

IEEE 1394 FireWire Link Layer Core

June 29, 1998

Product Specification

P	integrated Intellectual Property Inc.
	Property Inc.

Integrated Intellectual Property Inc.

 1765 Scott Blvd. Suite 208

 Santa Clara, CA 95050 USA

 Phone:
 +1 408-260-3970

 Fax:
 +1 408-260-3975

 URL:
 www.i2p.com

 Email:
 sales@i2p.com

Features

- General Purpose LINK Layer Core
- Compliant with IEEE 1394-1995 specification
- Adaptable to most Isochronous 1394 Applications
- Annex J compliant interface between LINK and PHY
- Supports 1394 ISO Transmit and Cycle Master Receive transactions
- · Supports speeds of 100 and 200 Mbits/sec
- Interface to standard V3 V292PBC-33LP PCI bridge chip local bus
- Additional options available extra from I²P
 - Optional verification environment
 - Optional Engineering Services
 - Optional software drivers for various applications

Applications

The core can be used in multimedia applications that require streaming audio or video data.

General Description

The I²P SuperLINKCore[™] is a FireWire IEEE 1394 LINK Layer core designed to support isochronous transmission devices. The core is fully tested and verified according to the IEEE 1394-1995 specification. The core interfaces to a PCI Bridge Chip (V292PBC-33LP) from V3 Semiconductor, Inc.

AllianceCORE [™] Facts Core Specifics				
				Device Family
CLBs Used	886			
IOBs Used	53 ¹			
System Clock f _{max}	50 MHz			
Device Features	SelectRAM, LogiBLOX			
Used				
Provided with Core				
Documentation	User Guide			
	System Model User Guide			
Design File Formats	Verilog compiled XNF netlist,			
	.NGO file			
Constraint Files	User constraints (.ucf) file			
Verification Tool	Available extra			
Schematic Symbols	None			
Evaluation Model	None			
Reference designs &	None			
application notes				
Additional Items	None			
Design Tool Requirements				
Xilinx Core Tools	Foundation M1.4			
Entry/Verification	FPGA Express			
Tool				
Support				
Support provided by Integrated Intellectual Property, Inc.				

Note:

^{1.} Assuming all core signals are routed off-chip.

Figure 1: IEEE 1394 FireWire Link Layer Core Block Diagram

Functional Description

The core is compliant with the IEEE 1394-1995 specification. It has an Annex J compliant interface to the PHY layer and is designed in a highly modular fashion.

Interface to PCI Bridge Chip

This block is responsible for data transfers between the LINK core and the V3 PCI bridge chip. The core interfaces directly to the simple local bus provided on the backend of the V3 bridge chip. The customer's logic can initiate or receive 1394 packets with a very simple read/write protocol on the application interface.

Transmit CRC Generator

This generates a CRC on the transmitted packets.

ISO Transmit FIFO

This stores the 1394 ISO packets in the LINK layer.

Request/Data Transmitter Block

This generates the Local Request (Ireq) and then sends the data to PHY on the Link/PHY interface.

Data Receiver Block

This is responsible for receiving data from the PHY and presenting it to the internal LINK logic. Currently, the data

receiver module is capable of receiving cycle start packets from a root node and responding to it by sending ISO packets stored in the FIFO.

LINK Layer Core State Machine

This block is responsible for the generating the control signals for all modules in the core. It controls the overall functionality of the core.

Status Receiver Block

This receives the status information sent from the PHY layer and presents it to the internal LINK logic.

Link/PHY Interface Controller Block

This is responsible for generating control signals for the transmitter and receiver blocks. Additional 1394 transaction layer functions can also be incorporated.

Core Modifications

I²P can provide the following modifications to the core for additional cost above the netlist version of the core. Likewise, users can perform these modifications themselves by purchasing the source code version.

- Alternate host interfaces.
- Additional 1394 transaction layer functions.

Pinout

The pinout of the SuperLINKCore[™] has not been fixed to specific FPGA I/O, allowing flexibility with a user application. Signal names are shown in the block diagram in Figure 1, and in Table 1.

Verification Methods

The core is fully tested and verified according to the IEEE 1394-1995 specification using the I²P verification environment. It has also been tested in hardware using a Xilinx FPGA-based evaluation board (see Available Support Products).

Recommended Design Experience

Knowledge of the IEEE 1394 specification is required. The user must be familiar with HDL design methodology as well as instantiation of Xilinx netlist in a hierarchical design environment.

Available Support Products

I2P supplies a complete line of hardware and software products designed to aid in the integration of this core into your application. These are available at additional cost. Contact I²P for more information.

- Xilinx FPGA-based IEEE 1394 FireWire hardware evaluation board.
- A complete IEEE 1394 verification environment is available for testing LINK or PHY designs. It includes features for automatic test generation, automatic topology setup and a complete verification checklist.
- Synthesizable Verilog source code version of the SuperLINKCore[™] with synthesis scripts for a bottom-up hierarchical compile and user's guide.

Ordering Information

The core and products referenced in this product description are available directly from Integrated Intellectual Property, Inc. Contact them for pricing or additional information.

Related Information

1394 Trade Association

The 1394 Trade Association publishes the IEEE 1394 specification, and provides information for developers as well as related industry contacts and activities. For more information, contact them directly:

1394 Trade Association

URL: www.firewire.org or www.1394ta.org

Table 1: Core Signal Pinout

Signal	Signal Direction	Description		
LINK to PCI Interface Signals				
laddr[6:0]	Input	Local bus address		
ldata[31:0]	Input	Local bus Data		
lrw	Input	Local bus read/write		
lrdy_n	Output	Local bus ready		
lbreq_n	Input	Local bus request		
Lbgrt_n	Output	Local bus grant		
lreq_n	Input	Local request		
pciclk	Input	PCI clock (33 MHz)		
reset_n	Input	PCI reset		
LINK to PHY Interface Signals				
Ireq	Output	Link request		
Ctl[0:1]	In/Out	Control signals		
Data_inout [0:1]	In/Out	Data signals		
clk (50 Mhz)	Input	Link clock (50 MHz)		
lps	Output	Link power status		

V3 Semiconductor, Inc.

For additional information on the V3 V292PBC-33LP PHY chip, contact:

V3 Semiconductor, Inc. URL: www.vcubed.com

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com

For general Xilinx literature, contact:

- Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US)
- E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

Phone: +1 408-879-5381	
------------------------	--

- E-mail: alliancecore@xilinx.com
- URL: www.xilinx.com/products/logicore/alliance/ tblpart.htm