

8-98



Supporting design files are available on the XACT CD-ROM and on the Xilinx Technical Bulletin Board under the names XAPP022V (VIEWlogic) and XAPP022O (OrCAD)

Adders, Subtracters and
Accumulators in XC3000

Summary

This Application Note surveys the different adder techniques that are available for XC3000 designs. Examples
are shown, and a speed/size comparison is made.

Introduction

There are many ways to implement binary adders, subtract-
ers and accumulators in LCA devices. Various approaches
offer different trade-offs between size and speed.

Most compact, but slowest, is a bit-serial technique that
operates on one or two bits per clock cycle, generating
sum and carry. The sum is fed to an output shift register;
the carry is stored and used in the subsequent bit time.

The most compact combinatorial (parallel) adder, sub-
tracter, or accumulator consists of cascaded CLBs. Each
CLB implements a full adder, accepting one bit of each
operand and an incoming carry. The CLB generates the
sum and an outgoing carry. A 16-bit function is completed
in 16 CLB delays, and requires 16 CLBs.

With its 5-input function generator, an XC3000 CLB can
implement additions two bits at a time. Three CLBs can
each handle two input bits of each operand and an input
carry to generate the two sum outputs and an outgoing
carry. A 16-bit function requires 24 CLBs but the opera-
tion is completed in eight CLB delays.

For faster operation, a look-ahead carry technique can be
used. Made popular by the 74181 ALU and its descen-
dents, look-ahead carry uses Carry Propagate and Carry
Generate signals to reduce the ripple-carry delay. Using
look-ahead carry techniques in the XC3000, a 16-bit
addition can be completed in five CLB delays, using 30
CLBs.

An even faster conditional-sum algorithm was originally
described by J. Sklansky. Using this algorithm, a 16-bit
adder requires 41 CLBs, but settles in only three CLB
delays. With careful layout, the propagation delay through
such an adder can be less than 20 ns in an XC3100-3.

Note that all Xilinx adder structures can be used as accu-
mulators with no size penalty. Unlike conventional gate
arrays and similar structures, LCA devices provide dedi-
cated flip-flops in each CLB that can be used for the

accumulator register. Since the flip-flop set-up time
through the function generator usually matches the com-
binatorial propagation delay of the CLB, the set-up time
for accumulator operands is similar to the propagation
delay of the adder.

Bit-Serial Adders

The CLB architecture is ideally suited for bit-serial arith-
metic. As shown in Figure 1, the two operands are serial-
ized in shift registers, and presented, LSB first, to the
serial arithmetic unit. The sum is created as a serial bit
stream, again LSB first, that is converted to parallel data
in a third shift register. Alternatively, one of the input shift
registers may serve as the output register, with the sum
shifted in to replace the operand.

The arithmetic unit, Figure 2, comprises a 1-bit full adder/
subtracter and a carry/borrow flip-flop, and can be imple-
mented in a single CLB. Before commencing an opera-
tion (addition or subtraction) the carry/borrow flip-flop
must be cleared. Subsequently, sum or differences are
passed to the output shift register, while carries or bor-
rows are stored for inclusion in the next bit of the serial
operation.

Figure 1. Serial Bit Adder/Subtracter

Bn-1 B0

Shift Register

Shift Register

Bn-1 B0

An-1 A0

Shift Register

Sum

B - Operand

B - Operand

Serial

Arithmetic

Unit

ADD/SUB X3119RESET

Demonstrates

Adder Techniques

Xilinx Family

XC3000A / XC3100A

XAPP 022.000 Application Note

By PETER ALFKE and BERNIE NEW

This document was created with FrameMaker 4 0 2

XAPP 022.000

8-99

D Q

RD

Ai
Bi

ADD/SUB

RESET

Si

X3120

While the number of clocks required to complete the
operation equals the number of bits, the clock period can
be very small because of the shallow logic. For maximum
clock speed, the first bit of the output shift register should
be implemented in the same CLB as the arithmetic unit.

Faster bit-serial operation can be obtained by simulta-
neously operating on two bits, Figure 3. Odd and even
bits of each operand are loaded into separate shift regis-
ters. The arithmetic unit takes in two bits of each operand,
and produces two sum bits per clock. These sum bits are
loaded into odd and even output shift registers.

Figure 3. 2-Bit Serial Adder

Shift Register

An-2 A0

A - Operand

X3121

Shift Register

An-1 A1

Shift Register

Bn-1 B1

B - Operand

Shift Register

Bn-2 B0

Shift Register

Sn-1 S1

SUM

Shift Register

Sn-2 S0

AEVEN

AODD

BEVEN

BODD

SUMEVEN

SUMODD

2-Bit
Arithmetic

Unit

Figure 4 shows the 2-bit arithmetic unit. Both sum bits are
derived in parallel, and a single carry is generated and
stored for the next cycle. This arithmetic unit permits
adders and subtracters to be constructed, but not adders/
subtracters. For adders/subtracter operation, the arith-
metic unit should implement an adder; to generate A–B,
the A-operand should be inverted while loading the ope-
and shift register, and the sum bits should be inverted into
the output register. The carry flip-flop is cleared before
each operation, regardless of whether it is an addition or
subtraction.

While the clock rate is similar to the 1-bit scheme, only half
as many clocks are required to complete the operation.

Ripple-carry Adders

The 1-bit serial adder, described above, can easily be
converted into a ripple-carry parallel adder. It is simply a
matter of replicating the arithmetic unit once for each bit,
removing the carry/borrow flip-flops and connecting the
carry/borrow outputs from one bit to the next, Figure 5.
The carry/borrow input of the LSB is set to zero for no
carry in an addition, and for no borrow in a subtraction.

At one CLB per bit, this design uses fewer CLBs than any
other parallel adder. However, this compactness is
achieved at the expense of speed; the settling time is one
CLB delay per bit. By placing the CLBs of the adder adja-
cent to each other, interconnect delay in the ripple path
can be minimized, or even eliminated.

Figure 2. Serial Arithmetic Unit

XAPP 022.000

8-100

Adders, Subtracters and Accumulators in XC3000

Figure 4. 2-Bit Serial Arithmetic Unit

RD

X3125

SODD

SEVENAEVEN
BEVEN

AODD
BODD

RESET

Figure 5. One-Bit-At-A-Time Ripple-Carry Adder

A0
B0

ADD/SUB

A1
B1

A2
B2

S0

S1

S2

1-Bit Adder

1-Bit Adder

C1

C2

C3

CIN

X3388

•

•

•

A faster settling time can be achieved by changing the
replicated cell from a 1-bit adder to a 2-bit adder, Figure 6.
The carry output and the more significant sum of each bit-
pair are functions of five inputs. Consequently, each
requires an entire CLB, increasing the CLB requirement to
1 1/2 per bit. However, the settling time is reduced to one
CLB delay per two bits, half that of the previous design.

The 5-input function generators permit this design to be
used for adders and subtracters, but not for adder/sub-
tracters. To implement an adder/subtracter, one of the
operands to an adder must be modified before being
input into the adder.

For the operation A–B, there are two choices, both of
which require additional XOR gates to invert one of the
operands while subtracting. The technique used in the
bit-serial adder and the one-bit-at-a-time adder is to invert
the A-operand into the carry logic only; the A-operand is
input to the sum logic unmodified. In this case, the carry/
borrow input is active-high for both add and subtract, and
may be tied Low if no input carry or borrow is required.

XAPP 022.000

8-101

Figure 6. Two-Bits-At-A-Time Ripple-Carry Adder

S1

S0A0
B0

A1
B1

A2
B2
A3
B3

S2

S3

X3127

C2

•

•

•

CIN

C4

XAPP 022.000

8-102

Adders, Subtracters and Accumulators in XC3000

A more conventional approach is to invert the B-operand
into both the sum and carry logic. However, if no input
borrow or carry is required, the input must be Low during
an addition, and High during a subtraction.

Look-ahead-carry Adders

For faster operation in large adders, look-ahead carry look-
ahead-carry technique uses two signals, Carry Generate
and Carry Propagate (P and G), that are typically outputs
of an arithmetic block, often of four bits. Since both of these
signals do not depend on the incoming carry signal, they
can be generated immediately from input data.

As the name implies, Carry Generate is asserted if the
block creates an overflow (carry), regardless of incoming
carry. For example, in a 4-bit adder, Carry Generate is
asserted if the sum of the operand bits, excluding the
incoming carry, exceeds 15.

If the block does not generate a carry by itself, but would
generate a carry as a result of an incoming carry, Carry
Propagate must be asserted; its assertion is optional if
the block generates a carry without requiring an incoming
carry. In our 4-bit example, Carry Propagate must be
asserted when the sum, excluding the incoming carry, is
exactly 15, and may optionally be asserted when the sum
is greater.

Ci + 4

Si

Si + 1

Pi + 2

Gi + 2

Si + 2

Si + 3

Pi + 4

Gi + 5

Ai + 1
Bi + 1

Ai + 2

Bi + 2

Ai
Bi

Ci

Ci + 2

Ai + 3

Bi + 3

2- Bit Look-Ahead
Adder

(As Above)

X3128

Figure 7. Four-Bits-at-a-time Adder Block with Internal Look-Ahead Carry

XAPP 022.000

8-103

described in the ripple-carry section, is used to imple-
ment the most and least significant bit-pairs, and only 30
CLBs are required.

Either design can be adapted to any multiple of four bits
by simply adding or subtracting 4-bit blocks in the center
of the adder. The advantage over the 2-bit ripple-carry
technique increases with the number of bits in the adder.

For even numbers of bits that are not multiples of four,
any of the designs in Figure 9 may be used. For a 14-bit
adder, the Figure 9(a) design balances all four delays at
five CLBs, and requires 25 CLBs. The Figure 9(b) and
9(c) designs each use two additional CLBs, but are one
CLB delay faster in the carry path. In the Figure 9(b)
design the carry out appears one CLB delay before the
sum, and in the Figure 9(c) design, the carry in need not
be present until one CLB delay after the operand. Again,
for different length adders, simply add or subtract 4-bit
blocks at the center of the adder.

A12-15

S12-15

B12-15

4-Bit
Adder

A8-11

S8-11

B8-11

4-Bit
Adder

A4-7

S4-7

B4-7

4-Bit
Adder

A0-3

S0-3

B0-3

4-Bit
Adder

A14-15 S14-15B14-15

2-Bit
Adder

A10-13

S10-13

B10-13

4-Bit
Adder

A6-9

S6-9

B6-9

4-Bit
Adder

A2-5

S2-5

B2-5

4-Bit
Adder

A0-1
S0-1B0-1

2-Bit
Adder

COUT

CIN

CIN

COUT

X3130(a) (b)

Figure 8. 16-Bit Adder Configurations

In XC3000 LCA devices, look-ahead carry is most effec-
tive when used to combine two 2-bit blocks into a 4-bit
block that cascades using ripple carry, Figure 7. The 4-bit
block has a one-CLB delay from carry in to carry out, but
a two-CLB delay from carry in to the sum output of the
more significant bit-pair. The delay from the operand
inputs to the carry output is also two CLBs.

A 16-bit adder may be implemented in two ways. The
most straightforward way is to cascade four 4-bit blocks,
as shown in Figure 8(a). With this design, the carry-in-to-
carry-out delay is only four CLBs, while the operand-to-
sum delay is six CLBs; the operand-to-carry-out and
carry-in-to-sum delays are both five CLBs The carry out-
put is available one CLB delay before the sum, and the
carry input need not be present until one CLB delay after
the operands. The design requires 32 CLBs.

While a shorter carry delay may sometimes be desirable,
the design in Figure 8(b) is faster overall, balancing all
four delays at five CLBs. The 2-bit ripple-carry block,

XAPP 022.000

8-104

Adders, Subtracters and Accumulators in XC3000

Figure 9. 14-Bit Adder Configuration

Figure 10. 4-Bit Adder

A10-13

S10-13

B10-13

4-Bit
Adder

A6-9

S6-9

B6-9

4-Bit
Adder

A2-5

S2-5

B2-5

4-Bit
Adder

A12-13 S12-13B12-13

2-Bit
Adder

A8-11

S8-11

B8-11

4-Bit
Adder

A4-7

S4-7

B4-7

4-Bit
Adder

A0-1
S0-1B0-1

2-Bit
Adder

COUT

CIN

COUT

X3131(b)(a)

A2-3
S2-3B2-3

2-Bit
Adder

A0-1
S0-1B0-1

2-Bit
Adder

CIN

A0-3

S0-3

B0-3

A8-11

S8-11

B8-11

A4-7

S4-7

B4-7

COUT

A12-13
S12-13B12-13

CIN

(c)

OUT

1141 01A
B3

A3

B2

A2

C

S3

S2

S1

S0

B1

A1

B0

A0

C IN

C

C2
6 CLBs

2 Delays

Conditional-sum Adder

Conditional-sum adders, originally described by J. Sklan-
sky in the June 1960 issue of the IRE Transaction on
Electronic Computers, reduce settling time at the
expense of much higher logic complexity. The version
described below was created by Matt Klein of Hewlett
Packard, who modified the algorithm to fit the XC3000
architecture. With careful placement and routing, the total
delay can be kept below 20 ns in an XC3100-3.

Forty-one CLBs are required, 27 of which generate one
function of up to five variables, while the remaining 14
CLBs each generate two functions of four variables. Fig-
ure 10 shows how these CLBs are connected. For more
information, please refer to the original paper and the
Xilinx Technical Bulletin Board.

