

1

Figure 1. CL550 Motion-JPEG Daughter Card Block Diagram

16

245

XC3020A

CL550

HBUS

PXA

PXD

PROM

SRAM
(8K x 16)

16

573

573

Video
Out

Video
In

VxP500
Header

SA[10:1]

Control

ISA
Header

SD[15:0]

X5572

Introduction

This design is the result of a recent collaborative effort
between C-Cube Microsystems, Auravision Corporation
(Fremont, CA), Xilinx Corporation (San Jose, CA), and
Ring Zero Systems (San Mateo, CA). The design is a
Motion-JPEG video codec for ISA bus PC platforms
based on the CL550 JPEG, which features a direct hard-
ware interface to the Auravision VxP500 Video Proces-
sor. The CL550 codec installs as a daughter card on a
stock Auravision VxP500 evaluation board to provide
real-time JPEG video or still-image compression func-
tions.

The VxP500 is among the first in a new generation of
video processors that have built-in support for video com-
pression engines such as the CL550. These support
functions include input image pre-scaling, cropping, and
buffering, zoom functions for playback, and a direct-
access compression interface. The CL550 uses all of the
VxP500’s support features to achieve high-quality com-
pressed video for a modest implementation cost. Ring
Zero Systems, a leading supplier of Windows device driv-
ers for the graphics and multimedia industry, contributed
the software drivers that ties together the video process-
ing chain, providing transparent support for off-the-shelf
Windows software packages like Adobe Premiere

.

This document describes the CL550 daughter card hard-
ware design in detail. The design can be taken as-is, or it
can be customized and cost-reduced with a minimum of

C-Cube CL550 and Xilinx XC3020A
ISA-based Motion-JPEG Codec

November 1994 Application Note

By LOUIS W. SHAY

engineering effort. In writing this document, care was
taken to emphasize fundamental design concepts and
techniques as opposed to specific implementation. If you
are designing for a platform other than the ISA PC, you
will find that many of these concepts extend to any target
hardware environment.

The remainder of this document includes:

• Functional Overview/Theory of Operation

• Program Interface Specification

• Interface Logic Design Details

• Daughter Card Schematics

• FPGA Schematics

Design Highlights

• Based on C-Cube CL550-30 (MQUAD) processor
clocked at 25 MHz and low cost Xilinx XC3020A FPGA.

• Compact design, minimal parts count (only 11 IC’s).

• Xilinx FPGA interface logic design for low-cost, easy
customization and quick time-to-market.

• Real time compression of video data or still images at
resolutions to 320 x 240, 30 fields per second, and sus-
tained compressed data rates to 500 KB/second (sys-
tem dependent).

This document was created with FrameMaker 4 0 4

2

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

• Designed to support Microsoft’s Video-For-Windows
architecture; works well with popular Windows-based
video editing applications.

• Program-I/O based driver architecture gives higher per-
formance than DMA while eliminating the extra cost
and compatibility problems associated with typical
DMA implementations.

• Uses all of the VxP500’s input scaling, cropping, frame
buffering, and capture features for higher quality video
input on compression. This makes a noticeable differ-
ence in image quality over other implementations in it’s
cost range.

• Hardware zoom on playback via the VxP500 allows up
to full-screen video playback from 320x240 or smaller
decompressed frames.

Functional Overview / Theory of Operation

The codec design provides four key functions required by
video capture and editing applications.

1) Compression from live video input (capture) for real-
time storage to disk.

2) Decompression of images and/or video to display
overlay (playback).

3) Decompression of image frames back to memory for
processing/editing.

4) Compression of processed/edited image frames back
to storage.

Each of these functions must be supported by the hard-
ware codec to achieve a level of speed practical for the

PC user. Points 1 and 2 are obvious to most designers.
Points 3 and 4 are not as obvious but no less important,
considering their use in editing applications.

For example, let’s say we have two compressed video
streams A and B. We want to mix them using a dissolve
effect, and store the result to stream C. To the editing
application, this means:

• Decompress frame A to memory,

• decompress frame B to memory,

• process A,B to frame C,

• compress frame C to storage.

To the codec, this means two decompresses and one
compress for every frame in the stream. Hardware
codecs that do not easily support these functions must
resort to software-based compression, wasting an other-
wise good codec and a lot of the user’s time. Not only
does this design support memory-to-memory compres-
sion/decompression, it does it for zero added cost - a
direct benefit of this architecture.

Figure 1 shows a block diagram of the CL550 daughter
card. Figure 2 is a simplified system block diagram,
showing the Auravision VxP500 system and the datap-
aths that connect it to the CL550. For the CL550, there
are three datapaths required:

• Host interface (CL550-to-ISA),

• Video capture port (VxP500-to-CL550), and

• Video playback port (CL550-to-VxP500).

Figure 2. Simplified Video System Block Diagram

Line
Store

Video In

X5573

Philips
SAA7191

DMSD

DRAM

Auravision
VxP500

V_IN

SASD

Timing From
VGA Feature

Connector

DAC
Analog
MUX To Display

Analog
VGA

ISA Bus

Play
Capture

C-Cube CL550
JPEG Option

Board

3

All datapaths are 16-bits wide, and the pixel format for
compression/playback is YUV4:2:2, exclusively. The deci-
sion to use YUV4:2:2 format over RGB is two-fold. First,
JPEG is much more efficient when compressing
YUV4:2:2 over an equivalent RGB image, as YUV4:2:2
allows individual handling of luminance and chrominance
components. Secondly, though the CL550 supports real-
time RGB-to-YUV4:2:2 conversion, doing so would
require 24-bit wide pixel input and output ports. Since the
YUV4:2:2 format is common to both the CL550 and the
VxP500, it requires the least amount of hardware to
accommodate.

The decision to use YUV4:2:2 over YUV4:1:1 is simple:
quality. For example, zooming a YUV4:1:1 format frame
from 320 pixels/line to 640 pixels/line results in 8 times
replication in the chrominance components, which is not
very sharp - to say the least. Although the VxP500 pro-
vides real time YUV4:1:1-to-YUV4:2:2 conversion and we
could theoretically use it to achieve lower cost in the
video decoder, we make no attempt to support it here.
Remember, you can only expect to get out of a codec
what you first put into it. If you’re using a high-quality
JPEG codec like the CL550, then it’s well worth the effort
to start with a high quality image. For this design,
YUV4:2:2 gives the optimal balance between system
cost and image quality.

Capture/Compression From Live Input

For video compression, the Auravision VxP500 chip
acquires incoming video by way of its V_IN port from an
NTSC/PAL decoder such as the Philips SAA7191 or
equivalent. Acquired frames are cropped, scaled, and
then stored in the VxP500’s DRAM to await compression
by the CL550. When the system is ready to accept the
compressed frame, the CL550 inputs the buffered frame
from the VxP500’s high-speed capture interface at up to
12.5 million pixels/second, passing that data to the host
via the ISA port under CPU control.

Figure 3 shows a simplified flow diagram of the video
compression/capture process, which is actually a chain
of processes consisting of acquisition, cropping, scaling,
buffering, and lastly, compression by the CL550 to the
system. Where acquisition and cropping are obvious
requirements for most designers, scaling and buffering
are not. If ignored, this will greatly limit the potential of the
JPEG compression system. It is worthwhile to consider
these points further.

First, let’s consider image pre-scaling support. In the ISA
system environment, disk I/O rates are generally limited
to about 500 KBytes/second. Pre-scaling of the incoming
video prior to compression and zooming out on playback
results in much higher image quality than using straight
JPEG on full-resolution (640x480) frames. For example,

Composite Input

X5574

Disk
Storage

VxP500

To VGA

ISA Bus

Main Memory
Buffer Pool CL550

JPEG
Codec

NTSC
Decoder

Crop/Filter/Scale

Capture
Pipeline

Display Output

DRAM

Quad Frame Buffer

Program I/O

Figure 3. Flow Diagram of Compression From Live Video Input

4

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

at full resolution the incoming raw pixel stream averages
over 18 MBytes/s (640x480 pixel/frame x 30 frames/s x 2
Bytes/pixel). To support real-time compression at a com-
pressed data rate below 500 KB/sec would require a
JPEG compression ratio of almost 40:1. The problem
here is that JPEG video quality suffers dramatically at
rates above 20:1. The output video quality in this case will
be unacceptable to most users.

A better solution results from scaling the video images
prior to compression, with optional zoom to full-screen on
playback. In that case, the VxP500’s pre-scaling function
is used to reduce the resolution to 320x240 at 30 frames/
s, cutting the raw pixel rate to less than 5 MBytes/second.
This reduced rate allows JPEG compression ratios in the
range of 10:1, which is optimal for the JPEG algorithm.
This trade-off works well, maintaining high video quality
at manageable disk I/O rates.

Another factor in determining video quality is the type of
scaling used. There are several ways to scale the video,
from simple pixel dropping to advanced multi-tap filtering
approaches. For JPEG compression, it is preferable to
use a multi-tap filtering approach. Not only is pixel drop-
ping bad in terms of image quality compared to multi-tap
filtering, it may introduce extra frequency components in
the image as a result of under-sampling (aliasing). These
extra frequency components will show up in the com-
pressed data as extra overhead, giving lower compres-
sion efficiency. In the decompressed data these show up
as increased artifacts, giving lower quality. Luckily for the
CL550, the VxP500 provides an advanced 4-tap FIR hor-
izontal scaling function, a key benefit for this architecture.

The other major benefit of the VxP500 for the CL550 is
buffering of the pre-scaled frames. Because the PC is not
a real-time platform, it will only accept data when it is
ready and willing to do so. Incoming video data, however,
is real-time. If the system is not ready for it, then it must
somehow be buffered. The VxP500 handles this by being
able to queue up to four frames at 320x240 resolution in
its DRAM buffer, passing frames along for compression
as the CL550 requests them. This allows the JPEG
codec to sustain fairly long periods of system latency
without losing frames, and it also allows the CL550 to
operate with no additional memory. All buffering in this
design is provided by the VxP500 and by available sys-
tem memory, allowing absolute minimum cost in the
JPEG compression system.

The next issue that needs to be addressed is fast codec
access to the frames in the buffer. The CL550 is able to
compress pixels at peak rates up to 12.5 million pixels/
second at a clock rate of 25 MHz. In order to minimize
time in the interrupt driver loop, it must be able to run at
it’s full rate. To support this, the VxP500 provides a direct
high-speed codec interface port (mux’ed with the ISA bus
signals). The capture interface is asynchronous, and

allows the CL550 to stop and start as needed to support
system overhead. Hardware required to connect the VxP
to the CL550 for compression is minimal, consisting of a
'573-type latch and a small amount of handshake logic
contained in the FPGA.

Once the pixel data is transferred to the CL550, a pro-
gram-I/O based device driver is used to unload the com-
pressed output from the CL550 and transfer it to the
system. This is a departure from earlier CL550 designs
that used DMA, and it eliminates the DMA compatibility
problems that are common with most ISA motherboards
and adapter cards.

This also eliminates the additional logic required to man-
age DMA transfers across the ISA bus. In fact, this
approach has proven to be slightly faster. Using a 486-66
motherboards at the standard ISA clock rate (8.3 MHz),
the driver is able to sustain rates up to 500 KBytes/sec-
ond to disk, consuming on average no more than 50% of
the CPU in the driver. Typical time in the interrupt driver is
10 ms out of 33 ms each frame, with nominal com-
pressed frame sizes in the range of 5K-15K Bytes. Some
would argue that it is unjust to use the CPU for that
amount of time. In reality, the system is being pushed to
its full limit during an actual capture or playback opera-
tion. There is little disk bandwidth left to be doing any-
thing else. From that point of view, use of the CPU is
more than justified. It saves money and enhances system
compatibility in the JPEG codec.

Video Decompression/Playback Operation

For decompression and playback of frames from the
CL550, the VxP500 does not provide a dedicated port as
it does in the capture direction. Instead, when decom-
pressing video, the CL550 drives its output pixel data to
the VxP500’s VIN port, and shares a common video bus
with the Philips 7191. A multiplexer on the base board is
used to select between the 7191 and the CL550 as the
current video source. There are some key differences,
however, in the way the CL550 outputs data relative to
the Philips 7191 that the VxP500 makes provisions for.

• The CL550’s decompressed images are not full-size
like standard video frames, as they were cropped and
scaled prior to being compressed. The CL550's line
width can therefore be as small as 80 pixels in some
cases.

• The CL550’s decompressed frames are presented in a
progressive-scan fashion instead of interlaced-scan
fashion as are standard video frames.

• The CL550’s VSYNC- output signal is active low, where
the Philips 7191's VSYNC output is active high.

• Most importantly, the CL550’s output is asynchronous,
stopping and starting on any pixel boundary as
opposed to the 7191, whose output is constant and

5

synchronous. By being asynchronous, the CL550
requires no extra memory to buffer compressed data. If
the host is slow, the CL550 simply stops until the next
word of data is available. The VxP500 is able to accom-
modate this operation by not displaying the incoming
frame until it has been completely acquired in its over-
lay buffer. Figure 4 shows a simplified flow diagram of a
video playback operation.

Still-Image Compression/Decompression Operation

Still-image compression is the process by which a RGB
or YUV source image in memory is compressed using the
CL550. For example, to compress a 24-bit RGB image in
main memory, the source image in memory is converted
to YUV4:2:2 format by the driver software and loaded to
the VxP500’s overlay buffer by way of the ISA bus. Once
in the overlay buffer, the CL550 is used to compress the
image through the VxP500’s hardware capture port. The
speed at which the image is compressed is largely
dependent on the time it takes to load the raw pixels into
the VxP500's frame buffer by way of the ISA bus. As the
compressed data is much less, it takes far less time to
transfer. Even with the ISA bus limitation, the compres-
sion operation is still much faster than software-only
approaches, greatly assisting editing and effects genera-
tion operations.

One drawback with this approach is that the size of the bit
map that can be compressed at one time is limited by the
size of the overlay buffer. However, it is possible to com-
press large images in successive strips or tiles, as long
as the scan order required by JPEG is maintained.

Decompression of still images is accomplished in the
reverse order of the compression case. First the com-
pressed image is decompressed by the CL550 into the
VxP500’s overlay buffer. This image is then unloaded via
the ISA bus, converting to RGB in software if needed.

System Limitations

Though this design is advanced in many ways, this archi-
tecture does have limitations that system designers and
programmers should be aware of. These points are listed
below.

VxP500 DRAM Bandwidth Limitations.

 The VxP500
achieves lower overall system cost by using DRAM
instead of VRAM for it’s overlay buffer. The trade-off is
that the display refresh must use the DRAM’s random
access port. This leaves less overall bandwidth for the
incoming source video and outgoing video to the codec.
This limitation will be most severe during compression,
where three resources, display, input, and capture, con-
tend for DRAM access.

X5575

Disk
Storage

VxP500

To VGA

ISA Bus

Main Memory
Buffer PoolCL550

JPEG
Codec

NTSC
Decoder Off

Scaling Off

Capture
Off

Display Output
w/Zoom

DRAM

Single Frame
Buffer Mode

Program I/O

Figure 4. Video Decompression Flow Diagram

6

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

When using the 48-bit wide frame buffer mode, the total
peak DRAM bandwidth available is just below 100
MBytes/s. The maximum sustainable data rate lies in the
range of 80-90 MBytes/s. The arbitration priority for the
memory is display refresh, video input, and then capture
output. Let's consider some cases here.

For a display resolution of 640x480 and a refresh rate of
60 Hz, approximately 50 MBytes/s of the available DRAM
bandwidth are consumed for display refresh. The input
pipeline consumes another 6.75 MBytes/s. At this rate,
there is enough bandwidth remaining to sustain the cap-
ture data flow at the CL550's full 25 MByte/sec peak pixel
rate with no problems. On the average, the CL550 will be
operating in the 10-20 MByte/sec rate, depending on the
rate of compression. Lowering the compression level
reduces the average pixel rate.

The problem occurs at 800x600 resolution. In this case
the refresh load on the DRAM jumps to nearly 80
MBytes/s, leaving little bandwidth to sustain the CL550’s
capture rate. At times during the capture sequence, the
VxP500’s internal capture data FIFO may starve for data,
and the SDDIR signal will go low, causing the /STALL sig-
nal to be asserted on the CL550. This increases the
length of time the driver must spend compressing the
image to main memory. In the worst case, frames may be
dropped by the driver in order to maintain time synchroni-
zation in the video.

There are only two possible solutions to the DRAM band-
width bottleneck issue:

• Disable display output during capture. This gives plenty
of bandwidth, but users usually like to see what they are
recording.

• Use horizontal zoom to reduce the number of pixels per
line required by the display. This is little better than shut-
ting off the display, but only a portion of the frame being
captured is actually displayed.

System Bandwidth Limitations.

 For most ISA PC sys-
tems incorporating a 486 or better CPU, the compressed
throughput will be a function of disk transfer rate. A proto-
type unit was run on a Compudyne 486DX2-50 with
256K cache, 8 MBytes RAM, and a Western Digital
420Mbyte IDE drive, with the bus clock set to 8.3 MHz.
This system had no problems running at up to 300 KB/
second average rate to disk. At around 350-400 KB/s, we
see occasional frame drops, but they are distributed in
such a way as to be few and far between, which is a
direct benefit of the VxP500’s quad buffer mode.

In general, the target “top-end” for this design is about
400-500 KBytes second on the fastest ISA platforms.
That equates to about 50% CPU time in the codec ser-
vice routine, which is about as high as we want to go. At
that rate, video quality is surprisingly good.

The critical item for system bandwidth is drive through-
put: The faster the better. When selecting a drive, specify
maximum sustained transfer rate as opposed to access
time, as that is the critical parameter for sustained real-
time capture/play throughput. Although SCSI drives may
offer a slight performance advantage, all of our prototype
systems were developed using off-the-shelf IDE drives.

Context Switching Issues.

 Although dedicated spe-
cialty devices like the CL550 and the VxP500 are benefi-
cial in terms of relieving the load on the system CPU,
their remoteness to the CPU introduces context-switch-
ing issues that programmers should be aware of. Nor-
mally, a software designer could start any number of
compression, decompression, and video handling tasks
at the same time. For example, a Windows-based editing
application may think that it is perfectly legal (and it is) to
open a compression driver and a decompression driver
at the same time. In reality, though, at the machine level
the operating system would be switching between these
tasks to give the appearance of simultaneous operation.

Hardware-accelerated video computing systems, how-
ever, are quite different, because a video computing sys-
tem is really a chain of processors running end-to-end.
Coordinating all of these processing stages at the driver
level is a real challenge for the programmer. The main
concepts that we stress to programmers is that it is not
always possible to: (a) interrupt the processing chain and
restore it's state later, and (b) know the exact status of
the processing chain at a particular instant in time.

For this particular design, as will be the case in many
accelerator-based designs, the compression and decom-
pression processes are NOT re-entrant, and cannot
operate concurrently in the same hardware system. It is
not possible to save the state of the real-time processing
chain and re-store it some time later. Once an operation
is started at the hardware level, it must be allowed to fin-
ish or it must be aborted altogether. Developers must
carefully schedule incoming commands within the driver
in order to support applications that open concurrent pro-
cesses.

Interface Logic Design

This section details the interface logic used to drive all
control signals on the Option Card. For specific technical
information on each of the devices used in this design,
readers should obtain the

C-Cube CL550 JPEG Com-
pression Processor User’s Manual, the Auravision
VxP500 Video Processor Databook, and the Xilinx Pro-
grammable Logic Databook.

All interface logic for this design was implemented using
a single Xilinx XC3020A

 FPGA. The 3020A is the small-
est in the Xilinx 3K series, and has just enough density to

7

implement all required logic functions for the daughter
card. These logic functions include:

• Clock Generation

• ISA Bus Interface

• VXP500 Compression Interface Control

• VXP500 Playback Interface Control

In addition to high integration, the design is partitioned in
a modular fashion for easy customization. If more density
is needed, designers can use the XC3030A

 or
XC3042A

 devices without having to change package
type or pinout. For example, a designer can take the ISA
interface from this design and quickly drop it into any
other design that uses the CL550 on the ISA bus.

Figure 5 shows a signal-level block diagram of the logic
modules that make up the interface between the ISA bus,
the CL550, and the VxP500. Refer to the board-level and
FPGA schematics for specific implementation details.

CL550 Clock Generation

Figure 6 shows the waveforms for the clock generator. In
this design, all clock signals are derived from the
VxP500’s MEMCLK signal, which eliminates the need for
an oscillator on the daughter card. The MEMCLK input is
50.0 MHz, with a 50% duty cycle. From this input, three
clocks are derived. These are PXCLK, PXPHSE, and
HBCLK. PXCLK is divided from MEMCLK and runs at
25.0 MHz. PXPHSE is divided from PXCLK and runs at
12.5 MHz, but phased such that the PXPHSE transitions
are coincident with the high-to-low transitions on PXCLK.

Pixel Input Interface Control

Pixel Output Interface Control

/STALL Control

/HDC_CAP

/HDC_IOR

/HDC_MR

/VINHOLD

/HDC_PLAY

/HDC_TAG

/HDC_PCK

VOUTCLK

/STALL

ISA-TO-CL550 Data Path
 Index/Data Register
 Control Register
 Status Register

HBCLK

PXCLK

PXPHSE

/ISA_EN

ISA_DIR

/START

/TM1

/TM2

/C3RESET

Capture
Controls

Playback
Controls

To
CL550

To
Buffers

To/From
CL550

ISA-TO-CL550 Interface Control

ISA I/O Address Decode

Clock Generation

To CL550/NMRQ

SDDIR

/C3HSYN

/BLANK

HB[15:0]

/IOCS16

IOCHRDY

/IOR

/IOW

MEMCLK

SA[10:1]

AEN

To
ISA

To/From
CL550

From
VxP500

From
CL550

From CL550

From VxP500

X5576

Figure 5. Interface Logic and Signal Diagram

8

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

Lastly, HBCLK is obtained by using a divide-by-three of
the PXCLK signal, and runs at 8.33 MHz. The HBCLK
duty cycle is 66/33 (two PXCLK’s high, one PXCLK low).
Refer to the FPGA schematic for implementation details.

ISA I/O Address Decode

The CL550 codec module is mapped into ISA I/O
address space in four consecutive 16-bit I/O ports, called:

• C3Data

• C3Index

• C3Control/C3Status

• C3Codec

The C3Data port is used for reading and writing CL550
device registers, with the register address being held in
the C3Index port. The C3Control port controls board-level
functions, and the C3Status register allows programs to
check board-level status information. The C3Codec port
is directly indexed to the CL550’s Codec register for fast
access. A full description of the program interface is
given in the “Program Interface” Section.

ISA Interface Control

This block of logic is used to control the transfer of data
between the ISA bus and the CL550. Four basic types of
transfers are supported:

•

Port Write Transfers

 - used to load the C3Index and
C3Control ports.

•

Port Read Transfers

 - used to read the C3Status port
and can be used for reading back the C3Index register
as a diagnostic check.

•

CL550 Write Cycles

 - used when writing to the C3Data
or C3Codec ports.

•

CL550 Read Cycles

 - used when reading from the
C3Data or C3Codec ports.

Figure 7 illustrates the timing of the Port Write operation.
The Port Write begins when a valid I/O address appears
on SA[10:1]. In response to this address, the address
decoder generates the internal signal /550_INDX or /
CTL_STS (point 1 in the Figure 7). Next, the ISA bus
write command strobe is asserted by the system. In

response to /IOW, the IOCHRDY line is immediately
driven low (point 2), so that the command strobe can be
synchronized to the HBCLK (LCMD, point 3). Once
LCMD is active, a state machine, CP[1:0] is activated.
This state machine generates a synchronous pulse of
one HBCLK duration on CP0. CP0 is used to create data
latching strobes IDX_WP, CTL_WP (point 4). When CP1
goes high, the data has been latched and the IOCHRDY
line is released, terminating the transaction (point 5).

Port read timing is shown in Figure 8. This operation is
very similar to the Port Write, except that here the /XIL_OE
signal is asserted to enable the FPGA’s output drivers to
drive data onto the HB[15:0] bus, as shown.

CL550 register write timing is illustrated in Figure 9.
There are two variations of this transaction, one is used
when writing to the C3Data port, and the other for writing
to the C3Codec port. The C3Data port can be used to
access all CL550 device registers using the index stored
in the C3Index port, whereas the C3Codec port is hard-
wired directly to the CL550's codec register. When
accessing the C3Data port, the cycle starts out much the
same as the Port Write, except now, when CP0 is active,
the following events occur:

• /START is asserted to begin the register write transac-
tion to the CL550.

• /TM1 is driven low from hi-z to indicate the direction is
ISA-to-CL550.

• /XIL_OE is activated (and /ISA_EN negated) so that the
pre-stored register index (0x8000-0xFFFC) is driven
onto the HB[15:0] bus.

On the next HBCLK cycle, the CL550 inserts one idle
cycle (point 5), followed by an acknowledge cycle (point
6). When TM2 is sampled low, the signal LTM2 asserts,
releasing the IOCHRDY line (point 7), allowing the ISA
cycle to terminate. The C3Codec write cycle timing is
almost identical to this, except during the /START cycle
(point 4), no index value is written. Rather, the bus line
HB15 signal is driven low to automatically address the
CL550’s Codec register (indexes 0x0000-0x7FFC). The
auto-index feature allows faster access to the Codec reg-
ister, which improves performance in the driver.

MEMCLK

PXCLK

PXPHSE

HBCLK

X5577

Figure 6. Clock Timing

9

I/O Port Read transactions from the CL550 are illustrated
in Figure 10. Again, there are two variations of the trans-
fer, with the C3Data port used to read any CL550 register
and the C3Codec port being directly wired to the Codec
register. The transaction begins in the same fashion as
the write, except that the ISA transceiver direction is
reversed. During the /START pulse, TM1 is at a high level
to initiate a CL550 register read cycle. When the CL550
asserts /TM2 low (point 5), the valid read data is latched
into the C3Index register, overwriting the previously
stored index. As the CL550’s output bus releases (point
6), the FPGA is used to drive the latched data back onto
the HBUS through the end of the /IOR strobe, as shown.

Capture Interface Control

This section describes the operation of the pixel interface
between the VxP500 and the CL550 during the compres-
sion process. Refer to the board-level schematics for the
specific signal connections.

The VxP500 provides a high-bandwidth, asynchronous
pixel port that is designed to support compression
devices like the CL550. A block of logic within the FPGA

is dedicated to managing the flow of pixel data across the
interface. The hardware capture port is multiplexed with
the ISA data bus. When the VxP500 is in hardware cap-
ture mode, the signals SASD[15:0] become pixel data
outputs to the hardware codec, with SASD[7:0] carrying
the luminance component (Y), and SASD[15:8] carrying
the chrominance components (U and V). For this design,
the pixel data is always assumed to be in the YUV4:2:2
format, transferred in the order YU, YV, YU, YV...and so
on.

In addition to the SASD[15:0] bus, three pixel transfer
control signals are multiplexed with the ISA bus control
signals /MEMRD, SDDIR, and /IOR. In hardware capture
mode, the signal /MEMRD becomes the pixel output
strobe. Each low-to-high transition on the /MEMRD input
will cause the next pixel to appear on the SASD bus from
the VxP500’s capture FIFO. The signal SDDIR, when
high, indicates to the codec that the next pixel is ready for
reading by the CL550. When SDDIR is low, then /STALL
must be asserted to hold off the CL550 until the next pixel
is ready. When all the pixels have been transferred, the

/550_INDX

X5578

/CTL_STS

/IOW

IOCHRDY

HBCLK

LCMD

FPGA DATA VALID

ISA DATA VALID

CP0

CP1

IDX_WP

CTL_WP

/XIL_OE

/ISA_EN

ISA_DIR

HBO-15

SDO-15

I/O ADDRESS VALIDSA[10:1]

1

2

3 4 5

Figure 7. C3Index, C3Control Port Write Timing

10

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

VxP500 is released from hardware capture mode by a low-
to-high transition of the /IOR input.

The VxP500 is placed into hardware capture mode by soft-
ware, using ISA bus write operations. However, once in
hardware capture mode, the VxP500 no longer responds to
ISA I/O accesses. For this reason, /IOR is used as a hard-
ware release. Because the VxP500’s input signals /MEMRD
and /IOR are shared with the ISA bus and the codec, they are
multiplexed using a '157 type mux. Here, the ISA’s /MEMRD
is multiplexed with the signal /HDC_MR, and the ISA’s /IOR
signal is multiplexed with the signal /HDC_IOR. The mux is
controlled by the hardware codec via the signal /HDC_CAP.
/HDC_CAP, when low, gates the VxP500’s control inputs to
the /HDC_MR and /HDC_IOR outputs from the codec. /
HDC_CAP has a pull-up resistor on the base board to allow
operation without the codec option card.

The compression process begins by initializing the
VxP500's capture pipeline, defining a window in the overlay
buffer that is to be compressed. Once the initialization is
complete, the VxP500 is programmed to enter hardware
compression mode, and the mux is switched by writing to
C3Control port bit 1 (HDC_CAP). At that point, the CL550

can be started for compression. The CL550 signals used to
control the transfers are /HSYNC (referred to as /C3HS),
/BLANK, PXPHSE, PXCLK, and /NMRQ. From these sig-
nals, all other control signals can be derived.

Transfer timing for the hardware capture port is illustrated in
Figure 11. The capture sequence is initiated with the VxP500
in hardware capture mode with the first pixel of the image
present on the SASD bus. Each time the signal /HDC_MR
goes from low to high, the next pixel will appear a maximum
of 80 ns later. In order to insure that the second pixel is out
on time, /HDC_MR must be asserted prior to the first /PXIN
strobe. To do this, the /HSYNC signal is used. With the
CL550’s HDelay register programmed for one pixel blank-
ing, the /HSYNC signal will assert exactly one pixel time
ahead of /BLANK going from low to high. /HSYNC is also
used to stop requesting pixels exactly one pixel before
blank goes high to low. This requires the HSync register
to be programmed exactly with respect to the width of the
image. The HPeriod register is programmed such that
there is blanking time at the end of each line, so that the
capture width adjust logic can remove excess pixels. The
capture width adjust mechanism is described in the next
section. See the FPGA schematic for the specific logic
implementation.

X5579

/550_STS

/IOR

IOCHRDY

HBCLK

LCMD

FPGA DATA VALID

ISA DATA VALID

CP0

CP1

/XIL_OE

/ISA_EN

ISA_DIR

HBO-15

SDO-15

I/O ADDRESS VALIDSA[10:1]

1

2

3 4 5

Figure 8. C3Status Port Read Timing

11

Capture Width Adjust Logic.

One of the unique aspects of designing for the VxP500 is
that when using the 48-bit wide memory mode with
YUV4:2:2 capture format, the capture window width must
be a multiple of six, as this is the size of the VxP500’s
minimum pixel group for that frame buffer arrangement.
(See the Auravision VxP500 Databook for more informa-
tion.) This creates a problem for the CL550, whose com-
pression window width must be an even multiple of 16
pixels when compressing YUV4:2:2 video. For example,
let’s say we want to compress an image that is 320 pixels
wide. To do this, the VxP500’s capture window must be
set to 324 pixels, as this is the next higher multiple of six
above 320. In this instance, there are four excess pixels
per line that must somehow be removed from the
VxP500’s capture FIFO without being taken by the

CL550. To correct for this difference in widths, a special
state machine had to be designed to trim the excess pix-
els from the VxP500’s capture FIFO at the end of each
compressed line while the CL550 is between lines. For all
CL550 image widths supported in this design (all multi-
ples of 16 from 32 to 320), there will be either zero, two,
or four excess pixels per line that need to be trimmed by
this state machine. The pixels are removed during the
CL550’s horizontal blanking interval, after the /BLANK
signal goes high-to-low. Figure 12 illustrates this opera-
tion when four excess pixels are removed. To accommo-
date the width adjust logic, the CL550’s HDelay and
HPeriod registers must be set exactly to achieve proper
signal timing. Refer to the compression code examples
for the specific formulas.

X5580

/550_DATA

/IOW

IOCHRDY

HBCLK

LCMD

IDX

ISA DATA VALID

CP0

CP1

/XIL_OE

/ISA_EN

ISA_DIR

HBO-15

SDO-15

I/O ADDRESS VALIDSA[10:1]

1

2

3 4 6

/550_CODEC

5 7

8

DATA

LTM2

/TM2

/TM1

/START

Figure 9. C3Data, C3Codec Write Timing

12

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

The state machine is configured via two bits in the
C3Control register, PADCTL_0 and PADCTL_1. Pro-
gramming of these bits is described in the “Program Inter-
face” Section. The state sequence for the width adjuster
is shown in Figure 13. Refer to the FPGA schematic for
implementation details.

Decompression/Playback Interface Control

This section describes the operation of the decompres-
sion interface to the VxP500. Refer to the board-level
schematics for specific signal connections.

For decompression of video or images to the VxP500's
overlay buffer, the CL550 writes YUV4:2:2 format pixel
data to the VxP500’s VIN port. The VIN bus is shared with
the NSTC decoder, which is placed into high-impedance

state by software before enabling the CL550’s output
port. A '157 type multiplexer on the base-board is used to
multiplex three VxP500 control signals. These are
VIN_CLK, VIN_VS, and VIN_HS. The signal /HDC_PLAY
is used to switch between the NTSC decoder and the
CL550 codec board. /HDC_PLAY is pulled high with a
resistor to allow operation without the codec daughter
board. When /HDC_PLAY is asserted by programming
the C3Control port bit 0 (HDC_PLAY) to one, the signals
VIN_CLK, VIN_VS, and VIN_HS are connected to
HDC_PCK, HDC_VSYN, and /BLANK, respectively. A
fourth VXP500 control input, /VIN_TAGN is connected
directly to the signal /HDC_TAG. /VIN_TAGN is pulled low
using a 2K ohm resistor to allow operation without the
daughter board.

X5581

/550_DATA

/IOR

IOCHRDY

HBCLK

LCMD

IDX

DATA

CP0

CP1

/XIL_OE

/ISA_EN

ISA_DIR

HBO-15

SDO-15

I/O ADDRESS VALIDSA[10:1]

1

2

3 4 5

/550_CODEC

6

7

DATA

LTM2

/TM2

/TM1

/START

Figure 10. C3Data, C3Codec Read Timing

13

X5582

PXCLK

2 3 4 5

1 3 4 52

PXPHSE

/HSYNC

/BLANK

/PXRE

/PXWE

/HDC_MR

/STALL

VINSTB

SASD

PD

/PXIN

8

80 Max

2 3 4 5

4321

13

13

15

15

20

40 ns
20 20

1

Figure 11. VXP500-to-CL550 Video Capture Timing

X5583

Extra

PXCLK

Valid

PXPHSE

/HSYNC

/BLANK

/PXRE

/PXWE

/HDC_MR

/STALL

VINSTB

SASD

PD

/PXIN

ExtraValid

Extra Extra

Extra

Extra

Extra

Extra

Figure 12. Capture Width Adjust Operation to Trim Four Excess Pixels

14

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

The CL550 transfers pixels in a different manner than the
NTSC decoder, and the VxP500 needs to be pro-
grammed differently in order to receive the pixel data cor-
rectly:

• The CL550 has an active-low VSYNC output, as
opposed to the Philips VREF, which is active-high.

• The CL550 outputs a rectangular image in progressive-
scan order, as opposed to interlaced-scan order.

• The CL550’s output image can vary in width and height,
depending on what was compressed originally.

• The CL550, being a slave to the system, may stop
sending pixels at any time, depending on the ability of
the host to provide compressed data to the codec. In
contrast, the Philips video stream is fixed and synchro-
nous.

Once the VxP500 is initialized to accept CL550 input, the
next step in the decompression process is to disable the
Philips output buffers by writing to it’s output control reg-
ister. This action places the 7191’s pixel data outputs in a
high-impedance state. At this time, the hardware codec's
output drivers can be enabled by writing to the C3Control
port. When the HDC_PLAY bit is programmed to 1, a
block of logic in the FPGA synchronizes the switching of
the mux with the LL3 clock, so as to produce no glitches
on the VxP500's VIN_CLK line. This logic block waits for
LL3 to reach a known state before switching the MUX.

Once switched, the VIN_CLK input is then driven by the
HDC_PCK output of the FPGA.

At this point, the CL550 is initialized and started for
decompression. The first event that occurs is the asser-
tion of the /HDC_VS signal by the CL550. When /BLANK
goes high, valid pixels are clocked into the VxP500 on the
rising edge of HDC_PCK. When the /STALL input to the
CL550 asserts, temporarily stopping the flow of pixels, /
HDC_TAG is driven high to prevent the VxP500 from
clocking in bad pixel data. Timing of the decompression
interface is shown in Figure 14. Refer to the FPGA sche-
matics for the specific logic implementation.

Program Interface

This section describes the I/O port definitions for the
JPEG codec design. Refer to the CL550/CL560 Databook
and available CL550 programming examples for more
information on accessing and programming the CL550
registers.

Base Address Decode

The address decode block provides a full 16-bit I/O
address decode of ISA address lines SA[15:1]. Two pin
jumpers on the board allow the user to select between
one of four base addresses which are embedded into
programmable logic. Table 1 shows the base I/O address
settings for the compression card. Base address decode
logic is implemented using programmable logic, so these
addresses can be changed to suit particular applications.

Table 1. Base I/O Address Configurations

I/O Port Definitions

The program interface to the compression board consists
of four 16-bit I/O ports, at offsets of 0, 2, 4, and 6 from the
selected base address. These ports are described below.

Base+0 CL550 Host Data Port (C3Data)

This 16-bit read/write port is used to pass data
to and from the CL550’s registers. These data
include programming/status information and
JPEG-compressed data. Before accessing this
port, a valid register address must be loaded to
the CL550 Register Index Port

Base+2 CL550 Register Index Port (C3Index)

This 16-bit register, internal to the Xilinx,
stores the address of the CL550 register being
addressed. To access a CL550 register, the
program must first load the CL550 register

JP2 JP1 Base Address

Closed Closed 0x380

Closed Closed 0x3A0

Open Closed 0x3C0

Open Open 0x3E0

0 Idle

X5584

(A•D) / 0

1 CL550 Active, Wait

(!A) / 1

2 Strobe ON (#1)

(Don’t Care) / 0

3 Strobe OFF

(B) / 1

4 Strobe ON (#2)

(C) / 0

5 Strobe OFF

(B) / 1

6 Strobe ON (#3)

(Don’t Care) / 0

7 Strobe OFF

(B) / 1

8 Strobe ON (#4)

(!C) / 0

(Don’t Care) / 0

A=/BLANK
B=SDDIR
C=PADCTL_1
D=PADCTL_0

(1=active low)
(1=VxP500 ready, 0=Not ready)
(from C3Control reg)
(from C3Control reg)

Notes:

Figure 13. Capture Width Adjust State Diagram

15

address into the index port, then read from or
write to the host data port. The value written to
this register can be read back, but it is volatile.
Any read operation to the CL550 Host Data Port
or the Codec port destroys the previously loaded
index.

Base+4 Board-Level Control/Status Port (C3Control/
C3Status)

This port, internal to the FPGA, is a dual-function
port. Writes are directed to the C3Control Port,
and reads are directed to the C3Status port. Bit
definitions for the ports are listed below.

C3Control Port (write only)

This port is used to configure the board-level
logic functions.

Bit 0:PLAY_EN

When this bit is set to one, the video output
port will be enabled. ALWAYS be sure to dis-
able the outputs of the 7191 via the I2C prior
to setting this bit. (Set the SAA7191’s OEY
and OEC control bits to zero to allow FEIN-
bus control.)

Damage to the hardware could
result if this rule is not followed.

Bit 1:HDC_CAP

This bit, when set to 1, enables the video cap-
ture port. HDC_CAP has priority over
PLAY_EN such that if PLAY_EN = 1 and
HDC_CAP = 1, the output pixel port will be
disabled, and PLAY_ON (C3Status port) will
read zero.

Bit 2:HDC_IOR

This bit is used with compression, and con-
trols the release of the VxP500 capture inter-
face. When the VxP500 is in capture mode,
this bit is programmed to oneand then back to
zero in order to release the VxP500 capture
port.

Bit 3: C3RESET

A one in this bit drives a hard reset to the
CL550. A zero to this register bit clears reset.

Bit 4: PADCTL_0

Bit 5: PADCTL_1

This bit field is used to enable the capture
width adjust mechanism. This mechanism
must be used in cases where the VxP500’s
frame buffer is configured as 3-way interleave

X5585

1

PXCLK

2 3 4

1 3 42

PXPHSE

/BLANK
(HDC_HSYN)

/PXRE
/PXOUT

/PXWE

/STALL

VOUT_EN

HDC_PCK

HDC_TAG_

PD[15:0]

TOUT[7:0]
UVOUT[7:0]

20

40 ns
20 20

Figure 14. CL550-to-VxP500 Playback Timing

16

C-Cube CL550 and Xilinx XC3020A ISA-based Motion-JPEG Codec

(48-bit wide), YUV422 format. In this case, all
VxP500 output frames for compression will be
padded to the next multiple of 6 pixels wide.
Therefore, in order to support standard widths
160, 320, etc., the capture width adjust is
used to remove the excess padding pixels
from each line. The programming of
PADCTL_1:0 is then dependent on the
remainder of width/6, as shown.

Bits 6-15:Undefined

C3Status Port (read only)

This port is used to obtain board-level status infor-
mation.

Bit 0: PLAY_ON

A one in this bit indicates that the codec modules
output pixel port is enabled and that the video
input mux is switched to the codec instead of the
input video decoder.

Bit 1: SDDIR

When this bit is one, the VxP500’s capture pipe-
line contains data and is ready for the compres-
sion to start. Do not enable the CL550 until this
bit is 1, as STALL- is generated whenever SDDIR
is low.

Bit 2: C3DRQ-

This bit reflects the state of the CL550’s DRQ-
signal. Zero in this bit indicates DRQ- is asserted
low. This bit has no logic function relative to the
hardware interface and is not currently used in
the logic. This signal has been provided for soft-
ware drivers to get faster access to CL550 flags
status via the DRQ- signal. With this approach,
the CL550’s codec status can be checked using
only one I/O read as opposed to the traditional
write-index/read-CL550 protocol (50% faster
access). Programmers should note that DRQ-
must be initialized via the DRQ Mask Register
before it can be used for polling. As this signal is

PADCTL 1:0 Function

0 0 No Function. Use when width%6=0

0 1 Remove two pixels/line. Use when
width%6=4

1 0 No Function – undefined

1 1 Remove four pixels/line. Use when
width%6=2

a multi-purpose status output, the programmer is
responsible for it’s use. For example, on com-
pression, you could program the CL550’s
DRQ- mask register with 0x2040 (CodecNot-
Busy & 1/2_Full). When C3DRQ- reads zero,
the codec is ready.

Bits 3-15:Undefined.

Base+6 CL550 CODEC Data Port (C3Codec)

This port is automatically indexed to the CL550’s
Codec Data port, so reads or writes to this port
do not require an Index value to first be written.
This approach results in highest possible
CL550-to-ISA transfer rates when using the pro-
gram-I/O based drivers.

Programmers should read/write this register a
minimum of two times per flags read in order to
assure 32-bit alignment of the compressed
frames. On compression, it is possible to read
up to 4 longwords (8 reads to the codec port)
provided that the CL550’s internal FIFO is at
least half full. The same applies on decompres-
sion, provided that the FIFO is below 1/2 full
before the first codec write. Also note that extra
ISA wait states may be incurred when writing the
2nd, 3rd, or 4th longwords of a group, depend-
ing on codec status, but these wait states should
not cause problems in the system.

Schematics

Schematic diagrams for the CL550 daugther board and for
the Xilinx FPGA are provided here for your reference. A
schematic diagram for the Auravision VxP500 Evaluation
Board can be found in the

Auravision VxP500 Databook.

Contact Auravision Corporation for more information on the
VxP500 or the base board design.

Schematics were entered using OrCAD 4.12 for DOS. The
Xilinx XACT 4.0 and OrCAD interface tools were used for
routing the FPGA. To obtain design information on PC dis-
kettes, contact:

C-Cube Microsystems
JPEG Products Group
1778 McCarthy Boulevard
Milpitas, CA 95035
Phone: (408) 944-6300
Fax: (408) 944-6314

17

Additional Information

If you wish additional information on Xilinx, contact the sales
office nearest you from the list on back. For information
regarding the Auravision or Ring Zero products involved,
contact the companies directly:

Auravision Corporation
47865 Fremont Blvd
Fremont, CA 94538
(510) 252-6800

Ring Zero Systems
1650 S. Amphlett Blvd. #300
San Mateo, CA 94402
(415) 349-0600

	Introduction
	Design Highlights
	Theory of Operation
	System Limitations
	Interface Logic
	Program Interface
	Schematics
	Additional Information

