

QPROTM XQ4000XL Series QML High-Reliability Field Programmable Gate Arrays

May 19, 1998 (Version 1.0)

XQ4000X Series Features

- Certified to MIL-PRF-38535 Appendix A QML (Qualified Manufacturer Listing)
- Ceramic and plastic packages
- Also available under the following standard microcircuit drawings (SMD)
 - XQ4013XL 5962-98513
 - XQ4036XL 5962-98510
 - XQ4062XL 5962-98511

For more information contact the Defense Supply Center Columbus (DSCC) http://www.dscc.dla.mis/ v/va/smd/smdsrch.html

- Available in -3 speed
- System featured Field-Programmable Gate Arrays
 - Select-RAM™ memory: on-chip ultra-fast RAM with
 - synchronous write option
 - dual-port RAM option
 - Abundant flip-flops
 - Flexible function generators
 - Dedicated high-speed carry logic
 - Wide edge decoders on each edge
 - Hierarchy of interconnect lines
 - Internal 3-state bus capability
 - 8 global low-skew clock or signal distribution networks
- System Performance beyond 50 MHz
- Flexible Array Architecture
- Low Power Segmented Routing Architecture
- Systems-Oriented Features
 - IEEE 1149.1-compatible boundary scan logic support
 - Individually programmable output slew rate
 - Programmable input pull-up or pull-down resistors
 - 12-mA Sink Current Per XQ4000XL Output
- Configured by Loading Binary File
- Unlimited reprogrammabilityReadback Capability
 - Program verification
 - Internal node observability
- Development System runs on most common computer platforms
 - Interfaces to popular design environments
 - Fully automatic mapping, placement and routing
 - Interactive design editor for design optimization
 - Highest Capacity Over 130,000 Usable Gates
- Additional Routing Over XQ4000E
 - almost twice the routing capacity for high-density designs

- Buffered Interconnect for Maximum Speed
- New Latch Capability in Configurable Logic Blocks
- Improved VersaRing[™] I/O Interconnect for Better Fixed Pinout Flexibility
 - Virtually unlimited number of clock signals
- Optional Multiplexer or 2-input Function Generator on Device Outputs
- 5V tolerant I/Os
- 0.35µ SRAM process

Introduction

XQ4000X Series high-performance, high-capacity Field Programmable Gate Arrays (FPGAs) provide the benefits of custom CMOS VLSI, while avoiding the initial cost, long development cycle, and inherent risk of a conventional masked gate array.

The result of thirteen years of FPGA design experience and feedback from thousands of customers, these FPGAs combine architectural versatility, on-chip Select-RAM memory with edge-triggered and dual-port modes, increased speed, abundant routing resources, and new, sophisticated software to achieve fully automated implementation of complex, high-density, high-performance designs.

Refer to the complete Commercial XC4000X Series Field Programmable Gate Arrays Data Sheet for more information on device architecture and timing, and the latest Xilinx databook for package pinouts other than the CB228 (included in this data sheet). (Pinouts for XQ4000XL device are identical to XC4000XL.)

Device	Logic Cells	Max Logic Gates (No RAM)	Max. RAM Bits (No Logic)	Typical Gate Range (Logic and RAM)*	CLB Matrix	Total CLBs	Number of Flip-Flops	Max. User I/O	Packages
XQ4013XL	2432	13,000	18,432	10,000-30,000	24X24	576	1,536	192	PG223, CB228, PQ240, BG256
XQ4036XL	3078	36,000	41,472	22,000 - 65,000	36 x 36	1,296	3,168	288	PG411, CB228, HQ240, BG352
XQ4062XL	5472	62,000	73,728	40,000 - 130,000	48 x 48	2,304	5,376	384	PG475, CB228, HQ240, BG432

Table 1: XQ4000X Series High Reliability	Field Programmable Gate Arrays

5/11/98

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

XQ4000XL Switching Characteristics

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered final.

All specifications subject to change without notice.

Additional Specifications

Except for pin-to-pin input and output parameters, the a.c. parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. For design considerations requiring more detailed timing information, see the appropriate family a.c. supplements available on the Xilinx WEBLINX at http://www.xilinx.com.

Symbol	Description			Units
V _{CC}	Supply voltage relative to GND	to GND		
V _{IN}	Input voltage relative to GND (Note 1)	ative to GND (Note 1)		
V _{TS}	Voltage applied to 3-state output (Note 1)	ed to 3-state output (Note 1)		
V _{CCt}	Longest Supply Voltage Rise Time from 1 V to 3V	Longest Supply Voltage Rise Time from 1 V to 3V		
T _{STG}	Storage temperature (ambient)		-65 to +150	°C
T _{SOL}	Maximum soldering temperature (10 s @ 1/16 in. = 1	.5 mm)	+260	°C
т	Junction temperature	Ceramic packages	+150	°C
TJ		Plastic packages	+125	°C

Absolute Maximum Ratings

Note 1: Maximum DC overshoot or undershoot above V_{cc} or below GND must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to + 7.0 V, provided this over- or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

Note 2: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operating Conditions

Symbol	Description		Min	Мах	Unit s
V	Supply voltage relative to GND, T _J = -55 °C to +125°C	Plastic	3.0	3.6	V
V _{CC}	Supply voltage relative to GND, T _C = -55°C to +125°C	Ceramic	3.0	3.6	V
V _{IH}	High-level input voltage		50% of V_{CC}	5.5	V
V _{IL}	Low-level input voltage		0	30% of V_{CC}	V
T _{IN}	Input signal transition time			250	ns

Note 1: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C. Note 2: Input and output measurement threshold is ~50% of V_{CC} .

XQ4000XL DC Characteristics Over Recommended Operating Conditions

Symbol	Description		Min	Max	Units
V	High-level output voltage @ I _{OH} = -4.0 mA, V _{CC} min (LVTTL)				V
V _{OH}	High-level output voltage @ I_{OH} = -500 µA, (LVC	MOS)	90% V _{CC}		V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CC} min (LVTTL) (Note 1)			0.4	V
-	Low-level output voltage @ I_{OL} = 1500 µA, (LVC	MOS)		10% V _{CC}	V
V _{DR}	Data Retention Supply Voltage (below which configuration data may be lost)		2.5		V
I _{CCO}	Quiescent FPGA supply current (Note 2)			5	mA
ΙL	Input or output leakage current		-10	+10	μA
C	Input capacitance (sample tested)	BGA, PQ, HQ, packages		10	pF
C _{IN}		= 2) -10 BGA, PQ, HQ, packages PGA packages	16	рF	
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 V (sample	e tested)	0.02	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ $V_{in} = 3.6 V$ (sa	ample tested)	0.02	0.15	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ lo	gic Low	0.3	2.0	mA

Note 1: With up to 64 pins simultaneously sinking 12 mA.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all I/O pins Tri-stated and floating.

XQ4000XL Global Buffer Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

		Speed Grade	-3	Units
Description	Symbol	Device	Max	Units
From pad through Global Low Skew buffer, to any clock K	T _{GLS}	XQ4013XL XQ4036XL XQ4062XL	3.6 4.8 6.3	ns ns ns
From pad through Global Early buffer, to any IOB clockK. Values are for BUFGE #s 1, 2, 5 and 6. Add 1 - 2 ns for BUFGE #s 3, 4, 7 and 8 and for all CLB clock Ks driven from any of the 8 BUFGEs, or consult TRCE.	Τ _{GE}	XQ4013XL XQ4036XL XQ4062XL	2.4 3.1 4.9	ns ns ns

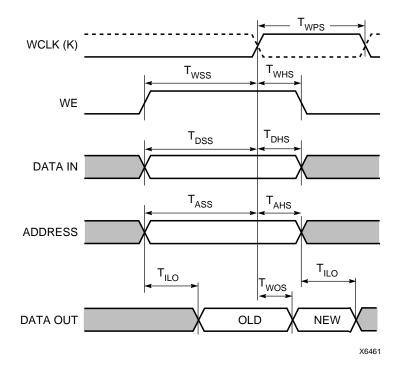
XQ4000XL CLB Switching Characteristic Guidelines

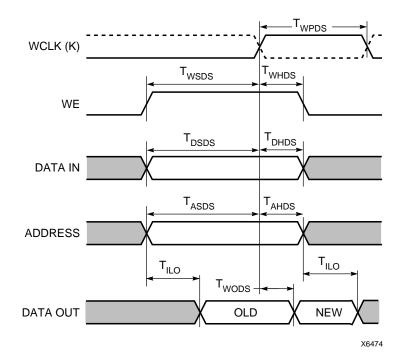
Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XQ4000XL devices and expressed in nanoseconds unless otherwise noted.

	Speed Grade	3		
Description	Symbol	Min	Max	Units
Combinatorial Delays			1 1	
F/G inputs to X/Y outputs	T _{ILO}		1.6	ns
F/G inputs via H' to X/Y outputs	TIHO		2.7	ns
F/G inputs via transparent latch to Q outputs	TITO		2.9	ns
C inputs via SR/H0 via H to X/Y outputs	T _{HH0O}		2.5	ns
C inputs via H1 via H to X/Y outputs	Тннто		2.4	ns
C inputs via DIN/H2 via H to X/Y outputs	T _{HH2O}		2.5	ns
C inputs via EC, DIN/H2 to YQ, XQ output (bypass)	T _{CBYP}		1.5	ns
CLB Fast Carry Logic		•	• •	
Operand inputs (F1, F2, G1, G4) to C _{OUT}	T _{OPCY}		2.7	ns
Add/Subtract input (F3) to COUT	TASCY		3.3	ns
Initialization inputs (F1, F3) to COUT	TINCY		2.0	ns
C _{IN} through function generators to X/Y outputs	T _{SUM}		2.8	ns
C _{IN} to C _{OUT} , bypass function generators	T _{BYP}		0.26	ns
Carry Net Delay, C _{OUT} to C _{IN}	T _{NET}		0.32	ns
Sequential Delays		•		
Clock K to Flip-Flop outputs Q	т _{ско}		2.1	ns
Clock K to Latch outputs Q	T _{CKLO}		2.1	ns
Setup Time before Clock K				
F/G inputs	T _{ICK}	1.1		ns
F/G inputs via H	TIHCK	2.2		ns
C inputs via H0 through H	T _{HH0CK}	2.0		ns
C inputs via H1 through H	T _{HH1CK}	1.9		ns
C inputs via H2 through H	T _{HH2CK}	2.0		ns
C inputs via DIN	T _{DICK}	0.9		ns
C inputs via EC	T _{ECCK}	1.0		ns
C inputs via S/R, going Low (inactive)	T _{RCK}	0.6		ns
CIN input via F/G	тсск	2.3		ns
CIN input via F/G and H	Тснск	3.4		ns
Hold Time after Clock K				
F/G inputs	Тскі	0		ns
F/G inputs via H	Тскін	0		ns
C inputs via SR/H0 through H	T _{CKHH0}	0		ns
C inputs via H1 through H	T _{CKHH1}	0		ns
C inputs via DIN/H2 through H	T _{CKHH2}	0		ns
C inputs via DIN/H2	T _{CKDI}	0		ns
C inputs via EC	T _{CKEC}	0		ns
C inputs via SR, going Low (inactive)	T _{CKR}	0		ns
Clock				
Clock High time	Т _{СН}	3.0		ns
Clock Low time	T _{CL}	3.0		ns
Set/Reset Direct		1	1 1	
Width (High)	T _{RPW}	3.0	_	ns
Delay from C inputs via S/R, going High to Q	T _{RIO}		3.7	ns
Global Set/Reset				
Minimum GSR Pulse Width	T _{MRW}		19.8	ns
Delay from GSR input to any Q	T _{MRQ}		13 for T _{RRI} er device.	

XQ4000XL RAM Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XQ4000XL devices and are expressed in nanoseconds unless otherwise noted.


Single Port RAM	Spee	ed Grade	-3		Units	
	Size	Symbol	Min	Max	Units	
Write Operation						
Address write cycle time (clock K period)	16x2 32x1	T _{WCS} T _{WCTS}	9.0 9.0		ns ns	
Clock K pulse width (active edge)	16x2 32x1	T _{WPS} T _{WPTS}	4.5 4.5		ns ns	
Address setup time before clock K	16x2 32x1	T _{ASS} T _{ASTS}	2.2 2.2		ns ns	
Address hold time after clock K	16x2 32x1	T _{AHS} T _{AHTS}	0 0		ns ns	
DIN setup time before clock K	16x2 32x1	T _{DSS} T _{DSTS}	2.0 2.5		ns ns	
DIN hold time after clock K	16x2 32x1	T _{DHS} T _{DHTS}	0 0		ns ns	
WE setup time before clock K	16x2 32x1	T _{WSS} T _{WSTS}	2.0 1.8		ns ns	
WE hold time after clock K	16x2 32x1	T _{WHS} T _{WHTS}	0 0		ns ns	
Data valid after clock K	16x2 32x1	T _{WOS} T _{WOTS}		6.8 8.1	ns ns	
Read Operation						
Address read cycle time	16x2 32x1	T _{RC} T _{RCT}	4.5 6.5		ns ns	
Data Valid after address change (no Write Enable)	16x2 32x1	T _{ILO} T _{IHO}		1.6 2.7	ns ns	
Address setup time before clock K	16x2 32x1	T _{ICK} T _{IHCK}	1.3 2.3		ns ns	


Dual Port RAM	Spe	Speed Grade		-3	
	Size	Symbol	Min	Max	Units
Write Operation			1		
Address write cycle time (clock K period)	16x1	T _{WCDS}	9.0		ns
Clock K pulse width (active edge)	16x1	T _{WPDS}	4.5		ns
Address setup time before clock K	16x1	T _{ASDS}	2.5		ns
Address hold time after clock K	16x1	T _{AHDS}	0		ns
DIN setup time before clock K	16x1	T _{DSDS}	2.5		ns
DIN hold time after clock K	16x1	T _{DHDS}	0		ns
WE setup time before clock K	16x1	T _{WSDS}	1.8		ns
WE hold time after clock K	16x1	T _{WHDS}	0		ns
Data valid after clock K	16x1	T _{WODS}		7.8	ns

Note 1: Timing for16 x1 RAM option is identical to16 x 2 RAM.

XQ4000XL CLB RAM Synchronous (Edge-Triggered) Write Timing

XQ4000XL CLB Dual-Port RAM Synchronous (Edge-Triggered) Write Timing

XQ4000XL Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

XQ4000XL Output Flip-Flop, Clock to Out

		Speed Grade	-3	Units
Description	Symbol	Device	Max	Units
Global Low Skew Clock to Output using OFF	T _{ICKOF}	XQ4013XL	8.6	ns
		XQ4036XL	9.8	ns
		XQ4062XL	11.3	ns
Global Early Clock to Output using OFF	T _{ICKEOF}	XQ4013XL	7.4	ns
Values are for BUFGE #s 3, 4, 7, and 8. Add		XQ4036XL	8.1	ns
1.4 ns for BUFGE #s 1, 2, 5, and 6.		XQ4062XL	9.9	ns
For output SLOW option add	T _{SLOW}	All Devices	3.0	ns

OFF = Output Flip Flop

Note 1: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Note 2: Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see graph below.

XQ4000XL Output Mux, Clock to Out

		Speed Grade	-3	Units
Description	Symbol	Device	Max	Units
Global Low Skew Clock to Output using OFF	T _{ICKOF}	XQ4013XL	8.8	ns
		XQ4036XL	10.0	ns
		XQ4062XL	11.4	ns
Global Early Clock to Output using OFF. Val-	TICKEOF	XQ4013XL	7.6	ns
ues are for BUFGE #s 3, 4, 7, and 8. Add 1.4		XQ4036XL	8.2	ns
ns for BUFGE #s 1, 2, 5, and 6.		XQ4062XL	10.0	ns
For output SLOW option add	T _{SLOW}	All Devices	3.0	ns

OFF = Output Flip Flop

Note 1: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Note 2: Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see graph below.

Capacitive Load Factor

Figure 1 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay.

Figure 1 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

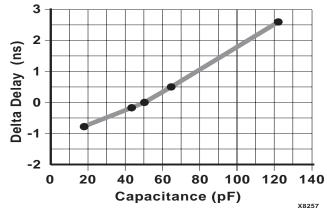


Figure 1: Delay Factor at Various Capacitive Loads

XQ4000XL Pin-to-Pin Input Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

XQ4000XL Global Low Skew Clock, Set-Up and Hold

		Speed Grade	-3	Units
Description	Symbol	Device	Min	Units
Input Setup and Hold Times Using Global Low Skew Clock and IFF				
No Delay	T _{PSN} /T _{PHN}	XQ4013XL	1.2 / 3.2	ns
		XQ4036XL	1.2 / 5.5	ns
		XQ4062XL	1.2 / 7.0	ns
Partial Delay	T _{PSP} /T _{PHP}	XQ4013XL	6.1 / 0.0	ns
	-	XQ4036XL	6.4 / 1.0	ns
		XQ4062XL	6.7 / 1.2	ns
Full Delay	T _{PSD} /T _{PHD}	XQ4013XL	6.4 / 0.0	ns
		XQ4036XL	6.6/0.0	ns
		XQ4062XL	6.8 / 0.0	ns

IFF = Input Flip-Flop or Latch

 Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.
Note 2: The XQ4013XL, XQ4036XL, and 4062XL have significantly faster partial and full delay setup times than other devices.

XQ4000XL BUFGE #s 3, 4, 7, & 8 Global Early Clock, Set-up and Hold for IFF and FCL

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

		Speed Grade	-3
Description	Symbol	Device	Min
Input Setup and Hold Times			
No Delay		XQ4013XL	1.2 / 4.7
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XQ4036XL	1.2 / 6.7
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XQ4062XL	1.2 / 8.4
Partial Delay		XQ4013XL	5.4 / 0.0
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XQ4036XL	6.4 / 0.8
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XQ4062XL	8.4 / 1.5
Full Delay		XQ4013XL	12.0 / 0.0
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XQ4036XL	13.8 / 0.0
-		XQ4062XL	13.1 / 0.0

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

Note 2: The XQ4013XL, XQ4036XL, and 4062XL have significantly faster partial and full delay setup times than other devices.

XQ4000XL BUFGE #s 1, 2, 5, & 6 Global Early Clock, Set-up and Hold for IFF and FCL

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

		Speed Grade	-3
Description	Symbol	Device	Min
Input Setup and Hold Times			
No Delay		XQ4013XL	1.2 / 4.7
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XQ4036XL	1.2 / 6.7
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XQ4062XL	1.2 / 8.4
Partial Delay		XQ4013XL	6.4 / 0.0
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XQ4036XL	7.0 / 0.0
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XQ4062XL	9.0 / 0.8
Full Delay		XQ4013XL	10.0 / 0.0
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XQ4036XL	12.2 / 0.0
		XQ4062XL	13.1 / 0.0

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

Note 2: The XQ4013XL, XQ4036XL, and 4062XL have significantly faster partial and full delay setup times than other devices.

XQ4000XL IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

Speed Grade			-3	Units
Description	Symbol	Device	Min	Units
Clocks				
Clock Enable (EC) to Clock (IK)	T _{ECIK}	All devices	0.3	ns
Delay from FCL enable (OK) active edge to IFF clock (IK)	Токік	All devices	1.7	ns
active edge	-			
Setup Times				
Pad to Clock (IK), no delay	T _{PICK}	All devices	1.7	ns
Pad to Clock (IK), via transparent Fast Capture Latch, no	T _{PICKF}	All devices	2.3	ns
delay				
Pad to Fast Capture Latch Enable (OK), no delay	T _{POCK}	All devices	0.7	ns
Hold Times				
All Hold Times		All devices	0	ns
Global Set/Reset				
Minimum GSR Pulse Width	T _{MRW}	All devices	19.8	ns
Delay from GSR input to any Q	T _{RRI}	XQ4013XL	15.9	ns
		XQ4036XL	22.5	ns
		XQ4062XL	29.1	ns
Propagation Delays			Max	
Pad to I1, I2	T _{PID}	All devices	1.6	ns
Pad to I1, I2 via transparent input latch, no delay	T _{PLI}	All devices	2.6	ns
Pad to I1, I2 via transparent FCL and input latch, no delay	T _{PFLI}	All devices	3.1	ns
Clock (IK) to I1, I2 (flip-flop)	T _{IKRI}	All devices	1.8	ns
Clock (IK) to I1, I2 (latch enable, active Low)	T _{IKLI}	All devices	1.9	ns
FCL Enable (OK) active edge to I1, I2	T _{OKLI}	All devices	3.6	ns
(via transparent standard input latch)				
IEE – Input Elin-Elon or Latch ECL – East Capture Latch				

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

XQ4000XL IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values are expressed in nanoseconds unless otherwise noted.

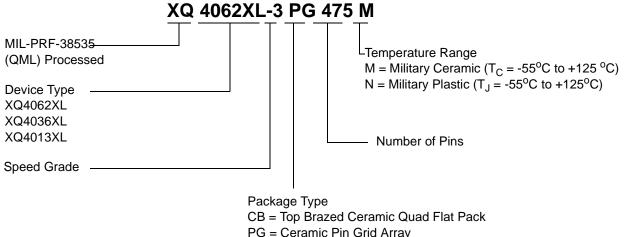
		-	3	l lmita
Description	Symbol	Min	Max	Units
Clocks			1	
Clock High	Т _{СН}	3.0		ns
Clock Low	T _{CL}	3.0		ns
Propagation Delays				
Clock (OK) to Pad	T _{OKPOF}		5.0	ns
Output (O) to Pad	T _{OPF}		4.1	ns
3-state to Pad hi-Z (slew-rate independent)	T _{TSHZ}		4.4	ns
3-state to Pad active and valid	T _{TSONF}		4.1	ns
Output (O) to Pad via Fast Output MUX	T _{OFPF}		5.5	ns
Select (OK) to Pad via Fast MUX	T _{OKFPF}		5.1	ns
Setup and Hold Times				
Output (O) to clock (OK) setup time	Т _{ООК}	0.5		ns
Output (O) to clock (OK) hold time	Т _{око}	0.0		ns
Clock Enable (EC) to clock (OK) setup time	T _{ECOK}	0.0		ns
Clock Enable (EC) to clock (OK) hold time	T _{OKEC}	0.3		ns
Global Set/Reset	-		L	
Minimum GSR pulse width	T _{MRW}	19.8		ns
Delay from GSR input to any Pad	T _{RPO}			
XQ4013XL		20.5		ns
XQ4036XL		27.1		ns
XQ4062XL		33.7		ns
Slew Rate Adjustment				
For output SLOW option add	T _{SLOW}		3.0	ns

Note 1: Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads.

Pinouts

CB228 Package for XQ4013XL/4036XL/ 4062XL

PIN_NAME	CB228
VTT	
VSS	P1
BUFGP_TL_A16_GCK1_IO	P2
A17_IO	P3
IO	P4
Ю	P5
TDI_IO	P6
TCK_IO	P7
IO	P8
Ю	P9
IO	P10
Ю	P11
IO	P12
IO	P13
VSS	P14
IO_FCLK1	P15
IO	P16
TMS_IO	P17
IO	P18
IO	P19
IO	P20
IO	P21
IO	P22
IO	P23
IO	P24
IO	P25
IO	P26
VSS	P27
VCC	P28
IO	P29
IO	P30
IO	P31
IO	P32
IO	P33
IO	P34
10	P35
IO	P36
VCC	P37
IO	P38
IO	P39
IO	P40
IO_FCLK2	P41
VSS	P42


PIN_NAME	CB228
Ю	P43
IO	P44
IO	P45
IO	P46
Ю	P47
Ю	P48
Ю	P49
Ю	P50
Ю	P51
Ю	P52
Ю	P53
BUFGS_BL_GCK2_IO	P54
M1	P55
VSS	P56
MO	P57
VCC	P58
M2	P59
BUFGP_BL_GCK3_IO	P60
HDC_IO	P61
10	P62
10	P63
10	P64
LDC_IO	
IO	P65 P66
10	P67
10	P68
10	P69
10	P70
10	P71
VSS	P72
10	P73
IO	P74
10	P75
IO	P76
10	P77
IO	P78
IO	P79
IO	P80
IO	P81
IO	P82
Ю	P83
/ERR_INIT_IO	P84
VCC	P85
VSS	P86
IO	P87
IO	P88

PIN_NAME	CB228	PIN_NAME	CB228
IO	P89	IO	P137
IO	P90	IO	P138
IO	P91	IO	P139
IO	P92	D4_IO	P140
IO	P93	IO	P141
IO	P94	VCC	P142
VCC	P95	VSS	P143
IO	P96	D3_IO	P144
IO	P97	/RS_IO	P145
10	P98	IO	P146
IO	P99	IO	P147
VSS	P100	IO	P148
IO	P101	IO	P149
IO	P102	D2_IO	P150
IO	P103	IO	P151
IO	P104	VCC	P152
IO	P105	IO	P153
Ю	P106	IO_FCLK4	P154
Ю	P107	IO	P155
Ю	P108	IO	P156
IO	P109	VSS	P157
IO	P110	IO	P158
IO	P111	IO	P159
BUFGS_BR_GCK4_IO	P112	IO	P160
VSS	P113	IO	P161
DONE	P114	IO	P162
VCC	P115	IO	P163
/PROG	P116	D1_IO	P164
D7_IO	P117	BUSY_/RDY_RCLK_IO	P165
BUFGP_BR_GCK5_IO	P118	IO	P166
Ю	P119	IO	P167
IO	P120	D0_DIN_IO	P168
10	P121	BUFGS_TR_GCK6_DOUT_IO	P169
Ю	P122	CCLK	P170
D6_IO	P123	VCC	P171
IO	P124	TDO	P172
IO	P125	VSS	P173
Ю	P126	A0_/WS_IO	P174
IO	P127	BUFGP_TR_GCK7_A1_IO	P175
IO	P128	IO	P176
VSS	P129	IO	P177
IO	P130	CSI_A2_IO	P178
IO	P131	A3_IO	P179
IO_FCLK3	P132	IO	P180
IO	P133	IO	P181
D5_IO	P134	IO	P182
/CS0_IO	P135	IO	P183
IO	P136	IO	P184

PIN_NAME	CB228
IO	P185
VSS	P186
IO	P187
IO	P188
IO	P189
IO	P190
VCC	P191
A4_IO	P192
A5_IO	P193
IO	P194
IO	P195
A21_IO	P196
A20_IO	P197
A6_IO	P198
A7_IO	P199
VSS	P200
VCC	P201
A8_IO	P202
A9_IO	P203
A19_IO	P204
A18_IO	P205
IO	P206
IO	P207
A10_IO	P208
A11_IO	P209
VCC	P210
IO	P211
IO	P212
IO	P213
IO	P214
VSS	P215
IO	P216
10	P217
IO	P218
IO	P219
A12_IO	P220
A13_IO	P221
IO	P222
IO	P223
IO	P224
IO	P225
A14_IO	P226
BUFGS_TL_GCK8_A15_IO	P227
VCC	P228

Ordering Information

PG = Ceramic Pin Grid Array PQ/HQ = Plastic Quad Flat Back BG = Plastic Ball Grid Array