APPLICATION NOTE

S XILINX®

A Fast Constant Coefficient
Multiplier for the XC6200

XAPP 082 August 24, 1997 (Version 1.0)

Summary

This application note presents a high performance constant coefficient multiplier for the Xilinx XC6200 FPGA. The
design provides performance and density by using dynamic reconfiguration, allowing changes to coefficients
without the need for complete reconfiguration.

Xilinx Family
+ XC6200

Table of Contents

INTRODUCTION.....coeiiiiiiiiiieiis

Constant Coefficient Multiplicationc..ccoccocceienns

PHYSICAL IMPLEMENTATION
CHANGING COEFFICIENTS...........
MULTIPLIER PERFORMANCE........

The Dedicated Interface.........ccoeeeeeeeeeiiiieveiviiiiieeeeeeeeees

INCREASING DENSITYoovvernnnnn.
SUMMARYiiiiiiiiiiieieee e
REFERENCES.........coocoiiiiieeiene,
LIMITATIONS AND RESTRICTIONS

Demonstrates

A constant coefficient multiplier.
« Efficient XC6200 implementation
» Use of dynamic reconfiguration.

Introduction

The Xilinx XC6200 is the first commercial FPGA
designed to specifically work in close cooperation
with a microprocessor. The microprocessor sees the
XC6200 as a block of RAM, within which the user
designed registers and configuration data appear.
The data bus width is programmably selectable to 8,
16 or 32 bits. A feature of the XC6200 that reduces
configuration time is that it supports the
simultaneous writing of many words in configuration
memory with the same data. An additional feature is
the ability to group non-adjacent registers within the
user design into a single word for transfer to and
from the processor.

The XACTStep Series 6000 CAD software package,
together with a PCI bus resident development
system [2], is used in the development and
debugging of applications for the XC6200.

Constant Coefficient Multiplication

Constant coefficient multiplication is a common
function in many Digital Signal Processing (DSP)
applications. One such application is Finite Impulse
Response (FIR) filtering. With FIR, the parameters to
the filter are changed much less frequently than the
input data values, hence constant coefficients can be
used to represent them.

XAPP 082 August 24, 1997(Version 1.0)

SIXILINX®

The multiplier described here takes an 8-bit input
value and multiplies it by a constant 8-bit coefficient
to get a 16-bit unsigned result.

An efficient way of implementing this fixed coefficient
multiplier is by using a Look Up Table (LUT) based
FPGA[5]. The design works by substituting the
networks of adders with lookup tables to perform
most of the multiplication. Consider the multiplication
of a 4-bit value and an 8-bit constant; as there are
only 16 different values that can be represented by
4-bits, there can only be 16 possible answers. Thus
any multiplication between a four-bit variable and an
eight-bit constant can be implemented by a 16 entry
lookup table. With a maximum possible result of
3,825 in an unsigned 4 by 8-bit multiplication, each
LUT entry must be large enough to accommodate a
12-bit result. Therefore, both the entry elements and
the output of the LUT should be at least 12-bits wide.

For an 8-bit by 8-bit constant multiplier, two of these
4-bit by 8-bit multipliers can be arranged as shown in
Figure 1. The mathematics behind this arrangement
are shown in Figure 2.

8 bit Data

LUT- LUT-

12

Adder

j:lz T 4

LUT Based Multiplier

Figure 1:

Constant O OO OO OOO
LUT-B NNNNUD KWK LUT-A
Input oo ; Input
7 7 N v v N v N v R v
v VO v N v N vt R v R v
4 [v v O vt O v v v N v
NNNNNNNN
NNNNNNNN
NNNNNNNN
NNNNNNNN

LUT-A Output 74 v N v v v N v v O v v N v
LUT-B output N NN NN NNNNNNN
Adder output NN NNNN XX NXX XU U

Figure 22 Maths of LUT Based Multiplier

Physical Implementation

The hardware components required to implement the
8x8-bit multiplier are shown in Figure 3. Pipeline
registers have been added to both the LUT’s and the
adders to increase the throughput.

M[7:0]
M[7:4] M[3:0]
LUT-B LUT-A
_ A[11:8]
B[11:8} B”-‘I] | B[3:0] lA[714 AL3:0]

| 4bit half H 4 bit fuJI.I H 4lbit full | Reg |
| | 1 1

P[15:12] P[11:8] P[7:4] P[3:0]

Figure 3: Multiplier Architecture

The XC6200, unlike the XC4000E, does not use
LUT's to implement logic functions. Instead, its
function units are built around 2:1 multiplexers.
These function units can implement a register and
either a 2:1 multiplexer or a combinational 2-input
logic gate. Being able to implement both a register
and a logic function means that the cost of pipelining
in this technology is very low.

XAPP 082 August 24, 1997 (Version 1.0)

A Fast Constant Coefficient Multiplier for the XC6200

A 4-input lookup table can be implemented, as
shown in Figure 4, using 2:1 multiplexers and

registers.

>

0]

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

Reg.
Reg.

ANYAWANWAWANANA

Reg.
Reg.

Figure

An improvement of this approach implements
LUTs by replacing the 16 user registers with
four 2-input gate functions as shown in Figure
5. Each of the gates require four bits of
configuration memory to encode a logic gate
truth table; so instead of user registers,
configuration memory is used.

In a complete LUT, the individual 4-input LUT’s
are laid out in single rows of 8 cells; these are
then stacked vertically to form the 12-bit
output. This extremely regular layout, as shown
in Figure 6, makes it easy to determine which
parts of the circuit need to be reconfigured at
run time. It is worth noting that because of the
pipelining scheme some horizontal rows of
cells, those corresponding to the most
significant bits, have additional registers in
them.

Al

4:

Y

F(AO,A1,A2,A3)

Building LUT’s from Muxes

A0

Al

F(AO0,A1,A2,A3)

e

The LUT function is encoded
into the functions implemented by these gates

VYYY

Figure 5: Optimised LUTConstriction

XAPP 082 August 24, 1997 (Version 1.0)

SIXILINX®

H]
Funcl Func2 Func3 Func4
Figure 6: LUT layout on XC6200

t t

Changing Coefficients

Figure 6 shows the layout of the lookup table on the
XC6200. The XC6216 memory map is designed so
that the control bits for functionally related resources
on the chip occur in logically adjacent bits and words
of control memory.

The vertical columns, labeled Funcl through Func4
(see Figure 6), contain the 4 gates whose functions
are changed according to the lookup table. To
change the function of a gate, up to 12 cells need to
be reconfigured. The control bits for each of these
cells require only one byte, thus a 32-bit data bus
can simultaneously write to 4 vertically adjacent cells
in one cycle.

A coefficient change, on a multiplier consisting of two
LUTs, would require up to 96 cells to be
reconfigured. Therefore it would take 24 write cycles,
or 960 nano seconds with a 50Mhz clock, to
completely reprogram the multiplier.

It is worth bearing in mind that, in practice,
coefficient changes may not always require a
complete reprogramming of the circuit; in fact, only a
few cells may need reconfiguration. This would make
reconfiguring the multiplier, on average, much faster.

Multiplier Perfo rmance

The multiplier runs at 75MHz using the -2 speed
grade. The equivalent design on the XC4000E at
grade -3 runs at 65Mhz. (Note that the speed grade
numbering system is different.)

Cost-wise, the design uses 280 cells on the XC6200
and 25 CLB'’s on the XC4000E. The most significant
advantage is the speed at which its coefficients can
be changed: the XC6200 reconfigures in less than
1us.

The Dedicated Interface

On both these devices, LUT configuration data can
be changed without reconfiguring the chip. This is
achieved by allowing user logic to address LUT RAM.
On the XC4000E this technique requires a significant
amount of additional logic, which must be added to
the user design to control the LUT RAM and to
interface with the external source of data (e.g. a
microprocessor). This results in routing resources
being tied up between the I0B’s and the LUT RAM
control logic.

Unlike the XC4000E, the XC6200 has a built-in
dedicated processor interface. This interface includes
the necessary extra circuitry to perform this function
without tying up routing resources.

Increas ing Density

The layout described above is designed to preserve
regularity in order to make dynamic reconfiguration

XAPP 082 August 24, 1997 (Version 1.0)

A Fast Constant Coefficient Multiplier for the XC6200

to change coefficients fast and efficient. If speed of
reconfiguration can be sacrificed however, the design
can be implemented in a much smaller area. This is
done by co-optimizing the logic in the groups of 12
shared input LUT’s.

One way of achieving this would be to exploit the fact
that the first two LUT input variables require only 5
unique functions. Also, of the 16 possible functions,
the second eight are the logical inverses of the first;
this means that the first eight functions can be
implemented simply by inverting the corresponding
multiplexer input in the second level of the tree. The
remaining eight can then be further reduced to five
by observing that three of the functions - ZERO, AO
and Al - are trivial and therefore do not require logic
gates. Thus we need only calculate the 5 non trivial
functions and route these, alongside the two input
variables, to the 12 sets of muxes to build the LUT.

These changes almost half the area used by an
XC6216 LUT: only 3*12+5=41 cells are used, as
opposed to 7*12=84 cells in the previous design.
The downside of this is that a different route pattern
must be created for each possible LUT; this leads to
longer reconfiguration times. The number of gates
used can be further reduced to 30 by using complex
logic optimization algorithms, but these significantly
complicate the routing.

Summary

This application note gave a design on the XC6200
fine-grained multiplexer based FPGA for a constant
coefficient multiplier. The design provides better
performance and greater density than multipliers on
conventional FPGAs.

In addition the ability of the XC6200 architecure to
dynamically reconfigure small portions of the device
very quickly makes the look up table based
technigue much more attractive since coefficients or
other parameters stored in the lookup tables can be
changed rapidly. The configuration values required
for a particular coefficient can be calculated rapidly
on the fly by a microprocessor - without the need for
complex CAD tools.

References

[1] Xilinx Inc, “XC6200 FPGA Family Advanced
Product Description”, Available from Xilinx Inc. 2100
Logic Drive San Jose CA.

[2] Wayne Luk and Nabeel Shirazi, “Modelling and
Optimising Run Time Reconfigurable Systems”,
Proc. IEEE Symposium on FPGA's for Custom
Computing Machines, Napa CA 1996.

[3] Tom Kean, “Configurable Logic: A Dynamically
Programmable Cellular Architecture and its VLSI
Implementation” Phd Thesis CST-62-89, University
of Edinburgh, Dept. Computer Science.

[4] Tom Kean and John Gray, “Configurable
Hardware: A New Paradigm for Computation”,
Advanced Research in VLSI, Proc. Decennial
Caltech Conference, MIT Press 1989.

[5] Ken Chapman, “Fast Integer Multipiers fit in

FPGA's”, EDN 1993 Design Idea Winner, EDN May
12th 1994,

Limitations And Restrict ions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the
generality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other
intellectual property right of any person or entity in
any country. It is the responsibility of the user to
seek licenses for such intellectual property right
where applicable. Xilinx shall not be liable for any
damages arising out of or in connection with the use
of the design including liability for lost profit, business
interruption, or any other damages whatsoever.

XAPP 082 August 24, 1997 (Version 1.0)

