
High Performanc e, Low Area,
Interpolator Design for the XC6200

XAPP 081 May 7, 1997 (Version 1.0) Application Note by Beth Cowie

APPLICATION NOTE

Summary
An Interpolator FIR filter design for the XC6200 is discussed.

Xilinx Family Demonstrates
XC6200 The suitability of the XC6200 for CIC Filters and general DSP.

The Hardware/Software co-design process with the XC6200 PCI Board.
Overview

This note describes the implementation of a digital
linear-phase, finite impulse response (FIR) filter for
Interpolation (sampling rate increase) on the
XC6200. Interpolation and Decimation (sampling rate
decrease) filters have a broad range of applications
in DSP. The described algorithm is used in digital
radios, cell phones, base stations, etc. Interpolation
also has a vast range of applications in Image Pro-
cessing. The filter is based on the paper, ‘An Eco-
nomical Class of Digital Filters for Decimation and
Interpolation’ (Ref. 1). The filters require no multipli-
ers and consist solely of adders with feedback and
feedforward registers. The output sampling rate of
the filters may be as high as 50MHz and the design
therefore requires a high degree of pipelining. The
XC6200 series, with its high register count architec-
ture, is well suited to the implementation of these
high clock rate filters. A complete description of the
benefits of the XC6200 architecture is given in the
section: Why use the XC6200? The note also
describes the co-design process involved in verifying
the design with the XC6200DS.

The sections covered in this note are:

Filter Description

Why use the XC6200?

XC6200 Implementation

Co-design on the XC6200DS

Summary

References
1

Filter Description

A complete description of the Interpolation Filters
described in this note can be found in Ref. 1. These
filters require no multipliers and are known as
cascaded integrator-comb (CIC) filters. Their struc-
ture consists of a comb section, operating at a low
sampling rate, combined with an integrator section,
operating at a high sampling rate. Figure 1 shows the
basic structure of the CIC interpolation filter. Figure 2
shows the basic building blocks which make up the
design.

The comb section operates at the low sampling rate
fs/R, where fs is the high sampling rate and R is the
ratio of low sampling rate to high sampling rate. The
comb section consists of N comb stages with a differ-
ential delay of M samples per stage. The differential
delay is a filter design parameter used to control the
filter’s frequency response. The differential delay
usually takes a value of 1 or 2.

The system function for a single comb stage with ref-
erence to the high sampling rate is:

Eqn 1.

The integrator section of a CIC filter consists of N
ideal digital integrator stages operating at the high
sample rate, fs. Each stage is implemented as a one-
pole filter with a unit feedback coefficient. The
system function for a single integrator is:

HC z() 1 z
RM–

–=
XAPP 081 May 7, 1997 (Version 1.0)

Figure 1. Interpolator Structure

C

C

C

C

C

C

C

C

C

C

C

C

comb section - Clocked at fs/R

I

I

I

I

I

I

I

I

I

I

I

I

rate change

input

reg

I I

I

I

I

I

integrator section - Clocked at fs

output
register

Cols

1 2 N

Cols: N+1 N+2 ... 2N

1 1 1 1 0 0 0 0

.

.

.

.

Figure 2. Basic building blocks of the comb and integrator sections

1 1

carry-out

carry-in

outputinput

(a) Comb unit

1 1

carry-out

carry-in

outputinput

(b) Integrator unit

z-1

z-M

M - Differential
Delay

1

1 1

1

XAPP 081 May 7, 1997 (Version 1.0) 2

Interpolator Design for the XC6200
Eqn 2.

There is a rate change switch between the two filter
sections. The rate increase by a factor of R is
obtained by inserting R-1 zero valued samples
between consecutive samples of the comb section
output.

Combining the system function for the two stages of
the filter, the system function for the entire CIC filter
with reference to the high sampling rate, fs, is:

Eqn 3.

This shows a CIC filter is the same as a cascade of N
uniform FIR filters.

Why use the XC6200?

• Speed - DSP and micro-processors cannot
support the high clock rates required for these
filters.

• Ease of design - ASIC designs, although a
feasible alternative, have a slow turnaround time.
This design, using the XC6200 software support,
took less than a week to implement and test. The
FPGA design is also easily modified for different
frequency responses and rate change factors. This
is not possible with an ASIC design.

• Ease of Design Modification - Three parameters
N, M and R, control the filter performance. These
parameters can easily be modified in a VHDL or
schematic description, and the complete range of
filters can be easily accommodated on a XC6216
(with very minor modifications to layout).

• Multiplier free - No multipliers are required. This
makes the design very appropriate for FPGA
architectures.

• Fine Grain A rchitecture - The fine grain
architecture of the XC6200, with abundant
registers and gates, easily supports the CIC
design. DSP filters like this are often highly
structured designs, allowing easy and efficient
routing between the cells. The register-per-cell
architecture significantly reduces area and makes
timing requirements easier to meet. Each comb/
integrator unit requires only a single row of four
cells on the XC6200 device, 0.16% of the XC6216.

• WYSIWYG - Once the design is placed and routed,
it is still easy to understand how it is mapped into
the XC6200 array; see Figure 5. The impact of any
required design changes can be easily calculated
prior to implementation.

• Pipelining Suppo rt - For high sampling rates, the
adders within the design must be pipelined i.e
registers inserted to reduce the critical paths. The
Register-Rich architecture makes pipelining easy
to implement in the XC6200

• Registe r-Rich - One of the main drawbacks of CIC
filters in general is viewed to be the large register
lengths required on the output of the final integrator
block. The Register-Rich architecture of the
XC6200 series can more than accommodate the
required register lengths The XC6264 could
accommodate an output register of length 128,
allowing a sample rate conversion of the order of
238!

• Dynamic Reconfiguration - One filter can be
used to implement a large range of rate changes,
R. The XC6200 allows the user to easily implement
one large register on the output of the integrator
block from which the appropriate output bits can be
selected. Having random access to the
configuration bitstream allows partial
reconfiguration of the XC6200. Simple circuit
updates of gates or routing can be dynamically
implemented. The routing from the output register
to the IOB pads can be dynamically reconfigured to
select the output bits corresponding to the required
rate change factor.

• High Gate Count - An example Interpolator design
requires approximately 10,000 gates and occupies
significantly less than half the XC6216. The
Interpolator filter can be easily modified to function
as a Decimator filter by a simple reversal of the

HI z() 1

1 z
1–

–()
---------------------=

H z() HI z()HC z() 1 z
RM–

–()
N

1 z
1–

–()
N

-----------------------------= =

z
k–

k 0=

RM 1–

∑=
N

3 XAPP 081 May 7, 1997 (Version 1.0)

Figure 3. Schematic representation of the basic building blo cks of the comb and integrator sections

Comb Unit Schematic

Integrator Unit Schematic
comb and integrator blocks and a slight
modification of the rate change block. Both
designs, with a total gate count of over 20,000
gates, could be simultaneously fitted in a single
XC6216.

• FastMAP TM Processor Interface - The
FastMAPTM interface is a parallel microprocessor
interface which allows efficient access to the
internal state of the XC6200. The interface allows
read and write access to registers in the user
design without the need to route signals to IOB’s
and pads. In this example, a processor can write
data to the input register and read from the output
register. These registers are memory-mapped into
processor address space. No additional circuitry is
required to implement this!

• Co-Design Verification - With the XC6200
Development System PCI board, the completed
design can be completely verified on real silicon.
XAPP 081 May 7, 1997 (Version 1.0) 4

Interpolator Design for the XC6200
XC6200 Implementation

An Interpolation CIC filter can be easily implemented
on the XC6216 chip. The structure consists of a
comb filter section followed by the rate change block
and finally, the interpolator section.

Comb

The comb section consists of N columns. Each
column consists of a vertical block of the basic comb
unit (see Figure 2). The number of comb units per
column depends on the input register size and the
number of columns, N. For a 16-bit input and N=4,
the comb unit only requires 4x4x20 cells, a small per-
centage of the 4096 cells available on the XC6216.

The basic building block for the comb filter consists of
an adder with carry-in and carry-out plus a feedfor-
ward delay register or registers, depending on the dif-
ferential delay, M. The signal from the feedforward
register is negated with an invertor as a subtraction is
required on the feed-forward path; see Eqn 1. The
comb unit, the basic building block of the comb
column, is shown in Figure 2 (a), with its schematic in
Figure 3.

The basic comb unit can be implemented in four cells
of a XC6200. The entire comb column of the Interpo-
lator consists of a simple stack of the required

number of comb units. The actual number of comb
units required depends on the number of input bits
and the number of comb columns, N.

The maximum number of rows for the jth column can
be shown to be

Eqn 4.

Minimum register width is:

Eqn 5.

(where Bin is the input register length).

The comb section is clocked at the lower sampling
rate, therefore no pipelining is required either verti-
cally on the ripple-carry or horizontally between the
comb columns.

Gj

2
j

j, 1 … N, ,=

2
2N j–

RM() j N–

R
--------------------------------------- j, N 1 … 2N, ,+=

=

Wj Bin Gj()log+[]=
Figure 4. Rate change blo ck schematic

Slow clock f s/R

(low sampling rate)

Fast clock f s

(high sampling rate)

Output to Integrator block
Comb output plus R-1 ze ro samples

Output f rom Comb blo ck
5 XAPP 081 May 7, 1997 (Version 1.0)

Rate change

There is a rate change between the two filter sections
of the design. The switch causes a rate increase
factor of R and is achieved by inserting R-1 zero
valued samples between consecutive samples of the
comb section output. Figure 4 shows the schematic
for the rate change block. The slow clock is combined
with a one fast clock cycle delay of itself to give a
simple pulse output. The pulse output is combined
with the comb section output to produce the comb
output interspersed with R-1 zeroes. This example
assumes a certain timing relationship between the
Slow clock and the Fast clock. Other schemes could
be employed where this is not the case.

Integrator

The integrator section of the design is clocked at the
high sampling rate. The integrator section consists of
N integrator columns. Each column consists of a
stack of the basic integrator unit. The basic integrator
unit is a simple adder with a carry-in and carry-out
plus a feedback register; see Figure 2 (b). The sche-
matic for the integrator unit is shown in Figure 3.

A basic four bit adder block with carry has a critical
path of around 20ns. Dividing the integrator blocks
into groups of four and pipelining the carry between
each adder section allows the integrator section to be
clocked at up to 50MHz. In order to accommodate
the carry pipelining, the data on the input to the Inte-
grator section must be skewed by the appropriate
Figure 5. Layout of the Integrator blo ck on the XC6200 clear ly sh owing the sk ew on the input signal and the de-sk ew on the output

Input
to Integrator
Unit

Integrator
Columns
N=4

4 clock cy cle del ay

Output
Register

De-skew
Pipelining

Skew
Pipelining

Col 1

Col 2

Col 3

Col 4

Four bit adder with feedba ck
and pipelining on car ry-out

Each square is a
configurable logic
cell of the XC6200
XAPP 081 May 7, 1997 (Version 1.0) 6

Interpolator Design for the XC6200
number of pipelines per adder block. Each four block
adder within the integrator column requires one addi-
tional clock cycle delay of the input. A 28 bit integra-
tor column requires a pipeline delay of 7 clock cycles.
Figure 5 clearly shows the skew effect of the pipelin-
ing. This skew pipelining is only required at the input
to the integrator block. The data moves through the N
integrator columns as skewed data and is de-skewed
on the final Nth integrator output. For a 48-bit high
final integrator column, 12 clock delays are required
on the lowest adder block output. The layout for a
four block Integrator section on the XC6200 is shown
in Figure 5. The skew and de-skew pipelining is
clearly visible.

The size of the integrator column increases across
the design according to Eqn 5. Thus for a 16-bit data
input and a rate change factor of 256, the length of
the final register will be 40 bits. The same design can
be used for any rate changes up to a maximum limit
depending on the length of the final integrator
column. The output data must be selected from the
correct location in the column output register. If the
actual number of bits output is Bout, then the number
of LSB’s discarded is given by:

Eqn 6.

For a 16-bit data in, 16-bit data out design with a rate
change factor, R, of 256 and the number of columns,
N, set to 4, the design occupies 420 cells for the
comb section and 1440 cells for the integrator. The
total design occupies significantly less than half of
the 4096 cells available on the XC6216.

Co-design on the XC6200DS

The XC6200 Development System (Ref. 3) com-
prises some low-level software and a PCI board con-
taining an empty XC6216 and a XC4013E to
implement the PCI protocols and some other func-
tions. The Xilinx XC6200 chip contains a number of
unique features to support hardware/software co-
design. The FastMAPTM interface is a parallel micro-
processor interface which allows efficient access to
the internal state of the chip. With the XC6200DS
software, reads and writes of up to 32 bits can be
made to any 32 registers in a column. The value on
any gate, multiplexer or register output may be read
from the circuit, which looks like an SRAM to the host
processor. The design can be modified to use built in
features of the XC6200 which allow the circuit to be
clocked once every time the software writes to a par-
ticular memory address.

A complete Interpolator for sample rate conversion of
up to times 256 (R = 256) was implemented in a
XC6216. The number of data bits input and output
was 16 and the length of the final integrator column
was 40 bits. The differential delay was set to 1 (M =
1) and the number of columns used was 4 (N=4).
The design occupied less than half of the XC6216.
The design was implemented using WorkView office
schematic input and completely functionally tested
using the XC6200 Development System (see Ref. 3).
The design was clocked using register writes on the
16-bit register input. Each write corresponded to a
cycle of the high sample rate clock. In order to
achieve the high clock rate, the same value was
written to the input register R times (where R is the
ratio of the high sampling rate to low sampling rate),

BT W2N Bout–=
Figure 6. Sine w ave input and output f rom XC6200DS

(a) 20 point sine w ave input to CIC Filter (b) 20 point x 256 output f rom CIC Filter
7 XAPP 081 May 7, 1997 (Version 1.0)

i.e. the input was only changed at the slow clock rate.
A simple counter design implemented the slow clock.
The rate change factor could be varied by a write to a
register with a comparator tied to the counter output.

Through a very simple C++ interface, a complete
functional test of the entire design was carried out.
The output was read from the appropriate bits
(depending on the rate change factor) in the output
column. Standard wave files were written to the filter
and the resulting high sample rate files were read
from the register output and saved to a wave file.
Figure 6 shows the result of inputting 20 points of a
sine wave and the resulting output sine wave. The
C++ interface Code is outlined in Appendix A:
XC6200DS C++ interface code for the CIC Filter.

Summary

The regular, multiplication-free, CIC filters are highly
suited to implementation in the XC6200 architecture.
There are many other similarly structured DSP
problems which are also well suited to the XC6200
architecture. The XC6200DS PCI development
system provides an out-of-the box platform on which
designs can be tried and tested on real silicon before
the final implementations in the user system.

References

1. An economical Class of Digital Filters for
Decimation and Interpolation, IEEE
Transactions on Acoustics, Speech and Signal
Processing, Vol. ASSP-29 No.2, April 1981 pp
155 - 162

2. Xilinx XC6200 Field Programmable Gate Arrays
Product Description.

3. Xilinx XC6200 Development System Datasheet

Limitations And Restrictions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the gen-
erality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other intellec-
tual property right of any person or entity in any
country. It is the responsibility of the user to seek
licenses for such intellectual property right where
applicable. Xilinx shall not be liable for any damages
arising out of or in connection with the use of the
design including liability for lost profit, business inter-
ruption, or any other damages whatsoever.
XAPP 081 May 7, 1997 (Version 1.0) 8

Interpolator Design for the XC6200
Appendix A: XC6200DS C++ interface code for the CIC Filter.
/ * CIC Filter XC6200DS C Interface */

board->initialize();

board->clock_on();

board->reset();

// PCI CLOCK at 66MHz

ref_freq = 16.0;

des_freq = 66.0;

board->set_ref(0);

freq = board->set_clock_freq((float)ref_freq,(float) des_freq);

// reset the board

board->reset();

// load in cal file

if (board->load_cal_file(CALFILE)){

cout << “Problem loading CAL file “ << CALFILE << “: Exiting!” << endl;

exit(1);

}

board->set_bus_width(16);

board->set_mask(all32Bits);

// clear out input register

board->set_map(mask_in_low,mask_high);

board->set_column(filt_in,0);

// reset counter

board->set_map(mask_rst,mask_high);

board->set_column(rst,0x1);

// assert GCLR through write to bit 16 in input reg

board->set_map(mask_clr,mask_high);

board->set_column(clr,0x1);

// buff clk

board->set_map(mask_in_low,mask_high);

for(i=0;i<9;i++)

board->set_column(filt_in,0);

// clear low

board->set_map(mask_clr,mask_high);
9 XAPP 081 May 7, 1997 (Version 1.0)

board->set_column(clr,0x0);

// set clock generation to appropriate value

board->set_map(mask_cdiv_l,mask_cdiv_h);

rt_val = UP_SAMPLE/2 -1;

board->set_column(cdiv_set,rt_val);

// unreset counter

board->set_map(mask_rst,mask_high);

board->set_column(rst,0x0);

WaveRead = FALSE;

while(TRUE){

// get data from input wave file

data = (short)(128 - (BYTE)*(pSndCard++));

if(i >= DataPoints){

WaveRead = TRUE;

break;

}

for(k= 0;k<UP_SAMPLE;k++){

board->set_map(mask_in_low,mask_high);

// write to the input register

board->set_column(filt_in,data);

board->set_map(mask_out_low,mask_out_high);

// read data from the output register

data_out = (int) board->get_column(filt_out);

// update the output wave file

*pDataOut = (BYTE)(128 - (data_out &0xFFFF));

pDataOut++;

}

}

XAPP 081 May 7, 1997 (Version 1.0) 10

	Overview
	Filter Description
	Why use the XC6200?
	XC6200 Implementation
	Comb
	Rate change
	Integrator

	Co-design on the XC6200DS
	Summary
	References
	Limitations And Restrictions

