

March 23, 1998

CORE Generator
User Guide
version 1.4

CORE Generator 1.4 User Guide

, XILINX, XACT, XC2064, XC3090, XC4005, XC-DS501, FPGA Archindry, NeoCAD, NeoCAD EPIC, NeoCAD
PRISM, NeoROUTE, Plus Logic, Plustran, P+, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

, all XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-
Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, Foundation Series, Alli-
anceCORE, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, HardWire,
LCA, Logic Cell, LogiCore, LogiBLOX, LogicProfessor, MicroVia, PLUSASM, PowerGuide, PowerMaze, Select-RAM,
SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, and ZERO+ are trademarks of Xilinx, Inc. The Program-
mable Logic Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein; nor does
it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx reserves the right to
make changes, at any time, in order to improve reliability, function or design and to supply the best product possible. Xilinx
will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its prod-
ucts. Xilinx devices and products are protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740;
4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619;
4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193;
5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866;
5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406;
5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207;
5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379;
5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253;
5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; RE 34,363, RE 34,444, and RE 34,808.
Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are
free from patent infringement or from any other third party right. Xilinx assumes no obligation to correct any errors contained
herein or to advise any user of this text of any correction if such be made. Xilinx will not assume any liability for the accuracy
or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such appli-
cations without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1998 Xilinx, Inc. All Rights Reserved.

R

 2 March 23, 1998

Xilinx Inc.

CORE GENERATOR USER GUIDE 1.4

Table of Contents

1 Int roductio n. 4
1.1 Overview . 4
1.2 How to Obtain New Cores and Updates 6

2 System Requirements . 7
2.1 All Platforms . 7
2.2 Win95/NT . 7
2.3 Solaris . 7

3 Installation Instruction s . 9
3.1 Xilinx CORE Generator Requirements for Workstations . . 9
3.2 Xilinx CORE Generator Installation on Workstations 9
3.3 Xilinx CORE Generator Requirements for PCs 10
3.4 Xilinx CORE Generator Installation on PC 10
3.4 How to Obtain New Cores and Updates 11

4 Project Management . 12
4.1 Set The CORE Generator.INI File 12
4.2 Set The CORE Generator Options 15
4.3 Set The CORE Generator Output Options 16

5 Using the CORE Generator . 19
5.1 Module Browser Tree . 19
5.2 Getting Module Data Sheets . 21
5.3 Parameterizing a Module . 21
5.4 COE Files . 23

6 Design Fl ows . 26
6.1 ViewLogic Schematic Flow . 27
6.2 Foundation Schematic Flow . 31
6.3 Foundation Express . 34
6.4 Synopsys FPGA Compiler Flow (VHDL) 40
6.5 Synopsys Verilog Flow . 53
March 23, 1998 3

CORE Generator 1.4 User Guide

1 Int roduction

1.1 Overvi ew

Welcome to the Xilinx CORE Generator! The Xilinx CORE Generator is an
easy to use design tool that delivers parameterizable cores optimized for
Xilinx FPGAs.
 4 March 23, 1998

Xilinx Inc.

The Xilinx CORE Generator, presents the designer with a catalog of
ready-made functions ranging in complexity from simple arithmetic opera-
tions such as adders, accumulators, and multipliers, to system-level build-
ing blocks, including filters, transforms, and memories. Selecting the
desired function, or module, is simplified by the tree-like presentation of
the catalog, where modules of a similar type are grouped together in fold-
ers that expand or contract on demand.

Detailed information about any module presented in the browser is
instantly available and includes details of how to use the module in your
own application, as well as guaranteed area and performance figures.
When you see the core you want, select it by single clicking on it. A data
sheet on a selected core can be viewed by clicking on the Spec icon on
the toolbar (requires Adobe Acrobat to be installed on your machine).

One of the most unique features of the CORE Generator is its ability to tai-
lor a generic functional building block, such as a FIR filter or multiplier, to
meet the exact needs of your application, and simultaneously deliver the
highest possible levels of performance and area efficiency. These high lev-
els of optimization are guaranteed in your application as a result of both
Xilinx’s ‘Core’-friendly FPGA architectures, and the intrinsic layout (or
floorplan) that is imposed on the module. Guaranteed access to the high-
est possible levels of performance and area efficiency, applied to a diverse
library of complex building blocks, makes the design of systems-on-a-chip
a simpler and faster process than ever before.

In addition to FPGA implementation details, the CORE Generator delivers
behavioral simulation models, schematic symbols and HDL instantiation
templates for the modules you choose, allowing the CORE Generator to fit
easily into your preferred design environment. The CORE Generator is
compatible with HDL and schematic capture design methodologies.

When running the CORE Generator software for the first time be sure to
set up your system options (e.g. working directory, etc.) from the Options
-> System Options… pull down menu and output format options (e.g.
generation of VHDL or Verilog, etc.) from the Options -> Output format…
pull down menu.

You can modify a Module’s parameters by double clicking on a core in the
hierarchy list. This brings up a parameterization screen which allows you
March 23, 1998 5

CORE Generator 1.4 User Guide

to define the parameters for each core. Select the parameters appropriate
to the function that you need to create.

After defining all of your parameters, you can generate a Core by simply
clicking on the Generate button. The output is a highly optimized CORE
for the targeted FPGA device comprised of the following files:

• A tailored Xilinx netlist with complete relative placement information
to guarantee performance

• VHDL or Verilog instantiation code
• A VHDL behavioral model
• A symbol for schematic capture tools

1.2 How to Obtain N ew Cores and Updates

New cores can be downloaded from the Xilinx web site and easily added
to the CORE Generator.

Bookmark:

http://ww w.xilinx.com/p roducts/logicore/coregen

and keep in touch regularly for updates.

We encourage you to check the CORE Generator WEB page before start-
ing a new design to verify that you have the latest version of the core
and core data sheet, as well as to look for any new cores that may be use-
ful in your design.

You must register for CoreLINX before downloading any of the Cores and
Updates on the CORE Generator WEB page.
 6 March 23, 1998

Xilinx Inc.

2 Syste m Requirements

2.1 All Plat forms

Adobe Acrobat ver 3.0.0 or later (Adobe Acrobat 3.01 is included on CORE
Generator 1.4 CD)

2.2 Win95/NT

• PC with Win95 or NT4.0
• 486 or better
• 32MB RAM (Large cores requiring device sizes range from

XC4036 through XC4062 will require 64MB -128MB RAM. Cores
targeted to larger devices will need up to 128M)

Table 2-1 Memory Requirements for PCs

2.3 Solaris

• Solaris 2.5 or 2.6
• Ultra Sparc (or equivalent)
• 64 MB RAM (Cores targeted to larger Xilinx devices may need up

to 128M)

Xilinx Device RAM Swap Space
XC4003E/L through XC4008E/L

XC4005XL through XC4008XL

XC4000XV

XC9500/F (small devices only)

32 MB 32 MB - 64 MB

XC4010E/L through XC4025E/L

XC4028EX through XC4036EX

XC4010XL through XC4028XL

XC4000XV

XC9500/F (medium devices only)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL

XC4000XV

XC9500/F (large devices)

128 MB 128 MB–256 MB
March 23, 1998 7

CORE Generator 1.4 User Guide

Table 2-2 Memory Requirements

Xilinx Device RAM Swap Space
XC4000E/L

XC4028EX through XC4036EX

XC4005XL through XC4028XL

XC4000XV

XC9500/F (small devices)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL

XC4000XV

XC9500/F (large devices)

128 MB 128 MB–256 MB
 8 March 23, 1998

Xilinx Inc.

3 Installation Instructions

3.1 Xilinx CORE Generator Requirements for Workstations

The Xilinx CORE Generator Software supports the following workstation
architectures and operating systems:

Solaris 2.5 and 2.6

Table 3-1 Memory Requirements

Note: The values given in the above table are for typical designs, and
include the loading of the operating system. Additional memory may be
required for certain boundary-case designs, as well as for concurrent
operation of other application. Xilinx recommends that 4000EX designs
 be compiled using an Ultra Sparc, or equivalent machine type.
64MB of RAM as well as 64MB of swap space is required to compile
4000EX designs, but Xilinx recommends that 128MB of RAM, plus
 corresponding swap space, be used.

3.2 Xilinx CORE Generator Installation o n Workstations

Installation of the Xilinx CORE Generator software is completed in two
steps.

1. Mount the CDROM labeled Xilinx CORE Generator.

 2. Run install located in the CDROM root directory.

Xilinx D evice RAM Swap Space
XC4000E/L

XC4028EX throughXC4036EX

XC4005XL through XC4028XL

XC4000XV

XC9500/F (small devices)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL

XC4000XV

XC9500/F (large devices)

128 MB 128 MB–256 MB
March 23, 1998 9

CORE Generator 1.4 User Guide

For detailed information on how to mount and unmount a CDROM, and
how to run the various installation programs, see the Installation section of
the Release Document.

3.3 Xilinx CORE Generator Requirements for PCs

The Xilinx CORE Generator Software supports the following PC operating
systems:

Windows 95 and Windows NT 4.0.

Note: The values given in the above table are for typical designs, and
include the loading of the operating system. Additional memory may be
required for certain boundary-case designs, as well as for concurrent
operation of other applications (for example, MS Word or Excel).

Table 3-2 Memory Requirements for PCs

3.4 Xilinx CORE Generator Installation on PC

The following table applies to Windows 95 and NT 4.0 installations.

Installation of the Xilinx CORE Generator software is completed in two
steps.

1. Insert the CDROM labeled Xilinx CORE Generator in the CDROM
drive.

Xilinx Device RAM Swap Space
XC4003E/L through XC4008E/L

XC4005XL through XC4008XL

XC4000XV

XC9500/F (small devices only)

32 MB 32 MB - 64 MB

XC4010E/L through XC4025E/L

XC4028EX through XC4036EX

XC4010XL through XC4028XL

XC4000XV

XC9500/F (medium devices only)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL

XC4000XV

XC9500/F (large devices)

128 MB 128 MB–256 MB
 10 March 23, 1998

Xilinx Inc.

2. Run setup.exe located in the CDROM root directory.

3.5 How to Obtain New Cores and Updates

New cores can be downloaded from the Xilinx web site and easily added
to the CORE Generator.

Bookmark:

http://www.xilinx.com/products/logicore/coregen

and keep in touch regularly for updates.

We encourage you to check the CORE Generator WEB page before start-
ing a new design to validate that you have the latest version of the core
and core data sheet as well as to look for any new cores that may be use-
ful in your design.

You must register for CoreLINX before downloading any of the Cores and
Updates on the CORE Generator WEB page.
March 23, 1998 11

CORE Generator 1.4 User Guide

he
s-

4 Project Management
The CORE Generator determines its operational settings from the
coregen.ini file. This file is created during the installation of the CORE Gener-
ator. CORE Generator options may be changed in two ways. The first method
is to modify the parameters from the Options->System_Options

 menu from the top of the module browser window. The second
method is to modify the parameters in the coregen.ini file. Only the modi-
fications to the coregen.ini file are permanent. When the CORE Generator
options are modified through the options menu the changes are for that
session only.

All the files created by the CORE Generator during normal use are stored in
the CORE Generator project directory PCS: During installation, the CORE
Generator project is created for you in the following directory:

<CORE_Generator_Install_ Path>/coregen/wkg

Until the CORE Generator project directory is changed, all files created by t
CORE Generator are deposited in this directory. The project directory is di
played at the top of the module browser window at all times to remind you of the
current project setting.

4.1 Set up the CORE Generator .INI File (coregen.ini)

A coregen.ini file is created during the install of the CORE Generator and
can be found in the following directory:

<CORE_Generator_Install_ Path>/coregen/wkg

Most of the parameters set in this file are determined during installation,
and usually do not need to be changed. However, there are a few
parameters that may be altered, or added, to this file.
 12 March 23, 1998

Xilinx Inc.

For example, if you wish to change the CORE Generator’s project direc-
tory to a location other than the default, then you may set the ProjectPath
parameter to point to the new location.

Example: SET ProjectPath = C:\projects\juke\filter\v1_0

The result of changing the CORE Generator coregen.ini in this way is
that each time the CORE Generator is started these settings will be used.
If a particular variable or product is not detected during the install process,
or you move or install that product later, you will need to modify the core-
gen.ini file. The following parameters may bespecified in the core-
gen.ini file:

Project Path - This setting defines the project working directory. All output
files produced by the CORE Generator are placed here. When changing
the Project Path parameter, all new CORE Generator output files are
deposited in this new CORE Generator project directory. The default
Project Path that is setduring installation of the CORE Generator is
<CORE_Generator_Install_ Path>/coregen/wkg . Look here for any out-
put files created by the CORE Generator.

Example: SET ProjectPath = C:\projects\juke\filter\v1_0\wkg

Options: Path to working directory.

SelectedP roducts - This setting defines the type of output files to be cre-
ated each time a module is built.

Example: SET SelectedProducts = XNF FoundationSym

Options: Multiple output formats should be specified on the same line, separated by
a blank space. The SelectedProducts parameter options are case sensitive.

• XNF: XNF Implementation Netlist. This is the gate level netlist that is
used to implement the logic of the particular module that the CORE
Generator has created. The HDL templates or schematic symbols
created by the CORE Generator point to this netlist.

• ViewSym: Viewlogic Schematic Symbol. When this option is specified
the CORE Generator will create a Viewlogic schematic symbol that can
 be used in a Viewlogic schematic to instantiate the module netlist.

• FoundationSym: Foundation Schematic Symbol. When this option is
specified the CORE Generator will create a Foundation schematic
 symbol that can be used in a Foundation schematic to to instantiate the
module netlist.

• VHDLSym : VHDL Instantiation Template. When this option is specified
March 23, 1998 13

CORE Generator 1.4 User Guide

CORE Generator will create a VHDL instantiation template that can be
 used to instantiate the module netlist in your VHDL design.

• VHDLSim: VHDL Behavioral Simulation Model. When specified, this
option will create a VHDL behavioral simulation model, which can be
used to verify the functional operation of the module netlist.

• VerilogSym: Verilog Instantiation Template. When specified this
option will create a Verilog instantiation template that can be used
to instantiate the module netlist in your Verilog design.

ViewLogicLibraryAlias - This setting defines the name of the ViewLogic
library alias. This alias should be the same alias that is set in the view-
draw.ini file.

Example: SET ViewlogicLibraryAlias = primary

Options: Any valid alphanumeric 8 character name.

Foundation Path - This setting defines the path location of the Foundation
CAE tools. It must be specified for Foundation symbols and library files to
be created.

Example: SET FoundationPath = C:\fndtn\active

Options: Single path to the installation of the Foundation CAE tools.

Acrobat Path - This setting defines the path location of the Acrobat tools.
It must be specified for the proper launching of the data sheets and help
documentation.

Example: SET AcrobatPath = C:\Acrobat3\Reader\

Options: Single path to the installation of the Acrobat tools.

AcrobatName - This setting defines the name of the Acrobat executable.

Example: SET AcrobatName = AcroRd32.exe

Options: Single name of an Acrobat executable.

The values of the SET options, XACTPath, ProSeriesPath, and
ViewLogicPath below are not used in version 1.4.x of the CORE Genera-
tor, however, they must be present, and should not be removed.

SET XACTPath = c:\xact

SET ProSeriesPath = c:\proser

SET ViewlogicPath = c:\wvoffice
 14 March 23, 1998

Xilinx Inc.
Advanced : Multiple COREGEN.INI Files

When the CORE Generator is launched, it looks for a coregen.ini file in
the current working directory. For Windows 95 and NT applications the
current working directory is defined in the short-cut that is used to launch
the CORE Generator. You may therefore edit the short-cut that you use to
launch the CORE Generator (usually the CORE Generator entry on the
 Windows Start-Bar) to set its ‘Working Directory’ field to a project
directory that contains its own coregen.ini file. The settings in this core-
gen.ini file will then define the project directory (and any other settings)
that the CORE Generator assumes on start-up.

Alternatively, you may create several short-cuts, each with its working
directory pointing to a different project directory, in which a coregen.ini
file specifies the CORE Generator parameters specific to each project.

4.2 Set the CORE Generator System Options

From within the CORE Generator, session options are set by selecting the
Options-> System_Options menu from the top of the module browser
window. Be aware that the options set through this option menu are only
applicable to the current CORE Generator session. To make these options
permanent, you will want to modify your coregen.ini . In this menu selec-
tion you will find the following options in the Sample GUI shown below:

Project Path - This setting defines the project working directory. All output
file produced by the CORE Generator will be placed here. If you change
the Project Path parameter then all new CORE Generator output files will
be deposited in the new CORE Generator project directory. The default
March 23, 1998 15

CORE Generator 1.4 User Guide
Project Path that is setduring installation of the CORE Generator is
<CORE_Generator_Install_ Path>/coregen/wkg . Look here for any out-
put files created by the CORE Generator.

Example: Project path setting = C:\projects\juke\filter\v1_0\wkg

Options: Path to working directory.

Viewlogic Library Alias - This setting defines the name of the ViewLogic
library alias. This alias should be the same alias that is set in the view-
draw.ini file.

Example: Alias value used in example GUI = primary

Options: Any valid alpha numeric 8 character name, default value is "primary".

Foundation Path - This setting defines the path location of the Foundation
CAE tools. It must be specified for Foundation symbols and library files to
be created.

Example: Foundation Path setting: C:\xilinx\active

Options: Single path to the installation of the Foundation CAE tools.

You need to remember that changing the CORE Generator project param-
eters in this fashion is only a temporary change since the next time the
CORE Generator is launched this new setting will be lost. To make a more
permanent change to the CORE Generator project parameters, see the
section entitled Set The CORE Generator .INI File.

4.3 Set The CORE Generator Output Options

The CORE Generator can create several different types of output. The de-
sired outputs for a particular project may be selected from the Options-
>Output Products window.
 16 March 23, 1998

Xilinx Inc.
Any combination of output formats may be requested at any time. The
default selections are XNF Implementation Netlist and VHDL Instantiation
Template. The following is a description of each file format:

XNF Implementation Netlist - This is the gate level netlist that will be used
to implement the logic of the particular module that the CORE Generator
has created. The HDL templates or schematic symbols will point to this
netlist. The XNF output option should always be selected.

Output: <ModuleName>.xnf

Viewlogic Schematic Symbol - When selected, this option will create a
Viewlogic schematic symbol and a simulation wir file that can be used in
your ViewLogic schematic capture tools to instantiate the module netlist.

Output: wir\<ModuleName>.1

sym\<ModuleName>.1

Foundation Schematic Symbol - When selected, this option will create a
Foundation schematic symbol and simulation file that can be used in your
Foundation schematic capture tools to instantiate the module netlist.

Output: <ModuleName>.alr

lib\project_name.sym
March 23, 1998 17

CORE Generator 1.4 User Guide
VHDL Instantiatio n Template - When selected this option will create a
VHDL instantiation template that can be used to instantiate the module
netlist in your HDL design capture tool.
Output: <ModuleName>.vhi

VHDL Beh avioral Si mulation Model - When selected this option will cre-
ate a VHDL simulation model, which can be used to verify the functional
simulation of the module netlist. This file is not intended to be synthesized.
It is only provided for behavioral simulation. Any attempts to synthesize this
netlist will yield sub-optimal results.

Output: <ModuleName>.vhd

Verilog Instantiatio n Template - When selected this option will create a
Verilog instantiation template that can be used in your HDL design capture
tool to instantiate the module netlist.

Output: <ModuleName>.vei

The Family drop-down box allows you to restrict the CORE Generator’s
module browser to show only those modules that may be targeted to the
selected family of devices. At this time the supported families of devices
are the XC4000E/EX/XL/XV and Spartan.

For detailed information about how to use these files with a variety of CAE
design flows, see the Design Fl ows section.
 18 March 23, 1998

Xilinx Inc.
5 Using the CORE Generator

5.1 Module Browser Tree

The most common view of the CORE Generator is the module browser
window. This window allows you to browse the many modules that are
available from the CORE Generator installation. Modules that fall into par-
March 23, 1998 19

CORE Generator 1.4 User Guide

les.
ticular application categories are grouped into folders to assist you in
locating the module appropriate for your needs.

To expand a folder, double click on the folder icon to the left of the folder
name or folder name. The folder will expand to reveal more folders, or modu

Note: The folder may be ‘tidied-up’ by double clicking once more on the
now open folder icon - causing it to contract.

Finally, when the desired module has been located, it can be selected by
single clicking on its icon.
 20 March 23, 1998

Xilinx Inc.
5.2 Getting Module Data Sheets

A data sheet for the selected module can be requested at any time by first
selecting the module in the module browser, and then clicking on the
SPEC button on the CORE Generator toolbar. This action will launch the
Acrobat Reader application and display the module’s data sheet.

5.3 Parameterizing a Module

Most modules have a parameterization window. The parameterization
window shown below was launched by navigating through the CORE
Generator’s module browser to the ‘Registered Loadable Adder’ entry.
Double-clicking on a module’s icon or descriptive text will reveal the
parameterization window for that module. While the parameterization win-
dows will be unique for each module, there are some characteristics that
are common to all.
March 23, 1998 21

CORE Generator 1.4 User Guide
For example, the Component Name field allows you to assign a name to
a module that you create. Files that the CORE Generator creates
for a particular module will have a root filename that matches the
Component Name. You should note that Component Names have the fol-
lowing restrictions:

• Up to 8 characters
• No extensions
• Must begin with a alpha character: a-z (No Capital letters)
• May include (after the first character): 0-9, _

All parameterization windows respond to fields containing illegal or invalid
data in the same fashion. The affected field will be highlighted in red until
the problem is corrected. If the reason why a field is highlighted is not obvi-
ous, or if the explanation in the log window is not clear, a more detailed
explanation can usually be obtained by pressing the Generate button.
Another feature common to all parameterization windows is the Generate
and Cancel buttons. Assuming there are no problems with any of the
parameters that have been specified, pressing Generate will cause the
CORE Generator to create files of the requested types. Pressing Cancel
will return you to the module browser window without generating any files.
 22 March 23, 1998

Xilinx Inc.
For information about a specific module’s parameterization window, such
as upper and lower limits for certain fields (or to obtain area/performance
figures for specific parameter combinations), see the module’s data sheet.
General guide lines are discussed in the COE Files section below.

5.4 COE Files

Some modules can require a significant amount of information to com-
pletely specify their behavior. Modules of this type will have a button on
their parameterization windows which you can use to load their parameter-
ization information from a file. One such module is the FIR filter, whose
parameterization window is shown below.

Additional information about a particular Module’s COE file can be found
in that Module’s datasheet. For examples of PDA FIR, RAM, and ROM
COE files, please look in the /coregen/wkg directory.
March 23, 1998 23

CORE Generator 1.4 User Guide
.COE files should be ASCII text files and have an extension of .COE.
 The format for the .COE file is illustrated below:

Keyword = Value ; Optional Comment

Keyword = Value ; Optional Comment

…

…

CoefData = Data_Value, Data_Value, …;

Note: CoefData or MemData keywords must always be the last Keywords
of the file at the end if the file as any further keywords will be ignored.
 Any text after a semicolon is treated as a comment and will be ignored.

If you are working on a PC the .COE files should be in a DOS format.
On a UNIX Workstation UNIX format should be used.

An example .COE file that might be used to parameterize a FIR filter is shown
below.

*********** EXAMPLE: PDA FIR ***********

component_name=fltr16;
Number_of_taps=16;
Input_Width = 8;
Signed_Input_Data = true;
Output_Width = 15;
Coef_Width = 8;
Symmetry = true;
Radix = 10;
coefdata=1,-3,7,9,78,80,127,-128;

An example .COE file that might be used to parameterize RAM is shown below.

*********** EXAMPLE: RAM ***********

component_name=ram16x12;
Data_Width = 12;
Address_Width = 4;
Depth = 16;
Radix = 16;
memdata=346,EDA,0D6,F91,079,FC8,053,FE2,03C,FF2,02D,FFB,022,002,
 24 March 23, 1998

Xilinx Inc.
01A,005;

An example .COE file that might be used to parameterize a ROM is shown below.

*********** EXAMPLE: ROM ***********

component_name=rom32x8;
Data_Width = 8;
Address_Width = 5;
Depth = 32;
Radix = 10;
memdata=127,127,127,127,127,126,126,126,125,125,125,4,3,2,0,-1,-2,-4,-
5,-6,-8,-9,-11,-12,-13,-38,-39,-41,-42,-44,-45,-128;
March 23, 1998 25

CORE Generator 1.4 User Guide
6 Design Fl ows . 26
6.1 ViewLogic Schematic Flow . 27
6.2 Foundation Schematic Flow . 31
6.3 Foundation Express . 34
6.4 Synopsys FPGA Compiler VHDL Flow 40
6.5 Synopsys Verilog Flow . 53
 26 March 23, 1998

Xilinx Inc.
6.1 Viewlogic Schematic Fl ow

In order for the CORE Generator to successfully generate all the necessary
files for this flow, it is required that the Viewlogic tool and the Xilinx M1 soft-
ware be set up properly on the same machine the CORE Generator is running
on. If one of these tools is missing or not set up properly, errors will be
breported in the vllink.log file located in the project directory. Please refer to
the Alliance Qui ck Start User Guide , Appendix E for Viewlogic setup
instructions.

1. Create a directory for your ViewLogic project.

Eg: c:\viewlog\project

2. Set up the project libraries.

On Workstations, these libraries must be defined in the viewdraw.ini file
located in the project’s working directory.
On PCs, these libraries must be defined in the Viewlogic project file
(.VPJ), located in the project’s working directory.

The following is the library search order needed to create an XC4000XL
design:

dir [p] c:\viewlog\project (primary)

dir [rm] %XILINX%\viewlog\data\xc4000xl (xc4000xl)

dir [r] %XILINX%\viewlog\data\logiblox (logiblox)

dir [rm] %XILINX%\viewlog\data\simprims (simprims)

dir [rm] %XILINX%\viewlog\data\builtin (builtin)

dir [rm] %XILINX%\viewlog\data\xbuiltin (xbuiltin)

Note: The (primary) alias is very important since the CORE Generator uses
it to determine to which directory the symbol and simulation files will
be copied. This alias should match the one specified in the Core-
Generator System Options in the Viewlogic Library Alias field.

3. Set the Output Format.
March 23, 1998 27

CORE Generator 1.4 User Guide
From the CORE Generator Options menu, select Output format and check
the following options:

4. Set the Project Path and the Viewlogic Library Alias

From the CORE Generator Options menu, select System Options and
set the Project Path to point to your Viewlogic projectdirectory
(c:\viewlog\project). Also make sure that the ViewLogic Library
Alias for your project matches the one defined in the viewdraw.ini
file. The default ViewLogic Library Alias is primary, but any name of 8
characters can be used.

5. Select the module you want to generate by navigating to the desired
 module browser and clicking on it. You can click on the SPEC button
on the CORE Generator toolbar to review the modules datasheet.
 28 March 23, 1998

Xilinx Inc.
Double-click on the selected module to call up its parameterization win-
dow.
When you have entered all the parameterization details required by the
module, press the Generate button.

6. Output Files

A Viewlogic Symbol, a simulation file and a Netlist File (.XNF) are
generated.

- The symbol of typeComposite is created and placed in the SYM
subdirectory under the Viewlogic project directory.

- The simulation file is created from the XNF file and placed in the WIR
subdirectory under the Viewlogic project directory.

- The Netlist (.XNF) used for implementation, is placed directly in the
ViewLogic project directory.

Note: The WIR file is used by Viewlogic to perform Functional simulation
and should never be deleted. In order to generate this file, the CORE Gen-
erator needs to access some Xactstep M1 executables and may fail if this
tool is not set up properly.

Check the vllink.log file located in the Project Directory if an error
occurs during the generation of these files.

7. Load the Symbol in the Schematic Editor

Open the ViewLogic schematic tool, load your top level schematic (or cre-
ate a new one) and add the new symbol for the module you have just cre-
ated. From this point on, the flow for processing this design is the same
as if you were using macros from the Unified Library. Please refer to the
 Viewlogic Tutoria l Guide for further information.
March 23, 1998 29

CORE Generator 1.4 User Guide
Note: When executing the Viewlogic “Check” program, the following error
messages will be displayed for every COREGen module in the design.
It can be safely ignored:

Example:

ERROR: Could not load schematic sheet: corename.1
 30 March 23, 1998

Xilinx Inc.
6.2 Foundation Schematic Flow

1. Set a Foundation Project
Create a new project or Select an existing Project from the Foundation
Project Manager.

The files generated by the CORE Generator will automatically be copied
into the selected project directory.

2. Set the CORE Generator Output Format
From the CORE Generator Options menu, select Output Format , and
check the following options:
March 23, 1998 31

CORE Generator 1.4 User Guide
3. Set the System Options

From the CORE Generator Options menu, select System Option s, and
set the Project Path to point to your Foundation project directory. If the
Project Path points to a directory other than the one set in the Foundation
Project Manager, the CORE Generator will copy the files in both locations,
except for the symbol, which will only reside in the Foundation Project
directory.

While you are in this menu, make sure that the Foundation Path is set cor-
rectly. This path should point to the directory where Foundation has been
installed.

4. Select the module you want to generate by navigating to the desired module
and clicking on it.
You may click on the SPEC button on the CORE Generator toolbar to
review the module's datasheet, or double-click on the selected module to
call up its parameterization window. When you have entered all the param-
eterization details required by the module, press the Generate button.

5. Output Files

A Foundation symbol, a Xilinx Netlist File (.XNF) and a simulation file
(.ALR) are created. The symbol is automatically copied in the Founda-
tion Project directory and can be added to the top level schematic from the
Symbol menu.
 32 March 23, 1998

Xilinx Inc.
6. Load the Symbol in the Schematic Editor

Open the Foundation schematic editor, load your top level schematic (or
create a new one) and add the new symbol for the module you have just
created. The new symbols will be found in the library list along with the
Unified Library symbols.

Note: It may be necessary to select File->Update Libraries from the
Schematic Editor to be able to view the newly created cores in the library
list.

The Symbol can now be added into the Top Level schematic like any other
symbol. From this point on the simulation and compilation flow is the
same as the Unified Library components.
March 23, 1998 33

CORE Generator 1.4 User Guide
6.3 Foundation Express Flow

1. Create a New Project, or Select an existing Project from Foundation
Express. The files generated by the CORE Generator will automati-
cally be copied into the selected project directory.

2. From the CORE Generator “Options” menu, select “Output Format”,
and check the following options:

Select either VHDL or Verilog Instantiation template.

3. From the CORE Generator Options menu, select System Option s,
and set the Project Path to point to your Foundation Express project
directory.
 34 March 23, 1998

Xilinx Inc.
4. Select the module you want to generate by navigating to the
desired module and clicking onit.

You may click the SPEC button on the CORE Generator toolbar to review
the module’s datasheet. Double-click on the selected module to call up its
parameterization window. When you have entered all the parameters
required by the module, press the Generate button.

Note: Do not name your Module with a Unified Library Name, as this
will cause the Synthesizer to use the Unified Library XNF file instead of
the one generated by the CORE Generator.

A VHDL or Verilog snippet (module_name.VHI or module_name.VEI) and
a Netlist File (.XNF) will be created and copied into the CORE Generator
project directory. The snippet contains the component declaration as well
as the Port Map / Module declaration for the module that has been
selected. This snippet can be Copied and Pasted into the top-level HDL
file as shown in the following examples.

VHDL Example:

Shown below are the VHDL Instantiation Template and a top-level VHDL
design that instantiates the XNF file from the CORE Generator.

******** 8 Bit Adder VHDL Snippet: adder8.vhi ************

component adder8 port (
a: IN std_logic_VECTOR(7 downto 0);
b: IN std_logic_VECTOR(7 downto 0);
s: OUT std_logic_VECTOR(8 downto 0);
c: IN std_logic;
ce: IN std_logic;
ci: IN std_logic;
clr: IN std_logic);

end component;

yourInstance : adder8 port map (
a => a,
b => b,
s => s,
c => c,
ce => ce,
ci => ci,
March 23, 1998 35

CORE Generator 1.4 User Guide
clr => clr);

********** Top Level VHDL file: adder8_top.vhd ******

Library IEEE;
use IEEE.std_logic_1164.all;

entity adder8_top is
 port (ina, inb: in STD_LOGIC_VECTOR (7 downto 0);

 clk, enable, carry, clear: in STD_LOGIC;
 qout: out STD_LOGIC_VECTOR (8 downto 0));

end adder8_top;

architecture BEHAV of adder8_top is

-- Instantiate the adder8.xnf file.

component adder8 port (
 a: IN std_logic_VECTOR(7 downto 0);
 b: IN std_logic_VECTOR(7 downto 0);
 s: OUT std_logic_VECTOR(8 downto 0);
 c: IN std_logic;
 ce: IN std_logic;
 ci: IN std_logic;
 clr: IN std_logic);
end component;

begin

u1 : adder8 port map (
 a => ina,
 b => inb,
 s => qout,
 c => clk,
 ce => enable,
 ci => carry,
 clr => clear);

end BEHAV;

**
 36 March 23, 1998

Xilinx Inc.
Verilog Example:

Shown below are the Verilog Instantiation Template and a top-level Verilog
design that instantiates the XNF file from the CORE Generator. Also
shown is a module declaration file for the XNF file. This file, named
module_name.v , is required to define the port directions of the XNF file.
This file can be created by cutting and pasting the module declaration sec-
tion of the .VEI file into the file called module_name.v .

******** 8 Bit Adder Verilog Snippet : adder8.vei ************

module adder8 (a, b, s, c, ce, ci, clr);

input [7:0] a;
input [7:0] b;
output [8:0] s;
input c;
input ce;
input ci;
input clr;
endmodule

// The following is an example of an instantiation :

adder8 YourInstanceName (
.a(a),
.b(b),
.s(s),
.c(c),
.ce(ce),
.ci(ci),
.clr(clr));

********** Top Level Verilog file : adder8_top.v ******

module adder8_top(ina, inb, clk, enable, carry, clear, qout);

 input [7:0] ina;
 input [7:0] inb;
 input clk;
 input enable;
 input carry;
 input clear;
March 23, 1998 37

CORE Generator 1.4 User Guide
 output [8:0] qout;

// instantiate the adder8.xnf file

adder8 U1 (
.a(ina),
.b(inb),
.s(qout),
.c(clk),
.ce(enable),
.ci(carry),
.clr(clear));

**

******** Instantiation Module Declaration: adder8.v ************

module adder8 (a, b, s, c, ce, ci, clr);
input [7:0] a;
input [7:0] b;
output [8:0] s;
input c;
input ce;
input ci;
input clr;
endmodule

Compiling the Design in Foundation Express

1. Create a new project, or open an existing one in Foundation Express.

2. Add all HDL files to be synthesized for the project.

Note: Do NOT add the XNF files created by the CORE Generator to the
Express project. Also, do NOT add any HDL simulation files.

3. Verilog Only: Add a .v module declaration file for each instantiated
block.

4. Select the top level entity and select Create Implementation to gen-
erate a new implementation.

5. Optimize the implementation.

6. Write out the XNF file for this implementation.
 38 March 23, 1998

Xilinx Inc.
7. The XNF file written by Express and the XNF file(s) created by the
CORE Generator are required as inputs to the XACTstep M1 Imple-
mentation Tools, and should all be located in the same directory when 1
 the design is input to M1.

For additional information on the Foundation Express flow, please refer to
the Foundation Express User Guide. For more details on the Alliance
FPGA Express flow, please refer to the Quick Start Guide for Xilinx Alli-
ance Series v1.4.
March 23, 1998 39

CORE Generator 1.4 User Guide
6.4 Synopsys FPGA Compiler VHDL Flow

Example Design Illustratin g VHDL Implementation & Si mulation
Design Fl ows

This document describes the following processes:

1. How to create a serial distributed arithmetic FIR filter with the Xilinx
CORE Generator, and obtain:

 - An implementation netlist (.XNF)

 - A VHDL instantiation 'snippet' (.VHI)

 - A VHDL behavioral model (.VHD)

2. How to embed the filter within a larger VHDL design, and synthesize
the design using Synopsys FPGA Compiler.

3. How to simulate the entire design, including the embedded filter,
using Synopsys VHDL System Simulator (VSS).

Create an S DA FIR filter with the Xilinx CORE Generator

Invoke the Xilinx CORE Generato. Before you start the process of
building the filter, check that the desired output products have been
selected from the Options -> Output_Format.. . menu:

These selected options correspond with an XNF implementation netlist, a
VHDL instantiation snippet, and a VHDL behavioral model respectively.
 40 March 23, 1998

Xilinx Inc.
Also you need to set the Project Path to point to the directory you wish, to hold
the files generated by CORE Generator. The recommended location for this
directory is the directory that will hold your Synopsys design. The Project Path
can be set from the Options -> System Options menu in the CORE Generator.

To create the filte, navigate through the tree of available modules to
 the SDA FIR Filter Single-Channel leaf.

The path you should follow through the tree is:

Core Generator Library -> LogiCORE -> DSP -> Filters -> FIR Filters -
> Serial Distributed Arithmetic

Before you can build the filter, you must describe the details of the filter's
construction and present this information to the CORE Generator. This can be
achieved by creating a core-definition file (.COE) containing the required infor-
mation. An example .COE file for an SDA FIR Filter is shown below.

-- EXAMPLE.COE ---------------------------------------

Component_name = example;

Number_of_taps = 26;

Input_Width = 12;

Output_Width = 12;

Coef_Width = 12;

Symmetry = false;

Radix = 16;

coefdata = 346,EDA,0D6,F91,079,FC8,053,FE2,

 03C,FF2,02D,FFB,022,002,01A,005,
March 23, 1998 41

CORE Generator 1.4 User Guide
 014,008,00F,008,00B,008,009,006,

 008,FFE;

This .COE fil instructs the CORE Generator to build a 26-tap, non-symmet-
ric filter, which takes 12-bit input data, has 26 12-bit coefficients, and which
generates a full precision output truncated to 12-bits. The coefficients are
shown in hexadecimal format, and are in increasing time order.

Double-click on the SDA FIR Filter Single-Channel entry in the CORE Gener-
ator module browser. This calls up the SDA FIR Filter parameterization
window. Click on the Load Coefficients button and specify the EXAMPLE.COE
file shown above. Inspect the various fields in the window to ensure that they
have all taken on the values specified in the .COE file. Finally click on Generate
to begin building the filter.

When the CORE Generator has finished, you should find the following files
in your project directory :

example.xnf - The implementation netlist

example.vhi - The VHDL instantiation snippet

example.vhd - The VHDL behavioral model

Instantiate the filter within a la rger VHDL design and synthesize with
Synopsys

A simple example of a larger design containing the filter that was created above
is shown below. The sections of code peceded by comments were cut-and-
pasted from the VHDL instantiation snippet file EXAMPLE.VHI. In the second
commented section, the default signal names used in the snippet have been
edited to match the signal names used in the actual design.

-- DESIGN.VHD --------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY design IS

 PORT(data_in : IN std_logic_vector(11 DOWNTO 0);

 data_out : OUT std_logic_vector(11 DOWNTO 0);

 new_data : IN std_logic;
 42 March 23, 1998

Xilinx Inc.
 rdy_for_data : OUT std_logic;

 result_ready : OUT std_logic;

 control : IN std_logic;

 ck : IN std_logic);

END design;

ARCHITECTURE filter OF design IS

 SIGNAL filtered_data : std_logic_vector(11 DOWNTO 0);

 SIGNAL nc_1 : std_logic; -- Just a dangling net

 SIGNAL nc_2 : std_logic; -- Just a dangling net

 -- -- --

 -- Component declaration provided by CORE Generator --
 -- Filename: EXAMPLE.VHI --
 -- -- --

 component example port (

 data: IN std_logic_VECTOR(11 downto 0);

 result: OUT std_logic_VECTOR(11 downto 0);

 nd: IN std_logic;

 rfd: OUT std_logic;

 sinf: IN std_logic;

 sinr: IN std_logic;

 soutf: OUT std_logic;

 soutr: OUT std_logic;

 ck: IN std_logic;

 rdy: OUT std_logic);

 end component;

BEGIN

 data_out <= filtered_data WHEN control='1' ELSE data_in;
March 23, 1998 43

CORE Generator 1.4 User Guide
 -- -- --

 -- Component instantiation provided by CORE Generator --

 -- Filename: EXAMPLE.VHI -------------------------------

 u0 : example PORT MAP (

 data => data_in,

 result => filtered_data,

 nd => new_data,

 rfd => rdy_for_data,

 sinf => nc_1,

 sinr => nc_2,

 soutf => OPEN,

 soutr => OPEN,

 ck => ck,

 rdy => result_ready);

END filter;

--

Assuming that the Xilinx/Synopsys Interface product has been installed cor-
rectly, and that a .synopsys_dc.setup file exists in your project directory that
points to the target synthesis library for the desired device architecture, you can
use the following dc_shell script to synthesize the above design:

-- DESIGN.SCR --------------------------------

read -f vhdl design.vhd

set_dont_touch u0

set_port_is_pad all_inputs() + all_outputs()

set_pad_type -clock ck

insert_pads

compile

replace_fpga

write -h -f xnf -output design.sxnf

quit

 44 March 23, 1998

Xilinx Inc.
Synopsys may issue a warning about the lack of a design called example in its
database. This warning may be ignored since example is the filter that was cre-
ated earlier, and which will be merged into the design once synthesis is com-
plete.

When FPGA Compiler completes, it should leave behind a file called
design.sxnf which is the Xilinx Netlist Format result of the synthesis process.
To process this netlist, merging-in the filter created earlier in the process, run
the following command:

(XILINX M1)

ngdbuild -p <target_part_type/speed_grade> design.sxnf

Simulate the Entire Design , Including the Embedded Filter

Simulation of a design written in VHDL, and which contains a Xilinx Core Mod-
ule (such as the one created in step 1), with a behavioral simulator can be
achieved by using behavioral models that are created by the module generator.
The VHDL behavioral model mimics the behavior of the specific module whose
parameters were entered via the module generator's parameterization window.
If any details of an existing module are subsequently altered via the module
generator's parameterization window, ensure that the VHDL Beh avioral Si mu-
lation Model option is checked on the

CORE Generator Options->Output format window

since the behavioral model must be recreated to reflect these changes.

Using Synopsys' VHDL System Simulator (VSS), you are required to declare
the whereabouts of the WORK library, usually a subdirectory in your project
directory. The location is specified in a file called .synopsys_vss.setup found in
the project directory. Any other libraries containing, for example, behavioral
models for instantiated primitives, should also be declared here. Note that
some behavioral models created by the module generator need access to a
library of supporting functions called 'XUL'. The whereabouts of this library will
need to be recorded in the .synopsys_vss.setup file.

An example .synopsys_vss.setup file is shown below:
March 23, 1998 45

CORE Generator 1.4 User Guide
-- .SYNOPSYS_VSS.SETUP --------------------------

TIMEBASE = NS
TIME_RES_FACTOR = 0.1
WORK > DEFAULT
DEFAULT : ./WORK
XUL : ../XUL_VSS

In preparation for simulating a design containing a Xilinx CORE Generator
behavioral model, you need to analyze the library of supporting functions 'XUL'.
To do this, select/create a directory in which to store the analyzed version of
this library, and record it in the .synopsys_vss.setup file, as shown above.
(The location of this directory is not too important, although it should ideally be
a central location where other designers can access it.) To analyze the 'XUL'
library, in a directory containing a .synopsys_vss.setup file which contains the
correct 'XUL' pointer, type the following command:

vhdlan -w XUL <COREGEN_Install_Path>/ip/xilinx/xul/ul_utils.vhd

To simulate the design shown in step 2, which contains the Xilinx Core Module
created in step 1, you should first analyze the behavioral model for the filter,
then analyze the synthesizable code itself.

Note: It is important that the simulation model be used for simulation *ONLY*.
Behavioral models created by the Module Generator are inadequate for synthe-
sis purposes.

Finally, the testbench - the simulation vectors written in sequential VHDL -
should be analyzed. A testbench suitable for exercising the design shown in
step 2 is included below, followed by the sequence of commands necessary to
simulate the design with Synopsys VSS:

-- TESTBNCH.VHD ---------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY testbench IS

END testbench;
 46 March 23, 1998

Xilinx Inc.
ARCHITECTURE for_example OF testbench IS

 COMPONENT design

 PORT(data_in : IN std_logic_vector(11 DOWNTO 0);

 data_out : OUT std_logic_vector(11 DOWNTO 0);

 new_data : IN std_logic;

 rdy_for_data : OUT std_logic;

 result_ready : OUT std_logic;

 control : IN std_logic;

 ck : IN std_logic);

 END COMPONENT;

 SIGNAL data_in : std_logic_vector(11 DOWNTO 0);

 SIGNAL data_out : std_logic_vector(11 DOWNTO 0);

 SIGNAL new_data : std_logic;

 SIGNAL control : std_logic;

 SIGNAL rdy_for_data : std_logic;

 SIGNAL result_ready : std_logic;

 SIGNAL ck : std_logic;

 CONSTANT half_clock_period : TIME := 100 NS;

BEGIN

 uut : design PORT MAP (data_in => data_in,

 data_out => data_out,

 new_data => new_data,

 rdy_for_data => rdy_for_data,

 result_ready => result_ready,

 control => control,

 ck => ck);
March 23, 1998 47

CORE Generator 1.4 User Guide
 stimulus : PROCESS

 BEGIN

 data_in <= "000000000000";

 new_data <= '0';

 control <= '1';

 ck <= '1';

 WAIT FOR half_clock_period;

 -- ------------------------ --

 -- Fill the filter with 0's --

 -- ------------------------ --

 FOR i IN 0 TO 26 LOOP

 WHILE rdy_for_data = '0' LOOP

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 END LOOP;

 new_data <= '1';

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 new_data <= '0';

 END LOOP;

 -- ------------- --

 -- Do an impulse --

 -- ------------- --

 WHILE rdy_for_data = '0' LOOP

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 END LOOP;
 48 March 23, 1998

Xilinx Inc.
 data_in <= "011111111111";

 new_data <= '1';

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 data_in <= "000000000000";

 new_data <= '0';

 -- ---------------------------- --

 -- Continue with a field of 0's --

 -- ---------------------------- --

 FOR i IN 0 TO 26 LOOP

 WHILE rdy_for_data = '0' LOOP

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 END LOOP;

 new_data <= '1';

 ck <= NOT ck; WAIT FOR half_clock_period;

 ck <= NOT ck; WAIT FOR half_clock_period;

 new_data <= '0';

 END LOOP;

 WAIT; -- The End

 END PROCESS; -- stimulus

END for_example;

CONFIGURATION cfg_testbench OF testbench IS

 FOR for_example
March 23, 1998 49

CORE Generator 1.4 User Guide
 END FOR;

END cfg_testbench;

--

Using VSS, the commands required to analyze and simulate this design are:

 vhdlan example.vhd

 vhdlan design.vhd

 vhdlan testbnch.vhd

 vhdldbx cfg_testbench

At the VHDL debugger (vhdldbx) command line, issue the following commands
to begin the simulation and observe the resulting waveforms:

 trace *'signal
 run
 50 March 23, 1998

March 23, 1998 51

Xilinx Inc.

6.5 Synopsys FPGA Compiler Flow (Verilog)

Generate the Desired Core Module

Invoke the Xilinx Core Generator. Before you start the process of building a
module, select the following output formats from the Options ->
Output_Format... menu:

• XNF Implementation Netlist

• Verilog Instantiation Template

You will also need to set the Project Path to point to a directory where the
files generated by the CORE Generator should be written. The recommend-
ed location for this directory is the directory that will hold your Synopsys de-
sign. The Project Path can be set from the Options -> System Options menu
in the CORE Generator:

 52 March 23, 1998

CORE Generator User Guide 1.4

Select the module you wish to generate by navigating to it using the CORE
Generator module browser and clicking on the desired module.

You may click the SPEC button on the CORE Generator toolbar to review
the module's datasheet. Double-click on the selected module to display its
parameterization window. When you have entered all the parameters
required by the module, press the

Generate

 button.

Note:

 Do not name the Module with a Unified Library Name; if you do, the
Synthesizer will use the XNF file corresponding to the Unified Library com-
ponent, instead of the XNF file created by the CORE Generator.

A Verilog snippet (module_name.VEI), and a Netlist File (.XNF) are created
and copied into the user-specified CORE Generator project directory.

The Verilog snippet contains the module declaration with accompanying
port definitions, as well as sample instantiation syntax for the module:

******** 8 Bit Adder Verilog Snippet: ad8.vei ************

module ad8 (a, b, s, c, ce, ci, clr);

<-Verilog module declaration for the CORE

input [7:0] a;

input [7:0] b;

output [8:0] s;

input c;

March 23, 1998 53

Xilinx Inc.

input ce;

input ci;

input clr;

endmodule

// The following is an example of an instantiation :

ad8 YourInstanceName (

.a(a),

.b(b),

.s(s),

.c(c),

.ce(ce),

.ci(ci),

.clr(clr));

The Verilog module declaration for the CORE Generator core function
should be placed in a separate .v file named

module_name.v

.

Instantiate the module within your design

The instantiation template in the .VEI file can be cut and pasted into your
Top Level verilog design as shown in the following example:

********** Top Level Verilog file: adder8_top.v ******

module adder8_top(ina, inb, clk, enable, carry, clear, qout);

 input [7:0] ina;

 input [7:0] inb;

 input clk;

 input enable;

 input carry;

 input clear;

 output [8:0] qout;

 54 March 23, 1998

CORE Generator User Guide 1.4

// instantiate the adder8.xnf file

adder8 u0 (

.a(ina),

.b(inb),

.s(qout),

.c(clk),

.ce(enable),

.ci(carry),

.clr(clear));

endmodule /* adder8_top */

**

******** Instantiation Module Declaration: adder8.v ************

module adder8 (a, b, s, c, ce, ci, clr);

input [7:0] a;

input [7:0] b;

output [8:0] s;

input c;

input ce;

input ci;

input clr;

endmodule

Synthesize the Design

When compiling the design, read in the design starting with the modules at
the bottom of your hierarchy (bottom to top). Be sure to attach a
"dont_touch" property to all CORE Generator modules to prevent these
from being re-optimized by Synopsys.

After the compile step in Synopsys, do a remove_design on the ad8 design
before writing out the .sxnf file. The remove_design step prevents Synop-
sys from writing out an empty sXNF file for the CORE Generator mod-

March 23, 1998 55

Xilinx Inc.

ule(s). (This step is required for Verilog designs only.)

You can use the following dc_shell script to synthesize the design:

-- DESIGN.SCR ---:

read -f verilog add8_top.v

set_dont_touch u0

set_port_is_pad all_inputs() + all_outputs()

set_pad_type -clock clk

insert_pads

compile

replace_fpga

remove_design ad8

write -f xnf -h -o add8_top.sxnf

Post-Synthesis Functional Si mulation

To simulate the design, please follow these steps:

• Run NGDBUILD on the synthesized design netlist (.SXNF):

 ngdbuild -p 4028expg299-2 add8_top.sxnf

In this example the target part is an XC4028EX part in a PG299 package
and -2 speed grade

- Run NGD2VER on the .NGD file produced by NGDBUILD.

NOTE:

 Use the -tf option so that ngd2ver will generate a test fixture tem-
plate for you.

NOTE:

 If you are using Verilog-XL, it is recommended that you also specify
the -ul option so that the path the simulation libraries used will be written to
your .v file.

 ngd2ver -tf -ul add8_top.ngd add8_topf

• Edit the test fixture template file and add your test vectors for the
design.

• Perform gate level functional simulation

From this point onward, the flow is the same as for designs containing only
Unified Library components.

	1 Introduction
	1.1 Overview
	1.2 How to Obtain New Cores and Updates

	2 System Requirements
	2.1 All Platforms
	2.2 Win95/NT
	2.3 Solaris

	3 Installation Instructions
	3.1 Xilinx CORE Generator Requirements for Workstations
	3.2 Xilinx CORE Generator Installation on Workstations
	3.3 Xilinx CORE Generator Requirements for PCs
	3.4 Xilinx CORE Generator Installation on PC
	3.5 How to Obtain New Cores and Updates

	4 Project Management
	4.1 Setup the CORE Generator.INI File
	Important Note About coregen.ini
	coregen.ini File
	Advanced: Multiple COREGEN.INI Files
	4.2 Set the CORE Generator System Options
	4.3 Set The CORE Generator Output Options

	5 Using the CORE Generator
	5.1 Module Browser Tree
	5.2 Getting Module Data Sheets
	5.3 Parameterizing a Module
	5.4 COE Files

	6 Design Flows
	6.1 ViewLogic Schematic Flow
	6.2 Foundation Schematic Flow
	6.3 Foundation Express
	6.4 Synopsys FPGA Compiler
	6.5 Synopsys Verilog Flow

