
36

FIFO Buffer Designs in The
XC4000E/EX FPGA Families

Many XC4000 designs use the distrib-
uted RAM feature to implement First-In-
First-Out (FIFO) elastic buffers to form a
bridge between subsystems with different
clock rates and access requirements. How-
ever, the non-synchronous nature of the
single-port RAM in the original XC4000
architecture leaves the designer with sev-
eral challenges. Addresses must be multi-
plexed, independent read and write clocks
must be synchronized, and access requests
must be arbitrated.

The synchronous dual-port option RAM
in the new XC4000E and XC4000EX
FPGAs eliminates most of these problems.

Since the dual-port RAM in each CLB has
independent write and read addresses,
there is no need to multiplex addresses
and arbitrate their selection. The synchro-
nous write mechanism simplifies write
timing and contributes to much faster
operation. The FIFO design effort can
now be concentrated on achieving high
throughput and low cost, and on solving

the fundamental timing problems created
by asynchronous read and write clocks.

Synchronous and Asynchronous
FIFOs is an application note now available
on the Xilinx WebLINX World Wide Web
site (http://www.xilinx.com). This applica-
tion note describes six complete design
examples of RAM-based FIFO designs
using the dual-port RAM feature of the
XC4000E and XC4000EX FPGAs. Three
synchronous designs with a common read/
write clock are described, as well as the
corresponding three asynchronous designs
with independent read and write clocks.
Emphasis is on the fast, efficient and reli-
able generation of the handshake signals
FULL and EMPTY that determine design
performance.

The first design is a synchronous 16x16
FIFO buffer, where the depth of the basic
CLB-RAM is sufficient. This leads to a very
fast and efficient implementation that can
run at, or close to, the maximum write
speed of 70 MHz (-3 speed grade), even
for simultaneous read and write operations.
This is the simplest and fastest design
because it avoids the more challenging
issues of asynchronous clocking. The de-
sign occupies 23 CLBs.

Figure 1 shows the basic block diagram
of the 16x16 FIFO buffer. In the synchro-
nous version of this design, read and write
clocks are identical. The 4-bit read counter
and the 4-bit write counter (Figure 2) are
implemented as two cascaded 2-bit Grey
or Johnson counters. In a fully synchro-
nous design, this choice is not mandatory,
but it has advantages in the non-synchro-
nous implementation. It is, however, man-
datory that the upper two bits always stay
constant for four consecutive counts.
Therefore, Linear-Feedback-Shift-Register
(LFSR) counters cannot be used.

The two 4-bit counters address the RAM
in the conventional way. Seen as a “black

Figure 1 - 16x16 FIFO
Block Diagram

37

box,” the FIFO buffer behaves like an
elastic shift register: input data is latched
by an active edge on the Write Clock, and
output data is always available at the out-
put port. FULL and EMPTY signals must be
interpreted by external logic to prevent a
Write operation during FULL, or a Read
operation during EMPTY.

Most of the design effort is spent on the
control logic (Figure 3) that detects the
FULL and EMPTY conditions. Since the
easily decoded signal for these two
abnormal conditions is the same — read
address is identical with write address —
an additional signal must be created that
distinguishes between the the two very
different conditions of FULL and EMPTY.
For this purpose, an auxiliary signal, called
DIRECTION is created to indicate whether
the Write counter is about to catch up with
the Read counter, or whether the Read
counter is about to catch up with the Write
counter. The two most significant bits of
both counters are compared, since they
indicate in which quadrant of the 16-posi-
tion circular address space the present
address resides. These two most significant
bits of both address counters together are
used to address two 4-input look-up tables
in parallel. The look-up tables (LUTs)
decode the relative quadrant position of
the two counters.

The 4-bit LUT address describes one of
16 possible conditions:
• Four addresses describe the situation

where the write counter is in the quad-
rant immediately behind the read
counter. This is decoded as a “possibly
going full” condition, and sets the DI-
RECTION latch or flip-flop.

• Another four addresses describe the
situation where the write counter is in
the quadrant immediately ahead of the
read counter. This is decoded as a “pos-
sibly going empty” condition, and it
resets the DIRECTION latch or flip-flop.

• Four other addresses indicate that the
two counters are in the same quadrant,
and another four addresses indicate that

Figure 2 - Read Counter
or Write Counter

the two counters are in opposite quad-
rants. These eight addresses provide
no useful information about the rela-
tive address position, and thus do not
affect DIRECTION. Note that DIREC-

Figure 3 -
16x16 FIFO
Synchronous
Control

Continued on
the next page

38

TION must start in the reset state when
the FIFO is initiated with both counters
at zero.
DIRECTION is thus established well

before the actual FULL or EMPTY condi-
tion can occur. There will be at least four,
and usually many more, consecutive set or
reset inputs to the DIRECTION latch or
flip-flop before it is being used to dis-
criminate between FULL or EMPTY.

FULL goes active as a result of the
write clock edge that writes data into the
last available location. FULL goes inactive
as a result of the first read clock that reads
one word out of the previously full FIFO
buffer. EMPTY goes active as a result of
the read clock edge that reads the last
available data from the FIFO buffer.
EMPTY goes inactive as a result of the first

FIFO Buffer
Continued from previous page

write clock that writes one word into the
previously empty FIFO buffer. In a syn-
chronous design, FULL and EMPTY are
synchronous control signals, to be used
appropriately by the logic external to the
FIFO buffer.

The application note goes on to de-
scribe an asynchronous version of the
16x16 FIFO buffer, and 32x8 and 64x8
FIFO buffers with both synchronous and
asynchronous read and write clocks. The
larger FIFO buffer designs include input
and output data multiplexing between
multiple RAM banks. The asynchronous
32x8 FIFO buffer requires 28 CLBs and the
64x8 FIFO buffer needs 48 CLBs; both can
perform simultaneous read and write
operations at 40 MHz.◆

Distributed Arithmetic Laplacian Filter
A common practice in image process-

ing involves convolving an image with a
Laplacian operator. Figure 1 shows a

typical Laplacian operator that
might be used for edge en-
hancement. To convolve it with
an image, the operator is moved
over the image, and centered
over each pixel in turn. In each
position, the 25 weights in the
matrix are multiplied and accu-
mulated with the 25 pixels that
the matrix covers. This opera-
tion yields one pixel in the
resulting image.

This is an ideal application for “distrib-
uted arithmetic” techniques that exploit
the lookup-table (LUT) architecture of the
XC4000ETM FPGA family. Figure 2 shows
the basic approach. Four external line
buffers plus the incoming video data
provide simultaneous access to five lines
of the image. Inside the FPGA, each of the
video streams is serialized and passed

through four 1-bit-wide shift registers,
each of which delay the data by one pixel.
This provides simultaneous bit-serial ac-
cess to five adjacent pixels from five adja-
cent lines — the region covered by the
Laplacian filter. The shift registers can be
implemented very efficiently using the
CLB RAM feature of the XC4000E FPGA
architecture.

In the most basic distributed arithmetic
approach, the 25 signals address a 225-
word LUT which, in turn, feeds a shifting
accumulator. This is obviously impractical.
A typical cost-reduction measure would be
to partition the problem, segmenting the
addresses into multiple smaller LUTs. The
outputs of these smaller LUTs would be
combined in an adder tree to provide the
input to the accumulator.

In this particular case, however, the
weighting values involved permit the use
of more efficient techniques. Except for
the values 160 and -7, each of the
coefficients is used in four places.

Figure 1 - Example
Laplacian operator for
edge enhancement in
an image processing
system.

