
40

With all the changes that occur from transform-
ing technology-independent HDL to a technology-
dependent FPGA device, it is a good design practice
to perform a final verification stage before creating
silicon. This final verification will prove that the
original HDL performs to specification and mini-
mizes the risk in the final device.

One way to perform this verification is through a
self-checking test bench. This test harness will not
only prove design correctness, but will also provide
a structure that is simple and easy to debug. The
diagram below illustrates this principle.

The self-checking test bench has three main
blocks: the original HDL model, the final gate-level
model, and a comparison block. The test bench
works by comparing the results from the two FPGA
models, which both receive the same input stimulus,
and then flags any discrepancies that are found. The
real power in this method is that when an error is
found, you can probe into both models and trace
signals to see what is causing the problem.

The comparison block provides the brains in a
testbench. This block performs a logical compare of
the primary results of both models. The “strobe” pin
on this block decides when data should be valid in
both models. This is usually just before the end of the
clock period. The “mask” pin tells the comparison
block when to ignore data from the models. This is
used during the initialization phase of the simulation.
Usually the HDL model is in a known state from the
beginning of simulation, while the gate level simula-
tion will take a few clock cycles to settle down. The
other feature of the comparison block is that it can
stop the simulator when an error occurs by executing
a VHDL “assert.” This is nice feature because the
simulator has stopped at the exact point of an error
so you can then debug the design.

Conclusion
A self-checking test bench is a great method

for performing that final verification stage before
creating silicon. It gives you the extra confidence
that the design will be correct and smoothly roll
into production. ◆

As an FPGA designer, your life is basically one
big debug cycle. From the moment you receive the
first specification from marketing, until production
silicon is ready, you are looking for problems.

Once you recognize a problem, then corrective
action must be identified. This process of problem
identification and correction is the slowest part of
the design process, mainly due to the “human fac-
tor.” Your ability to take in all available information,
evaluate the data, and come to a conclusion is one of
the main bottlenecks in producing complex FPGAs.

In the days when designs stayed below the
10K-gate barrier, you were capable of handling
designs using schematic capture. The amount of
design information that you had to control was
manageable, with low risk. As designs got larger,
Hardware Description Languages (HDL) allowed
you to describe an FPGA in a more abstract and
compact form. This new form, along with func-
tional simulation, allowed you to define, under-
stand, and build very complex FPGAs.

The HDL developed for an FPGA can be thought
of as an executable specification for the device
being designed. The problem with this specification
is that it only contains the functional information.
The AC, DC, and physical information about an
FPGA come from the transformation performed
during logic synthesis and place and route.

by Michael A. Bohm,
Exemplar Logic,

VP, Chief Scientist,
bohm@exemplar.com

Verification Using a
Self-checking Test Bench

40

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.


