
Summary

This application note summarizes the issues and design techniques specific to the Xilinx ABEL Interface, version M1.4.

Xilinx Family

All

Overview

Products

XABEL included only in Foundation product

XABEL is included in all variations of the Foundation F1.4
product (Base or Standard, with or without HDL). When
used in Foundation, XABEL design entry is supported by
the HDL Editor, and design development is tightly inte-
grated into the Foundation Project Manager.

XABEL is not included in any Alliance products. A separate
XABEL Interface package is available for download from
the Xilinx web site which can be used to develop ABEL
modules to be included as macros in schematic-based
design. (See ABEL modules for Alliance designs below.)

No workstation version of XABEL software

The ABEL6 compiler from Synario is not available for any
UNIX workstations. ABEL modules to be included in design
prepared on workstation-based schematic capture systems
should be compiled on a PC. The EDIF netlist for each
ABEL module can be transferred to the workstation and
included in the top-level design.

The older ABEL5 compiler that was available with XACT
version 5 was available in a UNIX compatible form. XNF
netlists (for FPGAs) or Plusasm equation files (for CPLDs)
produced by that interface are still readable by XACT M1.4
software. However, the ABEL5 software cannot be inte-
grated into the XACT-M1 system and cannot be used to
produce EDIF netlists.

Capabilities

Supports all families

All XABEL designs are compiled into EDIF netlists consist-
ing of architecture-independent Xilinx Unified Library com-
ponents, which can be read and incorporated into designs
targeting any Xilinx device families.

Creates macro modules and stand-alone
designs

The XABEL Interface can optionally add pad components
to all pins declared in the ABEL design, thus generating a
top-level EDIF netlist that can be read directly by the Xilinx
Design Manager. Otherwise, pad components can be omit-
ted to generate a netlist used to define the logic of a macro
symbol embedded in a schematic design. Only simple input
and output buffers (including 3-state outputs) are sup-
ported by XABEL. So any FPGA designs requiring regis-
tered input or output pads should be based on top-level
schematics containing the desired I/O symbols.

Based on Synario ABEL 6 with hierarchy

The ABEL compiler used in the XABEL Interface (version
M1.4) is the ABEL version 6.2 engine from Synario Design
Automation, formerly a subsidiary of Data I/O, and now a
subsidiary of Minc.

The ABEL6 compiler has several improvements over
ABEL5, including the ability to combine multiple ABEL
modules into a hierarchical design.

EDIF netlists are encrypted

Hints, Tips and Tricks for using XABEL
with Xilinx M1.4 Design and
Implementation Tools

XAPP109 February, 1998 Version 1.0 Application Note

XAPP109 February, 1998 Version 1.0 1-1

Documented in Foundation on-line help

Because XABEL is sold only in the Foundation product, all
documentation supporting the XABEL interface is included
in the Foundation on-line help system. This documentation
includes ABEL design techniques for FPGAs and CPLDs,
and an ABEL-HDL Language Reference. The on-line help
document can be useful for preparing ABEL modules for
use in an Alliance design. The on-line help files can be
downloaded separately from the Xilinx web site at www.xil-
inx.com → Support → File Download → Software Help →
Foundation; filename is fnd_help.zip.

The XABEL Interface uses a special version of the Synario
ABEL which does not require a parallel port security key.
Because of this, the EDIF netlists produced by XABEL are
encrypted so they cannot be used to target any non-Xilinx
technologies. Xilinx cannot provide the non-encrypted ver-
sion of any EDIF netlist produced by XABEL to any of our
customers.

Even though the netlist is encrypted, functional simulation
of the XABEL design is supported at 3 levels:

ftp://ftp.xilinx.com/pub/swhelp/foundation/fnd_help.zip

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

 1. Test vectors embedded in the ABEL source design are
automatically simulated during compilation by the built-
in ABEL simulator (BLIFSIM), producing a tabular report
file.

 2. The Foundation gate-level simulator can directly simu-
late the encrypted EDIF netlists.

 3. A simulation netlist can be generated by the Xilinx
implementation software after the top-level design is
read and translated. The simulation netlist consists of
Xilinx simulation primitives (simprims) that can only be
used for simulation modeling and not for design entry.

Installation requirements

Local hard-drive only

The ABEL compiler software does not run reliably when
installed to a network directory. Therefore, XABEL should
only be installed onto the local hard disk of the PC.

Same directory as XACT-M1

The XABEL interface is dependent on XACT-M1 implemen-
tation (core) software system. XABEL must therefore
reside in the same directory as the XACT-M1 implementa-
tion (core) software. This is the directory referenced by the
XILINX environment variable. This requirement applies
whether XABEL is used with Foundation F1.4 software or
with Alliance M1.4 software.

Because XABEL must be installed to a local hard drive, the
entire XACT-M1 implementation software must also be
installed on a local hard drive if XABEL is to be used.

No other ABEL products tolerated (bug)

The license mechanism used by the ABEL compiler soft-
ware relies on a product entry made in the Windows regis-
try during XABEL installation. This registry entry is
adversely altered if a different version of the ABEL compiler
software is installed by a different (non-Xilinx) product,
including the Synario and Workview Office design systems.
Similarly, the installation of XABEL may cause a non-Xilinx
version of ABEL to stop running. If you have a non-Xilinx
ABEL product installed on your PC, you should save its reg-
istry keys in a .reg file before installing XABEL. (See OLE
server and registry issues below.)

Pin vs internal feedback
In a top-level ABEL design, if you define an output pin and
also use the name of that output pin as the name of a signal
source in another equation, the interpretation of that signal
name reference may be ambiguous.

For example, your ABEL design may contain:

myoutput pin;
equations
myoutput = a & b;
y = myoutput & x;

The ABEL compiler may interpret “myoutput” in the last
equation as the internal feedback from the logic expression
“a & b”. Alternatively, it may implement myoutput as a bidi-
rectional pin and interpret the reference to myoutput in the
last equation as the pin input. Generally, the latter interpre-
tation will occur if you also define a 3-state output enable
condition for myoutput, as in:

myoutput.oe = my_oe;

To prevent ambiguity, you should specify the “.FB” exten-
sion for internal feedback (before 3-state control), or the
“.PIN” extension for bidirectional pin input, wherever an out-
put pin name is used as an input name. The equation for “y”
should therefore be written as either:

y = myoutput.FB & x;

or
y = myoutput.PIN & x;

Feedback interpretation in XABEL-M1
different than in pre-M1 versions.
The interpretation of feedback is different in XACT-M1 than
in earlier versions of the XABEL Interface, such as in XACT
version 6 (or earlier) or in the XABEL-CPLD product. (This
only applies to top-level ABEL designs for CPLD.) In pre-
M1 versions, references to a feedback signal were always
interpreted as internal feedback unless the “.PIN” exten-
sion was specified. In XABEL-M1 (using the EDIF inter-
face), references to feedbacks from outputs with 3-state
enable conditions are interpreted as pin feedback unless
the “.FB” extension is specified. For example, in the follow-
ing case, the pre-M1 version of XABEL would interpret the
1-2 XAPP109 February, 1998 Version 1.0

ABEL design techniques

Name of module must match filename.
The module name specified in each ABEL file must match
the name of the file. For example, if your file is named
myfile.abl, it must contain "module myfile" at the top.

If you are creating a hierarchical ABEL design, each mod-
ule of the design must be contained in a separate file and
each filename must match the contained module name.

feedback from myoutput in line 4 as internal feedback
(before the 3-state control); XABEL-M1 interprets myoutput
in line 4 as input from a bidirectional pin (after 3-state con-
trol).

myoutput pin;
equations
myoutput = a & b;
y = myoutput & x; // line 4
myoutput.oe = my_oe;

Note: The obsolete PLUSASM flow provided with XABEL-M1
interprets feedback the same way as pre-M1 XABEL;
i.e., it assumes internal feedback unless “.PIN” is
specified.

Register initial states

for FPGA use .AP/.AR

In designs targeting FPGA devices, the initial (power-on)
state of each flip-flop is determined by whether there is an
asynchronous set or reset condition specified. The initial
state always coincides with the specified asynchronous
condition. Registers with an asynchronous reset (.AR
equation) will initialize to 0. Registers with an asynchro-
nous preset (.AP equation) will initialize to 1. Registers with
neither asynchronous reset or preset will, by default, initial-
ize to 0. If you just want to specify an initial state but do not
want to actively reset or preset the flip-flop, just define an
.AP or .AR equation with the value of zero, as in:

my_reg.AP = 0;

In FPGA designs, it is illegal to specify both asynchronous
reset and preset for the same registered signal, as the
FPGA architectures do not physically support that.

for CPLD use INIT

In designs targeting CPLD devices, the initial (power-on)
state of each flip-flop is determined by the INIT attribute
specified using a Xilinx property statement. Unlike FPGA
devices, initial states in CPLDs can be set independently of
any asynchronous set or reset conditions applied to the
registers. Also, CPLD devices support both asynchronous
reset and preset on each register, so you can specify both
an .AR and .AP equation for the same registered signal.

To specify the initial state of a register in a CPLD design,
use the following declaration in the ABEL design:

xilinx property ‘INIT= state
signal_list ...’;

where state is either “R” for reset (0) or “S” for set (1). By
default, all flip-flops in a CPLD design initialize to 0.

INITs reversed for registers with asynchronous preset
(bug)

In the M1.3 and M1.4 software, there is a bug which causes
the initial state to be reversed for some flip-flops in CPLD
designs. If your design contains a register with an asyn-
chronous preset (.AP) equation, but without an asynchro-
nous reset (.AR) equation, the register is implemented in

design and you want that register to initialize to zero (nor-
mally the default), you need to specify the following decla-
ration:

xilinx property ‘INIT=S myreg’;

FSM initial state

for FPGA designs

For FPGA designs, 1-hot is the preferred state machine
encoding style due the abundance of registers. 1-hot FSMs
can be expressed either symbolically or explicitly. Either
way, one of the state flip-flops must initialize (power-up) to
the one state so that the FSM begins in a legal state.

Symbolic 1-hot FSMs

If you are defining a symbolic 1-hot FSM for an FPGA
device, always use the Async_reset statement to identify
the initial state of the FSM. If you want to actively and asyn-
chronously reset the FSM to its initial state, declare both
the initial state and the asynchronous reset condition as fol-
lows:

asynch_reset state_name :
reset_condition ;

If you only want to specify the initial state, but do not wish to
actively reset the FSM, declare just the initial state as fol-
lows:

asynch_reset state_name : 0;

Explicit 1-hot FSMs

If you are defining a 1-hot encoded FSM explicitly using
ordinary registered signals, always define an asynchronous
preset condition (.AP equation) for the register that corre-
sponds to the initial state of your FSM. If you want to
actively and asynchronously reset the FSM to its initial
state, declare both the initial state register and the asyn-
chronous reset condition as follows:

initial_register_name .AP =
reset_condition ;

Then also declare the same condition for resetting the
remaining registers of the FSM, as follows:

other_register_name .AR = reset_condition ;
XAPP109 February, 1998 Version 1.0 1-3

negative-logic form. That is, the register is implemented
using a flip-flop primitive with asynchronous reset and its D-
input and Q-output are inverted. This effectively reverses
the initial state of the register in your design, whether spec-
ified by an INIT property or by default. Therefore, by default,
any register with asynchronous preset (and no reset) will
initialize to one.

To workaround this problem, you can apply an INIT prop-
erty to the register in your design specifying the opposite
initial state value. For example, if you have a register
“myreg” with an .AP condition and no .AR condition in your

If you only want to specify the initial state, but do not wish to
actively reset the FSM, declare just the initial state as fol-
lows:

initial_register_name .AP = 0;

(You do not need to specify .AR equations for the remaining
flops because they will, by default, initialize to zero.)

INITIALSTATE property ignored (bug)

The Xilinx property INITIALSTATE was supported in earlier
(pre-M1) versions of XABEL as a way to specify the initial
state of 1-hot symbolic FSMs. This property is still sup-

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

ported in the XABEL-M1 EDIF interface, but it currently
does not work properly for FPGA designs in F1.3 and F1.4
versions of the XABEL Interface. In XABEL-M1, the INI-
TIALSTATE property translates to an INIT=S property in the
EDIF netlist, which is not supported for FPGA designs.
Please use the Async_reset statement or .AP equation
extension instead, as described above.

for CPLD designs

Binary encoded FSM

For CPLD designs, binary encoding is the preferred coding
style because of the high logic-to-register ratio in the archi-
tecture. In a binary encoded FSM, the initial state is com-
monly assigned the all-zero value. Since zero is the default
initial state of all flip-flops in CPLDs, there is typically no
need to do anything special to define the initial (power-up)
state of the FSM.

If you want to actively and asynchronously reset the binary-
encoded FSM to its initial state, simply define .AR equa-
tions for all the state registers, assuming an all-zero initial
state value.

Symbolic 1-hot FSM

Alternatively, 1-hot encoding is also applicable to CPLD
designs and may prove to yield higher-performance results
in cases where state transition logic is particularly complex.
1-hot FSMs can be expressed either symbolically or explic-
itly. Either way, if you are defining a 1-hot FSM, one of the
state flip-flops must initialize (power-up) to the one state so
that the FSM begins in a legal state.

If you are defining a symbolic 1-hot FSM for a CPLD device,
and you do not need to actively and asynchronously reset
the FSM to its initial state, use the Xilinx property INITIAL-
STATE to declare the initial (power-on) state of the FSM, as
follows:

xilinx property ‘INITIALSTATE
state_name ’;

This will automatically apply the property “INIT=S” to the
flip-flop corresponding to the initial state in the EDIF netlist.
The remaining state flops will, by default, initialize to zero
on power-up.

asynchronous preset condition. Therefore, omit the INI-
TIALSTATE property from your design; the power-on state
of the initial state flop will, by default, be one due to the bug.

Explicit 1-hot FSM

If you are defining a 1-hot encoded FSM explicitly using
ordinary registered signals, and you do not need to actively
and asynchronously reset the FSM to its initial state, use
the Xilinx property INIT to set the initial state flip-flop of the
FSM to one at power-on, as follows:

xilinx property ‘INIT=S
initial_register_name ’;

The remaining registers will, by default, initialize to zero.

If you do want to actively and asynchronously reset the
explicitly-defined 1-hot FSM to its initial state, declare an
asynchronous preset equation for the initial state register,
and declare asynchronous reset equations for the remain-
ing state bits, as follows:

initial_register_name .AP =
reset_condition ;
other_register_name .AR = reset_condition ;

Normally, you would also specify the Xilinx property INIT=S
for the initial state flop to define its power-on state, as
described above. However, due to a bug in the F1.3 and
F1.4 XABEL interface, the power-on state of the initial state
flop will be reversed because it has an asynchronous pre-
set condition. Therefore, omit the INIT property from the
state registers in your design; the power-on state of the ini-
tial state flop will, by default, be one due to the bug.

Transparent latches

.LH equations use flip-flops in CPLDs

When you use the .LH equation to define a transparent
latch, a Xilinx latch primitive (LD) is used in the resulting
netlist. For example:

mylat node istype ‘reg’;
Equations
mylat := d_input;
mylat.LH = latch_enable; `` transparent
high
1-4 XAPP109 February, 1998 Version 1.0

If you do want to actively and asynchronously reset the
symbolic 1-hot FSM to its initial state, declare the asyn-
chronous reset condition using the Asynch_reset state-
ment as follows:

asynch_reset state_name :
reset_condition ;

This will automatically generate an asynchronous preset
condition for the initial state flop. Normally, you would also
specify the Xilinx property INITIALSTATE to define the
power-on state, as described above. However, due to a bug
in the F1.3 and F1.4 XABEL interface, the power-on state
of the initial state flop will be reversed because it has an

For CPLD designs, the latch primitive is implemented as a
flip-flop with a grounded clock and the data input gated by
the latch-enable into the flop's asynchronous reset and pre-
set inputs. Essentially, the above latch equations are imple-
mented in a manner equivalent to the following flip-flop
equations:

mylat node istype 'reg';
Equations
mylat := 0;
mylat.clk = 0;
mylat.AP = d_input & latch_enable;
mylat.AR = !d_input & latch_enable;

In CPLD devices, each macrocell flip-flop has a single p-
term available for each of its reset and preset inputs. A sim-
ple latch equation in which the data and latch-enable inputs
are primary inputs (from an input pin or a register output) is
implemented efficiently in a single macrocell. However, if
the data input is preceded by any combinatorial logic, or if
the latch-enable input is any logic function other than a sim-
ple AND-gate, then that combinatorial logic cannot be opti-
mized into the same macrocell as the flip-flop and a
macrocell feedback delay will be incurred.

Avoid combinatorial feedback latches in CPLD
designs (bug)

Normally, there is an alternative way to express a transpar-
ent latch is by using a combinatorial feedback equation, as
follows:

mylat node istype ‘com, retain’;
mylat = d_input & latch_enable
mylat & !latch_enable
mylat & d_input;

The retain attribute turns off Boolean minimization in the
ABEL compiler and CPLD fitter to retain the redundant
product term required to implement a hazard free combina-
torial feedback latch.

Normally, all logic in a combinatorial feedback latch equa-
tion should be implemented in the same macrocell. How-
ever, the F1.3 and F1.4 versions of the CPLD fitter have a
problem recognizing the feedback loop and often imple-
ment the latch incorrectly using 2 macrocells per latch. If
possible, use .LH equations (shown above) to represent
transparent latches. Otherwise, the obsolete Plusasm flow
provided in F1.4 can successfully implement combinatorial
feedback latches without encountering the CPLD fitter
problem.

Large comparator/decoder logic may cause
ABEL compiler to fail (bug)
Large comparator or decoder functions may prevent compi-
lation of an ABEL design. After invoking the ABEL compiler
(abl2edif translator), you may observe that the AHDL2BLF
step completes, then the BLIFOPT step begins but never
completes. In other cases, the process runs all the way into

usually obtained by decomposing equations containing
comparator/decoder logic by separating out the comparator
/decode logic into new intermediate node equations. When
factoring out comparator logic, express the intermediate
node equations as active-low comparators of the form
NOT_Y = A != B, which is the form containing fewer min-
terms. Also, prevent collapsing of the intermediate nodes
by applying the attribute KEEP.

For example, if the original equation is:

Q = (A == B) & something # (C == D) & smore ;

Decompose into:

A_ne_B = (A != B); "new node
C_ne_D = (C != D); "new node
Q = (!A_ne_B) & something # (!C_ne_D) &
smore ;

Then declare the new nodes with the KEEP attribute, as in:

A_ne_B, C_ne_D node istype 'KEEP';

Attributes for controlling design
implementation
The discussion in this section assumes you are familiar
with the capabilities of the target PLD architecture and the
general means for controlling the implementation software.
This section focuses on the techniques and issues specific
to controlling XABEL designs.

Pin assignment

Numeric pin names in ABEL “pin” declarations

You can indicate pin assignments for most packages
directly in your ABEL pin declarations. For example:

a pin 34;
b, c pin 35, 36 istype ‘reg’;

Pin numbers are applicable only to top-level ABEL designs
for either FPGA or CPLD devices.

BGA pin names in UCF file

ABEL only accepts numeric pin numbers. If you are using a
BGA package (which uses alphanumeric pin designations),
specify your pinout in a User Constraint file (UCF) using the
XAPP109 February, 1998 Version 1.0 1-5

the BLIF2NET step, which either never completes or pro-
duces a system error after exhausting all available virtual
memory. One possible cause is that the design contains
some large comparator logic (of the form Y = A == B) or
decode logic (of the form Y = A == constant), especially if
the comparator or decode logic is combined with any other
combinatorial logic in the same equation. The suspected
cause of this problem is that the ABEL compiler is trying to
process the negated logic form of the expression which
contains an exceedingly large number of min-terms.

You can usually workaround this problem by modifying the
problematic equation in your ABEL source. Best results are

LOC property. For example:

net a LOC=A7;

Output slew (FAST, SLOW)
You can control slew rate for specific output or I/O pins with
the FAST and SLOW attributes. Use these attributes to
selectively control whether specific pins operate in fast slew
rate (FAST) or slew rate limited (SLOW) mode as follows:

xilinx property ‘FAST | SLOW signal_list ’;

For Example:

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

xilinx property ‘SLOW q1 q2 q3’;

The FAST and SLOW properties are applicable only to top-
level ABEL design for either FPGA or CPLD devices.

CPLD fitter patch for pin assignment and
FAST/SLOW slew-rate (bug)
The XC9500 design implementation software, versions
M1.4 and F1.4, ignores FAST, SLOW and LOC properties
applied to I/O pads in top-level XABEL designs. If you need
to use pin assignment or the FAST or SLOW Xilinx property
in your ABEL designs, please download the latest CPLD fit-
ter patch named "cpld_nt*.zip" from the Xilinx web site
(www.xilinx.com) in the Support → File Download → Soft-
ware Help → M1.4 Alliance area.

Preserving combinatorial nodes (KEEP)
If you want to preserve a combinatorial node in your ABEL
design so that it remains intact throughout design imple-
mentation, apply the attribute KEEP to the node declaration
in your ABEL design as follows:

signal_list node istype ‘KEEP’;

The KEEP attribute is recognized by the ABEL compiler so
that it will not collapse the node during ABEL compilation
and netlisting. The KEEP attribute is also propagated to the
EDIF netlist so that the core implementation software
(CPLD fitter or FPGA mapper) does not collapse the node
during design optimization.

The KEEP attribute is applicable to top-level ABEL designs
and modules for schematic designs.

Global buffers for CPLD (BUFG)
You can manually assign selected input pin signals in your
top-level ABEL design to global nets on a CPLD using the
BUFG attribute as follows:

xilinx property ‘BUFG={CLK | OE | SR}
signal_name ;

For example:

xilinx property ‘BUFG=CLK my_clock’;
xilinx property ‘BUFG=OE my_enable’;
xilinx property ‘BUFG=SR my_reset’;

For example, to set the functions out0 and out1 to low
power mode, (the remaining functions will use the default
power mode) use the following:

xilinx property ‘PWR_MODE=LOW out0 out1’;

Timespecs
For top-level ABEL designs, timespecs must be specified in
a UCF file. For ABEL modules in a schematic design,
timespecs are typically added to the schematic, but could
also be specified in a UCF file.

Either way, timespecs can reference timing groups by
names attached to elements in the design. You can attach a
timing group name (TNM) to a signal in an ABEL design or
module using the TNM property, as follows:

xilinx property ‘TNM= group_name
signal_list ’;

XC9500 local feedback
The local feedback path will be used when you have
grouped logic functions together in the same function block
with a special form of the LOC attribute and the local feed-
back path is required to meet a timing constraint. The spe-
cial form of the Xilinx LOC property required to control
function block placement of internal logic is as follows:

xilinx property ‘BLOCK signal_name
LOC=FBnn’;

For example, assume you want to group flip-flops REG_X
and REG_Y into the same function block so that you can
speed up the cycle time by using the local feedback path.
Also assume there is some combinatorial logic between
these flip-flops that was not fully optimized, resulting in an
additional macrocell feedback between the flip-flops and
whose output is GATE_A. You would also need to group the
combinatorial logic (GATE_A) into the same function block.
To place these functions in function block 1, the required
Xilinx LOC properties would be expressed as follows:

xilinx property ‘BLOCK REG_X LOC=FB1’;
xilinx property ‘BLOCK REG_Y LOC=FB1’;
xilinx property ‘BLOCK GATE_A LOC=FB1’;

Excessive KEEP/RETAIN/LOC causes
1-6 XAPP109 February, 1998 Version 1.0

Macrocell power mode for CPLD
(PWR_MODE)
Use the PWR_MODE attribute to selectively control
whether specified logic operates in high speed or low
power mode. The default power mode for the design is con-
trolled in the Design Manager, and is initially set to STD for
new projects. Use the following syntax:

xilinx property ‘PWR_MODE={LOW|STD}
signal_list ’;

CPLD fitter problems (bug)
In earlier (pre-M1) versions of the XABEL Interface, it was
often necessary to explicitly control the mapping of large
portions of a CPLD design in order to achieve satisfactory
performance. Such explicit control typically included
assigning function block locations and either forcing or
blocking logic optimization or minimization. These controls
were expressed using now-obsolete Plusasm properties
such as PARTITION and LOGIC_OPT.

In XACT-M1 implementation software, the CPLD fitter has
been enhanced to provide high performance results more

/techdocs/htm_index/sw_M1.4_alliance.htm

automatically. It is usually unnecessary to constrain the
mapping or optimization for large portions of the design to
achieve satisfactory results. In some cases, over-constrain-
ing a design in a manner familiar to earlier versions of the
software may actually cause severe problems when using
modern fitter software. These problems can range from
poorer quality of results to software crashes. If you experi-
ence such problems and your design is heavily con-
strained, we recommend removing all but the essential
constraints and trying again. Then constraints could be
added gradually as needed to remedy specific needs of
your design.

The constraints that have been seen to cause problems, if
used excessively, are function block LOC (as in xilinx prop-
erty ‘BLOCK signal_name LOC=FBnn’;), RETAIN and
KEEP.

Mapping ABEL equations directly to CPLD
macrocells
Occasionally, the CPLD fitter may implement a particular
equation or set of equations less efficiently than originally
expressed in ABEL. This is particularly true when your
design contains combinatorial nodes that feed back into
other logic equations. By default, the fitter does not give
preference to the partitioning of logic as expressed in the
ABEL equations. It is free to optimize combinatorial logic
across equation boundaries and form intermediate macro-
cell outputs from fragments of an equation.

If, for certain equations in your design, you prefer that the
fitter implement the equations as expressed in ABEL, you
could use the KEEP attribute on combinatorial nodes to
prevent the fitter from optimizing logic across equation
boundaries. Then, if you notice that the logic within your
equations does not get fully optimized into the same CPLD
macrocell, you could increase the Collapsing Pterm Limit in
the Design Manager Implementation Options template to
further flatten that logic.

Processing XABEL designs

Improving Performance in CPLD designs
For some CPLD designs you may notice that the logic of
some of your equations does not get fully flattened, result-

the XC9500 Implementation Options menu in the Design
Manager GUI. First try increasing the Pterm Limit to 90 (the
maximum) and rerun the fitter. For many designs, all your
equation logic will become flattened and the internal signal
names will disappear from the Fitting Report.

For some designs, especially those containing combinato-
rial node equations or complex logic functions, increasing
the Pterm Limit may cause the logic utilization to explode
and the design will not fit. You may be able to find a Pterm
Limit less than 90 that produces satisfactory performance
while successfully fitting the device. Otherwise, you may
need to apply the KEEP attribute to some of the combina-
torial node equations in your design to prevent these nodes
from being flattened too much when you raise the Pterm
Limit. If you still have some equations in your design that
consume too many logic resources when flattened, you
may need to decompose large equations into smaller inter-
mediate equations and apply the KEEP property to your
intermediate nodes as needed.

ABEL modules for Alliance designs
The XABEL interface is only shipped in the Xilinx Founda-
tion product and is not included in the Alliance product. If
you are using the Alliance M1.4 software with a 3rd-party
schematic capture tool and you want to include XABEL
macros in your schematic design, you can add the XABEL
Interface to your PC to process your ABEL modules.

Your alternatives are:

 1. Install all design entry tools from the Foundation F1.4
product and use the Foundation HDL Editor GUI for
ABEL design entry and translation. Your Alliance M1.4
software can either be on the PC or workstation.

 2. Install only the XABEL Interface from the Foundation
F1.4 product and use a text editor for ABEL design entry
and use commands in a DOS window for ABEL transla-
tion. Your Alliance M1.4 software can either be on the
PC or workstation.

 3. Download the XABEL Interface from the Xilinx web site
into your existing Alliance M1.4 installation and use a
text editor for ABEL design entry and use commands in
a DOS window for ABEL translation. Your must have
Alliance M1.4 software on your PC.
XAPP109 February, 1998 Version 1.0 1-7

ing in poor performance and sometimes excessive logic uti-
lization. Performance problems can be observed in the
Timing Report summaries. Incomplete flattening is also
indicated in the Fitting Report under the “Resources Used
by Successfully Mapped Logic” section, by the presence of
several “internal” signal names that do not match any of the
signal names in your design. These internal names each
represent a CPLD macrocell feedback used to implement
intermediate logic nodes within your equations.

To get the fitter to further flatten your design, increase the
Collapsing Pterm Limit in the Advanced Optimization tab of

Using Foundation design entry tools for ABEL
module development

Installation

If you are installing both Alliance and Foundation software
onto the same PC, they can be installed in either order.

 1. Insert the Foundation F1.4 Design Entry Tools CD on
your PC.

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

 2. When the Master Setup screen appears, choose "Install
Design Entry Tools." If the Master Setup screen does
not appear, run the Setup.exe program from the CD.

 3. Follow the instructions on the screen. When asked
which type of setup to run, choose Custom.

Note: If you plan to use the Foundation tools for schematic
entry or simulation as well as ABEL compilation,
choose "Typical Installation" instead. (See the
Foundation Release Document for details.)

 4. On the Select Components screen, you will have the
option to install various portions of the software. To
reduce the amount of disk space required, you may
select to not install the sample projects, or just install
those which involve Abel. You may also choose to only
install those libraries for the devices you will be target-
ing. Below is a summary of the available components:

Program Files - Required

X-VHDL - Not Required. Requires separate license to
run.

Sample Projects - Not required, but you may want to
install just the Abel projects.

System Libraries - At least one required. You may
choose only those families you will be targeting.

Keylock Drivers - Not required. (Only required for X-
VHDL.)

Even with a minimal install, you will have the ability to
use all features of the Foundation software, with the
exception of X-VHDL or Express synthesis.

 5. When Design Entry Tools installation is complete and
the Master Setup screen reappears, select "Design
Implementation Tools". (The XABEL Interface software
resides on the Design Implementation Tools CD.)

 6. Insert the Foundation Design Implementation Tools CD.
(Run Setup.exe if the installer doesn’t automatically
start.)

 7. Follow the instructions on the screen. If Alliance M1.4
software is also installed on your PC, you should specify
the same directory to install the XABEL Interface. This is
because the XILINX environment variable, also required
by XABEL, cannot specify more than one path.

 1. Invoke the Foundation Project Manager.

 2. Create a new project by selecting File → New Project.

 3. Choose the appropriate design directory and family.

 4. Invoke the HDL Editor by clicking on the HDL Editor but-
ton in the Project Manager.

 5. Select “Use HDL Design Wizard” or “Create Empty” to
enter a new ABEL design. Otherwise, select "Existing
File" and browse to find an existing.ABL file. The Design
Wizard creates a template ABEL design based on
names of macro pin names you enter. The HDL Editor
color codes ABEL keywords and provides syntax check-
ing capability.

 6. Since the Abel file will be a module in a top-level sche-
matic, be sure that the "Macro" compile switch is
selected in the Synthesis → Options dialog.

 7. To synthesize the ABEL code, select Synthesis → Syn-
thesize. An EDIF (.EDN) netlist file will be created for the
module and placed in the project directory.

Using the XABEL Interface alone

You can install the XABEL interface either from the Founda-
tion F1.4 CDs or by downloading it from the Xilinx web site.

Installation from Foundation CDs

If you are installing both Alliance and XABEL Interface soft-
ware onto the same PC, they can be installed in either
order.

 1. Insert the Foundation Design Implementation Tools CD
and run Setup.exe.

 2. Follow the instructions on the screen. If Alliance M1.4
software is also installed on your PC, you should specify
the same directory to install the XABEL Interface. This is
because the XILINX environment variable, also required
by XABEL, cannot specify more than one path.

 3. When asked to select the type of installation, choose
"Design Entry Tool Components Only".

Downloading from the web

You must install Alliance M1.4 on your PC to use the
XABEL Interface provided on the web. This is because the
1-8 XAPP109 February, 1998 Version 1.0

 8. When asked to select the type of installation, choose
"Design Entry Tool Components Only".

Design flow

The following procedure outlines the basic flow for creating
a project in Foundation and compiling one or more ABEL
macros for incorporation into a 3rd party schematic. For
complete documentation of the Foundation Design Entry
tools and the XABEL Interface, refer to the on-line help in
the Foundation Project Manager (Help → Foundation Help
Contents).

XABEL Interface relies on software libraries included in
XACT-M1.

You must install both Alliance M1.4 implementation (core)
software and the XABEL Interface onto a local hard disk
drive on your PC. This is because the XABEL Interface
does not run reliably if installed onto a network drive.

 1. The XABEL Interface is located at www.xilinx.com →
Support → File Download → Software Help → Founda-
tion. The filename is xabel140.zip (or the highest num-
bered revision of xabel14*.zip). Download the
xabel140.zip file to any location.

/techdocs/htm_index/sw_foundation.htm

 2. Unzip the file using PKZip or equivalent. The ZIP file
contains an installer package that you can extract to any
location on your PC.

 3. Read the installation and usage instructions contained
in the text file read_abl.txt.

 4. Run the installer, Setup.exe. Follow the directions on the
screen. You must set the Destination Directory to the
same directory where you installed Alliance M1.4 imple-
mentation (core) software.

Note: Once you set the Destination Directory and click OK,
you cannot cancel the installer.

For detailed documentation on using XABEL, including
CPLD and FPGA design techniques and an ABEL lan-
guage reference guide, you can also download the Founda-
tion on-line help files from the Xilinx web site at
www.xilinx.com → Support → File Download → Software
Help → Foundation, filename “fnd_help.zip”.

Design flow

When using the XABEL Interface alone (without the Foun-
dation Design Entry Tools), XABEL design entry is per-
formed using a conventional text editor. XABEL designs are
then compiled using a 1-line command entered in a DOS
window as follows:

 1. Open a DOS window.

 2. Change directory (CD) to the directory containing your
ABEL source file.

 3. Execute the abl2edif command as follows:

 abl2edif -s level module_name

where level is "top" for top-level ABEL design, or "mod"
(default) for module to use in a schematic. The abl2edif
program generates the following output files:

abl2edif.log: log file of program execution

module_name.edn: output EDIF netlist

module_name.err: error log from program execution

module_name.smx: simulation output file (if the design
contains test vectors)

module_name.tmv: test vector file for XC9500 func-
tional test (if the design contains test vectors)

already exists, simply remove the DEF=XABEL and
FILE=abelfile.ABL properties before continuing.

Two more properties must be added to complete the sym-
bol. Right-click in the symbol window (but outside the sym-
bol box itself) and select Properties. Under the Block tab,
change the Symbol Type to Module. This will prevent the
EDIF netlister from looking for an underlying schematic.
Then, under the Attributes tab, add an attribute with a
Name of FILE and a Value of abelfile.EDN. If the EDIF file is
not located in the project directory, then the full path to the
.EDN file must be specified.

If the ABEL code is modified in such a way that the input or
output ports are modified, then the symbol will have to be
manually updated to match the new ABEL module.

Because the ABEL module does not have a gate-level rep-
resentation within the Viewlogic realm, the design will have
to be compiled through NGDBUILD in order to process the
ABEL portions before performing a functional simulation.
Chapter 4 of the Viewlogic Interface and Tutorial Guide
describes this process.

There is also a push-button solution available for these
steps. Solution #1985 in the Xilinx Solutions Database con-
tains the files and setup instructions for this flow. No
changes to the timing simulation flow are required. This
procedure applies to Powerview users as well, although
some of the commands listed above will differ slightly for
the workstation version of ViewDraw.

Mentor Graphics Design Architect

Once you have created the EDIF file in the Foundation
environment, you must instantiate that EDIF in your Mentor
Graphics schematic. Note that, since this EDIF file comes
from a Windows 95/NT environment, you should run a
DOS-to-UNIX file-conversion utility (such as dos2unix) on
this EDIF file to avoid possible file-format problems.

Create a new symbol for the ABEL module complete with
input and output pins. Make sure that all the input and out-
put ports match the symbol by name. Use parentheses for
bus notation: BUS(3:0). If a symbol created by SYMGEN
already exists, simply remove the DEF=XABEL and
FILE=abelfile.abl properties before continuing.

One more property must be added to complete the symbol.
XAPP109 February, 1998 Version 1.0 1-9

Instantiating ABEL macros in a schematic

Viewlogic Workview Office

Once you have created the EDIF file in the Foundation
environment, you must instantiate that EDIF in your View-
logic schematic.

Create a new symbol for the ABEL module complete with
input and output pins. Make sure that all the input and out-
put ports match the symbol by name. Use square brackets
for bus notation: BUS[3:0]. If a symbol created by SYMGEN

With the symbol for the ABEL module loaded into the sym-
bol editor, select Right Mouse Button → Properties (logical)
→ Add Single Property. For Property Name, enter FILE.
For Property Value, enter abelfile.edif, where abelfile is the
name of the ABEL module represented by this symbol. If
the EDIF file is not located in the project directory, then the
full path to the .edif file must be specified.

If the ABEL code is modified in such a way that the input or
output ports are modified, then the symbol will have to be
manually updated to match the new ABEL module.

ftp://ftp.xilinx.com/pub/swhelp/foundation/fnd_help.zip
/techdocs/1985.htm

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

Because the ABEL module does not have a gate-level rep-
resentation within the Mentor realm, the design will have to
be compiled through NGDBUILD and PLD_EDIF2SIM in
order to process the ABEL modules and generate a suit-
able simulation model for PLD_QuickSim. PLD_QuickSim
must then be run on the output netlist from
PLD_EDIF2SIM. (To annotate simulation values to the orig-
inal schematic, you may enable cross-probing in
PLD_QuickSim). Chapter 6, Mixed Designs with Schematic
on Top in the Mentor Graphics Interface/Tutorial Guide,
describes this process in the Functional Simulation After
Synthesis section.

No changes to the timing simulation flow are required.

Optimization of XABEL logic

FPGA designs

Prior to XACT-M1, all logic from ABEL modules had to be
optimized for FPGA architectures by the XABEL Interface
itself before writing the XNF netlist. In M1, the XABEL Inter-
face does not perform any of the Xilinx-specific optimiza-
tion. The EDIF netlist produced by XABEL is architecturally
generic. FPGA-specific optimization is performed by the
OPTX program, which is part of the mapping step of the
implementation software. OPTX optimizes logic on a mod-
ule-by-module basis. XABEL modules are identified by the
“OPTIMIZE” property which is automatically written at the
root level of each XABEL module netlist. When the top-level
schematic design is submitted to the implementation soft-
ware for mapping, each of the XABEL netlists are, in turn,
read in. The OPTIMIZE property remains associate with
each XABEL module and OPTX performs logic optimiza-
tion on each of the modules tagged with the OPTIMIZE
property.

OPTX optimization is normally desirable for all XABEL
modules. If you prefer to disable OPTX optimization on an
XABEL module, you can turn off the OPTIMIZE property by
specifying the following in your ABEL source declarations:

xilinx property ‘OPTIMIZE=OFF’;

CPLD designs

All logic in CPLD designs, including XABEL-generated
logic, is always optimized by the CPLD fitter. The OPTI-

OLE server and registry issues

Multiple ABEL versions in the Windows registry
(bug)

If any other non-Xilinx ABEL software is installed on your
PC, you may get one of several error conditions including
an OLE communication server error, a licensing error, an
error about a corrupted encrypted file, or other installation-
related error messages.

To allow Xilinx-ABEL to run, you must remove the registry
keys for the non-Xilinx ABEL software from your Windows
registry. To remove the non-Xilinx ABEL registry keys:

 1. Run the Registry Editor (Regedit.exe under your Win-
dows directory).

 2. Use Edit → Find to search for the folder named
"DIOEDA".

 3. Open DIOEDA and then open the Products folder. The
keys for Xilinx-ABEL are stored in the folder XABELM1;
the keys for any non-Xilinx ABEL product would be
stored in an adjacent folder.

 4. Before deleting the non-Xilinx ABEL folder, you may
want to save a copy of it in a .reg file (using Registry →
Export Registry File) in case you want to later restore
those settings to run the non-Xilinx ABEL software.

 5. Select the non-Xilinx ABEL folder and use Edit → Delete
to remove it.

 6. When finished, close the Registry Editor; then reboot
your PC (to terminate any resident OLE communica-
tions server used by ABEL).

If you need to remove the Xilinx-ABEL registry keys (in
order to run a non-Xilinx ABEL product), you can restore
XABEL by running the registry file, bin\nt\install\xabel.reg,
located in your Xilinx implementation (core) software instal-
lation area; then re-boot your PC.

Windows 95 hangs due to OLE (bug)

On some Windows-95 systems, the XABEL translator
(abl2edif or abl2pld) runs OK the first time it is invoked, but
will not run again subsequently. This is due to a problem
with the OLE communications server (ntolesrv.exe) used by
the ABEL compiler. The OLE server normally remains
1-10 XAPP109 February, 1998 Version 1.0

MIZE property which is automatically written into the
XABEL EDIF netlist is ignored by the CPLD fitter. The only
way to control logic optimization in a CPLD design is by
using the KEEP, RETAIN and COLLAPSE properties.
(These are described elsewhere.) You can also adjust the
settings of the CPLD fitter options template in the Design
Manager, as described in the Foundation on-line help doc-
ument.

active for a short while after the abl2edif translator com-
pletes, and then times out. A problem occurs when the OLE
server fails to time out and prevents the abl2edif translator
from being run subsequently. If you cannot successfully ter-
minate the OLE server, you may need to reboot your PC to
clear this problem. This problem has not been observed on
Windows NT systems.

XC9500 JEDEC test vectors
In addition to programming information, the JEDEC down-
load files produced by the CPLD fitter software for XC9500

devices can also contain functional test vectors. These test
vectors can be used by the Xilinx JTAG download system
as well as 3rd-party programming equipment to functionally
test XC9500 devices after programming.

The CPLD fitter can automatically translate simulation test
vectors embedded in ABEL designs and write them into the
XC9500 JEDEC file. If your XABEL design contains a
Test_vector section, then in addition to performing simula-
tion, the XABEL translator produces a test vector interface
(.TMV) file.

How to use .tmv file

When you are ready to implement your XABEL design,
open the Options template in the Design Manager. Select
the Programming tab and browse for the .TMV file pro-
duced by the XABEL Interface. The test vectors from the
.TMV file will automatically be written into the programming
JEDEC file.

Note: Only test vectors from a top-level (stand-alone) ABEL
design can be used for device functional testing.

Use upper case signal names (bug)

Due to a bug in the F1.3 and F1.4 CPLD fitter, only signal
names that are all upper-case will get their test vector infor-
mation translated into the JEDEC file. Any signal name
containing lower-case letters will result in “X” being written
in the corresponding column of the test vector section of
the JEDEC file. Therefore, if you plan to perform device
functional test, use only all-upper-case names for all pin
signals in your ABEL design.

When to use Plusasm (CPLD only)
In pre-M1 versions of the XABEL Interface, all CPLD
designs were translated into the Plusasm equation lan-
guage which was the file format read by the CPLD fitter. In
XACT-M1, the primary design file format is the EDIF netlist.
Plusasm is still supported by M1.4 software for back-com-
patibility of interfaces that still depend on Plusasm equation
files. However, EDIF should be used for all new designs if at
all possible.

PLUSASM LANGUAGE WILL NO LONGER BE
ACCEPTED FOR DESIGN ENTRY IN LATER RELEASES
OF XILINX DESIGN IMPLEMENTATION SOFTWARE.

Existing design with unconverted Plusasm prop-
erties

To constrain a design when using the Plusasm flow, it was
necessary to embed Plusasm language declarations in the
ABEL source design. These Plusasm declarations were
not in the form of conventional properties and cannot be
supported, as is, via the EDIF interface. In XACT-M1, a new
set of properties are provided that are compatible with
EDIF as well as other forms of Xilinx design entry including
schematics and HDLs.

If you have an existing XABEL CPLD design that required
XEPLD PROPERTY or PLUSASM PROPERTY state-
ments, you must either remove or replace these properties
with the supported EDIF-compatible properties or you must
use the Plusasm flow (see Converting Plusasm properties
into M1 attributes, next column). If your existing design
does not contain Plusasm based properties, you should be
able to use the new EDIF-based flow without design modi-
fication. If you are developing a new XABEL CPLD design,
DO NOT USE Plusasm based properties. If you use the
Plusasm flow, you cannot use any of the XILINX PROP-
ERTY statements supported by XACT-M1 software.

Pinlocking designs in XABEL-M1 using pre-M1
pinouts (bug)

If you have a guide file (.gyd) containing a pinout that you
want to use to pinlock a design iteration using the XABEL-
M1 Interface, and the guide file was created using a pre-M1
version of XABEL, you may have difficulty with case-sensi-
tivity of pin names. In pre-M1 XABEL, which used the Plus-
asm flow, all signal names were automatically converted to
upper case. The resulting guide files therefore contained
only upper case pin names. In XABEL-M1, which uses the
EDIF flow, the case of the signal names in your ABEL file is
preserved throughout design implementation. When trying
to pinlock using an old guide file, if the name of a pin in the
guide file does not exactly match the name read in from the
EDIF netlist, the pinout information will not be applied.

To workaround this problem, either edit the old guide file to
restore the case of each of your pin names to match the
names in your ABEL design, or modify your ABEL design to
use all upper-case names for external pins.
XAPP109 February, 1998 Version 1.0 1-11

One of the characteristics of Plusasm is that each equation
in the Plusasm file (.pld) is automatically forced to be fully
optimized and mapped into a single CPLD macrocell. While
this could be beneficial if the equations are optimally
designed to suit the CPLD architecture, it could otherwise
prevent the fitter from finding more efficient implementa-
tions of the same logic. In contrast, when an ABEL design
is translated to EDIF, the combinatorial logic in each ABEL
equation is decomposed into a network of individual AND/
OR gates. The fitter no longer recognizes equation bound-
aries and is free to optimize the logic as well as it can.

EDIF flow bugs with no workaround

The F1.3 and F1.4 versions of the XABEL Interface and the
core implementation software contain some bugs that you
may not be able to workaround using the EDIF flow. If none
of the workarounds suggested in this application note solve
the problem, the Plusasm flow can sometimes provide an
alternative solution.

Persistent fitter problems or poor results

In some cases, the XACT-M1 CPLD fitter may not be able
to achieve the same quality of results as obtained in an ear-

Hints, Tips and Tricks for using XABEL with Xilinx M1.4 Design and Implementation Tools

lier version of XABEL using the Plusasm flow. This typically
occurs when the distribution of logic among the equations
in the ABEL design is particularly well matched to the
CPLD architecture. This might also occur if the earlier
design was constrained using Plusasm properties in a way
that cannot be reproduced using the EDIF flow.

If none of the optimization suggestions described in this
application note allow you to obtain satisfactory perfor-
mance, the Plusasm flow can sometimes provide an alter-
native solution.

Converting Plusasm properties into M1
attributes

This is a summary of the Plusasm properties that were sup-
ported in the pre-M1 XABEL Interface and the equivalent
Xilinx properties compatible with the XABEL-M1 EDIF-
based interface:

plusasm property ‘FASTCLOCK signal_list ’;
xilinx property ‘BUFG=CLK signal_list ’;
plusasm property ‘FOEPIN signal_list ’;
xilinx property ‘BUFG=OE signal_list ’;
plusasm property ‘PARTITION FB nn
signal_name... ’;
xilinx property ‘BLOCK signal_name
LOC=FBnn’;
plusasm property ‘LOGIC_OPT OFF
signal_list ’;
signal_list {NODE | PIN} istype ‘KEEP’;
plusasm property ‘MINIMIZE OFF
signal_list ’;
signal_list {NODE | PIN} istype ‘RETAIN’;
plusasm property ‘PWR {LOW | STD}
signal_list ’;
xilinx property ‘PWR_MODE={LOW | STD}
signal_list ’;
plusasm property ‘FAST ON signal_list ’;
xilinx property ‘FAST signal_list ’;

Using the Plusasm design flow
The XABEL Interface, whether installed from the Founda-
tion F1.4 CD or by downloading from the web, provides an
alternative design flow for CPLD designs using Plusasm
equation files instead of EDIF netlists.

 1. In the Foundation Project Manager, select File → Con-
figuration.

 2. In the Configuration window, click on “View INI File”.

 3. In the Report Browser window that appears, find the
lines containing

[EXTENSIONS]
;XABELNETLIST=PLUSASM

 4. Delete the semicolon (;) in front of XABELNETLIST to
enable the feature.

 5. Save the file (File → Save) and close the Report
Browser.

 6. Click OK in the Configuration window to close it.

 7. Exit the Foundation Project Manager (File → Exit) and
restart it to read the new configuration.

 8. Create a project in which to develop your ABEL design.

 9. Invoke the HDL Editor and use the Synthesis → Synthe-
size command as you would normally. Be sure the
“Chip” compile switch is selected in the Synthesize →
Options menu to produce a top-level Plusasm design.

After the PLUSASM flow is enabled, the Foundation soft-
ware creates PLUSASM equation files (.PLD) for all top-
level ABEL CPLD designs. When you first invoke the Xilinx
Design Manager from the Project Manager for a new
project, it will automatically read the PLUSASM (.PLD) file
for design implementation instead of looking for an EDIF
netlist. FPGA designs and all ABEL macros to be used in
schematic designs will continue to use EDIF netlists for
design implementation.

Note: After it creates the Plusasm equations file (runs the
ABL2PLD translator), the Foundation system
continues to run the ABL2EDIF translator to produce
an EDIF netlist. The EDIF file is used only for
functional simulation, which is optional; it is not used
for design implementation.

Note: If you have already compiled the ABEL design using
the EDIF flow, you should create a new project before
re-compiling using the Plusasm flow. Otherwise, the
implementation software may continue to read the
existing .EDN file instead of the new .PLD file.

Using DOS command-line

If you are using the XABEL Interface installed from the
1-12 XAPP109 February, 1998 Version 1.0

Using the Foundation Design Entry tools

If you are using Foundation F1.4 to develop a top-level
ABEL design for CPLD, the Plusasm flow is enabled
through the Foundation Project Manager. The Foundation
tools can only use the Plusasm flow if you are developing a
top-level ABEL design. If you are developing ABEL mod-
ules for use in schematic-based designs and you need to
use the Plusasm flow, you must compile your ABEL mod-
ules using the command-line interface described below.

To enable the Plusasm flow:

Foundation CD or downloaded from the web, ABEL
designs are translated to Plusasm using a 1-line command
as follows:

 1. Open a DOS window.

 2. Change directory (CD) to the directory containing your
ABEL source file.

 3. Execute the abl2pld command as follows:

abl2pld -s level module_name

where level is "top" for top-level ABEL design, or "mod"
(default) for module to use in a schematic. The abl2pld

program generates the following output files:

abl2pld.log: log file of program execution

module_name.pld: output Plusasm equation file

module_name.err: error log from program execution

module_name.smx: simulation output file (if the design
contains test vectors)

module_name.tmv: test vector file for XC9500 func-
tional test (if the design contains test vectors)

 4. In the Design Manager, create a project and specify
(Browse) the .PLD file as the Input Design.
XAPP109 February, 1998 Version 1.0 1-13

	Overview
	Products
	XABEL included only in Foundation product
	No workstation version of XABEL software
	Documented in Foundation on-line help

	Capabilities
	Supports all families
	Creates macro modules and stand-alone designs
	Based on Synario ABEL 6 with hierarchy
	EDIF netlists are encrypted

	Installation requirements
	Local hard-drive only
	Same directory as XACT-M1
	No other ABEL products tolerated (bug)

	ABEL design techniques
	Name of module must match filename.
	Pin vs internal feedback
	Feedback interpretation in XABEL-M1
	Register initial states
	for FPGA use .AP/.AR
	for CPLD use INIT
	INITs reversed for registers with asynchronous preset

	FSM initial state
	for FPGA designs
	Symbolic 1-hot FSMs
	Explicit 1-hot FSMs
	INITIALSTATE property ignored (bug)

	for CPLD designs
	Binary encoded FSM
	Symbolic 1-hot FSM
	Explicit 1-hot FSM

	Transparent latches
	.LH equations use flip-flops in CPLDs
	Avoid combinatorial feedback latches in CPLD desig...

	Large comparator/decoder logic may cause ABEL comp...

	Attributes for controlling design implementation
	Pin assignment
	Numeric pin names in ABEL “pin” declarations
	BGA pin names in UCF file

	Output slew (FAST, SLOW)
	CPLD fitter patch for pin assignment and FAST/SLOW...
	Preserving combinatorial nodes (KEEP)
	Global buffers for CPLD (BUFG)
	Macrocell power mode for CPLD (PWR_MODE)
	Timespecs
	XC9500 local feedback
	Excessive KEEP/RETAIN/LOC causes CPLD fitter probl...
	Mapping ABEL equations directly to CPLD macrocells...

	Processing XABEL designs
	Improving Performance in CPLD designs
	ABEL modules for Alliance designs
	Using Foundation design entry tools for ABEL modul...
	Installation
	Design flow

	Using the XABEL Interface alone
	Installation from Foundation CDs
	Downloading from the web
	Design flow

	Instantiating ABEL macros in a schematic
	Viewlogic Workview Office
	Mentor Graphics Design Architect

	Optimization of XABEL logic
	FPGA designs
	CPLD designs

	OLE server and registry issues
	Multiple ABEL versions in the Windows registry (bu...
	Windows 95 hangs due to OLE (bug)

	XC9500 JEDEC test vectors
	How to use .tmv file
	Use upper case signal names (bug)

	When to use Plusasm (CPLD only)
	Existing design with unconverted Plusasm propertie...
	Pinlocking designs in XABEL-M1 using pre-M1 pinout...
	EDIF flow bugs with no workaround
	Persistent fitter problems or poor results
	Converting Plusasm properties into M1 attributes

	Using the Plusasm design flow
	Using the Foundation Design Entry tools
	Using DOS command-line

