
Interfacing XC6200 To Microprocessors
(MC68020 Example)

XAPP 063 October 9, 1996 (Version 1.1) Application Note by Bill Wilkie

APPLICATION NOTE

Summary
The issues involved in interfacing XC6200 family members to microprocessors are discussed. An example
using the Motorola 68020 processor is described.

Xilinx Family Demonstrates
XC6200 Parallel programming interface.

Driving device control inputs from within the FPGA core array.
Overview

This note explains the key issues involved in interfac-
ing XC6200 parts to microprocessors by looking at a
specific example. The XC6200 parallel interface
signals are described and related to the signals
provided by a widely used microprocessor. Different
ways of implementing the design are discussed,
including a method which uses no glue logic between
the two devices. More details on XC6200 features
can be found in the Xilinx data sheet for the XC6200
family.

The sections covered in this note are:

Introduction

XC6200 Requirements

MC68020 Requirements

Example Circuit

Timing

Implementation

Summary
1

Introduction

One of the key features of the XC6200 family is the
easy access to all the device memory and array
logic. The fastest way of configuring the chip is via
the parallel programming interface. This allows a
CPU to directly write the entire device configuration
and also modify the state of registers within logic
cells. Having full 32-bit access to the configuration
RAM makes dynamic reconfiguration a real possibil-
ity.

The 32-bit interface also means users can read or
write the state of columns of 32 cells within the array
simultaneously.

Although the data bus is 32 bits wide, it is also
straightforward to interface to 8 and 16-bit micropro-
cessors.

The CPU interface is internally governed by a device
control register. This determines the width of the data
bus. This is initially 8 bits but can be modified to 16 or
32 bits. In the case of an 8-bit interface, only bits
D<7:0> are of relevance. Other data bus bits will not
be driven during reads.

The interface signals provided make it fairly straight-
forward to interface to any microprocessor. In this
example a Motorola MC68020 is used as this is a
well known and mature device.

XC6200 Requirements

XC6200 provides the following signals specifically for
parallel access:
XAPP 063 October 9, 1996 (Version 1.1)

CS

Chip Select enables the programming circuitry and
initiates address decoding. When CS is low data can
be read from or written to the control memory. This
signal is intended to be used in conjunction with
address decoding circuitry to select one part within a
larger array for programming.

D<d:0>

(d+1)-bit bidirectional data bus. Used for device con-
figuration and direct cell register access.

A<a:0>

Address bus for CPU access of internal registers and
configuration memory. ‘a’ varies between family
members.

RdWr

When CS is low this signal determines whether data
is read from or written to the control memory. If RdWr
is high then a read cycle takes place. If RdWr is low
then a write cycle takes place.

The full 32-bit data bus is not available on all device
package options due to pin limitations. The width of
the address bus varies between XC6200 family
members. The XC6216 is used as an example. In
this case the address bus is 16 bits, A<15:0>. This
part will take up the entire data address space of
some processors which only have a 16-bit address
bus. If this is not desired then paging registers can be
implemented in the address decoding to allow as
many peripheral devices as required.

The CPU interface is synchronized by the GClk
signal. This clock controls all the RAM and register
interface circuitry within the XC6200 device.

XC6200 write and read cycles are shown in Figures
1 and 2. The a.c. parameter numbers are the
XC6200 data sheet references.

CS is normally high. The XC6200 continually
samples CS on the rising edge of GClk. All the other
CPU interface signals are also sampled on the rising
edge of GClk. The set up and hold times specified in
the XC6200 data sheet must be met.

Once the XC6200 detects that CS has gone low a
parallel CPU cycle begins.This is time t1 in Figures 1
and 2. The type of cycle (read or write) is determined
by the value of RdWr sampled at time t1. The

address bus is also sampled at this time. What
happens next depends on whether it is a read or
write cycle.

Write Cycle

The data bus is sampled at t1. RdWr is sampled low
at t1. After t1 the address and data busses are
ignored. The write cycle now takes place inside the
XC6200 device. The cycle is split into 4 phases.
During phase 1 the XC6200 decodes the address.
The memory location addressed is written with the
data value captured at t1 during phase 2. By phase 4
the device is ready for another cycle to start.

If CS is still low at time t2 the cycle is extended. The
internal write still occurs during phase 2. CS must be
sampled high before phase 4 can be entered and the
cycle terminated.

Read Cycle

RdWr is sampled high at t1. After t1 the address bus
is ignored. The address is decoded during phase 1
and the memory location addressed is internally read
during phase 2. The data is then driven onto the data
bus during phase 3 - after t2 in Figure 2.

If CS is sampled high at time t2, phase 4 will be
entered and the cycle will terminate. The data bus
will enter a high impedance state after t3. Another
read cycle may be started by driving CS low during
phase 4. An additional clock cycle must be inserted
before a write cycle can be started as the data bus
cannot be driven until the read cycle data is removed
from the bus, tCKDZ after t3. Thus an interface opti-
mized for fast state reading could perform a burst of
reads with only two clock cycles per read and no
waiting between reads.

If the processor requires the data to be held on the
data bus for longer than one clock cycle, CS must be
held low until it is safe for the data bus to enter the
high impedance state. There are two possible situa-
tions here:

1) CS is sampled low at t2 and high at t3. The data
bus enters the high impedance state tCKDZ after
t3. Another read cycle cannot begin until the next
rising GClk edge.Thus in this case the data is still
only present on the bus for one clock cycle but an
extra clock cycle must be inserted between con-
secutive reads.

2) CS is sampled low at t2 and t3. In this case the
cycle is extended. It is the rising edge of CS which
XAPP 063 October 9, 1996 (Version 1.1) 2

Interfacing XC6200 To Microprocessors
Figure 1. XC6200 Write Cycles

GClk

CS

RdWr

A<a:0>

D<d:0>

tsuCS1

thCS2

tsuRdWr3

thRdWr4

tsuA5

thA6

tsuD7

thD8

t1 t2 t3

Write Cycle Extended Write Cycle

tWC9

CS sampled high,
1st cycle is terminated.

CS sampled low,
2nd cycle begins.

CS sampled low,
2nd cycle continues.
Figure 2. XC6200 Read Cycles

GClk

CS

RdWr

A<a:0>

D<d:0>

tsuCS1

thCS2

tsuRdWr3

thRdWr4

tsuA5

thA6

t1 t2 t3

Read Cycle

CS sampled high,

tRC

tCKD11
tCKDZ12 tCSDZ13

10

1st cycle is terminated.
CS sampled low,
2nd cycle begins.

CS sampled low,
2nd cycle continues.

Extended Read Cycle
3 XAPP 063 October 9, 1996 (Version 1.1)

causes the XC6200 to switch off its data bus
drivers. This will happen tCSDZ after CS goes
high. Note that this is slightly different from the
normal short read cycle, where it is the rising
edge of GClk at t3 which switches off the bus.

In all cases CS must be sampled high on a rising
edge of GClk to terminate the cycle.

MC68020 Requirements

The MC68020 can make full use of the XC6200 32-
bit parallel interface as it also possesses a 32-bit
data bus. It also possesses a 32-bit address bus
which means that the XC6216 16-bit address bus
can easily be accommodated.

The processor uses the following major signals to
communicate with peripheral devices:

D<31:0>

32-bit bidirectional data bus.

A<31:0>

32-bit address bus output.

FC<2:0>

Function Code outputs which further qualifies the
address bus output. e.g. indicates user data space,
program space, etc. These codes have to be
decoded just as if they were additional address bus
bits.

R/W

Output which determines whether a bus cycle is a
read or a write cycle. A high level indicates a read
cycle. A low level indicates a write.

AS

Address Strobe output which indicates that a valid
address is present on the bus during read and write
cycles.

DS

Data Strobe output which indicates that valid data is
present on the bus during a write cycle. Indicates that
valid data should be placed on the bus during a read
cycle.

DSACK<1:0>

Data Transfer and Size Acknowledge inputs. The bus
cycle does not terminate until these signals have
been asserted. The 2-bit binary code informs the
processor of the addressed peripheral’s bus width.

The processor also has some additional interface
signals which are not used in this example. The pro-
cessor is capable of dynamic bus sizing. Here it is
assumed that all transfers will be 32-bit. When the
XC6200 is in 8-bit mode (as it is initially) it will use the
8 least significant bits of the data bus to transfer infor-
mation (D<7:0>). If a byte instruction is executed the
MC68020 expects to see 8-bit data on D<31:24>.
Therefore only long word data transfers should be
made, even when the XC6200 is not in 32-bit mode
itself. The example here always returns DSACK
codes for a 32-bit bus.

Example Circuit

A simple example circuit is shown in Figure 3. This
example uses DS to generate a correctly timed CS
signal for the XC6200 part. AS is used to generate
DSACK signals to give 0-wait state operation. The
exact decoding of the upper address bits will depend
on how many other devices are to be addressed by
the processor and where the XC6200 part is to
appear in the processor’s memory. The output of the
address decoder must go high when the processor is
addressing the XC6200 part. Address bits A<1:0>
are connected, however, as only long word transfers
should occur, these could be tied to ground on the
FPGA. This example places the XC6216 in the user
data memory space, FC<2:0> = 001.

The processor SIZ<1:0> signals are not used in this
example as, for reasons described above, it is
assumed only long word accesses will be made to
the FPGA. Similarly a DSACK<1:0> code of 00 is
always returned to signify a 32-bit port. If other
devices are present on the board then the DSACK
signals from these devices must be OR’ed together.

This design assumes CS, DSACK and the data bus
will meet all the relevant set up and hold times. This
is dependant on the gate delays and the clock speed
used. If these times are not met then CS can be
retimed and DSACK delayed to introduce wait states.
XAPP 063 October 9, 1996 (Version 1.1) 4

Interfacing XC6200 To Microprocessors
Figure 3. Example Circuit

MC68020

FC<2>
FC<1>
FC<0>

User Data Space

A<31:0>

Address
Decoder

A<31:16>

DS

DSACK’s for
other devices

DSACK’s for
other devices

DSACK<1>
DSACK<0>

A<15:0>

XC6216

R/W

D<31:0> D<31:0>

RdWr

CS

A<15:0>

All this circuitry can be placed in the XC6216 logic array

GClk

AS
5 XAPP 063 October 9, 1996 (Version 1.1)

Timing

Timing diagrams for the example are shown in
Figures 4 and 5. The cycles are subdivided into half
clock cycle states (S0, S1, etc).

Write Cycle

During S0 the processor outputs the address to be
written and also the function codes for the address
space (FC<2:0>). R/W is also driven low at this time
to signify a write cycle. If the address is decoded as a
XC6216 location then the outputs of the address
decoder and the gate decoding FC<2:0> will become
active.

AS is asserted during S1. This signals a valid
address and generates the DSACK signals for the
processor. The DSACK signals can be generated
here if no wait states are required.

During S2 the data to be written is placed on the data
bus. The processor samples DSACK at t1. DS is
asserted during S3 to indicate valid data on the bus.
This also enables the gate driving the XC6216 CS
input.

The XC6216 samples CS low at t2. This starts the
write cycle inside the XC6216. The address and data
busses and RdWr pin are also sampled at t2.

The processor deasserts AS and DS during S5,
causing CS to be deasserted. The XC6216 samples
CS high at t3 and terminates the cycle. The internal
XC6216 write actually completes during S0 and S1
of the next CPU cycle, however this does not matter
as the FPGA will be ready to sample CS again on the
rising edge of S1 and start a new cycle if required.
The internal XC6216 write cycle takes place between
S4 and S1 of the next processor cycle. S4 corre-
sponds to phase 1 in Figure 1. S1 of the next cycle
corresponds to phase 4.

The processor holds the address and data busses
stable during S5 but this is not important because the
XC6216 samples at t2 and the bus values are irrele-
vant after this time.

A new cycle may begin immediately after S5.

Read Cycle

During S0 the processor outputs the address to be
read and also the function codes for the address
space (FC<2:0>). R/W is also driven high at this time
to signify a read cycle. If the address is decoded as a
XC6216 location then the outputs of the address

decoder and the gate decoding FC<2:0> will become
active.

AS and DS are both asserted during S1. AS signals
a valid address and generates the DSACK signals for
the processor. DSACK is sampled by the processor
at t2. As with the write cycle, this assumes no wait
states. DS signals that data should be placed on the
data bus. This causes CS to be asserted.

The XC6216 samples CS low at t1. This starts the
read cycle inside the XC6216. The address bus and
RdWr pin are also sampled at t1.

The XC6216 performs its internal read and drives the
data bus during S4. The processor samples the data
on the falling edge of S4. The internal XC6216 read
cycle takes place between S2 and S5. S2 corre-
sponds to phase 1 in Figure 2. S5 corresponds to
phase 4.

The processor deasserts AS and DS during S5,
causing CS to be deasserted. The XC6216 samples
CS high at t3 and terminates the cycle.

The processor holds the address bus stable during
S5 but this is not important because the XC6216
samples at t1 and the bus values are irrelevant after
this time.

Implementation

All the logic between the processor and the FPGA in
Figure 3 could be implemented in a small EPLD on
the board. This may be the best option if a very fast
clock is being used.

Another possibility makes use of the XC6200 family’s
ability to drive its own control inputs from user logic
within the programmable array. This is fully described
in the XC6200 family data sheet. In this case the con-
figuration for the interface circuit is stored in a Xilinx
serial PROM. On power up this is serially loaded into
the FPGA. The FPGA is configured so that its CS
input pin is driven from the output of the interface
circuit within the logic array rather than from external
circuitry.

Using this method, the interface circuit could easily
be expanded to provide all the timing and glue logic
for an entire board. Minimal circuitry would be loaded
serially from the PROM to allow the microprocessor
to complete the process in fast parallel mode.
XAPP 063 October 9, 1996 (Version 1.1) 6

Interfacing XC6200 To Microprocessors
Figure 4. Interface Write Cycle

GClk

CS

RdWr

A<15:0>

D<31:0>

t1 t2 t3

S0 S1 S2 S3

AS

S0 S1

DSACK<1:0>

Write Data

DS

S4 S5

Write Address
Figure 5. Interface Read Cycle

S0 S1 S2 S3 S4 S5 S0 S1GClk

CS

RdWr

A<15:0>

D<31:0>

AS

DSACK<1:0>

t1 t2 t3

Read Data

DS

Read Address
7 XAPP 063 October 9, 1996 (Version 1.1)

Summary

XC6200 parallel interface gives fast access to
internal configuration and logic state data.

Parallel interface gives user total control over all reg-
isters in logic design.

XC6200 is easily interfaced.

Interface circuitry can be implemented in XC6200
array itself, booted from PROM.

The techniques shown here can be easily adapted to
any 8, 16 or 32-bit microprocessor.

Limitations And Restrictions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the gen-
erality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other intellec-
tual property right of any person or entity in any
country. It is the responsibility of the user to seek
licenses for such intellectual property right where
applicable. Xilinx shall not be liable for any damages
arising out of or in connection with the use of the
design including liability for lost profit, business inter-
ruption, or any other damages whatsoever.
XAPP 063 October 9, 1996 (Version 1.1) 8

	Overview
	Introduction
	XC6200 Requirements
	Write Cycle
	Read Cycle

	MC68020 Requirements
	Example Circuit
	Timing
	Write Cycle
	Read Cycle

	Implementation
	Summary
	Limitations And Restrictions

