
FPGAs and DSP

Design alternatives for DSP solutions

As a designer of Digital Signal Processing systems, you have a large number of choices to
implement your solution. Each solution has its strengths and weaknesses. The purpose of
this chapter is to introduce Xilinx Field Programmable Gate Array (FPGA) technology and
help you understand how FPGAs can be used for DSP system implementation.

In the following sections, you will find a comparison of the implementation of a simple DSP
function in both Programmable DSP (pDSP) and Gate Array technology. A brief explanation
of Gate array technology is followed by a description of Xilinx FPGA technology. If you are
already familiar with Gate array technology, you might want to skip to the last section which
highlights Xilinx FPGA features.

Programmable DSPs
The most common vehicle for implementation of a DSP design is the programmable DSP or
pDSP. The pDSP is an off-the-shelf part that is essentially a microprocessor tuned to DSP
applications. pDSPs are highly flexible because you can program them again and again using
a familiar high level language like C. They allow fast design iterations and reduce time to
market.

Typically a pDSP contains several functional units to process the signal stream. The designer
encodes the algorithm into a program which is executed by the pDSP and is limited to a
theoretical maximum data rate based on the speed and the number of multiplier/
accumulators in the device. Applications which require several computations must be broken
up into a sequential stream of computations. For example, an 8-tap FIR filter requires 8

Figure 1. 8 tap FIR Filter

Data out

register X

register X

register X

register X

register X

register X

register X

register X

+

Data in

C(7)

C(0)

C(6)

C(5)

C(4)

C(3)

C(2)

C(1)

multiplications and one 8 way
addition per data sample. The
implementation of this FIR
filter might require 8 or more
cycles on a pDSP. At each
data sample, all eight taps

require multiplication by their coefficients. If the number of taps for this filter were
increased, then the number of cycles would also be increased, thereby reducing the data rate.

Programmable DSP chips are intrinsically limited in performance. The more you want to do
to a data sample, the more cycles you need and the slower your data is processed. One way
to overcome this limitation is to employ more pDSP parts to implement the algorithm.
Another method is to use Gate Array technology to implement your algorithm in hardware.

Gate Array solutions for DSP
In contrast to pDSPs, Gate Array technology offers the ability to do many things in parallel.
A Gate Array is a custom chip that allows very specific implementations of digital circuits to
be constructed. Gate Arrays can be thought of as tracts of open land. You, the designer
decide what factories or processing plants will be built on this land and how the materials
flow between them. For DSP applications, these factories are arithmetic operators, storage
elements and so forth.

A Gate Array is an open grid of sites which can be occupied by logic cells selected from a
library. A Gate Array designer
may draw a schematic diagram
for the circuit and then rely on
automatic tools to place
components of his circuit into
Gate Array sites. The automatic
tools also handle the low level
details of connecting the
components according to the
schematic. Figure 3 depicts a
very simplified example of a
design circuit being converted to
the orderly layout of a Gate
Array.

An alternative to using a schematic for the design description is to use a Hardware
Description Language (HDL). HDLs are high level descriptions of circuit behavior. These
higher level descriptions are often easier to create and understand than schematics and
typically look a lot like programming languages. Synthesis tools are used to translate the
HDL text into a lower level circuit built from the Gate Array’s cell library. Figure 4 shows a
typical Gate Array design flow
where the designer has specified
the design with a schematic or
an HDL definition.

Gate Arrays offer to the DSP
designer a higher degree of
parallelism. Multiple execution
units can be built that can
operate simultaneously. DSP
applications are very parallel in

Figure 2- Sample pDSP instruction stream for 8
tap FIR Filter

Figure 3- A schematic implemented on a Gate
Array

Figure 4- Gate Array design flow

Schematic

Gate Array site plan

Schematic or HDL

Translation,
placement and
routing

 Gate array
description

Silicon
Fabrication

Gate
Array
Chip

MultAcc Reg(0), C(0)
MultAcc Reg(1), C(1)
 : : :
MultAcc Reg(7), C(7)

the sense that the data always flows forward and the relationships between intermediate
values is well understood at design time. Furthermore, since Gate Array technology allows
custom design, you are not constrained to predetermined standards such as operand
precision. If your application calls for 11-bit data elements, you build your execution units to
be 11 bits wide. By using only the data width you need, you save silicon area and reduce the
cost of the device.

Gate Array implementations of many DSP algorithms are very straightforward. For example,
the 8 tap FIR filter presented above can be directly translated into a gate array design. Each
of the multiply and add operators could be implemented by a region of the gate array. At any
time all 8 multiply operations, as well as the multiple operand addition, can be performed
simultaneously. If more taps are required, more Gate Array area can be allocated to
implement them. Performance improves further when Distributed Arithmetic methods are
employed.

The primary reason to choose a Gate Array solution is increased performance/cost ratio. A
fringe benefit of Gate Array technology is that it can be used to implement more than just
DSP circuitry. Other pieces of a multi-chip system can be “swept” into unused portions of
Gate Array area (or a larger device could be used) to further reduce chip count and system
cost.

The downside of a Gate Array is that it is a custom part. Once designed, it must be custom or
semi-custom fabricated at a silicon foundry. Due to the unique nature of the device a
custom Gate Array typically requires several weeks to be fabricated from the prototype plans,
and due to the expense of the overall process the design must be carefully verified prior to
the manufacture of even small quantities. Design flaws found after fabrication require costly
and time consuming “spins” of the design.

FPGAs - The best of both worlds

Field Programmable Gate Arrays are a technology which gives the designer a combination of
the benefits of a gate array solution and the ease of pDSP design. An FPGA design starts
with the same input as a Gate Array design - i.e. a circuit schematic or high level design
description. Automatic synthesis, place, and route tools are used to translate the designer’s
original circuit into an FPGA specific configuration.

The big difference between the Gate Array and FPGA design process is that the user specific
custom manufacturing process is eliminated.

FPGAs are generic commodity parts and are customized by downloading a user defined
configuration in the form of a binary bitstream, much the same as you would load a pDSP
with its program with a process that typically takes only a few milliseconds

How much of an advantage does the FPGA’s ability for direct implementation buy you ? The
answer really depends on how many tries you think you will need to converge on a correct
implementation. Most
DSP designs are part of a
complex system.
Experience shows that it
is very common for
complex systems to go
through several design
iterations before product
completion. Figure 5
compares the
development cycle of a
new design as
implemented on Gate
Array versus FPGA technology. This development cycle includes extra iterations to fix bugs.
By virtue of immediate implementation, an FPGA based design solution is ready for delivery
much earlier than a Gate Array design.

Why, if FPGAs provide such benefits, would anyone use Gate Arrays? The answer is that for
very high production volumes, FPGAs do not exhibit as high of a performance/cost ratio as
Gate Array or full custom Application Specific Integrated Circuit (ASIC) designs. The lower
performance/cost of FPGAs comes in part because FPGAs must sacrifice some silicon area in
order to be highly flexible.

However, this should not be a concern to the designer expecting to ramp up to high volume.
Xilinx offers a design migration product called Hardwire which retains much of the
performance/cost advantage of Gate Arrays. Once the designer has converged on a working
FPGA design, she can then translate the design to an equivalent Hardwire device without the
need to redesign or debug the system.

In summary, Xilinx FPGAs offer the rapid design cycle of programmable DSPs with the
flexibility and raw performance of Gate Array products.

Other advantages of FPGAs include:

1. Parts may be reprogrammed over and over. If you want to upgrade your design, you do
not need to replace FPGAs, just reprogram them.

2. FPGAs are pre-tested. Traditional Gate Array design methodology requires that you also
develop costly manufacturing test suites. This task is not required with FPGAs.

3. FPGAs are a commodity part. Xilinx sells millions of FPGAs annually. This high
production volume results in a lower per part cost and those savings are passed on to the
customer.

4. FPGAs can be dynamically reconfigured within the system. Sophisticated designers can
build systems which adapt to changing conditions by altering the circuit configured
within the FPGA. This re-configurable design approach is becoming more and more
popular since many systems need to perform several different functions, but never all of
them at the same time.

Figure 5 - comparison of Gate Array and FPGA development cycles

Design Verify Fabricate debug Fabricate debug

Gate array development flow

Design Verify debug

Configure

debug

Configure

FPGA development flow

Done !

Done !

Xilinx FPGAs - a closer look

The Xilinx product line includes a wide variety of FPGA and Complex Programmable Logic
Device (CPLD) chips. This DSP Toolbox is geared towards the design of three closely
related members of the Xilinx family - the XC4000E, XC4000EX and XC4000LX.

This section focuses specifically on these families supported, but many other Xilinx devices
are also excellent platforms for DSP systems.

In the discussion that follows, you will see the features of the Xilinx XC4000 devices that are
crucial for the design of high performance DSP systems. Detail is kept to a minimum. For
more information you should refer to the application notes.

The XC4000 series of devices possess the following features which enable high performance
DSP design:

1. Flexible logic blocks with bit level arithmetic features - allows Distributed Arithmetic
implementations of DSP algorithms.

2. Fine grained distributed RAM and ROM - Increases operand bandwidth.

3. A register rich architecture - enables a high degree of pipelining leading to increased
performance.

The XC4000 CLB - flexibility to support Distributed Arithmetic
Let’s start by looking at the XC4000 series Configurable Logic Block (CLB). These are the
basic building blocks of the XC4000 FPGA. The figure below is a simplified diagram of the
resources within a CLB. You don’t need to understand this diagram in detail, just a few
important features.

One way to look at the CLB is as a two bit functional block. The two Logical Function
blocks of the CLB (on the left) can implement any function of its input variables. This
includes all of the basic building blocks required to construct any arithmetic function.

Because CLBs can be interconnected in any way, they can be used to construct Distributed
Arithmetic implementations of DSP functions. Distributed Arithmetic will not be discussed
in detail here, but one important characteristic is that:

It delivers the performance of a fully parallel circuit within the space of a serial circuit.

Serial arithmetic circuits are great because they remain small with respect to the size of the
operands they process. At most, they grow in linear proportion to the operand size.
However, serial arithmetic requires that at least one of the operands be processed one bit at a
time, requiring multiple machine cycles per sample.

Alternatively, parallel implementations only require a single cycle per sample, but the speed
comes at a cost, since parallel multipliers grow in proportion to the square of the operand
size.

Distributed arithmetic gives you the benefit of both serial and parallel implementations,
resulting in small, fast, efficient circuits. For more information, see the documentation on
Distributed Arithmetic.

Figure 6 Xilinx XC4000 CLB

Distributed memory increases bandwidth
If you recall from the 8 tap FIR filter example presented at the beginning of this chapter,
there are several sources of operand data. Most obvious is the data sample stream being

processed by the filter. In addition, there are 8 coefficients entering the block. If all of this
data had to come from outside of the chip implementing there could be a significant
bottleneck. For example, lets assume that the FIR filter processes 16 bit data and the DSP
chip has a 32 bit data interface to the rest of the system. Only two operands could be
transferred per cycle. Our FIR filter could only run at 1/5 of its top speed because it would
have to wait for its data to squeeze through the narrow input port.

Typically, coefficient data is confined to a small set of values, and it is possible to store the
coefficients locally on the DSP chip. The XC4000 FPGA contains a distributed Random
Access Memory feature. This feature can be used to overcome the bandwidth bottleneck.

Figure 7 - IO Bandwidth limitations

Chip containing 8 tap FIR
Narrow 32 bit data port

Torrent of 144 bits of data

re X
re X
re X
re X
re X
re X
re X
re X

C(

C(

C(

C(

C(

C(

C(

C(

The use of internal FPGA memory to store raw coefficients is a powerful use of the XC4000
distributed memory feature. As you will discover later in this documentation, distributed
memory and distributed arithmetic form a powerful combination. Extremely high
performance DSP systems can be implemented using these techniques on Xilinx FPGAs.

Pipelining increases throughput
Recall from Figure 6 that the XC4000 CLB contains a pair of registers. These registers can
be used to pipeline a function. Pipelining means that a function such as multiplication is
divided into smaller steps. In FPGA technology, smaller steps mean less circuitry between
clock steps, which in turn means that the clock can run faster and overall performance
increases.

Pipelining comes at an expense - results are delayed some small finite number of clock cycles
before they are complete, but this latency is of negligible effect on DSP designs. For most
DSP applications the data rate is much more important than any latency.

Pipelining is a natural mode of system optimization on XC4000 designs. Registers are
everywhere and are essentially “free”.

Summary

This section presented a brief overview of Xilinx technology applied to DSP applications.
Some of the basic differences between traditional programmable DSP chips and FPGAs were
highlighted. A few of the Xilinx FPGA features which are useful in DSP design have been
presented. You can learn more about these in the following chapters.

Although there are a lot of ideas presented here, they are a fraction of what that can be done
with Xilinx FPGAs. FPGAs are extremely flexible devices and engineers are inventing novel
applications every day. If you take the time to review the features of Xilinx devices, you may
discover a new approach to solving your design problem.

Figure 8 - Distributed memory eliminates the data bottleneck

Chip containing 8 tap FIR

re X
re X
re X
re X
re X
re X
re X
re X

C(

C(

C(

C(

C(

C(

C(

C(

== 16 bits coefficient
data stored in
distributed memory

16 bit trickle of data

