QXILINX

Migrating Cadence Designs to M1.3
Updated excerpt from Xilinx Software Conversion Guide from
XACTstep v5.X to XACTstep vM1.X. June 1997 vM1.3

Junel997 (Version M1.3)

Application Note excerpt

Summary

This guide will help you convert your existing Cadence Concept designs from previous versions of XACTstep 5.X to

XACTstep M1.X software.
Xilinx Families
XC4000E/L, XC4000EX, XC4000XL, XC9500

Migrating Cadence Designs

The number of changes required to retarget a Cadence
design from 5.X to M1.X are significant, regardless of the
type of design you are trying to migrate because the M1.X
release coincides with major changes in Cadence design
methodology. However, a design which is drawn purely with
Unified Library components will require fewer changes than
a design that contains instantiated netlist modules, instanti-
ated HDL, or X-BLOX.

In light of the fact that X-BLOX designs may require more
work to convert, you may consider the option of using 5.X
instead to process your design. Unless you are targeting
the new XC4000EX or XC9500 families or have moved to
an operating system that is not supported by 5.X (e.g.,
Solaris 2.5 or Windows NT 4.0), 5.X is still a viable option
for X-BLOX designs.

This section details the migration of Cadence designs from
5.X to M1.X. For more information about the Cadence
tools, please see the Cadence Interface/Tutorial Guide. For
more information on the M1.X core tools, refer to the Xilinx
online documentation.

Cadence Changes

Cadence 5.X Environment

The M1.X Xilinx/Cadence interface release coincides with a
major change in the Cadence database structure, which is
referred to by Cadence as their “5.X Environment”. The
main goal of the 5.X Environment is the standardization of
a common logical and physical structure for all designs
across all Cadence design tools. The common logical
structure shared across all Cadence tools is a hierarchical
lib/cell/view/file structure, where

« A*“view" is a collection of files that are related in that
they all contain information about one type of
representation, such as schematic, symbolic, HDL, or

layout.
» A*“cell"is a collection of views that describe an
individual building block of a chip or system.
* A‘library” is a collection of cells that are related either
in terms of
- describing components of a single design (a “design
library”) or
- describing common components potentially used in
many designs a “reference library”)

In the 5.X environment, Verilog is the base netlist format
from which all other netlists are derived.

Also, a new cds.lib library file is now required for specifying
libraries available to all 5.X compliant tools, including Syn-
ergy, Concept, and Composer.

Concept HDL Direct Methodology is required

HDL Direct design methodology is now standard and
required for all PIC (Programmable Integrated Circuit)
flows, including Xilinx.

HDL Direct gives users the ability to do functional simula-
tion of schematic designs directly, all that is required is
nominal post-processing to resolve design hierarchy. This
is done using the Concept2XIL netlister. The main features
are:

» Automatic generation of a Verilog netlist for a user
schematic or block automatically whenever it is saved.

* Use of Verilog as the base intermediate netlist format
from which all other formats are derived.

HDL Direct methodology is now required for all Concept
schematics in the M1.X flow. In the context of Xilinx
designs, this means that SCALD methodology is not sup-
ported, and users must convert their designs.

The main conversions users will need to make are:

1. Using SLICE components from the hdl_direct_lib library
instead of TAP and CTAP symbols to tap bits off busses.

Junel1997 (Version M1.3)

Migrating Cadence Designs to M1.3

2. Removing “\I" suffixes from interface signal names and
replacing these with INPORT, OUTPORT, and IOPORT
bodies from the hdl_direct_lib library to designate input,
output and bidirectional signals associated with a higher
level symbol body in hierarchical, multi-sheet designs.

3. Madification of signal and block names to conform to
Verilog naming conventions (no overlapping of signal
and block names, all names only beginning with alpha-
betic characters or $ signs).

HDL Direct is most conveniently activated by adding the fol-
lowing commands to a startup.concept file in your project
directory:

set hdl_direct_on

set hdl_checks on

set check_signames on

set check_net_names_hdl_ok on

set check_port_names_hdl_ok on

set check_symbol_names_hdl_ok on

runopl <installation_path_to_cadence>/

tools/fet/concept/hdl_direct/bin/autosym

HDL Direct and the associated naming checks are auto-
matically activated when Concept starts up when you set
the startup.concept file in this way.

SIZE property is no longer supported

In the M1.X translators and libraries, the SIZE property
(used for replicating instantiated symbols) is no longer sup-
ported due to adverse effects on simulation times. These
effects are associated with SIZE and the HDL Direct meth-
odology. Users must use the ITERATED INSTANCE meth-
odology for replicating symbol bodies in their designs,
which involves adding an index range (n-1..0) to the PATH
property of a symbol body, where n is the total number of
copies of a component desired. (A PATH property is a Con-
cept schematic instance name.)

For example, say the instance name of the FDCE compo-
nent is I1. If you want to replicate it to get a total of 4 flip-
flops, you must modify the PATH property and change it to
“11(3..0)", (basically adding an index range of 3 down to 0).

The ITERATED INSTANCE methodology is discussed in
detail in the Cadence HDL Direct User Guide. If you want to
process existing designs in M1.X, you must continue using
the XNF translator, CONCEPT2XNF.

New Netlisters--CONCEPT2XIL and XIL2CDS

In the M1.X interface, CONCEPT2XIL is used to translate a
Concept schematic to EDIF via HDL Direct generated Ver-
ilog. XIL2CDS generates the body and chips_prt files
needed to integrate the chip level design into a board level
schematic. Both netlisters must be obtained from Cadence
Design Systems.

M1.X Libraries are required

HDL Direct requires that designs be entered using HDL
Direct compliant libraries. The M1.X Xilinx Concept and
Verilog libraries MUST be used for doing designs with the
M1.X Cadence translators Concept2XIL and XIL2CDS. You
may not use the 5.x Verilog libraries or Cadence Concept
libraries prior to those shipped with the Cadence 97A
release because they are incompatible.

M1.X HDL Direct compliant libraries can be identified by
the new naming conventions of

xce*
and
verilogxce*

Both primitives and macros are now merged into a single
library in Concept, in compliance with the Xilinx Unified
Library standard. For example, the XC4000EX library for
Concept is named xce4000ex, and the corresponding Ver-
ilog Unified Simulation Library is named verilogxce4000ex.

All M1.X Concept libraries are located in $XILINX/
cadence/data . You must have a master.local file pointing
to the explicit location of all available Xilinx architecture
libraries in your project directory. A sample master.local file
is located in $XILINX/cadence/examples

Pad symbols are drawn from the xcepads library. To be able
to use symbols like INPORTs and OUTPORTS, you must
also add the hdl_direct_lib reference to your global.cmd
setup file.

Sample global.cmd file:

master_library “./master.local”;

library “xce4000ex”,
“xcepads”,
“hdl_direct_lib",
“standard”;

use “design.wrk”;

root_drawing “unnamed”;

In M1.X, generic Xilinx SIMPRIM-based Verilog simulation
libraries are supplied as a standard part of the Xilinx Core
Tools for post - NGDBUILD, post - MAP and post - route
timing simulation.

Setting up your Xilinx/Cadence
environment
This section includes the installation of the Xilinx M1.X core

tools, the Xilinx M1.X Cadence interface, and Cadence
Concept and Verilog-XL. .

Note that the XACT environment variable is no longer used.
M1.X now uses the following Xilinx-specific variable:

setenv XILINX /tools/xilinx

The XILINX environment variable is set to the location of
the M1.X software.

Junel1997 (Version M1.3)

S XILINX

Data files related to the Xilinx/Cadence interface are
located in $XILINX/cadence/data . This includes the xil-
inx.pff property filter file (which replaces concept2xnf.prop),
and the .pkg files used by XIL2CDS.

Your executable path needs to include the following directo-
ries:

set path = ($XILINX/bin/<platform> $path)

where <platform> is set to “sun” for Sun4 platforms, “sol” for
Solaris platforms, and “hp” for HP-UX platforms.

For Concept, the new Concept2XIL netlister, and XIL2CDS
(used for board level integration), you will need a cds.lib
setup file to point to the appropriate VAN (Cadence Verilog
Analyzer)-compiled libraries.

Example cds.lib contents:

define xce4000ex_syn /tools/xilinx/
cadence/data/xce4000ex_syn

Retargeting to an M1.X Concept Library

If you have a purely schematic design from 5.X and want to
import it into the M1.X environment, you must retarget your
design to the appropriate M1 Concept library, even if you
are still targeting the same family. The M1.X EDIF netlister,
Concept2XIL, is not compatible with the pre-M1.X SIZE'ed
libraries. Thus in all cases you will need to do the following
when you convert a design to M1.X:

1. Modify your existing master.local file in the design direc-
tory to include the paths to the new M1 libraries. A sam-
ple master.local is provided in $XILINX/cadence/
examples . If you do not have a an existing master.local
in your project directory, create one. The format is:

file_type = master_library;

“xce4000ex™/tools/xilinx/cadence/data/xce4000ex/

xce4000ex.lib’;

“xced000e™/tools/xilinx/cadence/data/xce4000e/
xce4000e.lib’;

“xce3000™/tools/xilinx/cadence/data/xce3000/
xce3000.lib’;

“xcepads™/tools/xilinx/cadence/data/xcepads/
xcepads.lib’;
end.

2. Next, modify your global.cmd file to specify which of the
new M1 Concept libraries specified in the master.local file
that are needed to convert the design. For example, say
you need to convert an XC4000E design to, XC4000EX. In
this case, the libraries we need to add are “xce4000ex” for
the architecture-specific components, “xcepads” for the
pad symbols, and “hdl_direct_lib” for those components
needed for HDL Direct compliance (slices, inports, out-
ports, ioports). The library naming convention for Cadence
releases 9404 to 9604 was xc* for the primitive library, and
xm* for the macro library for a given architecture named “*".

For example, if * was “4000e”, we would have “xc4000e”,
and “xm4000e”. HDL Direct-compliant pads were in
“xpads_hdlI". In the M1.X Concept libraries, primitives and
macros are merged into a single library, “xce4000e”, and
pads are drawn from the unsized “xcepads” library.

master_library “./master.local”;
library “xce4000ex”,
“xcepads”,
“xc4000e”,
“xm4000e”,
“xpads_hdl”,
“hdI_direct_lib”",
“standard”;
use “my_design.wrk”;
root_drawing “my_design”;

3. To convert the design, you need to ignore the old libraries
with the “ignore” command, and activate the new libraries
with the “lib” command. Set the “sticky_off” parameter to
prevent irrelevant properties from being translated to the
converted design, including SIZE properties. Do a “get” to
read in components from the new target libraries, and
finally a “write” to save the new references.

ignore lib xc4000e
ignore lib xm4000e
ignore lib xpads_hdl
set sticky_off

lib xce4000e

lib xcepads

lib hdI_direct_lib
get

write

After saving the design, remove all references to the XACT
Concept libraries (“xc4000e”, “xm4000e”, and “xpads_hdl")
from the global.cmd.

4. Use the ITERATED INSTANCE methodology to replicate
any components that were previously replicated with SIZE
properties.

5. Replace any XBLOX modules in the design with the
appropriate LogiBLOX counterpart. Since LogiBLOX is not
integrated into the Concept schematic editor, the LogiBLOX
module must be generated by running LogiBLOX in stand-
alone mode, and GENVIEW must be used to generate a
symbol BODY for the module. See the section on Convert-
ing X-BLOX designs for more details.

6. If the design was entered using SCALD methodology
conventions, you must convert it to comply with HDL Direct
methodology guidelines. This includes:

* Renaming any instance and net names that conflict or
overlap (symbols and nets may not share the same
names).

* Modifying Interface signal connections. In SCALD
methodology, signals that connect to a pin on an upper

Junel1997 (Version M1.3)

Migrating Cadence Designs to M1.3

level hierarchical symbol body are designated with a “\"
extension on the signal name and a FLAG body is
attached to the signal. Since in M1.X, the design must
comply with HDL Direct methodology, you must remove
all FLAG bodies and all “\" extensions on signal names,
and replace them with INPORT, OUTPORT, and
IOPORT bodies, depending on whether they are input,
output, or bidirectional signals, respectively.

* Replace all TAP and CTAP symbols used to tap bits off
buses with SLICE symbols from hdl_direct_lib.

« All signal and instance names must comply with Verilog
naming restrictions, and must be modified if needed.
Signal and instance names may only begin with
alphabetic characters or the $ sign. Legal characters
are: a-z, A-Z,0-9, ,and $.

For more information, please see the Verilog-XL Reference
Manual and the HDL Direct User Guide.

Specifying part type on a schematic

The target device can be specified on the schematic by
attaching a “PART” property to the new CONFIG library
symbol. (In previous releases, this property was called
“PART_TYPE” and attached to a DRAWING body.) For
example, to designate a target device of XC4010E-3 in a
PQ208 package in the top-level schematic, place a CON-
FIG library symbol on the sheet, then add the following
property:

Name:PART
Value:XC4010E-3-PQ208

This “density-speed-package” designation is the recom-
mended format. Other acceptable property values would
include “4010E-3-PQ208", “4010E-PQ208-3", as well as
the 5.X style “4010EPQ208-3". The 5.X style is discour-
aged, since the lack of a hyphen between the die type and
the package type can make this designation ambiguous.

Tapping Bits off Buses

When tapping bits off buses, or building buses out of unre-
lated signals, you must insert BUFFs (buffers) between the
unrelated signal and the name of the bit tapped off the bus
In addition, all signals tapped off busses should be tapped
off using a SLICE symbol from the HDL_DIRECT_LIB
library instead of TAPs or CTAPs from the STANDARD
library.

Example 1: When tapping a bit 1 off a bus named
A<1..0>, the name of the bit is A<1>, NOT Al. Any devi-
ation from this naming convention (for example, naming
it “Al1") is considered renaming the bit, and will require
that you insert a BUFF (buffer) symbol between the
tapped signal (A<1>) and the new name (in this case,
“Al").

Example 2: Say you have two signals, one named

“CTRL’, and the other named “ENABLE”, and you wish
to combine these into a single two-bit bus called
A<1..0>, where A<1> = CTRL and A<O> = ENABLE.
You must insert a BUFF symbol between the signal
named “CTRL" and the A<1> bit that you tap off the bus,
and another BUFF between the signal named
“ENABLE” and A<0>.

The error you will get in both cases above if you do not add
the buffer will be an NGDBUILD “Duplicate port” error on an
“alias” cell.

Migrating X-BLOX designs

The M1.X core tools use LogiBLOX to synthesize high-level
functional modules formerly supported by X-BLOX. In the
LogiBLOX flow, modules are synthesized up front, one by
one during design entry instead of during design compila-
tion. This results in shorter design-compilation times. Logi-
BLOX also simplifies both functional and timing simulation
of X-BLOX designs by allowing you to use the same flow as
you would for purely gate-level designs.

Since X-BLOX modules are not supported during design
compilation in M1.X, designs must be fully synthesized
before they are introduced into the M1.X software. This can
be done in one of two ways.

Option 1: Convert X-BLOX modules to LogiBLOX

In this conversion, all X-BLOX components in the design
are removed and replaced with LogiBLOX components.
This needs to be done manually for each component.

Before you start to convert your design, be sure you save a
copy of it for reference, in case you need to revert to it dur-
ing the replacement process.

Since LogiBLOX is not integrated into the Concept sche-
matic editor, you must run it stand-alone to generate each
component. The steps are as follows:

1. Start up LogiBLOX by typing: “Ibgui”.
2. Specify “Cadence” as the vendor.

3. Under Options, select “Structural Verilog netlist”. If you
are going to be instantiating the block into a Verilog
netlist rather than a schematic, select “Verilog template”
under the Component Declaration field. Click on “OK” to
generate the module and its associated structural Ver-
ilog netlist in your project directory.

4. The next step is to generate a symbol body for the new
module if you are incorporating the LogiBLOX module
into a Concept schematic. To do this, run GENVIEW
from the Concept schematic editor using the structural
.V netlist for the module as input. In the Concept com-
mand window, type:

genview -i new_block.v -v logic body verilog

This will add a new directory called “new_block” to your

Junel1997 (Version M1.3)

S XILINX

project directory. GENVIEW copies the “new_block.v”
file from LogiBLOX to new_block/logic/, renaming it to
verilog.v.

5. Edit the verilog.v file and add the following line to the
module definition to signal Concept2XIL to stop travers-
ing the block at this level because there are no underly-
ing primitives:
parameter cds_action="ignore";,

Although this module by module conversion process can
require a great deal of work, the benefit will be a smoother
design translation, and easier functional simulation.

Since LogiBLOX components are synthesized immediately
once you have set the desired parameters for a module,
their bus-pin widths are determined up front. As a result,
data types do not need to be propagated as in the case with
X-BLOX. Since data-type and bus-width propagation is not
an issue in LogiBLOX, bus-translation components such as
BUS_DEF, BUS_IF, CAST, ELEMENT, and SLICE are not
required.

Be sure that all of the buses in your design have indices.
Just as with regular bus pins, the width of these buses must
equal the width of the LogiBLOX bus pins to which they are
connected.

This flow, although more involved up front, is highly recom-
mended to take advantage of the full feature set in M1.X,
especially if the design is in the beginning or intermediate
stages of development. Once the schematic is redrawn to
use LogiBLOX modules, the design can be easily imple-
mented and simulated. Unlike X-BLOX modules, LogiBLOX
modules can be simulated almost immediately in Verilog-
XL. After all X-BLOX components have been replaced in
the design and the design is saved (with HDL Direct active),
functional simulation can be performed after running
Concept2XIL with the -sim_only option to generate a simu-
lation netlist directly from your schematics:

concept2xil -sim_only -family xce4000ex \
new_design

The one drawback is that simulation at this stage requires
that you create your test fixture file manually.

Option 2: Run your completed X-BLOX design through
M1.X

If you have an existing, complete X-BLOX design, or you
are only interested in doing a place and route using the new
M1.X tools, you can first follow the 5.X design flow to the
point where a design .xtf file is created by running XMAKE
-n. Take this design into NGDBuild, then run the M1.X
place-and-route tools as normal.

To functionally simulate a design, use the following flow:

ngdbuild -p new_design .xtf

ngd2ver -tf -ul new_design

For timing simulation, generate a routed design.nga with:

map new_design
par new_design
ngdanno -0 new_design .nga
ngd2ver -tf -ul design .nga

routed_design .ncd

Note that, unlike the LogiBLOX flow, described in option 1,
simulation vectors used in functional simulation may not be
completely applicable to timing simulation. This is because
in the X-BLOX flow, NGDBuild compiles a flattened netlist,
whereas in the LogiBLOX flow, NGDBuild compiles a hier-
archical netlist.

Because of the limitations that this “half-and-half” flow
imposes upon simulation, this flow is recommended only
for complete or nearly complete designs that are to be eval-
uated under the M1.X tools. If the design will be subject to
many design iterations and compilations through the M1.X
tools, it is highly recommended that the design be updated
to use LogiBLOX modules as described in Option 1.

You may also specify the part type during the implementa-
tion flow in the M1.X core tools as a command line option.

Simulation

Functional simulation of pure schematic designs which may
or may not include LogiBLOX modules, can now be done
directly after running Concept2XIL with the -sim_only
option when the design is entered using HDL Direct meth-
odology. Verilog Unified Library simulation primitives in
$XILINX/cadence/data/verilogxce* are used for
this simulation.

Post-route timing simulation involves two steps: generating
a timing-annotated design.nga netlist with NGDANNO,
then running NGD2VER on the resulting structural Verilog
netlist. In this case the simulation model is expressed in
terms of generic simulation primitives (“SIMPRIMSs”)
located in $XILINX/verilog/data instead of architec-
ture specific Unified Library components.

Simulation

Functional simulation of pure schematic designs as well as
schematic designs containing LogiBLOX modules can now
be done directly after running Concept2XIL with the -
sim_only option when the design is entered using HDL
Direct methodology. Verilog Unified Library simulation prim-
itives in $XILINX/cadence/data/verilogxce* are
used for simulation of the schematic blocks, and Verilog
SIMPRIM libraries are used to simulate the LogiBLOX
modules.

Post-route timing simulation involves two steps: generating
a timing-annotated design.nga netlist with NGDANNO,
then running NGD2VER on the resulting structural Verilog
netlist. In this case the simulation model is expressed in

Junel1997 (Version M1.3)

Migrating Cadence Designs to M1.3

terms of generic simulation primitives (“SIMPRIMS”)
located in $XILINX/verilog/data instead of architec-
ture specific Unified Library components.

Integrating into Board Level Simulation

The new utility for integrating into board level simulation is
XIL2CDS. You must run NGD2VER with the -pf option to
generate the .pin file needed by XIL2CDS to generate the
symbol body for the FPGA:

ngd2ver -tf -ul -pf new_design
Then run XIL2CDS to generate the symbol body and
chips_prt file for the FPGA:

xil2cds new_design -lwbverilog -use
my_design.wrk -r . -family xce4000ex -mode all

New Global (Set)/Reset and Global Tri-state
Methodology

In the M1.3.7 release, the Concept and Verilog libraries and
NGD2VER netlister support a new, required methodology
for declaring and stimulating global set/reset (GSR), global
reset (GR), and global tri-state (GTS) signals. The method-
ology is a departure from the earlier M1.1/M1.2/M1.3.x and
the XACT flows.For the first time, it gives Cadence custom-
ers the novel ability to do HDL Direct functional simulation
of mixed mode Synergy/Concept designs. Although non-
Cadence users will not enjoy this benefit, what they will be
able to do is use the same test fixture commands to simu-
late these global signals in both functional and timing simu-
lation with minimal modification. The Verilog and Concept
Unified libraries, as well as the NGD2VER netlister have
been madified to support this new technique.

The new methodology applies to Verilog simulation of all
architectures supported in the M1 release, and requires
that you set the values appropriately for the following Ver-

ilog macros in your test fixture file, as appropriate to your
architecture: GSR_SIGNAL, GR_SIGNAL, and
GTS_SIGNAL.

Example: Declaring GSR

reg GSR;

“define GSR_SIGNAL test.uut.GSR
The exact value you use for GSR_SIGNAL varies slightly
depending on what step of the flow you are at, what archi-
tecture you are using, and whether your design has a
STARTUP block instantiated within it. If you design does
not contain a STARTUP block, the declarations above are
written to your test fixture template file by NGD2VER auto-
matically. See the Cadence Interface User Guide and Tuto-
rial in the M1.3 release for full details.

Junel1997 (Version M1.3)

S XILINX

Schematic Entry

Design Flow Concept

Unified
Schematic Schematic
Design Library

genview

Concept

Body file
HDL-Synthesis Design Flow
Supported by Cadence

HDL Design

To NGDBuild
Highly via HDL-Direct RTL Befgpvioral
. Synergy simuldtion Synergy
Recommended Verilog Synthests l Simulation
*V files Library | Library
Unified Library Based Structural
Functional Simulation Verilog Netlist

Verilog-XL

®Post—symhes
Simulation
VLOG2XIL

I NGDBuild Recommended
User-Specified Verilog-XL SIMPRIM-Based

Verilog A . .
Testbench Functional Simulation

Concept2XIL -sim_only Concept2XIL

Verilog
Unified

Simulation
Library NGD2VER -tf -ul
Structural
Verilog Netlist

o)
MAP
(Core)
|
PAR

optional
Post-Map Edit
Timing

Simulation Design User-Specified
Manager Verilog-XL Verilog Testbench
Flow Engine

NGDAnno

Verilog
SIMPRIM
Library

NGD2VER -tf -ul

NGDANno
=
Highly

NGD2VER -tf
Lreozver v o Recommended

Structural
Verilog
Netlist

Testbench Template

User-Specified
Verilog Testbench

Verilog-XL

Verilog Testbench Template

())

Verilog
SIMPRIM

Library .
by Cadence
Concept t 1

Post-Implementation

Verilog
x7747 SIMPRIN Timing Simulation

Figure 1: Cadence Flow Overview

Junel1997 (Version M1.3) 9

