
APPLICATION NOTE

R

 XC6200 Fax Decoder Co-design

XAPP 086 July 22, 1997 Application Note by Douglas M Grant

Summary

This applications note describes the development of co-designs in software and hardware for a code
decompression application. The target platform for the application is the XC6200 part within the XC6200DS
development system - A PCI-interfaced, reconfigurable processing platform.

Xilinx Family

XC6200

Demonstrates

• Hardware/software co-design
• Reconfigurable Computing
• XC6000DS

1 XAPP 086 July 22, 1997

Table of Contents

INTRODUCTION... 1
THE DEVELOPMENT SYSTEM 2
CCITT G3 FAX STANDARD [1].............................. 2
CO-DESIGN: PARTITIONING 2
DESIGN #1... 2

ASIC parts .. 2
Physical design .. 3
Software part .. 4

DESIGN #2... 6
Single detection and run-length LUT.............................. 6

REPRISE.. 6
REFERENCES.. 6
LIMITATIONS AND RESTRICTIONS...................... 7

Introduction

This applications note describes the development of
co-designs in software and hardware for a code
decompression application. The target platform for
the application is the XC6200 part within the
XC62OODS development system - a PCI-interfaced,
reconfigurable processing platform.

It is fast becoming practical to implement
applications on FPGAs that were formerly only
possible with ASIC technology. The benefits of using
an FPGA include the low NRE, low risk and
independence of shifting standards (future proofing).
In the communications world especially, the
accelerating improvements in bandwidth and
worldwide interconnectivity mean that new standards
are an almost daily occurrence. In order to keep
pace with these technological advances it is no
longer possible to design and develop ASICs in the
time available and so the use of FPGAs becomes a
necessity in many systems. Their use allows new
standards to be implemented in just a few days and
the hardware updated accordingly in fractions of a
second.

The ITU (formerly the CCITT) group 3 fax
transmission standard is a standard which, while
quite stable, is likely to be improved to exploit the
growing ISDN-2 communications infrastructure.
There is already a draft for an update on the table.
The standard describes both the transmission
protocols themselves as well as the binary coding
and compression methods used. The standard is

R

XAPP 086 July 22, 1997 2

also used in applications other than actual fax
transmission, for instance as a
compression/decompression method for sending
data to a printer over a network, reducing the size
and cost of local, page buffer memory. Processing
power and memory required to implement
decompression in real time can be very expensive,
and an FPGA-based accelerator as a reconfigurable
processor can reduce these costs and make real-
time operation possible.

The Development System

The XC6000 Development system comprises low-
level software and a PC board containing an
XC6216, an XC4013E to implement the PCI
protocols and some other functions. This is a
platform for implementing complete applications. It
defines the hardware/software interface.

With the XC6000DS software provided, Reads and
Writes of up to 32 bits can be made to any 32
registers in a column of the XC6216 (this could be
more using wildcarding). The control registers on the
XC6216 may also be written and read with this
software.

The value on any gate, multiplexer or register output
may be read from the circuit, which to the host
processor looks like an SRAM. The hardware can be
clocked by the software. This makes for a
development system that enables testing of the
hardware as part of the software development
process.

CCITT G3 Fax Standard [1]

Each line of 1728 pixels scanned from the source
document is transmitted, encoded as a pulse stream
lasting a minimum of 20ms. Lines with little or no
features may be "padded" with some silence during
transmission (silence is equivalent to sending '0's).

The coding part of the standard describes two sets
of 91 Huffman codes, from 2 bits to 13 bits in length.
A Huffman code is one that does not form the
beginning of any other code. If the code '11'
represents some number of consecutive pixels then
no other code may begin with a '11'. The two sets of
91 codes are for Black pixel data and White pixel
data. Each set is made up of 64 codes to represent
a run of 0 to 63 pixels, the so-called Termination
codes, and 27 codes to represent runs of 1 to 27

blocks of 64 pixels each, the so-called Make-up
codes. There is an extra 12 bit code that represents
an end-of-line (EOL) and finally any spare '0's in the
transmission are considered to be padding, or FILL
bits. An end-of-page (EOP) is coded as two
consecutive EOLs and an end-of-transmission (EOT)
as six consecutive EOLs. Every line starts with one
or two codes for white pixel data. The color of the
data then alternates every one or two codes. A pixel
run of one color is represented by either a single
Termination code or by a Make-up code followed by
a Termination code. The bit stream given in Figure 1
would represent a blank white line. Huffman coding
also allows transmission of shorter codes for more
common pixel data. In general around 80% of codes
transmitted will be 6 bits or less.

Figure 1: Example of transmitted bit stream

Co-design: Partitioning

There is a natural partitioning of the application into
parts which software can do well: Control and
sequencing, and parts which hardware can do best:
Code detection, look-up tables (LUTs). Co-design
may be envisaged as writing a program that "calls"
hardware extracodes to execute the application. The
hardware extracodes are ASIC designs that may be
dynamically activated within the FPGA. As in all
engineering problems there are a range of solutions
that trade software complexity, hardware complexity
and performance. The following sections describe
two possible designs:

1. Using dynamically programmed decoding trees
and discrete run-length LUTs.
2. Using a single code and run-length LUT.

Design #1

ASIC parts

The hardware in the first design consists of 3 groups
of parts: I/O cells, decoding trees to detect the codes
and LUTs to translate these to pixels [2].

 010011011 00110101 000000000001
 27*64 pixels 0 pixels EOL

XC6200 Fax Decoder Co-design

3 XAPP 086 July 22, 1997

I/O cells
Data is written by the software to a 32-bit, parallel-
load shift register. Software drives the clock for the
shift register via the PCI interface. This shift register
forks after 32 bits into two 16-bit shift registers, one
for feeding the black pixel decoder on the top half of
the cell array, and the other feeding the white pixel
decoder on the lower half. In the design there are
separate Black and White decoding parts.

The outputs from the decoding trees are simple
gates, and these signal the detection of a code from
2 to 13 bits and also the arrival of a FILL bit and of
an EOL. The outputs from the LUTs are fed to
columns of buffers in a single column that may also
be read from. Two control registers in the design
clear the shift registers (although this is not really
necessary), and control the shift or load behavior of
the 32-bit input shift register.

The hardware was described in VHDL and
synthesized into an EDIF netlist. All the gates in the
I/O blocks were fully pre-placed on the cell array by
annotating the VHDL with RLOC attributes.

Decoding trees
The decoding trees are duplicated for White and
Black data, two 5-bit decoding trees are placed back-
to-back to make a 6-bit tree. With two 6-bit trees,
codes of up to 12 bits may be detected (a few more
gates detect the few 13-bit codes which are defined
by the standard).

The trees are gate level designs with a single node
taking three XC6216 cells. It is possible to fit a 5-bit
tree into a 6 cell wide by 32 cell high bounding box.
Cells are all pre-placed with RLOC attributes in the
VHDL. The duplication of trees was aided by the
REF9O transform, which reflects a design across a
vertical axis.

It should be noted that a height of 32 cells for the
trees was chosen purposely to reprogram the trees
for detecting codes of length 7 to 13 bits. Depending
on the values of the first 6 bits, this is most efficiently
done with 32-bit writes to the array by the software.

The three cells in each node comprise a code
detector, a register and an OR gate. The code
detector is a single gate that outputs a '1' if the input
data is of the correct value for that position in the
tree. In this way the inputs "steer" a token along a
single path through the tree. At certain points in the

tree, at nodes which represent a valid code, an
RPFDC primitive is used to store a '1' (which is
written there by the software). This triggers a '1' to
ripple up a chain of OR gates across the tree, to one
of the "hit" outputs. The nodes are placed in an
interleaved arrangement to reduce routing overhead,
using a complex, parameterized RLOC attribute in
the VHDL.

Run-length LUTs
The LUTs which translate the codes to pixel run-
lengths were synthesized from PLA input format.
Area-based optimizations were applied during
synthesis. Timing driven structuring (the default) was
applied first, followed by Boolean optimization.

Physical design

Figure 2 shows the layout of this hardware on a
XC6216 FPGA, where the light-colored vertical
stripes indicate I/O cells, the light-colored boxes
surround the LUTs and the highlighted blocks of the
other used cells form the eight 5-bit trees (or four 6-
bit trees.)

Figure 2: Layout of hardware on XC6216

R

XAPP 086 July 22, 1997 4

Software part

Raw fax data is read from a file and stored in an
array ready for processing, as in a wholly software-
based approach. Data is written to the circuit 32 bits
at a time, with software controlling this process.
Processed data is read back and then output to file
as characters, resulting in a 1728-character wide text
file. The software flow is depicted in Figure 3 and is
described thus:

I. Read data from file.
II. Download the design to the XC6216.
Ill. Program the trees for detecting 2 to 6 bit codes

(this only happens once).
IV. Set the multiplexer control to "load"
V. Write the first 32 bits of data to the column of

RPFDCs
VI. Reset the mux control to "shift"

Writing the data generates a clock to the shift
register to accept that data. By attaching a special
primitive, the CBUF_OUT, it is possible to "drag" a
control signal from the underlying logic of the FPGA.
In this case that control signal is the word line which
selects a column of cells for reading or writing. This
signal is inverted and routed onto the global G1 clock
network, which then clocks the shift register
separately from the input registers.

VII. Repeat reading from the input register column,
shifting the data into the two shift register forks,
where it's ready to be decoded, which is done
(almost) immediately.
VIII. Read from the appropriate base tree output to
tell the software if a 2 to 6 bit code, a FILL bit or an
EOL has been detected.
IX. If the software sees a '1' on the EOL output bit
then a newline is written to the output file, and the
data in the shift register is shifted on 12 bits. If a
FILL bit is detected then a single shift happens. If
however, a 2-to-6 bit “hit” is found, the translation to
pixels has already been completed and the answer is
waiting on the outputs of the appropriate LUT.
X. 6 bits of this result pass the values 0 to 63 and
the 7th bit signals if this is a make-up code, rather
than a termination code, which the software then
multiplies by 64 to get the true number of pixels to
print out.
XI. Then input data is shifted the appropriate
number of bits.

XII. If a termination code is found then the software
switches to decode the opposite color, on the other
half of the IC.

If no code is detected on the base tree, the
secondary tree is loaded with the valid codes given
those first 6 bits. This is done by software.

XIII. Program the second tree with 4 more Writes,
and immediately read the outputs of the second tree,
and process that data accordingly:
XIV. Either no code will be detected, in which case
there is a transmission error, or read the translated
pixel data from the appropriate LUT output, as
before.

The next code, which is waiting on the inputs of the
trees and LUTs, may then be decoded. It may be
necessary to write another 32 bits to the input
registers and load these into the shift register.
Software keeps track of how empty the hardware
buffer is, and if necessary during the shifting process
between code detections, the next word of data can
be written.

This process of decoding continues until the data is
all gone, or until an EOT is detected. Software again
keeps track of how many consecutive EOLs have
been received.

XC6200 Fax Decoder Co-design

5 XAPP 086 July 22, 1997

Figure 3: Software flow diagram.

R

XAPP 086 July 22, 1997 6

Design #2

Single detection and run-length LUT

An alternative to this design is to follow a simpler
approach and implement the whole detection and
decoding phase as a single LUT. As well as
translating codes to pixels runs, this LUT outputs
how many bits were in any valid codes detected, and
whether the codes were termination codes or make-
up codes. It is more complex than the four LUTs in
the previous design combined. There are two
benefits in this approach:

1. It is no longer necessary to reprogram as much
hardware during translation.
2. Conceptually very simple, this approach may
appeal to software designers with little hardware
design experience.

In Figure 4 the LUT-based design takes the 13 bits
from the shift register, plus a single extra bit which
flags White or Black pixel data. It outputs the number
of pixels, along with a bit to flag make-up codes and
4 bits telling the software how long the detected code
was. The 14th bit of the LUT input is required since
the Huffman codes are only unique within each pixel
color, and not globally. The software needs to write
to the register (in the bottom right corner) whenever
the pixel color changes, i.e. after a termination code
or an EOL code. The software that drives this design
is much simpler, and does far fewer writes to the IC,
saving many cycles.

Reprise

The application has been wrapped in a Windows
application, allowing a bitmap to be made for the
decoded data and displayed on screen. The
performance of the accelerator is some four times
better than a wholly software-based approach.
Performance would be greatly enhanced if the
XC6216 was directly addressed by the host
processor rather than via the PCI bus. Burstmode
access on the PCI bus can increase performance.

These designs expose the ease of
hardware/software co-design for applications based
on the XC6000DS can be used as templates for
mapping more applications to a mixture of hardware
and software based around the XC6000DS.

References

[1]: "Standardization of Group 3 facsimile apparatus
for document transmission" - CCITT Draft
Recommendation T.4
[2] "A Fax decoder on the XC6216" - D.M.Grant,
Xilinx Scotland 1997.
[3]: "Reconfigurable processing - The 4th paradigm",
University Video, San Jose, 1996.

Figure 4: LUT-based design

XC6200 Fax Decoder Co-design

7 XAPP 086 July 22, 1997

Limitations And Restrict ions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the
generality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other
intellectual property right of any person or entity in
any country. It is the responsibility of the user to
seek licenses for such intellectual property right
where applicable. Xilinx shall not be liable for any
damages arising out of or in connection with the use
of the design including liability for lost profit, business
interruption, or any other damages whatsoever.

