
®

April 11, 1995 Application Brief BY GARY LAWMAN

© 1995 Xilinx, Inc. PRELIMINARY—SUBJECT TO CHANGE Version 0.20

Pulse-Width Modulation in
Xilinx Programmable Logic

Summary

This Application Brief demonstrates how to build a variable Pulse-Width Modulation (PWM) waveform using a counter
and a storage register. PWM is used in such areas as DC motor drive control and digital-to-analog conversion in bit
stream DACs. In many of these applications, the single bit digital output is subject to a low-pass filter which results in
an analog output level. The output level is the analog equivalent of the digital PWM’s duty-cycle.

Xilinx Family

All

Demonstrates

X-BLOX for arbitrary bus sizing

Novel use of a counter’s terminal count

Introduction

Pulse-Width Modulation (PWM) is used in many diverse
areas such as controlling the speed of DC motors, and
the analog translation of digital audio using the 1-bit
DAC of a CD player. The design presented in this brief
uses a register to store the desired ‘mark’ value, which
is automatically loaded into a down counter upon
reaching its terminal count. The PWM Frame Period is
the product of the counter’s clock period and the termi-
nal count value, being the sum of the ‘mark’ and ‘space’
periods. The design is readily scaled up or down simply
by changing the width of the register and counter.

Functional Description

The example design is made up of three separate com-
ponents. The data register, MARK_REGISTER, is used
to store the counter value. This value determines the
period that a Mark is generated, or the Pulse Width.
The up/down counter, called FRAME_COUNTER is
loaded with the value stored in the MARK_REGISTER
whenever the counter reaches its terminal count, TC.

During initial operation, the counter loads the
Mark_Value and counting proceeds downwards, so that
a ‘One’, (Mark), is seen on the output during this period.
See Figure 1. When the counter transitions through
Zero, the counter reaches its terminal count, TC. The
terminal count then changes the direction of counting to
upwards on the next clock. At the same time, the high
TC signal forces the Mark_Value to be re-loaded, so
that now the counter counts from Mark_Value up to TC.
During this time, a ‘Zero’, (Space), is driven by the tog-
gle flip-flop. Finally, the entire cycle repeats once TC is
reached.

In the design example, an n-bit binary counter is used.
The value of n is set to eight bits wide using the attrib-
ute ‘BOUNDS=[7:0]’ associated with the Mark_Value
INPUTS symbol. X-BLOX propagates the BOUNDS
attribute throughout the design, so that the
MARK_REGISTER and the FRAME_COUNTER are

also sized automatically to 8 bits. If this attribute were
instead set to ‘BOUNDS=[31:0]’, this design would gen-
erated a 32-bit data register and 32-bit counter.

Other types of counters could be used, but care should
be taken to ensure that only valid data is written to the
MARK_REGISTER. The following calculations are valid
for a binary counter, and should be modified accordingly
if other counter types are used. For example, a John-
son counter’s TC is 2n, and thus the Mark_Value in this
case must be less than 2n.

The Terminal Count signal, TC, drives a toggle flip-flop
which then produces the PWM signal at its output. This
output is modulated according to the size of the counter
and the value stored in the MARK_REGISTER.

Unless a Reset is added to the Counter, a new
Mark_Value only takes effect after the current Mark or
Space Count is completed.

The FRAME period may be calculated directly from the
period of the Clock, TCLK, and the counter modulus, TC,
so that:

FRAME PERIOD = TCLK × TC

Alternatively, this is may be expressed as:

FRAME PERIOD = TCLK × 2n

for an n-bit binary counter where n is the counter width
in bits. Likewise for the mark period:

MARK PERIOD = TCLK × Mark_Value

and so the duty cycle is the ratio of the two:

DUTY CYCLE = Mark_Value
2n

Implementing the design without X-BLOX

A generic version of the design may be implemented
simply by replacing the X-BLOX macros with standard
Xilinx macros.

Pulse-Width Modulation in Xilinx Programmable Logic

PRELIMINARY 2

Macro Size

The size of the PWM macro, implemented using binary
counters, is:

2n+1 Flip-Flops

which corresponds to n+1 XC4000/Spartan CLBs.

Output Signal Conditioning

The digital PWM output is not of itself an analog signal.
In many applications a basic low pass filter, such as an
RC network, will be sufficient to provide this conversion
and reduce the high frequency components in the out-
put. High fidelity applications need much more sophisti-
cated output signal conditioning to remove the intrinsi-
cally high frequency components such as TCLK. This is
often achieved using digital filters along with other
techniques such as decimation. In all cases the user
must take care to match the filter time constants to
those of the PWM generator itself.

The topic of output conditioning is beyond the scope of
this brief.

Using the Design Files

This design is available from the Xilinx FTP site.

This section describes what software is required
to run the design and the steps involved. Also, please
read through the Limitations and Restrictions section.

Software Requirements

The following software is required to process this de-
sign:

n PKUNZIP 2.04e, or later, unarchiving pro-gram.

n VIEWdraw or VIEWdraw-LCA schematic editor.
This software is required in order to modify the
schematics.

n Xilinx XACT 5.0, or later, FPGA development sys-
tem, including the PPR place and route program and
the X-BLOX module generator.

Using the Design on Your System

1. Create a new directory called PWM on your hard disk.

2. Copy the file called PWM.ZIP into the PWM
directory.

3. Invoke PKUNZIP -D PWM.ZIP to extract the files,
including their hierarchical path names, onto your
disk.

4. Edit the VIEWDRAW.I NI file. Make sure the
VIEWlogic design library pointers are set appropri-
ately for your machine. You will find the library
pointers near the end of the file.

5. Invoke the Xilinx Design Manager.

6. Set the part type to XC4003E-6PC84C, (the design
will work with any other part).

7. Run XMAKE on PWM.MAK to process the design.
The schematic file is named PWM.1.

Limitations and Restrictions

WARNING: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or war-
ranty regarding this design or any item based on this
design. Xilinx disclaims all express and implied warran-
ties, including but not limited to the implied fitness of
this design for a particular purpose and freedom from
infringement. Without limiting the generality of the
foregoing, Xilinx does not make any warranty of any
kind that any item developed based on this design, or
any portion of it, will not infringe any copyright, patent,
trade secret or other intellectual property right of any
person or entity in any country. It is the responsibility of
the user to seek licenses for such intellectual property
rights were applicable. Xilinx shall not be liable for any
damages arising out of or in connection with the use of
the design including liability for lost profit, business in-
terruption, or any other damages whatsoever.

Acknowledgments

The rather creative use of the Terminal Count to control
the generation of the Pulse Width was proposed by
Bernie New at Xilinx.

ftp://ftp.xilinx.com/pub/applications/misc/pwm.zip

3 SUBJECT TO CHANGE

Figure 1. Eight-bit, (scalable), generator using PWM macro.

	Introduction
	Functional Description
	Implementing the design without X-BLOX
	Macro Size

	Output Signal Conditioning
	Using the Design Files
	Software Requirements
	Using the Design on Your System
	Limitations and Restrictions

	Acknowledgments

