in the OPTIONS panel. Each set
of options is independent of the other two sets of options, and
options in all three panels are applied concurrently when
QuickHDL Pro is run.

4. In the QuickHDL Pro dialog box, select OPTIONS category →
QuickHDL to see the QuickHDL options.
10-26 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Figure 10-11 QuickHDL Options

5. Under QuickHDL Initialization file, enter:

$XILINX_TUTORIAL/calc_sot/quickhdl.ini

6. Under QuickHDL Logical Library, enter:

work

Note: The QuickHDL initialization file defaults to the quickhdl.ini
file in the working directory. The QuickHDL logical library defaults
to the “work” directory as called out in the initialization file.

7. In the QuickHDL Pro dialog box, select OPTIONS category →
QuickSim to see the QuickSim options.

The Unit timing mode should already be set, since this is the
default. This tells the QuickSim solver to run in functional-simu-
lation mode.

Figure 10-12 QuickSim Options

8. In the QuickHDL Pro dialog box, select OPTIONS category →
QuickHDL and note that the settings you put in the QuickHDL
Options panel are still in place.

9. Click OK to invoke the QuickHDL Pro simulator.
Mentor Graphics Interface/Tutorial Guide 10-27

Mentor Graphics Interface/Tutorial Guide
Two windows open, QHPro(QuickSim) and QHPro(QuickHDL).
These represent the QuickSim and QuickHDL simulation solvers,
respectively, running within the integrated QuickHDL Pro envi-
ronment.

Viewing the Calc Schematic
When QHPro(QuickSim) starts, no schematic windows are open.
Open a window and view the top-level schematic for the Calc design.
Displaying the schematic is convenient for viewing back-annotation
during the simulation.

Figure 10-13 Top-Level Calc Schematic

1. To open a window containing the Calc schematic, select OPEN
SHEET from the palette.

This automatically opens the top-level sheet for Calc.
10-28 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Select the ALU symbol, then select Right Mouse Button → Open → Down. If this were a schematic module, the ALU schematic would appear in the QuickSim window. Instead, a Source window appears displaying the ALU VHDL description. This window is actually displayed through the QuickHDL solver.

Figure 10-14 ALU Source Window

Viewing and Navigating the VHDL Hierarchy
QuickHDL allows you to view the design hierarchy of the HDL
portion of a mixed design. To see this hierarchy and its associated
signals follow these steps:

1. From the QHPro(QuickHDL) menu bar, select View → Struc-
ture .

The Structure window appears as shown. Since the ALU source
code is displayed in the Source window, the ALU entity is high-
lighted.

2. Select View → Signals to display the Signals window which
shows a list of all signals underneath the ALU entity.
Mentor Graphics Interface/Tutorial Guide 10-29

Mentor Graphics Interface/Tutorial Guide
Figure 10-15 Structure and Signals Windows

3. With the left mouse button, select the seg7dec(behavior) entity in
the Structure window.

Notice that the Source window now changes to display the
SEG7DEC VHDL file, and the Signals window changes to display
the associated signals.

4. Select the top-level calc_qsim(structure) entity in the Structure
window.

Notice that the Source window displays VHDL code even though
the top level was originally drawn on a schematic. This VHDL
file was written by QuickHDL Pro upon invocation so that
QuickHDL could simulate all instantiated VHDL modules from
the top level.

5. Reselect the alu (behavior) module in the Structure window.

The Signals listing displays the ALU signals. Note that buses in
the Signals listing have “+” icons next to them. If you click on one
of these icons, it changes to a “-” icon, and the list expands to
include all bit signals within the corresponding bus.
10-30 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
6. Click the “-” icon to collapse the listing.

7. Select the following signals in the Signals window. You may have
to scroll down the list to see them all.

clk
ce
opcode
q
stack
stackop
swdata

You can select a collection of signals by clicking on the first signal
name with the left mouse button, then clicking on subsequent
signal names with the middle mouse button. If you select a signal
name you don’t want selected, click on the signal name again
with the middle mouse button to unhighlight it.

The waveforms for these signals can be traced in a QuickHDL
Wave window.

8. In the Signals window, select Wave→ Selected signals.

The Wave window appears as shown. Since the simulation has
not yet been run, no waveforms are displayed.

Figure 10-16 Wave Window at Time 0

In the next section, you complete the functional simulation and view
the waveforms in the Trace (QuickSim) and Wave (QuickHDL)
windows.
Mentor Graphics Interface/Tutorial Guide 10-31

Mentor Graphics Interface/Tutorial Guide
Completing the Functional Simulation
You can automate the simulation by using a QuickSim command file.
A “dofile,” calc_4ke.do, has been supplied with this tutorial for this
purpose. This file opens Trace and List windows, sets up simulation
vectors, and runs the simulation for a time duration of 3,400 ns. Use it
as follows:

1. From the QuickSim menu bar, select MGC→ Transcript →
Replay .

2. In the dialog box, enter calc_4ke.do and click OK.

The functional simulation runs automatically with Trace and List
windows set up in the QuickSim window. Note that the Wave
window under QuickHDL is also updated to reflect the signals
underneath the ALU component.

Note: For more specific information on using QuickSim features, see
the “Schematic Design Tutorial” chapter. The simulation command
file executed here is similar to the one run in that chapter.

3. If the signal names and values in the Wave window are not fully
visible, drag the divider between the signal list and the wave-
forms to see more of the signal names.

4. You can use the scroll bars to view different parts of the simula-
tion in the Wave window. You can also zoom in and zoom out by
selecting from the Zoom menu.

5. As with the Signals windows, the signal listing in the Wave
window is expandable and collapsible. Click the “+” icon beside
the /\/ARITH\/swdata signal name to view the individual
signal waveforms in the Wave window.
10-32 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Figure 10-17 QuickSim Trace and QuickHDL Wave Windows

6. The SWDATA waveform corresponds to the lower four bits of the
SWITCH(6:0) bus on the top-level schematic. SWITCH(3:0) is
connected to the SWDATA(3:0) port on the ALU in the top-level
schematic.

Verify that the SWDATA value in the Wave window corresponds
to the lower four bits of SWITCH(6:0) in the QuickSim Trace
window.

Note: You can make this task a easier by selecting the SWDATA
signal in the Wave window, then choosing Prop → Signal from
the menu bar. Select Radix: Hex , then Apply . The hexadecimal
value displayed in the Wave window now matches up with the
lower-order hexadecimal digit from the SWITCH(6:0) value.

7. Close the QuickSim and QuickHDL applications by choosing one
of the two application windows and selecting Quit or Exit
(depending on your workstation platform) from its control menu
(the drop-down menu on the titlebar). It is not necessary to save
any simulation results.

Note: Since both QuickSim and QuickHDL are bound to the same
process, closing one application automatically closes the other.
Mentor Graphics Interface/Tutorial Guide 10-33

Mentor Graphics Interface/Tutorial Guide
Using Pld_men2edif
Once your design is verified to be functionally correct, you use
pld_men2edif, a tool in the Mentor Graphics Design Manager, to
translate your Mentor design into a Xilinx-ready EDIF netlist.
Running pld_men2edif is always the first step in implementing a
design. Whenever you make changes to your schematic, you must
run pld_men2edif again so that the Xilinx software can process those
changes.

When you run pld_men2edif from the Mentor Design Manager, the
pld_men2edif dialog box appears.

Figure 10-18 Pld_men2edif Dialog Box

Here is an explanation of some of the fields and buttons.

• Component Name—Enter the name of the component that you
want to process here.

• From Viewpoint—If you are an advanced Mentor Graphics
designer who uses viewpoints to organize design models and
properties, enter the viewpoint name that you wish to use for this
EDIF translation. If you do not use or are not familiar with view-
points, leave this field blank and pld_men2edif will use a default
value.
10-34 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
• Forward Referencing of EDIF component libraries—This
option applies only in rare situations where design hierarchy has
been structured in such a way that circular or recursive references
exist. Normally, this option is set to Off.

• Output EDIF Bus Dimension Separator Style—This determines
how bus-index delimiters are written into the output EDIF file.
This is important if you are merging components from other
design-entry tools into a single design. Choosing a bus-index
delimiter lets you insure that the bus-index delimiters that
pld_men2edif writes out are consistent with those of any other
design-entry tools with which you are interfacing.

Since this design contains instantiated HDL components from
other vendors, make sure that the bus delimeters written for
symbols in the schematic are the same as those written in the
synthesized HDL netlists; otherwise, NGDBUILD sees a pin
mismatch and does not correctly connect buses that pass up or
down through levels of hierarchy. Both of the synthesis tools
used to generate the seg7dec.edif and alu.xnf files in this tutorial
use angle brackets. If you are using these pre-synthesized files in
your tutorial design, change this setting to ANGLE.

• PLD Technology—Select the architectural family from this list, in
this case XC4000E.

• HELP—If the HELP button is clicked, a short help listing is
produced by the pld_men2edif script.

To create an EDIF netlist for Calc, perform these steps:

1. Double-click on the pld_men2edif icon in Design Manager.

2. For the Component Name, type $XILINX_TUTORIAL/
calc_sot/calc as shown above.

3. Select the XC4000E architecture in the PLD Technology field.

4. Select OK.

This opens a new shell window where pld_men2edif runs and
reports its progress. When pld_men2edif has completed, the
following should appear at the bottom of the shell window:

pld_men2edif ended with return code 0
Done.
Mentor Graphics Interface/Tutorial Guide 10-35

Mentor Graphics Interface/Tutorial Guide
5. Dismiss the pld_men2edif shell window by typing Ctrl-C in it
or by selecting Close from the window’s control menu (accessed
through the button on the left side of the title bar).

Note: The output of pld_men2edif may be sent to the window from
which the pld_dmgr was originally invoked. This behavior is
dictated by the $MGC_TERMINAL_WINDOW environment vari-
able; see the Mentor Graphics documentation for more details.

Examining Pld_men2edif Output Files
In addition to the EDIF netlist, pld_men2edif also creates a
pld_men2edif.log file. This file contains a transcript of the processing
done by pld_men2edif. If the program fails to generate an EDIF
netlist, any errors encountered are logged in this file.

Examine the pld_men2edif.log file for the Calc design as follows:

1. Select the Navigator window.

2. Choose Right Mouse Button → Update Window .

This updates the Navigator window to display the new files
created by pld_men2edif, including an EDIF file for Calc, and a
log file for pld_men2edif.

Figure 10-19 Files Created by Pld_men2edif

3. Select the LOG icon labeled pld_men2edif and choose Right
Mouse Button → Open → Editor .

A window appears displaying the log file. When you are done
viewing the log, close the window.

Note: You can change the display font in this window by selecting
View → Fonts .

Using the Xilinx Design Manager
The Xilinx Design Manager is a graphical design-flow and project
manager. The Xilinx Design Manager takes your design, represented
10-36 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
by the EDIF file from pld_men2edif, and implements it in an FPGA or
CPLD. You can also use the Xilinx Design Manager to generate
timing information that you can import into QuickSim or QuickHDL.

This section gives a brief overview of the design implementation
flow. For a more in-depth discussion of the flow, including advanced
implementation options, see the Development System Reference Guide.

1. Within the Mentor Design Manager, select the Calc EDIF icon in
the Navigator, then select Right Mouse Button → Open →
pld_dsgnmgr .

The Xilinx Design Manager appears as shown. The tool automat-
ically creates a Xilinx project called calc. Xilinx project informa-
tion is kept in a file called xproject/calc.prj by default.

Figure 10-20 Xilinx Design Manager

Each project has associated with it objects known as “versions”
and “revisions.” Versions represent logic changes in a design (for
example, adding a new block of logic, replacing an AND gate
with an OR gate, or adding a flip-flop); revisions represent
different executions of the design flow on a single design version,
usually with new implementation options (for example, higher
place and route effort, a change in part type, or experimentation
with new bitstream options). In the next stage, you make a new
Mentor Graphics Interface/Tutorial Guide 10-37

Mentor Graphics Interface/Tutorial Guide
version and revision on which you run the implementation
design flow.

2. Within the Xilinx Design Manager, select Design → Implement ,
which gives you the Implement dialog box, with fields for part
type, design version, and revision as shown in the following
figure.

Figure 10-21 Implementation Dialog Box

3. Click the Select button to display a pull-down listing of avail-
able devices.

4. Choose a Family of XC4000E, a Device of XC4003E, a Package of
PC84, and a Speed Grade of -4 .

5. Click OK.

The part number is inserted into the Part field in the Implement
dialog box.

6. Click on Options .

The Options dialog box appears.
10-38 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Figure 10-22 Options Dialog Box

7. Click Browse by the User Constraints field.

8. Select the calc_4ke.ucf file from the design directory, then
Click OK.

9. Under Optional Targets, make sure the following are selected:

• Produce Timing Simulation Data—This generates a back-
annotated EDIF netlist that can be imported into the Mentor
Graphics tools.

• Produce Configuration Data—This generates a programming
bitstream suitable for downloading into the Xilinx device.

• Produce Post Layout Timing Report—This generates a
timing report file based on how the design is actually routed.

You can also select the following option:

• Produce Logic Level Timing Report—This generates a
preliminary (pre-place and route) timing report based on the
Mentor Graphics Interface/Tutorial Guide 10-39

Mentor Graphics Interface/Tutorial Guide
number of logic levels in each signal path. Since it is gener-
ated before the place-and-route layout step, it does not
contain information on device routing. Looking at this report
before place and route can be useful for seeing how much
“routing slack” you have in a design.

10. Under Program Option Templates Implementation, select Edit
Template .

The XC4000 Implementation Options dialog box appears as
shown in the following figure.

Figure 10-23 Changing EDIF Vendor Information

11. Select the Interface tab.

12. In the Interface pane, look under Simulation Data Options and
verify that Format is set to EDIF and that Correlate Simula-
tion Data to Input Design is selected.

13. In the Vendor field, select Mentor .

14. Click OK to return to the Options window.

15. Click OK to return to the Implementation dialog box.
10-40 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
16. Verify that the version is ver1 and the revision is rev1 then click
Run.

The Flow Engine comes up as shown in the following figure.

Figure 10-24 The Xilinx Flow Engine

The status bar shows the progress of the implementation flow
with the following stages:

• Translate—convert the design EDIF file into an NGD (Native
Generic Design) file

• Map—group basic elements (bels) such as flip-flops and
gates into logic blocks (comps); also generate a logic-level
timing report if desired

• Place&Route—place comps into the device, and route
signals between them

• Timing—generate timing simulation data and an optional
post-layout timing report

• Configure—generate a bitstream suitable for downloading
into and configuring a device

When the implementation completes, an Implementation Status
box appears with:
Mentor Graphics Interface/Tutorial Guide 10-41

Mentor Graphics Interface/Tutorial Guide
Implementing revision ver1->rev1 completed
successfully.

17. Click on View Logfile to display the logfile from Flow Engine.

The report is displayed in vi.

Note: To use another text editor, such as Emacs, as the report viewer,
select File → Preferences from the Xilinx Design Manager.

18. To exit the viewer, type :q! and press Return.

19. Click OK in the Implementation Status dialog to return to the
Xilinx Design Manager.

Performing Timing Simulation
Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. Also, since the delay-anno-
tated timing netlist is different from the original schematic design, the
timing simulation uses a process called cross-probing to allow you to
view simulation results on your schematic. In this section, you
perform a timing simulation of the Calc design by first preparing the
design using pld_edif2tim. Once this has been done, you run
pld_quicksim with cross-probing to trace waveforms and annotate
results onto your original schematic.

Note: All modules in a schematic-on-top design, including the HDL
portions, are written as EDDM models. Since no HDL models are
generated for timing simulation, only QuickSim is used to simulate
the design, and neither QuickHDL nor QuickHDL Pro is required.

Using Pld_edif2tim to Prepare a Timing Simulation
Pld_edif2tim reads a routed EDN file and back-annotates the delays
to the schematic. This includes a number of steps, all of which are
automatically run by the pld_edif2tim script. This script is repre-
sented by the pld_edif2tim icon in pld_dmgr. The files necessary for
back-annotation have either been created in the Design Architect
tutorial or are included in the solution directories.

Use pld_edif2tim to prepare the design for timing simulation as
follows:
10-42 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
1. In pld_dmgr, use the Navigator to find and select the EDN
time_sim icon. This represents the timing-annotated netlist
generated by the Xilinx Design Manager.

Note: There may be two similar looking types of icons, one marked
EDIF and the other marked EDN. An EDIF file represents a netlist
translated from the original schematic, while an EDN file represents a
netlist translated from a routed NCD file. Be sure you select an EDN
file to prepare for timing simulation.

2. Select Right Mouse Button → Open → pld_edif2tim .

A dialog box appears. The Design Manager automatically fills in
the dialog box with the name of the EDN file.

3. Select the appropriate PLD technology, for example, XC4000E.

4. Press return or select OK to execute the command.

The script produces a shell and runs in it.

Examining the Pld_edif2tim.log File
Examine the pld_edif2tim.log file as follows:

1. In pld_dmgr, select Right Mouse Button → Update Window .

The window is updated with the files that pld_edif2tim gener-
ated.

2. Find the pld_edif2tim LOG file and select it with the left mouse
button.

3. Choose Right Mouse Button → Open → Editor to open the
file in the editor.

No errors or warnings should be reported. For a short summary
of the commands executed by pld_edif2tim during the timing
flow, see the “Command Summaries” section at the end of this
chapter. The timing flow is always the same since the starting
point is always a routed EDN file with delays.

4. When you have finished looking at the file, close the Editor
window.
Mentor Graphics Interface/Tutorial Guide 10-43

Mentor Graphics Interface/Tutorial Guide
Using Pld_dve
As with functional simulation, the timing-annotated netlist must also
have a viewpoint associated with it.

1. In your design directory, you should now see a directory called
calc_lib. Double-click on this directory icon to descend into it.

2. Select the calc component (which should be at the very bottom on
the icon listing) with the left mouse button.

3. Invoke pld_dve on the simulation netlist component by selecting
Right Mouse Button → Open → pld_dve .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.

Figure 10-25 Invoking Pld_dve for Timing Simulation

4. Select the appropriate PLD Technology from the listing, e.g.,
XC4000E, as shown in the figure above. (Leave other options set
to their defaults, as shown in the figure.)

5. Click OK to execute the pld_dve script.

6. Once pld_dve completes, dismiss the shell window in which it
has executed.
10-44 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
Invoking QuickSim for Timing Simulation
1. With the timing-annotated calc component in the calc_lib direc-

tory still selected, invoke pld_quicksim by selecting Right
Mouse Button → Open → pld_quicksim .

A dialog box appears. Note that the component name, Calc, is
entered automatically with a fully qualified path.

Figure 10-26 Invoking Pld_quicksim for Timing Simulation

2. Select Cross-Probing as the desired mode.

This allows QuickSim to use the back-annotated timing model in
QuickSim, while allowing you to view the original schematic in
DVE. This process is necessary because your original schematic is
expressed in Unified libraries, while the back-annotated timing
model is generated using simulation primitives.

3. Select the Constraint option for Timing mode.

4. Select the Visible option for Detail of ‘Constraint’ timing mode.
Mentor Graphics Interface/Tutorial Guide 10-45

Mentor Graphics Interface/Tutorial Guide
A new set of buttons appears in the dialog box.

5. Select Typ for Timing mode.

This specifies the use of the back-annotated timing information.

6. Select Messages for Constraint mode.

7. Leave the rest of the buttons set at their defaults, and press return
to start QuickSim.

For more information on these other options, refer to the Mentor
Graphics documentation on QuickSim. For most Xilinx simula-
tions, the above setup is appropriate.

The Design Viewpoint Editor (DVE) appears and gives a message
reading, “To start the cross-probing process, ...”

8. Click OK in this message window.

9. Resize the DVE window so that it is almost as large as the entire
screen.

10. The QuickSim window also appears. Resize the QuickSim
window so that it is almost as large as the entire screen, allowing
space for you to click on the DVE window to make it active and
display in the foreground.

11. Bring the DVE window to the foreground and select OPEN
DESIGN from the palette.

12. In the dialog box that appears, enter the name of the original
component in the Component field, e.g., $XILINX_TUTORIAL/
calc_sot/calc. (Do not enter the name of the simulation model,
$XILINX_TUTORIAL/calc_sot/calc_lib/calc.) Click OK to load
the original viewpoint.

13. Select OPEN SHEET from the palette.

The top-level Calc schematic appears.

14. To see the cross-probing process in action, click on the CLK net
attached to the CLOCKGEN component.

A few seconds after this net is selected in DVE, a Trace window
appears in QuickSim listing the CLK net.

15. Bring the QuickSim window to the foreground to see the Trace
window.
10-46 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
16. Select Transcript → Replay from the QuickSim menu bar.

17. From the dialog box, choose the calc_4ke.timing.do file.

This replays a transcript file similar to the one played earlier,
except that it does not open the schematic in QuickSim. This tran-
script file opens the design, opens Trace and Monitor windows
with the correct signals, assigns stimulus to the signals, and then
runs the simulation. It should be obvious when you look at the
Trace output that real delay values are being used. It may be
useful to view the transcript file using the editor in pld_dmgr or
another editor.

The figure below shows how DVE and QuickSim may look like
running side by side.

Figure 10-27 Cross-Probing with DVE and QuickSim
Mentor Graphics Interface/Tutorial Guide 10-47

Mentor Graphics Interface/Tutorial Guide
18. After examining the waveforms in timing simulation, close both
the QuickSim and DVE windows.

Examining Routed Designs with EPIC
At this point in the tutorial, the design process is complete. If you
would like to see how the design has been implemented by the Xilinx
software, you can take a graphic look at your placed and routed
design using the Editor for Programmable Integrated Circuits, or
EPIC. You can access EPIC from the Xilinx Design Manager.

EPIC provides several useful functions, such as:

• Manual placement of a pre-routed design

• Manual editing of a routed design

• Static timing analysis

Figure 10-28 EPIC Icon

EPIC is explained in a separate tutorial. See the EPIC Tutorial section
of the EPIC Reference/User Guide. Before starting this tutorial, be sure
to select the ver1 → rev1 revision of the design in the project view

Verifying the Design Using a Demonstration Board

Creating and Downloading the Bitstream
A bitstream has been created during the Configure stage in Flow
Engine. At this point, you are ready to download the bitstream using
a parallel download cable or the more versatile XChecker cable
connected to your workstation. The XC4000E version of the Calc
design is suitable for download into an FPGA demonstration board
available from Xilinx.

Downloading is accomplished with Hardware Debugger. To invoke
Hardware Debugger, you select Tools → Hardware Debugger
from the menu bar, or click the Hardware Debugger icon on the
toolbar. If you are using an XChecker cable, you can also use the
Hardware Debugger to read back information from the device to
10-48 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
verify both the configuration as well as the state of memories and
registers within the device.

Figure 10-29 Hardware Debugger Icon

Hardware Debugger is explained in a separate tutorial. See the CALC
Tutorial section of the Hardware Debugger Reference/User Guide. Before
starting this tutorial, be sure to select the ver1 → rev1 revision of
the design in the project view.

Command Summaries
Although this tutorial uses the Mentor Graphics Design Manager and
the Xilinx Design Manager to process the Calc design, you can also
manually run the individual programs that these graphical tools run.

This section details command sequences that you can use to perform
the translations the Xilinx Design Manager performs in this tutorial.
The commands are written as you would type them at the system
prompt or in a batch file. You may also see a summary of these
system commands by using the Utilities → Command History
and Utilities → Command Preview selections in Design
Manager or Flow Engine. Once you are in the Command History or
Command Preview dialog box, select the display Mode to Command
Line to see the detailed system commands, including command-line
options, used by Flow Engine. You can cut and paste from these
Command dialog boxes into your text editor to create batch files.

Note: The commands listed here are slightly different from the
commands in the Command History and Command Preview
windows. The commands listed here show how you would typically
execute the Xilinx programs from the system prompt, outside of the
Xilinx Design Manager framework. The commands listed in the
Command History and Command Preview windows reflect how
Flow Engine executes Xilinx programs to fit into the Xilinx Design
Manager framework.
Mentor Graphics Interface/Tutorial Guide 10-49

Mentor Graphics Interface/Tutorial Guide
XC4000E Command Summaries

Functional Simulation

qhlib work
qhmap work work
qvhcom -qhpro_syminfo src/seg7dec.vhd
qvhcom -explicit -qhpro_syminfo src/alu.vhd
pld_dve -s calc xc4000e
qhpro calc -lib work -ini quickhdl.ini

Basic Translation

[synthesize HDL modules]
pld_men2edif calc xc4000e -b a
ngdbuild -p XC4000E -uc calc_4ke.ucf calc.edif

calc.ngd
map -p XC4003E-4-PC84 -o calc_map.ncd -oe normal

calc.ngd calc.pcf
trce calc_map.ncd -a -o calc_map.twr
par -w -l 4 calc_map.ncd calc.ncd calc.pcf
trce calc.ncd -a -o calc.twr
ngdanno calc.ncd calc_map.ngm
ngd2edif -v mentor -w calc.nga calc.edn
bitgen calc.ncd -l -w

Timing Simulation

pld_edif2tim calc.edn
pld_dve -s calc_lib/calc xc4000e
pld_quicksim calc_lib/calc -cp -tim typ -consm

messages

Further Reading
This Schematic-on-Top with VHDL Tutorial is intended to give you
the information necessary to begin a Xilinx design using Mentor
Graphics software. It is important to note that tools as broad and
complex as Design Architect, QuickSim, QuickHDL, and QuickHDL
Pro cannot be fully explained in a single tutorial. There are many
different ways to use the commands in these tools, and there are also
many ways to customize these applications. It is strongly recom-
mended that you read the Mentor Graphics Design Architect,
10-50 Xilinx Development System

Schematic-on-Top with VHDL Tutorial
QuickSim, QuickHDL, and QuickHDL Pro documentation as well as
the Xilinx Mentor Graphics Interface/Tutorial Guide.
Mentor Graphics Interface/Tutorial Guide 10-51

Mentor Graphics Interface/Tutorial Guide
10-52 Xilinx Development System

W

Index
A B C HED F G I J K L M N O P Q R S T U V X Y Z

Index
A

Add force 7-5

B

Bus rippers 3-7
RULE property 3-9

C

Calc_da 9-7
COMP property 3-10
Configuring your system 2-1

D

Design architect 1-1
Tutorial

Adding buses 9-35
Adding labels 9-54
Adding nets 9-36
Adding pins to symbol 9-23
Adding ports 9-42
Adding text 9-26
Assigning pin locations 9-62
calc_3k 9-7
Command summary 9-121, 10-49
Completing ALU schematic 9-47
Configuring system 9-4, 10-4
Constraints file 9-77, 10-22
Copying components 9-33
Copying files 9-11, 10-8
Creating ANDBLK2 symbol 9-22
Creating ORBLK2 symbol 9-28
Creating schematics for symbols 9-30
Design description 9-20
Entering commands 9-16
FAST pads 9-64
FD4CE symbol 9-52
Files used 9-6, 10-6
I/O Flip-Flops 9-65
Installing 9-6, 10-5
Labeling buses 9-43
Men2XNF8 9-100, 10-34
Mentor graphics variables 2-2
Net connections 9-39
Opening calc schematic 9-61
Placing library components 9-51

Placing user-created components 9-49
Required software 9-4, 10-4
Saving ALU schematic 9-56
Saving calc schematic 9-66
Saving symbol 9-28
Schematic layout 9-62
Stack implementation 9-68
Using function keys 9-16
Using mouse 9-15
Viewing primitive 9-57
Viewing RPM 9-57
Viewing soft macro 9-57
XC4000 oscillator 9-61
Xilinx library elements 9-56

Design flow 9-3, 10-3
Design Manager

translating designs to XNF format 3-27
Design manager

Defining the interface 1-4
Icons 1-4
See also PLD_DMGR

Design Viewpoint Editor
See PLD_DVE

Do file 7-4

E

Editor icon 1-6, 1-7

F

Flip–flops 7-5
FNCSIM8

See also PLD_FNCSIM8
Functional simulation 3-16, 3-35

G

Globalresetb 7-5
Globalsetreset 7-5

I

implementation see design implementation
Incremental design 9-3
INIT property 7-5
INST property 3-10
INTERNAL property 3-10
Index-1

W

Index
A B C HED F G I J K L M N O P Q R S T U V X Y Z
IOB flip–flops 7-5

L

Latches 7-5
LCA 2-3
LCA file 3-35
LD_LIBRARY_PATH 2-2

M

Macros
FPGA 3-6

Soft 3-6
Manual translation

Program summary 8-11
MGC_GENLIB 2-2
MGC_HOME 2-2
MGC_LOCATION_MAP 2-2
MGC_WD 2-3
MGLS_LICENSE_FILE 2-2
Models

QuickSim II simulation 7-4
Modify property 3-13

N

Naming conventions 7-1
Nets

Analyzing 7-4

P

PINTYPE property 3-10
PLD 3-9
PLD_DMGR 1-4

Running applications 2-4
Starting 2-4

PLD_DVE
Dialog box 3-18, 3-37
PINTYPE property 3-10

PLD_Men2XNF8 9-100, 10-34
Output files 9-102, 10-36

Primitives
FPGA 3-6

Properties 3-9
FPGA

COMP 3-10

INST 3-10
INTERNAL 3-10
PINTYPE 3-10

Q

QuickPart tables 7-4
QuickPath 1-6, 3-42, 8-19

Dialog box 3-42
QuickSim II

Analyzing nets 7-4
Dialog box 3-20, 3-38
Simulation models 7-4
Tutorial

Adding traces manually 9-85
Asserting global reset 9-89
Asserting global set reset 9-90
Assigning values to clock 9-87
Design description 9-92
Opening list window 9-84
Opening trace window 9-84
PLD_TIMSIM8 9-109, 10-42
Saving waveform data 9-98
Selecting nets for simulation 9-82, 10-32
Simulating the circuit 9-92
Timsim8.log file 9-110, 10-43
Using the transcript 9-100
Viewing calc schematic 9-81, 10-28

R

Retargeting design 7-1
Rip component 3-7

S

SIMPRIMS 2-3
Simulation models 7-4
Symbols

Adding pins 9-23

T

Timing simulation 3-35
Manual translation 8-9

Tri-state (3-state) 7-6
Index-2

W

Index
A B C HED F G I J K L M N O P Q R S T U V X Y Z
U

Unified libraries 3-5
Retargeting design 7-1

V

Viewpoint
XNF 8-13

VMH/VMD files 7-4

X

XC2000/XC3000 designs
Globalresetb 7-5

XC4000 designs
Globalsetreset 7-5

Xilinx attributes. See Properties
Xilinx libraries 7-1
Index-3

W

Index
A B C HED F G I J K L M N O P Q R S T U V X Y Z
Index-4

	Title Page
	Terms and Conditions
	Preface
	About This Manual
	Manual Contents

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Architecture Support
	Platform Support
	Library Support
	Features
	Mentor Software Release Support
	Added HDL Support
	QuickHDL and QuickHDL PRO
	VHDL Gate-Level Simulation Support
	Verilog Gate-Level Simulation Support
	Links to the Xilinx Synopsys Interface (XSI)

	Mentor Design Manager
	Pld_da
	Pld_dve
	Pld_quicksim
	Editor
	QuickPath
	LogiBLOX GUI
	Gen_Arch
	SysArch
	Pld_edif2sim
	Pld_edif2tim
	Pld_xnf2sim
	Pld_men2edif
	QuickHDL
	QuickHDL PRO
	Pld_dsgnmgr
	Pld_sg

	New Models for LogiBLOX Modules
	EDIF
	Cross-Probing
	Timing Simulation
	Schematic Generator
	Timing Constraints

	Design Flows
	Schematic Entry Design Flows
	HDL Entry
	Mixed Schematic and VHDL Flow with VHDL on Top
	Mixed Schematic and VHDL Flow with Schematic on To...

	Inputs
	EDIF
	XNF

	Outputs
	Files
	Tutorials
	Online Help

	Getting Started
	Configuring Your System
	Modifying Mentor Graphics Variables

	Invoking the Design Manager
	Invoking Applications in the Design Manager
	Tools Window Icons
	Navigator Window

	Exiting the Design Manager

	Schematic Designs
	Design Flows
	Design Entry
	Invoking Design Architect
	Exiting Design Architect
	Loading a Schematic
	Creating the Design Component
	Adding Components
	Adding Xilinx library Components
	Xilinx Libraries

	Adding Properties
	Properties
	Adding Properties
	Adding the Net Property to Nets
	Modifying Property Values
	Entering Timing Specifications
	Creating New Groups from Existing Groups

	Functional Simulation
	Simulating Pure Schematic Designs
	Creating the Viewpoint
	Simulating the Design

	Simulating Schematic Designs with LogiBLOX Element...
	Simulating Schematic Designs with XNF Elements
	Creating the Design Component
	Converting the XNF File
	Creating the Viewpoint
	Simulating the Design

	Simulating Schematic Designs with EDIF Elements
	Creating the Design Component
	Converting the EDIF File
	Simulating the Design

	Implementing Schematic Designs
	Converting the EDDM Design
	Implementing the Design

	Timing Simulation for Schematic Designs
	Creating the EDDM Model and the Viewpoint
	Simulating the Design
	Cross-Probing
	Performing a Timing Analysis

	HDL Designs
	The Design Flow
	HDL Design Entry
	Overview of HDL Design Entry
	HDL Design Entry Stages
	Stage 1: RTL Behavioral Code Development
	Stage 2: Synthesis
	LogiBLOX Design Entry

	Unified Library Instantiated Components

	Functional Simulation
	Pre-Synthesis Functional Simulation
	Post-Synthesis Functional Simulation
	Optional Post Synthesis Functional Simulation

	Design Implementation
	Timing Simulation
	Compiling the SIMPRIM Libraries
	Passing Timing Generics to Special Cells—ROC, OSC,...
	Compiling the Design
	Simulating the Design

	Mixed Designs with VHDL on Top
	The Design Flow
	Design Entry
	Functional Simulation
	Compiling the Design
	Simulating the Design
	Optional Post-Synthesis Functional Simulation

	Design Implementation
	Timing Simulation
	Compiling the SIMPRIM Libraries
	Passing Timing Generics to Special Cells—ROC, OSC,...
	Compiling the Design
	Simulating the Design

	Mixed Designs with Schematic on Top
	The Flow
	Design Entry
	VHDL Module Design Entry
	Schematic Entry

	Functional Simulation
	Functional Simulation Before Synthesis
	Functional Simulation After Synthesis

	Design Implementation
	Converting the EDDM Design
	Implementing the Design

	Timing Simulation

	Advanced Techniques
	Retargeting the Design to a Different Family
	Merging Design Files from Other Sources
	Simulation Models
	Analyzing Nets from the Schematic
	Setting Global Reset and 3-State Signals
	FPGA Designs
	CPLD Designs

	Manual Translation
	Functional Simulation
	Pure Schematic Designs
	Schematic Designs with XNF Elements
	Schematic Designs with LogiBLOX Elements
	Mixed Schematic and VHDL with Schematic-on-Top Des...
	Before Synthesis
	After Synthesis

	HDL-at-Top Designs
	Pure HDL Designs

	Design Implementation
	Schematic Designs (FPGA)
	Schematic Designs (CPLD)
	HDL-at-Top Designs
	Pure HDL Designs

	Timing Simulation
	Schematic Designs
	Pure HDL Designs
	EDIF Method
	VHDL/Verilog Method

	Program Summary
	CPLD
	Dsgnmgr
	EDIF2NGD
	Editor
	Gen_Arch
	MAP
	NGDAnno
	NGDBuild
	NGD2EDIF
	PAR
	Pld_da
	Pld_dve
	Pld_edif2sim
	Pld_edif2tim
	Pld_men2edif
	Pld_quicksim
	Pld_xnf2sim
	QuickHDL
	QuickHDL PRO
	QuickPath
	Qvhcom
	Qvlcom
	SysArch
	Pld_sg

	Schematic Design Tutorial
	Introduction
	Required Background Knowledge
	Design Flow
	Software Installation
	Required Software
	Before Beginning the Tutorial
	Installing the Tutorial
	Standard Directory Structure
	Tutorial Directory and Files

	Starting the Design Manager
	Tools Window
	Navigator Window
	Command Palette

	Copying the Tutorial Files
	Starting Design Architect
	Using the Mouse in Design Architect
	Left Mouse Button
	Middle Mouse Button (Strokes)
	Right Mouse Button

	Using the Function Keys
	Selecting Commands from the Menu Bar
	Selecting Commands from the Palette
	Entering Commands from the Keyboard
	Cancelling Commands
	Repeating Menu Commands
	Manipulating the Screen

	Targeting the Design for the XC9000 Family
	Completing the Calc Design
	Design Description
	Creating the ANDBLK2 Symbol
	Opening a Symbol Window
	Creating the Symbol Outline
	Adding Pins to the ANDBLK2 Symbol
	Adding Text
	Modifying Text Size
	Saving the ANDBLK2 Symbol

	Creating the ORBLK2 Symbol
	Creating Schematics for ANDBLK2 Symbol
	Opening a Schematic Window
	Adding the First Component to a Schematic
	Placing Additional Components
	Copying a Component
	Moving a Component
	Adding Buses to a Schematic
	Adding Nets to a Schematic
	Completing the Net Connections
	Increasing Text Size
	Adding Ports
	Labeling Ports
	Saving the Schematic

	Creating Schematics for ORBLK2 Symbol
	Editing the ALU Schematic
	Placing User-Created Components
	Placing Library Components
	Adding Nets, Buses, Ports and Labels
	FD4CE and AND5B2
	ANDBLK2 and ORBLK2

	Adding Labels to Components
	Saving the ALU Schematic
	Exploring Xilinx Library Elements
	Viewing a Xilinx Soft Macro Schematic
	Viewing a Xilinx RPM (XC4000-Based Families Only)
	Opening the Calc Schematic
	Using the XC4000E Oscillator

	Controlling FPGA/CPLD Layout from the Schematic
	Assigning Pin Locations
	Designating FAST Pads
	Using the I/O Flip-Flops
	Saving the Calc Schematic

	Modifying the Design for Non-XC4000E/EX Devices
	RAM Stack Implementation
	Using the Device-Independent Register File
	Removing the XC4000E Oscillator

	Using LogiBLOX
	Creating and Instantiating a LogiBLOX Module

	Other Special Components
	The STARTUP Block (Optional: XC4000E/EX and XC5200...
	Adding the CONFIG Symbol (Optional)

	Using a Constraints File
	Performing Functional Simulation
	Using Pld_dve
	Invoking Pld_quicksim
	Viewing the Calc Schematic
	Selecting Nets for Simulation
	Opening Trace and List Windows
	Adding Traces Manually
	Assigning Values to the Clock
	Asserting Global Set/Reset (without STARTUP)
	Asserting Global Set/Reset (with STARTUP)
	Design Description
	Simulating the Circuit
	Saving the Results
	Using the Transcript

	Using Pld_men2edif
	Examining Pld_men2edif Output Files

	Using the Xilinx Design Manager
	Performing Timing Simulation
	Using Pld_edif2tim to Prepare a Timing Simulation
	Examining the Pld_edif2tim.log File
	Using Pld_dve
	Invoking QuickSim for Timing Simulation

	Examining Routed Designs with EPIC
	Verifying the Design Using a Demonstration Board
	Creating and Downloading the Bitstream

	Making Incremental Design Changes
	Making an Incremental Schematic Change
	Translating the Incremental Design
	Verifying the Change in the Demonstration Board

	Command Summaries
	XC4000E Command Summaries
	Functional Simulation
	Basic Translation
	Timing Simulation
	Incremental Translation

	XC9000 Command Summaries
	Functional Simulation
	Basic Translation
	Timing Simulation
	Incremental Translation

	Further Reading

	Schematic-on-Top with VHDL Tutorial
	Introduction
	Required Background Knowledge
	Design Flow
	Software Installation
	Required Software
	Before Beginning the Tutorial
	Installing the Tutorial
	Standard Directory Structure
	Tutorial Directory and Files

	Starting the Design Manager
	Copying the Tutorial Files
	Starting Design Architect
	Completing the Calc Design
	Design Description
	Adding the SEG7DEC Component
	Compiling the VHDL Entity

	Linking a VHDL Entity to the ALU Component
	Compiling the VHDL Entity

	Using a Constraints File
	Performing Functional Simulation
	Using Pld_dve
	Invoking QuickHDL Pro
	Viewing the Calc Schematic
	Viewing and Navigating the VHDL Hierarchy
	Completing the Functional Simulation

	Using Pld_men2edif
	Examining Pld_men2edif Output Files

	Using the Xilinx Design Manager
	Performing Timing Simulation
	Using Pld_edif2tim to Prepare a Timing Simulation
	Examining the Pld_edif2tim.log File
	Using Pld_dve
	Invoking QuickSim for Timing Simulation

	Examining Routed Designs with EPIC
	Verifying the Design Using a Demonstration Board
	Creating and Downloading the Bitstream

	Command Summaries
	XC4000E Command Summaries
	Functional Simulation
	Basic Translation
	Timing Simulation

	Further Reading

	Index

