
APPLICATION NOTE

R

A Fax Decoder on the XC6200

XAPP 085 July 25, 1997 (Version 1.0) Application Note by Douglas M Grant

Summary

Part of a fax decoder circuit is designed in VHDL which, with the aid of with some simple software, can decode
fax-format data. The circuit is mapped onto a XC6216 FPGA within XC6000DS development system PCI board to
accelerate the most cycle-intensive parts of the decoding algorithm. This note describes the design of the
accelerator circuit for the XC6216 and demonstrates simple and effective codesign.

Xilinx Family

• XC6200

Demonstrates

• VHDL

• Hardware/Software Co-design

• XC6000DS

• Reconfigurable Computing

1 XAPP 085 July 25, 1997 (Version 1.0)

Table of Contents

INTRODUCTION .. 1
THE XC6000 DEVELOPMENT SYSTEM................ 2
CCITT G3 FAX STANDARD [1] 2
CIRCUIT ARCHITECTURE.................................... 2

Partitioning and architectural choices............................. 2
Input shift register... 3
Decoder tree cell. ... 4
5-bit decoder tree. .. 4
6-bit decoder tree. .. 4
12-bit decoder tree. .. 4
13th bit decoder.. 4
FILL bit and EOL detector. ... 5
Further partitioning ... 5
Run-length LUTs .. 5
Outputs... 5
Complete architecture .. 5

LAYOUT - THINKING AHEAD 6
VHDL DESIGN FLOW... 6
PROGRAM DESIGN... 6
REPRISE ... 8
REFERENCES ... 8
LIMITATIONS AND RESTRICTIONS 8

Introduction

It is practical to implement applications on FPGAs
which were formerly only possible with ASIC
technology. The benefits of using an FPGA include
the low NRE, low risk and independence of shifting
standards. In the communications world especially,
the accelerating improvements in bandwidth and
world-wide interconnectivity mean that new
standards are an almost daily occurrence. In order to
keep pace with these technological advances it is no
longer possible to design and develop ASICs in the
time available and so the use of FPGAs becomes a
necessity in many systems. Their use allows new
standards to be implemented in just a few days and
the hardware updated accordingly in fractions of a
second.

The ITU (formerly the CCITT) group 3 fax
transmission standard is a standard which, while
quite stable, will need to be improved to exploit the
growing ISDN-2 communications infrastructure.
There is already a draft for an update in progress.
The standard describes both the transmission
protocols themselves as well as the binary coding
and compression methods used. The standard is
also used in applications other than actual fax
transmission, for instance as a
compression/decompression method for sending
data to a printer over a network. Processing power
and memory required to implement decompression in
real time can be very expensive, and an FPGA-
based accelerator can reduce these costs and make
real-time operation at video rates possible.

R

XAPP 085 July 25, 1997 (Version 1.0) 2

An important application of this compression
technology is in frame buffer controllers where the
memory requirement can be minimized. This gets
used extensively in printer controllers.

The XC6000 Development System

The XC6000 Development system comprises some
low-level software and a PCI board containing an
XC6216, an XC4013E to implement the PCI
protocols and some other functions. It defines the
hardware/software interface.

With the XC6000DS software provided, Reads and
Writes of up to 32 bits can be made to any 32
registers in a column of the XC6216 (this could be
more using wildcarding). The control registers on the
XC6216 may also be written and read with this
software. The value on any gate, multiplexer or
register output may be read from the circuit, which to
the host processor looks like an SRAM. The
hardware can be clocked by the software. This
makes for a development system that enables
hardware to be tested as part of the software
development process.

CCITT G3 Fax Standard [1]

Each line of 1728 pixels scanned from the source
document is transmitted, encoded as a pulse stream
lasting a minimum of 20ms. Lines with little or no
features may be "padded" with some silence during
transmission (silence is equivalent to sending '0's).

The coding part of the standard describes two sets of
91 Huffman codes, from 2 bits to 13 bits in length. A
Huffman code is one that does not form the
beginning of any other code. If the code '11'
represents some number of consecutive pixels then
no other code may begin with a '11'. The two sets of
91 codes are for Black pixel data and White pixel
data. Each set is made up of 64 codes to represent a
run of 0 to 63 pixels - the so-called Termination
codes; and 27 codes to represent runs of 1 to 27
blocks of 64 pixels each - the so-called Makeup
codes.

There is an extra 12 bit code that represents an end-
of-line (EOL) and finally any spare '0's in the
transmission are considered to be padding, or FILL
bits. An end-of-page (EOP) is coded as two
consecutive EOLs and an end-of-transmission (EOT)
as six consecutive EOLs.

Every line starts with one or two codes for white pixel
data, and the colour of the data then alternates every
one or two codes. A pixel run of one colour is
represented by either a single Termination code or a
by Make-up code followed by a Termination code.
The bit stream given in Figure 1 would represent a
blank white line. Huffman coding also allows us to
send shorter codes for more common pixel data, and
in general around 80% of codes transmitted will be 6
bits or less.

Figure 1: Example of transmitted bit stream

Circuit architecture

Partitioning and architectural choices.

The most cycle-intensive part of fax decoding in
software is the detection of valid codes. A variable-
length decoding circuit for Huffman codes, as
required here, is most efficiently implemented in
hardware by a binary decoding tree. Since 80% of
fax codes transmitted have a run-length of 6 bits or
fewer, it is natural to build a 6-bit decoding tree to
begin with. Also, because there are no 1-bit codes,
the tree may be constructed from two, 5-bit decoding
trees. These trees are fed with the LSB, either
directly or via an inverter to generate a 1', which then
filters through the tree structures, guided by the
values of the more significant (or later arriving) bits.
At certain points in the trees, valid codes are marked
with a flag bit. If the current stream of bits entering
the tree contains a valid code, this is reflected by a ‘1'
bit on the output which is associated with that
number of bits. Software may then slice that many
bits from the input stream and look up the
corresponding number of white or black pixels to be
output to paper. Figure 2 shows the simple structure
of a decoding tree, and shows how a code of 1110
(from LSB-Bit0..Bit3) is detected. By applying the
incoming bit stream to the columns of cells and
ORing the outputs of nodes in a column, the number
of bits in a valid code, or "hit", can be detected. Only
the number of bits in a valid code is important and
ORing together pairs of the so-called "hit" lines from
the two 5-bit trees produces 5 outputs representing a
code length of 2 to 6 bits.

010011011 00110101 000000000001
27*64 pixels 0 pixels EOL

A Fax Decoder on the XC62

3 XAPP 085 July 25, 1997 (Version 1.0)

With a 6-bit decoding tree chosen, more decisions on
the architecture may be made. Since the data
received in a fax transmission relates alternately to
runs of white and black pixels, it seems natural to
have a decoding tree for each one. This will avoid
reprogramming a single tree with new valid code
points after each white or black code is detected.
Chip area is not a concern at this point, since it costs
almost nothing on a reconfigurable FPGA such as
the XC6216 unlike on an ASIC where area
considerations can be critical to yield and cost.

The longest valid fax codes are 13 bits long. By
adding a second 6-bit decoding tree for both white
and black data, codes of length 12 bits may be
detected. In order to detect a code of 7 to 12 bits, the
second tree must be dynamically programmed. The
programmed codes are dependent on the value of
the first six bits of the codes. The approach taken
here is to have the software determine which valid
codes to program the second tree with, whenever no
2 to 6 bit code is detected. 13-bit codes only exist for
black pixel data and a following section describes the
simple circuit required to detect these in hardware.
The logic to detect an EOL code and a FILL bit are
also described.

If no valid code is detected then the software
discards the LSB and code detection continues.
Otherwise the software slices the requisite number of
bits from the input stream, looks up their equivalent
pixel run-length code from a table, and outputs that
many pixels of the given colour to paper (or file).

It only remains to develop the input and output
hardware for the trees. In this case the input takes
the form of a parallel-load shift register, which can be
written to via the processor interface. The following
section describes the circuit in detail.

Input shift register.

The shift register is based on the FDC D-type flip-flop
component which uses a single cell in the XC6200
family. The architecture is simply a chain of these
flip-flops, the lower 32 of which are multiplexed with
RPFDC parts. The latter are registers which can only
be written to by the processor interface (The "RP"
stands for "register protected"). Figure 3 shows the
circuit. It should be noted that the LSB of the parallel-
input RPFDCs is used to generate the clock for the
shift register, by attaching a CBUF_OUT primitive to
that register and then feeding the pulse generated by
a read from or write to this cell onto the global G1
clock routing with a BUFGP part. Separate RPFDCs

are also used to generate the control for the
multiplexers and the clear signal for the shift register.
The shift register forks into two 16-bit shift registers,

Figure 2: Six-bit binary decoding tree at work

 Figure 3: Input shift register

R

XAPP 085 July 25, 1997 (Version 1.0) 4

one for white pixel data and one for black.

Decoder tree cell.

The decoder trees are made up from simple cells
which have the circuits shown in Figure 4 . The exact
circuit depends on the location in the tree, as
intimated in the diagram. The RPFDC is loaded (at
run time) with a '1’ if the cell is a node in the tree that
represents a valid code word. A single decoder cell
can be mapped to 3 cells on the XC6216 array.

5-bit decoder tree.

The 5-bit decoder tree is made up of 62 of the cells,
with 63 being required for the second decoder trees.
These are connected as shown in Figure 5 .

6-bit decoder tree.

A 6-bit decoding tree may be constructed from two 5-
bit trees. Figure 6 shows a decoding tree for the first
6 bits of data. The trees for the next 6 bits have a '1'
constant replacing the bit0 input, and bits 6..11
instead of bits1..5 as the other inputs. It has 6 output
OR gates instead of 5.

12-bit decoder tree.

A 12-bit decoding tree has 12 inputs and 11 outputs,
representing valid code lengths of 2 to 12 bits.
Figure 7 shows such a tree alongside part of the
input shift register which is used to feed it parallel
data.

13th bit decoder.

The CCITT standard defines 13 bit codes for black
pixel data only. These codes are paired, sharing a
common first 12 bits within each pair. So if one of
those 12-bit codes is detected then whatever the
value of the 13th bit, a valid 13-bit code is detected.
The 12-bit codes are detected by monitoring the
outputs from the appropriate leaves of the second,
black decoding tree with a network of OR gates. A '1'
on any input will propagate through to a '1' on the
"13-bit code found" output of the tree. Since all the
13-bit codes also have bit6 = '1', only the leaves of
one half of the 6-bit tree need to be monitored.
Figure 8 shows how this works.

Figure 4: Decoder tree cell

Figure 5: 5-bit decoder tree

Figure 6: 6-bit decoder tree

Figure 7: A 12-bit decoder tree

A Fax Decoder on the XC62

5 XAPP 085 July 25, 1997 (Version 1.0)

Figure 8: 13th bit decoder

FILL bit and EOL detector.

To re-iterate, an EOL code is defined as 11 '0's
followed by a '1'. By NORing together the first 11 bits
of the input stream, and ANDing the result with the
12th bit an EOL detector is designed. A FILL bit is
defined as any spare '0's in the sequence. These
may only appear just before a EOL code is
transmitted, so detecting a run of 12 '0's is enough to
be sure that the first '0' is a FILL bit. The circuit for
FILL bit detection can be combined with that for the
EOL, resulting in the circuit shown in Figure 9 .

Figure 9: EOL and FILL detector

Further partitioning

At this stage of the design it is apparent that there is
still be a lot of chip area left unused, so a further

section of software may be selected for
implementation in hardware. The act of slicing the
correct number of bits from the input remains a
software task, since the software has to clock the
shift register the correct number of times after each
valid code is detected. The software, which looks up
the pixel run-lengths that correspond to a valid code,
is simple to replace with some hardware.

Run-length LUTs

Each of the 6-bit decoding trees has a corresponding
LUT created in hardware, which takes the
appropriate, raw bit-stream values as inputs and
outputs the correct number of pixels (or blocks of
pixels). This output can be read back by the
software.

The LUTs are defined as truth-tables, with each
having 6 output bits to describe a pixel run-length of
up to 63, and an extra output bit which signals a
make-up code as opposed to a termination code.

Outputs

The outputs from each 6-bit tree are the OR gates
which combine the “hit” lines. These may be read
from directly by software. The LUT outputs are
extracted from wherever in the logic block they are
produced, to a column of buffers which software may
also read from.

Complete architecture

The complete architecture is shown in Figure 10 .

Figure 10: Complete architecture of fax decoder

R

XAPP 085 July 25, 1997 (Version 1.0) 6

Layout - Thinking ahead

Now that the details of the architecture have been
fleshed out to a register-level design, and before
starting to describe the circuit in VHDL, it is important
to make an initial floorplan. Since there are fewer
than 64x3 cells in a 5-bit decoder tree, it is possible
to pack these into an area of 32x6 cells. This is best
done by interleaving the nodes of the tree in the
order suggested by the structure in Figure 2 . The 32
leaves make up one column of 32x3 cells. The first
node will be placed about half way up the other
column, the next two nodes above and below that,
the next four nodes spread as equally as possible
between those, and so on. It looks as if the tree has
been "squashed" into 2 columns instead of 5 or 6.
Two of these trees make up a 6-bit detector and the
two 6-bit detectors for each of black and white data
are placed on the left and right sides of the IC, with
the black hardware above the white. The most
complex LUT will not require more than around 100
gates (and therefore 100 cells), This will fit easily into
a 32x15 cell block which is available beside each
decoding tree. Figure 11 shows this initial floorplan.

 W
hi

te
 D

a
ta

 B
la

ck
 D

a
ta

 Trees SRs Secondary Trees

Input SR

Figure 11: Initial floorplan on XC6216.

VHDL design flow

The entire design has been captured as a mix of
VHDL and truth-tables. The latter are synthesised
into logic - a netlist which is made available as more
VHDL code which can then be incorporated with the
rest of the design. The trees, shift registers and other
hardware rely heavily on the use of the generate
construct in VHDL. The initial floorplan can also be
incorporated into the VHDL description as RLOC
attributes which can be attached to the various levels

of hierarchy during elaboration. Figure 12 describes
the design flow.

As an alternative to using Synopsys for elaboration, a
more targeted elaborator, 'Velab' [3], can be used.
This has been written specifically for the XC6200
family, and includes the propagation and evaluation
of parametrisable attributes in VHDL'93. (Velab is
available as Freeware on the Xilinx web page.)
Timing analysis may be done before and after place
and route (P&R), and delays may be back annotated
into the VHDL in SDF format, which the back-end
P&R tool produces.

Program design

Application code must be written, which allows the
PC to use the design on the XC6000DS [2]. This can
be done concurrently with the hardware design. The
place and route constraints in the VHDL are used to
determine the location of cells that will be used as I/O
ports by the software. It is a simple matter to trade off
hardware for software and vice-versa at a late stage
in the design flow.

Figure 12: VHDL design flow

A Fax Decoder on the XC62

7 XAPP 085 July 25, 1997 (Version 1.0)

Figure 13 shows the program flow that implements
all the control and sequencing parts of the decoding
algorithm.

Figure 13: Software flow diagram

R

XAPP 085 July 25, 1997 (Version 1.0) 8

Reprise

The application has been wrapped in a Windows
application, allowing a bitmap to be made for the
decoded data and displayed on screen. The
performance of the accelerator has been measured
to be some four times better than a wholly software-
based approach. This would be greatly enhanced if
the XC6216 was directly addressed by the host
processor rather than via the PCI bus. Burst-mode
access on the PCI bus can increase performance.

This exercise proves the ease of hardware/software
co-design for applications based on the XC6000DS.
lt can be used as a template for mapping more
applications to a mixture of hardware and software,
based around the XC6000DS.

The use of VHDL as a design methodology is critical
to obtaining working designs in a short time.
Floorplanning at an early stage in the design flow is
also critical.

References

[1]: “Standardization of Group 3 facsimile apparatus
for document transmission”, CCITT Draft
Recommendation T.4
[2]: “XC6200 co-design for fax decoder”, D.M.Grant,
Xilinx Scotland, 1997.
[3]: "Velab Release Notes", D.M.Grant, Xilinx
Scotland, 1997

Limitations And Restrict ions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the
generality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other
intellectual property right of any person or entity in
any country. It is the responsibility of the user to seek
licenses for such intellectual property right where
applicable. Xilinx shall not be liable for any damages
arising out of or in connection with the use of the
design including liability for lost profit, business
interruption, or any other damages whatsoever.

	Summary
	Table of Contents
	The XC6000 Development System
	CCIT G3 Fax Standard[1]
	Circuit architecture
	Layout - Thinking ahead
	VHDL design flow
	Program design
	Reprise

