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Overview

Leonardo performs architecture specific synthesis and optimization for all Xilinx devices.
Xilinx Alliance Series performs placement and routing of the synthesized netlist.
ModelSim performs pre-synthesis RTL simulation and post-place and route gate-level
timing simulation with SDF backannotation of timing. This applications note discusses
methodology and optimization settings for Leonardo, Alliance Series and ModelSim when
targeting all Xilinx devices.  The intent of this appnote is not to exhaustively explore all
the different options in the Leonardo, Alliance Series and ModelSim toolsets but to
present a single methodology that works.  For information beyond the scope of this
document, refer to the following web pages:

www.exemplar.com Exemplar Logic
www.model.com Model Technology
www.xilinx.com Xilinx

When targeting all Xilinx devices, Leonardo will map the design into Xilinx lookup tables.
Both Galileo Extreme and Alliance Series offer configuration options that dictate how this
mapping takes place.  In some cases both tools can perform the same functions but, as
we’ll see, with different results.

The Alliance Series allows the creation of VHDL or Verilog of the placed and routed
design along with timing information in a SDF file.  This gate-level timing design can then
be compiled (along with the Xilinx SIMPRIM library) and simulated in ModelSim.

Exemplar, Model Technology & Xilinx Toolflow Overview
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Example Session

Example ModelSim RTL Simulation Session
This section describes the basic steps to compiling and simulating the pre-synthesis RTL
design. It is in this step that the functionality of the design is verified prior to synthesis.

1) Invoke ModelSim

% vsim -or- Programs > Model Tech > ModelSim

2) Set ModelSim to the directory where the RTL design resides.

ModelSim> cd c:\mydesign -or- File > Directory

3) Create a working library to store the compiled RTL design.

ModelSim> vlib work -or- Library > New

4) Compile the RTL design.

ModelSim> vcom bottom.vhd middle.vhd top.vhd

-or- VCOM button

5) Start the ModelSim simulator.

ModelSim> vsim top -or- VSIM button

6) View all the ModelSim debugging windows.

VSIM> view * -or- View > All

7) Wave and list signals of interest in the design.

VSIM> wave /* -- Adds all top level signals to the wave window
VSIM> list /* -- Adds all top level signals to the list window

8) Unless you have a VHDL testbench which stimulates the RTL design, you will need
to force the inputs of the RTL design.

VSIM> force  /clk  0  @  0  ns,  1  @  50 ns  –repeat  100  ns
VSIM> force  /input 0

9) Run the simulation and analyze the information in the ModelSim debugging windows.

VSIM> run –all -or- Run > Run Forever
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Example Leonardo Session
This section provides a detailed example of using Leonardo with the Xilinx Alliance
Series toolset targeting the XC4000XL device family.  All commands are easily
accessible via the toolbar, pulldown menus or the Xilinx specific flow guide.  This
example will demonstrate Leonardo shell commands.

10) Invoke leonardo

% leonardo

LEONARDO{1}

11) Load the Xilinx xi4e library.  This will load cell data only

LEONARDO{1} load_library xi4xl

12) Load the Xilinx Modgen library.  Modgen is a library of handcrafted implementations
for all the inferred design elements.  This includes operators, RAMs and counters.
There are typically multiple architectures for each element.  If this library is not
loaded Leonardo will use a generic Modgen library which will not be able to take
advantage of Xilinx specific cells.

LEONARDO{2} load_modgen xi4e

13) Read in the HDL files. VHDL design files must be listed in their bottom-up order.
Verilog users enjoy "auto-top detection" which means that Leonardo will
automatically detect the top-level module from files listed in any order.

Note: Leonardo uses file suffixes to figure out file formats; VHDL files = .vhd, .vhdl; Verilog files
= .v, .ver; EDIF files = .edn, .edf, .edif.

LEONARDO{3} read bottom.vhd middle.vhd top.vhd

14) Flatten the design.  Hierarchical boundaries prevent or limit important optimizations
from occuring.  Sometimes there are good reasons to preserve hierarchy, i.e., design
size or to separate out speed critical blocks.  Only a minimum of hierarchy should be
kept.  It is recommended to have no more than 50K gates per hierarchical block.

LEONARDO{4} ungroup -all -hierarchy

15) Perform optimization.  Leonardo can perform both area and timing optimization.  In
this example we will be performing optimization to achieve the smallest design.
Additionally, the effort level can be specified.  Quick performs 1 pass and standard
performs 4 passes and will take 4 times longer to complete.

LEONARDO{5} optimize -ta xi4e -area -effort quick

16) Generate area and timing reports.  The optimization runs will display a single area
and worst case timing number.  Reports are only necessary if more information is
required.

LEONARDO{6} report_area

LEONARDO{7} report_delay

17) Generate an EDIF netlist for Alliance Series.  A Netlist pre-processor is built into
Leonardo.  Because the Xilinx XC4000E technology is specified the correct netlist
pre-processing will take place.
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Example Alliance Series Place and Route Session
The Xilinx graphical tools are designed to behave, look, and feel like the XACT 6.0 tools.
So despite the fact that the core technology algorithms have been redesigned, the
graphical tools allow users to run the software in the same way as previous PC versions.
For PC customers, the learning curve should be short.

The Design Manger (DM) is the graphical tool that manages the design files that are
created during design implementation.  The DM also provides push button access to the
following Xilinx tools: Flow Engine, Prom File Formatter, Timing Analyzer, Hardware
Debugger, and JTAG Programmer.

Start the Design Manager from the Windows 95 or NT desktop by executing the
command:

Selecting Start > Programs > Xilinx > Design Manager

From a shell invoke Design Manager by typing:

dsgnmgr
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1)  Create a New Project in Alliance Series. From the Design Manager toolbar, execute
the pulldown menu command

FILE > New Project

Push the "input design" button and navigate to the EDIF file generated by
Leonardo.  This file should have the extension, ".edn".

2) Perform "Implement" on the design. From the pulldown menu, execute the
command,

Design > Implement

� Select a specific Xilinx part
� Push the Select button. In the “Part Selector” dialog and choose the

appropriate member, speed and package combination from those
available for the XC4000XV family

Note: If the Leonardo command, "generate_timespec" is issued after optimization and before
saving the EDIF netlist then clock frequency timing data is included in the EDIF netlist.
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3) Click "OK, but do not hit "Run" on the Implement dialog box

Note: The first step in implementing a design is the selection of a target device.  If a valid
PART has been specified in Leonardo, it will be pre-selected in the Part selection dialog box.
For designs that do not have the PART specified in the netlist (or the Design Manager is unable
to detect its presence), the user must identify the target part using this dialog box.  Users may
define the part in Leonardo by setting the "part" variable, i.e., "set part xc4005xl-3-PC84".
Setting the part variable is a step of convenience and will not effect optimization results

Note: The family
specified in Alliance
Series must match
the family specified
in Leonardo
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Setup Alliance Series to generate VITAL VHDL Simulation Model
1) From the Implement dialog box select the "Options" button.  This will bring

up the "Options" dialog box.

2) In the "Optional Targets" field, check the box labeled, "Produce
Timing Simulation Data"

3) In the "Program Option Templates" field, select the "Edit Template" button
for "Implementation".  This will bring up the "XC4000 Implementation
Options: Default" dialog box.

4) Once up Select the "Interface" tab and Set the simulation data output to
"VHDL"

5) "OK" all the dialog boxes
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Run the "Implement" Command
To launch the implementation process, in the “Implement” dialog, push the
"Run" button.
This will cause the "Flow Engine" graphical interface to appear.  The design is
now processed through a 5 step sequence.

Notice the arrow buttons on the bottom of the window.  These look like CD
Player buttons and provide a similar function.

An "Implement" run can be stopped after any step by hitting the "Stop"
button which appears in the form of a stop sign

Run a step Advance to
next step

Backup to
previous step

Stop
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Review the Alliance Series "Implement" Results
Once the Flow Engine has completed the “Implement” process, the “Implement
Status” dialog box is posted.  To review the processing which has occurred,
review the log file. In the “Implement Status” dialog box, push the “ View
Logfile” button that will bring up the "Report Browser".  Any report can be
quickly viewed with a simple "double click" of the mouse
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Example ModelSim Gate-Level Simulation (with SDF) Session
This section describes the basic steps to compiling and simulating the post-
synthesis/post-place&route gate-level design with SDF timing back annotation.

1. Invoke ModelSim

% vsim -or- Programs > Model Tech > ModelSim

2. Set ModelSim to the directory that contains the gate-level VHDL netlist (from Xilinx
Design Manager).

ModelSim> cd c:\mygatedesign -or- File > Directory

3. Create a working library to store the compiled design.

ModelSim> vlib work -or- Library > New

4. Create a Simprim library to store the compiled Xilinx Simprim packages.

ModelSim> vlib simprim_lib -or- Library > New

Note: A separate library is not required for the Simprim packages.  You could compile them into
your work directory.  If you did this, you would map the simprim library to work instead of
simprim_lib as is shown in the next step.

5. Map the Library name “simprim” to the library simprim_lib that was just created.  This
will allow ModelSim to know where to look when it encounters a “library SIMPRIM;”
statement in the VHDL design.

ModelSim> vmap  simprim  simprim_lib
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6. Compile the Simprim packages into the simprim_lib library.

ModelSim> vcom -work simprim –explicit  \
                              <Xilinx dir>\vhdl\src\simprims\simprim_Vp ackage.vhd

ModelSim> vcom -work simprim –explicit  \
                              <Xilinx dir>\vhdl\src\simprims\simprim_VITAL.vhd

ModelSim> vcom -work simprim –explicit  \
                              <Xilinx
dir>\vhdl\src\simprims\simprim_Vcomponents.vhd

This step is easier using the ModelSim VCOM button which brings up the following
dialog.  Make sure you compile in the proper order (Vpackage, VITAL,
Vcomponents). Note the Target Library setting of simprim instead of work.

7. Compile the VHDL netlist created by the Xilinx Design Manager.

ModelSim> vcom time_sim.vhd -or- VCOM button

Note: The place and routed time_sim.vhd gate-level design uses the IEEE & SIMPRIM VHDL
libraries.  The IEEE library comes pre-built in the ModelSim simulator.  The SIMPRIM library
was built in step 6 above.  If the SIMPRIM libraries were not successfully compiled or if the
library name SIMPRIM was not properly mapped to the SIMPRIM_LIB library above in step 5,
then the ModelSim compiler would issue error messages complaining about “Library simprim
not found.”



��

8. Start the ModelSim simulator applying the sdf information in the file tim_sim.sdf to
the root level of the design ( / ).

ModelSim> vsim  –sdftyp  /=time_sim.sdf  top

Or use the ModelSim VSIM button to start the simulator and apply the SDF info:

9. View all the ModelSim debugging windows.

VSIM> view * -or- View > All

10. Wave and list signals of interest in the design.

VSIM> wave /* -- Adds all top level signals to the wave window
VSIM> list /* -- Adds all top level signals to the list window

11. As was done in the RTL simulation, either use a VHDL testbench to stimulate the
RTL design, or force the inputs directly in ModelSim.

VSIM> force  /clk  0  @  0  ns,  1  @  50 ns  –repeat  100  ns
VSIM> force  /input 0

12. Run the simulation and analyze the information in the ModelSim debugging windows
to verify the results are the same as in the RTL simulation.

VSIM> run –all -or- Run > Run Forever
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Environment Setup

Directory Structure

Although the choice of a directory structure is often an individual or team decision,
Exemplar Logic provides the following recommendation to consider.

Scripts - Contains all constraint and optimization scripts

Reports - Contains all area, timing, constraint and environment reports

Netlists - Contains all optimized, mapped netlists.  Sub-block netlists are saved
in the sub-module directories.  Once the design is assembled, the complete
design netlist would be saved in the top-level netlist directory.

HDL Source - Contains the original VHDL or Verilog source code

Setting Aliases

Leonardo provides the ability to set aliases to rename any Leonardo command.  The
"exemplar.ini" startup file is the most logical place to define commonly used aliases.

Example Alias Command:
LEONARDO{5} alias lp list_design -ports

Leonardo Startup Files

Startup files can be a useful way to pre-configure Leonardo in your day to day
convenience.

Example "exemplar.ini" Startup File
# Load Xilinx Cell and Modgen Libraries
load_library xi4xl
load_modgen xi4e

# Define common aliases
alias lp list_design -ports
alias reportit {report_area; report_delay}

# Set synthesis working directory - Note directory
# slashes are UNIX style - even for Windows users
cd D:/VHDL/uart_design

# Disable Asynchronous Feedback Loops
set delay_break_loops TRUE

Design_name

Block A Block B

Scripts Reports Netlists
HDL

Source Scripts Reports Netlists
HDL

Source

Top Level
Block
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Startup files for UNIX
Place the "exemplar.ini" file in your working directory (the directory that you will be
invoking Leonardo from).  The commands in the file will be automatically executed when
invoking Leonardo.

Startup files for Windows
1. Place the "exemplar.ini" file in a personal or project folder that is not part of the

Exemplar software install directory structure.  All Exemplar software files will be
deleted and replaced with each new software install.

2. Edit the file $EXEMPLAR/data/exemplar.ini directory to add the following line to the
bottom of the file.  You will have to re-add this line after each new software install.

Source d:/<pathname to startup file>/exemplar.ini
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Design Methodology

Design methodology refers to the fundamental process of applying optimizations to an
FPGA design.  Generally speaking there are two approaches, "top-down" design which
refers to applying a single optimization to the top-level of the design, and "bottom-up"
which refers to practice of performing individual optimizations to design sub-blocks  This
section will discuss the merits of both as well as general guidelines to improve the quality
of results you obtain.

Design Partitioning

When partitioning a design into leaf blocks designers should take into account the
following factors

1) Gate counts in leaf blocks should be between 10K and 50K gates.  Optimizations can
be performed on blocks much larger provided the sub-hierarchy falls within this
guideline

2) Limit clocks to 1 per block.  Leonardo supports multiple clocks per block but
constraints and timing reports become more complex

3) Group similar logic together, i.e., state machines, data path logic, decoder logic,
ROMs.  Pay close attention to blocks that may lend themselves to special area or
delay optimizations.  For example, if you know a particular block is going to contain
the critical path, eliminate any non-critical logic from that block.

4) Place state machines into separate blocks of hierarchy.  This will help speed
optimization and provide greater control over encoding

5) Separate timing critical blocks from non-timing critical blocks.  Keep in mind that
Leonardo performs area and timing optimizations separately.  By separating timing
critical logic into one block it may be possible to perform aggressive area
optimizations on a greater percentage of the design thus creating a smaller circuit
that meets timing.

Small

Fast

Fast

Small

Fast Critical Path
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Asynchronous Feedback Loops

When a timing loop occurs, timing analysis can become extremely slow due to the high iteration limit
in Leonardo.  Each loop must be evaluated 5000 times before Leonardo concludes that a loop exists
and moves on.  It is recommended that the "delay_break_loops" variable be redefined to "TRUE" at
the start of each session.  This will cause Loops will be automatically broken and a warning message
will be written to the timing report file.

Example Loop Break Command:
LEONARDO{5} set delay_break_loops TRUE

Netlist Unfolding

Leonardo, by default, preserves hierarchy in a design.  In order to insure the fastest
possible run times the netlist is "folded" which means that all common subblocks
reference a single view or "netlist".  Leonardo only has to optimize this netlist once.  In
cases where the user wishes to perform two different optimizations on two different
instances of common sub-blocks, the netlist must be unfolded.  For example, one block
may be optimized for area and a second for delay

Example Netlist Unfolding Command:
LEONARDO{5} unfold A

Asynchronous Feedback Loop

Top

Instance
A

Instance
A

Instance
A

View
A

Top

Instance
A

Instance
A

Instance
A

View
A1

View
A2

View
A3

Folded Hierarchical Netlist Unfolded Hierarchical Netlist

Common View
Unique Views
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Top-down Methodology

Block Area Considerations
 It is recommended that individual blocks of hierarchy do not exceed 50K gates.
Flattening sub-blocks to achieve this block size will generally result in optimal results.
There is, however, a trade-off that must be considered.  Preserving hierarchy of smaller
sub-blocks will allow optimizations to complete much faster, but flattening will generally
give better results.

Initial Methodology
1) Read in the entire design and perform an area optimization with hierarchy

preserved

2) Generate area and timing reports.  If both are acceptable - you’re done!

Area Critical Designs
1) If a smaller design is desired, perform an ungroup -all -hierarchy on blocks up

to 50K gates.

2) Then re-optimize the design for area using the standard effort level. Use the
command optimize -ta xi4e -area -effort standard.  This could take a while on
large designs but will generally provide the best results.

Top

A B

W X Y Z

Optimizations
performed at top
levelDissolve all

Hierarchy
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Timing Critical Designs
The goal with timing critical designs is to generate the smallest circuit possible that meets
timing.  To achieve this we want to limit the use of delay and timing optimization to only
the critical blocks.

Procedure
1) After initial, hierarchical optimization, identify critical paths from the timing report

2) Use the group command to combine the timing critical blocks into one hierarchical
block and the non-timing critical blocks into a second hierarchical block.

LEONARDO{8} Group w x -inst_name timing_critical

LEONARDO{9} Group y z -inst_name area_critical

3) Use the ungroup command to dissolve all hierarchy beneath the Timing_critical
instance and the area_critical instance.  Note that the top-level hierarchy is
preserved.

LEONARDO{10} present_design work.timing_critical

LEONARDO{11} ungroup -all -hierarchy

4) Perform a delay optimization of this sub-block.  Be sure to use the "-macro" switch,
this will prevent I/O buffers from being placed in the ports of the sub-blocks

LEONARDO{12} optimize -ta xi4e -delay -effort standard -macro

5) Repeat the same process with the area critical block except perform an area
optimization

LEONARDO{13} set present_design work.area_critical

LEONARDO{14} ungroup -all -hierarchy

LEONARDO{15} optimize -ta xi4xv -area -effort standard -macro

LEONARDO{16} set present_design work.top

6) Save the netlist and you’re done

LEONARDO{17} auto_write -format edif top.edif

Top

W

ZY

X Critical Path

ì Dissolve Hierarchy
ì Perform delay

optimization

Timing Critical

Area Critical
ì Dissolve Hierarchy
ì Perform Area Optimization
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Bottom-up Methodology

Generally bottom-up design methodologies are employed when doing team design or for
extremely large designs.  Bottom-up design refers to the technique of performing
optimizations on individual sub-blocks of a design then later "stitching" the design
together.

Register Placement within Blocks
There are two "barriers" that constrain optimization, hierarchical boundaries and registers.
When designing hierarchically, it is recommended that registers be placed at either the
front or back of the hierarchical boundaries (not both!), which essentially combines these
two barriers into one single barrier.  This will minimize the impact to overall results when
performing bottom-up optimizations.  If this design practice is followed then preserving
hierarchy in a design will have no impact on optimization results and allow faster CPU run
times.

Constraining Sub-blocks for Timing
In the ideal world, registers would be placed at hierarchical boundaries, but the world is
not ideal.  Often random logic must be placed at the hierarchical boundaries forcing the
designer to constrain the logic appropriately.  Unless more detailed information about the
sub-block timing is known, it is recommended that constraints equal to 1/2 the clock
period be applied to the boundary.  If both sides meet timing, then when the blocks are
combined timing will be met

Delay = 1 Clock

Registers
placed at
the end of
a block

Block A Block B

1 clock 1/2 clock 1/2 clock 1 clock
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Constraining sub-block Pins for Loading
The nature of Xilinx 4000 device routing channels prevents the need to specify loading
and drive constraints on sub-block pins.

Saving Intermediate Netlists
In Leonardo, two commands exist for saving EDIF netlists,

1. write -format edif <filename.edif>

2. auto_write -format edif <filename.edif>

The "auto_write" command invokes a technology specific netlist post-processor that
performs several modifications required for seamless integration into the Xilinx Alliance
Series place and route environment.  These changes may not be compatible with
Leonardo internal netlist formats and libraries.  For this reason, ”auto_write" should not
be used for saving intermediate netlists. Use "write -format edif" to save all intermediate
netlists.  Use "auto_write" when netlisting to the Alliance Series place and route
environment only.

Note: All "write" commands issued from the toolbar, flow diagram and pulldown menus will
issue an "auto_write" command by default.  To save intermediate netlists from the user
interface, deselect the "do automatic processing for target technology" option

LEONARDO{5} auto_write -format edif top.edif  -- saves netlist for place and route

LEONARDO{6} write -format edif top.edif -- saves netlist in original format

Design Stitching
Design stitching refers to the process of building up the entire design after bottom-up
optimizations have been performed on individual sub-blocks.  Leonardo has the ability to
automatically connect sub-blocks with top-level structural netlists - provided all instance
names, port names and view names match.  The Leonardo design browser can be a
useful tool when working through design stitching issues.
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Designs should be stitched "bottom-up" meaning that all lower level blocks, that have
completed optimization, should be read into Leonardo first.  The next step is to
synthesize the top-level structural VHDL or Verilog file thus connect the sub-blocks
together.

LEONARDO {5} read -format edif A.edif B.edif C.edif

LEONARDO {6} read -format vhdl top.vhdl

Note: View names between the sub-blocks and the instances contained within the top-level
structural code must match exactly for bottom-up design stitching to be successful.  Generally
problems are easiest to resolve by modifying EDIF, VHDL or Verilog source.  Alternatively the
Leonardo "add_rename_rule" command may be used.  Refer to the Leonardo Command
Reference Manual" for more information.

Final Optimization
Once a design has been stitched together bottom-up the user should generate final area
and timing reports.  If the design meets specification then 1 final optimization run is
required to insert the GSR reset circuitry and add the chip I/O buffers.  To perform final
optimizations run the following command.

LEONARDO{5} optimize -ta xi4xv -chip -area

Note:  Leonardo automatically instantiates "ibufs", "obufs", "bufgp’s" and "bufgs" buffers.  A
maximum of 4 bufgp’s and bufgs’s will be instantiated on the input ports with the highest
capacitance.  The "optimize" command must be run with the "-chip" switch to enable I/O buffer
insertion
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Synthesizing Designs

State Machine Synthesis

Leonardo encodes State Machines during the synthesis process. Once a design has been
"encoded" during synthesis it cannot be re-encoded later in optimization.  A particular
VHDL or Verilog coding style must be followed to allow Leonardo to identify the state
machine. Refer to the manual, “HDL Synthesis Guide for Leonardo” for additional
information.

Note: Although not required, it is recommended that state machines are isolated into separate
hierarchical blocks.  This will speed optimization performance and allow easy modifications to
state machine encoding.

Supported State Machine Styles
Binary - Will generate state machines with the fewest possible flip-flops. Binary
state machines are useful for area critical designs when timing is not a concern.

Gray - Will generate state machines where only one flip-flop changes during
each transition. Gray encoded state machines tend to be glitchless.

Random - Will generate state machines using random state encoding. Random
state machine encoding should only be used when all other implementations are
not achieving the desired results. It is basically a shot in the dark and not
recommended.

One Hot - Will generate state machines containing one flip-flop for each state.
One hot state machines provide the best performance and shortest clock to out
delays. One-hot implementations are larger than binary but are the preferred
choice for Xilinx FPGA architectures.  This is because these devices are rich in
Flip-flops.

Note: The encoding default is onehot but can be changed via the set encoding
command or from the GUI.
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Setting State Machine Encoding in Leonardo
There are two ways to instruct Leonardo to perform a particular state machine encoding

1) VHDL Attributes or Verilog Pragmas

2) Using the Leonardo command "set encoding"

Setting VHDL Attributes:
To set the encoding for a particular state machine insert the following statements
into your code.

-- Declare the type_encoding_style attribute
type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM);
attribute TYPE_ENCODING_STYLE: ONEHOT;

-- Declare your state machine enumeration type
type my_state_type is (s0,s1,s2,s3,s4);

-- Set the type_encoding_style of the state type
attribute TYPE_ENCODING_STYLE of my_state_type is ONEHOT;

Setting Verilog Pragmas:
To set the encoding for a state machine in Verilog insert the following comment
text into your Verilog Model above the state machine model

parameter [3:0] // pragma enum state_parameters onehot
idle = 4’b0001,
halt = 4’b0010,
run = 4’b0100,
stop = 4’b1000;
reg[3:0] /*pragma enum state_parameters */state;

Note: In the first line of the above code example, the state machine encoding specified is
"onehot".  This is an optional specification that could also be set to "binary", "gray" and
"random".  If the "enum" pragma is specified but not set to a partito indicate FSM
encoding.

Note: VHDL Attributes and Verilog pragmas will override the encoding variable

Setting State Machine Encoding using the "Encoding" Variable
Alternatively, the encoding variable may be used to set state machine
encoding.  Once this variable is set all state machines synthesized from that
point on will employ the specified encoding until another “set encoding”
command issued.  Set this variable prior to reading in VHDL or Verilog code

 VHDL Example,
LEONARDO{5} set encoding onehot

LEONARDO{6} read uart_control_sm.vhdl

Verilog Example,
LEONARDO{5} set encoding binary

LEONARDO{6} read -format verilog control.v

Table 3. Arguments to the Encoding variable
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Argument Description
binary Sets state machine encoding to binary
onehot Sets state machine encoding to onehot
gray Sets state machine encoding to gray
random Sets state machine encoding

Reading Designs

Design Input Commands
Leonardo provides two methods for reading in designs.

The "Read" Command
The read command analyzes and elaborates the design in one step.  Generally
speaking this is the most useful command.  Read can be used to input structural
or RTL designs in VHDL, Verilog, EDIF and XNF.  Read supports both single file
and multi-file designs.  Read cannot be used for RTL VHDL designs that contain
user defined packages or if the user wishes to re-define generics during
synthesis.

Arguments to the Read Command

Argument Description
-format Edif | vhdl | verilog | edif | sdf | xnf
-dont_elaborate Only analyze, don’t elaborate
-design Specify the top-level designname to be read
-work Specify library where read design is to be stored

Analyze and Elaborate
Must be used when reading in VHDL design with user defined packages.
Analyze and Elaborate is never required for Verilog synthesis.  Must be used
when re-defining VHDL generics during synthesis.

Arguments to the Analyze Command

Argument Description
-format Edif | vhdl | verilog
-work Specify library where read design is to be

Arguments to the Elaborate Command

Argument Description
-architecture Root architecture name
-single_level Only elaborate the top-level of the design
-generics Redefine any specified generic
-parameters Redefine root level generics
-work Specify library where read design is to be stored
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VHDL Synthesis
Follow the procedure outlined below when performing VHDL synthesis

1) Files must be read in bottom-up order, i.e., lower level blocks must be read
before the top level blocks

2) If no user defined VHDL packages were used in the design, all files may be read
using the read command.

LEONARDO{5} read bottom.vhd middle.vhdl top.vhdl

3) If the design contains user defined packages then use the analyze / elaborate
commands.  Analyze the packages first, then the VHDL code in a bottom-up
order

LEONARDO{5} analyze my_package.vhd

LEONARDO{6} analyze bottom.vhd

LEONARDO{7} analyze middle.vhd

LEONARDO{8} analyze top.vhd

LEONARDO{9} elaborate top -generic data_width = 16

Verilog Synthesis
Verilog designs can be read into Leonardo in any order.  Leonardo supports "auto-top
detection" which will automatically locate the top-level module.

LEONARDO{5} read -format bottom.v top.v middle.v

Synthesizing Operators - ModGen vs LogiBlox

The Exemplar - Xilinx design methodology offers the user two distinct methods to create
logic for operators.  The easiest method is to simply infer an operator in Leonardo by
using an arithmetic or logic operator symbol in VHDL or Verilog.

Sum <= a + b;

In the above example Modgen will recognize the "+" and build an optimized circuit for
Xilinx

Alternatively, users may choose to instantiate a Xilinx LogiBlox cell directly into their HDL
code.  This cell will be passed to the Alliance Series design environment in the EDIF
netlist generated from Leonardo as an unimplemented black-box.  In turn, Alliance Series
will generate the optimized logic for the cell.

So which one will generate the better adder?  The answer is both!  For operators
supported by ModGen, Leonardo will generate as good or better an implementation than
Alliance Series can for LogiBlox.  Additionally, since Leonardo is building the circuit from
primitive gates, accurate timing and area reports can be generated for the design.  For
these reasons plus the added advantage of maintaining portable HDL code it is
recommended users limit the use of LogiBlox cells in a design to critical blocks that have
no ModGen equivalent circuit.
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Synthesizing Designs with Black Boxes

Both the Xilinx IP flow and the instantiated LogiBlox flow will insert black-box elements
into the netlist.  Leonardo can handle this with one exception.  Black-boxes will prevent
the automatic GSR insertion from occurring.  In this case assign an attribute to the reset
net to force GSR insertion as follows

Set attribute insert_gsr -net work.top.structural.reset

Resource Sharing

Resource sharing is an optimization technique that seeks to identify sharable operators.
If successful, the optimization can replace several operators, such as adders or
multipliers, with a single operator and a mux.  Although this can provide significant area
gains, often it is at the expense of timing.  Issuing a "pre_optimize" command without
setting the "-common_logic" switch prior to performing "optimize" will disable resource
sharing.  Please note that this step is not normally required.

LEONARDO{6} pre_optimize .work.pl_counter.rtl -unused_logic -extract
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Handling Special Cells

RAMs

Inference
Leonardo has the ability to infer single port, synchronous and asynchronous RAMs from
RTL code.  When a RAM is modeled in the form of a 2-dimentional array, Leonardo will
recognize the function and insert a blackbox into the netlist with attached properties.  The
Xilinx Alliance Series design environment will recognize the properties and insert the
appropriate RAM into the design.

VHDL Example
I0 : process (we,address,mem,data_in)
      begin
        if (we = ’1’) then
          mem(conv_integer(address)) <= data_in ;
        end if ;
        data_out <= mem(conv_integer(address)) ;
    end process ;

Timing
In the current version of Leonardo there is no method to apply timing arcs or timing
constraints to the RAM model.  This prevents Leonardo from performing timing analysis
and timing optimization on logic directly connected to RAMs which often includes the
address to dataout path of the ram.

It is recommended that users perform timing analysis in the Alliance Series environment
to detect timing problems through RAM paths.  If a critical path exits and further
optimization is required on the circuit follow the following procedure:

1) Re-optimize the circuit with the "-delay" and the "-effort standard" options

2) Place critical logic into a separate hierarchical block.  This could be done with the
group command or may require code re-write.  Leonardo supports the VHDL
block statements for hierarchy, which may provide a simple method to achieve
this.

3) Set timing constraints and perform optimizations as described in the timing
critical optimization strategy section of this document.
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All Timing
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GSR Resets

GSR, when asserted, set / resets all the flip-flops in the chip based on the initialization
state of the FF (s or r).  The GSR uses dedicated routing channels and can be made
implicit in Leonardo.  For that reason it is the recommended method for initializing design
flipflops.

The following procedure will correctly insert reset circuitry:

1) Set the variable "infer_gsr" to TRUE.  This will enable the GSR inference in
Leonardo.

LEONARDO{5} set infer_gsr true

2) In your VHDL or Verilog code, implement an active high, asynchronous reset
scheme

3) Perform a top-level optimization with the "-chip" option

LEONARDO{6} optimize -ta xi4e -area -chip -effort quick

DWANDS

The Xilinx XC4000 and XC4000E families have dedicated decoder circuitry at each edge
of each device.  Designs that use address decoders 16 bits or greater, can take
advantage of this logic to improve chip area and speed.  Leonardo does not infer this
logic from RTL code, users are required to directly instantiate decoder cells (DWAND)
into their HDL models.

Note When a DWAND cell is used in the design that design will no longer be technology
independent.  A code re-write would be required to retarget the model to another technology.
For that reason they should be used only when necessary.

Procedure for Using DWANDs
1) Instantiate the DWAND’s primitive cells into the VHDL or Verilog source.  Refer

to the Leonardo Synthesis and Technology guide for a code example

2) Load the xi4 or xi4e technology into Leonardo prior to reading the RTL code.
Because DWANDs are technology primitive cells, the library must be loaded for
vendor cell instantiation to work properly.

Reset_H Startup Block

R

R
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Registers

Dedicated GSR
Routing Channel

Startup Block
Automatically
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Top Level Design
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Setting Constraints

Introduction:

Setting constraints within Leonardo is easy and straightforward. Constraints can be as
simple as specifying the target design frequency to as powerful as indicating multi-cycle
paths between flops. Timing constraints indicate desired target arrival and required times
used for setup and hold analysis. Constraints should be applied after the design has been
read into Leonardo and before optimization. Setting constraints is simple. Leonardo
assumes intuitive defaults. At a minimum, users should define the clock, input port arrival
times, and output port required times.

Note: Designers should not over-constrain the design. Doing so may have several undesirable
effects such as increasing the design size and long optimization run times.

Clocks

Maximum Frequency Constraint:
The easiest way to constrain a design is to specify a global frequency constraint called
"maxdly".  For example, if you wish to set the maximum design frequency to 20Mhz.
Then the flop to flop, pad to pad, pad to flop and flop to pad constraints = 1000/20 = 50ns
and the Leonardo command would be:

LEONARDO{6} set maxdly  50

This will constrain all combinational paths throughout the design to 50ns.

Note1: It is not recommended to set both maxdly and clocks.  The user should choose one
method of applying constraints

Note2: maxdly only constraints the combinatorial logic to, from and between registers.  Any
library specified setup time for flops is not considered.  Therefore, to truly run at target
frequency, you should margin maxdly by worst case setup.  For example, if he worst case flop
setup is 2.5 ns, set maxdly to 47.5 ns

Clock Constraints:
The "maxdly" command constrains all combinatorial paths in the design to a specific
frequency including flop to flop and pad to pad.  Setting a clock constraint will only
constrain the flop to flop logic. Clocks define timing to and from registers. Without clocks
defined, all registers are assumed unconstrained. Therefore all combinational logic
between registers is ignored during timing optimization. When you define a clock, you
have effectively constrained the combinational logic between all registers to one clock
period. Consider the following circuit.



��

The logic between FF1 and FF2 is constrained to one clock period. If clock period is
50ns, then the Logic Cloud B has roughly 50ns – setup of FF2 to meet timing.

Leonardo describes clocks by using three basic commands:

clock_cycle <clock_period> <primary_input_port>

pulse_width <clock_pulse_width> <primary_input_port>

clock_offset <clock_offset> <primary_input_port>

By default, the clock network is assumed to be ideal or in other words, it is assumed to
have no delay. So the clock arrives the same time between all flops. To change clock
network to propagated delay, set propagate_clock_delay variable to true.

Example of clock constraints:

In the first example, clock period is defined as 40 ns and attached to clock port “clk”.
The default duty cycle is 50% or in this case a clock pulse width of 20ns. The second
example shows how to change the pulse width to 15ns. The final example
demonstrates how one can offset the clock. This could be useful for specifying a
clock skew relative to zero.
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Multiple Synchronous Clocks per Block
The Leonardo 4.2 timing analyzer supports only 1 clock per block for exhaustive timing
analysis. Designs with multiple synchronous or asynchronous clocks can be analyzed
however, a technique involving setting clock offsets must be employed.  To demonstrate
how this works consider the following example where Block A and Block B are each
driven by different, synchronous clocks.

Procedure for setting multiple, synchronous clock constraints
1) Manually extrapolate the 2 clocks to determine the minimum time between

active edges.  This may not happen in the first clock cycle - it all depends on
how the active edges come together.  In the above example the minimum
time is 5 ns.
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2) Determine what the delta between active edges is during the first clock
cycle.  If the above example the delta is 10 ns.

3) Subtract the minimum active edge delta from the 1st cycle active edge delta.
This number will become the clock offset for the clock of signal origin.  Set
the appropriate clock offset

LEONARDO{5} clock_offset 5 clock_b

4) Now the tricky part!  Setting the clock offset will alter the input arrival timing.
If you had set an input arrival time of 6 for example, the clock offset has
effectively turned that number into (6 + offset).  You will have to adjust the
input arrival time to correct for the offset adding the offset to the input arrival.

Multiple Asynchronous Clocks
Leonardo has no way of analyzing timing for signals that cross between two or more
asynchronous clock domains.  This is due to the fact that the clocks themselves have no
defined relationship.  The correct way to handle this is to completely ignore all timing
between signals that cross between asynchronous clock boundaries.  This can be
accomplished by simply assigning a clock offset to the clock of signal origin equal to 2
clock periods or greater.  To disable timing between clock boundaries in our example
above issue the following command

LEONARDO{6} clock_offset 30 clock_b

Any input arrival times would need to be increased by the amount of the clock offset

Input Arrival Time

The input arrival time specifies the maximum delay to the input port through external
logic to the synthesized design.

arrival_time <delay_value> <input_port_list>
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A clock must be defined prior to specifying an input arrival time.  In this case, data arrives
roughly 3ns after the rising edge of clk. Therefore, to accurately constrain the input port
“data”, you should apply the following constraint:

LEONARDO{5} arrival_time 3 { data }

If the clock period were defined as 10ns, then the setup of FF2 added to the
combinatorial delay of logic cloud A would need to be 7ns to meet timing.

Note: All input arrival times start at time zero and cannot be specified relative to a particular
clock edge.  To adjust for a particular clock edge, users need to add the clock offset to the
arrival time.

Output Required Times:

The output required time specifies the data required time on output ports. Time is always
with respect to time zero. In other words, output required time cannot be specified relative
to a particular clock edge

LEONARDO{5} required_time <required_value> <output_port_list>

When specifying required times all constraints are assumed to begin at time zero.  This
eliminates the need to specify a constraint relative to a particular clock edges.  The
specified required time will become the time constraint on the output logic cloud show as
logic cloud A in the above example

LEONARDO{5} required_time 7 { d1 }
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Leonardo versions 4.2 and later offer the ability to constrain multi-cycle paths

To appropriately constrain this design above you should apply the following constraints:

LEONARDO{6} set_multicycle_path  -from { FF1 }  -to { FF2 }  -value 2

This constraint has the effect of constraining logic cloud B to 2 clock periods minus the
setup of FF2.

Note: Exercise caution while using multi-cycle constraints since they will slow timing analysis. A
few multi-cycle constraints will have little effect, however, many will slow timing optimization
dramatically.

False Path Constraints:

False paths are paths in a design that the user needs Leonardo to ignore for timing
optimization. Consider the following design:

By taking advantage of the multi-cycle command, users can specify the path from FF2 to
FF3 as false:

LEONARDO{5} Set_multicycle_path  -value 1000  -from { FF2 }  -to { FF3 }
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Essentially, the path from FF2 to FF3 has been constrained to a large number. Since it is
unlikely that the logic cloud B would ever take more than 1000 cycles, this path has
effectively been eliminated from timing optimization and timing analysis.

Note: As with multi-cycle, exercise caution when specifying too many false paths since it will
increase timing analysis run times.

Constraining Purely Combinatorial Designs

A purely combinatorial design has no clocks.  Users can constrain these blocks by simply
specifying the maxdly constraint.  In this example, maxdly is being used to constrain
logic beween two ports.

Example:

LEONARDO{5} set maxdly 9

Note: The command will constrain any combination path including flop to flop, pad to flop, flop
to pad and pad to pad.

Constraining Mixed Synchronous and Asynchronous Designs

Some blocks have both synchronous and purely combinatorial paths through the circuit.
A mealy state machine is a good example of this.  To constrain these cases we will apply
synchronous constraints to the ports of the synchronous paths and asynchronous
constraints to the ports of the asynchronous paths.
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Procedure for Setting Constraints on Mixed Designs
1) Define the clock constraints

LEONARDO{5} clock_cycle 16 clk

2) Apply an input arrival constraint assuming the design is purely sequential.

LEONARDO{6} arrival_time 3 A

3) Apply an output-required time to the sequential output ports only. Set the
constraints for a sequential circuit ignoring the combinatorial paths for now

LEONARDO{7} required_time 4 B

4) Apply an output required time to the combinatorial output paths. The maximum
delay constraint applied to these paths will be the window created by the
difference between the input arrival time and the output-required time. In this
example we set an input arrival of 3 and we want to have a maximum delay
through the combinatorial path of 7ns therefore the output required time must be
10ns (10ns - 3ns = 7ns).

LEONARDO{8} required_time 10 C
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Optimization Strategy
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Leonardo can perform two types of optimizations on a design - area and delay.  Due to
the routing dominated nature of FPGAs (almost 80% of the path delay is due to routing
and not cell delays) often the smallest design is the fastest.  For this reason, it is
recommended that users perform area optimization first - take the design through
Alliance Series place and route, identify timing critical areas and focus on just those
areas.

Table 4. Arguments to the Optimize command

Argument Description
-target Specify the target technology for this design
-single_level Perform optimization only on top level of hierarchy
-effort Optimization effort : remap | quick | standard
-nopass <list> Explicitly avoid an optimization pass
-chip | -macro "-chip" will insert i/o buffers, for top; "-macro" will not, for sub-blocks
-pass <list> Explicitly run a pass
-area | -delay Optimize to obtain minimum delay or area (default)

Area Optimization Strategy

If a design comfortably meets timing and you’re trying to achieve the smallest possible
circuit then follow the procedure outlined below

1) Flatten hierarchical blocks up to 50K gate "chunks".  Use the "present_design"
and "ungroup -all -hierarchy" commands to do this.

2) Set the area_weight variable to 1 and the delay_weight variable to 0.  This will
redefine the optimization cost function to favor area over delay.

LEONARDO{5} set area_weight 1

LEONARDO{6} set delay_weight 0

3) Perform a standard effort area optimization

LEONARDO{7} optimize -ta xi4e -area -effort standard

Timing Critical Optimization Strategy

Generally designs have a combination of critical blocks and non-critical blocks.  The goal
of timing optimization is to create the smallest design possible that meets timing.
Leonardo has 2 timing optimization commands; optimize -delay which creates fast
structures during the mapping process and runs algorithms designed to reduce levels of
logic and optimize_timing which performs full constraint-based timing optimization.

1) Perform an area optimization with quick effort and hierarchy preserved.  We will
use the results of this optimization to identify our critical blocks

LEONARDO{8} optimize -ta xi4e -area -effort quick

2) Generate a timing report and use this report to identify the timing critical blocks.

3) Use the "group" command to combine all critical blocks into 1 block.  Once
combined, use the "present_design" and "ungroup -all -hierarchy"
commands to dissolve hierarchy within that block

LEONARDO{9} group a b -inst_name ab_instance

LEONARDO{9} present_design work.ab_instance

LEONARDO{10} ungroup -all -hierarchy
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4) Perform a delay optimization with standard effort on the timing critical sub block
and generate a timing report

5) If timing is still not met, try performing a second standard effort delay
optimization.  Continue until the results no longer change.

6) If timing is still not met, set timing constraints and perform an optimize_timing
command.  This invokes a second optimization engine that performs constraint
based timing optimization.

7) Once timing has been met in the timing critical sub-block, set the top_level
instance to be the present design.  Verify that the top-level design meets timing.
If not, repeat the above process on other timing critical blocks.  If all blocks meet
timing than continue

8) Group all non-critical blocks into a single level of hierarchy and follow the
procedure outlined in "Area Critical Optimization".

Hint: The optimize_timing command has a -force option which will cause Leonardo to perform a
static timing analysis, subtract 20% from the critical path, set constraints then perform timing
optimization.  If an unconstrained timing analysis selects the correct critical path, this is the
easiest way to perform timing optimization.

Note:  If you wish to perform timing optimization on a hierarchical design, the -force option is
the only way to do this today.  Normal timing optimization does not support hierarchical designs
in the current version of Leonardo.

Table 5. Arguments to the Optimize_timing command

Argument Description
-through <list> Specify explicit list of end points to optimize
-single_level Perform optimization only on top level of hierarchy
-force Force timing constraints on longest path

Example:
LEONARDO{6} optimize_timing -through data_out_port
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Xilinx Optimization

Decompose LUTs

EDIF netlists written from Leonardo to Alliance Series contain mapped LUTs.  Users may
decompose LUTs by issuing the command, "decompose_luts".

Note: Experience has shown that decomposing LUTs generally degrades area and
performance.  For this reason It is recommended that users do not decompose LUTs

Generate Timespecs

Users must issue the command generate_timespec for Leonardo to convert timing
constraint data from Leonardo into Xilinx timespec information.  This information is
included within the generated EDIF netlist as properties.  Only clock information is passed
to Alliance Series at this time.  Any input arrival and output required time constraints are
ignored.  Users may wish to augment the timespec information from Leonardo with an
additional Xilinx UCF file.

Note: It is recommended that users, who wish to constrain register performance, do so through
Leonardo generated timespec information.  This will insure that register names match timespec
constraints every time.

Note: False path and multi-cycle path constraints are not passed to place and route through
timespec information generated by Leonardo.

Pack CLBs

Leonardo automatically packs CLBs when generating area reports.  Users may wish to
preserve this packing and impose it on the Alliance Series placement software by issuing
the command "pack_clbs".

Note: Experience has shown that Xilinx does a better job of CLB packing than Exemplar.  For
this reason, it is recommended that users do not pack CLBs in Leonardo.

Assigning Pin Numbers

Device pin assignments can be made 3 ways

1) Use of the VHDL "attribute" pin_number

2) Use of the "set_attribute" command in Leonardo

LEONARDO{5} set_attribute -port enable -name pin_number -value P10

3) In a Xilinx UCF file

It is recommended option #2 be used. VHDL or Verilog code should remain as
technology independent as possible to facilitate design re-use.  Although the command is
verbose it can easily be scripted.
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Place and Route with Alliance Series

Here are some suggestions for compilation flows and strategies when implementing large
designs in Alliance Series so that you can avoid excessively long runtimes while still
realizing the bulk of a design’s performance potential.

Some strategies that can be used to more efficiently place and route designs are:

1) Non Timing-Driven Placement and Routing, + Delay-based Cleanup Routing
Pass

2) Non Timing-Driven Placement + "Restricted" Timing Driven Routing

3) Timing Driven Routing, Timing Driven Placement + "Restricted" Timing Driven
Routing

These strategies are ordered to progress from quickest runtime (good for initial design
evaluation and non-timing critical designs) towards better design performance results (for
those designs with timespecs  that are increasingly tougher to meet.)
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Getting Quick Results

Non-Timing Driven Placement & Routing + Delay-based Cleanup Pass. This strategy
will typically produce circuit performance that is anywhere from 55% to 75% of that which
could be ultimately obtained with a "full-out" timing-driven run, with a runtime that is
usually many times faster.  To run PAR in this manner from the command line, use:

     par -x -d 1 <design.ncd> <design_r.ncd>

When running non-timing driven PAR, it is important to also run at least one pass of a
cleanup router - preferably the Delay-Based cleanup router (hence the –d 1 in the above
command line). This will work to minimize route delays.

From the Flow Engine GUI, the same thing can be accomplished by de-selecting the
"Use Timing Constraints During Place and Route" check-box, and setting "Run 1 Delay-
based Cleanup Passes" under the Place and Route tab of the Implementation Options
dialog box.

The Balance between Run Times and Circuit Performance

Non-Timing Driven Placement + "Restricted" Timing Driven Routing This strategy
will typically produce a result that has significantly better circuit performance than a fully
non-timing driven run (Strategy 1), but have faster runtime than a fully timing driven run.
To do non-timing driven placement, use the command line:

     par -x -r <design.ncd> <design_r.ncd>

From the GUI, the same thing can be accomplished by specifying the par -r option from
template customization form in the Design Manager (use  Utilities -> Template
Manager -> Customize to access this form), and de-selecting the "Use Timing
Constraints During Place and Route" check-box  in the PAR implementation options
dialog box.

The next step would be to run a re-entrant routing phase in timing-driven mode to route
the design. Testing has shown that 75% to 85% of a given design’s ultimate circuit
performance is achieved relatively early in the PAR routing process. Therefore it is
recommended that you initially limit the number of router iterations to three or four
passes.

To run the timing-driven re-entrant routing phase with one delay-based cleanup pass, use
the command line:

     par -k -i 3 -d 1  <design_r.ncd> <design_r.ncd>

From the Flow Engine GUI select the Setup -> Advanced pulldown menus. Select the
"Allow Re-entrant Routing" check-box, set "Run 3 Re-entrant Route Passes", set
"Run 1 Delay-based Cleanup Passes", and check the box labeled "Use Timespecs
During Re-entrant Place and Route".

Getting the Fastest Circuits

Timing Driven Placement + "Restricted" Routing. By invoking the timing analysis
engine during the placement phase, a better result will be produced than would be
obtained using timing-driven routing alone. Again, we limit the runtime by explicitly setting
number of attempted router iterations to a relatively low count (three or four.)  For timing
driven placement, with a limited number of router iterations and one delay-based cleanup
pass, the command line usage is:

     par -i 3 –d 1  <design.ncd> <design_r.ncd> <design.pcf>
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From the Flow Engine GUI, the same thing can be accomplished by selecting the "Use
Timing Constraints during Place and Route" check-box and setting "Run 3 Router
Iterations" under the Place and Route tab of the Implementation Options dialog box.

As with the earlier strategies, further re-entrant routing passes can be used to obtain
incremental gains in performance.

Tips for Obtaining Faster Circuits
The above strategies are geared towards minimizing compilation runtimes, while still
achieving the bulk of a design’s performance potential. If an incremental gain (e.g. 3% to
10%) in circuit performance is required after initially using one of the above strategies,
one following PAR usage techniques can be used.

1) Run one or two more delay-based cleanup passes if running non-timing driven
PAR (Strategy 1)

2) Run more iterations of the re-entrant route process for the timing-driven runs
(Strategies 2, 3).

3)  Use higher effort levels in placement and routing

Reduce Levels of Logic:
Often times it is best to change the source design when significant gains in circuit
performance are required. Reducing the numbers of levels of logic between synchronous
elements will most effectively increase circuit performance - as well as often resulting in a
faster runtimes.  Performing more aggressive timing optimizations with Leonardo can
often remove the necessary levels of logic.  Refer the section titled, "Timing critical
optimization strategy"

Mulit-Pass Place and Route
As always, the Multi-Pass Place & Route (MPPR) capability can be used with any of the
above three strategies if still more performance is required. Testing has shown 15% to
20% differences in ultimate performance using different placement seeds/cost tables.
Typically, running MPPR is a task that’s best suited for overnight or weekend runs.

Understand both Design and Device.
Though the XL family is quite good at maintaining circuit performance throughout the
entire device range, the large (e.g. 4085XL) devices, because they are bigger and have
correspondingly longer routing segments, can exhibit longer delays than would be found
in a smaller (e.g. 4020XL) device.

With the large FPGA devices, it is much more important to take advantage of running
pre-PAR timing analysis runs

Routing vs. Block Delay Estimation

Many designers have traditionally used the "50/50" measure as a rough rule of thumb to
evaluate pre-route timing reports. Here, the designer will allocate roughly 50% of the
timing budget to the logic blocks (LUTs, TBUFs, IOBs, etc) and the rule was that the
remaining 50% should be sufficient to account for general routing delays. Of course, this
is only a rough estimate; carry chains have much faster routing, high-fanout nets can
cause routing delays to become more dominant. In reality, the 50/50 rule is perhaps more
realistically a "30/70 - 70/30" range.

When designing with the new, large FPGAs, one needs to be even more aware that the
"50/50" rule is probably too simple of a model on which to base a timing budget. As
designs target increasingly larger devices, it is realistic to expect that more delays will fall
towards the extremes of the broader "30/70 - 70/30" range.



��

Appendix A - Referencing Netlist Objects

Several design manipulation commands reference "design objects".  The Leonardo
database is actually quite simple but understanding the elements will help use these
commands effectively

Library Objects

The design browser contains 2 columns of data, the Libraries and Hierarchy.  The
Libraries column displays all the design objects in memory including "Libraries, Cells and
Views..  Any view of a cell may be selected and made the "present design".  Once a
design has become the present design the "Hierarchy" column displays all hierarchical
design information about that design including "Instances", "Nets", "Ports" and
"Technology Cells".

Library
All design objects (VHDL entities or Verilog Modules) must reside in a library.  If no library
is specified then the library "work" is used.  If a VHDL library references a specific library
then that library is used.  In the above example the library name is "work"

Cells
A cell is basically the instance name that is derived from the VHDL entity name or the
Verilog module name.  In the above example the cellname is "button" and would be
referenced by its complete pathname "work.button"

Library

Cell

View
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View
A "view" is a netlist.  In VHDL the viewname is derived from the VHDL architecture
name.  Because Verilog has no equivalent concept the viewname "INTERFACE" is
always used.  A cell may have multiple views similar to the way a VHDL entity can have
multiple architectures.  In the above example the viewname is "rtl" and would be
referenced by its complete pathname "work.button.rtl"

Hierarchy Objects

Instances
Instances are design objects attached to the "view" (netlist) of design and represent
hierarchical sub-blocks.   A selected instance may be grouped or ungrouped.  In the
above example the instance name is "button_cmp" and would be referenced by its
complete pathname "work.serial_interface_tl.structure.button_cmp"

Ports
Ports are design objects attached to a "view" (netlist) of a design and represent the
primary I/O of a block.  Timing constraints are attached to ports.  In the above example
the ports can be referenced by "work.serial_interface_tl.structure.portname"

Nets
Nets are design objects attached to a "view" (netlist) of a design and represent
interconnect between instances. In the above example the ports can be referenced by
"work.serial_interface_tl.structure.netname"

 Table 1. Arguments to the List_design command

Argument Description
-ports | -nets | -instances | -references Lists specified elements of the present_design
-direction <string> For ports only;  Directions in|out|inout
-hdl Instance name of the group
-short Generate "short" list of design objects
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Appendix B - Hierarchy Manipulation

Leonardo can perform all common hierarchy manipulations on design instances including
grouping, ungrouping and unfolding.

Grouping
Hierarchical grouping refers to the creation of a new hierarchical block from 2 or more
selected instances.  The original blocks still exist after grouping beneath the new level of
hierarchy.

LEONARDO{5} group B C  -inst_name BC

Table 1. Arguments to the Group command

Argument Description
-cell_name Group a list of instances into one instance of a new view
-view_name View name of the group
-inst_name Instance name of the group
-except <list> Exclude these cells from grouping

Ungrouping
Hierarchical ungrouping refers to the dissolving of all hierarchy below a selected instance

LEONARDO{6} ungroup B

Top

A CB

Top

A

CB

BC

Top

A

DC

B

Top

A B
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Note: The ungroup command will dissolve 1 level of hierarchy.  Use the "-all -hierarchy"
switchs to dissolve all hierarchy beneath a specified block of hierarchy

Table 2. Arguments to the Ungroup command

Argument Description
-all Ungroups all instances
-hierarchy Recursively ungroup all hierarchy levels under the selected instance
-simple_names Use original simple instance names for ungrouped instances
-except <list> Don’t ungroup these instances
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Appendix C - Command Reference

Table 2. Leonardo Command Reference

Command Options
Add_rename_rule <name> -type <string>

-find_word <string>
-find_substring <string>
-find_character <string>
-find_first_character <string>
-find_last_character <string>
-replace <string>
-prepend_word <string>
-append_word <string>
-escape_word <string>

Alias [alias_name {script_expansion}]

Analyze <file_name> -work
-format

Apply_rename_rules <design> -ruleset <string>
-single_level
-test

Balance_loads <design> -single_level

Connect -port <string>
-of <string>

Connect_path <port_names> -instance <string> | -gate <string> | -all
Copy <object> <object> | <object>
<object container>

Create <object_name> -port |  -net | -instance | -dir <string> -of <string>
Create_rename_ruleset <name> -no_collision_between <list>

-case_insensitive

Create_wrapper <entity name> -architecture
-work <string>
-file <string>
-wrap_name <string>
-parameters <list> | -generics <list>

Decompose_luts <design> -group_luts
-single_level

Disconnect -port <string>
-net <string>

Disconnect_path <port_names> -instance <string> | -gate <string> | -all
elaborate -architecture

-work
-parameters <list>
-generitcs <list>

Generate_timespec <design> -single_level

Group <list of instances> -cell_name <string>
-view_name <string>
-inst_name <string>

Help <search_string> -variables
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List_attributes <list_of_objects> -port | -net |  -instance
List_connection <list_of_objects> -port | -net | instance

-hierarchical
List_design <list_of_designs> -ports | -nets | -instances | -references

-direction <string>
-hdl
-short

List_technologies -single_level

Load_library <technology>
Load_modgen <library name>

Move <object>  <object> -port | -net | -instance
Optimize <design> -target <string>

-single_level
-effort <string>
-chip | -macro
-area | -delay
-pass <list> | -nopass <list>

Optimze_timing <design> -through <list>
-force
-single_level

Pack_clbs <design> -single_level

Present_design <new_present_design>

Puts_log <string> -nonewline

Read <file_name> -format
-don’t_elaborate
-work

Remove <object_name>  -port | -net | -instance | -hdl
Remove_attribute <object_list> -port | -net | -instance

-name
Remove_rename_ruleset
<ruleset_name>
Report_area <file_name> -cell_usage

-hierarchy
-all_leafs

Report_constraints <design> -port
-net
-hierarchy

Report_delay <file_name> -num_paths
-longest_paths <integer>
-no_io_terminals
-show_input_pins
-show_nets
-through <list>
-from <list>
-to <list>
-not_through <list>
-highlight_file <list>

Report_rename_rules <name>
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set_attribute <object_list> -name <string>
-value < string>
-type <string>
-port | -net | -instance

Unalias <alias_name>

Unfold <design>

Ungroup <instance_list> -all
-hierarchy
-simple_names
-execpt <list>

Write -format <string>
-bottom_library <string>
-silent
-single_level
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Appendix D - Variable Reference

Table 6. Leonardo Variable Reference

Variable Default Variable Default
annotate_packing true optimize_cpu_limit 0
area_weight 1.000000 optimize_timing_cpu_limit 0
check_complex_ios true optimize_timing_num_paths 5

complex_ios true package not set

delay_break_loops false parallel_case false

delay_weight 1.000000 part not set

delete_startup false preserve_dangling_net false

dont_lock_lcells false preserve_z false

edif_function_property eqn process not set

edif_write_internal_properties false propagate_clock_delay false

enable_dff_map false report_area_format_style %6.0f

encoding binary report_delay_analysis_mode maximum

exclude_gates not set report_delay_arrival_threshold 0.000000

extract_cin_cout true report_delay_detail full

extract_counter true report_delay_format_style %4.2f

extract_decoder true report_delay_slack_threshold 0.000000

extract_ram true resolve_mux_stat not set

flex_use_cascades true sdf_hier_separator /

force_user_load_values false sdf_hierarchical_names true

full_case false sdf_names_style vhdl

gate_sizing true sdf_type maximum

global_sr Not set temp not set

hdl_array_name_style %s(%d) transformations false

hdl_integer_name_style %s(%d) tristate_map false

hdl_record_name_style %s.%s ungroup_hier_separator _

include_gates not set use_dffenable true

infer_gsr false u se_f5map false

insert_global_bufs true use_f6_lut false

list_design_object_separator . use_qclk_bufs false

load_library_file_extension syn verilog_parameter_to_attribute true

lut_cell_name lut_cell vhdl_87 false

lut_map true vhdl_write_87 false

max_cap_load 0.000000 vhdl_write_bit std_logic

max_fanin 0 voltage not set

max_fanout_load 0.000000 wire_table not set

max_pt 0 wire_tree not set

max_transition 0.000000 xlx_preserve_gsr false

modgen_select auto xlx_preserve_gts false

names_collision_extension _rename xlx_preserve_pins true

nl_use_approx true xnf_write_clb_packing true

nologic_rep false xnf_write_lut_binding true
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