
Revision 1.4 September, 1998 Printed in U.S.A.

Programming
Xilinx XC9500
CPLDs on HP
3070 Testers

Preface

Introduction

Creating SVF Files

Creating Compiled Test Files

Appendix A: svf2vcl

Appendix B: Troubleshooting

ii

Preface

About This Manual
This manual describes how to program Xilinx XC9500 CPLDs on HP
3070 testers.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” lays out the basic procedure for
programming an XC9500 CPLD in an HP 3070 test environment.

• Chapter 2, “Creating SVF Files,” discusses how to create an SVF
files on PCs, and on Sun and HP workstations.

• Chapter 3, “Creating Compiled Test Files,” discusses how to use
gen_hp to create compiled test files for use in the HP 3070 test
environment.

• Appendix A, “svf2vcl ,” lists options for execution of the
svf2vc l program. svf2vcl is the first part of the gen_hp
program.

• Appendix B, “Troubleshooting,” contains troubleshooting
options if programming fails.

iii Xilinx Development System

Conventions

In this manual the following conventions are used for syntax clarifi-
cation and command line entries.

• Courier fon t indicates messages, prompts, and program files
that the system displays, as shown in the following example.

speed grade: -100

• Courier bol d indicates literal commands that you must enter in
a syntax statement.

rpt_del_net=

• Italic font indicates variables in a syntax statement. See also, other
conventions used on the following page.

xdela y design

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

xdelay [option] design

• Braces “{ }” enclose a list of items from which you choose one or
more.

xnfpre p designname ignore_rlocs={true|false}

• A vertical bar “|” separates items in a list of choices.

symbol editor [bus|pins]

iv

Other conventions used in this manual include the following.

• Italic font indicates references to manuals, as shown in the
following example.

See the Development System Reference Guide for more information.

• Italic font indicates emphasis in body text.

If a wire is drawn so that it overlaps the pin of a symbol, the two
nets are not connected.

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that the preceding can be
repeated one or more times.

allow bloc k blockname loc1 loc2 .. . locn ;

gen_hp Translator 1-1

Chapter 1

Introduction

This document describes the procedures necessary to program Xilinx
XC9500 CPLD designs in an HP 3070 test environment. The proce-
dures described in this document lay out the necessary steps you
need to perform; they are:

• Creating SVF Files Using JTAG Programmer

• Generating an HP 3070 ISP Program

The gen_hp script translates Serial Vector Format (SVF) files to HP
3070 executable object files. This allows you to take SVF files created
in JTAG Programmer and translate them for use in an HP 3070 test
environment.

Instructions are included for both GUI and the command line.
Chapter 2 describes the procedure for creating an SVF file. This proce-
dure can be performed on a PC or on a Sun or HP workstation.
Chapter 3 describes how to create HP 3070 test files using gen_hp on
an HP workstation. Appendix A describes details of the svf2vcl
executable, including options. svf2vcl can be run on all platforms,
while dcomp can only be run on an HP workstation.

Figure 1-1 Program Flow

JEDEC
svf

svf2vcl

gen_hp

vcl
dcomp

*.o

testplan.*

JTAG
Programmer

gen_hp Translator

1-2 Xilinx Development System

Hardware Considerations
This software and methodology works on the following HP testers:

• HP 3070

• HP 3072

• HP 3073

• HP 3074

• HP 3075

• HP 3079CT

• HP 3172

• HP 3173

• HP 3175

Note: Your HP 3070 configuration must include a “Control Plus”
card.

Test Fixture Design Tips
On the ATE loadboard you should add a 100 ohm pullup on TCK and
a 100 ohm pulldown on TMS to ensure the stability of these signals
between vector file loads. The resistors should be installed right at the
corresponding probe points on the HP 3070.

Make certain that the 4 pins of the 1149.1 TAP (TCK, TMS, TDI and
TDO) are marked as critical signals to the HP 3070. Always use as
short leads as possible to connect these 4 pins from the load board to
the tester.

Using PC or Sun
Only JTAG Programmer and the svf2vcl translation can be run on
these platforms, since the HP 3070 object compiler (dcomp) is
supported only on the HP workstation. To use a PC or Sun for
svf2vcl , see Appendix A.

gen_hp Translator 2-1

Chapter 2

Creating SVF Files

Creating an SVF File Using JTAG Programmer
This procedure describes how to create an SVF file; it assumes that
you are using Xilinx Foundation or Alliance Series software, Version
1.3 or newer. These software packages include the Xilinx CPLD fitter
and JTAG Programmer software. JTAG Programmer is available free
of charge on the Xilinx World Wide Web site, www.xilinx.com.

JTAG Programmer is supplied with both graphical and batch user
interfaces. The batch user interface executable name is jtagprog ;
and the graphical user interface is named jtagpgmr . The graphical
tool can be launched from the Design Manager or Project Manager,
but may also be launched by opening a shell and invoking jtag-
pgmr. The batch tool is available by opening a shell and invoking
jtagprog on the command line.

The goal of the following procedure is to create three separate SVF
files for each device being programmed. We will show you how to do
this using both the batch and the GUI tool. One SVF file contains
erase information for the device, another the program information for
the device, and the third contains verification information. On
XC9500 devices the erase vectors should have a 2 ms TCK period.

Using the Batch Download Tool to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC
programming file. You may already have been provided with a
JEDEC file; if so, proceed to the next step.

2. Invoke the batch JTAG Programmer tool from the command line
in a new shell.

gen_hp Translator

2-2 Xilinx Development System

jtagprog -svf

The following messages will appear:

JTAGProgrammer: version < Version Number >
Copyright:1991-1998

Sizing system available memory...done.

SVF GENERATION MODE

[JTAGProgrammer::(1)]>

3. Set up the device types and assign design names by typing the
following command sequence at the JTAG Programmer prompt:

part deviceType1:designName1 deviceType2:designName2
... deviceTypeN:designNameN

where devicetype is the name of the BSDL file for that device and
designName is the name of the design to translate into SVF.
Multiple deviceType:designName pairs are separated by spaces. For
example:

part xc95108:abc12 xc95216:ww133

The part command defines the composition and ordering of the
boundary-scan chain. The devices are arranged with the first
device specified being the first to receive TDI information and the
last device specified being the one to provide the final TDO data.

Note: For any non-XC9500(XL) device in the boundary-scan chain,
make certain that the BSDL file is available either in the XILINX vari-
able data directory, or by specifying the complete path information in
the deviceType. The designName in this case can be any arbitrary name.

4. Execute the required boundary-scan or ISP operation in JTAG
Programmer.

• erase [-fh] designName -- generates an SVF file to describe
the boundary-scan sequence to erase the specified part. The -
f flag generates an erase sequence that overrides write
protection on devices. The -h flag indicates that all other
parts (other than the specified designName) in the boundary-
scan chain should be held in the HIGHZ state during the
erase operation. Xilinx recommends erase -f -h design-
Name.

• verify [-h] designName [-j jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to read back

Creating SVF Files

gen_hp Translator 2-3

the device contents and compare it against the contents of the
specified JEDEC file. The JEDEC file defaults to be the design-
Name.jed in the current directory, or may be alternatively
specified using the -j flag. The -h flag is used to specify that
all other parts (other than the specified designName) in the
boundary-scan chain should be held in the HIGHZ state
during the verify operation. Xilinx recommends verify -h
designName.

• program [-bh] designName -j [jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to program
the device using the programming data in the specified
JEDEC file. The JEDEC file defaults to be designName.jed in
the current directory, or may be alternatively specified using
the -j flag. The -h flag is used to specify that all other parts
(other than the specified designName) in the boundary scan
chain should be held in the HIGHZ state during the
programming operation. The -b flag indicated the program-
ming operations should erase the device. This is useful when
programming devices shipped from the factory. Xilinx
recommends program -b -h designName.

• partinfo [-h] -idcode designName -- generates an SVF file
to describe the boundary-scan sequence to read back the 32
bit hard-coded device IDCODE. The -h flag is used to specify
that all other parts (other than the specified designName) in
the boundary scan chain should be held in the HIGHZ state
during the IDCODE operation.This operation can be
performed in any combination of the three SVF files.

• partinfo [-h] -signature designName -- generates an
SVF file to describe the boundary-scan sequence to read back
the 32 bit user-programmed device USERCODE. The -h flag
is used to specify that all other parts (other than the specified
designName) in the boundary scan chain should be held in the
HIGHZ state during the USERCODE operation. This opera-
tion can be performed in any combination of the SVF files.

5. Exit JTAG Programmer by entering the following command:

quit

Note: The SVF file will be named designName.svf and will be created
in the current working directory. Consecutive operations on the same
designName will append to the SVF file. To create SVF files with sepa-

gen_hp Translator

2-4 Xilinx Development System

rate operations in each, you will need to rename the SVF file after
each operation by exiting to the system shell.

Using the Graphical User Interface to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC file
(you may already have been provided with one).

2. Double-click on the JTAG Programmer icon or open a shell and
type jtagpgmr . The JTAG Programmer will appear.

3. Instantiate your boundary-scan chain. There are two ways to do
this. The first is to manually add each device in the correct
boundary-scan order from system TDI to system TDO.

a) Selecting Edit → Add Device for each device in the
boundary-scan chain.

b) Fill in the device properties dialog to identify the JEDEC (if it
is an XC9500 device) or BSDL (if it is not an XC9500 device)
file associated with the device you are adding.

Creating SVF Files

gen_hp Translator 2-5

The device type and JEDEC file name will appear below the
added device.

The second method is to allow JTAG Programmer to query the
boundary-scan chain for devices, and then fill in the JEDEC and
BSDL file information. This method will work only when you have
the target system connected to your computer with a Xilinx serial or
parallel cable. The cable must be powered up by the board under test.
The steps are as follows:

a) Initialize the chain as follows:

File → Initialize Chain

JTAG Programmer will display the boundary-scan chain configu-
ration as shown:

gen_hp Translator

2-6 Xilinx Development System

b) For each device in the resulting chain, double-click on the
chip icon to bring up the device properties dialog, then select
the JEDEC or BSDL file associated with that device.

4. Put the JTAG Programmer into SVF mode by selecting

Output → Create SVF File...

to create a new SVF file, or

Output → Append to SVF File...

to append to an existing SVF file. Fill in the SVF file dialog with
the desired name of the target SVF file to be created.

Note: Once you enter SVF mode the composition of the boundary-
scan chain cannot be edited in order to ensure consistency of the
boundary-scan data in the SVF file.

5. Highlight one of the devices by clicking it once with the mouse.
Then, select any of the enable operations from the Operations
pull down menu to generate an SVF file to describe the
boundary-scan sequence to accomplish the requested operation.

6. When you completed the required operations you may exit JTAG
Programmer by selecting:

File → Exit

Creating SVF Files

gen_hp Translator 2-7

Note: You may select Use HIGHZ instead of BYPASS from the
File → Preferences... dialog to specify that all other parts (not
the device selected) in the boundary-scan chain will be held in
HIGHZ state during the requested operation.

Note: To generate separate SVF files for each operation you will have
to perform the following steps between operations:

a) Select Output → Use Cable...

b) On the Cable Communications dialog box select Cancel

c) Select Output → Create SVF File..

d) Choose a new SVF file and proceed normally.

gen_hp Translator 3-1

Chapter 3

Creating Compiled Test Files

Using the gen_hp Script
If you are using the supplied HP workstation as the system controller
for the HP 3070 ATE, this script will build all the necessary Vector
Control Language (VCL) object and testplan files to generate a
complete HP 3070 vector sequence to perform erase, programming
and, optionally, readback verification via the JTAG TAP.

Use the SVF file (or files if you have generated a verification file as
well) that you generated above as input to the gen_hp tool. This tool
takes SVF files and creates executable HP 3070 vector programs.

The gen_hp tool is run on the HP workstation that acts as the
controller for the HP 3070. Create a directory called “svf ” and
another called “digital ”. Copy all the SVF files to the “svf ” direc-
tory. Before starting the gen_hp program you might want to modify
it to suit your application. The gen_hp script is reproduced in Figure
3-1. The modifications that can be applied are generally to the call to
svf2vcl which performs the SVF to VCL conversion. VCL (Vector
Control Language) is the HP 3070 stimulus description language. The
available switches for this program are listed in Table 1 of Appendix
A.

To make use of the script for customizing your test procedure, follow
these instructions:

1. Create an “svf ” and a “digital ” directory in the board direc-
tory.

mkdir svf

mkdir digital

2. Copy your svf files to the svf directory.

gen_hp Translator

3-2 Xilinx Development System

3. If necessary, edit gen_hp to add extra options to svf2vcl
command. An example of useful options:

-TCKNODE node_name Sets the TCK node name

-TMSNODEnode_name Sets the TMS node name

-TDINODE node_name Sets the TDI node name

-TDONODEnode_name Sets the TDO node name

-NOCOMMENTSNo Comments

-COMMANDCOMMENTSCommand Comments

When accessing a device in a boundary-scan chain, the following
options need to be specified:

-NUMDEVICES number Specifies the total number of devices in the
boundary-scan chain

-TARGETDEVICE number Specifies which device in the boundary-scan
chain is being targeted

See Appendix A for a complete list of options.

4. Execute from the board directory:

gen_hp erase_vector_file .svf prog_vector_file .svf
verify_vector_file .svf

The script generates all the HP 3070 objects in the digital directory.
It will also generate a testplan.file in the board directory that
you can add to your existing testplan to call to the new subroutines to
program and verify the part.

#!/bin/sh
#Create a directory called svf under the board dir.
#Files in the svf dir should have the .svf extension.
#If you have an verify file put it in the svf dir called
filenamev.svf
#Fill out files variable for all the .svf files.
efile=$1
file=$2
vfile=$3
#
Process Erase
#
if [-f svf/$efile]

Creating Compiled Test Files

gen_hp Translator 3-3

then
echo $efile
filename=`echo $efile | cut -f 1 -d .`
testplan="testplan."$filename
echo > $testplan
echo "\n\nsub ${filename}_svf2vcl" >> $testplan
echo "! " >> $testplan
echo "! APG Test Consultants, Inc." >> $testplan
echo "! " >> $testplan
echo "Time_s = msec" >> $testplan
echo "print \"Programing ${filename} into device.\"" >> $testplan
svf2vcl -trstnode "*" svf/$efile digital/$filename
for i in `ls digital/$filename.v[0-9][0-9] | sort`
do

echo $i
 echo " test \"$i\"" >> $testplan
to produce debug object change following line to dcomp -D $i
dcomp $i
done
echo "Time_e = msec" >> $testplan
echo "print \"Erase. Time = \"&val\$((Time_e - Time_s)/1000)" >>
$testplan
echo "subend" >> $testplan
fi
#
Process Program
#
if [-f svf/$file]
then
filename=`echo $file | cut -f 1 -d .`
echo $file
echo "\n\nsub ${filename}_svf2vcl" >> $testplan
echo "! " >> $testplan
echo "! APG Test Consultants, Inc." >> $testplan
echo "! " >> $testplan
echo "Time_s = msec" >> $testplan
echo "print \"Programing ${filename} into device.\"" >> $testplan
svf2vcl -trstnode "*" svf/$file digital/$filename
for i in `ls digital/$filename.v[0-9][0-9] | sort`
do

echo $i
 echo " test \"$i\"" >> $testplan

gen_hp Translator

3-4 Xilinx Development System

to produce debug object change following line to dcomp -D $i
dcomp $i
done
echo "Time_e = msec" >> $testplan
echo "print \"Prog. Time = \"&val\$((Time_e - Time_s)/1000)" >>
$testplan
echo "subend" >> $testplan
fi

#
Process Verify
#
if [-f svf/$vfile]
then
echo $vfile
filename=`echo $vfile | cut -f 1 -d .`
echo "\n\nsub ${filename}_svf2vcl" >> $testplan
echo "! " >> $testplan
echo "! APG Test Consultants, Inc." >> $testplan
echo "! " >> $testplan
echo "Time_s = msec" >> $testplan
echo "print \"Verifying ${filename} for device.\"" >> $testplan
svf2vcl -verify -trstnode "*" svf/$vfile digital/$filename
for i in `ls digital/$filename.v[0-9][0-9] | sort`
do

echo $i
 echo " test \"$i\"" >> $testplan
to produce debug object change following line to dcomp -D $i
dcomp $i

done
echo "Time_e = msec" >> $testplan
echo "print \"Verifying Time = \"&val\$((Time_e - Time_s)/1000)"
>> $testplan
echo "subend" >> $testplan
fi

Figure 3-1 gen_hp Script

Creating Compiled Test Files

gen_hp Translator 3-5

TCK Period
Erase vectors should be run with a TCK clock rate of 500 Hz. Program
and verify can be run at 2 MHz.

Accessing Devices in a Multipart Boundary-scan
Chain

In order to access a device situated in a multipart boundary-scan
chain you must make certain that you follow these steps:

1. Generate a single SVF file that accesses the targeted device. For
instance, if you are accessing a nine part chain do not concatenate
an SVF file that programs device 3 with one that programs device
5. Keep these SVF files separate.

2. Run the SVF file through svf2vcl , specifying:

a) the total number of devices in the boundary-scan chain using
the -NUMDEVICES switch.

b) the position of the targeted device in the boundary-scan
chain using the -TARGETDEVICE switch. The target position
is specified ordinally from the system TDI input.

For instance, in the system illustrated below,

Figure 3-2 Three Device Boundary-Scan Chain

Device 1 Device 2 Device 3

TDI

TCK

TMS

TDO

gen_hp Translator

3-6 Xilinx Development System

if you generated an SVF file to program Device 2 in the three device
boundary-chain using EZTag, then you must use the switch values:

-NUMDEVICES 3 -TARGETDEVICE 2

for svf2vcl .

Similarly, if you have an SVF file to program Device 1, then you
should choose -NUMDEVICES 3 and -TARGETDEVICE 1 as the
svf2vcl switch value.

It is important that you select these values accurately and correctly as
svf2vcl has no way to validate the veracity of the numbers entered.

TRST Optional Pin
The XC9500 parts do not have a TRST pin. If however, other parts on
your system do have a TRST pin, you must modify the svf2vcl
command line to specify the TRST pin name using the -TRSTNODE
switch.

gen_hp Translator A-1

Appendix A

svf2vcl

About svf2vcl
The svf2vcl translation file can be run on all platforms; however,
since the HP 3070 object compiler (dcomp) is supported only on the
HP workstation, gen_hp script can only be run on HP workstations.

If you do not want to use gen_hp , or want to run svf2vcl sepa-
rately, you can use a PC, or a Sun or HP workstation as follows:

1. Generate a .svf file as described in Creating SVF Files.

2. Run the svf2vcl program as described below.

3. Make a directory called digital in your HP workstation’s file
system. Copy all the .vcl files that were generated by running
svf2vcl to this directory

4. Run gen_hp to create your *.o and testplan.* files. Your HP 3070
object files will be created in the digital directory.

Running svf2vcl
svf2vcl can be run in a SunOS, HP-UX or Windows NT/95 envi-
ronment. The command syntax for running the program is:

svf2vcl [options] input_filename output_filename

Remember not to add a file extension to the output_filename.

To translate XC9500 SVF programming files, use:

svf2vcl -trstnode “*” svf/file.svf digital/file

To translate XC9500 SVF verify files, use:

svf2vcl -verify -trstnode “*” svf/filev.svf digital/
file

gen_hp Translator

A-2 Xilinx Development System

To display available options, type:

svf2vcl -?

The svf2vcl switches are as follows:

Table A-1 svf2vcl Switches

Abbr. Option Operation

-NC -NOCOMMENTS No comments

-CC -COMMANDCOMMENTS Command comments

-FC -FULLCOMMENTS Full comments (default)

-Q -QUIET Quiet running

-V -VERBOSE Verbose output

-VV -VERYVERBOSE Very verbose output

-NOCR -NOCONVERTRUNTEST Don’t convert RUNTESTS to
waits

-CR -CONVERTRUNTEST Convert RUNTESTS to
waits (default)

-NORETRY or -NOLOOP
or -VERIFY

Disable retry mode

-RETRY or -LOOP or -
NOVERIFY

Enable retry mode (default)

-LC # -LOOPCOUNT # Loop count is #

-LA # -LOOPADJUST # Loop adjust is #

-TCKNODE “node name” Set the TCK node name

-TMSNODE “node name” Set the TMS node name

-TDINODE “node name” Set the TDI node name

-TDONODE “node name” Set the TDO node name

-TRSTNODE “node name” Set the TRST node name

-DD “device name” Set the default device

-VL # -VECTLIMIT Maximum test vector count
per VCL file

-ND -NUMDEVICES # Number of devices in the
boundary-scan chain is #

svf2vcl

gen_hp Translator A-3

Note: If your boundary-scan Test Access Port pin names are non-
standard do not forget to add the options to tell svf2vcl the node-
names of TCK, TMS, TDO, TDI and TRST.

Comment options can be used to reduce the digital VCL source size.
The quiet and verbose options will adjust how much information is
displayed while running. The convert runtest to wait options allow
for control of the conversion of runtest into wait commands; this
option is required for the Xilinx erase and program algorithm. During
programming of Xilinx devices a retry loop is enabled which allows
for retrying of the programming of locations. If the SVF file is used
for verifying the programmed device, use the -verify option to
disable the retry loop.

If the retry loop is enabled there are other options which can be used
to reduce the VCL source file size.

The LOOPCOUNT option can be used to change the default number
of times that the retry loop will be executed. The LOOPADJUST
option tells the file splitting routine how much to weight each loop.
By increasing the value above one the loop will count more vectors
which will result in more files. Use this option if your digital compiler
is having problems compiling large files. For more information on
using this option see the File Splitting section below.

The node name options are used to set the actual node names for
TCK, TDI, TDO, TMS and TRST.

File Splitting
The HP 3070 tester has limitations to the size of the VCL test file. A
large SVF file of the sort required for XC9500 programming or verifi-
cation is likely to produce a VCL file too large for the HP 3070 tester

-TD -TARGETDEVICE # Device # in the boundary-
scan being accessed

-DEFAULTDEVICE
“device name”

Set the default device

-? -HELP Display this screen

Table A-1 svf2vcl Switches

Abbr. Option Operation

gen_hp Translator

A-4 Xilinx Development System

RAM to handle. The gen_hp program will automatically create
multiple VCL files of appropriate size for the tester to handle.

To accomplish this the translator counts the number of lines trans-
lated to VCL and splits the file after a maximum line count. The
current line count is compared to the maximum line count before
each executable SVF command. If the current line is greater than or
equal to the maximum line count then the state machine is forced to
the Run-Test/Idle state, the current file is closed, the next file is
opened and translation continues. The maximum line count value
can be adjusted upwards on HP 3070s by installing large amounts of
vector program memory. If you cannot increase the amount of vector
program memory, you can increase the number of files and decrease
the number of patterns in each file by increasing the value specified
in the -LOOPADJUST switch to being some number greater than 1
(first try 10 and then scale up or down as required).

The value assigned to the LOOPADJUST switch indicates the relative
memory requirement of the VCL statements associated with the
homing loops. A value of 10 means that these VCL statements require
10 times more memory than ordinary (non-homing-loop) statements.
Because the memory resources on each HP3070 vary from installation
to installation, a trial and error method must be used to determine the
correct value.

An alternative method is to use the -VECTLIMIT switch to specify the
maximum number of test vectors per VCL file generated. This switch,
however, can result in less efficient use of available ATE memory.

When the state machine goes to the Run-Test/Idle state as it is
loading a new stimulus file, the HP 3070 will release the drivers on
the JTAG control input pins (TCK, TMS, TDI and TRST). This is the
reason for installing the 100 ohm pullup and 100 ohm pulldown resis-
tors on TCK and TMS, respectively.

gen_hp Translator B-1

Appendix B

Troubleshooting

ATE environments tend to be very noisy. The presence of electrical
noise can contribute to erratic ISP behavior. Consider the following
tips if you suspect noise problems.

• Set ATE drive levels to 5V to minimize glitch effects in noisy
environments.

• Experiment with the TCK/TMS pull/up/down values to
provide more stable TCK and TMS signals during vector loads.

• Consider connection of a 1 nF capacitor in parallel with the TCK
and TMS pullup/pulldown resistors if you experience erratic
programming failures.

• Vary the vector cycle times and slew rates to increase noise
immunity.

• Consider using twisted pair connections for TAP signals to
reduce noise transmitted with signal values.

	Preface
	Conventions
	Introduction
	Hardware Considerations
	Test Fixture Design Tips
	Using PC or Sun

	Creating SVF Files
	Creating an SVF File Using JTAG Programmer
	Using the Batch Download Tool to Generate SVF
	Using the Graphical User Interface to Generate SVF

	Creating Compiled Test Files
	Using the gen_hp Script
	TCK Period
	Accessing Devices in a Multipart Boundary-scan
	TRST Optional Pin

	svf2vcl - Appendix A
	About svf2vcl
	Running svf2vcl
	File Splitting

	Troubleshooting - Appendix B

