
®

September 8, 1995 Application Note BY GARY LAWMAN

© 1995 Xilinx, Inc. PRELIMINARY—SUBJECT TO CHANGE Version 1.00

Configuring FPGAs Over a
Processor Bus

Summary

This Application Note describes how to configure an FPGA over a processor bus. It also illustrates the source code
required to download a configuration bitstream using an IBM PC as a host microprocessor.

Xilinx Family

XC5200 and XC4000 FPGAs

XC3100A and XC3000A FPGAs under specified circum-
stances

Not available for XC2000 and XC3000 FPGAs

Demonstrates

Device configuration and associated data formats.

Device operation during power-on and reset cycles.

Minimum decode circuitry using a single discrete flip-
flop.

An algorithm for ultra-fast reconfiguration schemes.

Table of Contents
Warning...1

Introduction ..1

Functional Description...1

Microprocessor Interface ...2

Program Files and Data Formats10

Download Program Overview10

Ultra-fast Re-Configuration Scheme........................10

Bibliography ...13

Using the Design Files ...13

Warning

This application note only applies to the families listed
above, the configuration circuits in other device families
such as XC3000 and XC2000 parts are not compatible
with the techniques demonstrated.

Introduction
The direct link between a microprocessor and an FPGA
enhances debugging and testing, and reduces the
product’s time to market. In-system device
configuration, (also known as In-System Programming,
or ISP), significantly reduces the development cycle of
new products incorporating FPGAs. Once the design is
complete, the configuration data can be stored on disk
or in ROM and then loaded each time the system
powers up or is Reset. The configuration cycle can be
transparent to the end user. The interface includes both

software and hardware elements, and a program to
configure or download the FPGA program data.

Functional Description

The basic operation of all configuration schemes is the
same and is composed of the following stages:

1. The device configuration memory is cleared.

2. Configuration data is clocked into the device.

3. After a successful download, the FPGA asserts its
DONE signal.

There are a number of different configuration modes
available to the designer, each of which require a small
number of control lines. The Slave Serial mode is
perhaps the simplest requiring only three active signals:

1. DIN, the data in pin, also labeled D0

2. Configuration Clock, CCLK

3. PROGRAM

A small number of additional lines must be tied either
High or Low. For further details, please refer to the later
discussion on configuration signals and the example
schematics.

The data itself is broken down into several key blocks as
shown in Figure 1:

n The header data indicates the size of the download
data, followed by

n multiple frames containing both error check bits and

n the actual circuit configuration data.

Configuring FPGAs Over a Processor Bus

PRELIMINARY DRAFT. 2

There are several features worthy of note in the Rawbits
data file and these are highlighted by the bold fonts in
Figure 1. The text header, provides a software program
audit trail. The actual data frame starts with

n eight dummy bits, (a minimum of eight),

n a pre-amble code of ‘0010,’

n a 24-bit length count, and finally

n at least 4 more dummy bits to close the preamble
before the actual data starts.

Each data frame is completed with four error bits which
are normally used to denote the CRC value for the data
frame. The number of bits in a frame and number of
frames is device dependent. The file is closed with a
final post-amble code of eight bits as illustrated in the
example. For further details the user should refer to
page 2-26 in The Programmable Logic Handbook
(1994).

Microprocessor Interface

Typically, designers implement the microprocessor-to-
FPGA configuration interface using a PAL or numerous
discrete logic devices. However, due to the simplicity of
the serial data interface, this is unnecessary and a
minimum decode circuit can be built using a single
discrete flip-flop. The board level circuit is shown in
Figure 2. Not shown in Figure 2 are the additional
pages which contain the data bus interface, see the
VIEWlogic files for details. A downloadable test circuit
is shown in Figure 3. The test circuit contains the
required LOCK signal and a self-clocked counter that

outputs a low frequency signal for visual display using
an LED or scope viewing.

The full address map decode may not be necessary
during the configuration period. All that is required
during the download period is guaranteed exclusive
program access to the selected address space for the
duration of the download period. On an IBM PC, this is
achieved by disabling interrupts and DMA activity for the
duration of the configuration period.

A full address map decoder may be included in the
users design which is then downloaded as part of the
device’s configuration bitstream. See Figure 4 for a
downloadable full PC I/O address map decoder. This is
attractive for many reasons, not least of which is the
ability to re-map the design in software according to free
address space. The usual PC expansion bus
configuration switches may be thus replaced with a few
bits of address selection data contained in a very small
FPGA based ROM. This ROM may be generated using
the Xilinx MEMGEN program. Various optional files
may then be supplied to support different address
decodes.

Nothing prevents this same technique being applied to
other processors, although the inclusion of a separately
decoded I/O space of Intel iAPX86 processors provides
a significant advantage in simplifying the interface.

To successfully configure an FPGA from a
microprocessor bus, the FPGA’s memory must cleared,
error-free configuration data written into it, and the
completed device configuration locked in.

The FPGA is forced to start clearing its configuration
memory by asserting a Low on its PROGRAM pin. After

Xilinx LCA tstpcbd.lca 4003PC84
File tst_isa.rbt
Fri Mar 24 18:05:07 1995
Fri Mar 24 18:05:07 1995
Source
Version
Produced by makebits version 5.1.0
11111111001000000000 1101001011010110 1111
0101111111111110111111101011111110101111
1110101111111010111111101101111111010111
1111010111111101011111110101111111011111
1111010111111111111101111111110111111111
0111111111011111111101111111111011111111
1111010111111111111101111111110111111111
0111111111011111111101111111111011111111
1111010111111101011111110101111111011111
1111010111111111111101111111110111111111
0111111111011111111101111111111011111111
1011111111101111111110111111111011111111
111111110101 .

.

.
1011111111101111111110111111111011111111
1111010111111111111101111111110111111111
0111111111011111111101111111111011111111
01111111

Figure 1. Example Rawbits data file.

3 SUBJECT TO CHANGE

the device has completed this initialization, it is ready
for new configuration data. After data is clocked into the
device, there must be no more activity on the
PROGRAM pin. Otherwise, the whole sequence must
be aborted and re-started.

This is achieved using a single discrete flip-flop, (FF),
with independent control the flip-flop’s clock, data and
set/preset pins. This flip-flop can then be used to
control the PROGRAM pin on the FPGA during the
configuration process. Providing that one can also
suitably drive the FPGA’s configuration clock, (CCLK)
and data in, (DIN) this is all the circuitry that is required.

In the IBM PC environment, data can be clocked both
into the flip-flop and configuration data into the FPGA
using the processor’s IOWR, (IO Write), signal.

The flip-flop holds a data bit that drives the PROGRAM
pin. Once a Low has been clocked into this flip-flop
configuration can only continue if the output is held high.
This is achieved when writing of configuration data by
always writing a ‘1’ to the data bit driving this register.
Remember, that The Slave Serial configuration scheme
only drives one data pin on the FPGA, so the two data
bits for PROGRAM and DIN may be driven
independently. Once the download of configuration data
has been successfully completed, a user-selected pin on
the FPGA drives the flip-flop’s Set input. This prevents
any further access to the PROGRAM pin by the
microprocessor (LOCK). The circuit driving the LOCK
pin must be included in the user’s design downloaded
into the device.

Because all purely ‘user’ pins, on the FPGA are tri-
stated during configuration, the flip-flop’s Set input
would float unless suitably tied. Consequently, a
resistor defines an appropriate level which may then be
overridden by the LOCK bit. The LOCK pin may be
driven by any desired combination of signals or
registers. If this is made addressable by the
microprocessor, future downloads can be initiated in
software by strobing this signal. Alternatively, it could
be controlled by a watchdog, or other security circuit. In
the event that the user chooses to completely lock the
configuration against any unauthorized changes, this pin
may be driven by a fixed level within the device, so that

new downloads can only occur after a system-level
power cycle.

Once the device’s configuration memory is initialized, all
of the configuration data must be written to it. Although
the device at this stage will respond to all I/O writes, it is
best to address only known free I/O space to avoid
spurious data writes to other I/O devices. As already
stated, there must be no other I/O accesses during the
download period, such as may be caused by interrupts
or DMA transactions. In the PC environment, disabling
interrupts is achieved using the CLI instruction, and re-
enabled using the STI instruction. In embedded
applications, the preferred time to download the
configuration data is during the initial boot period. As
with the PC users, must alternatively be able to disable
interrupts and DMA accesses which would otherwise
write invalid data into the FPGA’s configuration
memory.

Additional care and decoding will be required if this
technique is used in a processor’s memory space. This
technique may not be compatible with configuration data
held in memory decoded as part of the processor’s I/O
space. This could happen in the case of configuration
data being stored on a PC’s disks. This particular
problem is readily avoided by reading the configuration
data into an array in memory from which it is then
accessed for the download process.

In the event that these issues can not be resolved, the
memory map for the device’s configuration port must be
fully decoded implemented with TTL or an EPLD. See
Figure 5 for an example.

XC3xxxA Application Notes
There are some differences between the XC3xxxA and
XC4xxx/XC52xx configuration signals that must be
noted before the technique that has been discussed can
be used with parts from this family. The differences
may be treated largely as a matter of the naming
convention that is used for the relevant signals. In
XC3xxxA there are no signals named PROGRAM or
DONE. Instead, the equivalent signals are RESET and
D/P- respectively.

C
onfiguring F

P
G

A
s O

ver a P
rocessor B

us

P
R

E
LIM

IN
A

R
Y

 D
R

A
F

T
.

4

F
igure 2. B

oard-level schem
atic interface.

5
S

U
B

JE
C

T
 T

O
 C

H
A

N
G

E

F
igure 3. D

ow
nloadable test circuit for the flip-flop decode (F

P
G

A
).

C
onfiguring F

P
G

A
s O

ver a P
rocessor B

us

P
R

E
LIM

IN
A

R
Y

 D
R

A
F

T
.

6

F
igure 4. D

ow
nloadable full P

C
 I/O

 address m
ap decoder.

7
S

U
B

JE
C

T
 T

O
 C

H
A

N
G

E

F
igure 5. D

iscretely im
plem

ented full P
C

 I/O
 address m

ap decoder.

Configuring FPGAs Over a Processor Bus

PRELIMINARY DRAFT. 8

Figure 6. Configuration program listing.
/***/
/* */
/* Rev 1.0 Config. (c) 1995 Xilinx Inc. */
/ */
/* uP Download program, requires an ASCII bit configuration data file. */
/* */
/* Program source and executeables are not supported. */
/* No guarantees are provided or implied by this program or sources */
/* Xilinx customers may use this program and sources for configuring */
/* Xilinx Parts without royalty. */
/* */
/* This program must be used with the Application circuit given in the */
/* accompanying note. */
/* */
/* WARNING THIS PROGRAM'S CONFIGURATION CIRCUIT SHOULD ONLY BE USED */
/* WITH THE FOLLOWING PART FAMILIES: XC31xxA, XC4xxx & A, XC52xx */
/* */
/* */
/* Complied with Borland C++ version 3.0, not tested with other compilers */
/* */
/***/

#include <stdio.h>
#include <io.h>
#include <conio.h>
#include <string.h>

#define IOPORTADDR 0x300 /* This must be an unused I/O address for */
/* the IBM PC. */
/* Other options are: */
/* */
/* */
/* */
/* */

#define MAXSIZEBITS 55000 /* Number of device configuration data bits. */
/* Dependent upon actual device used. */
/* See the data book for details. */

#define DEVICEFACTOR 900000 /* Waiting factor, this is a device and */
/* host machine dependent delay factor. */
/* unfortunately we can not use the PC's */
/* timers due to them being I/O mapped. */
/* See App Note for further details. */

FILE *fp; /* Pointer to the ASCII config data file. */
char dataarray[MAXSIZEBITS]; /* Memory array for the config data. */
char filechar; /* ASCII bit value from config data file. */
unsigned int addr ,addrcount; /* Misc counters. */

void delay(long loopval) /* We need to allow time for the device to */
{ /* finish various operations. */
long j,k;
 for (j = 1; j <= loopval; ++j)

 {
 k = inportb(IOPORTADDR);

 /* Users must ensure that their compiler does not */
 /* optimise this loop out as the value of k is */
 /* never used. */

 /* This is a loop delay - as we can not use timers */
 /* located in I/O space or interrupts, during the */
 /* call. */

 /* This has to allow for the FPGA device size and */
 /* CPU, the only way to achieve some CPU timing */
 /* independence for the loop period is to use */
 /* I/O reads. This gives the loop a fixed timing */
 /* overhead, as the I/O is clocked at 8 MHz. */
 /* Note however that some systems can run I/O at */
 /* 10 or 12 MHz, through user options. */
 }

}

9 SUBJECT TO CHANGE

void ReadConfigFileData(char filename[11])
{
 addr = 0;
 fp = fopen(filename, "r");
 printf("%s", filename);
 while (!feof(fp))
 {

 fscanf(fp, "%c", &filechar);
 dataarray[addr] = filechar;
 ++addr;
}

 printf(" Length of File read is %u", addr-1, " bytes");
 /* Note that addr is incremented 1 too many times, hence -1 above. */
}

void InitFPGA(long delayval)
{
 outportb(IOPORTADDR, 0x00); /* Initialise the config memory. */
 outportb(IOPORTADDR, 0xff); /* both output's required. */

 delay(delayval); /* Period to allow device to do internal clear. */
/* This has to be a program loop, as interrupts are */
/* now switched off, so we can't read the timers. */
/* Delayval must be calculated for each device. */
/* Alternatively we can assume worst case delay. */
/* ie for largest device, and then add a margin. */

}

void WriteConfigDataToFPGA(long delayvalue)
{
 addrcount = 0;
 while (addrcount != addr)
 {

if (dataarray[addrcount] == '1') outportb(IOPORTADDR,0xff);
else outportb(IOPORTADDR,0xfe); /* '0' case selected. */
/* We assume a valid data bit either ASCII '1' or '0'. */
/* A default case could be provided for error checking. */

 addrcount++;
 }
 delay(delayvalue); /* Allow the device time to complete the */

/* cofiguration. */
}

int main()
{
 printf("\n \n");
 printf(" Started Configuration Process. \n");
 printf(" File data read, now press any key to do download. \n ");

 while (!kbhit());
 ReadConfigFileData("bit_data.stp"); /* This file must be a stripped */

/* version of a Makebits */
/* generated rawbits data file. */

 asm cli; /* Disable interrupts - any I/O such */
/* as disk access */
/* will kill the download. */

 InitFPGA(DEVICEFACTOR); /* Strobe the program line, start */
/* device init */

 WriteConfigDataToFPGA(DEVICEFACTOR); /* Write data to device. */

 asm sti; /* Re-enable interrupts, then we */
/* can use the PC */
/* again, otherwise it is locked up. */

 printf("\n Finished %d \n");
 fclose(fp);
 return 0; /* Main completed OK. */
}

Configuring FPGAs Over a Processor Bus

PRELIMINARY DRAFT. 10

Program Files and Data Formats

The program supplied with this Application Note requires
that the design bitstream is generated using a program
called “Makebits” using the “rawbits” option. The output
file is an ASCII file with each character a ‘0’ or a ‘1’.
This file must be further processed to strip the header
information. This can either be done by hand editing the
file or using a utility program to strip the unnecessary
text. The final data is then written into the FPGA during
configuration, and is the input required by the example
program, “config.c”.

Download Program Overview

1. Read bitstream data file into a memory based array.

• Initialize array.

• Read from file and count # bits*.

• Write data to array, # bits*.

2. Switch off IRQ and DMA.

3. Is device already programmed?

• If yes, then reset its LOCK bit.

• When resetting this bit, the ‘LOCK’ signal sense is
a user option.

4. Double check status, by attempting to read test
registers. The data should be invalid.

5. Reset FPGA device by strobing the /PROGRAM pin
low.

6. Wait for device to clear memory. Wait for N mS
where N is the number of frames in the device.
Refer to the Data Book for exact details. Must not
use system timers, due to disabled interrupts.

7. While keeping the /PROGRAM pin high, write all of
the array data into the device.

• Write data bits from array, # bits*.

8. Clock the device one to two times more to enter the
user mode. It may be necessary to refer to the Data
Book for exact details of what is required to bring
the device out of the configuration state and make it
operational as this is different for each family of
devices.

NOTE: * Of course if a parallel mode is used then the
code must handle bytes.

When developing configuration schemes and circuits,
the signals detailed inTable 1 and Table 2 are available.
Signals that are required as part of the device control
during configuration are designated as ‘Mandatory’, and
the required states for these signals is given. Other
signals that provide status, (often useful in user circuits),
and other completely optional signals are also
described.

Ultra-fast Re-Configuration Scheme

An adaptive clocking scheme can be used to determine
an optimal clock frequency for applications requiring
maximum configuration speed for downloading
numerous different configurations.

The configuration error protection used in Xilinx devices
is very robust. If a device configures, one can have a
very high degree of confidence that the device contains
the correct downloaded data. Novel initialization
schemes that self time the device can be used to find
the fastest possible clock rates for configuration:

1. Choose an arbitrarily high clock rate.

2. Follow the standard configuration process.

3. If the device does not configure the process is
repeated with a reduced configuration clock

4. Once a successful clock rate is found, the clock
frequency should be de-rated to allow for
temperature changes, e.g. 10%. Future
configuration attempts should then be driven at this
lower clock frequency.

Using this scheme can provide significant improvements
in configuration performance. The XC5200’s new high
speed ‘Express’ configuration mode combined with this
scheme can provide configuration data rates in excess
of 200 Mbits/second.

11 SUBJECT TO CHANGE

Table 1. Interface Description
Name Requirements Bit # Mnemonic Status Description

LOCK. Mandatory 0 LOCK R/W* Internal and external signal pin. This register’s o/p must be set to
prevent re-initialization by undecoded IO accesses which would
otherwise pulse the /PROGRAM pin of the FPGA. This register
forces the external FF's pre-set control so that the FPGAs
/PROGRAM pin can not be toggled.

As a register it may be accessed as part of the processors
address space.

* NOTE: This signal must be included in the User’s circuit. The
register may be replaced with a hardwired level to provide the
locking mechanism.

Configuration Test Optional 1,2 TEST R/W These registers are read/write and allow the user to write any two
bit values and read them back for test purposes, as such
verification of a successful download. This allows the user to
double check a successful download is available and also that the
I/O address allocation is a valid assignment.

Activate User Interface Optional 3 AUI R/W This register bits may be used to enable the rest of the User
circuitry. This is recommended for debugging designs by
isolating the design from the bus interface. In a development
environment serious design errors may bring down the system
CPU.

I/O Address Space Mandatory for a PC
interface.

IOADDR R

R/W

These Bits may be hardwired as equivalents of the commonly
used DIP switches normally used in IBM PC expansion cards for
I/O Address setup.

Automatic I/O Address allocation

Alternatively these bits may be configured dynamically as part of a
user defined initialization process, after successful completion of
the download process. In this case the I/O address for the FPGA
Bus interface may be written into the device, perhaps after an
earlier user defined program or procedure has interrogated the I/O
Address space to determine what is free for allocation. The
development of this code Idea is not presented in this Application
Note and is left for the interested user.

Configuring FPGAs Over a Processor Bus

PRELIMINARY DRAFT. 12

Table 2. Configuration Signal Functional Description.

Name Type I/O Config.
Modes

Required Action Description

Mandatory Control Signals All of these signals must be used during configuration.

M0

M1

M2

Control I M2 M1 M0 Mode. Comments.

0 0 0 Master Serial Bit Serial mode, CCLK can be used to drive other devices

1 1 1 Slave Serial Bit Serial mode, CCLK is an input

 CCLK must be generated from another source

1 0 0 Master Parallel Up. Byte Wide mode, address starts at 000...0 and ñ

1 1 0 Master Parallel Down. Byte Wide mode, address starts at FFF...F and ò

0 1 1 Peripheral Synchronous. Byte Wide mode, (a parallel slave mode)

1 0 1 Peripheral Asynchronous. Byte Wide mode

0 1 0 Reserved

0 0 1 Reserved

PROGRAM

(cf RESET in
XC3xxxA)

Control I All Pulsed Low, at the start
of all new downloads

A falling edge on this pin forces the start of an internal
configuration memory clear. This pin must be raised high
before the clear cycle is finished for configuration to
continue. If this pin is still low at the end of the current clear
cycle, the device will initialize a new clear cycle.

This mechanism may be used to delay configuration
indefinitely. In situations where delayed configuration is
desirable, asserting a Low on the INIT pin is preferred.

The time that is required for the internal memory clear cycle
is FPGA size dependent.

DIN/D0 Data I All Data input Data In. This is the data input for all serial modes. In
Parallel modes, it is D0.

CCLK Clock I Slave
Synch

Peripheral.

Configuration Clock The rising edge of CCLK writes the data on DIN into the
device. After all configuration data is clocked into the
device

O Master
Async

Peripheral.

Internally generated configuration clock, used to drive either
additional daisy chained FPGAs and or external serial
memory devices containing configuration data. This clock
may also be used to feed other FPGAs, which must then
operate with their own clocks as inputs as detailed above.

Signals with Mandatory Input conditions All of these signals must be conditioned in some way during
configuration.

DONE

(cf D/P in
XC3xxxA)

Control I All Must be pulled high with
a resistor, (2-8 kΩ)

Assertion of a low level can be used to delay the global logic
initialization or the enabling of outputs.

Status O All A high level on this pin Indicates the successful download
of configuration data. This is only active if the data stream
passed all Error checks, using a minimum of 200 error
check bits.

This signal only becomes asserted after a minimum of one
additional CCLK edge applied after the last bit of download
configuration data has been clocked into the device. For
exact details please refer to the data book.

INIT Control I Must be pulled high with
a resistor, (2-8 kΩ)

A low level applied to this pin may be may be used to delay
configuration indefinitely. In situations where delayed
configuration is desirable use of this pin rather than the
mechanism available using the PROGRAM is preferred.

Status O All Output of a low level indicates that an error occurred during
the download of configuration data.

13 SUBJECT TO CHANGE

Bibliography

The following Xilinx documents provide information on
configuration:

The Xilinx Data Book.

IBM PC AT Technical Reference Manual.

Xilinx - Configuration Guidelines.

Xilinx - Debugging Configuration Schemes.

Using the Design Files

This design and source files are available from the
Xilinx BBS (see “Xilinx Technical Bulletin Board” in
Section 6 of the Xilinx Data Book . This section
describes what software is required to run the design
and the steps involved. Also, please read through the
Limitations and Restrictions section.

Software Requirements

The following software is required to process this design:

n PKUNZIP 2.04e, or later, unarchiving pro-gram.

n VIEWdraw or VIEWdraw-LCA schematic editor. This
software is required in order to make modifications to
the schematics.

n Xilinx XACT 5.0 FPGA development system,
including the PPR place and route program and the
X-BLOX module generator.

Using the Design on Your System

1. Create a new directory called PC_ISA on your hard
disk.

2. Copy the file called PC_ISA.EXE into the PC_ISA
directory.

3. Type PC_ISA.EXE on the command line. This
extracts a README.TXT file, and a hierarchical
archive of the design files called PC_ISA.ZIP .

4. Invoke PKUNZIP -D PC_ISA.ZIP to extract the
files, including their hierarchical path names, onto
your disk.

5. Edit the VIEWDRAW.INI file. Make sure that the
VIEWlogic design library pointers are set

appropriately for your machine. You will find the
library pointers near the end of the file.

6. Invoke XDM.

7. Set the part type to XC4003-6PQ100C.

8. Run XMAKE on PC_ISA.MAK to process the design.
The schematic files are named PC_ISA.1 through
PC_ISA.XXX

Limitations and Restrictions

WARNING: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on this
design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fitness of this design for a particular purpose and
freedom from infringement. Without limiting the
generality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based on
this design, or any portion of it, will not infringe any
copyright, patent, trade secret or other intellectual
property right of any person or entity in any country. It is
the responsibility of the user to seek licenses for such
intellectual property rights where applicable. Xilinx shall
not be liable for any damages arising out of or in
connection with the use of the design including liability
for lost profit, business interruption, or any other
damages whatsoever.

Design Support and Feedback

This application note may undergo future revisions and
additions. If you would like to be updated with new
versions of this application note, or if you have
questions, comments, or suggestions please send an E-
mail to

applications@xilinx.com

or a FAX addressed to "PC_ISA Application Note
Developers" sent to

1+(408) 879-4442.

IMPORTANT: Please be sure to include which version
of the application note you are using. The version
number is in the lower right-hand corner of page 1.

	Introduction
	Functional Description
	Microprocessor Interface
	XC3xxxA Application Notes
	Board-level schematic
	Test circuit
	ISA bus interface
	Discrete bus interface
	Configuration program listing
	Program Files and Data Formats
	Download Program Overview
	Ultra-fast Re-Configuration Scheme
	Interface Description
	Configuration Signals
	Bibliography
	Using the Design Files
	Using the Design on Your System
	Limitations and Restrictions
	Design Support and Feedback

