Using Timing  Zome i omeneer
Constraints

Timing Specifications
Additional Timing
Constraints
Constraints Priority

Syntax Summary

Specialized Support for
Synopsys

Using Timing Constraints- October 1997 Printed in U.S.A.



Using Timing Constraints

X S

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821, 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277, 5,267,187, 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704, 5,329,174, 5,329,181,
5,331,220; 5,331,226, 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153,;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924, 5,399,925; 5,410,189;
5,410,194; 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181, 5,448,493; 5,450,021,
5,450,022; 5,453,706, 5,466,117; 5,469,003; 5,475,253; 5,477,414, 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124, 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971, 5,524,097, 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631, 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634, 5,574,655; 5,578,946, 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424, 5,600,263; 5,600,264, 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021, 5,617,041; 5,617,327; 5,617,573; 5,623,387, 5,627,480;
5,629,637; 5,629,886; 5,631,577, 5,631,583; 5,635,851, 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904, 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.

Xilinx Development System



Preface

About This Manual

This manual describes how to specify timing constraints.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Development System Reference
Guide.

Using Timing Constraints— October 1997 iii



Using Timing Constraints

iv Xilinx Development System



Conventions

Typographical

This manual uses the following conventions. An example illustrates
each convention.

« Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

e Courierbold indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold  also indicates commands that you select from a
menu.

File - Open
< talic font denotes the following items.

= \Variables in a syntax statement for which you must supply
values

edif2ngd  design_name
= References to other manuals

See the Development System Reference Guide for more informa-
tion.

= Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Using Timing Constraints— October 1997 Y



Using Timing Constraints

Vi

Square brackets “[ ] indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText".

Braces “{ }”” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}
A vertical bar “|” separates items in a list of choices.
symbol editor_name [bus|pins]

A vertical ellipsis indicates repetitive material that has been
omitted.

I0B #1: Name = QOUT’
I0B #2: Name = CLKIN’

A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block  block_name locl loc2 ... locn;

Xilinx Development System



Contents

About This Manual ... iii

TypographiCal.........cooi i \Y

Timing Requirements and Xilinx Software ...........ccccooviiiiiinenennen. 9
TimIiNg SPeCIfiCatioNS ..........euiiiiiiiiiiiiie e 10
Entering Timing Specifications.............ccccoviiiiini 10
Entering Timing Specifications in a Schematic................... 10
Entering Timing Specifications in a Constraints File........... 12
Specifying Groups in TS Attributes ... 12
Using Predefined Groups ........ccccvveieeeiiiiiiiiiiiiiieeeeeeeen 13
Creating User-Defined Groups Using TNMS ...........cccccee.... 14
Creating New Groups from Existing Groups...........ccccceee.... 22
Combining Multiple Groups into ONe.........ccoovviiiiiieeeennnn. 23
Creating Groups by EXCIUSION ...........oeeeiiiiiiiiiiiiiiiiieeeeeen, 24
Defining Flip-Flop Subgroups by Clock Sense.................... 24
Defining Latch Subgroups by Gate Sense............cccceeeeeen. 25
Creating Groups by Pattern Matching ..............ccccvvveeeeenen. 25
TIMING POINES ...eviviiiiiici e 27
Using TPSYNC to Define Synchronous Points................... 27
Using TPTHRU to Define Through Points ...............ocvvvune. 28
BasiC TIMESPEC SYNtaX.........cccuvvvvvviiiiiiiiiiiiinieseeneeeeeeaeeanaees 29
Defining Intermediate Points on a Path ................................... 30
Ignoring Selected Paths.............ooovvvviiiicciciee e, 30
Specifying Time Delay in TS Attributes..........cccccceeiiiniiiinnnee. 31
Specifying a TS Attribute Delay in Terms of Another ......... 31
Setting TIMESPEC PrioritieS .....ccccoevviiiiiiiieeeeeeeeeeeeeeeeeeeiiiaes 33
Defining a Clock Period ............oovvviiiiiiiiiiiiiiiiiie e 33
Sample Schematic Using TIMESPECS...........cccccceeeiiiniiinnnen. 36
Additional Timing Constraints .............cccooevevvieieveve e, 38
Controlling Net SKEW ........uuuviiiiiiiiiiiiie e eeeeee e 38
Controlling Net Delay ..........uuuuiiiiiiiiiiie e, 38
Controlling Path TracCing ..........eceeeiiiiiiiiieeee e, 38

Attributes, Constraints, and Carry Logic — October 1997 vii



Attributes, Constraints, and Carry Logic

The DROP_SPEC Constraint .............ccoevvvvvvvvviiviiiiiiceeee e, 40
CoNStraints PriOrity ......ccceee e 41
SYNEAX SUMIMAIY ...t et e e e aar s 42

TNM AFDULES ... 42

TIMEGRP ARINDULES ...oooeiiiiiiiieeeee e 42

TIMESPEC ARNDULES ..o 43

Additional Timing Constraints ............cccccvciiiiiiiiiiie e, 44
Specialized Support for SYNOPSYS ....evveeieeiiiiiiiiiiiiiiiieeeeeee e 44

Timing Specification OffSets ... 44

EXAMPIES ... 46

IgNOMNG PathS.....ccoooiiiiici e 48

viii Xilinx Development System



Using Timing Constraints

The timing constraints described in this chapter are compatible with
the following families.

= XC3000A7L
XC3100A/L

= XC4000E/L

= XC4000EX/XL/XV
= XC5200

e Spartan

This chapter describes how you specify timing constraints, and
contains the following.

= “Timing Requirements and Xilinx Software” section
= “Timing Specifications” section

< “Additional Timing Constraints” section

e “Constraints Priority” section

e “Syntax Summary” section

= “Specialized Support for Synopsys” section

Timing Requirements and Xilinx Software

Xilinx software enables you to specify precise timing requirements
for your Xilinx FPGA designs. You can specify the timing require-
ments for any nets or paths in your design. One way of specifying
path requirements is to first identify a set of paths by identifying a
group of start and end points. The start and end points can be flip-
flops, 1/0 pads, latches, or RAMSs. You can then control the worst-
case timing on the set of paths by specifying a single delay require-
ment for all paths in the set.

The primary method of specifying timing requirements is by entering
them on the schematic. However, you can also specify timing require-
ments in constraints files (UCF and PCF). For detailed information

Development System Reference Guide—OCTOBER 1997 -9



Development System Reference Guide

about the constraints you can use with your schematic-entry soft-
ware, refer to the “Attributes, Constraints, and Carry Logic” chapter
of the Libraries Guide.

Once you define timing specifications, PAR maps, places, and routes
your design based on these requirements.

To analyze the results of your timing specifications, use the TRACE
(Timing Report and Circuit Evaluator) program. Refer to the
“TRACE” chapter for more information.

Timing Specifications
Timing Specifications specify timing requirements for your design.
The following sections describe how you use timing specifications.
= How to enter timing specifications
= Specifying Groups in timing specifications

= Defining timing specifications

Entering Timing Specifications

This section describes the basic methods for entering timing specifica-
tions in a schematic or User Constraints File (UCF).

The following notes apply to Mentor Graphics users:

= The term attribute in this chapter is equivalent to property as used
in the Mentor Graphics environment.

< The Mentor netlist writer program (ENWRITE) converts all prop-
erty names to lowercase letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase
letters. Because property names are processed in this way, you
must enter variable text in certain constraints in uppercase letters
only. This requirement is discussed in the following sections:

= “Entering Timing Specifications in a Schematic”

= “Creating New Groups from Existing Groups”

Entering Timing Specifications in a Schematic

The TIMESPEC schematic primitive, as illustrated in the “TIMESPEC
Primitive” figure, serves as a placeholder for timing specifications,

-10 Xilinx Development System



Using Timing Constraints

which are called TS attribute definitions. Every TS attribute must be
defined in a TIMESPEC primitive, and only TIMESPEC primitives
can carry TS attribute definitions. Every TS attribute begins with the
letters “TS”” and ends with a unique identifier that can consist of
letters, numbers, or the underscore character ().

TS attribute definitions can be any length, but only 30 characters are
displayed in the TIMESPEC window. Each TIMESPEC primitive can
hold up to eight TS attributes. If you want to include more than eight
TS attributes, you can use multiple TIMESPEC primitives in your
schematic.

TIMESPEC
TS01=FROM:FFS:TO:PADS:25

X7430
Figure 0-1 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface User Guide for step-by-step instructions.

A TS attribute defines the allowable delay for paths in your design.
The basic syntax for a TS attribute is:

TSidentifier=FROMsource_group:TO: dest_group: delay

where TSidentifier is a unique name for the TS attribute, source_group
and dest_group are groups of start points and end points, and delay
defines the maximum delay for the paths between the start points
and end points. The delay parameter defines the maximum delay for
the attribute. Nanoseconds are the default units for specifying delay
time in TS attributes. You can also specify delay using other units,
such as picoseconds or megahertz.

Note: Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. The characters in the
keywords must be all upper case or all lower case. Examples of

Development System Reference Guide—OCTOBER 1997 -11



Development System Reference Guide

-12

acceptable keywords are: FROM, TO, from, to. Examples of uncac-
ceptable keywords are: From, To, fRoM, tO.

Note: The Mentor netlist writer program (ENWRITE) converts all
property names to lowercase letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase letters. To
ensure references from one constraint to another are processed
correctly, a TSidentifier name should contain only uppercase letters on
a Mentor Schematic (TSMAIN, for example, but not TSmain or
TSMain). Also, if a TSidentifier name is referenced in a property value,
it must be entered in uppercase letters. For example, the TSID1 in the
second constraint below must be entered in uppercase letters to
match the TSID1 name in the first constraint.

TSID1 = FROM: grl: TO: gr2: 50;
TSMAIN = FROM: here: TO: there: TSID1: /2;

The basic TS attribute is described in detail in the “Basic TIMESPEC
Syntax” section. More detailed forms of the attribute are also
described in that section.

Entering Timing Specifications in a Constraints File

You can enter timing specifications as constraints in a UCF file. When
you then run NGDBuild on your design, your timing specifications
are added to the design database as part of the NGD file.

The basic syntax for a timing specification entered in a constraints file
is the TS attribute syntax described in the “Basic TIMESPEC Syntax”
section.

Specifying Groups in TS Attributes

In a TS attribute, you specify the set of paths to be analyzed by
grouping start and end points in one of the following ways:

= Refer to a predefined group by specifying one of the corre-
sponding keywords — FFS, PADS, LATCHES, or RAMS.

= Create your own groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

= Create groups that are combinations of existing groups using
TIMEGRP symbols.

= Create groups by pattern matching on net names.

Xilinx Development System



Using Timing Constraints

The following sections discuss each method in detail.

Using Predefined Groups

You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords.

Keyword Description

FFS CLB or 10B flip-flops only; not flip-flops built from
function generators

LATCHES |CLB or IOB latches only; not latches built from func-
tion generators

PADS Input/output pads
RAMS For architectures with RAMS

From-To statements enable you to define timing specifications for
paths between predefined groups. The following examples are TS
attributes that reside in the TIMESPEC primitive or are entered in the
UCF. This method enables you to easily define default timing specifi-
cations for the design, as illustrated by the following examples:

TS01=FROM:FFS:TO:FFS:30
TS02=FROM:LATCHES:TO:LATCHES:25
TS03=FROM:PADS:TO:RAMS:70
TS04=FROM:FFS:TO:PADS:55

A predefined group can also carry a name qualifier; the qualifier can
appear any place where the predefined group is used. This hame
qualifier restricts the number of elements being referred to. The
syntax used is as follows:

predefined group ( name_qualifier [ name_qualifier ])

where name_qualifier is the full hierarchical name of the net that is
sourced by the primitive being identified.

Note: In cases where a BLKNM or HBLKNM constraint is used, the
pad name will not reflect the net name placed between the external
pad symbol and the 10 primitive(s).

The name qualifier can include wildcard characters (* to indicate any
number of characters or ? to indicate a single character) which allows
the specification of more than one net or allows you to shorten the
full hierarchical name to something that is easier to type.

Development System Reference Guide—OCTOBER 1997 -13



Development System Reference Guide

As an example, specifying the group FFS(MACRO_A/Q?) selects
only the flip-flops driving the QO0, Q1, Q2 and Q3 nets in the
following macro:

MACRO_A
Vcc Vcc
D Q Q3 D Q R3 OUT3
CE CE
CLR CLR
Q2 R2 ouT2
D Q D Q
CE CE
CLR CLR
0—, 0—,
Q1 R1 0ouT1
D Q D Q
CE CE
CLR CLR
0—, 0—,
Qo0 RO ouTo
D Q D Q
CE CE
CLR CLR
0—, 0—,

X741

Figure 0-2 Using Qualifiers with Predefined Groups

To create more specific groups see the following section.

Creating User-Defined Groups Using TNMs

A TNM (timing name) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing
specification. A TNM is a flag that you place directly on your sche-
matic to tag a specific net, element pin, primitive or macro. All

-14 Xilinx Development System



Using Timing Constraints

symbols tagged with the TNM identifier are considered a group.
Place TNM attributes directly on your schematic using the following
syntax:

TNMsdentifier

where identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and

clarity.

Warning: Do not use the reserved words FFS, LATCHES, PADS,
RAMS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT, as
identifiers. The constraints in the table below are also reserved words

and should not be used as identifiers.

Reserved Words (Constraints)

ADD FAST NODELAY

ALU FBKINV OPT

ASSIGN FILE 0scC

BEL F_SET RES

BLKNM HBLKNM RLOC

CAP HU_SET RLOC_ORIGIN

CLBNM H_SET RLOC_RANGE

CMOS INIT SCHNM

CYMODE INTERNAL SLOW

DECODE LIBVER SYSTEM

DEF LOC TNM

DIVIDE1_BY LOWPWR TRIM

DIVIDE2_BY MAP TS

DOUBLE MEDFAST TTL

EQN MEDSLOW TYPE

FAST MINIM USE_RLOC
U_SET

Note: If you want to use a keyword as an identifier, you can enclose
the keyword in quotation marks. In the TNM statement

Development System Reference Guide—OCTOBER 1997




Development System Reference Guide

-16

TNM=RAMS:"CMOS"'CMOS is treated as an identifier instead of a
keyword.

You can specify as many groups of end points as are necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place and route
time, use as few groups as possible.

A predefined group can be used in a TNM specification, using the
following syntax:

TNM=predefined_group: identifier

where predefined_group is one of the groups (for example, FFs or
RAMS) defined in the “Using Predefined Groups” section and identi-
fier is a value that consists of any combination of letters, numbers, or
underscores. Paths defined by the TNM are traced forward, through
any number of gates or buffers, until they reach a member of the
predefined_group. That element is added to the specified TNM group.
This mechanism is called forward tracing.

The specification shown below, when attached to a net, would create
a group called FIFO_CORE consisting of all of the RAM primitives
traced forward on the net:

TNM=RAMS:FIFO_CORE

A predefined net in a TNM statement can have a name qualifier (for
example, TMM=FFS:(FRED*):GRP_A), as described in the “Creating
Groups by Pattern Matching” section.

You can use several methods for tagging groups of end points:
placing identifiers on nets, macro or primitive pins, primitives, or
macro symbols. Which method you choose depends on how the path
end points are related in your design. For each of these elements, you
can use the predefined group syntax described earlier in this section.

The following subsections discuss the different methods of placing
TNMis in your design. The same TNM attribute can be used as many
ways and as many times as necessary to get the TNM applied to all of
the elements in the desired group.

You can place TNM attributes in either of two places: in the schematic
as discussed in this section or in a constraints file (UCF or NCF). The
syntax for specifying TNMs in a UCF or NCF constraints file is
described in the “Attributes, Constraints, and Carry Logic” chapter
of the Libraries Guide.

Xilinx Development System



Using Timing Constraints

Placing TNMs on Nets

The TNM attribute can be placed on any net in the design. The
attribute indicates that the TNM value should be attached to all valid
elements fed by all paths that fan forward from the tagged net.
Forward tracing stops at any flip-flop, latch, RAM or pad.

Placing TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in
the design if the design entry package allows placement of attributes
on macro or primitive pins. The attribute indicates that the TNM
value should be attached to all valid elements fed by all paths that fan
forward from the tagged pin. Forward tracing stops at any flip-flop,
latch, RAM or pad.

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure.

rTNM=FLOF’S

TNM=FLOPS

X4679

Figure 0-3 TNM on Primitive Symbols

Development System Reference Guide—OCTOBER 1997 -17



Development System Reference Guide

-18

In the figure, the flip-flops tagged with the TNM form a group called
“‘FLOPS.” The untagged flip-flop on the right side of the drawing is
not part of the group.

Place only one TNM on each symbol, load pin, or macro load pin. If
you want to assign more than one identifier to the same symbol,
include all identifiers on the right side of the equal sign (=) separated
by a semicolon (;), as follows:

TNM=joe;fred

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher
level function. It typically has a lower level design that consists of
primitives, other macros, or both, connected together to implement
the higher level function. An example of a macro function is a 16-bit
counter.

A TNM attribute attached to a macro indicates that all elements
inside the macro (at all levels of hierarchy below the tagged macro)
are part of the named group.

When a macro contains more than one symbol type and you want to
group only a single type, use the TNM identifier in conjunction with
one of the predefined groups: FFS, RAMS, PADS, or LATCHES as
indicated by the following syntax examples:

TNM=FFS:identifier
TNM=RAMSdentifier
TNM=LATCHESidentifier
TNM=PADSidentifier

If you want to place an identifier on more than one symbol type,
separate each symbol type and identifier with a semicolon (;) as illus-
trated by the following examples:

TNM=FFS:FLOPS;PADS:OPADS
TNM=RAMS:MEMS;LATCHES:INLATS

If multiple symbols of the same type are contained in the same hierar-
chical block, you can simply flag that hierarchical symbol, as illus-
trated by the following figure. In the figure, all flip-flops included in
the macro are tagged with the TNM “FLOPS” and all RAMs are

Xilinx Development System



Using Timing Constraints

tagged with the TNM “MEM.” By tagging the macro symbol, you do
not have to tag each underlying symbol individually.

TNM=FFS:FLOPS;RAMS:MEM

Figure 0-4 TNM on Macro Symbol

Placing TNMs on Nets or Pins to Group Flip-Flops and Latches

You can easily group flip-flops, latches, or both by flagging a common
input net, typically either a clock net or an enable net. If you attach a
TNM to a net or load pin, that TNM applies to all flip-flops and input
latches that are reached through the net or pin. That is, that path is

Development System Reference Guide—OCTOBER 1997 -19



Development System Reference Guide

traced forward, through any number of gates or buffers, until it
reaches a flip-flop or input latch. That element is added to the speci-
fied TNM group.

Placing a TNM on a net is equivalent to placing that TNM attribute
on every load pin of the net. Use pin TNM attributes when you need
finer control.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops. In the figure, the attribute
TNM=FLOPS traces forward to the first two flip-flops, which form a
group called FLOPS. The bottom flip-flop is not part of the group
FLOPS

IBUF A0
'Pl%l AINO | NO TNM=FLOPS 1
XX L’ ) 0 DL D OBUF OPAD
—)D Fp |Q BITO INO BITOO 0
XNOR c | ol
IPAD 1BUF
BO 1
@I BINO INO 0| o OBUF
| 2 | OPAD
L/ P |Q BITL INO BITOL O g5
XX
AND c V
-
O p3| D OBUF
Q BIT2 IN\.O BIT02 O OPAD
FD PXX
INV c P G|
L C
GCLK NV
IPAD
0 0
oy CLKIN || CLK | CLKN

X4677

Figure 0-5 TNM on Net Used to Group Flip-Flops

Xilinx Development System



Using Timing Constraints

The following figure illustrates placing a TNM on a clock net, which
traces forward to all three flip-flops and forms the group Q_FLOPS:

D1 1

Bt 1 ol

D2 2
b of¥

*—

D3 3
o o=

CLOCK

TNM=Q_FLOPS

Figure 0-6 TNM on Clock Pin Used to Group Flip-Flops
The TNM parameter on nets or pins is allowed to have a qualifier.

For example:
TNM=FFS:data
TNM=RAMS:fifo
TNM=LATCHES:capture

A qualified TNM is traced forward until it reaches the first storage
element (flip-flop, latch, or RAM). If that type of storage element
matches the qualifier, the storage element is given that TNM value.
Whether or not there is a match, the TNM is not traced through that
storage element.

Development System Reference Guide—OCTOBER 1997 -21



Development System Reference Guide

TNM parameters on nets or pins are never traced through a storage
element (flip-flop, latch or RAM). In previous XACT software
releases, they were traced through some pins on input latches and
RAMs. If you rely on this behavior, move the TNM parameter so that
it reaches the target flip-flop directly or place a TNM parameter on
the target flip-flop symbol.

Creating New Groups from Existing Groups

In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows:

newgroup=existing_grpl: existing_grp2 [: existing_grp3 . . .]

where newgroup is a newly created group that consists of existing
groups created via TNMs, predefined groups, or other TIMEGRP
attributes.

The Mentor netlist writer program (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader EDIF2ZNGD
then converts the property names to uppercase letters. To ensure
references from one constraint to another are processed correctly,

= Group names should contain only uppercase letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My _flops).

= Ifagroup name appears in a property value, it must also be
expressed in uppercase letters. For example, the GROUP3 in the
first constraint below must be entered in uppercase letters to
match the GROUP3 in the second constraint.

TIMEGRP GROUPL1 = gr2: GROUP3;
TIMEGRP GROUPS3 = FFS: except: grp5;

TIMEGRRP attributes reside in the TIMEGRP primitive, as illustrated
in the figure below. Once you create a TIMEGRP attribute definition
within a TIMEGRP primitive, you can use it in the TIMESPEC primi-
tive. Each TIMEGRP primitive can hold up to eight group definitions.
Since your design might include more than eight TIMEGRP
attributes, you can use multiple TIMEGRP primitives.

Xilinx Development System



Using Timing Constraints

TIMEGRP
some_ffs=flips:flops

X4330
Figure 0-7 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in a constraints file (UCF or NCF). The syntax for specifying TNMs in
a UCF or NCF constraints file is described in the “Attributes,
Constraints, and Carry Logic” chapter of the Libraries Guide.

You can use TIMEGRP attributes to create groups using the following
methods:

= Combining multiple groups into one
= Creating groups by exclusion
= Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One

You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups:

big_group=small_group:medium_group

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;
that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Warning: A circular definition, as shown below, causes an error
when you run your design through NGDBUILD.

Development System Reference Guide—OCTOBER 1997 -23



Development System Reference Guide

many_ffs=ffs1:ffs2
fisl=many_ffs:ffs3

Creating Groups by Exclusion

You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples:

groupl=group2:EXCEPT: group3

= groupl represents the group being defined. It contains all of the
elements in group2 except those that are also in group3.

= group2 and group3 can be a valid TNM, predefined group, or
TIMEGREP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

groupl=group2: group3:EXCEPT: group4: group5

The example defines a groupl that includes the members of group2
and group3, except for those members that are part of group4 or
group5. All of the groups before the keyword EXCEPT are included,
and all of the groups after the keyword are excluded.

Certain reserved words cannot be used as group names. These
reserved words are described in the “Creating User-Defined Groups
Using TNMs” section.

Defining Flip-Flop Subgroups by Clock Sense

You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

groupl=RISING:ffs
group2=RISING: ffs_group
group3=FALLING:ffs
group4=FALLING: ffs_group

where groupl to group4 are new groups being defined. The ffs_group
must be a group that includes only flip-flops.

Note: Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

Xilinx Development System



Using Timing Constraints

The following example defines a group of flip-flops that switch on the
falling edge of the clock.

falling_ffs=FALLING:ffs

Defining Latch Subgroups by Gate Sense

Groups of type LATCHES (no matter how these groups are defined)
can be easily separated into transparent high and transparent low
subgroups. The TRANSHI and TRANSLO keywords are provided for
this purpose, and are used in TIMEGRP statements like the RISING
and FALLING keywords for flip-flop groups. For example:

lowgroup=TRANSLO:latchgroup
highgroup=TRANSHI:latchgroup

Creating Groups by Pattern Matching

When creating groups, you can use wildcard characters to define
groups of symbols whose associated net names match a specific
pattern.

How to Use Wildcards to Specify Net Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output net names match a specific string or pattern.
The asterisk (*) represents any string of zero or more characters. The
guestion mark (?) indicates a single character.

For example, DATA* indicates any net name that begins with
“DATA,” such as DATA, DATAL, DATA22, DATABASE, and so on.
The string NUMBER? specifies any net nhames that begin with
“NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any net names that begin with any series of characters
followed by “AT” and end with any one character such as BAT1,
CAT2, and THATS. If you specify *AT??, you would match BAT11,
CAT26, and THAT50.

Pattern Matching Syntax

The syntax for creating a group using pattern matching is shown
below:

Development System Reference Guide—OCTOBER 1997 -25



Development System Reference Guide

group=predefined_group( pattern)

where predefined_group can only be one of the following predefined
groups—FFS, LATCHES, PADS, or RAMS. The pattern is any string of
characters used in conjunction with one or more wildcard characters.

Warning: When specifying a net name, you must use its full hierar-
chical path name so PAR can find the net in the flattened design.

For flip-flops, input latches, and RAMSs, specify the output net name.
For pads, specify the external net name unless you placed a BLKNM
or HBLKNM on the pad in the schematic; in this case, you should
specify its value instead.

The following example illustrates creating a group that includes the
flip-flops that source nets whose names begin with $113/FRED.

group1=ffs($113/FRED*)

The following example illustrates a group that excludes certain flip-
flops whose output net names match the specified pattern:

this_group=ffs:EXCEPT:ffs(a*)

In this example, this_group  includes all flip-flops except those
whose output net names begin with the letter “a.”

The following defines a group named “some_latches”:
some_latches=latches($113/xyz*)

The group some_latches contains all input latches whose output

net names start with “$113/xyz.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing
groups, you can specify a predefined group qualified by a pattern any
place you specify a predefined group. The syntax below illustrates
how pattern matching can be used within a timing specification:

TSidentifier=FROM predefined_group( pattern):TO: predefined_group
( pattern): delay

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below:

some_ffs=ffs(a*:b?:c*d)

The group some_ffs contains flip-flops whose output net names:

Xilinx Development System



Using Timing Constraints

= Start with the letter “a”
or

< Contain two characters; the first character is “b”
or

e« Start with “c” and end with “d”

Timing Points

There are situations where a particular point or set of points in your
design need to be flagged for reference in subsequent timing specifi-
cations. Timing points are used for these specifications.

There are two types of timing points.

< ATPSYNC timing point is used to allow a point to be used as the
start or the end of timing path, even though the point may not
apply to a flip-flop, latch, RAM or I/0 pad.

< A TPTHRU timing point identifies an intermediate point on a
path.

The following sections describe how these timing points are specified
in a schematic. The syntax for specifying TPSYNC and TPTHRU
constraints in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

Using TPSYNC to Define Synchronous Points

There are cases where the timing of a design must be defined from or
to a point in the design that is not a flip-flop, latch, RAM or 1/0 pad.
For example, you might want to specify a point at the output of a
latch defined using a function generator instead of a latch symbol.
The TPSYNC timing point identifies one or a group of these points.

A TPSYNC attribute has the following syntax:
TPSYNC = identifier

where identifier is a name that is used in timing specifications in the
same way that groups are used. The same identifier can be used on
several points which are then treated as a group from the point of
view of timing analysis. The identifier must be different from any
identifier used for a TNM attribute.

Development System Reference Guide—OCTOBER 1997 -27



Development System Reference Guide

The way a TPSYNC timing point is used depends on the object to
which it is attached.

Attached to a net, TPSYNC identifies the source of the net as a
potential source or destination for timing specifications.

Attached to a macro pin, TPSYNC identifies all of the sources
inside the macro that drive the pin to which the attribute is
attached as potential sources or destinations for timing specifica-
tions.

If the macro pin is an input pin (that is, there are no sources for
the pin in the macro), then all of the load pins in the macro are
flagged as synchronous points.

Attached to a primitive pin, TPSYNC flags the primitive’s input
as a potential source or destination for timing specifications.

Attached to a primitive symbol, TPSYNC identifies the output(s)
of that element as a potential source or destination for timing
specifications.

The use of a TPSYNC timing point to define a synchronous pointin a
design implies that the flagged point cannot be merged into a func-
tion generator.

Using TPTHRU to Define Through Points

The TPTHRU attribute defines an intermediate point in a path. A
point or group defined with TPTHRU attributes is used in detailed
timing specifications.

A TPTHRU attribute has the following syntax:

TPTHRU = identifier

where identifier is a name that is used in timing specifications in the
same way that groups are used. The same identifier can be used on
several points which are then treated as a group from the point of
view of timing analysis. The identifier must be different from any
identifier used for a TNM attribute.

Timing specifications using TPTHRU groups are described in the
“Defining Intermediate Points on a Path” section

Xilinx Development System



Using Timing Constraints

Basic TIMESPEC Syntax

Within the TIMESPEC primitive, you use the following syntax to
specify timing requirements between specific end points:

TSidentifier=FROMsource_group:TO: dest_group: delay

The From-To statements are TS attributes that reside in the
TIMESPEC primitive. The parameters source_group and dest_group must
be one of the following:

= predefined groups
= previously created TNM identifiers
= groups defined in TIMEGRP symbols

Predefined groups consist of FFS, LATCHES, RAMS, or PADS and are
discussed in the “Using Predefined Groups” section. TNMs are intro-
duced in the “Creating User-Defined Groups Using TNMs” section.
TIMEGRP symbols are introduced in the “Creating New Groups
from Existing Groups” section.

Note: Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. You cannot enter them in a
combination of lower and upper case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as pico-
seconds or megahertz. Refer to the “Specifying Time Delay in TS
Attributes” section later in this chapter for more information on time
delay.

The following examples illustrate the use of From-To TS attributes:

TS01=FROM:FFS:TO:FFS:30
TS_OTHER=FROM:PADS:TO:FFS:25
TS_THIS=FROM:FFS:TO:RAMS:35
TS_THAT=FROM:PADS:TO:LATCHES:35

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in a constraints (UCF) file. See the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide for more information about specifying timing requirementsin a
constraints file.

Development System Reference Guide—OCTOBER 1997 -29



Development System Reference Guide

Defining Intermediate Points on a Path

It is sometimes convenient to define intermediate points on a path to
which a specification applies. This defines the maximum allowable
delay and has the following syntax:

TSidentifier=FROM: source_group: THRU: thru_point:[THRU:
thru_point] :-TO:  dest_group: allowable_delay: [ units]

= identifier is an ASCII string made up of the characters A..Z, a..z,
0..9, underbar (), and forward slash (/).

= source_group and dest_group are user-defined or predefined
groups.

= thru_point is an intermediate point used to qualify the path,
defined using a TPTHRU attribute.

= allowable_delay is the timing requirement.

= units is an optional field to indicate the units for the allowable
delay. Default units are nanoseconds, but the timing number can
be followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

Ignoring Selected Paths

In a design, some paths do not require timing analysis. These are
paths that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more
important paths might be slower, which can result in failure to meet
the timing requirements.

To indicate that all timing specifications through a net, primitive pin
or macro pin are to be ignored, attach the following attribute to the
desired element:

TIG

If this attribute is attached to a net, primitive pin, or macro pin, all
paths that fan forward from the point of application of the attribute
are treated as if they don’t exist for the purposes of timing analysis
during implementation.

To specify that a path should be ignored only when the path appears
in certain TIMESPECS, use the following form of the TIG attribute:

TIG =TS identifier

Xilinx Development System



Using Timing Constraints

where identifier indicates the TIMESPEC for which paths through the
object should be ignored. If a path in another TIMESPEC passes
through the object, this path is still available for timing analysis.

The following attribute would be attached to a net to inform the
timing analysis tools that it should ignore paths through the net for
specification TS43:

TIG =TS43

You cannot perform path analysis in the presence of combinatorial
loops. Therefore, the timing tools ignore certain connections to break
combinatorial loops. You can use the TIG constraint to direct the
timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Note: Previous versions of the Xilinx Development System used an
IGNORE in the following syntax to specify ignored nets:

TSidentifier=IGNORE

This syntax is supported in this release, but it is not the recom-
mended method of ignoring nets. Use the TIG attribute instead.

Specifying Time Delay in TS Attributes

Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following:

= PSfor picoseconds, NS for nanoseconds, US for microseconds, or
MS for milliseconds

= MHZ for megahertz or KHZ for kilohertz

As an alternate way of specifying time delay, you can specify one
time delay in terms of another. This method is described in the next
section.

Specifying a TS Attribute Delay in Terms of Another

Instead of specifying a time or frequency in a TS attribute definition,
you can specify a multiple or division of another TS attribute. This is
useful in a system where all clocks are derived from a master clock; in
this situation, changing the timing specification for the master clock

changes the specification for all clocks in the system.

Development System Reference Guide—OCTOBER 1997 -31



Development System Reference Guide

Use the syntax below to specify a TS attribute delay in terms of
another.

TSidentifier=specification: reference_TS_attribute[*|/]  number

where number can be either a whole number or a decimal. The specifi-
cation can be any From-To statement as illustrated by the following
examples:

FROM:PADS:TO:PADS
FROM:group1:TO:group2
FROM:tnm_identifier:TO:FFS
FROM:LATCHES:TO:groupl

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be speci-
fied in terms of TIG or IGNORE.

Examples

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

In the example below, the paths between flip-flops and pads are
placed and routed so that their delay is at most 10 times the delay
specified in the TS05 attribute.

TS08=FROM:FFS:TO:PADS:TS05*10

In the example below, the paths between input and output pads are
placed and routed so that their delay is at most one-eighth the delay
specified in the TS07 attribute.

TS1=FROM:PADS:TO:PADS:TS07/8

Note: When a reference attribute is specified as a frequency, a
multiple represents a faster specification; a division represents a
slower specification.

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

TS09=FROM:FFS:TO:FFS:50
TS10=FROM:FFS:TO:PADS:TS09*2
TS11=FROM:PADS:TO:PADS:TS10*4

Xilinx Development System



Using Timing Constraints

Setting TIMESPEC Priorities

There may be situations where there is a conflict between two
TIMESPECSs at the same level of priority. In these cases you can define
the priority of a TIMESPEC using the following syntax:

normal_timespec_syntax : PRIORITY :  integer

where normal_timespec_syntax is a legal TIMESPEC and integer repre-
sents the priority (the smaller the number, the higher the priority).
The number can be positive, negative, or zero, and the value only has
meaning when compared with other PRIORITY values.

See the “Constraints Priority” section for more details.

Defining a Clock Period

A clock period specification checks timing clocked by the net (all
paths that terminate at a register clocked by the specified net). The
period specification is attached to the clock net. The definition of a
clock period is unlike a FROM:TO style specification, because the
timing analysis tools automatically take into account any inversions
of the clock net at register clock pins.

A PERIOD constraint on the clock net in the following figure would
generate a check for delays on all paths that terminate at a pin that
has a setup or hold timing constraint relative to the clock net. This
could include the data paths D1 to CLB1.D, CLB1.Q to CLB2.D, as
well as the paths DO to CLB1.R and EN to CLB2.EC (if the reset/
enable were synchronous with respect to the clock).

Development System Reference Guide—OCTOBER 1997 -33



Development System Reference Guide

Interconnect
and Logic

| DO I
R {’[:;:;::;E;;;:&‘\
D1 D Q i D Q OuUT1

and Logic
CLB1 w CLB2
CLK ®

=]

Figure 0-8 Paths for PERIOD Constraint

X7472

Simple Method

A simple method of defining a clock period is to attach the following
attribute directly to a net in the path that drives the register clock
pins:

PERIOD = period : { HIGH | LOW }: [ high_or_low_time]

where period is the required clock period. The default units are nano-
seconds, but the timing number can be followed by ps, ns, us, or ms.
Units may be entered with or without a leading space, and are case-
insensitive. The HIGH|LOWkeyword indicates whether the first pulse
in the period is high or low, and the optional high_or_low_time is the
duty cycle of the first pulse. If an actual time is specified, it must be
less than the period. If no high or low time is specified the default
duty cycle is 50%. The default units for high_or_low_time is ns, but the
number can be followed by % or by ps, ns, us or ms if you want to
specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a
TNM would be and attaches itself to all of the flip-flops that the
forward tracing reaches. There are no rules about not tracing through
certain elements. If a more complex form of tracing behavior is
required (for example, where gated clocks are used in the design),
you must place the PERIOD on a particular net, or use the preferred
method described next.

Xilinx Development System



Using Timing Constraints

Preferred Method

The preferred method for defining a clock period allows more
complex derivative relationships to be defined as well as a simple
clock period. The following attribute is attached to a TIMESPEC
symbol in conjunction with a TNM attribute attached to the relevant
clock net.

TSidentifier=PERIOD: TNM_reference: period: {HIGH | LOW}:
[ high_or_low_time]

where identifier is a reference identifier that has a unique name,
TNM_reference is the identifier name that is attached to a clock net (or
a net in the clock path) using a TNM attribute, and period is the
required clock period. The default units for period are nanoseconds,
but the number can be followed by ps, ns, us, or ms. Units may be
entered with or without a leading space, and are case-insensitive. The
HIGH|LOWkeyword indicates whether the first pulse in the period is
high or low, and the optional high_or_low_time is the duty cycle of the
first pulse. If an actual time is specified, it must be less than the
period. If no high or low time is specified the default duty cycle is
50%. The default units for high_or_low_time is ns, but the number can
be followed by % or by ps, ns, us, or ms if you want to specify an
actual time measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk  attached to it
and the following attribute is attached to a TIMESPEC primitive.

TS_master=PERIOD: master_clk: 50: HIGH: 30

This period constraint applies to the net sys_clk, and defines a clock
period of 50 nanoseconds, with a 30 nanosecond high time.

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier,
allowing another clock period specification to reference it. To define
the relationship in the case of a derived clock, use the following
syntax.

TSidentifier=PERIOD: TNM_reference: another_PERIOD _identifier:
[/I*1  number{HIGHILOW}: [  high_or_low_time]

= identifier is a reference identifier that has a unique name.

Development System Reference Guide—OCTOBER 1997 -35



Development System Reference Guide

< TNM._reference is the identifier name that is attached to a clock net
or a net in the clock path using a TNM attribute.

< another_PERIOD _identifier is the name of the identifier used on
another period specification.

= number is a floating point number.

= The HIGH|LOWkeyword indicates whether the first pulse in the
period is high or low, and the optional high_or_low_time is the
duty cycle of the first pulse. If an actual time is specified it must
be less than the period. If no high or low time is specified, the
default duty cycle is 50%. The default units for high_or_low_time
is ns, but the number can be followed by % or by ps, ns, us, or ms
if you want to specify an actual time measurement.

Example

A clock net has the attribute thm=slave_clk attached to it and the
following attribute is attached to a TIMESPEC primitive.

ts_slavel=PERIOD: slave_clk: TS_master: *: 4

Sample Schematic Using TIMESPECs

TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. The
following figure shows an example of a TNM attribute attached to an
individual symbol. In this circuit, the flip-flop D_FF has the attribute
TNM=D_FF attached to it.

Xilinx Development System



Using Timing Constraints

FDCE J
Do Q0 N.Q0_ouT
L[)c D Qe 1> <OPAD
INV CE OBUF
CLR
T «qo
FDCE 1
1 Q1_ouT
T—‘)D D1 D ol Q l,> <OPAD
7
XOR2 CE OBUF
CLR
— 1 Q1
FDCE 1
D2 > Q2_ouT
| c2 E ) b o2 > OPAD
CE
OBUF
XOR2
AND2 CLR
T
: FDCE 1
D Q3_0uT
c3 E ) 3 D Qe Qs |'> <OPAD
CE L
XOR2 OBUF
AND3 CLR D_EN
e T @3
TNM=D_FF
IBUF
FDCE
RD_OUT
N___DATA RDATA N RD_
IPAD > > D Q 1> <OPAD
N CLK CE OBUF
[iPAD > 1> CLR
BUFG | D_FF
= TIMEGRP TIMESPEC

X6170

Q_FFS=FFS:EXCEPT:D_FF

TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25

TS_D_O=FROM:D_FF:TO:PADS=50

TS_D_I=FROM:PADS:TO:D_FF=50

Figure 0-9 Example of Using TNMs and TIMEGRPs in Your

Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic
except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/2 of the clock frequency; there-
fore, its flip-flop to pad and pad to flip-flop timing specifications are
longer than the flip-flop to pad specifications in the Q_FFS group.

Development System Reference Guide—OCTOBER 1997



Development System Reference Guide

Additional Timing Constraints

There are additional properties and constraints you can specify for
the timing analysis tools. They are the following:

= Net skew control

< Net delay control

< Path tracing control

e The DROP_SPEC constraint

Controlling Net Skew

Skew is the difference between the minimum and maximum load
delays on a net. You can control the maximum allowable skew on a
net by attaching the MAXSKEW attribute directly to the net. Syntax is
as follows:

MAXSKEWHowable_skew

where allowable_skew is the timing requirement. The default units for
allowable_skew are nanoseconds, but the timing number can be
followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

Controlling Net Delay

You can control the maximum allowable delay on a net by attaching
the MAXDELAY attribute directly to the net. Syntax is as follows:

MAXDELAYalowable_delay

where allowable_delay is the timing requirement. The default units for
allowable_delay are nanoseconds, but the timing number can be
followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

Controlling Path Tracing

Path tracing controls allows you to enable or disable specific paths
within device components (for example, CLBs and 10Bs) for timing
analysis. These constraints can only be entered in a PCF file; they
cannot be applied during design entry or in a UCF or NCF file.

Xilinx Development System



Using Timing Constraints

This constraint can be applied at a global or group scope. The path
tracing syntax is as follows:

[TIMEGRP predefined_group] ENABLE | DISABLE = symbol;

where symbol is a component delay symbol, and predefined_group
(which is optional) represents the name of a previously-defined time
group. If there is no TIMEGRP predefined_group qualifier, the path
tracing control applies to all logic cells in the design.

The symbol, which is case-insensitive, can be either of the following:

< Astandard component delay symbol name (for example,
reg_sr_qor thuf i_o, as described in the “Standard Block Delay
Symbols for Path Tracing” table. There is a one-to-many corre-
spondence between these symbol names and data book symbol
names, and the data book symbols to which each standard block
delay signal applies varies from one device family to another.

< A component delay specified in the Xilinx Programmable Logic
Data Book (for example, T o (entered as TILO) or Tk (entered
as TCCK)).

The following table describes the standard block delay symbols.

Table 0-1 Standard Block Delay Symbols for Path Tracing

Symbol Path Type Default

reg_sr_q Set/Reset to output propagation Disabled
delay

lat_ d_q Data to output transparent latch Disabled
delay

ram_d o RAM data to output propagation Disabled
delay

ram_we_o RAM write enable to output propa- |Enabled
gation delay

thuf t o TBUF tristate to output propagation |Enabled
delay

thuf i o TBUF input to output propagation Enabled
delay

io_pad_i 10 pad to input propagation delay Enabled

io_ t pad 10 tristate to pad propagation delay |Enabled

Development System Reference Guide—OCTOBER 1997 -39



Development System Reference Guide

Table 0-1 Standard Block Delay Symbols for Path Tracing

i0o_0 i 10 output to input propagation Enabled
delay. Disabled for tristated 10Bs.
io_o_pad 10 output to pad propagation delay. |Enabled

Path Tracing Examples

The PCF file constraint below prevents timing analysis on any path
that includes the | to O delay on a TBUF component. The constraint
applies to all TBUF components in the design.

DISABLE = "tbuf i o";

The PCF file constraint below disables the | to O delay on the TBUF
components in the group mygroup, if applicable:

TIMEGRP "mygroup” DISABLE = "tbuf i_0";

The PCF file constraint below disables the T, o databook component
delay in the group mygroup, if applicable:

TIMEGRP "mygroup” DISABLE = "TILO" ;

The delay symbol names in the Xilinx Programmable Logic Data Book
do not always agree with the delay names reported in TRACE (the
Xilinx timing analyzer). To ensure your path tracing constraints are
processed correctly and to allow your constraints to be portable from
one device to another, use the delay names reported by TRACE
instead of the databook names.

You can control path tracing for a single instance by creating a group
containing only the instance, then specifying this group in a path
tracing constraint.

The DROP_SPEC Constraint

A constraint specified in a UCF constraints file takes precedence over
one with the same name in the input design. This allows you to rede-
fine or modify constraints without having to edit the input design.
The DROP_SPEC constraint allows you to specify that a timing
constraint defined in the input design should be dropped from the
analysis. Syntax is as follows.

DROP_SPEC =identifier

Xilinx Development System



Using Timing Constraints

where identifier is the identifier name used with another timing speci-
fication. This constraint can be used when new specifications defined
in a constraints file do not directly override all specifications defined
in the input design, and some of these input design specifications
need to be dropped.

While this timing command is not expected to be used much in an
input netlist (or NCF file), it is not illegal. If defined in an input
design this attribute must be attached to a TIMESPEC primitive.

Constraints Priority

In some cases, two timing specifications cover the same path. For
cases where the two timing specifications on the path are mutually
exclusive, the following constraint rules apply:

= Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow replaces a
constraint in a file accessed earlier in the design flow. Priority is
as followvs (first listed is the highest priority, last listed is the
lowest):

« Constraints in a Physical Constraints File (PCF)
= Constraints in a User Constraints File (UCF)

e Constraints in a Netlist Constraints File (NCF)
= Attributes in a schematic

= Iftwo timing specifications cover the same path, the priority is as
follows (first listed is the highest priority, last listed is the lowest):

< Timing Ignore (TIG)

e FROM:THRU:TO specifications

= FROM:TO specifications

= PERIOD specifications

= ALLPATHS type specifications (in PCF file only).

e FROM:THRU:TO or FROM:TO statements have a priority order
that depends on the type of source and destination groups
included in a statement. The priority is as follows (first listed is
the highest priority, last listed is the lowest):

Development System Reference Guide—OCTOBER 1997 -41



Development System Reference Guide

= Both the source group and the destination group are user-
defined groups

= Either the source group or the destination group is a
predefined group

= Both the source group and the destination group are
predefined groups

Net delay and Net skew specifications are analyzed independently of
path delay analysis and do not interfere with one another.

If two constraints are in the same category, the user-defined priority
described in the “Setting TIMESPEC Priorities” section is used to
determine which constraint takes precedence.

Syntax Summary

The following sections summarize the syntax for timing constraints.

TNM Attributes

The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, net, or

load pin.
Flag Type TNM Attribute Syntax Where Applied

Net TNM=dentifier Net, Symbol, Pin, Macro

Symbol TNM=predefined_group: identifier

Pin

Macro

TIMEGRP Attributes

The following table lists the syntax used within the TIMEGRP primi-
tive.

Group Type TIMEGRP Attribute Syntax

Combine new_group=groupl: group2 [: group3. . .]
Exclude new_group=groupl[: group2...]:EXCEPT: group3[: group4 ...]

Clock Edge |new_group=RISING: groupl
(flip-flops) | new_group=FALLING: groupl

-42 Xilinx Development System



Using Timing Constraints

Group Type TIMEGRP Attribute Syntax

Gate Edge new_group=TRANSHI: groupl

(latches) new_group=TRANSLOgroupl

Pattern new_group=predefined_group:( name_qualifierl[: name_qualifier2 . . .])
Matching

TIMESPEC Attributes

The following table lists the syntax used for parameters that define
TS attributes, which reside in the TIMESPEC primitive or appear in
UCF or NCF files.

Spec Type TS Attribute Syntax

Basic TSid=FROMsource_group:TO: dest_group: delay
From-To

Ignore TSid=IGNORE
Through TSid=FROMsource_group:THRU : thru_point[: THRU:
point thru_point]TO: dest_group: delay

Linked TSid=FROMsource_group:TO: dest_group: another_TSid

specification |[*|/] number

Clock period | TSid=PERIOD: TNM_reference period:{HIGH|LOW}:[  high_or_low_time]
Derived TSid=PERIOD: TNM _reference: another PERIOD _identifier

clocks [1*1  number{HIGH|LOW} [ high_or_low_time]

TS attribute | normal_timespec_syntax:PRIORITY: integer

priority

The following table lists additional attributes or constraints that are
used in or affect TS attributes.

. Where
Attribute Syntax Applied How Used
TPTHRU4dentifier Net, symbol, |Inthrough point TS
pin, macro attribute
TPSYNCHdentifier Net, symbol, |[Asgroup in TS attribute
pin, macro
TIG Net, pin Prevents timing analysis
TIG=identifier

Development System Reference Guide—OCTOBER 1997



Development System Reference Guide

. Where
Attribute Syntax Applied How Used
DROP_SPECGCdentifier (Constraints file only) |N/ZA Prevents timing analysis

for TSidentifier

Additional Timing Constraints

The following table lists additional timing constraints.

Where

Attribute Syntax Applied How Used
PERIOD: period{HIGH|LOW} Net, pin Specifies register clock
[ high_or_low_time] period
MAXSKEWsHowable_skew Net Specifies net skew
MAXDELAYallowable_delay Net Specifies net delay

Specialized Support for Synopsys

The Xilinx Development System contains support for Synopsys
timing constraints in UCF, NCF, and PCF files but not for schematics.

Timing Specification Offsets

Offsets are used to define the timing relationship between an external
clock and its associated data-in or data-out-pin. Using this option

allows you to:

= Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

= Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external

device pin.

Offsets support the translation of Synopsys set_arrival,
set_input_delay, and set_output_delay constraints. These constraints
are only used for pad-related nets and cannot be used to extend the
arrival time specification method to the internal nets in a design.

There are two forms of the offset specification. The first method is a
logical form that can be placed in a UCF or NCF file in a NET

Xilinx Development System



Using Timing Constraints

netname constraint type record. The constraint has the following
syntax:

OFFSET = (IN|JOUT):  offset_time [units]:{BEFORE|AFTER}: clk_net

where offset_time is the external offset and units is an optional field
that indicates the units for the offset time. The default units are nano-
seconds, but the timing number can be followed by ps, ns, us, ms,
GHz, MHz, or KHz to show the intended units.

The variable name clk_net is the fully hierarchical net name of the
clock net between its pad and its input buffer.

IN | OUTspecifies that the offset is computed with respect to an
input IOB or an output IOB. For a bidirectional 10B, the IN | OUT
syntax lets you specify the flow of data (input or output) on the 10B.

BEFORE| AFTERIindicates whether data is to arrive (input) or leave
(output) the device before or after the clock input.

All inputs/outputs are offset relative to clk_name. For example,
OFFSET IN 20 ns BEFORE clk1 dictates that all inputs will have
data present at least 20 ns before the triggering edge of clk1.

The second form is a physical form used in a PCF file that uses blocks
(comps) instead of nets. The syntax is:

[COMP : iob_name] OFFSET ={IN | OUT} offset_time [ units ]
(BEFORE |AFTER) COMP clk_iob_name

where iob_name is an optional field that defines the block name of the
IOB that the offset refers to. If this field is omitted, the specification is
assumed to be global.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

In cases where all offset specifications are defined without the
optional clock net, they are all relative to each other. In cases where
an offset has clock specified, it is only defined relative to the other
offset specifications that reference the same clock net.

Development System Reference Guide—OCTOBER 1997 -45



Development System Reference Guide

The relationship between offsets and the XDELAY margins is that a
margin on an input is equivalent to an OFFSET:IN:BEFORE style
offset, and a margin on an output equivalent to an
OFFSET:OUT.AFTER style offset. The difference between margins
and offsets is that margins were not actually used for timing specifi-
cation, only timing reporting.

It is possible for one offset constraint to generate multiple data and
reference paths (for example, when both data and reference inputs
have more than a single sequential element in common).

In the following figure, two 10Bs (DATAIN and DATAOUT) have an
external timing relationship with the reference input CLOCK. The
sequential element (COMP) is common to both 10Bs (DATAIN and
DATAOUT).

COMP

X7435

The following offset constraint examples are applied to the figure
above. The constraints, as they would appear in the PCF file, are in
boldface type.

Examples

Example 1
COMP DATAIN OFFSET=IN 20.0 ns BEFORE COMP CLOCK;

This constraint indicates that the data will be present on the DATAIN
pin at least 20 ns before the triggering edge of the clock net. Paths
from DATAIN to COMP and from CLOCK to COMP are implicitly
enumerated.

To ensure that the timing requirements are met, the timing analysis
software would verify that the maximum delay along the path
DATAIN to COMP (minus the 20.0 ns offset) would be less than or
equal to the minimum delay along the reference path CLOCK to
COMP. In the following formulas, t represents delay time.

MAX('data) + MAX('setup) - MIN(%clk) < 20 ns

Xilinx Development System



Using Timing Constraints

where 'data is the delay from DATAIN to COMP, 'setup is the setup
time for the register input relative to the clock, and tclk is the delay
from CLOCK to COMP.

Example 2
COMP DATAIN OFFSET=IN 30.0 ns AFTER COMP CLOCK;

This constraint indicates that the data will arrive at the pin of the
device (COMP) no more than 30 ns after the triggering edge of the
clock. Again, paths from DATAIN to COMP and from CLOCK to
COMP are implicitly enumerated. The path DATAIN to COMP
would contain the setup time for the COMP data input relative to the
CLOCK input.

Verification would be almost identical to Example 1, except that the
offset margin (30.0 ns) would be added to the data path delay. This is
caused by the data arriving after the reference input. The timing anal-
ysis software verifies that the data can be clocked in prior to the next
triggering edge of the clock.

A PERIOD or FREQUENCY constraint must be used to specify the
period for the reference path. This is required only for offset OUT
constraints with the BEFOREkeyword or offset IN with the AFTER
keyword.

Period —-{(DATAIN to COMP) -Y(setup) + {(CLOCK to COMP) =30 ns

Example 3
COMP DATAOUT OFFSET=0UT 15.0 ns BEFORE COMP CLOCK;

This constraint states that the data clocked to DATAOUT must leave
the FPGA 15 ns before the next triggering edge of the clock. Paths
from COMP to DATAOUT and from CLOCK to COMP are implicitly
enumerated. The path COMP to DATAOUT would include the
CLOCK-to-Q delay (component delay). The data clocked to
DATAOUT will leave the FPGA 15.0 ns before the next clock input.

Verification involves ensuring that the maximum delay along the
reference path (CLOCK to COMP) and the maximum delay along the
data path (COMP to DATAOUT) do not exceed the clock period
minus the specified offset.

As in example 2, a PERIOD or FREQUENCY constraint must be used
to specify the period for the reference path. This is required only for

Development System Reference Guide—OCTOBER 1997 -47



Development System Reference Guide

offset OUTconstraints with the BEFOREceyword or offset IN with the
AFTERkeyword.

Period —{(CLOCK to COMP) -{(COMP to DATAOUT) = 15 ns

Example 4
COMP DATAOUT OFFSET=0UT 35.0 ns AFTER COMP CLOCK;

This constraint calls for the data to leave the FPGA 35 ns after the
present clock input. As in Example 3, data paths from COMP to
DATAOUT and from CLOCK to COMP are enumerated. The path
COMP to DATAOUT would include the CLOCK-to-Q delay (compo-
nent delay).

Verification involves ensuring that the maximum delay along the
reference path (CLOCK to COMP) and the maximum delay along the
data path (COMP to DATAOUT) does not exceed the specified offset.

Y(CLOCK to COMP) + {COMP to DATAOUT) <35 ns

Ignoring Paths

The Synopsys set_false_path constraint defines a path that should be
ignored for timing purposes. These equivalent Xilinx constraint
constructs are based on the FROM:TO style described in the “Basic
TIMESPEC Syntax” section and the FROM:THRU:TO style syntax
described in the “Defining Intermediate Points on a Path” section.
These constraints require the definition of source and destination
groups using the grouping mechanisms described in the “Specifying
Groups in TS Attributes” section and their syntax is as follows:

TSidentifier=FROMsource_group{: THRU: thru_point}:TO dest_group:TIG

-48 Xilinx Development System



Index

B
BLKNM, 13

C
combinational loops, 31

controlling path tracing, 39

D
DISABLE, 39
DROP_SPEC, 40

E
ENABLE, 39

F

FALLING, 24
forward tracing, 16
From-To statement, 13

H
HBLKNM, 13

I
ignoring paths, 48

M

MAXDELAY, 38

MAXSKEW, 38

Mentor
ENWRITE, 10

lowercase constraints, 10

N
name qualifier, 16

@)
OFFSET, 44

P
PERIOD, 33

derived clocks, 35
PPR

timing specifications, 10

Predefined Groups
FFS, 13
LATCHES, 13
PADS, 13
RAMS, 13

PRIORITY, 33

priority of constraints, 41

R
reserved words, 15
RISING, 24

T
TIG, 48
TIMEGRRP attribute, 22

combining multiple groups, 23
grouping by exclusion, 24

Attributes, Constraints, and Carry Logic — October 1997

Index-1



Attributes, Constraints, and Carry Logic

reserved words, 15 TIMEGRRP attribute, 22
syntax, 22 TIMEGRP primitive, 23
TIMEGRP primitive, 22 TNMs, 14
TIMESPEC primitive, 10 TRANSHIGH keyword, 25
timing points, 27 TRANSLOW keyword, 25
timing requirements, 9 TS attribute, 10
timing specifications, 9 placement, 29
TNMs, 14

grouping flip—flops, 16, 19, 23, 27
on macro symbols, 18
on signal, 20, 21
qualifiers, 21
TPSYNC, 27
TPTHRU, 28
TS attribute, 11
delay, 31
delay time units, 31
placement, 29
specifying in terms of another, 31

W
wildcards, 13, 25

X

XACT-Performance
basic groups, 10
combinational loops, 31
combining multiple groups, 23
default timing specifications, 42
FALLING keyword, 24
From-To statement, 29
group by clock sense, 24
group by exclusion, 24

reserved words, 15

group by signal name, 25, 26
IGNORE, 30
ignore selected paths, 30
new groups from existing groups, 22
path-type specifications, 42
RISING keyword, 24
sample schematic, 36

Index-2 Xilinx Development System



	Title Page
	Terms and Conditions
	Preface
	Conventions
	Table of Contents
	Timing Requirements and Xilinx Software
	Timing Specifications
	Entering Timing Specifications
	Entering Timing Specifications in a Schematic
	Entering Timing Specifications in a Constraints Fi...

	Specifying Groups in TS Attributes
	Using Predefined Groups
	Creating User-Defined Groups Using TNMs
	Creating New Groups from Existing Groups
	Combining Multiple Groups into One
	Creating Groups by Exclusion
	Defining Flip-Flop Subgroups by Clock Sense
	Defining Latch Subgroups by Gate Sense
	Creating Groups by Pattern Matching

	Timing Points
	Using TPSYNC to Define Synchronous Points
	Using TPTHRU to Define Through Points

	Basic TIMESPEC Syntax
	Defining Intermediate Points on a Path
	Ignoring Selected Paths
	Specifying Time Delay in TS Attributes
	Specifying a TS Attribute Delay in Terms of Anothe...

	Setting TIMESPEC Priorities
	Defining a Clock Period
	Sample Schematic Using TIMESPECs

	Additional Timing Constraints
	Controlling Net Skew
	Controlling Net Delay
	Controlling Path Tracing
	The DROP_SPEC Constraint

	Constraints Priority
	Syntax Summary
	TNM Attributes
	TIMEGRP Attributes
	TIMESPEC Attributes
	Additional Timing Constraints

	Specialized Support for Synopsys
	Timing Specification Offsets
	Examples

	Ignoring Paths

	Index

