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Summary

This Application Note describes the operation of the XC4000E dedicated carry logic, the standard configurations provided
for its use, and how these are combined into arithmetic functions and counters.

Xilinx Family
XC4000E, XC4000L

Introduction

XC4000E CLBs contain dedicated, hard-wired carry logic
to both accelerate and condense arithmetic functions such
as adders and counters. Adders achieve ripple-carry
delays as low as 350 ps per bit, while utilizing only half a
CLB per bit. This is certainly denser than any other
approach, and in most cases, faster.

As shown in Figure 1, the carry logic shares operand and
control inputs with the function generators. The carry out-
puts connect to the function generators, where they are
combined with the operands to form the sums. A concep-
tual diagram of a typical addition is shown in Figure 2.

Only the shared and carry inputs to the function generators
are predetermined. Any function of these and the remain-
ing inputs may be implemented. For example, in a loadable
counter, the function generator may be used to both invert
the counter bit, under control of the carry path, and multi-
plex a load value into the flip-flop. The H function generator
also remains available, and the CLB flip-flops may be used
in counters or accumulators.

The ripple-carry outputs are routed between CLBs on high-
speed dedicated paths. As shown in Figure 3, carries may
be propagated either up or down a column of CLBs. At the
top and bottom of the columns where there are no CLBs
above and below, the carry is propagated to the right. This
enables U-shaped adders and counters to be constructed
when they cannot be fitted in a single column.

The carry logic may be configured to implement add, sub-
tract and add/subtract functions. Increment, decrement,
increment/decrement and 2’'s-complement functions are
also available.

These functions may be implemented using pre-defined
CLB configurations provided in XDE. The mnemonics for
these configurations, e.g., ADD-FG-CI, describe the arith-
metic function supported, the CLB function generators
used and the source of the carry input. While these config-
urations permit the dedicated carry logic to be used without
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detailed knowledge of its operation, the following descrip-
tion is provided.

Operation of the Carry Logic

A detailed and rather complex schematic of the dedicated
carry logic is shown in Figure 4. Figure 5, however, is much
simpler; it shows the same carry logic once it has been
configured for an addition and redundant gates have been
removed.

Both bits of the carry logic operate in the same way: First,
the A and B inputs are compared. If they are equal, Coyt is
well-defined without reference to C,y. When both inputs are
zero, carry is not propagated and no carry is generated.
Consequently, Coyt must be zero. When they are both
one, a carry is generated, and Coyt must also be a one. In
either case, Coyt is equal to the A input.

If the A and B inputs are different, the carry is propagated,
and Cgyr is equal to Cyy. Coyt can, therefore, be created
by multiplexing between the A input and Cjy.

This scheme is used because the multiplexers in the ripple
path may be implemented using pass transistors; these
introduce the least cumulative delay into this critical path.

Referring back to Figure 4, the various configuration
options can now be explained. XOR-gates are provided as
polarity controls for the B operands. According to a config-
uration bit, B may be inverted for a subtracter, or not
inverted for an adder. Alternatively, the polarity may be con-
trolled by F3 (ADD/SUBTRACT) for an adder/subtracter.

The B operands may be gated out using a configuration bit
in conjunction with two AND gates so that add and subtract
can become increment and decrement.

To determine whether carry is propagated up or down the
column of CLBs, a multiplexer selected the carry output of
the CLB below or the CLB above.

XAPP 013 July 4, 1996 (Version 2.0)



Using the Dedicated Carry Logic in XC4000E

Cour  Cin Din
CARRY . POWN
LOGIC
G
> Y
G H
CARRY
Ga
-~ L
H—»
G3 |
G —e
G2 ™~ DIN
> H SIR
D Ql——vo
L F
Gl
EC
Couro >
H1 > H —e
>
> DIN
E H SIR
CARRY P D QF—»x0Q
) .
EC
F4
F3 >
F
F2 >
H
F1 >
X
E
v
K SIR EC
Cinup Cout

X1997

Figure 1: XC4000E Dedicated Carry Logic
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Figure 2: Conceptual Diagram of a Typical Addition (2 Bits/CLB)

If only one adder bit is to be implemented per CLB, the
selected carry may be forced to skip the first stage of carry
logic. To do this, a configuration bit is set to one and
selected to replace the output of the comparator. If the bit is
selected and set to zero, an initial value is forced into the
carry chain.

This initial value has three sources, determined by the con-
figuration bits. The first source is the configuration bit used
to gate out the B operand. When this bit is a one, a 2-oper-
and function is performed, and a one at the carry input pro-
vides add-with-carry or subtract-without-borrow (borrow is
active Low). When the bit is a zero, a 1-operand function is
performed, and the carry chain is initialized with a zero.

The second source is F3. If F3 is not selected as the add/
subtract control, it is a free input to the carry chain. If it is
used to control addition and subtraction, it provides a zero
or one such that the initial carry /borrow is un-asserted in
both cases.

The final source is F1. When initialization is selected, this is
a free input to the carry chain.

The second stage of the carry logic may also be skipped, in
the same way as the first stage. However, there is no initial-
ization function in the second stage.
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Figure 3: Carry Propagation Paths
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Figure 5: Effective Carry Logic for a Typical Addition Figure 6: Effective Carry Logic for a Typical Addition
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2-Operand Functions
Adders

An adder implemented with the dedicated carry logic must
have at least two sections: a main section and an initializa-
tion section. In the main section, shown in Figure 7, one or
two bits of the adder are implemented in each CLB, and Cy
is taken from the dedicated interconnect. Three standard
CLB configurations are provided for this purpose: ADD-FG-
Cl is a two-bit adder, while ADD-F-CI and ADD-G-CI are
one-bit adders with the add occurring in F or G, respec-
tively.

C,n can only be driven by other carry logic. At the least sig-
nificant end of the adder, special attention must paid to
ensure that the carry path is initialized correctly. This is the
function of the initialization section.

The design of the carry logic does not provide for the imple-
mentation of two adder bits in the initializing CLB. However,
a CLB may be used to initialize the carry path and imple-
ment the LSB of the adder. The standard CLB configura-
tions for this are ADD-G-F1 and ADD-G-F3-. In both cases,
the addition occurs in G, and the carry input is F1 or F3,
respectively.

The use of this technique may create bussing difficulties if
other parts of the LCA device have the two LSBs imple-
mented in the same CLB. A second approach that avoids
this problem uses a CLB to initialize the carry path without
implementing part of the adder.

Four standard CLB configurations are provided for this pur-
pose: FORCE-F1 and FORCE-F3- allow F1 and F3,
respectively, to be used as the carry input, while FORCE-0
and FORCE-1 initialize the carry path with a fixed zero or
one, respectively. FORCE-0 and FORCE-1 only involve the
carry logic, and all the non-carry resources of the CLB are
available for other uses.

Optionally, the adder may have a third section at the most
significant end, used to create a carry output (other than on
the dedicated interconnect) or to detect overflow. Two situ-
ations must be considered: where the most significant CLB
contains two bits of the adder, and where it contains only
one.

If it contains only one bit of the adder, the standard CLB
configuration, ADD-F-CI, in Figure 8 should be used. Both
C,n and the most significant carry are available as inputs to
the G function generator. The most significant carry may be
passed through this, or XOR-ed with Cjy to detect twos-
complement overflow.

Where both carry and overflow are required, overflow
should be generated in the same CLB as the most signifi-
cant bit. The most significant carry is passed to Coyt, and
an additional CLB may be configured to route it to either the
F or G output. The EXAMINE-CI configuration is provided
for this purpose.

If the most significant CLB contains two bits of the adder,
the situation is more complex. As shown in Figure 9, the
ADD-F-CI configuration should again be used, despite the
need for a 2-bit adder. The most significant bits of the oper-
ands should be connected to the G1 and G4 inputs, CoyTo
selected as the G2 input, and the G function generator
manually programmed as if the configuration were ADD-
FG-CI. This causes the most significant sum to be gener-
ated at the G output. However, the second stage of carry
logic will be bypassed.

An additional CLB can then be used to generate the carry
and the overflow. This should be configured as ADD-F-CI
and the most significant bits of the operands connected to
F1 and F2 in addition to the previous connection. This
causes the carry stage, bypassed in the previous CLB, to
be implemented in the first stage of this additional CLB. In
this way, the necessary carries are available in the G func-
tion generator for overflow detection as described above.

The F function generator may be manually programmed to
create the most significant carry from the operand bits and
C)n- This is permissible as the operation of the carry logic is
independent of the function generators.
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Figure 7: Main and Initialization Sections of Adder
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Subtracters

Subtraction is, in most respects, identical to addition. The
subtraction may be written in terms of an addition as fol-
lows:

A-B=A+(B)

Multiplication by -1, or two's complementing, is performed
by logically inverting the operand and adding one. The final
form of the subtraction becomes:

A-B=A+B+1

Using CLB configurations with a SUB prefix, in place of
ADD, causes the B operand to be inverted both into the
carry logic and within the function generator. The one can
be added by forcing the carry into the adder to be High.

An alternative interpretation is that the inversion changes
the adder into a subtracter, with the carry becoming an
active-Low borrow. Consistent with the first interpretation,
the carry input must be High for borrow not to be asserted.
If the carry input is Low, the operation is

A-B-1.
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Figure 9: Carry-Out and Overflow Generation with
Duplicated MSB

Apart from using CLB configurations with the SUB prefix
and ensuring that carry-in has the right polarity, subtracters
may be constructed in the same way as adders. Equivalent
configurations exist for all three sections of the subtracter.
The only point to remember is that, when manually config-
uring function generators for the most significant output or
carry output, the B operand must be inverted. The definition
of overflow does not change.

One configuration that exists for subtraction, but not for
addition, is SUB-G-1. In this configuration, the least signifi-
cant bit of the subtraction takes place in G with the carry
input internally forced to a one (no borrow).
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Adder/Subtracters

The adder may be converted to an adder/subtracter by
making the inversion of the B operand programmable. This
is accomplished using CLB configurations with an
ADDSUB prefix.

The ADD/SUBTRACT control is connected to F3, and con-
trols the operation of both the carry logic and the F function
generator. If the configuration uses the G function genera-
tor, ADD/SUBTRACT must also be connected to G3.

The carry input to the adder/subtracter must be determined
by the operation being performed. When an add is in
progress, it must be Low for a carry not to be asserted, and
it must be High for a borrow not to be asserted during a
subtraction.

This will generally preclude the use of FORCE-O and
FORCE-1 to initialize the carry chain. Otherwise, the adder/
subtracter is constructed in the same way as the adder, but
using CLB configurations with the ADDSUB prefix.

As in the subtracter, the programmable operand inversion
must be remembered in any function generators that are
manually configured

1-Operand Functions

Incrementers

Essentially, an incrementer is an adder with one operand
zero, and the carry input asserted. Consequently, incre-
menters are constructed in the same way as adders, but
using CLB configurations with an INC prefix. These gate
out the B operand.

The carry input should be High to increment the A operand,
and Low to pass it unchanged. Alternatively, it may be fixed
High for permanent incrementation. This may be accom-
plished using CLB configurations equivalent to those used
to initialize adders. In addition, INC-G-1 and INC-FG-1
allow the carry chain to be initialized with the carry
asserted, along with one or two bits of the function.

Decrementers

These are subtracters with the B operand zero and a bor-
row asserted. CLB configurations with a DEC prefix gate
out the B operand before it is inverted. The carry input
should be Low to decrement the A operand, and High to
pass it.

Alternatively, a fixed Low may be used. DEC-G-0 and DEC-
FG-0 provide this, along with one or two bits of the function.
FORCE-0 may also be used.

Incrementer/Decrementers

Not surprisingly, these are constructed in the same way as
adder/subtracters, but using cells with an INCDEC prefix
that gate out the B operand. When increment is selected,

the carry input should be High to increment or Low to pass.
When decrement is selected, the carry should be Low to
decrement or High to pass. INCDEC-FG-1 implements two
least significant bits of the incrementer/decrementer with
the carry or borrow input permanently asserted.

2's Complementers

The traditional two’s-complement procedure, invert-and-
add-one, is not appropriate for use with the dedicated carry
logic. In the increment configuration, the A operand cannot
be inverted at the input to the carry logic, and using a sub-
tracter for O - B consumes unnecessary resources routing
the zero operand.

The answer it to replace invert-and-increment with decre-
ment-and-invert, which produces the same result. A con-
ventional decrementer is constructed, and an additional
output inversion is programmed into the function genera-
tors.

The use of a function generator input allows this inversion
to become programmable. In conjunction with control of the
carry input, this programmable inversion may be used to
twos complement a number or pass it, as required.

Counters

Up Counters

An up counter is constructed by combining an incrementer
with a register, as shown in Figure 10. Typically, the register
in the same CLBs as the incrementer is used, and the sum
outputs should be routed to this register. The output of the
register is fed back as the input to the incrementer. Each
clock, the register is loaded with a value one greater than
its previous value.

Any incrementer may be used. If it has the ability to incre-
ment or pass the operand, this feature may be used as a
count enable.

As shown in Figure 11, counters may easily be made load-
able by adding a multiplexer into the function generators.
This multiplexer selects between the incrementer output
and the value to be loaded as the source for the register.

Down Counters

Down counters are constructed in the same way as up
counters, but using decrementers in place of incrementers.

Up/Down Counters

Incrementer/decrementers are used for up/down counters.
The only significant difference comes in the loadable
counter. Because the INC/DEC control is an input to the
function generators, there are not enough inputs available
for the load function. One CLB must be used for each bit of
the counter, and there are several ways in which this can be
organized.
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One possibility is to use a CLB configuration that only
implements one bit of the incrementer/decrementer func-
tion, as shown in Figure 12. The H function generator can
then be used as the load multiplexer. The H1 input acts as
the Parallel Enable, and the value to be loaded is passed
through the second function generator.

A better choice is to construct the incrementer and decre-
menter separately in two columns of CLBs with two bits per
CLB, as shown in Figure 13. The decrementer is connected
as a conventional loadable down counter. In the incre-
menter, the function generators are modified with a multi-
plexer, as is it were to be a loadable up-counter. However,
the register is not connected, and data is not fed back.

Instead, the input to the incrementer is taken from the out-
put of the down counter, and the incrementer output is
routed to what would have been the down-counter load
input. The value to be loaded is input to the multiplexer
attached to the incrementer.

The load control of the down counter becomes the up/down
control, selecting the output of either the incrementer or the
decrementer. Data is loaded by replacing the incrementer
output with the value to be loaded, and selecting count up.
An external gate may be required to force the up/down con-
trol.
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INCREMENT

X2007A

Figure 11: Typical Loadable Counter CLB

This second approach has the advantage that its layout is
compatible with other functions that implement two bits per
CLB. More importantly, however, it is faster. The incremen-
tal carry delay is incurred per CLB, not per bit, and imple-
menting two bits per CLB halves the number of carry
delays. Also, the set-up time on the up/down control is
much shorter. The up/down control need only select the
output of the incrementer or decrementer, instead of select-
ing the increment or decrement function before carry/bor-
row propagation can begin. Both the incrementer and
decrementer operate in parallel, starting immediately after
the clock.

Alternatively, an incrementer/decrementer may be imple-
mented in one column of CLBs, with the register and load
multiplexers implemented in a second column. A count-
enable multiplexer can be built into the same function gen-
erator as the load multiplexer. If this is placed logically in
front of the load multiplexer, the load control takes prece-
dence over the Count Enable.

This scheme eliminates the additional gating required to
ensure that the counter is enabled and counting up during a
load. The Load and Count Enable controls are both fast,
but the set-up time for the up/down control is similar to the
carry-propagation delay.
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Figure 13: Up/Down Counter with Separate Incrementer and Decrementer
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Timing Analysis

Typically, the critical delay is from the carry input or operand

LSB to the output MSB, carry output or overflow flag. As p—— p—
shown in Figure 14, this delay has three parts: The delay / /

onto the carry chain from the input, the delay from the carry

chain to the output and the delay of the intervening CLBs. Tsum Tsum

If part of the function is performed in the CLB that initializes
the carry chain, the delay onto the chain is the greater of T
the operand-input-to-Coyt (Topcy) and the initialization- T
\
|

f

input-to-Coyt (Tincy) delays. If a CLB is used for initializa- T

tion only, separate delays must be calculated from the least |

significant operand input and the initialization input, taking _ |

into account the different number of intervening CLBs. /‘T
—— Teve

The output delay (Tgyy) is from Cy to the output. Each . T AB—>
intervening CLB introduces a Tgyp delay. N

To calculate the minimum clock period in a counter, the

clock-to-output delay and a routing delay must be added to AB —» 7 /
the operand input delay. Typically, in a -3 part, this routing caRRY CARRY _,
delay is 1.2 ns; but this must be verified by simulation after IN N
the implementation is complete. The output delay must be Tivey

replaced with the equivalent set-up time (Tcck), and the *) ®)
intervening CLBs must be taken into account, as in the xeo10n
basic delay calculation.

Tincy

Figure 14: Carry-Logic Delay Paths
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