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Abstract

Programmable logic offers an alternative solution for the computationally-intensive functions found
in Digital Signal Processing (DSP).  Programmable logic can provide increased DSP system per-
formance at reduced system cost.  Programmable logic combines the flexibility of a general-purpose
DSP plus the speed, density, and low cost of an ASIC implementation.  In some applications, pro-
grammable logic replaces the DSP processor entirely.  In others, programmable logic works in con-
junction with the DSP processor, offloading the computationally-intensive function and freeing the
processor for other functions.

Introduction

Digital Signal Processing (DSP) is one of the
fastest-growing applications in the electronics
industry.  It is used in a wide range of applica-
tions including:

n Telecommunications

n Data communications

n Wireless communications

n Image enhancement and processing

n Data acquisition

n Remote sensing

n Radar

n Video processing

n Broadcasting (HDTV)

n Voice synthesis and recognition

While there are many high-performance DSP
processors on the market, they are not suited to
all DSP applications.  Their general-purpose ar-
chitecture makes these DSP processors flexi-
ble, but they may not be fast enough or cost ef-
fective for all systems.

This paper describes an alternative to tradi-
tional, general-purpose DSP processors.  Pro-
grammable logic can implement functions be-
yond the capabilities of today’s DSP processors.
Field Programmable Gate Arrays (FPGAs) or

Complex Programmable Logic Devices (CPLDs)
potentially provide performance increases of an
order of magnitude over traditional DSPs with
the same flexibility.

What is DSP?

Before exploring how programmable logic pro-
vides various DSP functions, a broader defini-
tion of DSP is required.  The term “DSP” applies
broadly to continuous mathematical processes,
attempted in real-time.  These include functions
such as:

n Digital Filtering

• Finite Impulse Response (FIR)

• Infinite Impulse Response (IIR)

• Viterbi Decoder

n Convolution

n Correlation

n Fast Fourier Transforms

Most of these functions require the incoming
data to be multiplied or added with various inter-
nal feedback mechanisms to perform the de-
sired mathematical function.  This function is
generically called Multiply/Accumulate.

To increase performance, most general-purpose
DSP processors perform a multiply/accumulate
function in a single clock cycle (or less).  The
hardware to perform this function is called a
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Multiply/Accumulator (MAC).  Most DSP proces-
sors have a fixed-point MAC while some have a
more expensive floating-point MAC.

Traditional Approaches

Traditionally, DSP functions are either imple-
mented in a general-purpose DSP processor or
built using ASIC technology.

Generally, ASIC or gate array technology is
used whenever the application requires per-
formance beyond the abilities of current DSPs,
or when the expected system volumes justify a
semi-custom solution.

However, programmable logic provides a third
solution that combines the best of both DSP and
ASIC technologies without their respective limi-
tations.

The Promise of Programmable Logic

The Best of DSP and ASIC Technologies

Increased Flexibility

Like a general-purpose DSP, FPGAs and
CPLDs are programmable and changeable.
The designer can make changes quickly without
the additional cost and long lead-times of an
ASIC.  FPGAs, like DSPs, have no minimum
volume requirements as do ASICs.

When performance is a factor, many designers
turn to ASIC technology.  ASIC technology of-
fers the ability to design a custom architecture
that is optimized for the target application.

For example, digital filtering typically requires
numerous MAC cycles—one MAC cycle for
each filter tap.  A traditional DSP only has a
single MAC, so each filter tap must be executed
sequentially.  An ASIC implementation of a filter
algorithm might have numerous MACs so that
the all of the taps can be processed in parallel.

Likewise, a Field Programmable Gate Array
(FPGA) has a flexible architecture that can be
adapted for a specific DSP function.  Also,
FPGAs have sufficient capacity to fit multiple
MACs or algorithms into a single device along
with the interface circuitry required by the appli-
cation—a single-chip solution compared to a
DSP processor.

Increased DSP performance with FPGAs

DSP architecture directly affects system per-
formance.  Because most DSP functions are
multiply/accumulate-based, the performance of
the MAC is crucial.

Nearly every processor is capable of performing
DSP algorithms because nearly every processor
can perform additions and multiplies.  The only
difference between a general-purpose DSP and
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Figure 1. Relative performance for various implementations of an 8-bit, 16-tap FIR filter compared
to a 50 MHz fixed-point DSP processor.  FPGAs are up to 22 times faster.
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a microprocessor is how well they perform this
function.

For example, the Pentium™ processor requires
11 clock cycles to perform a single multi-
ply/accumulate operation whereas most DSP
processors require just a single cycle.  A 50
MHz fixed-point DSP performs a multi-
ply/accumulate cycle in only 20 ns whereas a
133 MHz Pentium processor requires 1.3 µs to
perform the same function.  As a result, a 133
MHz Pentium processor has only 24% the DSP
processing power of a 50 MHz DSP for the filter
function shown in Figure 1.

Each tap of a digital filter requires one MAC cy-
cle.  For example, a 16-tap filter requires 16
MAC cycles.  Because most DSPs only have a
single MAC unit, each tap is processed sequen-
tially, slowing overall system performance.

Some of the more powerful—and correspond-
ingly more expensive—DSPs have multiple
MACs.  These DSPs perform multiple MACs in
one clock cycle.  The same goal is accom-
plished by using multiple single-MAC DSPs with
shared high-speed memory.  In both cases, ex-
tra performance is bought with higher compo-
nent cost plus board space.

FPGAs offer an even more powerful architec-
ture—one tailored to the specific application.
Because the logic in an FPGA is flexible and
amorphous, the DSP function can be mapped
directly to the resources available on an FPGA.

Not only is the FPGA implementation faster than
most DSPs, it offers tradeoffs between system
density and performance.  Figure 1 shows the
relative performance of various implementations
of an 8-bit, 16-tap FIR filter, normalized to the

performance of a 50 MHz fixed-point DSP proc-
essor.

The most efficient FPGA implementation shown
uses 68% of an XC4003E-3 FPGA, or roughly
1,500 gates [1].  This implementation outper-
forms a single 50 MHz DSP by a factor of 2.6.
The key to its efficiency is the Sequential Dis-
tributed Arithmetic (SDA) algorithm [2, 3].  This
algorithm takes advantage of the XC4000E ar-
chitectural features.  The multiply functions are
mapped into the FPGA’s function generators,
the adders and accumulators use the XC4000E
fast carry logic, and the serial shift registers are
built in efficient, on-chip RAM [4].

The highest performance FPGA implementation
uses about 75% of an XC4013E-2 FPGA, or
about 9,750 gates.  Though roughly seven times
larger than the space-efficient version, the high-
performance implementation is 22 times faster
than a 50 MHz DSP for this application.  It uses
a Parallel Distributed Arithmetic (PDA) algorithm
[2, 3].  Even higher performance is possible if
the application can tolerate the extra data la-
tency caused by pipelining.  Performance will
also be higher if the filter is integrated with other
logic in the same chip thereby bypassing I/O
delays.

A broad range of alternate FPGA implementa-
tions is possible.  The trade-offs between den-
sity and performance for various algorithms is
shown in Figure 2.  Each implementation is tai-
lored to the speed, density, and cost require-
ments of the target application.  Serial sequen-
tial is the most efficient, but also the slowest.
PDA is the fastest, but also uses the most logic.
SDA is a good compromise of speed and den-
sity, depending on system requirements.
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Programmable Logic Reduces DSP Cost

FPGA Replaces DSP Processor

In some applications, a single FPGA or CPLD
completely replaces the dedicated DSP.  These
applications are typically embedded processing
or filtering functions with data sample rates be-
tween 100 kHz up to 70 MHz.

In embedded filtering applications, it is unlikely
that the DSP functionality will change, therefore
the extra flexibility of a general-purpose DSP
adds costs without benefit.

In the 1 kHz to 100 kHz range, the DSP func-
tion—plus all other system logic—fit in a single,
low-cost FPGA.  This approach uses a silicon-
efficient, but low-performance, serial-sequential
algorithm as shown in Figure 2.

FPGA Enhances General-Purpose DSP

FPGAs and CPLDs will never completely re-
place general-purpose DSP processors.  Cur-
rent-generation programmable logic addresses
the fixed-point DSP portion of the market.  Gen-
eral-purpose DSPs still dominate in floating-
point performance.  Also, general-purpose DSP
processors utilize familiar software methods.
The designer implements the DSP algorithm
using a programming language like ‘C’ and
compiles the code for a specific DSP processor.

In many applications, a fast and very expensive
DSP processor is used to handle the peak per-
formance of a small piece of code.  A typical
DSP algorithm contains many repetitious feed-
back loops and parallel structures as shown in
the data flow diagram for the 16-tap FIR filter in

Figure 3.  The software code for such algo-
rithms is not efficiently implemented in general-
purpose DSP architectures.  Typically, about
20–40% of the DSP’s code utilizes 60–80% of
the DSP’s processing power.

One popular method to boost DSP performance
is to use multiple DSPs in parallel plus high-
speed memory.  For example, the four-DSP so-
lution shown in Figure 1 is theoretically four
times the performance of the single-DSP solu-
tion.  However, the cost is more than four times
higher.  These multi-chip DSP designs generally
require more board space and higher perform-
ance memories that adds cost.

Instead, the best solution for these applications
may be a DSP processor, microprocessor, or
micro-controller with an FPGA co-processor.
The general-purpose DSP processor handles
the system control and data movement func-
tions.  The FPGA provides a custom-tailored
DSP co-processor to handle the peak process-
ing function.  See Case Study:  Viterbi De-
coder  for a more specific example.

Analyzing the DSP algorithm will reveal any
parallel structures and iterative loops that con-
sume DSP processing power.  Placing these
functions in the FPGA enhances the overall
performance.

The FPGA-based DSP accelerator concept is
similar to a floating-point co-processor working
with a microprocessor.  Recognizing this poten-
tial, Xilinx developed the SRAM-based XC6200
FPGA family designed specifically for co-
processing in embedded system applications
as shown in Figure 4 [5].
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Figure 3. Data flow diagram for a 16-tap FIR filter showing the parallel operations and feedback
paths that slow DSP processor performance.  FPGAs perform multiple operations per
clock cycle, resulting in better performance.
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The XC6200 consists of:

n A fast, high-density FPGA architecture

n An efficient FPGA architecture for arithmetic
and data path applications

n An integrated, high-speed processor interface

n A fast configuration and partial reconfigura-
tion

n Easy access to internal logic and flip-flops

DSP
or

MPU
Memory

XC6200
FPGA-based

Reconfigurable Co-processor

Figure 4. XC6200 FPGA accelerates process-
ing applications through a high-speed
processor interface.

FPGA Instead of ASIC

FPGAs also replace ASICs in DSP systems.
Designers chose ASIC in the past for two rea-
sons:  Either they required DSP processing
power beyond the capabilities of a general-
purpose DSP, or the system had sufficiently
high production volumes to justify a semi-
custom solution.

Like ASICs, FPGAs and CPLDs can provide su-
perior performance to general-purpose DSPs.
Before high-density FPGAs were available,
companies that required DSP performance but
lacked volume system shipments were often
forced into ASIC technology.  The minimum vol-
ume requirements plus the long lead-times, non-
recurring engineering changes (NRE), and risk
of an ASIC are unacceptable for low-volume
project.  FPGAs provide the performance and
architectural flexibility of ASICs but are user-
programmable for low development costs.

Contrary to popular belief, FPGAs also offer a
solution for high-volume designs.  Plus, Xilinx
provides an additional option for the high-
volume user.  Xilinx HardWire™ gate arrays are
100% pin- and functionally-compatible with a
corresponding Xilinx FPGA and reduce compo-
nent cost up to 50%–80%.  The HardWire gate
arrays use the same netlist, the same layout
database, and the same silicon fabrication facil-
ity.  Consequently, the engineer only designs the

application once—Xilinx converts the design and
provides the test vectors for 100% fault cover-
age.

Design debugging, system verification, and ini-
tial production are done with FPGAs.  Once
verified, the HardWire gate arrays provide a low-
risk migration path to a high-volume, low-cost
solution.

An additional benefit of SRAM-based FPGAs
over ASICs is that they can be reprogrammed,
on the fly, in the system.  Consequently, a single
FPGA can implement different DSP functions at
various times in a system to boost overall per-
formance.

Case Study:  Viterbi Decoder

A company developed a DSP-based telecom-
munications system.  One of the key DSP algo-
rithms was a Viterbi decoder used as part of a
noise-cancellation circuit [6].  The initial design
used two 66 MHz general-purpose DSP proces-
sors that have just recently become available.
High-speed SRAM memory was also required to
meet the performance goals of the algorithm
and the system.

Though a Viterbi decoder does not require any
multiply operations, it can still be considered a
DSP algorithm because of its mathematical
processing.  The algorithm, shown graphically in
Figure 5, required 17 computational clock cy-
cles, plus an additional 7 clock cycles due to
wait-states for the DSP’s external SRAM mem-
ory.  The seven 24-bit (2’s-complement) data
words are multiplexed together on a common 33
MHz I/O bus.  As a result, the Viterbi decoder
algorithm required 360 ns processing time (24
cycles at 15 ns per cycle) and consumed about
80% of the combined DSP’s overall processing
time.

There are two limiting factors in this DSP-based
design.  First, the external SRAM timing re-
quired an extra 15 ns wait-state, limiting the data
bus to 30 ns for each transaction.  Second, each
Add/Subtract and Multiplex stage must be per-
formed sequentially in the DSPs.  The
Add/Subtract stages each required four sepa-
rate operations with multiple instructions.

This algorithm is well suited for the FPGA.  The
FPGA’s ability to process parallel data paths ac-
commodates the parallel structures of the four
ADD/SUB-blocks in the first stage and the two
SUB-blocks in the second stage.  The two MUX-
blocks take advantage of the ability to register
and hold the input data until needed with no
additional clock cycles.
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The design conversion resulted in faster per-
formance as shown in Figure 6.  The FPGA-
based Viterbi decoder cycle time is 135 ns com-
pared to 360 ns by the dual-DSP design—a
62% improvement.  The I/O data bus also sup-
ports the full 66 MHz bandwidth supported by
the DSP processor—twice the original through-
put.  The FPGA-based implementation replaced
one of the programmable DSPs and three
SRAM chips as shown in Table 1, resulting in
significantly higher performance and lower sys-
tem complexity.  The Viterbi decoder consumed
44% of the XC4013E-3 FPGA.  The remaining
space was filled with other system logic.

Table 1. Reduced Parts Count with FPGA.
DSP-Only DSP + FPGA
8 DEVICES 4 DEVICES

Two 66 MHz DSPs
Six 15 ns SRAMs
System logic

One 66 MHz DSP
XC4013E-3 FPGA (44%)
Three 15 ns SRAMs

This design can also be implemented with the
original 33 MHz I/O bus performance.  This im-
plementation minimizes the CLBs required by
exploiting the symmetrical nature of the design.
Note that the Old_1  and Old_2  values follow
the same path with only a minor difference in the
magnitude of the second stage SUB-block.  This
implementation requires the data on the I/O data
bus to be written and read in a specific order.

Summary:  Using FPGAs for DSP

The previous case study is just one example of
how FPGAs accelerate DSP performance and
how they reduce overall system cost.

Finding the Right Function

To use FPGAs to enhance the performance of a
DSP application:

n Identify the parallel data paths  in the algo-
rithm.  The FPGA can implement these func-
tions in parallel.  A DSP must execute these
sequentially.

n Find  operations that require multiple clock
cycles  when executed in a general-purpose
DSP.  Again, take advantage of the FPGA’s
parallelism.

DSP Functions That FPGAs Do Best

Other DSP applications that benefit from FPGA
technology include those requiring:
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Figure 5. Viterbi decoder block diagram.  FPGAs implement the multiple Add/Subtract functions
in parallel, resulting in superior performance.
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n High sample rates  — FPGA-based DSP
systems outperform one or more general-
purpose DSP processors as shown in Figure
7.

n Low sample rates  — At data rates between
1 kHz to 100 kHz, the DSP function can be
easily integrated along with other system logic
in a low-cost FPGA using a very efficient se-
rial sequential algorithm.

n Short word length  — FPGA-based DSP
designs run faster as the word width de-
creases when using the space-efficient SDA
algorithm.

n Lots of filter taps  — The number of filter
taps has little effect on an FPGA-based DSP
design when using the space efficient SDA
algorithm.

n Single-chip solution required  — Integrate
the DSP function and all of the system logic in
a single FPGA.

n Fast correlators  — The look-up table archi-
tecture of Xilinx FPGAs provides a fast and
efficient way to build correlators.

n Low-cost migration path  — Xilinx HardWire
gate arrays provide a low-risk, 100% pin- and
functionally-compatible migration path to a
high-volume, low-cost production solution.
No simulation, test vectors, or re-engineering
required.

Other Resources

DSP Applications Group

For DSP applications information or for help on
implementing an algorithm in programmable
logic, contact the Xilinx DSP Applications Group
via E-mail at dsp@xilinx.com  or via FAX at 1-
408-879-4442.

Xilinx WebLINX DSP Site

Xilinx has a home page on the World-Wide Web
that includes a special section for DSP.  The
WebLINX UURL for DSP is

http://www.xilinx.com/appsweb.htm#DSP

Application notes and data sheets are also
available via WebLINX.
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Glossary of Terms

ASIC—Application-Specific Integrated Circuit,
commonly called a gate array.

CPLD—Complex Programmable Logic Device.
Also called EPLD or Erasable Programmable
Logic Device.

DA—Distributed Arithmetic.  An alternate ap-
proach to implementing arithmetic functions.

DSP—Digital Signal Processing

FIR—Finite-Impulse Response.  A type of digital
filter.

FPGA—Field Programmable Gate Array.

HDL—Hardware Description Language such as
VHDL and Verilog.

IIR—Infinite-Impulse Response.  A type of digital
filter.

MAC—Multiply/Accumulator.  A DSP processor
provides good performance in DSP applications
because it executes a multiply and an addition in
a MAC unit in a single clock cycle.

NRE—Non-Recurring Engineering. The set-up
or mask charges required to build an ASIC.

PDA—Parallel Distributed Arithmetic.  An alter-
nate approach to implementing arithmetic func-
tions.  Efficient and high performance in some
FPGA architectures.

PSC—Parallel to Serial Converter.

SDA—Sequential Distributed Arithmetic.  An
alternate approach to implementing arithmetic
functions.  Very efficient and a good compro-
mise between speed and density in some FPGA
architectures.
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