& XILINX

Dynamic Microcontroller in an
XC4000 FPGA

December 1994

Application Note By KEN CHAPMAN

Summary

This Application Note describes how to build a microcontroller with dynamic bus size for implementing complex state
machines and processing functions either as part of a system, or for use during deMepment and test.

Xilinx Family
XC4000 and derivatives

Demonstrates
X-BLOX™ module generator
Using RAM and PROM

Table of Contents

Interesting ldeas and Examples ......coooevviieeiennnnee.. 9
CONCIUSIONS Liieniieiiiiiii it ceiiiieeiiieesieieenaas 10
Using the PSM Design FilesS ...ooivvviiieiiiiiiiiiiennsss 10
Features

m Dynamic bus width — 1 ton bits
m 16 Data Registers
m 16 1/0O Ports
m Flexible instruction set
Add and Subtract

Logical OR, AND, and XOR
Load, In, Out

Jump group, shift and rotate sets

m Program ROM — Dynamic depth from 16 to 256
instructions

m Typically >3 MIPS performance

m Unique architecture for highly compact design in
XC4000 device

Overview

Microcontrollers are common in many digital systems.
The relatively low cost of these complex devices
makes them ideal for certain applications. The deé
sion to include a microcontroller in a design is often
very clear because it transforms the design effort from
a logic design into more of a software design.

Xilinx FPGA devices offer similar flexibility for all the
other logic functions required in such systems. These
would include special high performance circuits, or -
nal conditioning for the microcontroller.

With the ever increasing size and reductions in cost of
FPGA devices, it is now possible to implement a con-
plete system on one device. The microcontroller and
associated software can be replaced by a complex
state machine dedicated to the function. However,
such state machines are often difficult to develop.
Consequently, a microcontroller usually remains a -
crete device, unless board space is at a premium.

A microcontroller is often used for diagnostics and test
functions in a system. Small programs are easy to
write, and very flexible.

This application note offers an alternative to discrete
microcontrollers by providing a microcontroller macro
for an XC4000. This microcontroller macro may be
used for board test and diagnostics, regardless of the
function the device will perform after reprogramming. It
is also useful in systems where the control logic is too
complex for hardware logic, but almost too simple for
software. Some applications requiring high security
such as data encryptors may also incorporate this
macro.

The macro, named 'PSM', is a programmable state
machine. The macro’s name conveys its potential use.
Although full featured, the macro is limited by the
amount of FPGA device that the designer is willing to
convert to program ROM.

A good efficient instruction set and the ability to avoid
the constraints of a fixed bus width make programs

© 1994 Xilinx, Inc. All rights reserved. PRELIMINARY—SUBJECT TO CHANGE

Version 0.30



Dynamic Microcontroller in an XC4000 FPGA

compact. During diagnostics and test, the entire @-
vice is available to the user for this function, and the
size of the program ROM is not an issue. In a system
application, the code complexity is the deciding factor.

Demand for a Compact Archite cture

When developing the PSM macro, silicon efficiency
was the primary focus. High performance circuits will
always be implemented as dedicated circuits. Hence,
all design decisions for this macro favor optimizations
for minimum area (low CLB count), with processing
speed a second priority.

The major design task was to define the functionality of
the microcontroller. This is defined by:

m  The bus width
m  The instruction set

Each affects silicon efficiency in two ways—the size of
the processing core, and the size of the program (and
the corresponding program ROM) to carry out the g&-

guence of operations.

The data bus determines the width of all data paths
and processing elements such as the ALU and data
registers. However, a suitably wide data bus simplifies
the program code. For example, the addition of two
16-bit values is only one instruction in a 16-bit mico-
processor, but is two instructions in an 8-bit version.
Clearly this decision also effects the overall system
performance.

The complexity and the range of available instructions
impacts the amount of logic required for the data paths
and processing elements. Too small a range of m-
structions—or the inability to manipulate data effe-
tively—results in long programs, with poor system
performance, that require large program ROMs. Suk
able instructions lead to efficient programs.

Consequently, the ability to choose the precise data

bus width required for a system, and the availability of
a highly efficient set of instructions result in a usable
microcontroller macro.

Exploiting FPGA Features

This microcontroller design exploits various XC4000
FPGA features including:

m Arithmetic carry logic — ALU Add and Subtract
functions, program counter

m ROM — Program memory
m RAM — Data registers

These features, and the ultimate flexibility of an FPGA,
offer some significant advantages.

Traditional microprocessors and microcontrollers hold
their program code in standard EPROMs. This -
proach results in variable length instructions and the
added complexity of op-code and operand fetch cycles.
Furthermore, the data bus is a shared resource for the
manipulation of program code and the processing of
data.

The FPGA architecture permits the program code and
the data bus to be separated. This allows the data bus
to be a different width from that required for the m-
struction codes. In fact, it permits the data bus to be
the width most suitable for the application. Furthe-
more, the FPGA can implement any width of ROM to
accommodate the program instructions. Having a
ROM wider than the normal eight bits enables the n-
struction and operands to be defined in a single access
for compact and fast system perfomance.

Practical Aspects of Implementation

The instruction set and its encoding provides the key to
the processor architecture. However, a few basic @-
cisions must be made.

Dynamic Data Busses

Constant ROM

B

Flags
Data Registers
Input Ports
:M Output Ports |
0 dh ™ A d\ ™ D |
Jump Vector | MMPBUS [ program | AddresSBUS ] program nemeon B Control
ROM Counter ROM
T T !

Figure 1. Dynamic microcontroller architecture.

PRELIMINARY



$7 XILINX

X-BLOX™ provides a design entry method where the
data path bus widths can be changed, and for the co-

responding synthesized logic. X-BLOX is the preferred
method for the design of this macro.

The XC4000 CLB RAM feature provides the ideal sal-
tion for building the data registers in the microcontrd
ler. This makes the 16 registers extremely space eff
cient because a CLB contains two 16x1 RAMSs.

Many processors include an accumulator in their
structure. This has the advantage of implied instra-
tions, which remove the need for two operands pern-
struction. Unfortunately it also results in a high pe-
centage of instructions which simply move values into
and out of the accumulator. It is important to keep the
program code small in an FPGA, and hence all opea-
tions directly access the registers.

Program code is efficient when all the bits of the a&-
coded instructions and operands are used. The ability
to express the instruction and all the operands in a
single access also leads to simple control circuits for
the processor. All instructions are limited to a single
access by making the program ROM the necessary
width—knowing that there is a space advantage of
shallow-but-wide ROMs over deep-but-narrow ROMs in
the XC4000 FPGA.

Instructions and Encoding

Some factors are already determined by the previously
stated architectural decisions. Others are defined by
the actual functionality. Four main instruction types
emerge for data processing, and one for program flow
control, considering the number of registers and the
access required by each instruction. These instruction
types are shown inTable 1.

In most cases, a resultant value needs to be stored.
Although it is possible to specify a third location, the
additional operand information adds too much extra
logic. Hence, the result will generally be placed back
into Register A.

With 16 registers to access, four bits of encoded -
struction are need to specify each register access. A
total of eight bits are therefore dedicated to operand
specification in a Type 1 nstruction.

PSM

Table 1. Function Types

Type Function

Type 1 | Function of Register A with
Register B

Type 2 | Function of Register A with a
constant value

Type 3 | Function of Register A with I/O
port access

Type 4 | Data manipulation of Register A

Type 5 | Program flow control and
flag testing

For Type 3 instructions, Register A is again specified
by four bits. Another easy architectural decision is the
number of I/O ports. Sixteen ports can be specified by
the same four bits used to access register B in a Type
1 instruction.

The specified constant in Type 2 instructions is a
problem. Constants relate to the data processing, and
hence are as wide as the data bus. Normally a fetch
cycle is used to access the next memory location for
the bits required to define the constant. In this macro,
where dynamic bus width is desirable, a fetch cycle
would place an upper limit on the bus width, and waste
memory bits for smaller bus sizes.

The solution is to permit 16 pointers (defined by four
bits) to a ROM. This ROM holds up to 16 constants of
the same width as the data bus. A program therefore
consists of:

® A main instruction memory of fixed width, and
m A separate constant memory of data bus width.

All Type 1, 2 and 3 instruction operands are therefore
defined by only eight bits.

The actual operations need to be encoded. The bits
required to encode the operations are directly related to
the number of instructions. Too few instructions result
in long programs, and too many result in an overly-
large processor.

A minimum instruction set provides the largest number
of functions with the least amount of instruction ove-

lap—e.g. comparison can be done with a subtract n-

struction. This instruction set is organized into the f&

lowing instruction types:

INPUT_PORT

OUTPUT,PORT-

(UBIN) define bus width

BUS_DEF

PROGRAMMABLE

STATE MACHINE

ENCODINB=UBIN
BOUNDS=4-0

XBLOX_BUS ADDR_DEF

XBLDOX bus CUBIND

defines address bus

PROG_ADDODR_RANGE

(Standard signals)
WRITE_PORT_FLAG

READ_PORT_FLAG[—

CLK

PDHT,ADDH[B%J]F

Figure 2. Defining the address bus range on the PSM macro symbol.

3

SUBJECT TO CHANGE



Dynamic Microcontroller in an XC4000 FPGA

Type 1—Load, Add, Subtract, AND, OR, XOR
Type 2—Load, Add, Subtract, AND, OR, XOR
Type 3—Input, Output

Type 4—Shift group, Rotate group

m Type 5—Jump group

This results in 17 basic instructions, although those of
Type 4 and 5 require several variations. It would -
pear that five bits are required to encode the full range
of instructions. However the encoding of Type 4 and 5
instructions can use some of the eight operand bits
from the other instruction types which allows just four
bits to encode the operation.

Type 4 instructions only require access to one register.
The remaining four operand bits are available to define
the shift or rotate process required. Shift and rotate
are then encoded by one instruction code reducing the
basic instruction count to 16. Instructions can now be
represented by a total of 12 bits.

The remaining challenge is to implement the Type 5
instruction within the same 12 bits. The four bits of the
operation code already define this as a jump instre-
tion, leaving the eight operand bits.

It is possible to use eight bits to specify a relative jump
of -128 to +127. This is sufficient for small programs,
but would not leave any bits to encode the condition for
the jump. Reducing the number of bits allocated to
relative addressing would be very limiting. Absolute
addressing presents the same problem as defining a
constant did for Type 3 instructions. However the same
solution is applicable, and hence four bits are used as
a pointer to a small memory containing up to 16 jump
vectors. The jump memory need only be wide enough
to support the size of the pogram.

The testing of flags defines the remaining four bits on a
Type 5 instruction. ZERO and CARRY flags provide
suitable flow control to the user.

The actual encoding of all instructions keeps the logic
to a minimum. Controlling the data flow and proces-
ing directly with the status of bits reduces size and n-
creases performance. The complete instruction encal-
ing follows.

Instruction Quick Reference

function code( hex) function code(hex)
ADD sx, sy Dxy SRO sx 6XE
ADD sx, c 5xc SR1 sx 6XF
SUB sx, sy Cxy SRX sx 6XA
SUB sx, C 4xc SRA sx 6x8
CR sx, sy 8xy RR sx 6xC
OR sx,cC 0oxc SLO sx 6Xx6
AND sx, sy 9xy SL1 sx 6x7
AND sx, c 1xc SLX sx 6x4
XCR sx, sy Axy SLA sx 6x0
XOR sx, € 2XC RL sx 6x2
LD sx, sy Bxy JP j 70j
LD sx, ¢ 3xc JP Z,j 73j
JP Cj 70
IN sx, p Exp JP Nz, j 72j
QUT sx, p Fxp JP NCj 78j
JP GT, ] A
JP LT,]j 7Bj

Type 1 and 2 instructions — Arithmetic and Load
Functions

11 CODE
Op_code ] 1098 | 7654 | 3210]|
ADD sx, sy 1101 X X X X yyyy
SUB sx, sy 1100 X X X X yyyy
CR sx, sy 1000 X X X X yyyy
AND sx, sy 1001 X X X X yyyy
XCR sx, sy 1010 X X X X yyyy
LD sx, sy 1011 X X X X yyyy
ADD sx, c 0101 X X X X cccec
SUB sx, C 0100 X X X X ccecec
OR sx,cC 0000O0 X X X X ccecec
AND sx, c 0001 X X X X ccecec
XOR sx, € 0010 X X X X ccecec
LD sx, ¢ 0011 X X X X ccecec

[ 1]

1] Sel ect operation

O R AR R

[ 11— 1- Add

1] 0 - Subtract

[ 00- R

3 > 01- AND

(. 10- XOR

(. 11- LOAD

[

| |___ 0 - Logical or |oad operation

| 1 - Arithretic operation

|

| 0- "sx' and constant

1- 'sx' and 'sy'

Notes:

m ‘c'is a4 bit pointer (cccc) to a constant able.

m 'sx'is any one of 16 registers represented by 4 bits
(XXXX).

m 'sy'is any one of 16 registers represented by 4 bits
(Yyyy).

m The result of operation is placed into $x".

m All commands effect ZERO and CARRY flags &-
cept LOAD.

m ADD and SUB commands will include the value of
the carry flag in the calculation.

Type 3 Instructions — Ports

11 CCDE

Op_code | 1098 | 7654 | 3210
IN sx, p 1110 X X X X pppp
QUT sx, p 1111 X X X X pppp
Notes

m 'sx'is any one of 16 registers represented by 4 bits
(XXXX).

m 'p'is a4 bit port address pppp).

m flags : no effect.

PRELIMINARY



$7 XILINX

Type 4 Instructions — Shift and Rotate group

O0OO0OO0OO0OO0OO0OO0OO0OO
PRrRRPRRPRRPRRPRPRRPRRPPR

PRRPRPRPRPRPRPRRPPR

[eleoloNolololoNoNoNe)

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X
TTOOO0OO0OO0ORRRRERE

———————— O0O0ORRRRPROORHR
—_————————— R OORROORRPR
TTTTTTT T T T T T T T T XXX POX X XPO

direction 0 - left
1 - right

select bit to nove in

00 - carry flag
01- nsb

10- LSB

11 - Forced val ue

Forced value of bit to shift in

Notes :

m 'sx'is any one of 16 registers represented by 4 bits
(XXXX).

m ZERO and CARRY flags may be effected.
m Functions:

SRO — shift right zero, forcing 0 into MSB, carry
takes value from LSB.

SR1 — shift right one, forcing 1 into MSB, carry
takes value from LSB.

SRX — shift right extended, MSB copied into
MSB, carry takes value from LSB.

SRA — shift right arithmetic, carry moved into
MSB, carry takes value from LSB.

RR — rotate right, LSB moved into MSB, carry
takes value from LSB.

SLO — shift left zero, forcing O into LSB, carry
takes value from MSB.

SL1 — shift left one, forcing 1 into LSB, carry
takes value from MSB.

SLX — shift left extended, LSB copied into LSB,
carry takes value from MSB.

SLA — shift left arithmetic, carry moved into
LSB, carry takes value from MSB.

RL — rotate left, MSB moved into LSB, carry
takes value from MSB.

Type 5 Instructions —- Jump group

11 CODE

Op_code ] 1098 | 7654 | 3210

JP j 0111 0 X0 X I

JP Z,j 0111 0X11 I

JP Cj 0111 110X I

JP Nz, j 0111 0X1o0 I

JP NC,j 0111 100X I

JP GT, j 0111 1010 I

JP LT, j 0111 1011 I
]
| | | |_zero flag status
| | |_look at zero flag
| |_carry flag status
| _look at carry flag

Notes:

m 'j'is a4 bit pointer (jjj ) to ajump vector table.
m Conditional jumps -

Z — Jump if ZERO flag set

NZ — Jump if NOT ZERO

C— Jump if CARRY flag set

NC — Jump if NO CARRY

GI — Jump if GREATER THAN

LT — Jump if LESS THAN

GT and LT apply after a 'SUB sx, ?'such that
the test is applied to 5x". i.e.sx < ?

m flags : no effect.

Programming Example

The following is an example of a program written to
multiply two 4-bit numbers and provide an 8-bit result.
Based on the resulting 8-bit product, it is more efficient
to implement an 8-bit data bus. The schematic design
for this function is shown inFigure 6 on page 12. The
design is intended for the XC4000 demonstration board
(containing a single 84-pin PLCC socket for an
XC4003PC84C or XC4005PC84C ckvice).

;Programfor 4 bit Multiply on Denp Board
START: LD s3,04 ;4 bits to multiply
XOR s2,s2 ;clear s2
IN s0,0 ;read swtches
LD s1,s0 ;
AND s1, FO ;isolate high nibble
LOCP: SRO sO ;test bit of |ow nibble
JP NC,NO ADD ;bit was zero
OR sl1,s1 ;clear carry flag
ADD s2, s1 ;accumul ate resul t
NO ADD: SRA s2 ;shift result
SUB s3, 01 ;
JP Nz, LOOP ;test if all 4 bits used
aur s2,1 ; di spl ay out put
JP START ; repeat

Figure 3. Multiply program written in PSMBLE.

The macro connects to the rest of the circuit in such a
way that port connections define the data bus width to
be synthesized by X-BLOX. The program address

SUBJECT TO CHANGE



Dynamic Microcontroller in an XC4000 FPGA

range must be set by attaching a BUS_DEF symbol to
the PROG_ADDR_RANGE bus input on the macro and
adjusting the 'BOUNDS=" parameter on the BUS_DEF
symbol as shown in Figure 2. This parameter may be
adjusted later if the program turns out to be smaller or
larger than expected.

The design is then processed using the XACT™ 5.0
FPGA development system. The results is three ROM
template files for the user’s program code.

= PROGRAM MEMcontains the main instructions.

m CONSTANT. MEM defines any data constants k-
quired.

= JUMP. MEM contains the vectors for any jump n-
structions.

The names of these files may be changed by re-
defining the ‘FILE=' attribute on the X-BLOX PROM
symbols within the macro. The internal details of the
PSM macro, including the X-BLOX data paths and
ROMs, are shown inFigure 7 and Figure 8.

An assembler, called 'PSMBLE’, is written in QBASIC
and is included with the demonstration designs (see
PSMBLE Assembler for PSM for details on using it).
The program generates the required three data files
from assembly code, simplifying the task of creating
the constant pointers and jump vectors.

When the MEM files are ready, the XACT tools are
used again to process the design including the ROM
data definitions.

Size and Performance

Both size and performance of a dynamic macro are
difficult to evaluate, but here are some guidelines.

The control logic is very simple because of the instre-

tion encoding. In fact only about ten CLBs carry out
the instruction decoding and implement the control
state machine. Although the absolute performance
depends on the maximum clock frequency, the state
machine dictates the number of clock cycles (t-states)
required to perform each instruction:

m All instructions excluding JUMP group require six
cycles.

m JUMP group (condition true or false) require one
cycle.

The size of the program counter and JUMP ROM &-
pend on the size of the program in the PROGRAM
ROM. However, at one CLB per address bit, no more
than eight CLBs are ever used for these combined
elements.

The instruction format minimizes the size of programs,
and hence the size of the PROGRAM ROM. The ROM
has a fixed width of 12 bits, but the depth is defined by
the PROG_ADDR_RANGE on the PSM macro.

The ROMs are built from function generators in the
XC4000 CLBs. Fundamentally, 16 or 32 addressable
locations are available. Larger memories are formed
by combining CLBs. When the PSM macro is only a
portion of the overall design, the user will want to keep
the program relatively short in order to minimize the
number of CLBs used for program storage. However,
when the whole device is turned into a microcontroller
for test purposes, then all CLBs are available to hold
much longer and possibly less effcient programs.

The values shown in Table 2 indicate the number of
CLBs required for programs of a given depth.

It is possible to adjust the DEPTH value in the
PROGRAM.MEM file to further minimize the number of
CLBs. For example, if only 135 program instructions
are required, then setting DEPTH=135 reduces the

Conpi l er Report for program'nmnult4.psm .
addr code | abel instruction cross-ref conment
00 ;
00 ;Programfor 4 bit Miltiply on Deno
00 ;
00 330 START: LD s3,0 ;0 -> "' 04
01 A22 XCOR s2,s2
02 EOO0 IN s0,0
03 B10 LD s1,s0
04 111 AND s1,1 ;1 ->"'F0O
05 60E LOOP: SRO sO
06 780 JP NC, 0 ;0 -> ' NO ADD
07 811 OR sl1,s1
08 D21 ADD s2,s1
09 628 NOADD: SRA s2
0A 432 SUB s3, 2 ;2 ->'01
0B 721 JP Nz, 1 i1 -> "' LOOP
0C F21 QuT s2,1
0D 702 JP 2 ;2 -> ' START

Figure 4. Compiler report from PSMBLE showing jump vector and constant pointer assignments.

PRELIMINARY

6



$7 XILINX

number of CLBs from 126 to only 73 CLBs—even
though address bus is still 7:0.

The dynamic data paths have the largest effect on size
and performance. The design maps very well into the
architecture using no more than five CLBs per bit, -
cluding the constant ROM and the RAM based regs-
ters.

Table 2. Design Size as a Function of
Address Range.

Program Program CLB count

Size Address

Range
16 3.0 6
32 4:0 12
64 5:0 30
128 6:0 60
256 7:0 126

Performance of this macro was a secondary condi-
eration. The primary focus was on minimum CLB
count. However, preliminary results indicate that the
combined effect of instruction encoding, pipelined @-
sign, and X-BLOX implementation produces two to
three times the performance of a typical 8-bit microco-
troller.

The macro operates at up to 23 MHz in an XC4000-5
device. In most designs, however, the clock frequency
is much lower. Under typical test applications, pe-
formance is usually of little consideration. In these
applications, the macro can be clocked with the internal
8 MHz (nominal) clock source.

PSMBLE Assembler for PSM

This section describes the PSMBLE assembler for the
PSM macro described earlier.

PSMBLE.BAS is written for QBASIC on the PC, and is
supplied in original uncompiled format to allow modif
cations by the user. This provides a way to comps-
ment any changes made to the standard PSM macro.

Though careful effort makes this program easy to use,
it has not received any official quality testing. Please
help to improve this program by reporting any problems
encountered.

What does it do?

The program can be executed from within QBASIC, or
by invoking QBASIC with

gbasic /run psnble

Syntax table

means opti onal
p
. nmeans Opti on may be repeated
y p

a-z] neans in the range specified.
::= means 'is defined by'.

note : upper and | ower case are always acceptable

each line should take the format: -

arith = { ADD| SUB } reg_spec , second_operand
logical ={ OR| AND| XOR| LD} reg_spec ,
port = { IN| QUT } reg_spec , hex_char
reg_spec = S hex_char

jump =JP[ { C| NC| Z| N2 | GT| LT} , ] label
second_op = { reg_spec | constant }

constant = hex_char [ hex_char... ]

hex_char = { [0-9] | [A-F] }

corment = [ any characters ]

i
{ é | b} means that one of the enclosed nust be specified
[

coment |

programline ::= [ label : ] [ instruction] [ ;
wher e
label = lab_char [ lab_char... ]
lab_char = { [A-Z] | [0-9] | _}
instruction = { arith | logical | port | shift | junmp }

second_oper and

shift ={ SRO| SRL| SRX| SRA| RR| SLO | SL1 | SLX | SLA| RL} reg_spec

Figure 5. Syntax table.

SUBJECT TO CHANGE



Dynamic Microcontroller in an XC4000 FPGA

The program asks for the name of your assembly code
file, and then processes it.

It takes only a few seconds to carry out the single pass
process, followed by another few seconds resolving the
jump addresses.

PSM requires that constants and jump addresses be
separated from the main program code. It also @&-
sures that no more than a maximum of 16 different
constants or jump vectors are specified.

The program produces three files called:

m program dat

m constant. dat

m j unp. dat

These files contain the data needed for the correspoinl-
ing MEM files used by X-BLOX in the macro scle-
matic. It is a simple task to paste this data into each

MEM file following the word 'DATA', and recompile the
design.

Helpful Files

During the assembly process, PSMBLE creates s&-
eral files to aid program development, debugging and
verification:

conpi l e. 1 og

A complete listing of the compiled program with al-
dress and instruction codes. This file is a complete
reconstruction of the original file, and consequently can
be used to verify the assembly process.

constant.tab

Lists all the constants specified in the program against
the pointer value (0 to F hex) to which they have been
assigned.

junp.tab

Lists all the labels used in JUMP instructions against
the vector number (0 to F hex) to which they have
been assigned.

| abel . tab

Lists every label specified and its address. The po-
gram has a limit of 100 labels, but only 16 can actually
be referenced in jump instructions.

j unmpaddr .t ab

Lists how the jump vectors and labels are resolved to
form addresses used in thej unp. menffile.

format. prg

This file is a formatted copy of the original program and
may be adopted as a replacement for the original
source file. It also acts as a verification of how
PSMBLE interpreted the assembly program.

How to Write a Program for PSM

All the instructions are described in detail earlier in the
application note. Complete syntax tables are provided
in Figure 5.

List of Instructions

In this list of all instructions, '2B7' is used as a cm-
stant, 'ken' is used as a label, and '5' is used as a port
number.

Arithnetic Shift and Rotate
ADD s1, s2 SRO sl
ADD s1, 2B7 SR1 sl
SUB s1, s2 SRX sl
SUB s1, 2B7 SRA sl

RR s1
Logi cal SLO s1
------- SL1 sl
SLX sl
OR s1,s2 SLA sl
OR sl1, 2B7 RL s1
AND s1, s2
AND s1, 2B7 Junp
XOR s1,s2 ----
XOR s1, 2B7
LD s1,s2 JP ken
LD s1,2B7 JP Z, ken
JP C, ken
Por t JP Nz, ken
- JP NC, ken
JP GT, ken
IN s1,5 JP LT, ken
QJT s1,5

Case sensitivity

Upper and lower cases are accepted. The assembler
converts all characters to upper case.

Tabs and Spaces

Tabs and spaces can be used freely to format the po-
gram. They are removed during pre&essing.

Constants

Constants are interpreted in hexadecimal only, and
hence only characters 0-9 and A- F are valid. The
designer must ensure that the data bus width setting
for the PSM macro is large enough to support the
constants specified in the assembly program.

Registers

The use of a register in an instruction is indicated by
the letter 's' before the single hexadecimal character 0
to F representing which of the 16 registers is to be
used. Most instructions expect the first operand to be a
register, but the second operand is assumed to be a
constant if 's' is not used.

Labels

Labels can wuse any alpha-numeric combination.
Spaces are removed, but the underscore (') character
can be used as a separator. There is no fundamental

PRELIMINARY



$7 XILINX

limit to the length of labels, but labels longer than 15
characters make theconpi | e. | ogfile untidy.

Jumps

Jumps must be performed using labels. For each label
used in a jump instruction, a corresponding label must
appear in the program.

Comments

Any characters specified after a semicolon (') until the
end of the line are assumed to be a comment and are
ignored. Comments are retained in theconpi | e. | og
file. Any character can be used in a comment, but
control characters inserted by some text editors may
give unexpected results.

Interesting Ideas and Examples

Following are a few ideas that may help in the use of
PSM and this assembler. If you have any more ideas,
please send them in.

Labels do not have to be on the same line as an
instruction

As seen in the earlier example, labels do not have to
be on the same line as an instruction. By placing them
on a line with a comment introducing a procedure, po-
grams become very readable.

Example:

mult_by 8 : ;multiply the value in S3 by 8
SLO s3
SLO s3
SLO s3

which seems to make much more sense than

mult_by 8 : SLO s3 ;multiply the value in S3 by 8

SLO s3 ;using a shift to nultiply by 2
SLO s3 ;three tinmes.

Avoid multiple labels at one address

Multiple labels can be defined to a single address loa-
tion. Although PSMBLE can process them, referencing
different labels in jump instructions causes unnecs-
sary jump pointers to be assigned. A review of the
j unpaddr . t abindicates duplicate addresses.

Take care of Carry flag

ADD, SUB, SRA and SLA all use the carry flag during
data processing. If you do not wish the carry flag to
have an effect, there are several options:

1. Shift instructions are very flexible, and where pa-
sible, you should force a '1' or '0' into the register
instead of the carry flag. For example, use SLO
s4' instead of SLA s4' if you definitely want to
force a zero into the LSB.

2. Perform any logical function (AND, OR, XOR) le-
fore the carry flag operation. All logical functions
have the effect of clearing the carry flag; hence by

ordering instructions carefully, the desired effect is
achieved without wasting instructions.

3. The carry flag can be cleared by using a logical OR
of any register with itself. This step preserves data,
but may also affects the zero flag, which may or
may not be useful. For example, OR s4, s4
clears the carry flag.

Obtaining more constants

If your program uses more than 16 constants, there are
several tricks to dbtain more.

First, avoid using zero, 0’, as a constant by clearing
any register with the XOR instruction. For example, to
effectively load registers2 with zero, execute:

XOR s2,s2

It may also be possible to form the constant you need
from those you already have and hold it in an unused
register. Look at various kinds of instructions to make
the value required. The following are some examples
of values created from the constants 3 and 5:

Assume
LD s3,3
LD s5,5

then the following operations creates these new values
XOR s3,s3 ->0
AND s5, s3 -> 1
SUB s5, s3 -> 2
SLO s3 -> 6
OR s5,s3 -> 7
ADD s5, s3 -> 8
SLO s5 -> A
SL1 s5 -> B

Finally, use any unused input ports to read an external
ROM containing further constants the same way as the
internal constant ROM.

PSM does not support a CALL and RETURN sy s-
tem

A manual approach to call and returns functions is
possible, but it adds instructions to a program. Decide
whether duplicating the subroutine in straight code is
smaller than the effect of making the subroutine call.

The suggested method only requires four instructions
per call, but also uses up some jump vectors. F-
member, the PSM only permits 16 jump vectors in o-
tal.

The concept is to load a register before making the
‘call' such that the return can be made logically.
Sometimes unique data passed to the sub-routine can
also be used to indicate the point of return.

SUBJECT TO CHANGE



Dynamic Microcontroller in an XC4000 FPGA

Example:

call _fromA LD sF, 01 ;return flag
JP sub_routine
return_to_A: ;continue the program
call _fromB: LD sF, 02 ;return flag

JP sub_routine

return_to_B: ;continue the program
call _fromC LD sF, 03 ;return flag

JP sub_routine

;continue the program

;instructions to performsub routine
SUB SF, 01

JP Z, return_to_A

SUB SF, 01

JP Z, return_to_B

JP Z, return_to_C

External hardware interacting with PSM

return_to_C
sub_routi ne:

PSM is an imbedded micro-controller, and all the gy-
nals are available to be connected to other logic. This
means that other 'external’ processes can be triggered
by the PSM instructions without actually using 'IN' and
'OUT" instructions.

Example:

A program is assembled and a particular process is
only activated by a jump to address 34. Clearly, this
address will then appear on the 'CURRENT_ADDR'
bus. Other hardware can be controlled to operate or
stop by decoding Address 34 on ‘CURRENT_ADDR’.
This technique reduces the number of instructions e-
quired and improves peformance.

Conclusions

This application note introduces a novel microproce-
sor macro which can be used in two obvous ways:

m As an imbedded processor in a complex esign.

m To convert an FPGA into a microcontroller during
production test or field diagnostics.

This application note also demonstrates ways to exploit
the architectural features of an XC4000 FPGA. X-
BLOX synthesis provides a logical schematic and a
simple method of accessing the density and perfom-
ance of the device.

Finally, Xilinx FPGAs offer total flexibility. This macro
may provide a basis for your own custom processor
design. The instructions can be adapted to meet your
unique system requirements.

Using the PSM Design Files

This design is available on theProgrammable Logic

Breakthrough ‘95 CD-ROM. This section describes
what software is required to run the design and the
steps involved. Also, please read through theLimita-

tions and Restrictions section.

Software Requirements

The following software is required to process this @-
sign:
m VIEWdraw or VIEWdraw-LCA schematic editor.

This software is required in order to make modifia-
tions to the schematics.

m  Xilinx XACT 5.0 FPGA development system, inclal-
ing the PPR place and route program and the X-
BLOX module generator.

m The QBASIC BASIC interpreter, available with MS-
DOS, is required to run the PSMBLE assembiler.

Using the Design on Your System

1. Create a new directory called PSM on your hard
disk.

2. Copy the files and sub-directories from the
/MISCAPPS/MICROCNT/DESIGNS directory on
the Programmable Logic Breakthrough ‘95 CD-
ROM into your PSMdirectory.

3. Edit the VI EWDRAW | NI file. Make sure that the

VIEWIogic® design library pointers are set appo-
priately for your machine. You will find the library
pointers near the end of the file.

Limitations and Restrictions

WARNING: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or wa-
ranty regarding this design or any item based on this
design. Xilinx disclaims all express and implied wa-
ranties, including but not limited to the implied fitness o
this design for a particular purpose and freedom fronf
infringement.  Without limiting the generality of the
foregoing, Xilinx does not make any warranty of any
kind that any item developed based on this design, o
any portion of it, will not infringe any copyright, patent
trade secret or other intellectual property right of any
person or entity in any country. It is the responsibility
of the user to seek licenses for such intellectual pre-
erty rights were applicable. Xilinx shall not be liable fo
any damages arising out of or in connection with the
use of the design including liability for lost profit, bus
ness interruption, or any other damages whatsoever.

Design Support and Feedback

This application note may undergo future revisions and
additions. If you would like to be updated with new
versions of this application note, or if you have qus-
tions, comments, or suggestions please send an E-mail
to

apps@ilinx.com

or a FAX addressed to "PSM Application Note Devé
opers" sent to

1+(408) 879-4442.

PRELIMINARY



$7 XILINX

IMPORTANT: Please be sure to include which ve-
sion of the application note you are using. The version
number is in the lower right-hand corner of page 1.

11 SUBJECT TO CHANGE



$7 XILINX

S-V8JddveE00V=14HVYd

A ,>mm7 SNOILVYIIlddY 31vYH0dd03

oo 1T ,Lm>7

G66T-834-£

ieaeg

r5d=301 e . siusuwuog
¥d0 <] OA WSd 43Tm JeTTdT3aTnNpy 3Tg-8 °eT3T |
9061 ~ :
nsa-01 L 7L 10N
Va0 N8%1 N 7437330 ® 7ng
5vd=201
N80 ANT - a0 9 £y
ydo 30571 ~ o_0°] T0 4 2y
5vd=301 4 051
- 20 3 TV
T ELL >&Mu EREN 0 g oy S3aus
00s1 ~J 00571 |, . STentanie
[vd=301 =057 <
v a0n Vs Y aas T TH0d 3LIEN
N80 ANT LT 0L7N - —
¥d0 a0s < OAu meu uz>m<
frane mm%%\mwjxm LInS3d~93H e LHOd ™ LNndLlno
N80 AN [0:/1S3H —
440 I <] o 934 v1va
rvd=301
ANT
¥do JOSH OAA
0vd=301
ANT _
S INELLL . i,
524=-301
ANT 5= 1°° ° £v
AL JAOSNW = T0 4 2y 82d=307
§€d4=001 EBEL 20 3 TV N8 0vdT
T >m_v& 3 0dSH O oy 0LVYO NI ~ ONTH
= 124=007
ﬁQJGJDsz M\mmn ro 9 — 40834 avdI
ANT — S0 @ TIVO NT ~ TNTd
AL JOSH 9 OSH 1o o 924-201
BEd=301 v oOsH LN3ING3S _ N8 ovar |
T >Wﬁ 7-01l-N —sT4 JLVO NI ~ ZNTd
GOSN —a8b 4 §2d=307
5£d=301 | N8I
" Ylo504 Herd €IVd NI N ©nNIg 0vor |
AL YOSNH 594n84 \\meml inar v2d=307
X137 B3 — < ovder |
PLV¥YO NI ~ ONTY
v 35S0 £24=301
B= [0 f]H00Y 1804 P 4N81
— < avdr |
—Ja¥14-Lund 0¥ 3 FsnruTuoovTany SLvO NI ~ LNV
e | e o | 4307400 STeTx0sil e 0242071
ITE04 JLTHH - & avar ]
INIHIVW 31Y¥YLS 3TE8YWUNVYHIOHd @H{D ZH NZH{ §Td=001
vwoaminaino M T 077 ITVONT N8 ENTV avd1 |
1H0d Indlno s d LHOd INdNI 804l sn8 [0/ 11YQ NI

10dWAS WS

PSM macro.

ign using

Figure 6. Four-bit multiplier des

SUBJECT TO CHANGE

12



$7 XILINX

v Tie] niiiviTidey ivevdins

S el

XN

EISNT
cazony
YLYO LNO 85K ZL1S5NT
IN0- 14175 TISNTI =
- DLSNI
YLvO Lno @617
000 0 O &
ERE]
. B
p e IlviO0H 14THS =
— 4E4E-LINT w #3073
IESERH
= " L . 2
VIVOTNIN STV N3N CTTIENT e
17ns534 sy OTLSNT [EERRITTS
Ty = Laav
s i L lino-sx e
o L tfinosa NI7sH
o ST =T TXSITWOH ;_u\q|n e
g R —"
3 o e 118 418 = notuva wituv Bt T¥VTI LOEV]
OVTI D637 : ° e E qqqnv/% LH0d™L4THS VLVOTLIINS T31Rs vivDT3eols
3304 shido T - SL4IKHS
Jenaxiu zsnexnu vivOo~LuOod
. V14T IHEYI-Ng T
RS TIENTTEN
M” DTLISNT
= - 0 BIGNT foeene
XEHVI TVJILap T HITHV £1 =2t =" cl
yr L HEYITAETOV tvon - 1 NOTLONDA-Tvor801f ™ tnanraa . oiSMT
JVY N3 xxwﬂ_uxﬁu\fu & “yox - oot
BVTIm by - iNa e o oNY - TO — = = =1 e roTIR
Jermeanned 4o - 0D 1VOTHO " oohggn v EAELERE!
o S— S3u-1varsoa . sv— 5800 ne-xonen
2 OTISNL v IR EERCEEETRIRLLE = g T
TSTII3TH e EETREERL] NOTONY "ociaana T L
BISNT S9N EELRELT]
vi— Tvarani
EIREReY] “135 — T =
gvyo1 = 1V32IL90] vengxau | ¥IYOTHOX " aenguox
zszony Y1YOTINYLSNOD
EERERPN LA
. e IR B T W
TAYIISOUTITHHIHY SsuesT3Ia2 Uy HOX 40 “ONY xu\u:u[qﬂjmln AT3T
Ao poutero ot Auiuco AITERET e qﬁimi.. Jox NI
AVIIIOfHITYY uerieusde 3sediqns fucunp TULATANASY— ino
S #0138 bsuss sirsoddn seu Adaueq s L = TWLITINASY—
= W = no-v wa-
E:wft[( e s CEPEATT) LS Zziﬂqﬁw/:x o=y vivo-adola
TuIT-aNkEY— A = — d07 4 25n8XNH 407X
noo we-
200¢ o 93IEHIIHY — VIO HLIIHY '
TTNSI9- 36015 STy ONYH3IdO™ X HJ144 ONVHIdO
Lese-uoe
FrTrew=
STTISNIS Tetory Lavdlrdns ®» 004V
2VOTIENT
= .
s o[ BIBNT LENI™L4
SOVTI N3 FLENT TERT
TX9TWDH
2u0

S8 T 42 J4gT]

Y=
A\;d T e PeBLT (MN-XUETLTX)
b o
TTNs38- 38015 | *[TTETIOvIE 20
T3 T3 03 2UTYORBR) S3B3G
uweli oBrueia eiun umnﬂ;”“m GoFjsasde sug sagwmw”ﬂ“awm ;u@umw”ﬂ“fu wou pes.
1TnseJ BILIN el ane Auuea IaaTellt . wn“m UDT1ONJISUT MeU
(< 4+0°
1T04H1INDOJ L
TENI-LX3N

PeT+TUnN A

13V X
uvewdeyn

us )

eTqgeuwwe gbody

T 383ug)

NS d

Figure 7. The internal details of the PSM macro. Many portions of the design use X-BLOX.

SUBJECT TO CHANGE

13



Dynamic Microcontroller in an XC4000 FPGA

IRE" T TV SFFUREFITFITE

FIACRED| isec-sis aem

NG

SIIHd0NWIN

THLITHVH-HNE

¥ H43ILNNOJ

SSs34O0v

NYyd9d0H4d

s3u00d 03 0@ ue 30u JE ATUuo S3Tup [RER
ATT
N
- u f -
JE0UIS JILER JITEA WvH
WOH LINVLISNDD - T
BISNT
910 uvu-nNa T
L
= S . —— a
370dINTADT 313178 THLOTHVE-RITE T ITnc3g-300ig B e et
YIVO LNYLSNOD [ o TENI-LNo EY Y L LY
ToHa [RERN JITEA WVE erf— SorIswr
LNYLSNDD T3 [TTIsNI®
1 Fazony
,on IV AT
XS~ T35 XS~ 130 XS~ 01 d0RS
Aetiliin 3704 RITER Tl
iggy ot
i = = .
7 e 400V 38005 T JiggIn o1 e TSNI~JHNT
nmo o AL
V1lvD~ 3HOLS VIVOTWIN  2snexau s-w31s BYs 139 LS
s TISNT G RS N
s9387v1vD Ininaaa TSIT dANT
MRrTOCIVA-KNYTE dV¥ W4
SAERYIRE
- v
sunr-ozr s T -
il
’ T
. . EEAERLEED
DEOOV 1804 TISNT
[El
LENI - dWNr
B YT
TEOUV 180d | '[TTISNT
04 dWNT~0ITVYA
=
’ Y13 -
gU0V IE0d | ‘zrsNT® LNIA3T 7
04 LRLERE] TN, Ty ® S0
BT — naa O S
Iy = ININID3 THLITINAS—
s1ow3na 613" 3NAsY—
EUo0v- 1804 | "[TEIsNT ﬁmm:\
04 ino-o NI 3ilgaIN—no7
TLIGNT 8- X018X HOOYTLINIHYND H3IINNG]
IUELERE Wasd LNO~90Hd
D EJHOOV 1HOd WYHIOHd
luDd 0/1 WOH WYHOODHJ WOH HOLJI3A JWNT
ATTeudajxa abBued EBsaJppe E38G6
937Tum ju0d ®3EDLPUT 03 BET4 585 JuBbud UL pead 3juod B3EDTPUT 03 BeET 4
cavany
E
3 xqum 2any X713 20NV
= = = ISNTI™NT SeTJded T 8T Tu
_ _ v 1] ISNI LNO 9vi4 104 0vig |- ° | - L 9t P L4 T M A LIV X
EEAERLLEREFS L - 7|uZ:$¢JIEm T3 (EEEREYS
66T (NN-XuTtTTy) uewdeyy usy
T yapr—————— @
Z 10 N IR suTtyoe a3e El ewuwe Jbou
I = N
R B I R T NE Te04-0v3d u N TEIS ta d
w13t anas— Juramans—
1waaanasH— Tu1amanas—
= o e = = 10t - = (7 49 7 3®8yg)
LHO0d-1ndLno Ssrvve ONYH3IdOTX V1vOo-LEDd sSo—vIve LH0dTLNdNI
ldod~1no LHOJd™NT

1 H40d

Lrndlnd

1 40d

L TTdNI

Z NWS5d

Figure 8. More internal details of the PSM macro. Many portions of the design use X-BLOX.

14

PRELIMINARY



	Features
	Overview
	Compact Archite cture
	Exploiting FPGA Features
	Practical Aspects
	Instructions and Encoding
	Arithmetic and Load
	Shift and Rotate
	Ports
	Shift and Rotate
	Jump

	Programming Example
	Size and Performance
	Assembler for PSM
	How to Write a Program
	List of Instructions
	Case sensitivity
	Tabs and Spaces
	Constants
	Registers
	Labels
	Jumps
	Comments

	Ideas and Examples
	Avoid multiple labels
	Carry flag
	Obtaining more constants
	CALL and RETURN
	External hardware

	Conclusions
	Design Files
	Software Requirements
	Limitations and Restrictions
	Support and Feedback

	Schematics
	Multiplier schematic
	Internal Details (1 of 2)
	Internal Details (2 of 2)


