
APPLICATION NOTE

R Co-Simulation of
Hardware and Software

XAPP 087 July 25, 1997(Version 1.0) Application Note by Douglas M Grant

Summary

It is possible to implement an entire hardware - software co-design based around the XC6000DS development
system. This applications note describes a method to allow simulation of the hardware part of the design using the
application code as the test bench. This allows the application to be functionally debugged with the minimum of
effort and the maximum of confidence, before proceeding with placement and routing of the hardware part on a
XC6200 FPGA.

Xilinx Family

• XC6200

Demonstrates

• ModelTech

• Co-simulation

• VHDL

• Hardware/Software Co-design

• XC6000DS.

1 XAPP 087 July 25, 1997(Version 1.0)

Table of Contents

INTRODUCTION:... 1

THE XC6000 DEVELOPMENT SYSTEM 2

MODEL TECHNOLOGY V-SYSTEM
SIMULATOR... 2

IMPLEMENTING THE INTERFACE.................. 2
MTI6200 ... 2
MTI_RXTX .. 3
Sychronization... 3
Method ... 4
Example.. 4

PROS AND CONS... 5

REPRISE.. 5

LIMITATIONS AND RESTRICTIONS................ 6

Introduction:

Capturing a design in VHDL is one thing: Writing the
VHDL testbench is quite another, taking up to 50% of
the total design-time. If the design is to form part of
a hardware-software co-design, then the testbench
needs to mirror the action of the software part of the
co-design. This effectively means that the software
part will need to be written twice - Once in VHDL and
once in the actual coding language for the
application.

The XC6000 Development System allows software to
communicate directly with registers and gates in a
design that has been mapped onto a XC6200 RPU
(Reconfigurable Processing Unit.) It makes much
more sense to use this software as the testbench for
the hardware design, rather than to create a
testbench in VHDL. In this way the complete
application, consisting of hardware AND software can
be tested.

Where there is high confidence in the correctness of
the hardware, it is best to simply place and route the
hardware and then run the application code, using a
software debugger to step through the working of the
design. It is possible, however, that there is a desire
to simulate the design in a VHDL simulator. If the
application software is available then this should

R

XAPP 087 July 25, 1997(Version 1.0) 2

again be used as the testbench, but this has until
recently not been possible.

This applications note describes a method to allow
simulation of the hardware part of the design using
the application code as the test bench. This allows
the application to be functionally debugged with the
minimum of effort and the maximum of confidence,
before proceeding with placement and routing of the
hardware part on a XC6200 FPGA. For the purposes
of this note, the 'hardware' is the XC6200
Development System, although it could be user-
defined platforms.

The XC6000 Development System

The XC6000 Development system comprises some
low-level software and a PCI board containing an
XC6216, an XC4013E to implement the PCI
protocols and some other functions. It defines the
hardware/software interface.

With the XC6000DS software provided, Reads and
Writes of up to 32 bits can be made to any 32
registers in a column of the XC6216 (this could be
more using wildcarding). The control registers on the
XC6216 may also be written and read with this
software.

The value on any gate, multiplexer or register output
may be read from the circuit, which to the host
processor looks like an SRAM. The hardware can be
clocked by the software.

Model Technology V-System Simulator

The VHDL (and Verilog) simulator from Model
Technology (ModelTech) has the unique feature of
allowing access to the simulation data models, via
specific access routines. These functions and
procedures form the so-called VHDL foreign
language interface (FLI). By calling these functions
from within the C/C++ code written as part of a co-
design, it is possible to probe and to drive signals
within the hardware part of the design. For example,
the function mti_GetSignalValue() returns the value
of a hardware signal from a simulation.

It is also possible to schedule drivers on signals at
some point in the future and in fact to schedule some
special function calls.

Although originally intended to speed up simulation
by providing pre-compiled simulation models for
parts of a design, it has been found possible to use
the same functionality to implement part of the
communications protocol which is required between
the application code and the simulator. Code has
been written to do just this.

Implement ing the interface

There are two separate blocks of code required to
implement the interface between some application
software and the ModelTech simulator. One handles
calls from the application code to read from, write to
or to clock some signal in the hardware. This will be
referred to as the mti6200 code. The other piece of
code handles requests generated by the mti6200
code and calls the ModelTech FLI routines to
implement the desired behavior. Data may also be
passed back to the application code. This latter code
will be referred to as the mti_rxtx code.

MTI6200

The following routines are available to the designer:

1) mti_initialize
2) mti_read
3) mti_write
4) mti_clock
5) mti_end

The function mti_initialize should be called
somewhere at the start of the application code, with
the name of the hardware design as an argument.
the will start up the simulator and set up the required
data structures and interrupt handlers.

The procedure mti_read may be called with a signal
or port name and a slice range as arguments. This
will return the value of that signal from the simulator.
For a single bit signal the slice ranges have no
meaning.

The function mti_write has several possible
arguments. The signal name must be given, as must
the value to drive onto it. Optional arguments include
a slice range, a flag to signify that this write should
happen in parallel with the next write, and a delay
time. If the delay time is non-zero then this will be
the time in nanoseconds (ns) which the simulator
allows signals to settle before allowing any more

Co-Simulation of Hardware and Software

3 XAPP 087 July 25, 1997(Version 1.0)

reads/writes to the circuit. Otherwise a default delay
of 1000 ns is used.

As expected, the function mti_clock will result in a
signal in the design being clocked. The arguments to
this routine are the name of the signal, the number
of clocks to generate, and the period of those clock
pulses. A clock pulse begins with a low value on the
signal for half the period, followed by a high value for
the remaining half. Finally the signal is set low again.
To complete the mti6200 code, the function mti_end
may be called to halt the interaction between the
simulator and the application code.

Names of signals and ports in the design should
have the following format: “/lev1/lev2/.../signame”,
where lev1, lev2, etc. are the names of levels of
hierarchy in the design. The top-level design is “/”.

The mti6200 code uses a class called Pci6200 . It
includes the routines described above, as well as
dummy routines for all the functions available within
the pci6200 code. This code is available for use in
an implementation based around the XC6000DS
development system and uses a class of the same
name - Pci6200 . This allows the designer to simply
substitute the #include “Pci6200.h” for #include
“Mti6200.h” in the application code. Any calls to the
pci6200 routines will effectively be ignored if the
latter #include is used.

MTI_RXTX

This piece of code must be precompiled as a shared
object file and may then be referred to in the VHDL
hardware description as a foreign architecture. This
may then be instanced in the top-level design.

The ModelTech manuals specify exactly how to do
this, but the following description should suffice:

1) Add the following lines to the VHDL description of
the circuit:

entity cosim is
end;
architecture sw of cosim is

attribute foreign : string;
attribute foreign of sw : architecture is

“mti_rx_tx_init mti_rx_tx.so”;
begin
end;

2) In the top-level design’s architecture header add:

component cosim

end component;

3) In the top-level architecture body add:

software : cosim;

This results in the shared object code, mti_rx_tx.so,
begin “instanced” and the routine mti_rx_tx_init being
called during the initialization phase at the beginning
of simulation.
The mti_rxtx code has the following functions
defined:

1) mti_rx_tx_init
2) mti_rx
3) mti_tx

The function, mti_rx_tx_init is an initialization function
which sets up the required data elements for the co-
simulation to work. In fact this is only ever called
once, so the Restore and Restart parts of this code,
as described in the ModelTech FLI manual, are not
actually required.

The handles to the other two functions are created
here, and the function mti_rx is scheduled for 1 tick
in the future.

The mti_rx function extracts the details of the
requested behavior from a file written by the mti6200
code, and places this in an internal data model,
before scheduling the function mti_tx to begin in 1
tick.

The mti_tx function then implements that behavior,
for instance reading the value of some signal from
the hardware under simulation and placing the result
in a file which will be read from by the mti6200 code.
This function also schedules mti_rx to run again after
some amount of time, which may be longer than a
single tick if data has been driven into the circuit, to
allow the circuit to settle.

Sychronization

This co-simulation method depends on the fact that
the application code and the simulation are run “in
parallel” as two separate (forked) processes under
UNIX. It is not desirable that one piece of code gets
“ahead” of the other. For instance, if the application
requests a write to some signal in the hardware, it is
necessary to wait for the simulator to “catch up”,
propagating this change through the circuit, before

R

XAPP 087 July 25, 1997(Version 1.0) 4

handling any more requests from the application
code.

To this end the UNIX interrupt signals SIGUSR1 and
SIGUSR2 are used by both pieces of code to
synchronize their actions. Before performing any
request, the application code must wait until the
mti_rxtx code is ready to receive the request. In turn,
before the request may be handled by the mti_rxtx
code, the application must signal that the details of
that request is ready and waiting in a specific file.

All these details are fortunately hidden from the user.

Method

Co-simulation consists of the following steps:

1) Write VHDL describing the hardware part of co-
design. This will be altered slightly from simulation,
as opposed to synthesis, by adding the VHDL code
described in a previous section.

2) Write application code. This may be in C or C++,
and may include all the pci6200 function calls
normally used in a co-design, for instance initialize(),
reset() and set_bus_width(). These calls will
effectively be ignored during simulation. Wherever
the functions set_column() and get_column() are
used, the additional mti6200 functions should be
added, which will implement the same functionality
as the former calls. The call to mti_iniitialize() should
appear near the start of the application code, at least
before any calls to mti_read(), mti_write() or
mti_clock().

A call to mti_end() should appear once all processing
is finished, which will cause the communications
between the application code and the simulator to
terminate.

3) Compile the application code, using, for instance:

g++ Mti6200.cpp appcode.cpp -o appname

4) Compile the mti_rxtx code, using, for instance:

gcc -c -I /tools/mtech/modeltech4.6c
mti_rx_tx.c
ld -o mti_rx_tx.so mti_rx_tx.o

5) Compile the design, using:

vcom design.vhd

6) Run the application code. When this code reaches
the call to mti_initialize() the simulator will start up,
loading the design named in that call. It is then
possible to select signals for tracing during
simulation.

7) Run the simulation. A time-to-simulate should be
given at this point, which should be long enough for
the simulation to be completed. Alternatively, shorter
runs may be done, one after the other. The “Break”
and “Continue” commands may be given at any time
during simulation.

By running the simulation, the application code
proceeds, synchronizing with the simulation, until the
call to mti_end() is encountered.

8) The application code should then end, returning
control to the user. The simulator remains open,
however, to allow the signal traces to be inspected,
before an explicit “Quit” command is performed by
the user.

9) If the user wishes to stop the co-simulation half-
way through, then the “Break” command should be
used on the simulator, followed by “Quit”. The
application code may then be safely stopped with a
“^C”.

Example

The following, simple example shows the use of this
technique to test a circuit which comprises two
multipliers and an adder, implementing the algorithm,
c = ax + by , where a, x, b and y are 11-bit
values.
On the hardware side, the signals we are interested
in are m1ina, m1inb, m2ina, m2inb and addout and
cout. In the final hardware implementation, the
former signals are produced from columns of RPFD
flip-flop parts, fed via the PC interface. The latter are
passed to a column of buffers, which the host PC will
read from.

So, any writes to the multiplier inputs will eventually
be coded as calls to set_column(). Since there is not
yet any layout for the circuit these have no meaning,
and are augmented with calls to mti_write() for
simulation.

Correspondingly, the calls to get_column() are
augmented with calls to mti_read().

Co-Simulation of Hardware and Software

5 XAPP 087 July 25, 1997(Version 1.0)

The application code follows, with the additions for
simulation highlighted.

All the multiplier input registers are aligned in a single
column in the planned layout - MULTIN, with one
multiplier’s inputs on the lower half of the array, one
at Y=0 and one at Y=16. the other multiplier’s inputs
are planned to be on the top half of the array, one at
Y=32 and one at Y=48.

We will therefore be able to write both of a
multiplier’s inputs with a single, 32-bit write to the
XC6000DS board.

#include <stdio.h>
// For use after place, route and makebits:
// #include “Pci6200.h”
// For use with Mdoeltech co-simulation:
#include "Mti6200.h"

#define MULTIN 0
#define ADDOUT 63
#define all32Bits 0x00000000;
#define noBits 0xffffffff;

main()
{

long res;
Pci6200* board = new Pci6200();
board->initialize();
board->clock_on();
board->reset();
board->load_cal_file(“multadd.cal”);

board->mti_initialize("multadd");

board->set_map(all32Bits, noBits);
board->set_column(MULTIN, 3+(4 << 16));
board->set_map(noBits, all32Bits);
board->set_column(MULTIN, 6+(8 << 16));

// These two will be written concurently
board->mti_write("m1ina", 3, 0, 10, 1);
board->mti_write("m1inb", 4, 0, 10, 0);

// As will these two
board->mti_write("m2ina", 6, 0, 10, 1);
board->mti_write("m2inb", 8, 0, 10, 0);

// Now retrieve the result
board>set_map(all32Bits, noBits);
res = board->get_column(ADDOUT);

res = board->mti_read("addout", 0, 21);
res += board->mti_read("cout",-1,0)<<22;

printf("3*4 + 6*8 = %d\n", res);

// Repeat with different data...

board->set_map(all32Bits, noBits);
board->set_column(MULTIN, 9+(2 << 16));
board->set_map(noBits, all32Bits);
board->set_column(MULTIN, 5+(3 << 16));

board->mti_write("m1ina", 9, 0, 10, 1);
board->mti_write("m1inb", 2, 0, 10, 0);
board->mti_write("m2ina", 5, 0, 10, 1);
board->mti_write("m2inb", 3, 0, 10, 0);

board>set_map(all32Bits, noBits);
res = board->get_column(ADDOUT);

res = board->mti_read("addout", 0, 21);
res += board->mti_read("cout",-1,0)<<22;

printf("9*2 + 5*3 = %d\n", res);

board->mti_end();

}

Pros and Cons

The main reason for implementing this co-simulation
methodology is to reduce the number of place and
route re-design stages between initial hardware
definition and having a working circuit. The
alternative is to simply place and route the design,
producing a CAL file, and to run the application
around the XC6000DS. The circuit may be debugged
at this stage using software breakpoints and the
PCITest software. However, if a hardware bug is
discovered, this can entail a possibly lengthy re-place
and re-route stage after re-design.

The circuit can be proven before placement and
routing using the method described here. This will
run the application code MUCH slower than is
possible with the XC6000DS, but does not require
any placement or routing to have occurred
beforehand. Where the design will be processing a
lot of information, for instance in some video
applications, a suitably small amount of information
should be used as stimuli during co-simulation to
avoid the simulation time becoming prohibitive.

Reprise

This applications note has described a method to
implement co-simulation of application code and a
hardware design, before the design has been placed
and routed. An attempt has been made to minimize
the number of alterations that need to be made to
both software and hardware, between co-simulation
and actual implementation on the XC6000DS.

Only the Model Technology V-System simulator
allows the necessary links between software and
hardware to be made.

R

XAPP 087 July 25, 1997(Version 1.0) 6

Limitations And Restrict ions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the
generality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other
intellectual property right of any person or entity in
any country. It is the responsibility of the user to
seek licenses for such intellectual property right
where applicable. Xilinx shall not be liable for any
damages arising out of or in connection with the use
of the design including liability for lost profit, business
interruption, or any other damages whatsoever.

	Table of Contents
	Introduction
	The XC6000 Development System
	Model Technology V-System Simulator
	Implementing the interface
	Pros and Cons
	Reprise

